WorldWideScience

Sample records for gene sly represses

  1. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  2. Kinetically-defined component actions in gene repression.

    Directory of Open Access Journals (Sweden)

    Carson C Chow

    2015-03-01

    Full Text Available Gene repression by transcription factors, and glucocorticoid receptors (GR in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline] is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression.

  3. Polycomb complexes act redundantly to repress genomic repeats and genes

    DEFF Research Database (Denmark)

    Leeb, Martin; Pasini, Diego; Novatchkova, Maria

    2010-01-01

    Polycomb complexes establish chromatin modifications for maintaining gene repression and are essential for embryonic development in mice. Here we use pluripotent embryonic stem (ES) cells to demonstrate an unexpected redundancy between Polycomb-repressive complex 1 (PRC1) and PRC2 during the form...

  4. Translational repression contributes greater noise to gene expression than transcriptional repression.

    Science.gov (United States)

    Komorowski, Michał; Miekisz, Jacek; Kierzek, Andrzej M

    2009-01-01

    Stochastic effects in gene expression may result in different physiological states of individual cells, with consequences for pathogen survival and artificial gene network design. We studied the contributions of a regulatory factor to gene expression noise in four basic mechanisms of negative gene expression control: 1), transcriptional regulation by a protein repressor, 2), translational repression by a protein; 3), transcriptional repression by RNA; and 4), RNA interference with the translation. We investigated a general model of a two-gene network, using the chemical master equation and a moment generating function approach. We compared the expression noise of genes with the same effective transcription and translation initiation rates resulting from the action of different repressors, whereas previous studies compared the noise of genes with the same mean expression level but different initiation rates. Our results show that translational repression results in a higher noise than repression on the promoter level, and that this relationship does not depend on quantitative parameter values. We also show that regulation of protein degradation contributes more noise than regulated degradation of mRNA. These are unexpected results, because previous investigations suggested that translational regulation is more accurate. The relative magnitude of the noise introduced by protein and RNA repressors depends on the protein and mRNA degradation rates, and we derived expressions for the threshold below which the noise introduced by a protein repressor is higher than the noise introduced by an RNA repressor.

  5. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism

    DEFF Research Database (Denmark)

    Södersten, Erik; Feyder, Michael; Lerdrup, Mads

    2014-01-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. ...... and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease....

  6. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  7. Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells

    Science.gov (United States)

    Nishiyama, Akira; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Amano, Tomokazu; Hoang, Hien G.; Binder, Bernard Y.; Tapnio, Richard; Bassey, Uwem; Malinou, Justin N.; Correa-Cerro, Lina S.; Yu, Hong; Xin, Li; Meyers, Emily; Zalzman, Michal; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Qian, Yong; Dudekula, Dawood; Sheer, Sarah; Cadet, Jean S.; Hirata, Tetsuya; Yang, Hsih-Te; Goldberg, Ilya; Evans, Michele K.; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2013-01-01

    Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes. PMID:23462645

  8. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells

    DEFF Research Database (Denmark)

    Pasini, Diego; Cloos, Paul A C; Walfridsson, Julian

    2010-01-01

    The Polycomb group (PcG) proteins have an important role in controlling the expression of genes essential for development, differentiation and maintenance of cell fates. The Polycomb repressive complex 2 (PRC2) is believed to regulate transcriptional repression by catalysing the di- and tri-methy...

  9. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0314 TITLE: Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis ...19 Sep 2015 4. TITLE AND SUBTITLE Glucocorticoid Receptor-Mediated Repression of Pro- Inflammatory Genes in Rheumatoid Arthritis 5a. CONTRACT NUMBER... arthritis (RA) patients rely on glucocorticoids (GCs) at some point during the disease. GCs signal through the GC receptor (GR), a transcription factor that

  10. Repression of insulin gene expression by adenovirus type 5 E1a proteins.

    OpenAIRE

    1987-01-01

    Insulin gene transcription relies on enhancer and promoter elements which are active in pancreatic beta cells. We showed that adenovirus type 5 infection of HIT T-15 cells, a transformed hamster beta cell line, represses insulin gene transcription and mRNA levels. Using expression plasmids transiently introduced into HIT T-15 cells, we showed that adenovirus type 5 E1a transcription regulatory proteins repress insulin enhancer-promoter element activity as assayed with a surrogate xanthine-gua...

  11. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lodi, T; Goffrini, P; Ferrero, I; Donnini, C

    1995-09-01

    Two mutants carrying different deletions of the IMP2 coding sequence of Saccharomyces cerevisiae, delta T1, which encodes a protein lacking the last 26 C-terminal amino acids, and delta T2, which completely lacks the coding region, were analysed for derepression of glucose-repressible maltose, galactose, raffinose and ethanol utilization pathways in response to glucose limitation. The role of the IMP2 gene product in the regulation of carbon catabolite repressible enzymes maltase, invertase, alcohol dehydrogenase, NAD-dependent glutamate dehydrogenase (NAD-GDH) and L-lactate:ferricytochrome-c oxidoreductase (L-LCR) was also analysed. The IMP2 gene product is required for the rapid glucose derepression of all above-mentioned carbon source utilization pathways and of all the enzymes except for L-LCR. NAD-GDH is regulated by IMP2 in the opposite way and, in fact, this enzyme was released at higher levels in both imp2 mutants than in the wild-type strain. Therefore, the product of IMP2 appears to be involved in positive and negative regulation. Both deletions result in growth and catalytic defects; in some cases partial modification of the gene product yielded more dramatic effects than its complete absence. Moreover, evidence is provided that the IMP2 gene product regulates galactose- and maltose-inducible genes at the transcriptional level and is a positive regulator of maltase, maltose permease and galactose permease gene expression.

  12. The HTLV-1 Tax Oncoprotein Represses Ku80 Gene Expression

    OpenAIRE

    Ducu, Razvan I.; Dayaram, Tajhal; Marriott, Susan J

    2011-01-01

    The HTLV-I oncoprotein Tax interferes with DNA double strand break repair. Since non-homologous end joining (NHEJ) is a major pathway used to repair DNA double strand breaks we examined the effect of Tax on this pathway, with particular interest in the expression and function of Ku80, a critical component of the NHEJ pathway. Tax expression decreased Ku80 mRNA and protein levels, and repressed transcription from the Ku80 promoter. Conversely, Ku80 mRNA increased following siRNA knockdown of T...

  13. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

    Directory of Open Access Journals (Sweden)

    Erik Södersten

    2014-09-01

    Full Text Available Polycomb group (PcG proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq in combination with expression analysis by RNA-sequencing (RNA-seq showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.

  14. Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back

    Directory of Open Access Journals (Sweden)

    Raghvendra P Singh

    2015-08-01

    Full Text Available ATP-dependent chromatin remodeling is the active displacement of nucleosomes along or off DNA induced by chromatin remodeling complexes. This key process of gene regulation in eukaryote organisms has recently been argued to be controlled by a kinetic proofreading mechanism. In this paper we present a discussion of the current understanding of this process. We review the case of gene repression via heterochromatin formation by remodelers from the ISWI family and then discuss the activation of the IFN-β gene, where the displacement of the nucleosome is initiated by histone tail acetylations by the enzyme GCN5 which are required for the recruitment of SWI-SNF remodelers. We quantify the speci city of the acetylation step in the remodeling process by peptide docking simulations.

  15. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Chandler, Ronald L. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Fritz, David T. [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Mortlock, Douglas P. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Rogers, Melissa B., E-mail: rogersmb@umdnj.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States)

    2010-02-05

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  16. Overexpression of tomato Sly-miR397 gene enhances drought tolerance in Arabidopsis thaliana%过表达番茄Sly-miR397基因增强拟南芥的耐旱性

    Institute of Scientific and Technical Information of China (English)

    向娟; 林鹏; 李兴盛; 李双桃; 刘梦云; 张磊; 郭仰东

    2016-01-01

    为研究番茄miRNA在非生物逆境胁迫下的表达模式和功能分析.利用Real-time PCR检测番茄miRNA397在非生物逆境(干旱、盐害、ABA)条件下的表达量变化,发现Sly-miR397响应这些逆境胁迫,尤其在干旱胁迫下表达最明显.故将Sly-miR397过表达栽体转入拟南芥中,进行转基因功能验证.结果表明:与野生型相比,转基因拟南芥植株叶片相对含水量下降速率更缓慢,保水能力更好,且在干旱胁迫下,转基因植株的长势明显优于野生型,其最大光合效率、3种抗氧化酶活性SOD、POD、CAT均明显高于野生型,同时胁迫所产生的丙二醛含量明显低于野生型拟南芥.表明Sly-miR397能提高拟南芥对干旱胁迫的耐受性,在植物抗旱过程中起着重要作用.

  17. Functional conservation of a glucose-repressible amylase gene promoter from Drosophila virilis in Drosophila melanogaster.

    Science.gov (United States)

    Magoulas, C; Loverre-Chyurlia, A; Abukashawa, S; Bally-Cuif, L; Hickey, D A

    1993-03-01

    Previous studies have demonstrated that the expression of the alpha-amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the alpha-amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.

  18. Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide

    DEFF Research Database (Denmark)

    Riising, Eva Madi; Vacher-Comet, Itys; Leblanc, Benjamin Olivier;

    2014-01-01

    Polycomb group (PcG) proteins are required for normal differentiation and development and are frequently deregulated in cancer. PcG proteins are involved in gene silencing; however, their role in initiation and maintenance of transcriptional repression is not well defined. Here, we show that knoc...

  19. Epigenetic repression of male gametophyte-specific genes in the Arabidopsis sporophyte

    DEFF Research Database (Denmark)

    Hoffmann, Robert D; Palmgren, Michael Broberg

    2013-01-01

    -regulated in the sporophyte has yet to be established. In this study, we have performed a bioinformatics analysis of publicly available genome-wide epigenetics data of several sporophytic tissues. By combining this analysis with DNase I footprinting data, we assessed means by which the repression of pollen-specific genes...

  20. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Epigenetic repression of male gametophyte-specific genes in the Arabidopsis sporophyte

    DEFF Research Database (Denmark)

    Hoffmann, Robert D; Palmgren, Michael Broberg

    2013-01-01

    -regulated in the sporophyte has yet to be established. In this study, we have performed a bioinformatics analysis of publicly available genome-wide epigenetics data of several sporophytic tissues. By combining this analysis with DNase I footprinting data, we assessed means by which the repression of pollen-specific genes...

  2. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  3. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Djupedal, Ingela; Wang, Jingwen [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Kylsten, Per [School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Swoboda, Peter [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Ekwall, Karl, E-mail: Karl.Ekwall@ki.se [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden)

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  4. The B-type lamin is required for somatic repression of testis-specific gene clusters

    Science.gov (United States)

    Shevelyov, Y. Y.; Lavrov, S. A.; Mikhaylova, L. M.; Nurminsky, I. D.; Kulathinal, R. J.; Egorova, K. S.; Rozovsky, Y. M.; Nurminsky, D. I.

    2009-01-01

    Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDmo, in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDmo. Ablation of LamDmo by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins. PMID:19218438

  5. Repression of genes involved in melanocyte differentiation in uveal melanoma

    Science.gov (United States)

    Bergeron, Marjorie-Allison; Champagne, Sophie; Gaudreault, Manon; Deschambeault, Alexandre

    2012-01-01

    Purpose Uveal melanoma (UM) has been the subject of intense interest due to its distinctive metastatic pattern, which involves hematogenous dissemination of cancerous cells toward the liver in 50% of patients. To search for new UM prognostic markers, the Suppressive Subtractive Hybridization (SSH) technique was used to isolate genes that are differentially expressed between UM primary tumors and normal uveal melanocytes (UVM). Methods A subtracted cDNA library was prepared using cDNA from uncultured UM primary tumors and UVM. The expression level of selected genes was further validated by cDNA microarray, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence analyses. Results One hundred-fifteen genes were identified using the SSH technique. Microarray analyses comparing the gene expression profiles of UM primary tumors to UVM validated a significant differential expression for 48% of these genes. The expression pattern of selected genes was then analyzed by semi-quantitative RT–PCR and was found to be consistent with the SSH and cDNA microarray findings. A down-regulation of genes associated with melanocyte differentiation was confirmed in UM primary tumors. Presence of undifferentiated cells in the UM was demonstrated by the expression of stem cell markers ATP-binding cassette sub-family G member 2 (ABCG2) and octamer-binding protein 4 (OCT4). Conclusions We demonstrated that the SSH technique is efficient to detect differentially expressed genes between UM and UVM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor. In addition, deregulation of the melanocyte differentiation pathway revealed the presence of UM cells exhibiting a stem cell-like phenotype. PMID:22815634

  6. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  7. Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies.

    Directory of Open Access Journals (Sweden)

    Hua-Bing Li

    2013-04-01

    Full Text Available Polycomb bodies are foci of Polycomb proteins in which different Polycomb target genes are thought to co-localize in the nucleus, looping out from their chromosomal context. We have shown previously that insulators, not Polycomb response elements (PREs, mediate associations among Polycomb Group (PcG targets to form Polycomb bodies. Here we use live imaging and 3C interactions to show that transgenes containing PREs and endogenous PcG-regulated genes are targeted by insulator proteins to different nuclear structures depending on their state of activity. When two genes are repressed, they co-localize in Polycomb bodies. When both are active, they are targeted to transcription factories in a fashion dependent on Trithorax and enhancer specificity as well as the insulator protein CTCF. In the absence of CTCF, assembly of Polycomb bodies is essentially reduced to those representing genomic clusters of Polycomb target genes. The critical role of Trithorax suggests that stable association with a specialized transcription factory underlies the cellular memory of the active state.

  8. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters

    Science.gov (United States)

    Yap, Chui-Sun; Peterson, Abigail L; Castellani, Gastone

    2011-01-01

    Mammalian c-Myc is a member of a small family of three related proto-oncogenic transcription factors. c-Myc has an unusually broad array of regulatory functions, which include roles in cell cycle and apoptosis, a variety of metabolic functions, cell differentiation, senescence and stem cell maintenance. c-Myc modulates the expression of a very large number of genes, but the magnitude of the majority of the regulatory effects is only two-fold or less. c-Myc can both activate and repress the promoters of its target genes. Identification of genes directly regulated by c-Myc has been an enduring question in the field. We report here microarray expression profiling of a high resolution time course of c-Myc induction, using fibroblast cells in which c-Myc activity can be modulated from null to physiological. The c-Myc transcriptome data set presented is the largest reported to date with 4,186 differentially regulated genes (1,826 upregulated, 2,360 downregulated, 1% FDR). The gene expression patterns fit well with the known biological functions of c-Myc. We describe several novel findings and present tools for further data mining. Although the mechanisms of transcriptional activation by c-Myc are well understood, how c-Myc represses an even greater number of genes remains incompletely described. One mechanism involves the binding of c-Myc to other, positively acting transcription factors and interfering with their activities. We identified rapid-response genes likely to be direct c-Myc targets and analyzed the promoters of the repressed genes to identify transcription factors that could be targets of c-Myc repression. PMID:21623162

  9. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12.

    Science.gov (United States)

    Caldara, Marina; Minh, Phu Nguyen Le; Bostoen, Sophie; Massant, Jan; Charlier, Daniel

    2007-10-19

    In Escherichia coli L-arginine is taken up by three periplasmic binding protein-dependent transport systems that are encoded by two genetic loci: the artPIQM-artJ and argT-hisJQMP gene clusters. The transcription of the artJ, artPIQM and hisJQMP genes and operons is repressed by liganded ArgR, whereas argT, encoding the LAO (lysine, arginine, ornithine) periplasmic binding protein, is insensitive to the repressor. Here we characterize the repressible Esigma70 P artJ, P artP and P hisJ promoters and demonstrate that the cognate operators consist of two 18 bp ARG boxes separated by 3 bp. Determination of the energy landscape of the ArgR-operator contacts by missing contact probing and mutant studies indicated that each box of a pair contributes to complex formation in vitro and to the repressibility in vivo, but to a different extent. The organization of the ARG boxes and promoter elements in the control regions of the uptake genes is distinct from that of the arginine biosynthetic genes. The hisJQMP operon is the first member of the E. coli ArgR regulon, directly repressed by liganded ArgR, where none of the core promoter elements overlaps the ARG boxes. Single round in vitro transcription assays and DNase I footprinting experiments indicate that liganded ArgR inhibits P artJ and P artP promoter activity by steric exclusion of the RNA polymerase. In contrast, ArgR-mediated repression of P hisJ by inhibition of RNA polymerase binding appears to occur through topological changes of the promoter region.

  10. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  11. Efficient Gene Induction and Endogenous Gene Repression Systems for the Filamentous Cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Higo, Akiyoshi; Isu, Atsuko; Fukaya, Yuki; Hisabori, Toru

    2016-02-01

    In the last decade, many studies have been conducted to employ genetically engineered cyanobacteria in the production of various metabolites. However, the lack of a strict gene regulation system in cyanobacteria has hampered these attempts. The filamentous cyanobacterium Anabaena sp. PCC 7120 performs both nitrogen and carbon fixation and is, therefore, a good candidate organism for such production. To employ Anabaena cells for this purpose, we intended to develop artificial gene regulation systems to alter the cell metabolic pathways efficiently. We introduced into Anabaena a transcriptional repressor TetR, widely used in diverse organisms, and green fluorescent protein (GFP) as a reporter. We found that anhydrotetracycline (aTc) substantially induced GFP fluorescence in a concentration-dependent manner. By expressing tetR under the nitrate-specific promoter nirA, we successfully reduced the concentration of aTc required for the induction of gfp under nitrogen fixation conditions (to 10% of the concentration needed under nitrate-replete conditions). Further, we succeeded in the overexpression of GFP by depletion of nitrate without the inducer by means of promoter engineering of the nirA promoter. Moreover, we applied these gene regulation systems to a metabolic enzyme in Anabaena and successfully repressed glnA, the gene encoding glutamine synthetase that is essential for nitrogen assimilation in cyanobacteria, by expressing the small antisense RNA for glnA. Consequently, the ammonium production of an ammonium-excreting Anabaena mutant was significantly enhanced. We therefore conclude that the gene regulation systems developed in this study are useful tools for the regulation of metabolic enzymes and will help to increase the production of desired substances in Anabaena.

  12. Lifting DELLA Repression of Arabidopsis Seed Germination by Nonproteolytic Gibberellin Signaling1[C][W][OPEN

    Science.gov (United States)

    Ariizumi, Tohru; Hauvermale, Amber L.; Nelson, Sven K.; Hanada, Atsushi; Yamaguchi, Shinjiro; Steber, Camille M.

    2013-01-01

    DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and proteolysis via the SCFSLY1 E3 ubiquitin ligase and 26S proteasome. Although DELLA cannot be destroyed in the sleepy1-2 (sly1-2) F-box mutant, long dry after-ripening and GID1 overexpression can relieve the strong sly1-2 seed dormancy phenotype. It appears that sly1-2 seed dormancy results from abscisic acid (ABA) signaling downstream of DELLA, since dormant sly1-2 seeds accumulate high levels of ABA hormone and loss of ABA sensitivity rescues sly1-2 seed germination. DELLA positively regulates the expression of XERICO, an inducer of ABA biosynthesis. GID1b overexpression rescues sly1-2 germination through proteolysis-independent DELLA down-regulation associated with increased expression of GA-inducible genes and decreased ABA accumulation, apparently as a result of decreased XERICO messenger RNA levels. Higher levels of GID1 overexpression are associated with more efficient sly1 germination and increased GID1-GA-DELLA complex formation, suggesting that GID1 down-regulates DELLA through protein binding. After-ripening results in increased GA accumulation and GID1a-dependent GA signaling, suggesting that after-ripening triggers GA-stimulated GID1-GA-DELLA protein complex formation, which in turn blocks DELLA transcriptional activation of the XERICO inhibitor of seed germination. PMID:23818171

  13. Critical role of TCF-1 in repression of the IL-17 gene.

    Directory of Open Access Journals (Sweden)

    Jian Ma

    Full Text Available Overwhelming activation of IL-17, a gene involved in inflammation, leads to exaggerated Th17 responses associated with numerous autoimmune conditions, such as experimental autoimmune encephalomyelitis (EAE. Here we show that TCF-1 is a critical factor to repress IL-17 gene locus by chromatin modifications during T cell development. Deletion of TCF-1 resulted in increased IL-17 gene expression both in thymus and peripheral T cells, which led to enhanced Th17 differentiation. As a result, TCF-1(-/- mice were susceptible to Th17-dependent EAE induction. Rag1(-/- mice reconstituted with TCF-1(-/- T cells were also susceptible to EAE, indicating TCF-1 is intrinsically required to repress IL-17. However, expression of wild-type TCF-1 or dominant negative TCF-1 did not interfere with Th17 differentiation in mature T cells. Furthermore, expression of TCF-1 in TCF-1(-/- T cells could not restore Th17 differentiation to wild-type levels, indicating that TCF-1 cannot affect IL-17 production at the mature T cell stage. This is also supported by the normal up-regulation or activation in mature TCF-1(-/- T cells of factors known to regulate Th17 differentiation, including RORγt and Stat3. We observed hyperacetylation together with trimethylation of Lys-4 at the IL-17 locus in TCF-1(-/- thymocytes, two epigenetic modifications indicating an open active state of the gene. Such epigenetic modifications were preserved even when TCF-1(-/- T cells migrated out of thymus. Therefore, TCF-1 mediates an active process to repress IL-17 gene expression via epigenetic modifications during T cell development. This TCF-1-mediated repression of IL-17 is critical for peripheral T cells to generate balanced immune responses.

  14. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides

    Science.gov (United States)

    Farmer, Ryan M.

    2015-01-01

    In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase. PMID:26306848

  15. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  16. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.

    Science.gov (United States)

    Wong, Piu; Hattangadi, Shilpa M; Cheng, Albert W; Frampton, Garrett M; Young, Richard A; Lodish, Harvey F

    2011-10-20

    It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.

  17. Cas9 Nickase-Assisted RNA Repression Enables Stable and Efficient Manipulation of Essential Metabolic Genes in Clostridium cellulolyticum

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2017-09-01

    Full Text Available Essential gene functions remain largely underexplored in bacteria. Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing; however, its genetic manipulation to reduce the formation of less-valuable acetate is technically challenging due to the essentiality of acetate-producing genes. Here we developed a Cas9 nickase-assisted chromosome-based RNA repression to stably manipulate essential genes in C. cellulolyticum. Our plasmid-based expression of antisense RNA (asRNA molecules targeting the phosphotransacetylase (pta gene successfully reduced the enzymatic activity by 35% in cellobiose-grown cells, metabolically decreased the acetate titer by 15 and 52% in wildtype transformants on cellulose and xylan, respectively. To control both acetate and lactate simultaneously, we transformed the repression plasmid into lactate production-deficient mutant and found the plasmid delivery reduced acetate titer by more than 33%, concomitant with negligible lactate formation. The strains with pta gene repression generally diverted more carbon into ethanol. However, further testing on chromosomal integrants that were created by double-crossover recombination exhibited only very weak repression because DNA integration dramatically lessened gene dosage. With the design of a tandem repetitive promoter-driven asRNA module and the use of a new Cas9 nickase genome editing tool, a chromosomal integrant (LM3P was generated in a single step and successfully enhanced RNA repression, with a 27% decrease in acetate titer on cellulose in antibiotic-free medium. These results indicate the effectiveness of tandem promoter-driven RNA repression modules in promoting gene repression in chromosomal integrants. Our combinatorial method using a Cas9 nickase genome editing tool to integrate the gene repression module demonstrates easy-to-use and high-efficiency advantages, paving the way for stably manipulating genes, even essential ones, for functional

  18. Repression of telomere-associated genes by microglia activation in neuropsychiatric disease.

    Science.gov (United States)

    Kronenberg, Golo; Uhlemann, Ria; Schöner, Johanna; Wegner, Stephanie; Boujon, Valérie; Deigendesch, Nikolas; Endres, Matthias; Gertz, Karen

    2016-11-28

    Microglia senescence may promote neuropsychiatric disease. This prompted us to examine the relationship between microglia activation states and telomere biology. A panel of candidate genes associated with telomere maintenance, mitochondrial biogenesis, and cell-cycle regulation were investigated in M1- and M2-polarized microglia in vitro as well as in MACS-purified CD11b+ microglia/brain macrophages from models of stroke, Alzheimer's disease, and chronic stress. M1 polarization, ischemia, and Alzheimer pathology elicited a strikingly similar transcriptomic profile with, in particular, reduced expression of murine Tert. Our results link classical microglia activation with repression of telomere-associated genes, suggesting a new mechanism underlying microglia dysfunction.

  19. Repression of Seed Maturation Genes by a Trihelix Transcriptional Repressor in Arabidopsis Seedlings[W

    Science.gov (United States)

    Gao, Ming-Jun; Lydiate, Derek J.; Li, Xiang; Lui, Helen; Gjetvaj, Branimir; Hegedus, Dwayne D.; Rozwadowski, Kevin

    2009-01-01

    The seed maturation program is repressed during germination and seedling development so that embryonic genes are not expressed in vegetative organs. Here, we describe a regulator that represses the expression of embryonic seed maturation genes in vegetative tissues. ASIL1 (for Arabidopsis 6b-interacting protein 1-like 1) was isolated by its interaction with the Arabidopsis thaliana 2S3 promoter. ASIL1 possesses domains conserved in the plant-specific trihelix family of DNA binding proteins and belongs to a subfamily of 6b-interacting protein 1-like factors. The seedlings of asil1 mutants exhibited a global shift in gene expression to a profile resembling late embryogenesis. LEAFY COTYLEDON1 and 2 were markedly derepressed during early germination, as was a large subset of seed maturation genes, such as those encoding seed storage proteins and oleosins, in seedlings of asil1 mutants. Consistent with this, asil1 seedlings accumulated 2S albumin and oil with a fatty acid composition similar to that of seed-derived lipid. Moreover, ASIL1 specifically recognized a GT element that overlaps the G-box and is in close proximity to the RY repeats of the 2S promoters. We suggest that ASIL1 targets GT-box–containing embryonic genes by competing with the binding of transcriptional activators to this promoter region. PMID:19155348

  20. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  1. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice.

    Science.gov (United States)

    Maclary, Emily; Hinten, Michael; Harris, Clair; Sethuraman, Shriya; Gayen, Srimonta; Kalantry, Sundeep

    2017-05-03

    Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27me3, which marks many transcriptionally silent genes throughout the mammalian genome. Although H3K27me3 is associated with silenced gene expression broadly, it remains unclear why some but not other PRC2 target genes require PRC2 and H3K27me3 for silencing. Here we define the transcriptional and chromatin features that predict which PRC2 target genes require PRC2/H3K27me3 for silencing by interrogating imprinted mouse X-chromosome inactivation. H3K27me3 is enriched at promoters of silenced genes across the inactive X chromosome. To abrogate PRC2 function, we delete the core PRC2 protein EED in F1 hybrid trophoblast stem cells (TSCs), which undergo imprinted inactivation of the paternally inherited X chromosome. Eed (-/-) TSCs lack H3K27me3 and Xist lncRNA enrichment on the inactive X chromosome. Despite the absence of H3K27me3 and Xist RNA, only a subset of the inactivated X-linked genes is derepressed in Eed (-/-) TSCs. Unexpectedly, in wild-type (WT) TSCs these genes are transcribed and are enriched for active chromatin hallmarks on the inactive-X, including RNA PolII, H3K27ac, and H3K36me3, but not the bivalent mark H3K4me2. By contrast, PRC2 targets that remain repressed in Eed (-/-) TSCs are depleted for active chromatin characteristics in WT TSCs. A comparative analysis of transcriptional and chromatin features of inactive X-linked genes in WT and Eed (-/-) TSCs suggests that PRC2 acts as a brake to prevent induction of transcribed genes on the inactive X chromosome, a mode of PRC2 function that may apply broadly.

  3. Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers.

    Science.gov (United States)

    Affolter, M; Walldorf, U; Kloter, U; Schier, A F; Gehring, W J

    1993-04-01

    An induction process occurring between the mesodermal and the endodermal germ layers has recently been described in the regulation of the Drosophila homeotic gene labial (lab). We report here that proper spatial regulation of the Drosophila POU box gene pdm-1 products also involves interaction between these two germ layers. pdm-1 transcripts are initially present in both the anterior and the posterior endodermal midgut primordia. Upon fusion of the two primordia, transcripts disappear from two regions in the endoderm, a central domain and an anterior domain. The anterior repression domain of pdm-1 is independent of the expression of known homeotic genes and genes encoding secreted signalling molecules in the visceral mesoderm, both for its positioning and its repression. Repression in the central domain requires both the homeotic gene Ultrabithorax (Ubx) and the decapentaplegic (dpp) gene, which encodes a secreted protein. Both of these genes are also required for lab induction. However, the analysis of pdm-1 expression in various mutant backgrounds indicates that the regulation of lab and pdm-1 across germ layers is controlled by different genetic cascades. Our study indicates that dpp is not the signal that dictates central pdm-1 repression across germ layers and suggests that in the same midgut region, different signalling pathways result in the differential activation or repression of potential transcription factors.

  4. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92

    Science.gov (United States)

    Jin, Hyun Yong; Oda, Hiroyo; Chen, Pengda; Kang, Seung Goo; Valentine, Elizabeth; Liao, Lujian; Zhang, Yaoyang; Gonzalez-Martin, Alicia; Shepherd, Jovan; Head, Steven R.; Kim, Pyeung-Hyeun; Fu, Guo; Liu, Wen-Hsien; Han, Jiahuai

    2017-01-01

    MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. PMID:28241004

  5. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression.

    Science.gov (United States)

    Kagale, Sateesh; Rozwadowski, Kevin

    2011-02-01

    Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.

  6. Dicty_cDB: SLI250 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLI250 (Link to dictyBase) - - - Contig-U16436-1 SLI250Z (Link... to Original site) - - SLI250Z 578 - - - - Show SLI250 Library SL (Link to library) Clone ID SLI250 (Link to...ycdb.biol.tsukuba.ac.jp/CSM/SL/SLI2-C/SLI250Q.Seq.d/ Representative seq. ID SLI25...0Z (Link to Original site) Representative DNA sequence >SLI250 (SLI250Q) /CSM/SL/SLI2-C/SLI250Q.Seq.d/ XXXXX....d/ 1043 0.0 VHG138 (VHG138Q) /CSM/VH/VHG1-B/VHG138Q.Seq.d/ 1043 0.0 SLI250 (SLI250Q) /CSM/SL/SLI2-C/SLI250Q

  7. Dicty_cDB: SLI232 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLI232 (Link to dictyBase) - - - Contig-U15735-1 SLI232E (Link... to Original site) - - - - - - SLI232E 526 Show SLI232 Library SL (Link to library) Clone ID SLI232 (Link to...ycdb.biol.tsukuba.ac.jp/CSM/SL/SLI2-B/SLI232Q.Seq.d/ Representative seq. ID SLI23...2E (Link to Original site) Representative DNA sequence >SLI232 (SLI232Q) /CSM/SL/SLI2-B/SLI232Q.Seq.d/ CATGT...nces producing significant alignments: (bits) Value SLI232 (SLI232Q) /CSM/SL/SLI2-B/SLI2

  8. Disruption of DNA methylation-dependent long gene repression in Rett syndrome

    Science.gov (United States)

    Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.

    2015-01-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136

  9. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch.

    Science.gov (United States)

    Ramundo, Silvia; Rochaix, Jean-David

    2015-01-01

    Chloroplast genomes of land plants and algae contain generally between 100 and 150 genes. These genes are involved in plastid gene expression and photosynthesis and in various other tasks. The function of some chloroplast genes is still unknown and some of them appear to be essential for growth and survival. Repressible and reversible expression systems are highly desirable for functional and biochemical characterization of these genes. We have developed a genetic tool that allows one to regulate the expression of any coding sequence in the chloroplast genome of the unicellular alga Chlamydomonas reinhardtii. Our system is based on vitamin-regulated expression of the nucleus-encoded chloroplast Nac2 protein, which is specifically required for the expression of any plastid gene fused to the psbD 5'UTR. With this approach, expression of the Nac2 gene in the nucleus and, in turn, that of the chosen chloroplast gene artificially driven by the psbD 5'UTR, is controlled by the MetE promoter and Thi4 riboswitch, which can be inactivated in a reversible way by supplying vitamin B12 and thiamine to the growth medium, respectively. This system opens interesting possibilities for studying the assembly and turnover of chloroplast multiprotein complexes such as the photosystems, the ribosome, and the RNA polymerase. It also provides a way to overcome the toxicity often associated with the expression of proteins of biotechnological interest in the chloroplast.

  10. Crystal structure of enterococcus faecalis sly A-like transcriptional factor.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.; Zhang, R.; Zagnitko, O.; Dementieva, I.; Maltsev, N.; Watson, J. D.; Laskowski, R.; Gornicki, P.; Joachimiak, A.; Univ. of Chicago; European Bioinformatics Inst.

    2003-05-30

    The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed the same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.

  11. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production.

    Science.gov (United States)

    Xiong, Fuxia; Xiao, Daliao; Zhang, Lubo

    2012-07-01

    Heart disease is the leading cause of death in the United States. Recent studies demonstrate that fetal programming of PKCε gene repression results in ischemia-sensitive phenotype in the heart. The present study tests the hypothesis that increased norepinephrine causes epigenetic repression of PKCε gene in the heart via Nox1-dependent reactive oxygen species (ROS) production. Prolonged norepinephrine treatment increased ROS production in fetal rat hearts and embryonic ventricular myocyte H9c2 cells via a selective increase in Nox1 expression. Norepinephrine-induced ROS resulted in an increase in PKCε promoter methylation at Egr-1 and Sp-1 binding sites, leading to PKCε gene repression. N-acetylcysteine, diphenyleneiodonium, and apocynin blocked norepinephrine-induced ROS production and the promoter methylation, and also restored PKCε mRNA and protein to control levels in vivo in fetal hearts and in vitro in embryonic myocyte cells. Accordingly, norepinephrine-induced ROS production, promoter methylation, and PKCε gene repression were completely abrogated by knockdown of Nox1 in cardiomyocytes. These findings provide evidence of a novel interaction between elevated norepinephrine and epigenetic repression of PKCε gene in the heart mediated by Nox1-dependent oxidative stress and suggest new insights of molecular mechanisms linking the heightened sympathetic activity to aberrant cardioprotection and increased ischemic vulnerability in the heart.

  12. The mechanism underlying Ler-mediated alleviation of gene repression by H-NS.

    Science.gov (United States)

    Shin, Minsang

    2017-01-29

    Secretion of effector proteins in Enteropathogeneic Escherichia coli (EPEC) and Enterohemorrhagic Escherichia coli (EHEC) is mediated by a specialized type III secretion system, components of which are encoded in the LEE operons 1 to 5. H-NS, a global repressor in E. coli, silences the expression of LEE operons. Ler, a master regulator in LEE operons, shares 24% amnio acid identity and 44% amino acid similarity to H-NS. Interestingly, rather than a gene silencer, its main role has been characterized as an antagonizing protein that relieves H-NS-mediated transcriptional silencing. In the previous study we reported molecular mechanism for the repression of LEE5 promoter in EPEC and EHEC by H-NS as a protein interaction between upstream DNA-bound H-NS and the αCTD of promoter-bound RNA polymerase. The mechanism underlying Ler-mediated alleviation of the genes repression by H-NS is largely unknown. We examined regulatory effect of these proteins on LEE5p activity using various in vitro tools. Our results revealed that binding affinity of Ler to the LEE5p DNA is about 40 folds greater than that of H-NS as determined by surface plasmon resonance. We verified that Ler binding removed H-NS bound to the same stretch of DNA on LEE5 promoter resulting in a derepression. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Histone H4 lysine 20 acetylation is associated with gene repression in human cells

    Science.gov (United States)

    Kaimori, Jun-Ya; Maehara, Kazumitsu; Hayashi-Takanaka, Yoko; Harada, Akihito; Fukuda, Masafumi; Yamamoto, Satoko; Ichimaru, Naotsugu; Umehara, Takashi; Yokoyama, Shigeyuki; Matsuda, Ryo; Ikura, Tsuyoshi; Nagao, Koji; Obuse, Chikashi; Nozaki, Naohito; Takahara, Shiro; Takao, Toshifumi; Ohkawa, Yasuyuki; Kimura, Hiroshi; Isaka, Yoshitaka

    2016-01-01

    Histone acetylation is generally associated with gene activation and chromatin decondensation. Recent mass spectrometry analysis has revealed that histone H4 lysine 20, a major methylation site, can also be acetylated. To understand the function of H4 lysine 20 acetylation (H4K20ac), we have developed a specific monoclonal antibody and performed ChIP-seq analysis using HeLa-S3 cells. H4K20ac was enriched around the transcription start sites (TSSs) of minimally expressed genes and in the gene body of expressed genes, in contrast to most histone acetylation being enriched around the TSSs of expressed genes. The distribution of H4K20ac showed little correlation with known histone modifications, including histone H3 methylations. A motif search in H4K20ac-enriched sequences, together with transcription factor binding profiles based on ENCODE ChIP-seq data, revealed that most transcription activators are excluded from H4K20ac-enriched genes and a transcription repressor NRSF/REST co-localized with H4K20ac. These results suggest that H4K20ac is a unique acetylation mark associated with gene repression. PMID:27064113

  14. GATA4 mediates gene repression in the mature mouse small intestine through interactions with friend of GATA (FOG) cofactors

    NARCIS (Netherlands)

    E. Beuling (Eva); T. Bosse (Tjalling); D.J. Kerk (Daniel); C.M. Piaseckyj (Christina); Y. Fujiwara (Yuko); S.G. Katz (Samuel); S.H. Orkin (Stuart); R.J. Grand (Richard); S.D. Krasinski (Stephen)

    2008-01-01

    textabstractGATA4, a transcription factor expressed in the proximal small intestine but not in the distal ileum, maintains proximal-distal distinctions by multiple processes involving gene repression, gene activation, and cell fate determination. Friend of GATA (FOG) is an evolutionarily conserved f

  15. Antagonism between MES-4 and Polycomb Repressive Complex 2 Promotes Appropriate Gene Expression in C. elegans Germ Cells

    Directory of Open Access Journals (Sweden)

    Laura J. Gaydos

    2012-11-01

    Full Text Available The Caenorhabditis elegans MES proteins are key chromatin regulators of the germline. MES-2, MES-3, and MES-6 form the C. elegans Polycomb repressive complex 2 and generate repressive H3K27me3. MES-4 generates H3K36me3 on germline-expressed genes. Transcript profiling of dissected mutant germlines revealed that MES-2/3/6 and MES-4 cooperate to promote the expression of germline genes and repress the X chromosomes and somatic genes. Results from genome-wide chromatin immunoprecipitation showed that H3K27me3 and H3K36me3 occupy mutually exclusive domains on the autosomes and that H3K27me3 is enriched on the X. Loss of MES-4 from germline genes causes H3K27me3 to spread to germline genes, resulting in reduced H3K27me3 elsewhere on the autosomes and especially on the X. Our findings support a model in which H3K36me3 repels H3K27me3 from germline genes and concentrates it on other regions of the genome. This antagonism ensures proper patterns of gene expression for germ cells, which includes repression of somatic genes and the X chromosomes.

  16. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2

    Science.gov (United States)

    Oravecz, Attila; Apostolov, Apostol; Polak, Katarzyna; Jost, Bernard; Le Gras, Stéphanie; Chan, Susan; Kastner, Philippe

    2015-01-01

    T-cell development is accompanied by epigenetic changes that ensure the silencing of stem cell-related genes and the activation of lymphocyte-specific programmes. How transcription factors influence these changes remains unclear. We show that the Ikaros transcription factor forms a complex with Polycomb repressive complex 2 (PRC2) in CD4−CD8− thymocytes and allows its binding to more than 500 developmentally regulated loci, including those normally activated in haematopoietic stem cells and others induced by the Notch pathway. Loss of Ikaros in CD4−CD8− cells leads to reduced histone H3 lysine 27 trimethylation and ectopic gene expression. Furthermore, Ikaros binding triggers PRC2 recruitment and Ikaros interacts with PRC2 independently of the nucleosome remodelling and deacetylation complex. Our results identify Ikaros as a fundamental regulator of PRC2 function in developing T cells. PMID:26549758

  17. Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in vitro

    Science.gov (United States)

    Cooney, Michael; Czernuszewicz, Graznya; Postel, Edith H.; Flint, S. Jane; Hogan, Michael E.

    1988-07-01

    A 27-base-long DNA oligonucleotide was designed that binds to duplex DNA at a single site within the 5' end of the human c-myc gene, 115 base pairs upstream from the transcription origin P1. On the basis of the physical properties of its bound complex, it was concluded that the oligonucleotide forms a colinear triplex with the duplex binding site. By means of an in vitro assay system, it was possible to show a correlation between triplex formation at -115 base pairs and repression of c-myc transcription. The possibility is discussed that triplex formation (site-specific RNA binding to a DNA duplex) could serve as the basis for an alternative program of gene control in vivo.

  18. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Flora Aparecida [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Cvoro, Aleksandra [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Amato, Angelica A. [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Caro Alves de Lima, Maria do; Rocha Pitta, Ivan [Laboratório de Planejamento e Síntese de Fármacos – LPSF, Universidade Federal de Pernambuco (Brazil); Assis Rocha Neves, Francisco de [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Webb, Paul, E-mail: pwebb@HoustonMethodist.org [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States)

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  19. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes

    Science.gov (United States)

    Dozmorov, Mikhail G

    2015-01-01

    Although age-associated gene expression and methylation changes have been reported throughout the literature, the unifying epigenomic principles of aging remain poorly understood. Recent explosion in availability and resolution of functional/regulatory genome annotation data (epigenomic data), such as that provided by the ENCODE and Roadmap Epigenomics projects, provides an opportunity for the identification of epigenomic mechanisms potentially altered by age-associated differentially methylated regions (aDMRs) and regulatory signatures in the promoters of age-associated genes (aGENs). In this study we found that aDMRs and aGENs identified in multiple independent studies share a common Polycomb Repressive Complex 2 signature marked by EZH2, SUZ12, CTCF binding sites, repressive H3K27me3, and activating H3K4me1 histone modification marks, and a “poised promoter” chromatin state. This signature is depleted in RNA Polymerase II-associated transcription factor binding sites, activating H3K79me2, H3K36me3, H3K27ac marks, and an “active promoter” chromatin state. The PRC2 signature was shown to be generally stable across cell types. When considering the directionality of methylation changes, we found the PRC2 signature to be associated with aDMRs hypermethylated with age, while hypomethylated aDMRs were associated with enhancers. In contrast, aGENs were associated with the PRC2 signature independently of the directionality of gene expression changes. In this study we demonstrate that the PRC2 signature is the common epigenomic context of genomic regions associated with hypermethylation and gene expression changes in aging. PMID:25880792

  20. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  1. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xiaoyun Han

    2016-11-01

    Full Text Available In Aspergillus nidulans, the nitrogen metabolite repression regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in Aspergillus flavus has notbeen previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of nitrogen metabolite repression and the nitrogen metabolism network in fungi.

  2. Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD.

    Science.gov (United States)

    Eade, Colleen R; Hung, Chien-Che; Bullard, Brian; Gonzalez-Escobedo, Geoffrey; Gunn, John S; Altier, Craig

    2016-08-01

    Salmonella spp. are carried by and can acutely infect agricultural animals and humans. After ingestion, salmonellae traverse the upper digestive tract and initiate tissue invasion of the distal ileum, a virulence process carried out by the type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). Salmonellae coordinate SPI-1 expression with anatomical location via environmental cues, one of which is bile, a complex digestive fluid that causes potent repression of SPI-1 genes. The individual components of bile responsible for SPI-1 repression have not been previously characterized, nor have the bacterial signaling processes that modulate their effects been determined. Here, we characterize the mechanism by which bile represses SPI-1 expression. Individual bile acids exhibit repressive activity on SPI-1-regulated genes that requires neither passive diffusion nor OmpF-mediated entry. By using genetic methods, the effects of bile and bile acids were shown to require the invasion gene transcriptional activator hilD and to function independently of known upstream signaling pathways. Protein analysis techniques showed that SPI-1 repression by bile acids is mediated by posttranslational destabilization of HilD. Finally, we found that bile acids function synergistically to achieve the overall repressive activity of bile. These studies demonstrate a common mechanism by which diverse environmental cues (e.g., certain short-chain fatty acids and bile acids) inhibit SPI-1 expression. These data provide information relevant to Salmonella pathogenesis during acute infection in the intestine and during chronic infection of the gallbladder and inform the basis for development of therapeutics to inhibit invasion as a means of repressing Salmonella pathogenicity.

  3. Variable coordination of cotranscribed genes in Escherichia coli following antisense repression

    Directory of Open Access Journals (Sweden)

    Kulyté Agne

    2006-11-01

    Full Text Available Abstract Background A majority of bacterial genes belong to tight clusters and operons, which complicates gene functional studies using conventional knock-out methods. Antisense agents can down-regulate the expression of genes without disrupting the genome because they bind mRNA and block its expression. However, it is unclear how antisense inhibition affects expression from genes that are cotranscribed with the target. Results To examine the effects of antisense inhibition on cotranscribed genes, we constructed a plasmid expressing the two reporter genes gfp and DsRed as one transcriptional unit. Incubation with antisense peptide nucleic acid (PNA targeted to the mRNA start codon region of either the upstream gfp or the downstream DsRed gene resulted in a complete expression discoordination from this artificial construct. The same approach was applied to the three cotranscribed genes in the endogenously expressed lac-operon (lacZ, Y and A and partial downstream expression coordination was seen when the lacZ start codon was targeted with antisense PNA. Targeting the lacY mRNA start codon region showed no effect on the upstream lacZ gene expression whereas expression from the downstream lacA gene was affected as strongly as the lacY gene. Determination of lacZ and lacY mRNA levels revealed a pattern of reduction that was similar to the Lac-proteins, indicating a relation between translation inhibition and mRNA degradation as a response to antisense PNA treatment. Conclusion The results show that antisense mediated repression of genes within operons affect cotranscribed genes to a variable degree. Target transcript stability appears to be closely related to inhibition of translation and presumably depends on translating ribosomes protecting the mRNA from intrinsic decay mechanisms. Therefore, for genes within operons and clusters it is likely that the nature of the target transcript will determine the inhibitory effects on cotranscribed genes

  4. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-05-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia into glutamine. Glutamine-limited continuous cultures were used to completely derepress the expression of GAP1, PUT4, GDH1 and GLN1. Following an ammonia pulse, the expression of GAP1, PUT4 and GDH1 decreased while the intracellular glutamine concentration remained constant, both in the cytoplasm and in the vacuole. Therefore, it was concluded that ammonia causes gene repression independent of the intracellular glutamine concentration. The expression of GLN1 was not decreased by an ammonia pulse but solely by a glutamine pulse. Analysis of the mRNA levels of ILV5 and HIS4 showed that the response of the two biosynthetic genes, GDH1 and GLN1, to ammonia and glutamine in the wild-type and gln1-37 was not due to changes in general transcription of biosynthetic genes. Ure2p has been shown to be an essential element for nitrogen-regulated gene expression. Deletion of URE2 in the gln1-37 background prevented repression of gene expression by ammonia, showing that the ammonia-induced repression is not caused by a general stress response but represents a specific signal for nitrogen catabolite regulation.

  5. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination.

    Science.gov (United States)

    Reynolds, David L; Hofmeister, Brigitte T; Cliffe, Laura; Siegel, T Nicolai; Anderson, Britta A; Beverley, Stephen M; Schmitz, Robert J; Sabatini, Robert

    2016-08-01

    The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription.

  6. Mapping the transcription repressive domain in the highly conserved human gene hnulp1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    HNULP1,a new member of the basic helixloop-helix transcription factors,contains a DUF654 domain in its C-terminus and is highly conserved from Drosophilae,yeast,zebrafish to mouse.The function of this motif,however,is currently unknown.In this research,we fused five deletion fragments of the DUF654 domain to the GAL4 DNA-binding domain and then co-transfected with plasmids L8G5-Luc and VP-16.The analysis of the GAL4 luciferase reporter gene indicated that fragments from 228 to 407 amino acids in the DUF654 domain had a strong transcription repression activity.Therefore,this study lays a solid foundation for research on the mechanism of hnulp1 transcriptional regulation and the function of the DUF654 domain.

  7. STAT4-mediated transcriptional repression of the IL5 gene in human memory Th2 cells.

    Science.gov (United States)

    Gonzales-van Horn, Sarah R; Estrada, Leonardo D; van Oers, Nicolai S C; Farrar, J David

    2016-06-01

    Type I interferon (IFN-α/β) plays a critical role in suppressing viral replication by driving the transcription of hundreds of interferon-sensitive genes (ISGs). While many ISGs are transcriptionally activated by the ISGF3 complex, the significance of other signaling intermediates in IFN-α/β-mediated gene regulation remains elusive, particularly in rare cases of gene silencing. In human Th2 cells, IFN-α/β signaling suppressed IL5 and IL13 mRNA expression during recall responses to T-cell receptor (TCR) activation. This suppression occurred through a rapid reduction in the rate of nascent transcription, independent of de novo expression of ISGs. Further, IFN-α/β-mediated STAT4 activation was required for repressing the human IL5 gene, and disrupting STAT4 dimerization reversed this effect. This is the first demonstration of STAT4 acting as a transcriptional repressor in response to IFN-α/β signaling and highlights the unique activity of this cytokine to acutely block the expression of an inflammatory cytokine in human T cells.

  8. Bordetella pertussis risA, but not risS, is required for maximal expression of Bvg-repressed genes.

    Science.gov (United States)

    Stenson, Trevor H; Allen, Andrew G; Al-Meer, Jehan A; Maskell, Duncan; Peppler, Mark S

    2005-09-01

    Expression of virulence determinants by Bordetella pertussis, the primary etiological agent of whooping cough, is regulated by the BvgAS two-component regulatory system. The role of a second two-component regulatory system, encoded by risAS, in this process is not defined. Here, we show that mutation of B. pertussis risA does not affect Bvg-activated genes or proteins. However, mutation of risA resulted in greatly diminished expression of Bvg-repressed antigens and decreased transcription of Bvg-repressed genes. In contrast, mutation of risS had no effect on the expression of Bvg-regulated molecules. Mutation of risA also resulted in decreased bacterial invasion in a HeLa cell model. However, decreased invasion could not be attributed to the decreased expression of Bvg-repressed products, suggesting that mutation of risA may affect the expression of a variety of genes. Unlike the risAS operons in B. parapertussis and B. bronchiseptica, B. pertussis risS is a pseudogene that encodes a truncated RisS sensor. Deletion of the intact part of the B. pertussis risS gene does not affect the expression of risA-dependent, Bvg-repressed genes. These observations suggest that RisA activation occurs through cross-regulation by a heterologous system.

  9. Dicty_cDB: SLI203 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLI203 (Link to dictyBase) - - - Contig-U16463-1 SLI203Z (Link... to Original site) - - SLI203Z 579 - - - - Show SLI203 Library SL (Link to library) Clone ID SLI203 (Link to...ycdb.biol.tsukuba.ac.jp/CSM/SL/SLI2-A/SLI203Q.Seq.d/ Representative seq. ID SLI20...3Z (Link to Original site) Representative DNA sequence >SLI203 (SLI203Q) /CSM/SL/SLI2-A/SLI203Q.Seq.d/ XXXXX...VNDVIKFAARSNL*ini lkiikk*knkkk*ki Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value SLI203 (SLI2

  10. Dicty_cDB: SLI252 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLI252 (Link to dictyBase) sli252 - - Contig-U11535-1 SLI252Z ...(Link to Original site) - - SLI252Z 600 - - - - Show SLI252 Library SL (Link to library) Clone ID SLI252 (Li...nk to dictyBase) Atlas ID sli252 NBRP ID - dictyBase ID - Link to Contig Contig-U11535-1 Original site URL h...ttp://dictycdb.biol.tsukuba.ac.jp/CSM/SL/SLI2-C/SLI252Q.Seq.d/ Representative seq. ID SLI2...52Z (Link to Original site) Representative DNA sequence >SLI252 (SLI252Q) /CSM/SL/SLI2-C/SLI252Q.Se

  11. Dicty_cDB: SLI271 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLI271 (Link to dictyBase) sli271 G22510 DDB0229898 Contig-U01385-1 SLI2...71P (Link to Original site) SLI271F 213 SLI271Z 565 SLI271P 778 - - Show SLI271 Library SL (Link to library) Clone ID SLI2...71 (Link to dictyBase) Atlas ID sli271 NBRP ID G22510 dictyBase ID DDB0229898 Link t...o Contig Contig-U01385-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/SL/SLI2-C/SLI2...71Q.Seq.d/ Representative seq. ID SLI271P (Link to Original site) Representative DNA sequence >SLI271 (SLI2

  12. Discrimination of Korean ginseng (Panax ginseng Meyer cultivar Chunpoong and American ginseng (Panax quinquefolius using the auxin repressed protein gene

    Directory of Open Access Journals (Sweden)

    Jong-Hak Kim

    2016-10-01

    Conclusion: These results suggest that great impact to prevent authentication of precise Chunpoong and other cultivars using the auxin repressed protein gene. We therefore present an effective method for the authentication of the Chunpoong cultivar of P. ginseng and P. quinquefolius.

  13. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-01-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia in

  14. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock[OPEN

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Nakamichi, Norihito

    2016-01-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR (PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5. CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore, ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated in cca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. PMID:26941090

  15. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1.

    Science.gov (United States)

    Krishnan, Vaishnav; Stoppel, David C; Nong, Yi; Johnson, Mark A; Nadler, Monica J S; Ozkaynak, Ekim; Teng, Brian L; Nagakura, Ikue; Mohammad, Fahim; Silva, Michael A; Peterson, Sally; Cruz, Tristan J; Kasper, Ekkehard M; Arnaout, Ramy; Anderson, Matthew P

    2017-03-15

    Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant type of autism linked to increased gene dosages of UBE3A, which encodes a ubiquitin ligase with transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus downregulates the glutamatergic synapse organizer Cbln1, which is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases in UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA), where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activation of, or restoration of Cbln1 in, VTA glutamatergic neurons reverses the sociability deficits induced by Ube3a and/or seizures. Our results suggest that gene and seizure interactions in VTA glutamatergic neurons impair sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes.

  16. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Harashima, S; Hinnebusch, A G

    1986-11-01

    GCN4 encodes a positive regulator of multiple unlinked genes encoding amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Expression of GCN4 is coupled to amino acid availability by a control mechanism involving GCD1 as a negative effector and GCN1, GCN2, and GCN3 as positive effectors of GCN4 expression. We used reversion of a gcn2 gcn3 double mutation to isolate new alleles of GCD1 and mutations in four additional GCD genes which we designate GCD10, GCD11, GCD12, and GCD13. All of the mutations lead to constitutive derepression of HIS4 transcription in the absence of the GCN2+ and GCN3+ alleles. By contrast, the gcd mutations require the wild-type GCN4 allele for their derepressing effect, suggesting that each acts by influencing the level of GCN4 activity in the cell. Consistent with this interpretation, mutations in each GCD gene lead to constitutive derepression of a GCN4::lacZ gene fusion. Thus, at least five gene products are required to maintain the normal repressed level of GCN4 expression in nonstarvation conditions. Interestingly, the gcd mutations are pleiotropic and also affect growth rate in nonstarvation conditions. In addition, certain alleles lead to a loss of M double-stranded RNA required for the killer phenotype. This pleiotropy suggests that the GCD gene products contribute to an essential cellular function, in addition to, or in conjunction with, their role in GCN4 regulation.

  17. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS.

    Science.gov (United States)

    Deochand, Dinesh K; Meariman, Jacob K; Grove, Anne

    2016-07-15

    Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.

  18. MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase

    Science.gov (United States)

    Kaur, Mandeep; Cole, Michael D.

    2012-01-01

    The control of normal cell growth is a balance between stimulatory and inhibitory signals. MYC is a pleiotropic transcription factor that both activates and represses a broad range of target genes and is indispensable for cell growth. While much is known about gene activation by MYC, there is no established mechanism for the majority of MYC repressed genes. We report that MYC transcriptionally activates the PTEN tumor suppressor in normal cells to inactivate the PI3K pathway, thus suppressing AKT activation. Suppression of AKT enhances the activity of the EZH2 histone methyltransferase, a subunit of the epigenetic repressor Polycomb Repressive Complex 2 (PRC2), while simultaneously stabilizing the protein. MYC mediated enhancement in EZH2 protein level and activity results in local and genome-wide elevation in the repressive H3K27me3 histone modification, leading to widespread gene repression including feedback autoregulation of the MYC gene itself. Depletion of either PTEN or EZH2 and inhibition of the PI3K/AKT pathway leads to gene derepression. Importantly, expression of a phospho-defective EZH2 mutant is sufficient to recapitulate nearly half of all MYC-mediated gene repression. We present a novel epigenetic model for MYC-mediated gene repression and propose that PTEN and MYC exist in homeostatic balance to control normal growth which is disrupted in cancer cells. PMID:23135913

  19. Transcriptional repression of Hox genes by C. elegans HP1/HPL and H1/HIS-24.

    Directory of Open Access Journals (Sweden)

    Maja Studencka

    2012-09-01

    Full Text Available Elucidation of the biological role of linker histone (H1 and heterochromatin protein 1 (HP1 in mammals has been difficult owing to the existence of a least 11 distinct H1 and three HP1 subtypes in mice. Caenorhabditis elegans possesses two HP1 homologues (HPL-1 and HPL-2 and eight H1 variants. Remarkably, one of eight H1 variants, HIS-24, is important for C. elegans development. Therefore we decided to analyse in parallel the transcriptional profiles of HIS-24, HPL-1/-2 deficient animals, and their phenotype, since hpl-1, hpl-2, and his-24 deficient nematodes are viable. Global transcriptional analysis of the double and triple mutants revealed that HPL proteins and HIS-24 play gene-specific roles, rather than a general repressive function. We showed that HIS-24 acts synergistically with HPL to allow normal reproduction, somatic gonad development, and vulval cell fate decision. Furthermore, the hpl-2; his-24 double mutant animals displayed abnormal development of the male tail and ectopic expression of C. elegans HOM-C/Hox genes (egl-5 and mab-5, which are involved in the developmental patterning of male mating structures. We found that HPL-2 and the methylated form of HIS-24 specifically interact with the histone H3 K27 region in the trimethylated state, and HIS-24 associates with the egl-5 and mab-5 genes. Our results establish the interplay between HPL-1/-2 and HIS-24 proteins in the regulation of positional identity in C. elegans males.

  20. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila

    Directory of Open Access Journals (Sweden)

    Philip Yuk Kwong Yung

    2015-06-01

    Full Text Available Trimethylation at histone H3K27 is central to the polycomb repression system. Juxtaposed to H3K27 is a widely conserved phosphorylatable serine residue (H3S28 whose function is unclear. To assess the importance of H3S28, we generated a Drosophila H3 histone mutant with a serine-to-alanine mutation at position 28. H3S28A mutant cells lack H3S28ph on mitotic chromosomes but support normal mitosis. Strikingly, all methylation states of H3K27 drop in H3S28A cells, leading to Hox gene derepression and to homeotic transformations in adult tissues. These defects are not caused by active H3K27 demethylation nor by the loss of H3S28ph. Biochemical assays show that H3S28A nucleosomes are a suboptimal substrate for PRC2, suggesting that the unphosphorylated state of serine 28 is important for assisting in the function of polycomb complexes. Collectively, our data indicate that the conserved H3S28 residue in metazoans has a role in supporting PRC2 catalysis.

  1. [Repression of the enzyme inducible syntheses in Escherichia coli K12 mutant with a deleted ptsH gene].

    Science.gov (United States)

    Gershanovich, V N; Il'ina, T S; Rusina, O Iu; Iurovitskaia, N V; Bol'shakova, T N

    1977-01-01

    The genome of lambda phage with thermosensitive repressor was integrated into the pts region of the E. coli chromosome. Such a lysogenic culture behaves as a pts mutant at 30 degrees. Heating of cells of this strain leads to the induction of lambda prophage and formation of deletions in the pts region. A mutant with a deletion covering ptsH gene was isolated after prophage induction. The deletion nature of pts mutation was confirmed in genetic and biochemical experiments. It was shown that the deletion is small and does not involve ptsI and lig genes. The isolated deltaptsH mutant possesses all characteristics of pts mutants: pleiotropic impairment of transport and utilization of a number of carbohydrates, repression of the enzyme inducible synthesis and resistance to catabolite repression with glucose. These data (together with earlier ones) allow us to conclude that the phosphorylated form of HPr is involved (in direct of indirect manner/ in activation of DNA transcription.

  2. BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene.

    Science.gov (United States)

    Kennedy, Richard D; Gorski, Julia J; Quinn, Jennifer E; Stewart, Gail E; James, Colin R; Moore, Stephen; Mulligan, Karl; Emberley, Ethan D; Lioe, Tong F; Morrison, Patrick J; Mullan, Paul B; Reid, George; Johnston, Patrick G; Watson, Peter H; Harkin, D Paul

    2005-11-15

    Evidence is accumulating to suggest that some of the diverse functions associated with BRCA1 may relate to its ability to transcriptionally regulate key downstream target genes. Here, we identify S100A7 (psoriasin), S100A8, and S100A9, members of the S100A family of calcium-binding proteins, as novel BRCA1-repressed targets. We show that functional BRCA1 is required for repression of these family members and that a BRCA1 disease-associated mutation abrogates BRCA1-mediated repression of psoriasin. Furthermore, we show that BRCA1 and c-Myc form a complex on the psoriasin promoter and that BRCA1-mediated repression of psoriasin is dependent on functional c-Myc. Finally, we show that psoriasin expression is induced by the topoisomerase IIalpha poison, etoposide, in the absence of functional BRCA1 and increased psoriasin expression enhances cellular sensitivity to this chemotherapeutic agent. Therefore, we identified a novel transcriptional mechanism that is likely to contribute to BRCA1-mediated resistance to etoposide.

  3. Lentiviral-mediated gene therapy results in sustained expression of β-glucuronidase for up to 12 months in the gus(mps/mps) and up to 18 months in the gus(tm(L175F)Sly) mouse models of mucopolysaccharidosis type VII.

    Science.gov (United States)

    Derrick-Roberts, Ainslie L K; Pyragius, Carmen E; Kaidonis, Xenia M; Jackson, Matilda R; Anson, Donald S; Byers, Sharon

    2014-09-01

    A number of mucopolysaccharidosis type VII (MPS VII) mouse models with different levels of residual enzyme activity have been created replicating the range of clinical phenotypes observed in human MPS VII patients. In this study, a lentivirus encoding murine β-glucuronidase was administered intravenously at birth to both the severe (Gus(mps/mps) strain) and attenuated (Gus(tm(L175F)Sly) strain) mouse models of MPS VII. Circulating enzyme levels were normalized in the Gus(mps/mps) mice and were 3.5-fold higher than normal in the Gus(tm(L175F)Sly) mouse 12 and 18 months after administration. Tissue β-glucuronidase activity increased over untreated levels in all tissues evaluated in both strains at 12 months, and the elevated level was maintained in Gus(tm(L175F)Sly) tissues at 18 months. These elevated enzyme levels reduced glycosaminoglycan storage in the liver, spleen, kidney, and heart in both models. Bone mineral volume decreased toward normal in both models after 12 months of therapy and after 18 months in the Gus(tm(L175F)Sly) mouse. Open-field exploration was improved in 18-month-old treated Gus(tm(L175F)Sly) mice, while spatial learning improved in both 12- and 18-month-old treated Gus(tm(L175F)Sly) mice. Overall, neonatal administration of lentiviral gene therapy resulted in sustained enzyme expression for up to 18 months in murine models of MPS VII. Significant improvements in biochemistry and enzymology as well as functional improvement of bone and behavior deficits in the Gus(tm(L175F)Sly) model were observed. Therapy significantly increased the lifespan of Gus(mps/mps) mice, with 12 months being the longest reported lentiviral treatment for this strain. It is important to assess the long-term outcome on enzyme levels and effect on pathology for lentiviral gene therapy to be a potential therapy for MPS patients.

  4. Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression.

    Science.gov (United States)

    Khadjeh, Sara; Turetzek, Natascha; Pechmann, Matthias; Schwager, Evelyn E; Wimmer, Ernst A; Damen, Wim G M; Prpic, Nikola-Michael

    2012-03-27

    Evolution often results in morphologically similar solutions in different organisms, a phenomenon known as convergence. However, there is little knowledge of the processes that lead to convergence at the genetic level. The genes of the Hox cluster control morphology in animals. They may also be central to the convergence of morphological traits, but whether morphological similarities also require similar changes in Hox gene function is disputed. In arthropods, body subdivision into a region with locomotory appendages ("thorax") and a region with reduced appendages ("abdomen") has evolved convergently in several groups, e.g., spiders and insects. In insects, legs develop in the expression domain of the Hox gene Antennapedia (Antp), whereas the Hox genes Ultrabithorax (Ubx) and abdominal-A mediate leg repression in the abdomen. Here, we show that, unlike Antp in insects, the Antp gene in the spider Achaearanea tepidariorum represses legs in the first segment of the abdomen (opisthosoma), and that Antp and Ubx are redundant in the following segment. The down-regulation of Antp in A. tepidariorum leads to a striking 10-legged phenotype. We present evidence from ectopic expression of the spider Antp gene in Drosophila embryos and imaginal tissue that this unique function of Antp is not due to changes in the Antp protein, but likely due to divergent evolution of cofactors, Hox collaborators or target genes in spiders and flies. Our results illustrate an interesting example of convergent evolution of abdominal leg repression in arthropods by altering the role of distinct Hox genes at different levels of their action.

  5. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...... that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data...

  6. Symbiotic plasmid is required for NolR to fully repress nodulation genes in Rhizobium leguminosarum A34

    Institute of Scientific and Technical Information of China (English)

    Fengqing Li; Bihe Hou; Guofan Hong

    2008-01-01

    NolR is a reguiator of noduiation genes present in Rhizobium and Sinorhizobium. However, the mechanism by which NolR participates in the inducible transcription ofnoduiation genes remains unclear. To investigate whether there are other factors regulating the function of NoIR, an insertion mutant of NolR in Rhizobium leguminosarum strain 8401, which lacks the symbiotic plasmid, was constructed by homologous recombination. We investigated the effects of NolR inactivation on the expression of nodulation genes. Three inducible nodulation genes (nodA, nodF and nodM) were expressed constitutively in NoiR-mutant, MRl14. Our results suggested that the symbiotic plasmid is required for NolR to fully repress nodulation genes in Rhizobium ieguminosarum A34. In addition, MRl14 has provided a useful tool for further study of molecular interactions between NolR and other factors.

  7. The defense-responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    周斌; 彭开蔓; 储昭晖; 王石平; 张启发

    2002-01-01

    Despite large numbers of studies about defense response, processes involved in the resistance of plants to incompatible pathogens are still largely uncharacterized. The objective of this study was to identify genes involved in defense response by cDNA array analysis and to gain knowledge about the functions of the genes involved in defense response. Approximately 20000 rice cDNA clones were arrayed on nylon filters. RNA samples isolated from different rice lines after infection with incompatible strains or isolates of Xanthomonas oryzae pv. oryzae or Pyricularia grisea, respectively, were used to synthesize cDNA as probes for screening the cDNA arrays. A total of 100 differentially expressed unique sequences were identified from 5 pathogen-host combinations. Fifty-three sequences were detected as showing enhanced expression and 47 sequences were detected as showing repressed expression after pathogen infection. Sequence analysis revealed that most of the 100 sequences had various degrees of homology with genes in databases which encode or putatively encode transcription regulating proteins, translation regulating proteins, transport proteins, kinases, metabolic enzymes, and proteins involved in other functions. Most of the genes have not been previously reported as being involved in the disease resistance response in rice. The results from cDNA arrays, reverse transcription-polymerase chain reaction, and RNA gel blot analysis suggest that activation or repression of most of these genes might occur commonly in the defense response.

  8. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment.

    Science.gov (United States)

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-09-09

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs.

  9. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment

    Science.gov (United States)

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  10. Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kontos, Kevin; Godard, Patrice; André, Bruno; van Helden, Jacques; Bontempi, Gianluca

    2008-01-01

    Background Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes. Results We present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies. Conclusion These results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced. PMID:19091052

  11. Specific Language Impairment (SLI: The Internet Ralli Campaign to Raise Awareness of SLI

    Directory of Open Access Journals (Sweden)

    Conti-Ramsden Gina

    2014-08-01

    Full Text Available In this short article, we discuss what is specific language impairment (SLI and why it is a hidden disability that few people have heard about. We describe the impact on research, policy and practice of SLI being a neglected condition. We end by providing the background and rationale of a new internet campaign, RALLI (www.youtube.com/rallicampaign, aimed at changing this state of affairs and raising awareness of SLI.

  12. Epoxide-mediated CifR repression of cif gene expression utilizes two binding sites in Pseudomonas aeruginosa.

    Science.gov (United States)

    Ballok, Alicia E; Bahl, Christopher D; Dolben, Emily L; Lindsay, Allia K; St Laurent, Jessica D; Hogan, Deborah A; Madden, Dean R; O'Toole, George A

    2012-10-01

    Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR and morB regulatory region and the start of transcription, respectively. In addition, we found that CifR binds to each repression site with differing affinity. Mutagenesis of these binding sites resulted in a loss of DNA binding in vitro, and mutation of one of these sites in vivo resulted in an increase in transcription of both the cif and cifR genes. We characterized cif and cifR gene expression in sputum and found that, whereas cif gene expression varied relative to an in vitro coculture control, cifR gene expression was consistently higher. Analysis of a longitudinal sample of CF isolates from nine patients revealed that Cif protein was expressed over time, although variably, and these changes could not be linked to mutations in the cifR gene or the promoters of these genes. Finally, we tested CifR responsiveness to other epoxides and showed that CifR can respond to multiple epoxides to various degrees.

  13. Linguistic characteristics of SLI in Afrikaans

    African Journals Online (AJOL)

    information about the linguistic characteristics of the Afrikaans-speaking children. In order to keep the ... with a discussion of a possible clinical marker of SLI in Afrikaans. 2. ...... Clinical. Linguistics and Phonetics 4: 93-105. Southwood, F. 2005.

  14. Epoxide-Mediated CifR Repression of cif Gene Expression Utilizes Two Binding Sites in Pseudomonas aeruginosa

    OpenAIRE

    Ballok, Alicia E.; Bahl, Christopher D.; Dolben, Emily L.; Lindsay, Allia K.; St. Laurent, Jessica D.; Hogan, Deborah A.; Madden, Dean R.; O'Toole, George A.

    2012-01-01

    Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon contain...

  15. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1.

    Science.gov (United States)

    Fujiwara, Tohru; Sasaki, Katsuyuki; Saito, Kei; Hatta, Shunsuke; Ichikawa, Satoshi; Kobayashi, Masahiro; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Harigae, Hideo

    2017-02-16

    The transcription factor GATA-1-interacting protein Friend of GATA-1 (FOG1) is essential for proper transcriptional activation and repression of GATA-1 target genes; yet, the mechanisms by which FOG1 exerts its activating and repressing functions remain unknown. Forced FOG1 expression in human K562 erythroleukemia cells induced the expression of erythroid genes (SLC4A1, globins) but repressed that of GATA-2 and PU.1. A quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated increased GATA-1 chromatin occupancy at both FOG1-activated as well as FOG1-repressed gene loci. However, while TAL1 chromatin occupancy was significantly increased at FOG1-activated gene loci, it was significantly decreased at FOG1-repressed gene loci. When FOG1 was overexpressed in TAL1-knocked down K562 cells, FOG1-mediated activation of HBA, HBG, and SLC4A1 was significantly compromised by TAL1 knockdown, suggesting that FOG1 may require TAL1 to activate GATA-1 target genes. Promoter analysis and quantitative ChIP analysis demonstrated that FOG1-mediated transcriptional repression of PU.1 would be mediated through a GATA-binding element located at its promoter, accompanied by significantly decreased H3 acetylation at lysine 4 and 9 (K4 and K9) as well as H3K4 trimethylation. Our results provide important mechanistic insight into the role of FOG1 in the regulation of GATA-1-regulated genes and suggest that FOG1 has an important role in inducing cells to differentiate toward the erythroid lineage rather than the myelo-lymphoid one by repressing the expression of PU.1.

  16. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  17. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes.

    Science.gov (United States)

    Logemann, E; Wu, S C; Schröder, J; Schmelzer, E; Somssich, I E; Hahlbrock, K

    1995-12-01

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  19. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers.

    Science.gov (United States)

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne; Nielsen, Ronni; Madsen, Jesper Grud Skat; Mandrup, Susanne

    2015-09-01

    The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type-specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes.

  20. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria.

    Science.gov (United States)

    Willmann, Anita; Weiss, Michael; Nehls, Uwe

    2007-02-01

    A main function of ectomycorrhizas, a symbiosis between certain soil fungi and fine roots of woody plants, is the exchange of plant-derived carbohydrates for fungus-derived nutrients. As it is required in large amounts, nitrogen is of special interest. A gene (AmAMT2) coding for a putative fungal ammonium importer was identified in an EST project of functional Amanita muscaria/poplar ectomycorrhizas. Heterologous expression of the entire AmAMT2 coding region in yeast revealed the corresponding protein to be a high-affinity ammonium importer. In axenically grown Amanita hyphae AmAMT2 expression was strongly repressed by nitrogen, independent of whether the offered nitrogen source was transported by AmAMT2 or not. In functional ectomycorrhizas the AmAMT2 transcript level was further decreased in both hyphal networks (sheath and Hartig net), while extraradical hyphae revealed strong gene expression. Together our data suggest that (1) AmAMT2 expression is regulated by the endogenous nitrogen content of hyphae and (2) fungal hyphae in ectomycorrhizas are well supported with nitrogen even when the extraradical mycelium is nitrogen limited. As a consequence of AmAMT2 repression in mycorrhizas, ammonium can be suggested as a potential nitrogen source delivered by fungal hyphae in symbiosis.

  1. Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells

    Directory of Open Access Journals (Sweden)

    Kanatsu-Shinohara Mito

    2006-07-01

    Full Text Available Abstract Background We previously identified a set of genes called ECATs (ES cell-associated transcripts that are expressed at high levels in mouse ES cells. Here, we examine the expression and DNA methylation of ECATs in somatic cells and germ cells. Results In all ECATs examined, the promoter region had low methylation levels in ES cells, but higher levels in somatic cells. In contrast, in spite of their lack of pluripotency, male germline stem (GS cells expressed most ECATs and exhibited hypomethylation of ECAT promoter regions. We observed a similar hypomethylation of ECAT loci in adult testis and isolated sperm. Some ECATs were even less methylated in male germ cells than in ES cells. However, a few ECATs were not expressed in GS cells, and most of them targets of Oct3/4 and Sox2. The Octamer/Sox regulatory elements were hypermethylated in these genes. In addition, we found that GS cells express little Sox2 protein and low Oct3/4 protein despite abundant expression of their transcripts. Conclusion Our results suggest that DNA hypermethylation and transcriptional repression of a small set of ECATs, together with post-transcriptional repression of Oct3/4 and Sox2, contribute to the loss of pluripotency in male germ cells.

  2. Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Sato, Atsushi; Matsumura, Rie; Hoshino, Naomi; Tsuzuki, Mikio; Sato, Norihiro

    2014-01-01

    Triacylglycerol (TG) synthesis is induced for energy and carbon storage in algal cells under nitrogen(N)-starved conditions, and helps prevent reactive oxygen species (ROS) production through fatty acid synthesis that consumes excessive reducing power. Here, the regulatory mechanism for the TG content in sulfur(S)-starved cells of Chlamydomonas reinhardtii was examined, in comparison to that in N- or phosphorus(P)-starved cells. S- and N- starved cells exhibited markedly increased TG contents with up-regulation of mRNA levels of diacylglycerol acyltransferase (DGAT) genes. S-Starvation also induced expression of the genes for phosphatidate synthesis. In contrast, P-starved cells exhibited little alteration of the TG content with almost no induction of these genes. The results implied deficient nutrient-specific regulation of the TG content. An arg9 disruptant defective in arginine synthesis, even without nutritional deficiencies, exhibited an increased TG content upon removal of supplemented arginine, which repressed protein synthesis. Repression of protein synthesis thus seemed crucial for TG accumulation in S- or N- starved cells. Meanwhile, the results of inhibitor experiments involving cells inferred that TG accumulation during S-starvation is supported by photosynthesis and de novo fatty acid synthesis. During S-starvation, sac1 and snrk2.2 disruptants, which are defective in the response to the ambient S-status, accumulated TG at lower and higher levels, respectively, than the wild type. The sac1 and snrk2.2 disruptants showed no or much greater up-regulation of DGAT genes, respectively. In conclusion, TG synthesis would be activated in S-starved cells, through the diversion of metabolic carbon-flow from protein to TG synthesis, and simultaneously through up-regulation of the expression of a particular set of genes for TG synthesis at proper levels through the actions of SAC1 and SNRK2.2.

  3. Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Atsushi eSato

    2014-09-01

    Full Text Available Triacylglycerol (TG synthesis is induced for energy and carbon storage in algal cells under nitrogen(N-starved conditions, and helps prevent reactive oxygen species production through fatty acid synthesis that consumes excessive reducing power. Here, the regulatory mechanism for the TG content in sulfur(S-starved cells of Chlamydomonas reinhardtii was examined, in comparison to that in N- or phosphorus(P-starved cells. S- and N-starved cells exhibited markedly increased TG contents with up-regulation of mRNA levels of diacylglycerol acyltransferase genes. S-Starvation also induced expression of the genes for phosphatidate synthesis. In contrast, P-starved cells exhibited little alteration of the TG content with almost no induction of these genes. The results implied deficient nutrient-specific regulation of the TG content. An arg9 disruptant defective in arginine synthesis, even without nutritional deficiencies, exhibited an increased TG content upon removal of supplemented arginine, which repressed protein synthesis. Repression of protein synthesis thus seemed crucial for TG accumulation in S- or N-starved cells. Meanwhile, the results of inhibitor experiments involving cells inferred that TG accumulation during S-starvation is supported by photosynthesis and de novo fatty acid synthesis. During S-starvation, sac1 and snrk2.2 disruptants, which are defective in the response to the ambient S-status, accumulated TG at lower and higher levels, respectively, than the wild type. The sac1 and snrk2.2 disruptants showed no or much greater up-regulation of diacylglycerol acyltransferase genes, respectively. In conclusion, TG synthesis would be activated in S-starved cells, through the diversion of metabolic carbon-flow from protein to TG synthesis, and simultaneously through up-regulation of the expression of a particular set of genes for TG synthesis at proper levels through the actions of SAC1 and SNRK2.2.

  4. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    Science.gov (United States)

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-06-24

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.

  5. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae.

    Directory of Open Access Journals (Sweden)

    Takayuki eFujiwara

    2015-08-01

    Full Text Available The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase, NIR (nitrite reductase and NRT (the nitrate/nitrite transporter are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 hour by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.

  6. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Fujiwara, Takayuki; Kanesaki, Yu; Hirooka, Shunsuke; Era, Atsuko; Sumiya, Nobuko; Yoshikawa, Hirofumi; Tanaka, Kan; Miyagishima, Shin-Ya

    2015-01-01

    The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase), NIR (nitrite reductase), and NRT (the nitrate/nitrite transporter) are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR, or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 h by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.

  7. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  8. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    Science.gov (United States)

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  9. Inhibition of SIRT1 Increases EZH2 Protein Level and Enhances the Repression of EZH2 on Target Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Lu Lu; Lei Li; Xiang Lü; Xue-song Wu; De-pei Liu; Chih-chuan Liang

    2011-01-01

    Objective To study the regulatory roles of SIRT1 on EZH2 expression and the further effects on EZH2's repression of target gene expression. Methods The stable SIRT1 RNAi and Control RNAi HeLa cells were established by infection with retroviruses expressing shSIRT1 and shLuc respectively followed by puromycin selection. EZH2 protein level was detected by Western blot in either whole cell lysate or the fractional cell extract. Reverse transcription-polymerase chain reaction was performed to detect the mRNA level of EZH2. Cycloheximide was used to treat SIRT1 RNAi and Control RNAi cells for protein stability assay. Chromatin immunoprecipitation (CHIP) assay was applied to measure enrichment of SIRT1, EZH2, and trimethylated H3K27 (H3K27me3) at SATB1 promoter in SIRT1 RNAi and Control RNAi cells.Results Western blot results showed that EZH2 protein level increased upon SIRT1 depletion. Fractional extraction results showed unchanged cytoplasmic fraction and increased chromatin fraction of EZH2 protein in SIRTI RNAi cells. The mRNA level of EZH2 was not affected by knockdown of SIRT1. SIRT1 recruitment was not detected at the promoter region of EZH2 gene locus. The protein stability assay showed that the protein stability of EZH2 increases upon SIRTI knockdown. Upon SIRT1 depletion, EZH2 and H3K27me3 recruitment at SATB1 promoter increases and the mRNA level of SATB1 decreases.Conclusions Depletion of SIRT1 increases the protein stability of EZH2. The regulation of EZH2 protein level by SIRTI affects the repressive effects of EZH2 on the target gene expression.

  10. sli-3 negatively regulates the LET-23/epidermal growth factor receptor-mediated vulval induction pathway in Caenorhabditis elegans.

    Science.gov (United States)

    Gupta, Bhagwati P; Liu, Jing; Hwang, Byung J; Moghal, Nadeem; Sternberg, Paul W

    2006-11-01

    The LIN-3-LET-23-mediated inductive signaling pathway plays a major role during vulval development in C. elegans. Studies on the components of this pathway have revealed positive as well as negative regulators that function to modulate the strength and specificity of the signal transduction cascade. We have carried out genetic screens to identify new regulators of this pathway by screening for suppressors of lin-3 vulvaless phenotype. The screens recovered three loci including alleles of gap-1 and a new gene represented by sli-3. Our genetic epistasis experiments suggest that sli-3 functions either downstream or in parallel to nuclear factors lin-1 and sur-2. sli-3 synergistically interacts with the previously identified negative regulators of the let-23 signaling pathway and causes excessive cell proliferation. However, in the absence of any other mutation sli-3 mutant animals display wild-type vulval induction and morphology. We propose that sli-3 functions as a negative regulator of vulval induction and defines a branch of the inductive signaling pathway. We provide evidence that sli-3 interacts with the EGF signaling pathway components during vulval induction but not during viability and ovulation processes. Thus, sli-3 helps define specificity of the EGF signaling to induce the vulva.

  11. 3'UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells.

    Directory of Open Access Journals (Sweden)

    Yonit Hoffman

    2016-02-01

    Full Text Available Most mammalian genes often feature alternative polyadenylation (APA sites and hence diverse 3'UTR lengths. Proliferating cells were reported to favor APA sites that result in shorter 3'UTRs. One consequence of such shortening is escape of mRNAs from targeting by microRNAs (miRNAs whose binding sites are eliminated. Such a mechanism might provide proliferation-related genes with an expression gain during normal or cancerous proliferation. Notably, miRNA sites tend to be more active when located near both ends of the 3'UTR compared to those located more centrally. Accordingly, miRNA sites located near the center of the full 3'UTR might become more active upon 3'UTR shortening. To address this conjecture we performed 3' sequencing to determine the 3' ends of all human UTRs in several cell lines. Remarkably, we found that conserved miRNA binding sites are preferentially enriched immediately upstream to APA sites, and this enrichment is more prominent in pro-differentiation/anti-proliferative genes. Binding sites of the miR17-92 cluster, upregulated in rapidly proliferating cells, are particularly enriched just upstream to APA sites, presumably conferring stronger inhibitory activity upon shortening. Thus 3'UTR shortening appears not only to enable escape from inhibition of growth promoting genes but also to potentiate repression of anti-proliferative genes.

  12. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai

    2010-08-04

    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  13. The rnc Gene Promotes Exopolysaccharide Synthesis and Represses the vicRKX Gene Expressions via MicroRNA-Size Small RNAs in Streptococcus mutans.

    Science.gov (United States)

    Mao, Meng-Ying; Yang, Ying-Ming; Li, Ke-Zeng; Lei, Lei; Li, Meng; Yang, Yan; Tao, Xiang; Yin, Jia-Xin; Zhang, Ru; Ma, Xin-Rong; Hu, Tao

    2016-01-01

    Dental caries is a biofilm-dependent disease that largely relies on the ability of Streptococcus mutans to synthesize exopolysaccharides. Although the rnc gene is suggested to be involved in virulence mechanisms in many other bacteria, the information regarding it in S. mutans is very limited. Here, using deletion or overexpression mutant assay, we demonstrated that rnc in S. mutans significantly positively regulated exopolysaccharide synthesis and further altered biofilm formation. Meanwhile, the cariogenecity of S. mutans was decreased by deletion of rnc in a specific pathogen-free (SPF) rat model. Interestingly, analyzing the expression at mRNA level, we found the downstream vic locus was repressed by rnc in S. mutans. Using deep sequencing and bioinformatics analysis, for the first time, three putative microRNA-size small RNAs (msRNAs) targeting vicRKX were predicted in S. mutans. The expression levels of these msRNAs were negatively correlated with vicRKX but positively correlated with rnc, indicating rnc probably repressed vicRKX expression through msRNAs at the post-transcriptional level. In all, the results present that rnc has a potential role in the regulation of exopolysaccharide synthesis and can affect vicRKX expressions via post-transcriptional repression in S. mutans. This study provides an alternative avenue for further research aimed at preventing caries.

  14. Novel histone biotinylation marks are enriched in repeat regions and participate in repression of transcriptionally competent genes.

    Science.gov (United States)

    Pestinger, Valerie; Wijeratne, Subhashinee S K; Rodriguez-Melendez, Rocio; Zempleni, Janos

    2011-04-01

    Covalent histone modifications play crucial roles in chromatin structure and genome stability. We previously reported biotinylation of lysine (K) residues in histones H2A, H3 and H4 by holocarboxylase synthetase and demonstrated that K12-biotinylated histone H4 (H4K12bio) is enriched in repeat regions and participates in gene repression. The biological functions of biotinylation marks other than H4K12bio are poorly understood. Here, novel biotinylation site-specific antibodies against H3K9bio, H3K18bio and H4K8bio were used in chromatin immunoprecipitation studies to obtain first insights into possible biological functions of these marks. Chromatin immunoprecipitation assays were conducted in human primary fibroblasts and Jurkat lymphoblastoma cells, and revealed that H3K9bio, H3K18bio and H4K8bio are enriched in repeat regions such as pericentromeric alpha satellite repeats and long-terminal repeats while being depleted in transcriptionally active promoters in euchromatin. Transcriptional stimulation of the repressed interleukin-2 promoter triggered a rapid depletion of histone biotinylation marks at this locus in Jurkat cells, which was paralleled by an increase in interleukin-2 mRNA. Importantly, the enrichment of H3K9bio, H3K18bio and H4K8bio at genomic loci depended on the concentration of biotin in culture media at nutritionally relevant levels, suggesting a novel mechanism of gene regulation by biotin. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Investigation of Dyslexia and SLI Risk Variants in Reading- and Language-Impaired Subjects

    Science.gov (United States)

    Newbury, D. F.; Paracchini, S.; Scerri, T. S.; Winchester, L.; Addis, L.; Richardson, Alex J.; Walter, J.; Stein, J. F.; Talcott, J. B.

    2010-01-01

    Dyslexia (or reading disability) and specific language impairment (or SLI) are common childhood disorders that show considerable co-morbidity and diagnostic overlaps and have been suggested to share some genetic aetiology. Recently, genetic risk variants have been identified for SLI and dyslexia enabling the direct evaluation of possible shared genetic influences between these disorders. In this study we investigate the role of variants in these genes (namely MRPL19/C20RF3,ROBO1,DCDC2, KIAA0319, DYX1C1, CNTNAP2, ATP2C2 and CMIP) in the aetiology of SLI and dyslexia. We perform case–control and quantitative association analyses using measures of oral and written language skills in samples of SLI and dyslexic families and cases. We replicate association between KIAA0319 and DCDC2 and dyslexia and provide evidence to support a role for KIAA0319 in oral language ability. In addition, we find association between reading-related measures and variants in CNTNAP2 and CMIP in the SLI families. Electronic supplementary material The online version of this article (doi:10.1007/s10519-010-9424-3) contains supplementary material, which is available to authorized users. PMID:21165691

  16. Expression of bvg-repressed genes in Bordetella pertussis is controlled by RisA through a novel c-di-GMP signaling pathway

    Science.gov (United States)

    The BvgAS two component system of Bordetella pertussis controls virulence factor expression. In addition, BvgAS controls expression of the bvg-repressed genes through the action of the repressor, BvgR. The transcription factor RisA is inhibited by BvgR, and when BvgR is not expressed RisA induces th...

  17. Cyclic di-GMP regulation of the bvg-repressed genes and the orphan response regulator RisA in Bordetella pertussis

    Science.gov (United States)

    Expression of Bordetella pertussis virulence factors is activated by the BvgAS two-component system. Under modulating growth conditions BvgAS indirectly represses another set of genes through the action of BvgR, a bvg-activated protein. BvgR blocks activation of the response regulator RisA which is ...

  18. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex.

    Science.gov (United States)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld; Noraberg, Jens; Jensen, Niels A

    2014-05-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex.

  19. Identification of a NodD repressible gene adjacent to nodM in Rhizobium leguminosarum biovar viciae

    Institute of Scientific and Technical Information of China (English)

    Xiao'er Yang; Bihe Hou; Chenzhi Zong; Guofan Hong

    2012-01-01

    The nodFEL and nodMNT operons in Rhizobium leguminosarum biovar viciae are transcribed in the same orie-tation and induced by NodD in response to flavonoids secreted by legumes.In the narrow intergenic region between nodFEL and nodMNT,we identified a small gene divergently transcribed from nodM to the 3' end of nodL.Unlike the promoters upstream of nodF and nodM,the promoter of this gene is constitutively expressed.It appeared that its promoter might partially overlap with that of nodM and its expression was repressed by nodD.A deletion mutation was made and proteins produced by the mutant were compared with those by wild-type using 2D gel electrophoresis.Several protein differences were identified suggesting that this small gene influences the expression or stability of these proteins.However,the mutant nodulated its host plant (pea) normally.

  20. Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis.

    Science.gov (United States)

    Sugimura, Yusaku; Saito, Katsuharu

    2017-02-01

    The development of arbuscular mycorrhiza (AM) is strongly suppressed under high-phosphate (Pi) conditions. To investigate AM fungal responses during the suppression of AM by high Pi, we performed an RNA-seq analysis of Rhizophagus irregularis colonizing Lotus japonicus roots at different levels of Pi (20, 100, 300, and 500 μM). AM fungal colonization decreased markedly under high-Pi conditions. In total, 163 fungal genes were differentially expressed among the four Pi treatments. Among these genes, a cell cycle-regulatory gene, cyclin-dependent kinase CDK1, and several DNA replication- and mitosis-related genes were repressed under high-Pi conditions. More than 20 genes encoding secreted proteins were also downregulated by high-Pi conditions, including the strigolactone-induced putative secreted protein 1 gene that enhances AM fungal colonization. In contrast, the expression of genes related to aerobic respiration and transport in R. irregularis were largely unaffected. Our data suggest that high Pi suppresses the expression of genes associated with fungal cell cycle progression or that encode secreted proteins that may be required for intercellular hyphal growth and arbuscule formation. However, high Pi has little effect on the transcriptional regulation of the primary metabolism or transport in preformed fungal structures.

  1. Repressive Tolerance

    DEFF Research Database (Denmark)

    Pedersen, Morten Jarlbæk

    2016-01-01

    to an administrative culture of repressive tolerance of organised interests: authorities listen but only reacts in a very limited sense. This bears in it the risk of jeopardising the knowledge transfer from societal actors to administrative ditto thus harming the consultation institutions’ potential for strengthening...

  2. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function.

    Science.gov (United States)

    Liu, Fang; Wang, Xiaobo; Hu, Guoqing; Wang, Yong; Zhou, Jiliang

    2014-02-07

    The TEAD (transcriptional enhancer activator domain) proteins share an evolutionarily conserved DNA-binding TEA domain, which binds to the MCAT cis-acting regulatory element. Previous studies have shown that TEAD proteins are involved in regulating the expression of smooth muscle α-actin. However, it remains undetermined whether TEAD proteins play a broader role in regulating expression of other genes in vascular smooth muscle cells. In this study, we show that the expression of TEAD1 is significantly induced during smooth muscle cell phenotypic modulation and negatively correlates with smooth muscle-specific gene expression. We further demonstrate that TEAD1 plays a novel role in suppressing expression of smooth muscle-specific genes, including smooth muscle α-actin, by abolishing the promyogenic function of myocardin, a key mediator of smooth muscle differentiation. Mechanistically, we found that TEAD1 competes with myocardin for binding to serum response factor (SRF), resulting in disruption of myocardin and SRF interactions and thereby attenuating expression of smooth muscle-specific genes. This study provides the first evidence demonstrating that TEAD1 is a novel general repressor of smooth muscle-specific gene expression through interfering with myocardin binding to SRF.

  3. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Li, Jinru; Wang, Bo [College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Niu, Wenyan; Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Baniahmad, Aria, E-mail: aban@mti.uni-jena.de [Institute for Human Genetics, Jena University Hospital, 07740 Jena (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  4. Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia.

    Science.gov (United States)

    Teppo, Susanna; Laukkanen, Saara; Liuksiala, Thomas; Nordlund, Jessica; Oittinen, Mikko; Teittinen, Kaisa; Grönroos, Toni; St-Onge, Pascal; Sinnett, Daniel; Syvänen, Ann-Christine; Nykter, Matti; Viiri, Keijo; Heinäniemi, Merja; Lohi, Olli

    2016-11-01

    Approximately 20%-25% of childhood acute lymphoblastic leukemias carry the ETV6-RUNX1 (E/R) fusion gene, a fusion of two central hematopoietic transcription factors, ETV6 (TEL) and RUNX1 (AML1). Despite its prevalence, the exact genomic targets of E/R have remained elusive. We evaluated gene loci and enhancers targeted by E/R genome-wide in precursor B acute leukemia cells using global run-on sequencing (GRO-seq). We show that expression of the E/R fusion leads to widespread repression of RUNX1 motif-containing enhancers at its target gene loci. Moreover, multiple super-enhancers from the CD19(+)/CD20(+)-lineage were repressed, implicating a role in impediment of lineage commitment. In effect, the expression of several genes involved in B cell signaling and adhesion was down-regulated, and the repression depended on the wild-type DNA-binding Runt domain of RUNX1. We also identified a number of E/R-regulated annotated and de novo noncoding genes. The results provide a comprehensive genome-wide mapping between E/R-regulated key regulatory elements and genes in precursor B cell leukemia that disrupt normal B lymphopoiesis. © 2016 Teppo et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells.

    Science.gov (United States)

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J

    2016-04-15

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process.

  6. The structural gene for a phosphorus-repressible phosphate permease in Neurospora crassa can complement a mutation in positive regulatory gene nuc-1.

    Science.gov (United States)

    Mann, B J; Akins, R A; Lambowitz, A M; Metzenberg, R L

    1988-03-01

    van+, a gene encoding a phosphorus-repressible phosphate permease, was isolated by its ability to complement nuc-1, a positive regulatory locus that normally regulates van+ expression. This was unexpected because the nuc-1 host already contained a resident van+ gene. Plasmids carrying van+ complemented a nuc-2 mutation as well. Probing of RNA from untransformed wild-type (nuc-1+) and constitutive (nuc-1c) strains by van+ probes indicated that levels of the van+ transcript were subject to control by nuc-1+. Probing of the same RNAs with a cosmid clone, containing approximately 15 kilobases of upstream and downstream DNA, revealed no other detectable phosphorus-regulated transcripts within this 40-kilobase region of the chromosome.

  7. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech;

    2012-01-01

    transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous....... Despite the ability for some endogenous genes to be expressed in these lines, the piPSC-like cells still cannot be maintained without doxycycline, indicating that the culture system of piPSCs may not be optimal or that the reprogramming factor combination used may not currently be optimal for maintaining...

  8. NDRG2: a Myc-repressed gene involved in cancer and cell stress

    Institute of Scientific and Technical Information of China (English)

    Libo Yao; Jian Zhang; Xuewu Liu

    2008-01-01

    As a master switch for cell proliferation and differentiation,Myc exerts its biological functions mainly through transcriptional regulation of its target genes,which are involved in cells' interaction and communication with their external environment.The N-Myc downstream-regulated gene (NDRG) family is composed ofNDRG1,NDRG2,NDRG3 and NDRG4,which are important in cell proliferation and differentiation.This review summarizes the recent studies on the structure,tissue distribution and functions of NDRG2 that try to show its significance in studying cancer and its therapeutic potential.

  9. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jiang, Lubin; Mu, Jianbing; Zhang, Qingfeng

    2013-01-01

    The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1...

  10. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    OpenAIRE

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T. G.

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupt...

  11. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements.

    Science.gov (United States)

    Wang, Hua; Liu, Chunmei; Cheng, Jingfei; Liu, Jian; Zhang, Lei; He, Chongsheng; Shen, Wen-Hui; Jin, Hong; Xu, Lin; Zhang, Yijing

    2016-01-01

    Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs.

  12. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2016-01-01

    Full Text Available Polycomb repressive complexes (PRCs play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF, a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1. In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN. This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs, including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs.

  13. Strict and direct transcriptional repression of the pobA gene by benzoate avoids 4-hydroxybenzoate degradation in the pollutant degrader bacterium Cupriavidus necator JMP134.

    Science.gov (United States)

    Donoso, Raúl A; Pérez-Pantoja, Danilo; González, Bernardo

    2011-06-01

    As other environmental bacteria, Cupriavidus necator JMP134 uses benzoate as preferred substrate in mixtures with 4-hydroxybenzoate, strongly inhibiting its degradation. The mechanism underlying this hierarchical use was studied. A C. necator benA mutant, defective in the first step of benzoate degradation, is unable to metabolize 4-hydroxybenzoate when benzoate is also included in the medium, indicating that this substrate and not one of its catabolic intermediates is directly triggering repression. Reverse transcription polymerase chain reaction analysis revealed that 4-hydroxybenzoate 3-hydroxylase-encoding pobA transcripts are nearly absent in presence of benzoate and a fusion of pobA promoter to lacZ reporter confirmed that benzoate drastically decreases the transcription of this gene. Expression of pobA driven by a heterologous promoter in C. necator benA mutant, allows growth on 4-hydroxybenzoate in presence of benzoate, overcoming its repressive effect. In contrast with other bacteria, regulators of benzoate catabolism do not participate in repression of 4-hydroxybenzoate degradation. Moreover, the effect of benzoate on pobA promoter can be observed in heterologous strains with the sole presence of PobR, the transcriptional activator of pobA gene, indicating that PobR is enough to fully reproduce the phenomenon. This novel mechanism for benzoate repression is probably mediated by direct action of benzoate over PobR. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Overexpression of a Gene Encoding a Catabolite Repression Element in Alternaria citri Causes Severe Symptoms of Black Rot in Citrus Fruit.

    Science.gov (United States)

    Katoh, H; Ohtani, K; Yamamoto, H; Akimitsu, K

    2007-05-01

    ABSTRACT A gene (AcCreA) encoding a catabolite repression element (CreA) with (two zinc fingers of the Cys(2)His(2) type was isolated from the postharvest fungal pathogen Alternaria citri. The AcCreA overexpression mutant AcOEC2 of A. citri showed normal growth on pectin medium and on segments of peel or the juice sac area from citrus fruit. Production of endopolygalacturonase, an essential virulence factor of this pathogen, was similar in AcOEC2 and the wild type in pectin-containing media. However, addition of glucose to the medium showed that carbon catabolite repression of endopolygalacturonase gene (Acpg1) expression, as well as endopolygalacturonase production, was lost in AcOEC2. The wild-type strain of A. citri causes rot mainly in the central axis of citrus fruit without development of rotting in the juice sac area; however, AcOEC2 caused severe black rot symptoms in both the central axis and juice sac areas. These results indicate that AcCreA-mediated catabolite repression controls the virulence or infection of this pathogen, and that the wild-type A. citri does not cause symptoms in the juice sac area due to carbon catabolite repression by sugars in the juice of the juice sac area.

  15. CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression

    DEFF Research Database (Denmark)

    Egan, Chris M; Nyman, Ulrika; Skotte, Julie

    2013-01-01

    differentiation and leads to an accumulation of undifferentiated progenitors. CHD5 binds a large cohort of genes and is required for facilitating the activation of neuronal genes. It also binds a cohort of Polycomb targets and is required for the maintenance of H3K27me3 on these genes. Interestingly...

  16. Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression

    DEFF Research Database (Denmark)

    Laing, Adam F; Lowell, Sally; Brickman, Joshua M

    2015-01-01

    Gro/TLE proteins (TLE1-4) are a family of transcriptional corepressors acting downstream of multiple signalling pathways. Several TLEs are expressed in a dynamic manner throughout embryonic development and at high levels in embryonic stem cells (ESCs). Here we find that Gro/TLE is not required...... in ESC for sustaining pluripotency and suppressing differentiation genes, but rather is important for the shutting down of the pluripotency network in differentiation. Consistent with this view, we found that one of the Gro/TLE family, TLE4 is expressed heterogeneously in ESCs in a population...... that corresponds to a Nanog low subset of ESC culture. TLE4 expression is also increased in response to LIF withdrawal and Fgf/Mek/Erk stimulation. To explore the role of Gro/TLE in more detail we generated an allelic series of knockout ESCs of two TLE genes expressed most dynamically in early differentiation, TLE...

  17. Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tomlinson Craig R

    2007-09-01

    Full Text Available Abstract Background The use of retinoids as anti-cancer agents has been limited due to resistance and low efficacy. The dynamics of nuclear receptor coregulation are incompletely understood. Cell-and context-specific activities of nuclear receptors may be in part due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1 is a ligand-dependent corepressor that is inducible with retinoic acid (RA. We had previously shown that RIP140 limits RA induced tumor cell differentiation of embryonal carcinoma; the pluriopotent stem cells of testicular germ cell tumors. This implies that RIP140 represses key genes required for RA-mediated tumor cell differentiation. Identification of these genes would be of considerable interest. Results To begin to address this issue, microarray technology was employed to elucidate in a de novo fashion the global role of RIP140 in RA target gene regulation of embryonal carcinoma. Subclasses of genes were affected by RIP140 in distinct manners. Interestingly, approximately half of the RA-dependent genes were unaffected by RIP140. Hence, RIP140 appears to discriminate between different classes of RA target genes. In general, RIP140-dependent gene expression was consistent with RIP140 functioning to limit RA signaling and tumor cell differentiation. Few if any genes were regulated in a manner to support a role for RIP140 in "active repression". We also demonstrated that RIP140 silencing sensitizes embryonal carcinoma cells to low doses of RA. Conclusion Together the data demonstrates that RIP140 has profound effects on RA-mediated gene expression in this cancer stem cell model. The RIP140-dependent RA target genes identified here may be particularly important in mediating RA-induced tumor cell differentiation and the findings suggest that RIP140 may be an attractive target to sensitize tumor cells to retinoid-based differentiation therapy. We discuss these data in the context

  18. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1999-01-01

    In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukar......In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism...... in eukaryotic organisms. Here we show that the yeast chromatin-remodeling complex, RSC (remodels the structure of chromatin), isolated on the basis of homology to the SWI/SNF complex, is required for proper transcriptional regulation and nucleosome positioning in the highly inducible CHA1 promoter...... of the CHA1 promoter is disrupted, an architectural change normally only observed during transcriptional induction. In addition, deletion of the gene-specific activator Cha4p did not affect derepression of CHA1 in cells depleted for Swh3p. Thus, CHA1 constitutes a target for the RSC complex, and we propose...

  19. Chx10 Consolidates V2a Interneuron Identity through Two Distinct Gene Repression Modes.

    Science.gov (United States)

    Clovis, Yoanne M; Seo, So Yeon; Kwon, Ji-Sun; Rhee, Jennifer C; Yeo, Sujeong; Lee, Jae W; Lee, Seunghee; Lee, Soo-Kyung

    2016-08-09

    During development, two cell types born from closely related progenitor pools often express identical transcriptional regulators despite their completely distinct characteristics. This phenomenon implies the need for a mechanism that operates to segregate the identities of the two cell types throughout differentiation after initial fate commitment. To understand this mechanism, we investigated the fate specification of spinal V2a interneurons, which share important developmental genes with motor neurons (MNs). We demonstrate that the paired homeodomain factor Chx10 functions as a critical determinant for V2a fate and is required to consolidate V2a identity in postmitotic neurons. Chx10 actively promotes V2a fate, downstream of the LIM-homeodomain factor Lhx3, while concomitantly suppressing the MN developmental program by preventing the MN-specific transcription complex from binding and activating MN genes. This dual activity enables Chx10 to effectively separate the V2a and MN pathways. Our study uncovers a widely applicable gene regulatory principle for segregating related cell fates.

  20. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.

    2016-06-14

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  1. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    Science.gov (United States)

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  2. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    Science.gov (United States)

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression.

    Directory of Open Access Journals (Sweden)

    Victor Y L Leung

    2011-11-01

    Full Text Available Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between

  4. let-7 Modulates Chromatin Configuration and Target Gene Repression through Regulation of the ARID3B Complex

    Directory of Open Access Journals (Sweden)

    Tsai-Tsen Liao

    2016-01-01

    Full Text Available Let-7 is crucial for both stem cell differentiation and tumor suppression. Here, we demonstrate a chromatin-dependent mechanism of let-7 in regulating target gene expression in cancer cells. Let-7 directly represses the expression of AT-rich interacting domain 3B (ARID3B, ARID3A, and importin-9. In the absence of let-7, importin-9 facilitates the nuclear import of ARID3A, which then forms a complex with ARID3B. The nuclear ARID3B complex recruits histone demethylase 4C to reduce histone 3 lysine 9 trimethylation and promotes the transcription of stemness factors. Functionally, expression of ARID3B is critical for the tumor initiation in let-7-depleted cancer cells. An inverse association between let-7 and ARID3A/ARID3B and prognostic significance is demonstrated in head and neck cancer patients. These results highlight a chromatin-dependent mechanism where let-7 regulates cancer stemness through ARID3B.

  5. Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells.

    Science.gov (United States)

    Pathi, Satya S; Lei, Ping; Sreevalsan, Sandeep; Chadalapaka, Gayathri; Jutooru, Indira; Safe, Stephen

    2011-01-01

    Ascorbic acid (vitamin C) inhibits cancer cell growth, and there is a controversy regarding the cancer chemoprotective effects of pharmacologic doses of this compound that exhibits prooxidant activity. We hypothesized that the anticancer activity of pharmacologic doses of ascorbic acid (colon cancer cell proliferation and induced apoptosis and necrosis, and this was accompanied by downregulation of Sp1, Sp3, and Sp4 proteins. In addition, ascorbic acid decreased expression of several Sp-regulated genes that are involved in cancer cell proliferation [hepatocyte growth factor receptor (c-Met), epidermal growth factor receptor and cyclin D1], survival (survivin and bcl-2), and angiogenesis [vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2)]. Other prooxidants such as hydrogen peroxide exhibited similar activities in colon cancer cells, and cotreatment with glutathione inhibited these responses. This study demonstrates for the first time that the anticancer activities of ascorbic acid are due, in part, to ROS-dependent repression of Sp transcription factors.

  6. Strong inhibition of fimbrial 3 subunit gene transcription by a novel downstream repressive element in Bordetella pertussis.

    Science.gov (United States)

    Chen, Qing; Boulanger, Alice; Hinton, Deborah M; Stibitz, Scott

    2014-08-01

    The Bvg-regulated promoters for the fimbrial subunit genes fim2 and fim3 of Bordetella pertussis behave differently from each other both in vivo and in vitro. In vivo Pfim2 is significantly stronger than Pfim3 , even though predictions based on the DNA sequences of BvgA-binding motifs and core promoter elements would indicate the opposite. In vitro Pfim3 demonstrated robust BvgA∼P-dependent transcriptional activation, while none was seen with Pfim2 . This apparent contradiction was investigated further. By swapping sequence elements we created a number of hybrid promoters and assayed their strength in vivo. We found that, while Pfim3 promoter elements upstream of the +1 transcriptional start site do indeed direct Bvg-activated transcription more efficiently than those of Pfim2 , the overall promoter strength of Pfim3  in vivo is reduced due to sequences downstream of +1 that inhibit transcription more than 250-fold. This element, the DRE (downstream repressive element), was mapped to the 15 bp immediately downstream of the Pfim3 +1. Placing the DRE in different promoter contexts indicated that its activity was not specific to fim promoters, or even to Bvg-regulated promoters. However it does appear to be specific to Bordetella species in that it did not function in Escherichia coli.

  7. Repression of glucocorticoid-stimulated angiopoietin-like 4 gene transcription by insulin.

    Science.gov (United States)

    Kuo, Taiyi; Chen, Tzu-Chieh; Yan, Stephanie; Foo, Fritz; Ching, Cecilia; McQueen, Allison; Wang, Jen-Chywan

    2014-05-01

    Angiopoietin-like 4 (Angptl4) is a glucocorticoid receptor (GR) primary target gene in hepatocytes and adipocytes. It encodes a secreted protein that inhibits extracellular LPL and promotes adipocyte lipolysis. In Angptl4 null mice, glucocorticoid-induced adipocyte lipolysis and hepatic steatosis are compromised. Markedly, insulin suppressed glucocorticoid-induced Angptl4 transcription. To unravel the mechanism, we utilized small molecules to inhibit insulin signaling components and found that phosphatidylinositol 3-kinase and Akt were vital for the suppression in H4IIE cells. A forkhead box transcription factor response element (FRE) was found near the 15 bp Angptl4 glucocorticoid response element (GRE). Mutating the Angptl4 FRE significantly reduced glucocorticoid-induced reporter gene expression in cells. Moreover, chromatin immunoprecipitation revealed that GR and FoxO1 were recruited to Angptl4 GRE and FRE in a glucocorticoid-dependent manner, and cotreatment with insulin abolished both recruitments. Furthermore, in 24 h fasted mice, significant occupancy of GR and FoxO1 at the Angptl4 GRE and FRE was found in the liver. In contrast, both occupancies were diminished after 24 h refeeding. Finally, overexpression of dominant negative FoxO1 mutant abolished glucocorticoid-induced Angptl4 expression, mimicking the insulin suppression. Overall, we demonstrate that both GR and FoxO1 are required for Angptl4 transcription activation, and that FoxO1 negatively mediates the suppressive effect of insulin.

  8. Analysis of the leakage of gene repression by an artificial TetR-regulated promoter in cyanobacteria.

    Science.gov (United States)

    Huang, Hsin-Ho; Seeger, Christian; Danielson, U Helena; Lindblad, Peter

    2015-09-19

    There is a need for strong and tightly regulated promoters to construct more reliable and predictable genetic modules for synthetic biology and metabolic engineering. For this reason we have previously constructed a TetR regulated L promoter library for the cyanobacterium Synechocystis PCC 6803. In addition to the L03 promoter showing wide dynamic range of transcriptional regulation, we observed the L09 promoter as unique in high leaky gene expression under repressed conditions. In the present study, we attempted to identify the cause of L09 promoter leakage. TetR binding to the promoter was studied by theoretical simulations of DNA breathing dynamics and by surface plasmon resonance (SPR) biosensor technology to analyze the kinetics of the DNA-protein interactions. DNA breathing dynamics of a promoter was computed with the extended nonlinear Peyrard-Bishop-Dauxois mesoscopic model to yield a DNA opening probability profile at a single nucleotide resolution. The L09 promoter was compared to the L10, L11, and L12 promoters that were point-mutated and different in repressed promoter strength. The difference between DNA opening probability profiles is trivial on the TetR binding site. Furthermore, the kinetic rate constants of TetR binding, as measured by SPR biosensor technology, to the respective promoters are practically identical. This suggests that a trivial difference in probability as low as 1 × 10(-4) cannot lead to detectable variations in the DNA-protein interactions. Higher probability at the downstream region of transcription start site of the L09 promoter compared to the L10, L11, and L12 promoters was observed. Having practically the same kinetics of binding to TetR, the leakage problem of the L09 promoter might be due to enhanced RNA Polymerase (RNAP)-promoter interactions in the downstream region. Both theoretical and experimental analyses of the L09 promoter's leakage problem exclude a mechanism of reduced TetR binding but instead suggest enhanced

  9. TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12

    NARCIS (Netherlands)

    Volkers, R.J.M.; Ballerstedt, H.; Ruijssenaars, H.; Bont, J.A.M. de; Winde, J.H. de; Wery, J.

    2009-01-01

    Pseudomonas putida S12 is well known for its remarkable solvent tolerance. Transcriptomics analysis of this bacterium grown in toluene-containing chemostats revealed the differential expression of 253 genes. As expected, the genes encoding one of the major solvent tolerance mechanisms, the solvent e

  10. TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12

    NARCIS (Netherlands)

    Volkers, R.J.M.; Ballerstedt, H.; Ruijssenaars, H.; Bont, J.A.M. de; Winde, J.H. de; Wery, J.

    2009-01-01

    Pseudomonas putida S12 is well known for its remarkable solvent tolerance. Transcriptomics analysis of this bacterium grown in toluene-containing chemostats revealed the differential expression of 253 genes. As expected, the genes encoding one of the major solvent tolerance mechanisms, the solvent e

  11. TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12

    NARCIS (Netherlands)

    Volkers, R.J.M.; Ballerstedt, H.; Ruijssenaars, H.; De Bont, J.A.M.; De Winde, J.H.; Wery, J.

    2008-01-01

    Pseudomonas putida S12 is well known for its remarkable solvent tolerance. Transcriptomics analysis of this bacterium grown in toluene-containing chemostats revealed the differential expression of 253 genes. As expected, the genes encoding one of the major solvent tolerance mechanisms, the solvent e

  12. Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2011-02-01

    Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant-produced glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a) ) epitope, i.e., Galβ(1-3)[Fucα(1-4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant-specific core α-1,3-fucose and α-1,4-fucose residues in the Le(a) epitopes by repressing the Guanosine 5'-diphosphate (GDP)-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus-induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose-free N-glycans found in total soluble protein from GMD gene-repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild-type plants. A small amount of putative galactose substitution in N-glycans from the NbGMD gene-repressed plants was observed, similar to what has been previously reported GMD-knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) with fucose-deleted N-glycans was successfully produced in NbGMD-RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants.

  13. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch.

    Science.gov (United States)

    Muto, Akihiko; Ochiai, Kyoko; Kimura, Yoshitaka; Itoh-Nakadai, Ari; Calame, Kathryn L; Ikebe, Dai; Tashiro, Satoshi; Igarashi, Kazuhiko

    2010-12-01

    Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2(-/-) B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2(-/-) mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs.

  14. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression

    DEFF Research Database (Denmark)

    Varmanen, P.; Vogensen, F.K.; Hammer, Karin;

    2003-01-01

    The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp...... ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease......E by Western blot analysis revealed that at a high temperature CIpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders GpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the Cts...

  15. Intercellular delay regulates the collective period of repressively coupled gene regulatory oscillator networks.

    Science.gov (United States)

    Wang, Yongqiang; Hori, Yutaka; Hara, Shinji; Doyle, Francis J

    2014-01-01

    Most biological rhythms are generated by a population of cellular oscillators coupled through intercellular signaling. Recent experimental evidence shows that the collective period may differ significantly from the autonomous period in the presence of intercellular delays. The phenomenon has been investigated using delay-coupled phase oscillators, but the proposed phase model contains no direct biological mechanism, which may weaken the model's reliability in unraveling biophysical principles. Based on a published gene regulatory oscillator model, we analyze the collective period of delay-coupled biological oscillators using the multivariable harmonic balance technique. We prove that, in contradiction to the common intuition that the collective period increases linearly with the coupling delay, the collective period turns out to be a periodic function of the intercellular delay. More surprisingly, the collective period may even decrease with the intercellular delay when the delay resides in certain regions. The collective period is given in a closed-form in terms of biochemical reaction constants and thus provides biological insights as well as guidance in synthetic-biological-oscillator design. Simulation results are given based on a segmentation clock model to confirm the theoretical predictions.

  16. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    Science.gov (United States)

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  17. The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression.

    Directory of Open Access Journals (Sweden)

    Gerhard Fuka

    Full Text Available BACKGROUND: ETV6/RUNX1 (E/R (also known as TEL/AML1 is the most frequent gene fusion in childhood acute lymphoblastic leukemia (ALL and also most likely the crucial factor for disease initiation; its role in leukemia propagation and maintenance, however, remains largely elusive. To address this issue we performed a shRNA-mediated knock-down (KD of the E/R fusion gene and investigated the ensuing consequences on genome-wide gene expression patterns and deducible regulatory functions in two E/R-positive leukemic cell lines. FINDINGS: Microarray analyses identified 777 genes whose expression was substantially altered. Although approximately equal proportions were either up- (KD-UP or down-regulated (KD-DOWN, the effects on biological processes and pathways differed considerably. The E/R KD-UP set was significantly enriched for genes included in the "cell activation", "immune response", "apoptosis", "signal transduction" and "development and differentiation" categories, whereas in the E/R KD-DOWN set only the "PI3K/AKT/mTOR signaling" and "hematopoietic stem cells" categories became evident. Comparable expression signatures obtained from primary E/R-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories "stem cell properties", "B-cell differentiation", "immune response", "cell adhesion" and "DNA damage" with RT-qPCR. CONCLUSION: Our analyses provide the first preliminary evidence that the continuous expression of the E/R fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets.

  18. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4.

    Science.gov (United States)

    Poria, D K; Guha, A; Nandi, I; Ray, P S

    2016-03-31

    Translation control of proinflammatory genes has a crucial role in regulating the inflammatory response and preventing chronic inflammation, including a transition to cancer. The proinflammatory tumor suppressor protein programmed cell death 4 (PDCD4) is important for maintaining the balance between inflammation and tumorigenesis. PDCD4 messenger RNA translation is inhibited by the oncogenic microRNA, miR-21. AU-rich element-binding protein HuR was found to interact with the PDCD4 3'-untranslated region (UTR) and prevent miR-21-mediated repression of PDCD4 translation. Cells stably expressing miR-21 showed higher proliferation and reduced apoptosis, which was reversed by HuR expression. Inflammatory stimulus caused nuclear-cytoplasmic relocalization of HuR, reversing the translation repression of PDCD4. Unprecedentedly, HuR was also found to bind to miR-21 directly, preventing its interaction with the PDCD4 3'-UTR, thereby preventing the translation repression of PDCD4. This suggests that HuR might act as a 'miRNA sponge' to regulate miRNA-mediated translation regulation under conditions of stress-induced nuclear-cytoplasmic translocation of HuR, which would allow fine-tuned gene expression in complex regulatory environments.

  19. Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica.

    Science.gov (United States)

    Mori, Katsuki; Iwama, Ryo; Kobayashi, Satoshi; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2013-03-01

    The yeast Yarrowia lipolytica assimilates n-alkanes or fatty acids as carbon sources. Transcriptional activation by n-alkanes of ALK1 encoding a cytochrome P450 responsible for the terminal hydroxylation has been well studied so far, but its regulation by other carbon sources is poorly understood. Here, we analyzed the transcriptional regulation of ALK1 by glycerol. Glycerol is a preferable carbon source compared to glucose for Y. lipolytica. The n-decane-induced transcript levels of ALK1 as well as the reporter gene under the control of ALK1 promoter were significantly decreased in the simultaneous presence of glycerol, but not of glucose. Similarly, the expression of PAT1 encoding acetoacetyl-CoA thiolase involved in β-oxidation was induced by n-decane or oleic acid, but its transcript level was decreased when glycerol was supplemented. These results indicate that glycerol represses the transcription of the genes involved in the metabolism of hydrophobic carbon sources in Y. lipolytica. Repression of ALK1 transcription by glycerol was not observed in the deletion mutant of GUT1 encoding glycerol kinase, implying that the phosphorylation of glycerol is required for the glycerol repression.

  20. A mutation in the Zn-finger of the GAL4 homolog LAC9 results in glucose repression of its target genes.

    OpenAIRE

    Kuger, P; Gödecke, A; Breunig, K D

    1990-01-01

    The transcriptional activator LAC9, a GAL4 homolog of Kluyveromyces lactis which mediates lactose and galactose-dependent activation of genes involved in the utilization of these sugars can also confer glucose repression to those genes. Here we report on the isolation and characterization of LAC9-2, an allele which encodes a glucose-sensitive activator in contrast to the one previously cloned. A single amino acid exchange of leu-104 to tryptophan is responsible for the glucose-insensitive phe...

  1. Executive function training in children with SLI: A pilot study

    NARCIS (Netherlands)

    Vugs, B.A.M.; Knoors, H.E.T.; Cuperus, J.M.; Hendriks, M.P.H.; Verhoeven, L.T.W.

    2017-01-01

    The aim of this study was to evaluate the effectiveness of a computer-based executive function (EF) training in children with specific language impairment (SLI). Ten children with SLI, ages 8 to 12 years, completed a 25-session training of visuospatial working memory, inhibition and cognitive

  2. Executive function behaviours in children with specific language impairment (SLI)

    NARCIS (Netherlands)

    Cuperus, J.M.; Vugs, B.A.M.; Scheper, A.R.; Hendriks, M.P.H.

    2014-01-01

    Background: There is growing evidence that linguistic and non-linguistic factors may contribute to the problems associated with specific language impairment (SLI). One factor that has been implicated is executive functioning (EF). Most studies investigating EF in children with SLI use performance ba

  3. Oral Narratives in Monolingual and Bilingual Preschoolers with SLI

    Science.gov (United States)

    Rezzonico, Stefano; Chen, Xi; Cleave, Patricia L.; Greenberg, Janice; Hipfner-Boucher, Kathleen; Johnson, Carla J.; Milburn, Trelani; Pelletier, Janette; Weitzman, Elaine; Girolametto, Luigi

    2015-01-01

    Background: The body of literature on narratives of bilingual children with and without specific language impairment (SLI) is growing. However, little is known about the narrative abilities of bilingual preschool children with SLI and their patterns of growth. Aims: To determine the similarities and differences in narrative abilities between…

  4. Executive Function Training in Children with SLI: A Pilot Study

    Science.gov (United States)

    Vugs, Brigitte; Knoors, Harry; Cuperus, Juliane; Hendriks, Marc; Verhoeven, Ludo

    2017-01-01

    The aim of this study was to evaluate the effectiveness of a computer-based executive function (EF) training in children with specific language impairment (SLI). Ten children with SLI, ages 8 to 12 years, completed a 25-session training of visuospatial working memory, inhibition and cognitive flexibility over a 6-week period. Treatment outcome was…

  5. Comparing SLI and dyslexia: Developmental language profiles and reading outcomes

    NARCIS (Netherlands)

    Wijnen, F.; de Bree, E.; van Alphen, P.M.; de Jong, J.; van der Leij, A.; Stavrakaki, S.

    2015-01-01

    In light of the striking overlap in symptoms, it has been proposed that SLI and dyslexia reflect the same underlying disorder, differing only in severity. An alternative view is that SLI and dyslexia overlap (only) partially, sharing some risk factors, and differing on various others. We will

  6. Comparing SLI and dyslexia: developmental language profiles and reading outcomes

    NARCIS (Netherlands)

    Wijnen, F.N.K.|info:eu-repo/dai/nl/074417258; de Bree, E.H.|info:eu-repo/dai/nl/292748868; van Alphen, P.M.; de Jong, Jan; van der Leij, A.

    2015-01-01

    In light of the striking overlap in symptoms, it has been proposed that SLI and dyslexia reflect the same underlying disorder, differing only in severity. An alternative view is that SLI and dyslexia overlap (only) partially, sharing some risk factors, and differing on various others. We will

  7. Epstein-barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim.

    Directory of Open Access Journals (Sweden)

    Kostas Paschos

    2009-06-01

    Full Text Available In human B cells infected with Epstein-Barr virus (EBV, latency-associated virus gene products inhibit expression of the pro-apoptotic Bcl-2-family member Bim and enhance cell survival. This involves the activities of the EBV nuclear proteins EBNA3A and EBNA3C and appears to be predominantly directed at regulating Bim mRNA synthesis, although post-transcriptional regulation of Bim has been reported. Here we show that protein and RNA stability make little or no contribution to the EBV-associated repression of Bim in latently infected B cells. However, treatment of cells with inhibitors of histone deacetylase (HDAC and DNA methyltransferase (DNMT enzymes indicated that epigenetic mechanisms are involved in the down-regulation of Bim. This was initially confirmed by chromatin immunoprecipitation analysis of histone acetylation levels on the Bim promoter. Consistent with this, methylation-specific PCR (MSP and bisulphite sequencing of regions within the large CpG island located at the 5' end of Bim revealed significant methylation of CpG dinucleotides in all EBV-positive, but not EBV-negative B cells examined. Genomic DNA samples exhibiting methylation of the Bim promoter included extracts from a series of explanted EBV-positive Burkitt's lymphoma (BL biopsies. Subsequent analyses of the histone modification H3K27-Me3 (trimethylation of histone H3 lysine 27 and CpG methylation at loci throughout the Bim promoter suggest that in EBV-positive B cells repression of Bim is initially associated with this repressive epigenetic histone mark gradually followed by DNA methylation at CpG dinucleotides. We conclude that latent EBV initiates a chain of events that leads to epigenetic repression of the tumour suppressor gene Bim in infected B cells and their progeny. This reprogramming of B cells could have important implications for our understanding of EBV persistence and the pathogenesis of EBV-associated disease, in particular BL.

  8. HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster.

    Science.gov (United States)

    Lundberg, Lina E; Stenberg, Per; Larsson, Jan

    2013-04-01

    Heterochromatin protein 1a (HP1a) is a chromatin-associated protein important for the formation and maintenance of heterochromatin. In Drosophila, the two histone methyltransferases SETDB1 and Su(var)3-9 mediate H3K9 methylation marks that initiates the establishment and spreading of HP1a-enriched chromatin. Although HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4-specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggest that HP1a, SETDB1 and Su(var)3-9 repress genes on chromosome 4, where non-ubiquitously expressed genes are preferentially targeted, and stimulate genes in pericentromeric regions. Further, we showed that on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In addition, we found that transposons are repressed by HP1a and Su(var)3-9 and that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.

  9. Seamless Ligation Cloning Extract (SLiCE) cloning method.

    Science.gov (United States)

    Zhang, Yongwei; Werling, Uwe; Edelmann, Winfried

    2014-01-01

    SLiCE (Seamless Ligation Cloning Extract) is a novel cloning method that utilizes easy to generate bacterial cell extracts to assemble multiple DNA fragments into recombinant DNA molecules in a single in vitro recombination reaction. SLiCE overcomes the sequence limitations of traditional cloning methods, facilitates seamless cloning by recombining short end homologies (15-52 bp) with or without flanking heterologous sequences and provides an effective strategy for directional subcloning of DNA fragments from bacterial artificial chromosomes or other sources. SLiCE is highly cost-effective and demonstrates the versatility as a number of standard laboratory bacterial strains can serve as sources for SLiCE extract. We established a DH10B-derived E. coli strain expressing an optimized λ prophage Red recombination system, termed PPY, which facilitates SLiCE with very high efficiencies.

  10. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD

    Science.gov (United States)

    De la Cruz, Miguel A.; Pérez-Morales, Deyanira; Palacios, Irene J.; Fernández-Mora, Marcos; Calva, Edmundo; Bustamante, Víctor H.

    2015-01-01

    Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella. PMID:26300871

  11. Transcriptional repression of Caveolin-1 (CAV1) gene expression by GATA-6 in bladder smooth muscle hypertrophy in mice and human beings.

    Science.gov (United States)

    Boopathi, Ettickan; Gomes, Cristiano Mendes; Goldfarb, Robert; John, Mary; Srinivasan, Vittala Gopal; Alanzi, Jaber; Malkowicz, S Bruce; Kathuria, Hasmeena; Zderic, Stephen A; Wein, Alan J; Chacko, Samuel

    2011-05-01

    Hypertrophy occurs in urinary bladder wall smooth muscle (BSM) in men with partial bladder outlet obstruction (PBOO) caused by benign prostatic hyperplasia (BPH) and in animal models of PBOO. Hypertrophied BSM from the rabbit model exhibits down-regulation of caveolin-1, a structural and functional protein of caveolae that function as signaling platforms to mediate interaction between receptor proteins and adaptor and effector molecules to regulate signal generation, amplification, and diversification. Caveolin-1 expression is diminished in PBOO-induced BSM hypertrophy in mice and in men with BPH. The proximal promoter of the human and mouse caveolin-1 (CAV1) gene was characterized, and it was observed that the transcription factor GATA-6 binds this promoter, causing reduced expression of caveolin-1. Furthermore, caveolin-1 expression levels inversely correlate with the abundance of GATA-6 in BSM hypertrophy in mice and human beings. Silencing of GATA6 gene expression up-regulates caveolin-1 expression, whereas overexpression of GATA-6 protein sustains the transcriptional repression of caveolin-1 in bladder smooth muscle cells. Together, these data suggest that GATA-6 acts as a transcriptional repressor of CAV1 gene expression in PBOO-induced BSM hypertrophy in men and mice. GATA-6-induced transcriptional repression represents a new regulatory mechanism of CAV1 gene expression in pathologic BSM, and may serve as a target for new therapy for BPH-induced bladder dysfunction in aging men.

  12. Pregnane X receptor (PXR-mediated gene repression and cross-talk of PXR with other nuclear receptors via coactivator interactions

    Directory of Open Access Journals (Sweden)

    Petr Pavek

    2016-11-01

    Full Text Available Pregnane X receptor is a ligand-activated nuclear receptor that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid and bilirubin homeostasis. In these processes PXR cross-talks with other nuclear receptors. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1, phase II enzymes (SULT1E1, Gsta2, Ugt1a1, drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a and Oatp4 as well as intermediate metabolism enzymes (PEPCK1 and G6Pase have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.

  13. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions

    Science.gov (United States)

    Pavek, Petr

    2016-01-01

    Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation. PMID:27932985

  14. Signaling from the embryo conditions Vp1-mediated repression of alpha-amylase genes in the aleurone of developing maize seeds.

    Science.gov (United States)

    Hoecker, U; Vasil, I K; McCarty, D R

    1999-08-01

    The VP1 transcription factor functions as both a repressor and an activator of gene expression in the developing aleurone. Vp1 activation of the anthocyanin pathway exhibits strict cell autonomy in aleurone. In contrast, Vp1-mediated repression of hydrolase genes in aleurone cells during seed development is determined by a combination of cell autonomous and cell non-autonomous signals. To analyze signaling between the embryo and aleurone during seed development, a T-B3La chromosome translocation was used to create seed that has non-concordant embryo and endosperm genotypes. We show that de-repression of an Amy-GUS reporter gene in developing vp1 mutant aleurone cells strongly depends on the presence of a viviparous embryo. Genetic ablation of the developing embryo in vp1 mutant and Vp1 seeds through the introduction of an early embryo mutation caused a similar enhancement of Amy-GUS expression in the aleurone, suggesting that the quiescent embryo present in normal seed is a critical source of inhibitory signals. Analysis of an ABA deficient vp1 vp5 double mutant indicates that ABA synthesized in the embyro interacts additively with Vp1 to prevent precocious induction of alpha-amylase genes in the aleurone of the developing seed. A lack of ABA synthesis, however, does not account for the strongly synergistic interaction between a viviparous vp1 embryo and mutant aleurone suggesting that a quiescent embyro is a source of other inhibitory signals.

  15. HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells.

    Science.gov (United States)

    Fang, Mingming; Fan, Zhiwen; Tian, Wenfang; Zhao, Yuhao; Li, Ping; Xu, Huihui; Zhou, Bisheng; Zhang, Liping; Wu, Xiaoyan; Xu, Yong

    2016-02-01

    Metabolic homeostasis is achieved through balanced energy storage and output. Impairment of energy expenditure is a hallmark event in patients with obesity and type 2 diabetes. Previously we have shown that the pro-inflammatory cytokine interferon gamma (IFN-γ) disrupts energy expenditure in skeletal muscle cells via hypermethylated in cancer 1 (HIC1)-class II transactivator (CIITA) dependent repression of SIRT1 transcription. Here we report that repression of SIRT1 transcription by IFN-γ paralleled loss of histone acetylation on the SIRT1 promoter region with simultaneous recruitment of histone deacetylase 4 (HDAC4). IFN-γ activated HDAC4 in vitro and in vivo by up-regulating its expression and stimulating its nuclear accumulation. HIC1 and CIITA recruited HDAC4 to the SIRT1 promoter and cooperated with HDAC4 to repress SIRT1 transcription. HDAC4 depletion by small interfering RNA or pharmaceutical inhibition normalized histone acetylation on the SIRT1 promoter and restored SIRT1 expression in the presence of IFN-γ. Over-expression of HDAC4 suppressed the transcription of genes involved in energy expenditure in a SIRT1-dependent manner. In contrast, HDAC4 knockdown/inhibition neutralized the effect of IFN-γ on cellular metabolism by normalizing SIRT1 expression. Therefore, our data reveal a role for HDAC4 in regulating cellular energy output and as such provide insights into rationalized design of novel anti-diabetic therapeutics.

  16. MtVRN2 is a Polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula.

    Science.gov (United States)

    Jaudal, Mauren; Zhang, Lulu; Che, Chong; Hurley, Daniel G; Thomson, Geoffrey; Wen, Jiangqi; Mysore, Kirankumar S; Putterill, Joanna

    2016-04-01

    Optimising the timing of flowering contributes to successful sexual reproduction and yield in agricultural plants. FLOWERING LOCUS T (FT) genes, first identified in Arabidopsis thaliana (Arabidopsis), promote flowering universally, but the upstream flowering regulatory pathways can differ markedly among plants. Flowering in the model legume, Medicago truncatula (Medicago) is accelerated by winter cold (vernalisation) followed by long day (LD) photoperiods leading to elevated expression of the floral activator, FT-like gene FTa1. However, Medicago, like some other plants, lacks the activator CONSTANS (CO) and the repressor FLOWERING LOCUS C (FLC) genes which directly regulate FT and are key to LD and vernalisation responses in Arabidopsis. Conversely, Medicago has a VERNALISATION2-LIKE VEFS-box gene (MtVRN2). In Arabidopsis AtVRN2 is a key member of a Polycomb complex involved in stable repression of Arabidopsis FLC after vernalisation. VRN2-like genes have been identified in other eudicot plants, but their function has never been reported. We show that Mtvrn2 mutants bypass the need for vernalisation for early flowering in LD conditions in Medicago. Investigation of the underlying mechanism by transcriptome analysis reveals that Mtvrn2 mutants precociously express FTa1 and other suites of genes including floral homeotic genes. Double-mutant analysis indicates that early flowering is dependent on functional FTa1. The broad significance of our study is that we have demonstrated a function for a VRN2-like VEFS gene beyond the Brassicaceae. In particular, MtVRN2 represses the transition to flowering in Medicago by regulating the onset of expression of the potent floral activator, FTa1.

  17. Singing abilities in children with Specific Language Impairment (SLI

    Directory of Open Access Journals (Sweden)

    Sylvain eCLEMENT

    2015-04-01

    Full Text Available Specific Language impairment (SLI is a heritable neurodevelopmental disorder diagnosed when a child has difficulties learning to produce and/or understand speech for no apparent reason (Bishop et al., 2012. The verbal difficulties of children with SLI have been largely documented, and a growing number of studies suggest that these children may also have difficulties in processing non-verbal complex auditory stimuli (Brandt et al., 2012; Corriveau et al., 2007. In a recent study, we reported that a large proportion of children with SLI present deficits in music perception (Planchou et al, submitted. Little is known, however, about the singing abilities of children with SLI. In order to investigate whether or not the impairments in expressive language extend to the musical domain, we assessed singing abilities in 8 children with SLI and 15 children with Typical Language Development (TLD matched for age and non-verbal intelligence. To this aim, we designed a ludic activity consisting of two singing tasks: a pitch-matching and a melodic reproduction task. In the pitch-matching task, the children were requested to sing single notes. In the melodic reproduction task, children were asked to sing short melodies that were either familiar (FAM-SONG and FAM-TUNE conditions or unfamiliar (UNFAM-TUNE condition. The analysis showed that children with SLI were impaired in the pitch-matching task, with a mean pitch error of 250 cents (mean pitch error for children with TLD: 154 cents. In the melodic reproduction task, we asked 30 healthy adults to rate the quality of the sung productions of the children on a continuous rating scale. The results revealed that singing of children with SLI received lower mean ratings than the children with TLD. Our findings thus indicate that children with SLI showed impairments in musical production and are discussed in light of a general auditory-motor dysfunction in children with SLI.

  18. NATURAL MUTATION IN THE GENE OF RESPONSE REGULATOR BgrR RESULTING IN REPRESSION OF Bac PROTEIN SYNTHESIS, A PATHOGENICITY FACTOR OF STREPTOCOCCUS AGALACTIAE

    Directory of Open Access Journals (Sweden)

    A. S. Rozhdestvenskaya

    2013-01-01

    Full Text Available Abstract. Streptococcus agalactiae can cause variety of diseases of newborns and adults. For successful colonization of different human tissues and organs as well as for suppression of the host immune system S. agalactiae expresses numerous virulence factors. For coordinated expression of the virulence genes S. agalactiae employs regulatory molecules including regulatory proteins of two-component systems. Results of the present study demonstrated that in S. agalactiae strain A49V the natural mutation in the brgR gene encoding for BgrR regulatory protein, which is component of regulatory system BgrRS, resulted in the repression of Bac protein synthesis, a virulence factor of S. agalactiae. A single nucleotide deletion in the bgrR gene has caused a shift of the reading frame and the changes in the primary, secondary and tertiary structures of the BgrR protein. The loss of functional activity of BgrR protein in A49V strain and repression of Bac protein synthesis have increased virulence of the strain in experimental animal streptococcal infection.

  19. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes.

    Science.gov (United States)

    Bourges, Ingrid; Mucchielli, Marie-Helene; Herbert, Christopher J; Guiard, Bernard; Dujardin, Geneviève; Meunier, Brigitte

    2009-04-17

    Respiratory complexes III, IV and V are formed by components of both nuclear and mitochondrial origin and are embedded in the inner mitochondrial membrane. Their assembly requires the auxiliary factor Oxa1, and the absence of this protein has severe consequences on these three major respiratory chain enzymes. We have studied, in the yeast Saccharomyces cerevisiae, the effect of the loss of Oxa1 function and of other respiratory defects on the expression of nuclear genes encoding components of the respiratory complexes and tricarboxylic acid cycle enzymes. We observed that the concomitant decrease in the level of two respiratory enzymes, complexes III and IV, led to their repression. These genes are known targets of the transcriptional activator complex Hap2/3/4/5 that plays a central role in the reprogramming of yeast metabolism when cells switch from a fermenting, glucose-repressed state to a respiring, derepressed state. We found that the Hap4 protein, the regulatory subunit of the transcriptional complex, was present at a lower level in the oxa1 mutants whereas no change in HAP4 transcript level was observed, suggesting a posttranscriptional modulation. In addition, an altered mitochondrial morphology was observed in mutants with decreased expression of Hap2/3/4/5 target genes. We suggest that the aberrant mitochondrial morphology, presumably caused by the severely decreased level of at least two respiratory enzymes, might be part of the signalling pathway linking the mitochondrial defect and Hap2/3/4/5.

  20. Characterizing the Overlap between SLI and Dyslexia in Chinese: The Role of Phonology and Beyond

    Science.gov (United States)

    Wong, Anita M.-Y.; Kidd, Joanna C.; Ho, Connie S.-H.; Au, Terry K.-F.

    2010-01-01

    This study examined the overlap of dyslexia and specific language impairment (SLI) in Cantonese-Chinese-speaking children. Thirty children with a prior diagnosis of SLI and 9 normal controls, aged between 6;0 and 11;3, participated. The children with SLI were tested for language impairment and dyslexia. Seven retained a diagnosis of SLI but were…

  1. Discrimination of Korean ginseng (Panax ginseng Meyer) cultivar Chunpoong and American ginseng (Panax quinquefolius) using the auxin repressed protein gene

    OpenAIRE

    Kim, Jong-Hak; Kim, Min-Kyeoung; Wang, Hongtao; Lee, Hee-Nyeong; Jin, Chi-Gyu; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-01-01

    Background: Korean ginseng (Panax ginseng) is one of the most important medicinal plants in the Orient. Among nine cultivars of P. ginseng, Chunpoong commands a much greater market value and has been planted widely in Korea. Chunpoong has superior quality “Chunsam” (1st grade ginseng) when made into red ginseng. Methods: A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the auxin repressed protein gen...

  2. The varicella-zoster virus-mediated delayed host shutoff: open reading frame 17 has no major function, whereas immediate-early 63 protein represses heterologous gene expression.

    Science.gov (United States)

    Desloges, Nathalie; Rahaus, Markus; Wolff, Manfred H

    2005-12-01

    We reported that varicella-zoster virus (VZV) causes a delayed host shutoff during its replicative cycle. VZV open reading frame 17 (ORF17) is the homologue of the herpes simplex virus (HSV) UL41 gene encoding the virion host shutoff (vhs) protein which is responsible for the shutoff effect observed in HSV-infected cells. In the present study, we demonstrated that ORF17 is expressed as a late protein during the VZV replicative cycle in different infected permissive cell lines which showed a delayed shutoff of cellular RNA. A cell line with stable expression of VZV ORF17 was infected with VZV. In these cells, VZV replication and delayed host shutoff remained unchanged when compared to normal infected cells. ORF17 was not capable of repressing the expression of the beta-gal reporter gene under the control of the human cytomegalovirus immediate-early gene promoter or to inhibit the expression of a CAT reporter gene under the control of the human GAPDH promoter, indicating that ORF17 has no major function in the VZV-mediated delayed host shutoff. To determine whether other viral factors are involved in the host shutoff, a series of cotransfection assays was performed. We found that the immediate-early 63 protein (IE63) was able to downregulate the expression of reporter genes under the control of the two heterologous promoters, indicating that this viral factor can be involved in the VZV-mediated delayed host shutoff. Other factors can be also implicated to modulate the repressing action of IE63 to achieve a precise balance between the viral and cellular gene expression.

  3. Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p.

    Directory of Open Access Journals (Sweden)

    Marc Chatenay-Lapointe

    Full Text Available Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3'-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.

  4. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression.

    Science.gov (United States)

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M; Albert, Paul R

    2016-12-02

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal

  5. Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression.

    Directory of Open Access Journals (Sweden)

    Mayra Garcia

    Full Text Available The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind, a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence ("the A-box" present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh, a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator and Cic (repressor may also support a "switch-like" response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo.

  6. Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression.

    Science.gov (United States)

    Garcia, Mayra; Stathopoulos, Angelike

    2011-01-01

    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence ("the A-box") present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a "switch-like" response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo.

  7. NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803.

    Science.gov (United States)

    García-Domínguez, M; Reyes, J C; Florencio, F J

    2000-03-01

    Synechocystis sp. PCC 6803 glutamine synthetase type I (GS) activity is controlled by direct interaction with two inactivating factors (IF7 and IF17). IF7 and IF17 are homologous polypeptides encoded by the gifA and gifB genes respectively. We investigated the transcriptional regulation of these genes. Expression of both genes is maximum in the presence of ammonium, when GS is inactivated. Nitrogen starvation attenuates the ammonium-mediated induction of gifA and gifB as well as the ammonium-mediated inactivation of GS. Putative binding sites for the transcription factor NtcA were identified at -7.5 and -30.5 bp upstream of gifB and gifA transcription start points respectively. Synechocystis NtcA protein binding to both promoters was demonstrated by gel electrophoresis mobility shift assays. Constitutive high expression levels of both genes were found in a Synechocystis NtcA non-segregated mutant (SNC1), which showed a fourfold reduction in the ntcA expression. These experiments indicate a repressive role for NtcA on the transcription of gifA and gifB genes. Our results demonstrate that NtcA plays a central role in GS regulation in cyanobacteria, stimulating transcription of the glnA gene (GS structural gene) and suppressing transcription of the GS inactivating factor genes gifA and gifB.

  8. Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression.

    Science.gov (United States)

    Djiotsa, Joachim; Verbruggen, Vincianne; Giacomotto, Jean; Ishibashi, Minaka; Manning, Elisabeth; Rinkwitz, Silke; Manfroid, Isabelle; Voz, Marianne L; Peers, Bernard

    2012-12-17

    Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies β- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into β-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating β-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on β- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of β- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. In zebrafish, pax4 is not required for the generation of the first β- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the

  9. Source Lines Counter (SLiC) Version 4.0

    Science.gov (United States)

    Monson, Erik W.; Smith, Kevin A.; Newport, Brian J.; Gostelow, Roli D.; Hihn, Jairus M.; Kandt, Ronald K.

    2011-01-01

    Source Lines Counter (SLiC) is a software utility designed to measure software source code size using logical source statements and other common measures for 22 of the programming languages commonly used at NASA and the aerospace industry. Such metrics can be used in a wide variety of applications, from parametric cost estimation to software defect analysis. SLiC has a variety of unique features such as automatic code search, automatic file detection, hierarchical directory totals, and spreadsheet-compatible output. SLiC was written for extensibility; new programming language support can be added with minimal effort in a short amount of time. SLiC runs on a variety of platforms including UNIX, Windows, and Mac OSX. Its straightforward command-line interface allows for customization and incorporation into the software build process for tracking development metrics. T

  10. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    Science.gov (United States)

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  11. The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons.

    Science.gov (United States)

    Nicoll, Michael P; Hann, William; Shivkumar, Maitreyi; Harman, Laura E R; Connor, Viv; Coleman, Heather M; Proença, João T; Efstathiou, Stacey

    2016-04-01

    Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir.

  12. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T G

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.

  13. Translational Effects of Mutations and Polymorphisms in a Repressive Upstream Open Reading Frame of the Human Cytomegalovirus UL4 Gene

    Science.gov (United States)

    Alderete, John P.; Jarrahian, Sohail; Geballe, Adam P.

    1999-01-01

    The human cytomegalovirus (HCMV) gpUL4 mRNA contains a 22-codon upstream open reading frame (uORF2), the peptide product of which represses downstream translation by blocking translation termination at its own stop codon and by causing ribosomes to stall on the mRNA. A distinctive feature of this unusual mechanism is its strict dependence on the uORF2 peptide sequence. To delineate sequence elements that function in the inhibitory mechanism, deletions and missense mutations affecting the previously uncharacterized amino-terminal region of uORF2 were analyzed in transient-transfection and infection assays. These experiments identified multiple codons in this region that are necessary for inhibition of downstream translation by uORF2 and, in conjunction with previous results, demonstrated that amino acids dispersed throughout the uORF2 peptide participate in the repressive mechanism. In contrast to the highly conserved carboxy terminus, the amino-terminal portion of the uORF2 peptide is polymorphic. A survey of uORF2 sequences in HCMV clinical isolates revealed that although most have uORF2 sequences that are predicted to retain the uORF2 inhibitory activity, ∼15% contain polymorphisms at codons that are essential for full inhibition by uORF2. Consistent with predictions based on analyses of engineered mutations, two viral isolates with uORF2 sequences that do not inhibit downstream translation in transfection assays expressed much more gpUL4 protein but similar levels of UL4 mRNA compared to the levels produced by the prototypic laboratory strain HCMV (Towne) and another clinical isolate with an inhibitory variant uORF2. These results demonstrate that uORF2 is polymorphic in sequence and repressive activity and suggest that the uORF2 regulatory mechanism, although prevalent among natural HCMV isolates, is not absolutely essential for viral replication. PMID:10482583

  14. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid.

    Science.gov (United States)

    Ayala, Julio C; Wang, Hongxia; Silva, Anisia J; Benitez, Jorge A

    2015-08-01

    Expression of Vibrio cholerae genes required for the biosynthesis of exopolysacchide (vps) and protein (rbm) components of the biofilm matrix is enhanced by cyclic diguanylate (c-di-GMP). In a previous study, we reported that the histone-like nucleoid structuring (H-NS) protein represses the transcription of vpsA, vpsL and vpsT. Here we demonstrate that the regulator VpsT can disrupt repressive H-NS nucleoprotein complexes at the vpsA and vpsL promoters in the presence of c-di-GMP, while H-NS could disrupt the VpsT-promoter complexes in the absence of c-di-GMP. Chromatin immunoprecipitation-Seq showed a remarkable trend for H-NS to cluster at loci involved in biofilm development such as the rbmABCDEF genes. We show that the antagonistic relationship between VpsT and H-NS regulates the expression of the rbmABCDEF cluster. Epistasis analysis demonstrated that VpsT functions as an antirepressor at the rbmA/F, vpsU and vpsA/L promoters. Deletion of vpsT increased H-NS occupancy at these promoters while increasing the c-di-GMP pool had the opposite effect and included the vpsT promoter. The negative effect of c-di-GMP on H-NS occupancy at the vpsT promoter required the regulator VpsR. These results demonstrate that c-di-GMP activates the transcription of genes required for the biosynthesis of the biofilm matrix by triggering a coordinated VpsR- and VpsT-dependent H-NS antirepression cascade.

  15. Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells.

    Science.gov (United States)

    Greco, Steven J; Smirnov, Sergey V; Murthy, Raghav G; Rameshwar, Pranela

    2007-10-12

    The RE-1 silencer of transcription (REST) is a transcriptional regulator that represses neuron-specific genes in non-neuronal tissues by remodeling chromatin structure. We have utilized human mesenchymal stem cells (MSCs) as a research tool to understand the molecular mechanisms that regulate a neurogenic program of differentiation in non-neuronal tissue. MSCs are mesoderm-derived cells that generate specialized cells such as stroma, fat, bone, and cartilage. We have reported previously the transdifferentiation of MSCs into functional neuronal cells (Cho, K. J., Trzaska, K. A., Greco, S. J., McArdle, J., Wang, F. S., Ye, J.-H., and Rameshwar, P. (2005) Stem Cells 23, 383-391). Expression of the neurotransmitter gene TAC1 was detected only in neuronal cells and thus served as a model to study transcriptional regulation of neuron-specific genes in undifferentiated MSCs. Bone marrow stromal cells are known to transiently express TAC1 following stimulation with the microenvironmental factor interleukin-1alpha. We thus compared the effects of interleukin-1alpha stimulation and neuronal induction of MSCs on TAC1 regulation. Transcription factor mapping of the 5'-flanking region of the TAC1 promoter predicted two REST-binding sites adjacent to one NFkappaB site within exon 1. Chromatin immunoprecipitation, mutagenesis, and loss-of-function studies showed that both transcription factors synergistically mediated repression of TAC1 in the neurogenic and microenvironmental models. Together, the results support the novel finding of synergism between REST and NFkappaB in the suppression of TAC1 in non-neuronal cells.

  16. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells.

    Science.gov (United States)

    Chebbi, Mouadh; Ginis, Olivia; Courdavault, Vincent; Glévarec, Gaëlle; Lanoue, Arnaud; Clastre, Marc; Papon, Nicolas; Gaillard, Cécile; Atanassova, Rossitza; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie; Courtois, Martine; Oudin, Audrey

    2014-10-15

    In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production.

  17. Lysine-specific demethylase 1 (LSD1 Is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT gene.

    Directory of Open Access Journals (Sweden)

    Qingjun Zhu

    Full Text Available BACKGROUND: Lysine-specific demethylase 1 (LSD1, catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most normal human cells while activated in up to 90% of human cancers. It remains to be defined how exactly the transcriptional activation of the hTERT gene occurs during the oncogenic process. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined the effect of LSD1 on hTERT transcription. In normal human fibroblasts with a tight hTERT repression, a pharmacological inhibition of LSD1 led to a weak hTERT expression, and a robust induction of hTERT mRNA was observed when LSD1 and histone deacetylases (HDACs were both inhibited. Small interference RNA-mediated depletion of both LSD1 and CoREST, a co-repressor in HDAC-containing complexes, synergistically activated hTERT transcription. In cancer cells, inhibition of LSD1 activity or knocking-down of its expression led to significant increases in levels of hTERT mRNA and telomerase activity. Chromatin immunoprecipitation assay showed that LSD1 occupied the hTERT proximal promoter, and its depletion resulted in elevated di-methylation of histone H3-K4 accompanied by increased H3 acetylation locally in cancer cells. Moreover, during the differentiation of leukemic HL60 cells, the decreased hTERT expression was accompanied by the LSD1 recruitment to the hTERT promoter. CONCLUSIONS/SIGNIFICANCE: LSD1 represses hTERT transcription via demethylating H3-K4 in normal and cancerous cells, and together with HDACs, participates in the establishment of a stable repression state of the hTERT gene in normal or differentiated malignant cells. The findings contribute to better understandings of h

  18. Use of a Phosphorylation Site Mutant To Identify Distinct Modes of Gene Repression by the Control of Virulence Regulator (CovR) in Streptococcus pyogenes.

    Science.gov (United States)

    Horstmann, Nicola; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Shelburne, Samuel A

    2017-09-15

    Control of the virulence regulator/sensor kinase (CovRS) two-component system (TCS) serves as a model for investigating the impact of signaling pathways on the pathogenesis of Gram-positive bacteria. However, the molecular mechanisms by which CovR, an OmpR/PhoB family response regulator, controls virulence gene expression are poorly defined, partly due to the labile nature of its aspartate phosphorylation site. To better understand the regulatory effect of phosphorylated CovR, we generated the phosphorylation site mutant strain 10870-CovR-D53E, which we predicted to have a constitutive CovR phosphorylation phenotype. Interestingly, this strain showed CovR activity only for a subset of the CovR regulon, which allowed for classification of CovR-influenced genes into D53E-regulated and D53E-nonregulated groups. Inspection of the promoter sequences of genes belonging to each group revealed distinct promoter architectures with respect to the location and number of putative CovR-binding sites. Electrophoretic mobility shift analysis demonstrated that recombinant CovR-D53E protein retains its ability to bind promoter DNA from both CovR-D53E-regulated and -nonregulated groups, implying that factors other than mere DNA binding are crucial for gene regulation. In fact, we found that CovR-D53E is incapable of dimerization, a process thought to be critical to OmpR/PhoB family regulator function. Thus, our global analysis of CovR-D53E indicates dimerization-dependent and dimerization-independent modes of CovR-mediated repression, thereby establishing distinct mechanisms by which this critical regulator coordinates virulence gene expression.IMPORTANCEStreptococcus pyogenes causes a wide variety of diseases, ranging from superficial skin and throat infections to life-threatening invasive infections. To establish these various disease manifestations, Streptococcus pyogenes requires tightly coordinated production of its virulence factor repertoire. Here, the response regulator Cov

  19. Characterization of a new mutant allele of the Arabidopsis Flowering Locus D (FLD) gene that controls the flowering time by repressing FLC

    Institute of Scientific and Technical Information of China (English)

    CHEN Ruiqiang; ZHANG Suzhi; SUN Shulan; CHANG Jianhong; ZUO Jianru

    2005-01-01

    Flowering in higher plants is controlled by both the internal and environmental cues. In Arabidopsis, several major genetic loci have been defined as the key switches to control flowering. The Flowering Locus C (FLC) gene has been shown in the autonomous pathway to inhibit the vegetative-to-reproductive transition. FLC appears to be repressed by Flowering Locus D (FLD), which encodes a component of the histone deacetylase complex. Here we report the identification and characterization of a new mutant allele fld-5. Genetic analysis indicates that fld-5 (in the Wassilewskija background) is allelic to the previously characterized fld-3 and fld-4 (in the Colombia-0 background). Genetic and molecular analyses reveal that fld-5 carries a frame-shift mutation, resulting in a premature termination of the FLD open reading frame. The FLC expression is remarkably increased in fld-5, which presumably attributes to the extremely delayed flowering phenotype of the mutant.

  20. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes.

    Science.gov (United States)

    Miao, Ji; Choi, Sung-E; Seok, Sun Mi; Yang, Linda; Zuercher, William J; Xu, Yong; Willson, Timothy M; Xu, H Eric; Kemper, Jongsook Kim

    2011-07-01

    Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, including 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3Cl-AHPC), were shown to bind to SHP and enhance apoptosis. We have examined whether 3Cl-AHPC acts as an agonist and increases SHP activity in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes and delineated the underlying mechanisms. Contrary to this expectation, micromolar concentrations of 3Cl-AHPC increased CYP7A1 expression but indirectly via p38 kinase signaling. Nanomolar concentrations, however, repressed CYP7A1 expression and decreased bile acid levels in HepG2 cells, and little repression was observed when SHP was down-regulated by small hairpin RNA. Mechanistic studies revealed that 3Cl-AHPC bound to SHP, increased the interaction of SHP with liver receptor homologue (LRH)-1, a hepatic activator for CYP7A1 and CYP8B1 genes, and with repressive cofactors, Brahma, mammalian Sin3a, and histone deacetylase-1, and, subsequently, increased the occupancy of SHP and these cofactors at the promoters. Mutation of Leu-100, predicted to contact 3Cl-AHPC within the SHP ligand binding pocket by molecular modeling, severely impaired the increased interaction with LRH-1, and repression of LRH-1 activity mediated by 3Cl-AHPC. 3Cl-AHPC repressed SHP metabolic target genes in a gene-specific manner in human primary hepatocytes and HepG2 cells. These data suggest that SHP may act as a ligand-regulated receptor in metabolic pathways. Modulation of SHP activity by synthetic ligands may be a useful therapeutic strategy.

  1. Diagnosing bilectal children with SLI: Determination of identification accuracy.

    Science.gov (United States)

    Theodorou, Eleni; Kambanaros, Maria; Grohmann, Kleanthes K

    2016-01-01

    Very little is known about diagnosing specific language impairment (SLI) in children who are exposed daily to a dialect (community language) and a standard variety (school instruction). The research reported here examines the specificity and sensitivity of language tests used so far to evaluate language performance in the context of diglossia (Cyprus). Sixteen children with SLI aged 5-9 years and 22 age-matched typically developing children were examined on a range of language tests modified to include dialectal differences. Properties of each test were evaluated through logistic regression analysis in order to identify children with SLI. The analysis revealed that many of the tests used are sufficiently accurate concerning sensitivity and specificity levels. Furthermore, a combination of tests is proposed as a good tool for diagnostic purposes. Speech and language therapists as well as researchers can now rely on an accurate diagnostic procedure within a practice-based evidence framework.

  2. Stochastic Local Interaction (SLI) model: Bridging machine learning and geostatistics

    Science.gov (United States)

    Hristopulos, Dionissios T.

    2015-12-01

    Machine learning and geostatistics are powerful mathematical frameworks for modeling spatial data. Both approaches, however, suffer from poor scaling of the required computational resources for large data applications. We present the Stochastic Local Interaction (SLI) model, which employs a local representation to improve computational efficiency. SLI combines geostatistics and machine learning with ideas from statistical physics and computational geometry. It is based on a joint probability density function defined by an energy functional which involves local interactions implemented by means of kernel functions with adaptive local kernel bandwidths. SLI is expressed in terms of an explicit, typically sparse, precision (inverse covariance) matrix. This representation leads to a semi-analytical expression for interpolation (prediction), which is valid in any number of dimensions and avoids the computationally costly covariance matrix inversion.

  3. Executive Function in SLI: Recent Advances and Future Directions.

    Science.gov (United States)

    Kapa, Leah L; Plante, Elena

    2015-09-01

    This paper provides a review of recent research on executive function abilities in children with specific language impairment (SLI). Across several studies, children with SLI are reported to perform worse than typically developing peers on measures of sustained attention, working memory, inhibition, and attention shifting. However, few studies have considered multiple executive function components simultaneously and even fewer have examined the underlying relationship between executive function deficits and impaired language acquisition. We argue that in order to fully understand the nature of executive function deficits in SLI, the field must move past simply identifying weaknesses to instead test models of executive function development and explore the nature of the relationship between executive function and language. Future research directions are recommended in order to achieve these goals.

  4. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites.

    Science.gov (United States)

    Panozzo, C; Cornillot, E; Felenbok, B

    1998-03-13

    Carbon catabolite repression is mediated in Aspergillus nidulans by the negative acting protein CreA. The CreA repressor plays a major role in the control of the expression of the alc regulon, encoding proteins required for the ethanol utilization pathway. It represses directly, at the transcriptional level, the specific transacting gene alcR, the two structural genes alcA and aldA, and other alc genes in all physiological growth conditions. Among the seven putative CreA sites identified in the alcA promoter region, we have determined the CreA functional targets in AlcR constitutive and derepressed genetic backgrounds. Two different divergent CreA sites, of which one overlaps a functional AlcR inverted repeat site, are largely responsible for alcA repression. Totally derepressed alcA expression is achieved when these two CreA sites are disrupted in addition to another single site, which overlaps the functional palindromic induction target. The fact that derepression is always associated with alcA overexpression is consistent with a competition model between AlcR and CreA for their cognate targets in the same region of the alcA promoter. Our results also indicate that the CreA repressor is necessary and sufficient for the total repression of the alcA gene.

  5. Down-regulation of the cytoglobin gene, located on 17q25, in tylosis with oesophageal cancer (TOC): evidence for trans-allele repression.

    Science.gov (United States)

    McRonald, Fiona E; Liloglou, Triantafillos; Xinarianos, George; Hill, Laura; Rowbottom, Lynn; Langan, Joanne E; Ellis, Anthony; Shaw, Joan M; Field, John K; Risk, Janet M

    2006-04-15

    Tylosis (focal non-epidermolytic palmoplantar keratoderma) is an autosomal dominant skin disorder that is associated with the early onset of squamous cell oesophageal cancer (SCOC) in three families. Our previous linkage and haplotype analyses have mapped the tylosis with oesophageal cancer (TOC) locus to a 42.5 kb region on chromosome 17q25 that has also been implicated in the aetiology of sporadically occurring SCOC from a number of different geographical populations. Oesophageal cancer is one of the 10 leading causes of cancer mortality worldwide. No inherited disease-causing mutations have been identified in the genes located in the 42.5 kb minimal region. We now show that cytoglobin gene expression in oesophageal biopsies from tylotic patients is dramatically reduced by approximately 70% compared with normal oesophagus. Furthermore, both alleles are equally repressed. Given the autosomal dominant nature of the disease, these results exclude haploinsufficiency as a mechanism of the disease and instead suggest a novel trans-allele interaction. We also show that the promoter is hypermethylated in sporadic oesophageal cancer samples: this may constitute the 'second hit' of a gene previously implicated in this disease by allelic imbalance studies.

  6. Gene Expression Analyses during Spontaneous Reversal of Cardiomyopathy in Mice with Repressed Nuclear CUG-BP, Elav-Like Family (CELF) Activity in Heart Muscle.

    Science.gov (United States)

    Dasgupta, Twishasri; Coram, Ryan J; Stillwagon, Samantha J; Ladd, Andrea N

    2015-01-01

    CUG-BP, Elav-like family (CELF) proteins regulate cell type- and developmental stage-specific alternative splicing in the heart. Repression of CELF-mediated splicing activity via expression of a nuclear dominant negative CELF protein in heart muscle was previously shown to induce dysregulation of alternative splicing, cardiac dysfunction, cardiac hypertrophy, and dilated cardiomyopathy in MHC-CELFΔ transgenic mice. A "mild" line of MHC-CELFΔ mice that expresses a lower level of the dominant negative protein exhibits cardiac dysfunction and myopathy at a young age, but spontaneously recovers normal cardiac function and heart size with age despite the persistence of splicing defects. To the best of our knowledge, this was the first example of a genetically induced cardiomyopathy that spontaneously recovers without intervention. In this study, we explored the basis for this recovery. We examined whether a transcriptional program regulated by serum response factor (SRF) that is dysregulated in juvenile MHC-CELFΔ mice is restored in the mild line with age, and evaluated global changes in gene expression by microarray analyses. We found that differences in gene expression between the mild line and wild type hearts are greatly reduced in older animals, including a partial recovery of SRF target gene expression. We did not find evidence of a new compensatory pathway being activated in the mild line with age, and propose that recovery may occur due to developmental stage-specific compatibility of CELF-dependent splice variants with the cellular environment of the cardiomyocyte.

  7. Activation of Bvg-repressed genes in Bordetella pertussis by RisA requires cross-talk from a non co-operonic histidine kinase RisK.

    Science.gov (United States)

    Chen, Qing; Ng, Victoria; Warfel, Jason M; Merkel, Tod J; Stibitz, Scott

    2017-08-21

    The two-component response regulator RisA, encoded by BP3554 in the Bordetella pertussis Tohama I genomic sequence, is a known activator of vrgs, a set of genes whose expression is increased under the same environmental conditions (known as modulation) that result in repression of the bvgAS virulence regulon. Here we demonstrate that RisA is phosphorylated in vivo and that RisA phosphorylation is required for activation of vrgs. An adjacent histidine kinase gene, risS, is truncated by frameshift mutation in B. pertussis, but not in B. bronchiseptica or B. parapertussis Neither deletion of risS' or bvgAS, nor phenotypic modulation with MgSO4, affected levels of RisA∼P in B. pertussis However, RisA phosphorylation did require the histidine kinase encoded by BP3223, here named RisK (cognate histidine kinase of RisA). RisK was also required for expression of the vrgs. This requirement could be obviated by the introduction of the phosphorylation-mimicking RisA(D60E) mutant, indicating that an active conformation of RisA, but not phosphorylation per se, is crucial for vrg activation. Interestingly, expression of vrgs is still modulated by MgSO4 in cells harboring the RisA(D60E) mutation, suggesting that the activated RisA senses additional signals to control vrg expression in response to environmental stimuli.IMPORTANCE In B. pertussis, the BvgAS two-component system activates the expression of virulence genes by binding of BvgA∼P to their promoters. Expression of the reciprocally-regulated vrgs requires RisA and is also repressed by the Bvg-activated BvgR. RisA is an OmpR-like response regulator, but RisA phosphorylation was not expected because the gene for its presumed, co-operonic, histidine kinase is inactivated by mutation. In this study, we demonstrate phosphorylation of RisA in vivo by a non co-operonic histidine kinase. We also show that RisA phosphorylation is necessary but not sufficient for vrg activation, but, importantly, is not affected by BvgAS status

  8. BEND3 mediates transcriptional repression and heterochromatin organization.

    Science.gov (United States)

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  9. Verb inflection in Monolingual Dutch and Sequential Bilingual Turkish-Dutch Children with and without SLI

    Science.gov (United States)

    Blom, Elma; De Jong, Jan; Orgassa, Antje; Baker, Anne; Weerman, Fred

    2013-01-01

    Both children with specific language impairment (SLI) and children who acquire a second language (L2) make errors with verb inflection. This overlap between SLI and L2 raises the question if verb inflection can discriminate between L2 children with and without SLI. In this study we addressed this question for Dutch. The secondary goal of the study…

  10. The EpiSLI Database: A Publicly Available Database on Speech and Language

    Science.gov (United States)

    Tomblin, J. Bruce

    2010-01-01

    Purpose: This article describes a database that was created in the process of conducting a large-scale epidemiologic study of specific language impairment (SLI). As such, this database will be referred to as the EpiSLI database. Children with SLI have unexpected and unexplained difficulties learning and using spoken language. Although there is no…

  11. Identification of two SLI profiles through WISC-IV, CELF-4 and FON

    Science.gov (United States)

    Martínez, Ana B.

    2015-01-01

    This work has two objectives. First of all, to offer psychometric instruments that help more precisely identify and differentiate children with specific language impairment (SLI) in the educational field and, secondly, to establish profiles of the two cases that illustrate the two current subtypes of SLI: phonologic-syntactic SLI and…

  12. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes

    Science.gov (United States)

    Møller, Andreas Buch; Kampmann, Ulla; Hedegaard, Jakob; Thorsen, Kasper; Nordentoft, Iver; Vendelbo, Mikkel Holm; Møller, Niels; Jessen, Niels

    2017-01-01

    This case-control study was designed to investigate the gene expression profile in skeletal muscle from severely insulin resistant patients with long-standing type 2 diabetes (T2D), and to determine associated signaling pathways. Gene expression profiles were examined by whole transcriptome, strand-specific RNA-sequencing and associated signaling was determined by western blot. We identified 117 differentially expressed gene transcripts. Ingenuity Pathway Analysis related these differences to abnormal muscle morphology and mitochondrial dysfunction. Despite a ~5-fold difference in plasma insulin, we did not observe any difference in phosphorylation of AKT or AS160, although other insulin-sensitive cascades, as mTOR/4EBP1, had retained their sensitivity. Autophagy-related gene (ATG14, RB1CC1/FIP200, GABARAPL1, SQSTM1/p62, and WIPI1) and protein (LC3BII, SQSTM1/p62 and ATG5) expression were decreased in skeletal muscle from the patients, and this was associated with a trend to increased phosphorylation of the insulin-sensitive regulatory transcription factor FOXO3a. These data show that gene expression is highly altered and related to mitochondrial dysfunction and abnormal morphology in skeletal muscle from severely insulin resistant patients with T2D, and that this is associated with decreased expression of autophagy-related genes and proteins. We speculate that prolonged treatment with high doses of insulin may suppress autophagy thereby generating a vicious cycle maintaining insulin resistance. PMID:28252104

  13. An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation.

    Science.gov (United States)

    Sabbattini, Pierangela; Sjoberg, Marcela; Nikic, Svetlana; Frangini, Alberto; Holmqvist, Per-Henrik; Kunowska, Natalia; Carroll, Tom; Brookes, Emily; Arthur, Simon J; Pombo, Ana; Dillon, Niall

    2014-03-01

    Methylated histones H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterized. H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen- and stress-activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in embryonic stem cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilizes repressed states.

  14. Carbon Catabolite Repression and the Related Genes of ccpA, ptsH and hprK in Thermoanaerobacterium aotearoense.

    Directory of Open Access Journals (Sweden)

    Muzi Zhu

    Full Text Available The strictly anaerobic, Gram-positive bacterium, Thermoanaerobacterium aotearoense SCUT27, is capable of producing ethanol, hydrogen and lactic acid by directly fermenting glucan, xylan and various lignocellulosically derived sugars. By using non-metabolizable and metabolizable sugars as substrates, we found that cellobiose, galactose, arabinose and starch utilization was strongly inhibited by the existence of 2-deoxyglucose (2-DG. However, the xylose and mannose consumptions were not markedly affected by 2-DG at the concentration of one-tenth of the metabolizable sugar. Accordingly, T. aotearoense SCUT27 could consume xylose and mannose in the presence of glucose. The carbon catabolite repression (CCR related genes, ccpA, ptsH and hprK were confirmed to exist in T. aotearoense SCUT27 through gene cloning and protein characterization. The highly purified Histidine-containing Protein (HPr could be specifically phosphorylated at Serine 46 by HPr kinase/phosphatase (HPrK/P with no need to add fructose-1,6-bisphosphate (FBP or glucose-6-phosphate (Glc-6-P in the reaction mixture. The specific protein-interaction of catabolite control protein A (CcpA and phosphorylated HPr was proved via affinity chromatography in the absence of formaldehyde. The equilibrium binding constant (KD of CcpA and HPrSerP was determined as 2.22 ± 0.36 nM by surface plasmon resonance (SPR analysis, indicating the high affinity between these two proteins.

  15. The miR-34a-5p promotes the multi-chemoresistance of osteosarcoma via repression of the AGTR1 gene.

    Science.gov (United States)

    Pu, Youguang; Zhao, Fangfang; Li, Yinpeng; Cui, Mingda; Wang, Haiyan; Meng, Xianghui; Cai, Shanbao

    2017-01-10

    Chemoresistance hinders the curative cancer chemotherapy. MicroRNAs (miRNAs) are key players in diverse biological processes including the chemoresistance of cancers. A RNA-seq-based miR-omic analysis of osteosarcoma (OS) cells was performed to detect the levels of miR-34a-5p. Bioinformatics analysis revealed that AGTR1 is one of the target genes of miR-34a-5p. The mRNA and protein levels of AGTR1 were detected in both the miR-34a-5p-mimic transfected G-292 and miR-34a-5p-antagomiR transfected SJSA-1 cells. The involvement of AGTR1 with OS chemoresistance was validated by the experiments with siRNA-mediated repression or overexpression of the AGTR1 gene. We showed that miR-34a-5p promotes the multi- chemoresistance of OS. The angiotensin II type 1 receptor (AGTR1) gene, is one of the targets of miR-34a-5p in OS and thus negatively correlates with OS chemoresistance by systematic investigations of a multi-drug sensitive (G-292) and resistant (SJSA-1) OS cell lines. Down-regulation of the AGTR1 expression by siRNA passivates G-292 cells and suppresses cell apoptosis, while over-expression of AGTR1 sensitizes SJSA-1 cells and thus promotes the drug-triggered cell death. The miR-34a-5p and its target gene AGTR1 are the potential targets for an effective chemotherapy of OS. Our results also provide novel insights into the effective chemotherapy for OS patients.

  16. Reading's SLiCK with New Audio Texts and Strategies.

    Science.gov (United States)

    Boyle, Elizabeth A.; Washburn, Shari Gallin; Rosenberg, Michael S.; Connelly, Vincent J.; Brinckerhoff, Loring C.; Banerjee, Manju

    2002-01-01

    This article discusses challenges for secondary students with disabilities and alternative instructional methods that teachers of students with poor reading skills can use to convey content information effectively and efficiently. The use of audio textbooks on CD-ROMs is emphasized and the SLiCK strategy is explained as a support for the CD-ROM.…

  17. Sustained Attention in Children with Specific Language Impairment (SLI)

    Science.gov (United States)

    Finneran, Denise A.; Francis, Alexander L.; Leonard, Laurence B.

    2009-01-01

    Purpose: Information-processing limitations have been associated with language problems in children with specific language impairment (SLI). These processing limitations may be associated with limitations in attentional capacity, even in the absence of clinically significant attention deficits. In this study, the authors examined the performance…

  18. Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes

    Directory of Open Access Journals (Sweden)

    Shiota Kunio

    2009-07-01

    Full Text Available Abstract Background Adipose tissues serve not only as a store for energy in the form of lipid, but also as endocrine tissues that regulates metabolic activities of the organism by secreting various kinds of hormones. Peroxisome proliferator activated receptor γ (PPARγ is a key regulator of adipocyte differentiation that induces the expression of adipocyte-specific genes in preadipocytes and mediates their differentiation into adipocytes. Furthermore, PPARγ has an important role to maintain the physiological function of mature adipocyte by controlling expressions of various genes properly. Therefore, any reduction in amount and activity of PPARγ is linked to the pathogenesis of metabolic syndrome. Results In this study, we investigated the contribution of epigenetic transcriptional regulatory mechanisms, such as DNA methylation, to the expression of the PPARγ gene, and further evaluated the contribution of such epigenetic regulatory mechanisms to the pathogenesis of metabolic syndrome. In 3T3-L1 preadipocytes, the promoter of the PPARγ2 gene was hypermethylated, but was progressively demethylated upon induction of differentiation, which was accompanied by an increase of mRNA expression. Moreover, treatment of cells with 5'-aza-cytideine, an inhibitor of DNA methylation, increased expression of the PPARγ gene in a dose-dependent manner. Methylation in vitro of a PPARγ promoter-driven reporter construct also repressed the transcription of a downstream reporter gene. These results suggest that the expression of the PPARγ gene is inhibited by methylation of its promoter. We next compared the methylation status of the PPARγ promoters in adipocytes from wild-type (WT mice with those from two diabetic mouse models: +Leprdb/+Leprdb and diet-induced obesity mice. Interestingly, we found increased methylation of the PPARγ promoter in visceral adipose tissues (VAT of the mouse models of diabetes, compared to that observed in wild-type mice. We

  19. SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Greve, Katrine Buch Vidén; Møller, Jesper Bonnet

    G target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. SSX2 does not affect the overall composition and stability of PcG complexes, but SSX......2-mediated derepression of the PcG target gene ATF3 is associated with widespread binding of SSX2 to this gene and a reduction in BMI1 and histone H3K27me3 at the proximal promoter. SSX2 binds double-stranded DNA in a sequence non-specific manner, suggesting that it modulates PcG activity through...... direct chromatin binding. Our results implicate SSX2 in regulation of chromatin structure and function....

  20. Combination of genomic approaches with functional genetic experiments reveals two modes of repression of yeast middle-phase meiosis genes

    Science.gov (United States)

    2010-01-01

    Background Regulation of meiosis and sporulation in Saccharomyces cerevisiae is a model for a highly regulated developmental process. Meiosis middle phase transcriptional regulation is governed by two transcription factors: the activator Ndt80 and the repressor Sum1. It has been suggested that the competition between Ndt80 and Sum1 determines the temporal expression of their targets during middle meiosis. Results Using a combination of ChIP-on-chip and expression profiling, we characterized a middle phase transcriptional network and studied the relationship between Ndt80 and Sum1 during middle and late meiosis. While finding a group of genes regulated by both factors in a feed forward loop regulatory motif, our data also revealed a large group of genes regulated solely by Ndt80. Measuring the expression of all Ndt80 target genes in various genetic backgrounds (WT, sum1Δ and MK-ER-Ndt80 strains), allowed us to dissect the exact transcriptional network regulating each gene, which was frequently different than the one inferred from the binding data alone. Conclusion These results highlight the need to perform detailed genetic experiments to determine the relative contribution of interactions in transcriptional regulatory networks. PMID:20716365

  1. 9-CIS-RETINOIC ACID REPRESSES ESTROGEN-INDUCED EXPRESSION OF THE VERY-LOW-DENSITY APOLIPOPROTEIN-II GENE

    NARCIS (Netherlands)

    SCHIPPERS, IJ; KLOPPENBURG, M; SNIPPE, L; AB, G

    1994-01-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concent

  2. 9-CIS-RETINOIC ACID REPRESSES ESTROGEN-INDUCED EXPRESSION OF THE VERY-LOW-DENSITY APOLIPOPROTEIN-II GENE

    NARCIS (Netherlands)

    SCHIPPERS, IJ; KLOPPENBURG, M; SNIPPE, L; AB, G

    1994-01-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concent

  3. Are you SLiM? Developing an instrument for civic scientific literacy measurement (SLiM) based on media coverage.

    Science.gov (United States)

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Tseng, Yuen-Hsien; Lin, Pei-Ling; Chang, Chun-Yen

    2012-08-01

    The purpose of this study is to develop an instrument to assess civic scientific literacy measurement (SLiM), based on media coverage. A total of 50 multiple-choice items were developed based on the most common scientific terms appearing in media within Taiwan. These questions covered the subjects of biology (45.26%, 22 items), earth science (37.90%, 19 items), physics (11.58%, 6 items) and chemistry (5.26%, 3 items). A total of 1034 students from three distinct groups (7th graders, 10th graders, and undergraduates) were invited to participate in this study. The reliability of this instrument was 0.86 (KR 20). The average difficulty of the SLiM ranged from 0.19 to 0.91, and the discrimination power was 0.1 to 0.59. According to participants' performances on SLiM, it was revealed that 10th graders (Mean = 37.34±0.23) performed better than both undergraduates (Mean = 33.00±0.33) and 7th graders (Mean = 26.73±0.45) with significant differences in their SLiM.

  4. SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Relster, Mette Marie; Greve, Katrine Buch Viden

    2014-01-01

    formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition...... and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non......-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function....

  5. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution

    OpenAIRE

    Okano, Yosuke; Aono, Naoki; Hiwatashi, Yuji; Murata, Takashi; Nishiyama, Tomoaki; Ishikawa, Takaaki; Kubo, Minoru; Hasebe, Mitsuyasu

    2009-01-01

    Land plants have distinct developmental programs in haploid (gametophyte) and diploid (sporophyte) generations. Although usually the two programs strictly alternate at fertilization and meiosis, one program can be induced during the other program. In a process called apogamy, cells of the gametophyte other than the egg cell initiate sporophyte development. Here, we report for the moss Physcomitrella patens that apogamy resulted from deletion of the gene orthologous to the Arabidopsis thaliana...

  6. Polycomb repressive complex 2 (PRC2) protein ESC regulates insect developmental timing by mediating H3K27me3 and activating prothoracicotropic hormone gene expression.

    Science.gov (United States)

    Lu, Yu-Xuan; Denlinger, David L; Xu, Wei-Hua

    2013-08-09

    The decision made by insects to develop into adults or halt development (enter diapause and prolong lifespan) is commonly based on environmental signals that provide reliable predictors of future seasons of adversity. For example, the short day lengths of early autumn accurately foretell the advent of winter, but little is known about the molecular mechanisms that preside over the hormonal events dictating whether the insect proceeds with development or enters diapause. In Helicoverpa armigera we show that day length affects H3K27me3 by affecting polycomb repressive complex 2 (PRC2) protein extra sex comb (ESC) and regulates the prothoracicotropic hormone (PTTH) gene, thus directly influencing developmental timing. ESC expression in brains of developing (nondiapause) pupae is higher than in brains from diapausing pupae. High ESC expression is localized in two pairs of PTTH neurosecretory cells, and H3K27me3 recruits on the PTTH promoter. Double strand ESC and PRC2 inhibitor (DzNep) treatment in vitro show that ESC triggers PTTH promoter activity, which in turn depends on PRC2 methyltransferase activity. Injection of DzNep into pupae programmed for development reduces the H3K27me3 mark and PTTH gene expression, thereby delaying development. Although ESC is best known as a transcriptional repressor, our results show that ESC prompts development and metamorphosis. We believe this is the first report showing that the PRC2 complex functions as an activator and that a low level of H3K27me3 can prolong lifespan (i.e. induce diapause) by controlling PTTH gene expression in insects.

  7. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy.

    Science.gov (United States)

    Bongers, Kale S; Fox, Daniel K; Kunkel, Steven D; Stebounova, Larissa V; Murry, Daryl J; Pufall, Miles A; Ebert, Scott M; Dyle, Michael C; Bullard, Steven A; Dierdorff, Jason M; Adams, Christopher M

    2015-01-15

    Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy.

  8. DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells.

    Science.gov (United States)

    Yugawa, Takashi; Narisawa-Saito, Mako; Yoshimatsu, Yuki; Haga, Kei; Ohno, Shin-ichi; Egawa, Nagayasu; Fujita, Masatoshi; Kiyono, Tohru

    2010-05-15

    The p53 family member p63 is a master regulator of epithelial development. One of its isoforms, DeltaNp63alpha, is predominantly expressed in the basal cells of stratified epithelia and plays a fundamental role in control of regenerative potential and epithelial integrity. In contrast to p53, p63 is rarely mutated in human cancers, but it is frequently overexpressed in squamous cell carcinomas (SCC). However, its functional relevance to tumorigenesis remains largely unclear. We previously identified the Notch1 gene as a novel transcriptional target of p53. Here, we show that DeltaNp63alpha functions as a transcriptional repressor of the Notch1 gene through the p53-responsive element. Knockdown of p63 caused upregulation of Notch1 expression and marked reduction in proliferation and clonogenicity of both normal human keratinocytes and cervical cancer cell lines overexpressing DeltaNp63alpha. Concomitant silencing of Notch1 significantly rescued this phenotype, indicating the growth defect induced by p63 deficiency to be, at least in part, attributable to Notch1 function. Conversely, overexpression of DeltaNp63alpha decreased basal levels of Notch1, increased proliferative potential of normal human keratinocytes, and inhibited both p53-dependent and p53-independent induction of Notch1 and differentiation markers upon genotoxic stress and serum exposure, respectively. These results suggest that DeltaNp63alpha maintains the self-renewing capacity of normal human keratinocytes and cervical cancer cells partly through transcriptional repression of the Notch1 gene and imply a novel pathogenetical significance of frequently observed overexpression of DeltaNp63alpha together with p53 inactivation in SCCs.

  9. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy

    Science.gov (United States)

    Bongers, Kale S.; Fox, Daniel K.; Kunkel, Steven D.; Stebounova, Larissa V.; Murry, Daryl J.; Pufall, Miles A.; Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy. PMID:25406264

  10. Cytoplasmic accumulation of NCoR in malignant melanoma: consequences of altered gene repression and prognostic significance

    Science.gov (United States)

    Padrón, Andreina; Garcia-Carbonell, Ricard; Rius, Cristina; González-Perez, Abel; Arumí-Uria, Montserrat; Iglesias, Mar; Nonell, Lara; Bellosillo, Beatriz; Segura, Sonia; Pujol, Ramon Maria; Lopez-Bigas, Nuria; Bertran, Joan

    2015-01-01

    Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy available in advanced stages. Nuclear corepressor (NCoR) is an essential regulator of gene transcription, and its function has been found deregulated in different types of cancer. In colorectal cancer cells, loss of nuclear NCoR is induced by Inhibitor of kappa B kinase (IKK) through the phosphorylation of specific serine residues. We here investigate whether NCoR function impacts in MM, which might have important diagnostic and prognostic significance. By IHC, we here determined the subcellular distribution of NCoR in a cohort of 63 primary invasive MM samples, and analyzed its possible correlation with specific clinical parameters. We therefore used a microarray-based strategy to determine global gene expression differences in samples with similar tumor stage, which differ in the presence of cytoplasmic or nuclear NCoR. We found that loss of nuclear NCoR results in upregulation of a specific cancer-related genetic signature, and is significantly associated with MM progression. Inhibition of IKK activity in melanoma cells reverts NCoR nuclear distribution and specific NCoR-regulated gene transcription. Analysis of public database demonstrated that inactivating NCoR mutations are highly prevalent in MM, showing features of driver oncogene. PMID:25823659

  11. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid.

    Science.gov (United States)

    Roy, Ajit; Ranjan, Akash

    2016-02-23

    Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family.

  12. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium

    Directory of Open Access Journals (Sweden)

    Wang Ke-Chuan

    2012-06-01

    Full Text Available Abstract Background Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP. The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear. Results A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E with alanine (A, of STM0551 or a FimY protein abolished this activity. Conclusions The finding that the

  13. Cell type specific repression of the varicella zoster virus immediate early gene 62 promoter by the cellular Oct-2 transcription factor.

    Science.gov (United States)

    Patel, Y; Gough, G; Coffin, R S; Thomas, S; Cohen, J I; Latchman, D S

    1998-05-11

    The cellular transcription factor Oct-2.1 has previously been shown to repress the transactivation of the varicella zoster virus (VZV) immediate early gene promoter by viral transactivators but not to inhibit its basal activity. In the case of the related virus herpes simplex virus (HSV), the effect of Oct-2 on the IE promoters has been shown to be cell type specific and to differ between the different alternatively spliced forms of Oct-2. Here we show that as well as Oct-2.1, the Oct-2.4 and 2.5 isoforms which are expressed in neuronal cells can inhibit transactivation of the VZV immediate early promoter regardless of the cell type used. In contrast, all the isoforms of Oct-2 can inhibit basal activity of the VZV promoter in neuronal cells but not in other cell types indicating that this effect is cell type specific. These effects are discussed in terms of the differential regulation of latent infections with HSV or VZV in dorsal root ganglia.

  14. L-Rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan A

    2012-02-01

    Full Text Available Abstract Background Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA. Results Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE. The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. Conclusions The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a

  15. FGFR4 GLY388 isotype suppresses motility of MDA-MB-231 breast cancer cells by EDG-2 gene repression.

    Science.gov (United States)

    Stadler, Christiane Regina; Knyazev, Pjotr; Bange, Johannes; Ullrich, Axel

    2006-06-01

    Clinical investigations of an FGFR4 germline polymorphism, resulting in substitution of glycine by arginine at codon 388 (G388 to R388), have shown a correlation between FGFR4 R388 and aggressive disease progression in cancer patients. Here, we studied the differential effects of the two FGFR4 isotypes on cellular signalling and motility in the MDA-MB-231 human breast cancer cell model. cDNA array analysis showed the ability of FGFR4 G388 to suppress expression of specific genes involved in invasiveness and motility. Further investigations concentrating on cell signalling and motility revealed an abrogation of phosphatidylinositol-3-kinase-dependent LPA-induced Akt activation and cell migration due to downregulation of the LPA receptor Edg-2 in FGFR4 G388-expressing MDA-MB-231 cells. Moreover, FGFR4 G388 expression attenuated the invasivity of the breast cancer cell line and decreased small Rho GTPase activity. We conclude that FGFR4 G388 suppresses cell motility of invasive breast cancer cells by altering signalling pathways and the expression of genes that are required for metastasis. Therefore, the positive effect of FGFR4 R388 on disease progression appears to result from a loss of the tumour suppressor activity displayed by FGFR4 G388 rather than the acquisition or enhancement of oncogenic potential.

  16. Glucose 6P binds and activates HlyIIR to repress Bacillus cereus haemolysin hlyII gene expression.

    Directory of Open Access Journals (Sweden)

    Elisabeth Guillemet

    Full Text Available Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. We have previously shown that B. cereus Haemolysin II (HlyII induces macrophage cell death by apoptosis. In this work, we investigated the regulation of the hlyII gene. We show that HlyIIR, the negative regulator of hlyII expression in B. cereus, is especially active during the early bacterial growth phase. We demonstrate that glucose 6P directly binds to HlyIIR and enhances its activity at a post-transcriptional level. Glucose 6P activates HlyIIR, increasing its capacity to bind to its DNA-box located upstream of the hlyII gene, inhibiting its expression. Thus, hlyII expression is modulated by the availability of glucose. As HlyII induces haemocyte and macrophage death, two cell types that play a role in the sequestration of nutrients upon infection, HlyII may induce host cell death to allow the bacteria to gain access to carbon sources that are essential components for bacterial growth.

  17. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Tasneem; Opie, Lionel H. [Hatter Cardiovascular Research Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925 (South Africa); Essop, M. Faadiel, E-mail: mfessop@sun.ac.za [Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600 (South Africa)

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  18. The Vitamin B12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters

    Directory of Open Access Journals (Sweden)

    Mingxu Fang

    2017-03-01

    Full Text Available Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq and ChIP-seq and exonuclease digestion (ChIP-exo studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2 and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function.

  19. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.

  20. The Vitamin B12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters

    Science.gov (United States)

    Fang, Mingxu

    2017-01-01

    ABSTRACT Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq) and ChIP-seq and exonuclease digestion (ChIP-exo) studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2) and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function. PMID:28325764

  1. lncRNA-Induced Nucleosome Repositioning Reinforces Transcriptional Repression of rRNA Genes upon Hypotonic Stress

    Directory of Open Access Journals (Sweden)

    Zhongliang Zhao

    2016-03-01

    Full Text Available The activity of rRNA genes (rDNA is regulated by pathways that target the transcription machinery or alter the epigenetic state of rDNA. Previous work has established that downregulation of rRNA synthesis in quiescent cells is accompanied by upregulation of PAPAS, a long noncoding RNA (lncRNA that recruits the histone methyltransferase Suv4-20h2 to rDNA, thus triggering trimethylation of H4K20 (H4K20me3 and chromatin compaction. Here, we show that upregulation of PAPAS in response to hypoosmotic stress does not increase H4K20me3 because of Nedd4-dependent ubiquitinylation and proteasomal degradation of Suv4-20h2. Loss of Suv4-20h2 enables PAPAS to interact with CHD4, a subunit of the chromatin remodeling complex NuRD, which shifts the promoter-bound nucleosome into the transcriptional “off” position. Thus, PAPAS exerts a “stress-tailored” dual function in rDNA silencing, facilitating either Suv4-20h2-dependent chromatin compaction or NuRD-dependent changes in nucleosome positioning.

  2. Transcriptional repression of the Dspp gene leads to dentinogenesis imperfecta phenotype in Col1a1-Trps1 transgenic mice.

    Science.gov (United States)

    Napierala, Dobrawa; Sun, Yao; Maciejewska, Izabela; Bertin, Terry K; Dawson, Brian; D'Souza, Rena; Qin, Chunlin; Lee, Brendan

    2012-08-01

    Dentinogenesis imperfecta (DGI) is a hereditary defect of dentin, a calcified tissue that is the most abundant component of teeth. Most commonly, DGI is manifested as a part of osteogenesis imperfecta (OI) or the phenotype is restricted to dental findings only. In the latter case, DGI is caused by mutations in the DSPP gene, which codes for dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Although these two proteins together constitute the majority of noncollagenous proteins of the dentin, little is known about their transcriptional regulation. Here we demonstrate that mice overexpressing the Trps1 transcription factor (Col1a1-Trps1 mice) in dentin-producing cells, odontoblasts, present with severe defects of dentin formation that resemble DGI. Combined micro-computed tomography (µCT) and histological analyses revealed tooth fragility due to severe hypomineralization of dentin and a diminished dentin layer with irregular mineralization in Col1a1-Trps1 mice. Biochemical analyses of noncollagenous dentin matrix proteins demonstrated decreased levels of both DSP and DPP proteins in Col1a1-Trps1 mice. On the molecular level, we demonstrated that sustained high levels of Trps1 in odontoblasts lead to dramatic decrease of Dspp expression as a result of direct inhibition of the Dspp promoter by Trps1. During tooth development Trps1 is highly expressed in preodontoblasts, but in mature odontoblasts secreting matrix its expression significantly decreases, which suggests a Trps1 role in odontoblast development. In these studies we identified Trps1 as a potent inhibitor of Dspp expression and the subsequent mineralization of dentin. Thus, we provide novel insights into mechanisms of transcriptional dysregulation that leads to DGI.

  3. Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p.

    Science.gov (United States)

    Ter Veld, Frank; Wolff, Daniel; Schorsch, Christoph; Köhler, Tim; Boles, Eckhard; Poetsch, Ansgar

    2013-10-01

    Wickerhamomyces ciferrii secretes tetraacetyl phytosphingosine (TAPS), and in this study, the catalyzing acetyltransferases were identified using mass spectrometry-based proteomics. The proteome of wild-type strain NRRL Y-1031 served as control and was compared to the tetraacetyl phytosphingosine defective mating type NRRL Y-1031-27. Acetylation of phytosphingosine in W. ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p, encoded by genes similar to Saccharomyces cerevisiae YGR212W and YGR177C, respectively. Ablation of SLI1 resulted in an almost complete loss of tri- and tetraacetyl phytosphingosines, whereas the loss ATF2 resulted in an 15-fold increase in triacetyl phytosphingosine. Most likely, it is the concerted action of these two acetyltransferases that yields tetraacetyl phytosphingosine, in which Sli1p catalyzes initial O- and N-acetylation, producing triacetyl phytosphingosine. Finally, Atf2p catalyzes final O-acetylation to yield tetraacetyl phytosphingosine. The current study demonstrates that mass spectrometry-based proteomics can be employed to identify key steps in ill-explored metabolite biosynthesis pathways of nonconventional microorganisms. Furthermore, the identification of phytosphingosine as substrate for alcohol acetyltransferase Atf2p broadens the known substrate range of this enzyme. This interesting property of Atf2p may be exploited to enhance the secretion of heterologous compounds.

  4. The interplay of StyR and IHF regulates substrate-dependent induction and carbon catabolite repression of styrene catabolism genes in Pseudomonas fluorescens ST

    Directory of Open Access Journals (Sweden)

    Leoni Livia

    2008-06-01

    Full Text Available Abstract Background In Pseudomonas fluorescens ST, the promoter of the styrene catabolic operon, PstyA, is induced by styrene and is subject to catabolite repression. PstyA regulation relies on the StyS/StyR two-component system and on the IHF global regulator. The phosphorylated response regulator StyR (StyR-P activates PstyA in inducing conditions when it binds to the high-affinity site STY2, located about -40 bp from the transcription start point. A cis-acting element upstream of STY2, named URE, contains a low-affinity StyR-P binding site (STY1, overlapping the IHF binding site. Deletion of the URE led to a decrease of promoter activity in inducing conditions and to a partial release of catabolite repression. This study was undertaken to assess the relative role played by IHF and StyR-P on the URE, and to clarify if PstyA catabolite repression could rely on the interplay of these regulators. Results StyR-P and IHF compete for binding to the URE region. PstyA full activity in inducing conditions is achieved when StyR-P and IHF bind to site STY2 and to the URE, respectively. Under catabolite repression conditions, StyR-P binds the STY1 site, replacing IHF at the URE region. StyR-P bound to both STY1 and STY2 sites oligomerizes, likely promoting the formation of a DNA loop that closes the promoter in a repressed conformation. We found that StyR and IHF protein levels did not change in catabolite repression conditions, implying that PstyA repression is achieved through an increase in the StyR-P/StyR ratio. Conclusion We propose a model according to which the activity of the PstyA promoter is determined by conformational changes. An open conformation is operative in inducing conditions when StyR-P is bound to STY2 site and IHF to the URE. Under catabolite repression conditions StyR-P cellular levels would increase, displacing IHF from the URE and closing the promoter in a repressed conformation. The balance between the open and the closed

  5. Repression of global protein synthesis by Eif1a-like genes that are expressed specifically in the two-cell embryos and the transient Zscan4-positive state of embryonic stem cells.

    Science.gov (United States)

    Hung, Sandy S C; Wong, Raymond C B; Sharov, Alexei A; Nakatake, Yuhki; Yu, Hong; Ko, Minoru S H

    2013-08-01

    Mouse embryonic stem (ES) cells are prototypical stem cells that remain undifferentiated in culture for long periods, yet maintain the ability to differentiate into essentially all cell types. Previously, we have reported that ES cells oscillate between two distinct states, which can be distinguished by the transient expression of Zscan4 genes originally identified for its specific expression in mouse two-cell stage embryos. Here, we report that the nascent protein synthesis is globally repressed in the Zscan4-positive state of ES cells, which is mediated by the transient expression of newly identified eukaryotic translation initiation factor 1A (Eif1a)-like genes. Eif1a-like genes, clustered on Chromosome 12, show the high sequence similarity to the Eifa1 and consist of 10 genes (Eif1al1-Eif1al10) and 9 pseudogenes (Eif1al-ps1-Eif1al-ps9). The analysis of the expressed sequence tag database showed that Eif1a-like genes are expressed mostly in the two-cell stage mouse embryos. Microarray analyses and quantitative real-time polymerase chain reaction analyses show that Eif1a-like genes are expressed specifically in the Zscan4-positive state of ES cells. These results indicate a novel mechanism to repress protein synthesis by Eif1a-like genes and a unique mode of protein synthesis regulation in ES cells, which undergo a transient and reversible repression of global protein synthesis in the Zscan4-positive state.

  6. Repression of Global Protein Synthesis by Eif1a-Like Genes That Are Expressed Specifically in the Two-Cell Embryos and the Transient Zscan4-Positive State of Embryonic Stem Cells

    Science.gov (United States)

    Hung, Sandy S. C.; Wong, Raymond C. B.; Sharov, Alexei A.; Nakatake, Yuhki; Yu, Hong; Ko, Minoru S. H.

    2013-01-01

    Mouse embryonic stem (ES) cells are prototypical stem cells that remain undifferentiated in culture for long periods, yet maintain the ability to differentiate into essentially all cell types. Previously, we have reported that ES cells oscillate between two distinct states, which can be distinguished by the transient expression of Zscan4 genes originally identified for its specific expression in mouse two-cell stage embryos. Here, we report that the nascent protein synthesis is globally repressed in the Zscan4-positive state of ES cells, which is mediated by the transient expression of newly identified eukaryotic translation initiation factor 1A (Eif1a)-like genes. Eif1a-like genes, clustered on Chromosome 12, show the high sequence similarity to the Eifa1 and consist of 10 genes (Eif1al1–Eif1al10) and 9 pseudogenes (Eif1al-ps1–Eif1al-ps9). The analysis of the expressed sequence tag database showed that Eif1a-like genes are expressed mostly in the two-cell stage mouse embryos. Microarray analyses and quantitative real-time polymerase chain reaction analyses show that Eif1a-like genes are expressed specifically in the Zscan4-positive state of ES cells. These results indicate a novel mechanism to repress protein synthesis by Eif1a-like genes and a unique mode of protein synthesis regulation in ES cells, which undergo a transient and reversible repression of global protein synthesis in the Zscan4-positive state. PMID:23649898

  7. IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications.

    Directory of Open Access Journals (Sweden)

    Karen E Johnson

    2014-11-01

    Full Text Available Interferon-γ inducible factor 16 (IFI16 is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β, and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV and herpes simplex virus (HSV-1, though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential

  8. Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system.

    Science.gov (United States)

    Park, Jin-Young; Kim, Hye-Joung; Kim, Jungmook

    2002-12-01

    Most of Aux/IAA genes are rapidly induced by auxin. The Aux/IAA proteins are short-lived nuclear proteins sharing the four conserved domains. Domain II is critical for rapid degradation of Aux/IAA proteins. Among these gene family members, IAA1 is one of the earliest auxin-inducible genes. We used a steroid hormone-inducible system to reveal putative roles and downstream signaling of IAA1 in auxin response. Arabidopsis transgenic plants were generated expressing fusion protein of IAA1 (IAA1-GR) or IAA1 with a mutation in domain II (iaa1-GR) and the glucocorticoid hormone-binding domain (GR). IAA1-GR transgenic plants did not exhibit any discernable phenotypic differences by DEX treatment that allows nuclear translocation of the fusion protein. In contrast, diverse auxin-related physiological processes including gravitropism and phototropism were impaired by DEX treatment in roots, hypocotyls, stems, and leaves in iaa1-GR transgenic plants. Auxin induction of seven Aux/IAA mRNAs including IAA1 itself was repressed by DEX treatment, suggesting that IAA1 functions in the nucleus by mediating auxin response and might act as a negative feedback regulator for the expression of Aux/IAA genes including IAA1 itself. Auxin induction of Aux/IAA genes in the presence of cycloheximide can be repressed by DEX treatment, showing that the repression of transcription of the Aux/IAAs by the iaa1 mutant protein is primary. Wild-type IAA1-GR could not suppress auxin induction of IAA1 and IAA2. These results indicate that inhibition of auxin-activated transcription of Aux/IAA genes by the iaa1 mutant protein might be responsible for alteration of various auxin responses.

  9. Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Boergesen, Michael; Dalgaard, Louise T;

    2006-01-01

    Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment the toxi......Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment...... but not AMPKalpha1 using RNAi suppressed PPARalpha expression, thereby mimicking the effect of glucose. These results indicate that activation of protein phosphatase 2A and subsequent inactivation of AMPK is necessary for glucose repression of PPARalpha expression in pancreatic beta-cells....

  10. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.

    Science.gov (United States)

    Matsuo, Kouki; Kagaya, Uiko; Itchoda, Noriko; Tabayashi, Noriko; Matsumura, Takeshi

    2014-10-01

    Production of pharmaceutical glycoproteins, such as therapeutic antibodies and cytokines, in plants has many advantages in safety and reduced costs. However, plant-made glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a)) epitope, Galβ(1-3)[Fucα(1-4)]GlcNAc. Because it is likely that these sugar residues and glycan structures are immunogenic, many attempts have been made to delete them. Previously, we reported the simultaneous deletion of the plant-specific core α-1,3-fucose and α-1,4-fucose residues in Le(a) epitopes by repressing the GDP-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants (rGMD plants, renamed to ΔGMD plants) (Matsuo and Matsumura, Plant Biotechnol. J., 9, 264-281, 2011). In the present study, we generated a core β-1,2-xylose residue-repressed transgenic N. benthamiana plant by co-suppression of β-1,2-xylosyltransferase (ΔXylT plant). By crossing ΔGMD and ΔXylT plants, we successfully generated plants in which plant-specific sugar residues were repressed (ΔGMDΔXylT plants). The proportion of N-glycans with deleted plant-specific sugar residues found in total soluble protein from ΔGMDΔXylT plants increased by 82.41%. Recombinant mouse granulocyte/macrophage-colony stimulating factor (mGM-CSF) and human monoclonal immunoglobulin G (hIgG) harboring N-glycans with deleted plant-specific sugar residues were successfully produced in ΔGMDΔXylT plants. Simultaneous repression of the GMD and XylT genes in N. benthamiana is thus very useful for deleting plant-specific sugar residues.

  11. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties.

    Science.gov (United States)

    Pinte, Sébastien; Stankovic-Valentin, Nicolas; Deltour, Sophie; Rood, Brian R; Guérardel, Cateline; Leprince, Dominique

    2004-09-10

    HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene located at chromosome 17p13.3, a region frequently hypermethylated or deleted in human tumors and in a contiguous-gene syndrome, the Miller-Dieker syndrome. HIC1 is a transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal dimerization and autonomous repression domain called BTB/POZ. Although some of the HIC1 transcriptional repression mechanisms have been recently deciphered, target genes are still to be discovered. In this study, we determined the consensus binding sequence for HIC1 and investigated its DNA binding properties. Using a selection and amplification of binding sites technique, we identified the sequence 5'-(C)/(G)NG(C)/(G)GGGCA(C)/(A) CC-3' as an optimal binding site. In silico and functional analyses fully validated this consensus and highlighted a GGCA core motif bound by zinc fingers 3 and 4. The BTB/POZ domain inhibits the binding of HIC1 to a single site but mediates cooperative binding to a probe containing five concatemerized binding sites, a property shared by other BTB/POZ proteins. Finally, full-length HIC1 proteins transiently expressed in RK13 cells and more importantly, endogenous HIC1 proteins from the DAOY medulloblastoma cell line, repress the transcription of a reporter gene through their direct binding to these sites, as confirmed by chromatin immunoprecipitation experiments. The definition of the HIC1-specific DNA binding sequence as well as the requirement for multiple sites for optimal binding of the full-length protein are mandatory prerequisites for the identification and analyses of bona fide HIC1 target genes.

  12. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori.

    Science.gov (United States)

    Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M

    2016-10-01

    E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites. © 2016 The Royal Entomological Society.

  13. Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica

    Directory of Open Access Journals (Sweden)

    Yellina Aravinda L

    2010-12-01

    Full Text Available Abstract Background The floral homeotic C function gene AGAMOUS (AG confers stamen and carpel identity and is involved in the regulation of floral meristem termination in Arabidopsis. Arabidopsis ag mutants show complete homeotic conversions of stamens into petals and carpels into sepals as well as indeterminacy of the floral meristem. Gene function analysis in model core eudicots and the monocots rice and maize suggest a conserved function for AG homologs in angiosperms. At the same time gene phylogenies reveal a complex history of gene duplications and repeated subfunctionalization of paralogs. Results EScaAG1 and EScaAG2, duplicate AG homologs in the basal eudicot Eschscholzia californica show a high degree of similarity in sequence and expression, although EScaAG2 expression is lower than EScaAG1 expression. Functional studies employing virus-induced gene silencing (VIGS demonstrate that knock down of EScaAG1 and 2 function leads to homeotic conversion of stamens into petaloid structures and defects in floral meristem termination. However, carpels are transformed into petaloid organs rather than sepaloid structures. We also show that a reduction of EScaAG1 and EScaAG2 expression leads to significantly increased expression of a subset of floral homeotic B genes. Conclusions This work presents expression and functional analysis of the two basal eudicot AG homologs. The reduction of EScaAG1 and 2 functions results in the change of stamen to petal identity and a transformation of the central whorl organ identity from carpel into petal identity. Petal identity requires the presence of the floral homeotic B function and our results show that the expression of a subset of B function genes extends into the central whorl when the C function is reduced. We propose a model for the evolution of B function regulation by C function suggesting that the mode of B function gene regulation found in Eschscholzia is ancestral and the C-independent regulation as

  14. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes.

    Science.gov (United States)

    Molitor, Anne Marie; Bu, Zhongyuan; Yu, Yu; Shen, Wen-Hui

    2014-01-01

    Seed germination and subsequent seedling growth define crucial steps for entry into the plant life cycle. For those events to take place properly, seed developmental genes need to be silenced whereas vegetative growth genes are activated. Chromatin structure is generally known to play crucial roles in gene transcription control. However, the transition between active and repressive chromatin states during seed germination is still poorly characterized and the underlying molecular mechanisms remain largely unknown. Here we identified the Arabidopsis PHD-domain H3K4me3-binding ALFIN1-like proteins (ALs) as novel interactors of the Polycomb Repressive Complex 1 (PRC1) core components AtBMI1b and AtRING1a. The interactions were confirmed by diverse in vitro and in vivo assays and were shown to require the AL6 N-terminus containing PAL domain conserved in the AL family proteins and the AtRING1a C-terminus containing RAWUL domain conserved in animal and plant PRC1 ring-finger proteins (including AtRNIG1a/b and AtBMI1a/b). By T-DNA insertion mutant analysis, we found that simultaneous loss of AL6 and AL7 as well as loss of AtBMI1a and AtBMI1b retards seed germination and causes transcriptional derepression and a delayed chromatin state switch from H3K4me3 to H3K27me3 enrichment of several seed developmental genes (e.g. ABI3, DOG1, CRU3, CHO1). We found that AL6 and the PRC1 H3K27me3-reader component LHP1 directly bind at ABI3 and DOG1 loci. In light of these data, we propose that AL PHD-PRC1 complexes, built around H3K4me3, lead to a switch from the H3K4me3-associated active to the H3K27me3-associated repressive transcription state of seed developmental genes during seed germination. Our finding of physical interactions between PHD-domain proteins and PRC1 is striking and has important implications for understanding the connection between the two functionally opposite chromatin marks: H3K4me3 in activation and H3K27me3 in repression of gene transcription.

  15. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes.

    Directory of Open Access Journals (Sweden)

    Anne Marie Molitor

    2014-01-01

    Full Text Available Seed germination and subsequent seedling growth define crucial steps for entry into the plant life cycle. For those events to take place properly, seed developmental genes need to be silenced whereas vegetative growth genes are activated. Chromatin structure is generally known to play crucial roles in gene transcription control. However, the transition between active and repressive chromatin states during seed germination is still poorly characterized and the underlying molecular mechanisms remain largely unknown. Here we identified the Arabidopsis PHD-domain H3K4me3-binding ALFIN1-like proteins (ALs as novel interactors of the Polycomb Repressive Complex 1 (PRC1 core components AtBMI1b and AtRING1a. The interactions were confirmed by diverse in vitro and in vivo assays and were shown to require the AL6 N-terminus containing PAL domain conserved in the AL family proteins and the AtRING1a C-terminus containing RAWUL domain conserved in animal and plant PRC1 ring-finger proteins (including AtRNIG1a/b and AtBMI1a/b. By T-DNA insertion mutant analysis, we found that simultaneous loss of AL6 and AL7 as well as loss of AtBMI1a and AtBMI1b retards seed germination and causes transcriptional derepression and a delayed chromatin state switch from H3K4me3 to H3K27me3 enrichment of several seed developmental genes (e.g. ABI3, DOG1, CRU3, CHO1. We found that AL6 and the PRC1 H3K27me3-reader component LHP1 directly bind at ABI3 and DOG1 loci. In light of these data, we propose that AL PHD-PRC1 complexes, built around H3K4me3, lead to a switch from the H3K4me3-associated active to the H3K27me3-associated repressive transcription state of seed developmental genes during seed germination. Our finding of physical interactions between PHD-domain proteins and PRC1 is striking and has important implications for understanding the connection between the two functionally opposite chromatin marks: H3K4me3 in activation and H3K27me3 in repression of gene transcription.

  16. Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells

    NARCIS (Netherlands)

    van den Boom, Vincent; Rozenveld-Geugien, Marjan; Bonardi, Francesco; Malanga, Donatella; van Gosliga, Djoke; Heyink, Anne Margriet; Viglietto, Giuseppe; Morrone, Giovanni; Fusetti, Fabrizia; Vellenga, Edo; Schuringa, Jan Jacob

    2013-01-01

    The Polycomb group (PcG) protein BMI1 is a key factor in regulating hematopoietic stem cell (HSC) and leukemic stem cell self-renewal and functions in the context of the Polycomb repressive complex 1 (PRC1). In humans, each of the 5 subunits of PRC1 has paralog family members of which many reside in

  17. Anti-Inflammatory Cytokine Interleukin-4 Inhibits Inducible Nitric Oxide Synthase Gene Expression in the Mouse Macrophage Cell Line RAW264.7 through the Repression of Octamer-Dependent Transcription

    Directory of Open Access Journals (Sweden)

    Miki Hiroi

    2013-01-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a signature molecule involved in the classical activation of M1 macrophages and is induced by the Nos2 gene upon stimulation with Th1-cell derived interferon-gamma (IFNγ and bacterial lipopolysaccharide (LPS. Although the anti-inflammatory cytokine IL-4 is known to inhibit Nos2 gene expression, the molecular mechanism involved in the negative regulation of Nos2 by IL-4 remains to be fully elucidated. In the present study, we investigated the mechanism of IL-4-mediated Nos2 transcriptional repression in the mouse macrophage-like cell line RAW264.7. Signal transducer and activator of transcription 6 (Stat6 knockdown by siRNA abolished the IL-4-mediated inhibition of Nos2 induced by IFNγ/LPS. Transient transfection of a luciferase reporter gene containing the 5′-flanking region of the Nos2 gene demonstrated that an octamer transcription factor (OCT binding site in the promoter region is required for both positive regulation by IFNγ/LPS and negative regulation by IL-4. Although IL-4 had no inhibitory effect on the DNA-binding activity of constitutively expressed Oct-1, IL-4-induced Nos2-reporter transcriptional repression was partially attenuated by overexpression of the coactivator CREB-binding protein (CBP. These results suggest that a coactivator/cofactor that functionally interacts with Oct-1 is a molecular target for the IL-4-mediated inhibition of Nos2 and that IL-4-activated Stat6 represses Oct-1-dependent transcription by competing with this coactivator/cofactor.

  18. Sli-1, a Negative Regulator of Let-23-Mediated Signaling in C. Elegans

    Science.gov (United States)

    Jongeward, G. D.; Clandinin, T. R.; Sternberg, P. W.

    1995-01-01

    By screening for suppressors of hypomorphic mutations of let-23, a receptor tyrosine kinase necessary for vulval induction in Caenorhabditis elegans, we recovered >/=12 mutations defining the sli-1 (suppressor of lineage defect) locus. sli-1 mutations suppress four of five phenotypes associated with hypomorphic alleles of let-23 but do not suppress let-23 null alleles. Thus, a sli-1 mutation does not bypass the requirement for functional let-23 but rather allows more potent LET-23-dependent signaling. Mutations at the sli-1 locus are otherwise silent with respect to vulval differentiation and cause only a low-penetrance abnormal head phenotype. Mutations at sli-1 also suppress the vulval defects but not other defects associated with mutations of sem-5, whose product likely interacts with LET-23 protein during vulval induction. Mutations at sli-1 suppress lin-2, lin-7 and lin-10 mutations but only partially suppress lin-3 and let-60 mutations and do not suppress a lin-45 mutation. The sli-1 locus displays dosage sensitivity: severe reduction of function alleles of sli-1 are semidominant suppressors; a duplication of the sli-1 (+) region enhances the vulvaless phenotype of hypomorphic mutations of let-23. We propose that sli-1 is a negative regulator that acts at or near the LET-23-mediated step of the vulval induction pathway. Our analysis suggests that let-23 can activate distinct signaling pathways in different tissues: one pathway is required for vulval induction; another pathway is involved in hermaphrodite fertilty and is not regulated by sli-1. PMID:7789760

  19. Repression of p53-target gene Bbc3/PUMA by MYSM1 is essential for the survival of hematopoietic multipotent progenitors and contributes to stem cell maintenance.

    Science.gov (United States)

    Belle, J I; Petrov, J C; Langlais, D; Robert, F; Cencic, R; Shen, S; Pelletier, J; Gros, P; Nijnik, A

    2016-05-01

    p53 is a central mediator of cellular stress responses, and its precise regulation is essential for the normal progression of hematopoiesis. MYSM1 is an epigenetic regulator essential for the maintenance of hematopoietic stem cell (HSC) function, hematopoietic progenitor survival, and lymphocyte development. We recently demonstrated that all developmental and hematopoietic phenotypes of Mysm1 deficiency are p53-mediated and rescued in the Mysm1(-/-)p53(-/-) mouse model. However, the mechanisms triggering p53 activation in Mysm1(-/-) HSPCs, and the pathways downstream of p53 driving different aspects of the Mysm1(-/-) phenotype remain unknown. Here we show the transcriptional activation of p53 stress responses in Mysm1(-/-) HSPCs. Mechanistically, we find that the MYSM1 protein associates with p53 and colocalizes to promoters of classical p53-target genes Bbc3/PUMA (p53 upregulated modulator of apoptosis) and Cdkn1a/p21. Furthermore, it antagonizes their p53-driven expression by modulating local histone modifications (H3K27ac and H3K4me3) and p53 recruitment. Using double-knockout mouse models, we establish that PUMA, but not p21, is an important mediator of p53-driven Mysm1(-/-) hematopoietic dysfunction. Specifically, Mysm1(-/-)Puma(-/-) mice show full rescue of multipotent progenitor (MPP) viability, partial rescue of HSC quiescence and function, but persistent lymphopenia. Through transcriptome analysis of Mysm1(-/-)Puma(-/-) MPPs, we demonstrate strong upregulation of other p53-induced mediators of apoptosis and cell-cycle arrest. The full viability of Mysm1(-/-)Puma(-/-) MPPs, despite strong upregulation of many other pro-apoptotic mediators, establishes PUMA as the essential non-redundant effector of p53-induced MPP apoptosis. Furthermore, we identify potential mediators of p53-dependent but PUMA-independent Mysm1(-/-)hematopoietic deficiency phenotypes. Overall, our study provides novel insight into the cell-type-specific roles of p53 and its downstream

  20. Pedeset godina tiazida i tiazidima sličnih diuretika

    OpenAIRE

    Ivanuša, Mario

    2009-01-01

    Tiazidi i tiazidima slični diuretici predstavljaju antihipertenzivne lijekove koji se koriste u monoterapiji ili u kombiniranom liječenju arterijske hipertenzije (AH) već pola stoljeća. U osoba s nekompliciranim AH-om ova skupina lijekova djelotvorno smanjuje kardiovaskularnu smrtnost, učestalost srčanog zatajivanja i moždanog udara, uz cijenu metaboličkih nuspojava čija učestalost ipak ovisi i o primijenjenom predstavniku klase.

  1. Verb inflection in monolingual Dutch and sequential bilingual Turkish-Dutch children with and without SLI.

    Science.gov (United States)

    Blom, Elma; de Jong, Jan; Orgassa, Antje; Baker, Anne; Weerman, Fred

    2013-01-01

    Both children with specific language impairment (SLI) and children who acquire a second language (L2) make errors with verb inflection. This overlap between SLI and L2 raises the question if verb inflection can discriminate between L2 children with and without SLI. In this study we addressed this question for Dutch. The secondary goal of the study was to investigate variation in error types and error profiles across groups. Data were collected from 6-8-year-old children with SLI who acquire Dutch as their first language (L1), Dutch L1 children with a typical development (TD), Dutch L2 children with SLI, and Dutch L1 TD children who were on average 2 years younger. An experimental elicitation task was employed that tested use of verb inflection; context (3SG, 3PL) was manipulated and word order and verb type were controlled. Accuracy analyses revealed effects of impairment in both L1 and L2 children with SLI. However, individual variation indicated that there is no specific error profile for SLI. Verb inflection use as measured in our study discriminated fairly well in the L1 group but classification was less accurate in the L2 group. Between-group differences emerged furthermore for certain types of errors, but all groups also showed considerable variation in errors and there was not a specific error profile that distinguished SLI from TD.

  2. Metacognitive Strategies: A Foundation for Early Word Spelling and Reading in Kindergartners with SLI

    Science.gov (United States)

    Schiff, Rachel; Nuri Ben-Shushan, Yohi; Ben-Artzi, Elisheva

    2017-01-01

    This study assessed the effect of metacognitive instruction on the spelling and word reading of Hebrew-speaking children with specific language impairment (SLI). Participants were 67 kindergarteners with SLI in a supported learning context. Children were classified into three spelling instruction groups: (a) metalinguistic instruction (ML), (b) ML…

  3. Interactions between working memory and language in young children with specific language impairment (SLI)

    NARCIS (Netherlands)

    Vugs, B.A.M.; Knoors, H.E.T.; Cuperus, J.M.; Hendriks, M.P.H.; Verhoeven, L.T.W.

    2016-01-01

    The underlying structure of working memory (WM) in young children with and without specific language impairment (SLI) was examined. The associations between the components of WM and the language abilities of young children with SLI were then analyzed. The Automated Working Memory Assessment and four

  4. Self-Esteem, Shyness, and Sociability in Adolescents with Specific Language Impairment (SLI)

    Science.gov (United States)

    Wadman, Ruth; Durkin, Kevin; Conti-Ramsden, Gina

    2008-01-01

    Purpose: To determine if lower global self-esteem, shyness, and low sociability are outcomes associated with SLI in adolescence. Possible concurrent predictive relationships and gender differences were also examined. Method: Fifty-four adolescents with SLI, aged between 16 and 17 years, were compared with a group of 54 adolescents with typical…

  5. Can Children with SLI Detect Cognitive Conflict? Behavioral and Electrophysiological Evidence

    Science.gov (United States)

    Epstein, Baila; Shafer, Valerie L.; Melara, Robert D.; Schwartz, Richard G.

    2014-01-01

    Purpose: This study examined whether children with specific language impairment (SLI) are deficient in detecting cognitive conflict between competing response tendencies in a GO/No-GO task. Method: Twelve children with SLI (ages 10--12), 22 children with typical language development matched group-wise on age (TLD-A), and 16 younger children with…

  6. Cognitive State Verbs and Complement Clauses in Children with SLI and Their Typically Developing Peers

    Science.gov (United States)

    Van Horne, Amanda J. Owen; Lin, Shanju

    2011-01-01

    This study investigated the use of cognitive state verbs (CSVs) and complement clauses in children with specific language impairment (SLI) and their typically developing (TD) peers. In Study 1, conversational samples from 23 children with SLI (M = 6;2), 24 age-matched TD children (M = 6;2) and 21 vocabulary-matched TD children (M = 4;9) were…

  7. Non-Word Repetition in Adolescents with Specific Language Impairment (SLI)

    Science.gov (United States)

    Ebbels, Susan H.; Dockrell, Julie E.; van der Lely, Heather K. J.

    2012-01-01

    Background: Non-word repetition (NWR) difficulties are common, but not universal, among children with specific language impairment (SLI). However, older children and adolescents with SLI have rarely been studied. Studies disagree on the relationship between NWR difficulties and difficulties with other areas of language and literacy. There is also…

  8. Children with a History of SLI Show Reduced Sensitivity to Audiovisual Temporal Asynchrony: An ERP Study

    Science.gov (United States)

    Kaganovich, Natalya; Schumaker, Jennifer; Leonard, Laurence B.; Gustafson, Dana; Macias, Danielle

    2014-01-01

    Purpose: The authors examined whether school-age children with a history of specific language impairment (H-SLI), their peers with typical development (TD), and adults differ in sensitivity to audiovisual temporal asynchrony and whether such difference stems from the sensory encoding of audiovisual information. Method: Fifteen H-SLI children, 15…

  9. Social Cognition and Language in Children with Specific Language Impairment (SLI)

    Science.gov (United States)

    Marton, Klara; Abramoff, Brocha; Rosenzweig, Shari

    2005-01-01

    This investigation examined the relationship between social pragmatics, social self-esteem, and language in children with specific language impairment (SLI) and in their age-matched peers (7-10 years). The children with SLI indicated significantly poorer social cognitive knowledge than their typically developing peers. They showed low social, but…

  10. Self-Esteem, Shyness, and Sociability in Adolescents with Specific Language Impairment (SLI)

    Science.gov (United States)

    Wadman, Ruth; Durkin, Kevin; Conti-Ramsden, Gina

    2008-01-01

    Purpose: To determine if lower global self-esteem, shyness, and low sociability are outcomes associated with SLI in adolescence. Possible concurrent predictive relationships and gender differences were also examined. Method: Fifty-four adolescents with SLI, aged between 16 and 17 years, were compared with a group of 54 adolescents with typical…

  11. Metacognitive Strategies: A Foundation for Early Word Spelling and Reading in Kindergartners with SLI

    Science.gov (United States)

    Schiff, Rachel; Nuri Ben-Shushan, Yohi; Ben-Artzi, Elisheva

    2017-01-01

    This study assessed the effect of metacognitive instruction on the spelling and word reading of Hebrew-speaking children with specific language impairment (SLI). Participants were 67 kindergarteners with SLI in a supported learning context. Children were classified into three spelling instruction groups: (a) metalinguistic instruction (ML), (b) ML…

  12. Identification of genes involved in Ca2+ ionophore A23187-mediated apoptosis and demonstration of a high susceptibility for transcriptional repression of cell cycle genes in B lymphoblasts from a patient with Scott syndrome

    Directory of Open Access Journals (Sweden)

    Meyer Dominique

    2005-10-01

    Full Text Available Abstract Background In contrast to other agents able to induce apoptosis of cultured cells, Ca2+ ionophore A23187 was shown to elicit direct activation of intracellular signal(s. The phenotype of the cells derived from patients having the hemorrhagic disease Scott syndrome, is associated with an abnormally high proportion of apoptotic cells, both in basal culture medium and upon addition of low ionophore concentrations in long-term cultures. These features are presumably related to the mutation also responsible for the defective procoagulant plasma membrane remodeling. We analyzed the specific transcriptional re-programming induced by A23187 to get insights into the effect of this agent on gene expression and a defective gene regulation in Scott cells. Results The changes in gene expression upon 48 hours treatment with 200 nM A23187 were measured in Scott B lymphoblasts compared to B lymphoblasts derived from the patient's daughter or unrelated individuals using Affymetrix microarrays. In a similar manner in all of the B cell lines, results showed up-regulation of 55 genes, out of 12,000 represented sequences, involved in various pathways of the cell metabolism. In contrast, a group of 54 down-regulated genes, coding for histones and proteins involved in the cell cycle progression, was more significantly repressed in Scott B lymphoblasts than in the other cell lines. These data correlated with the alterations of the cell cycle phases in treated cells and suggested that the potent effect of A23187 in Scott B lymphoblasts may be the consequence of the underlying molecular defect. Conclusion The data illustrate that the ionophore A23187 exerts its pro-apoptotic effect by promoting a complex pattern of genetic changes. These results also suggest that a subset of genes participating in various steps of the cell cycle progress can be transcriptionally regulated in a coordinated fashion. Furthermore, this research brings a new insight into the defect

  13. Racism and Surplus Repression.

    Science.gov (United States)

    Johnson, Howard

    1983-01-01

    Explores the relationship between Herbert Marcuse's theory of "surplus repression" and Freud's theory of the "unconscious" with respect to latent, hidden, covert, or subliminal aspects of racism in the United States. Argues that unconscious racism, manifested in evasion/avoidance, acting out/projection, and attempted justification, perpetuates…

  14. Possible ground fog detection from SLI imagery of Titan

    CERN Document Server

    Smith, Christina L; Moores, John E

    2016-01-01

    Titan, with its thick, nitrogen-dominated atmosphere, has been seen from satellite and terrestrial observations to harbour methane clouds. To investigate whether atmospheric features such as clouds could also be visible from the surface of Titan, data taken with the Side Looking Imager (SLI) on-board the Huygens probe after landing have been analysed to identify any potential atmospheric features. In total, 82 SLI images were calibrated, processed and examined for features. The calibrated images show a smooth vertical radiance gradient across the images, with no other discernible features. After mean-frame subtraction, six images contained an extended, horizontal feature that had a radiance value that lay outside the 95% confidence limit of the predicted radiance when compared to regions higher and lower in the images. The change in optical depth of these features were found to be between 0.005 and 0.014. It is considered that these features most likely originate from the presence of a fog bank close to the h...

  15. Multiple repressive mechanisms in the hippocampus during memory formation.

    Science.gov (United States)

    Cho, Jun; Yu, Nam-Kyung; Choi, Jun-Hyeok; Sim, Su-Eon; Kang, SukJae Joshua; Kwak, Chuljung; Lee, Seung-Woo; Kim, Ji-il; Choi, Dong Il; Kim, V Narry; Kaang, Bong-Kiun

    2015-10-02

    Memory stabilization after learning requires translational and transcriptional regulations in the brain, yet the temporal molecular changes that occur after learning have not been explored at the genomic scale. We used ribosome profiling and RNA sequencing to quantify the translational status and transcript levels in the mouse hippocampus after contextual fear conditioning. We revealed three types of repressive regulations: translational suppression of ribosomal protein-coding genes in the hippocampus, learning-induced early translational repression of specific genes, and late persistent suppression of a subset of genes via inhibition of estrogen receptor 1 (ESR1/ERα) signaling. In behavioral analyses, overexpressing Nrsn1, one of the newly identified genes undergoing rapid translational repression, or activating ESR1 in the hippocampus impaired memory formation. Collectively, this study unveils the yet-unappreciated importance of gene repression mechanisms for memory formation. Copyright © 2015, American Association for the Advancement of Science.

  16. Phonetic categorisation and cue weighting in adolescents with Specific Language Impairment (SLI).

    Science.gov (United States)

    Tuomainen, Outi; Stuart, Nichola J; van der Lely, Heather K J

    2015-07-01

    This study investigates phonetic categorisation and cue weighting in adolescents and young adults with Specific Language Impairment (SLI). We manipulated two acoustic cues, vowel duration and F1 offset frequency, that signal word-final stop consonant voicing ([t] and [d]) in English. Ten individuals with SLI (14.0-21.4 years), 10 age-matched controls (CA; 14.6-21.9 years) and 10 non-matched adult controls (23.3-36.0 years) labelled synthetic CVC non-words in an identification task. The results showed that the adolescents and young adults with SLI were less consistent than controls in the identification of the good category representatives. The group with SLI also assigned less weight to vowel duration than the adult controls. However, no direct relationship between phonetic categorisation, cue weighting and language skills was found. These findings indicate that some individuals with SLI have speech perception deficits but they are not necessarily associated with oral language skills.

  17. Mitosis-associated repression in development.

    Science.gov (United States)

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-07-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. © 2016 Esposito et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Expression of the Adenovirus Early Gene 1A Transcription-Repression Domain Alone Downregulates HER2 and Results in the Death of Human Breast Cancer Cells Upregulated for the HER2 Proto-Oncogene.

    Science.gov (United States)

    Loewenstein, Paul M; Green, Maurice

    2011-07-01

    Adenovirus (Ad) early gene 1A 243 residue protein (E1A 243R) possesses a potent transcription-repression function within the N-terminal 80 amino acids (E1A 1-80). We examined the ability of E1A 243R and E1A 1-80 to repress transcription of both an exogenous and the endogenous HER2 promoter in a human breast cancer cell line upregulated for the HER2 proto-oncogene (SK-BR-3). Both moieties repressed HER2 expression by over 90%. When E1A 1-80 was expressed from a nonreplicative Ad vector, levels of expression were lower than anticipated. Addition of nonspecific sequences to the E1A 1-80 C-terminus (E1A 1-80 C+) enhanced its expression 10- to 20-fold. Because "oncogene addiction" suggests that repression of HER2 could kill HER2 upregulated cells, we examined the ability of full-length E1A 243R and E1A 1-80 C+ delivered by an Ad vector to kill HER2 upregulated SK-BR-3 cells. Expression of both E1A 243R and E1A 1-80 C+ killed SK-BR-3 cells but not normal breast cells. E1A 1-80 C+ is a particularly effective killer of SK-BR-3 cells. At 144 h post infection, over 85% of SK-BR-3 cells were killed by a 100 moi of the Ad vector expressing E1A 1-80 C+. As controls, Ad vectors expressing E1A 243R with deletion of all known functional domains or expressing unrelated β-galactosidase had no effect. Three additional human breast cancer cells lines reported to be upregulated for HER2 or another EGF family member (EGFR) were found to be efficiently killed by expression of E1A 1-80 C+, whereas three additional "normal" cell lines (two derived from breast and one from foreskin) were not. The ability of the E1A transcription-repression domain alone to kill HER2 upregulated breast cancer cells has potential for development of therapies for treatment of aggressive human breast cancers and potentially other human cancers that overexpress HER2.

  19. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937.

    Science.gov (United States)

    Riera, Humberto; Afonso, Valéry; Collin, Pascal; Lomri, Abderrahim

    2015-01-01

    Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.

  20. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937.

    Directory of Open Access Journals (Sweden)

    Humberto Riera

    Full Text Available Pyrrolidine dithiocarbamate (PDTC known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1 gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA show that PDTC increased binding of activating protein-1 (AP-1 in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125, p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.

  1. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).

    Science.gov (United States)

    Hawkins, John S; Wong, Spencer; Peters, Jason M; Almeida, Ricardo; Qi, Lei S

    2015-01-01

    Clustered regularly interspersed short palindromic repeats (CRISPR) interference (CRISPRi) is a powerful technology for sequence-specifically repressing gene expression in bacterial cells. CRISPRi requires only a single protein and a custom-designed guide RNA for specific gene targeting. In Escherichia coli, CRISPRi repression efficiency is high (~300-fold), and there are no observable off-target effects. The method can be scaled up as a general strategy for the repression of many genes simultaneously using multiple designed guide RNAs. Here we provide a protocol for efficient guide RNA design, cloning, and assay of the CRISPRi system in E. coli. In principle, this protocol can be used to construct CRISPRi systems for gene repression in other species of bacteria.

  2. SAGA complex components and acetate repression in Aspergillus nidulans.

    Science.gov (United States)

    Georgakopoulos, Paraskevi; Lockington, Robin A; Kelly, Joan M

    2012-11-01

    Alongside the well-established carbon catabolite repression by glucose and other sugars, acetate causes repression in Aspergillus nidulans. Mutations in creA, encoding the transcriptional repressor involved in glucose repression, also affect acetate repression, but mutations in creB or creC, encoding components of a deubiquitination system, do not. To understand the effects of acetate, we used a mutational screen that was similar to screens that uncovered mutations in creA, creB, and creC, except that glucose was replaced by acetate to identify mutations that were affected for repression by acetate but not by glucose. We uncovered mutations in acdX, homologous to the yeast SAGA component gene SPT8, which in growth tests showed derepression for acetate repression but not for glucose repression. We also made mutations in sptC, homologous to the yeast SAGA component gene SPT3, which showed a similar phenotype. We found that acetate repression is complex, and analysis of facA mutations (lacking acetyl CoA synthetase) indicates that acetate metabolism is required for repression of some systems (proline metabolism) but not for others (acetamide metabolism). Although plate tests indicated that acdX- and sptC-null mutations led to derepressed alcohol dehydrogenase activity, reverse-transcription quantitative real-time polymerase chain reaction showed no derepression of alcA or aldA but rather elevated induced levels. Our results indicate that acetate repression is due to repression via CreA together with metabolic changes rather than due to an independent regulatory control mechanism.

  3. Financial Liberalization Or Repression?

    OpenAIRE

    Ang, James

    2009-01-01

    While financial liberalization has always been advocated in developing countries, experiences with it do not always produce desirable outcomes. In order to evaluate the costs and benefits associated with financial liberalization and repression, this study highlights that the overall effectiveness of the reform programs depends on the relative strength of each financial sector policy implemented. Using India as a case study, the results indicate that interest rate controls, statutory liquidity...

  4. UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1.

    Science.gov (United States)

    Choi, Hee-Joo; Park, Ji-Hye; Park, Mikyung; Won, Hee-Young; Joo, Hyeong-Seok; Lee, Chang Hoon; Lee, Jeong-Yeon; Kong, Gu

    2015-10-01

    The histone H3K27 demethylase, UTX, is a known component of the H3K4 methyltransferase MLL complex, but its functional association with H3K4 methylation in human cancers remains largely unknown. Here we demonstrate that UTX loss induces epithelial-mesenchymal transition (EMT)-mediated breast cancer stem cell (CSC) properties by increasing the expression of the SNAIL, ZEB1 and ZEB2 EMT transcription factors (EMT-TFs) and of the transcriptional repressor CDH1. UTX facilitates the epigenetic silencing of EMT-TFs by inducing competition between MLL4 and the H3K4 demethylase LSD1. EMT-TF promoters are occupied by c-Myc and MLL4, and UTX recognizes these proteins, interrupting their transcriptional activation function. UTX decreases H3K4me2 and H3 acetylation at these promoters by forming a transcriptional repressive complex with LSD1, HDAC1 and DNMT1. Taken together, our findings indicate that UTX is a prominent tumour suppressor that functions as a negative regulator of EMT-induced CSC-like properties by epigenetically repressing EMT-TFs. © 2015 The Authors.

  5. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2

    DEFF Research Database (Denmark)

    Pasini, Diego; Hansen, Klaus H; Christensen, Jesper;

    2008-01-01

    Polycomb group (PcG) proteins regulate important cellular processes such as embryogenesis, cell proliferation, and stem cell self-renewal through the transcriptional repression of genes determining cell fate decisions. The Polycomb-Repressive Complex 2 (PRC2) is highly conserved during evolution......, and its intrinsic histone H3 Lys 27 (K27) trimethylation (me3) activity is essential for PcG-mediated transcriptional repression. Here, we show a functional interplay between the PRC2 complex and the H3K4me3 demethylase Rbp2 (Jarid1a) in mouse embryonic stem (ES) cells. By genome-wide location analysis we...... found that Rbp2 is associated with a large number of PcG target genes in mouse ES cells. We show that the PRC2 complex recruits Rbp2 to its target genes, and that this interaction is required for PRC2-mediated repressive activity during ES cell differentiation. Taken together, these results demonstrate...

  6. Phonology and syntax in French children with SLI: a longitudinal study.

    Science.gov (United States)

    Parisse, Christophe; Maillart, Christelle

    2007-01-01

    Maillart and Parisse found out that French children with specific language impairment (SLI) presented strong difficulties in phonology when compared with normally-developing children matched by MLU (NLD). Some of the youngest children from this study were followed to provide developmental information about their language deficit. Children were tested again in the same way as before (free spontaneous production) and matched by MLU against other NLD children. The previous phonological analysis was extended to include syntax as well as phonology. Percentage of words correct was computed for both phonology and syntax. An analysis of covariance (ANCOVA) was performed with children's age as covariate. Results showed a significant difference between SLI and NLD children for phonology but not for syntax. There was a trend that showed that the difference between SLI and NLD children tended to increase with age. The same analysis was performed separately for 9 frequent syntactic categories for phonology and for syntax. A significant difference was found for prepositions, nouns, subject pronouns, and verbs in phonology. Effects were found for determiners and prepositions in syntax. As well as confirming the importance of phonological difficulties in SLI, our results call for a developmental theory of phonological and syntactic deficits in SLI, where differences between SLI and NLD grow with age and where there is a timing difference between phonology (earlier) and syntax (later).

  7. Auditory Processing in Specific Language Impairment (SLI): Relations With the Perception of Lexical and Phrasal Stress.

    Science.gov (United States)

    Richards, Susan; Goswami, Usha

    2015-08-01

    We investigated whether impaired acoustic processing is a factor in developmental language disorders. The amplitude envelope of the speech signal is known to be important in language processing. We examined whether impaired perception of amplitude envelope rise time is related to impaired perception of lexical and phrasal stress in children with specific language impairment (SLI). Twenty-two children aged between 8 and 12 years participated in this study. Twelve had SLI; 10 were typically developing controls. All children completed psychoacoustic tasks measuring rise time, intensity, frequency, and duration discrimination. They also completed 2 linguistic stress tasks measuring lexical and phrasal stress perception. The SLI group scored significantly below the typically developing controls on both stress perception tasks. Performance on stress tasks correlated with individual differences in auditory sensitivity. Rise time and frequency thresholds accounted for the most unique variance. Digit Span also contributed to task success for the SLI group. The SLI group had difficulties with both acoustic and stress perception tasks. Our data suggest that poor sensitivity to amplitude rise time and sound frequency significantly contributes to the stress perception skills of children with SLI. Other cognitive factors such as phonological memory are also implicated.

  8. Menin represses tumorigenesis via repressing cell proliferation

    OpenAIRE

    Wu, Ting; Hua, Xianxin

    2011-01-01

    Multiple endocrine neoplasia type 1 (MEN1) results from mutations in the tumor suppressor gene, MEN1, which encodes nuclear protein menin. Menin is important for suppressing tumorigenesis in various endocrine and certain non-endocrine tissues. Although menin suppresses MEN1 through a variety of mechanisms including regulating apoptosis and DNA repair, the role of menin in regulating cell proliferation is one of the best-studied functions. Here, we focus on reviewing various mechanisms underly...

  9. Coat protein mutations in an attenuated Cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants.

    Science.gov (United States)

    Mochizuki, Tomofumi; Yamazaki, Ryota; Wada, Tomoya; Ohki, Satoshi T

    2014-05-01

    In tobacco plants, the Cucumber mosaic virus (CMV) pepo strain induces mosaic symptoms, including pale green chlorosis and malformed tissues. Here, we characterized the involvement of 2b protein and coat protein (CP) in the development of mosaic symptoms. A 2b mutant (R46C) that lacks viral suppressor of RNA silencing (VSR) activity showed an asymptomatic phenotype with low levels of virus accumulation. Tomato spotted wilt virus NSs protein did not complement the virulence of the R46C, although it did restore high-level virus accumulation. However, R46C mutants expressing mutated CP in which the amino acid P129 was mutated to A, E, C, Q, or S induced chlorosis that was associated with reduced expression of chloroplast and photosynthesis related genes (CPRGs) and abnormal chloroplasts with fewer thylakoid membranes. These results suggest that the CP of the CMV pepo strain acquires virulence by amino acid mutations, which causes CPRG repression and chloroplast abnormalities.

  10. Financial repression and fiscal policy

    NARCIS (Netherlands)

    Gupta, KL; Lensink, R

    1997-01-01

    This paper develops a simulation model to assess the consequences of government's trying to raise revenues through financial repression in developing countries. The measures of financial repression studied are (1) government borrowing from the banking sector to finance its budget deficit (2) governm

  11. The Human Lexinome: Genes of Language and Reading

    Science.gov (United States)

    Gibson, Christopher J.; Gruen, Jeffrey R.

    2008-01-01

    Within the human genome, genetic mapping studies have identified 10 regions of different chromosomes, known as DYX loci, in genetic linkage with dyslexia, and two, known as SLI loci, in genetic linkage with Specific Language Impairment (SLI). Further genetic studies have identified four dyslexia genes within the DYX loci: "DYX1C1" on 15q,…

  12. Subject-Verb Agreement, Object Clitics and Wh-Questions in Bilingual French-Greek SLI: The Case Study of a French-Greek-Speaking Child with SLI

    Science.gov (United States)

    Stavrakaki, Stavroula; Chrysomallis, Marie-Annick; Petraki, Evangelia

    2011-01-01

    In this study we investigate the linguistic performance of a school age French-Greek simultaneous bilingual boy with specific language impairment (SLI) on the production of subject-verb agreement, object clitic pronouns and wh-questions. In addition, we compare his performance on these linguistic structures with that of two French-Greek bilingual…

  13. Subject-Verb Agreement, Object Clitics and Wh-Questions in Bilingual French-Greek SLI: The Case Study of a French-Greek-Speaking Child with SLI

    Science.gov (United States)

    Stavrakaki, Stavroula; Chrysomallis, Marie-Annick; Petraki, Evangelia

    2011-01-01

    In this study we investigate the linguistic performance of a school age French-Greek simultaneous bilingual boy with specific language impairment (SLI) on the production of subject-verb agreement, object clitic pronouns and wh-questions. In addition, we compare his performance on these linguistic structures with that of two French-Greek bilingual…

  14. Phosphorylation of Sli15 by Ipl1 is important for proper CPC localization and chromosome stability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Makrantoni, Vasso; Corbishley, Stephen J; Rachidi, Najma; Morrice, Nicholas A; Robinson, David A; Stark, Michael J R

    2014-01-01

    The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here we have identified multiple sites of CPC autophosphorylation on yeast Sli15 that are located within its central microtubule-binding domain and examined the functional significance of their phosphorylation by Ipl1 through mutation of these sites, either to non-phosphorylatable alanine (sli15-20A) or to acidic residues to mimic constitutive phosphorylation (sli15-20D). Both mutant sli15 alleles confer chromosome instability, but this is mediated neither by changes in the capacity of Sli15 to activate Ipl1 kinase nor by decreased efficiency of chromosome biorientation, a key process in cell division that requires CPC function. Instead, we find that mimicking constitutive phosphorylation of Sli15 on the Ipl1 phosphorylation sites causes delocalization of the CPC in metaphase, whereas blocking phosphorylation of Sli15 on the Ipl1 sites drives excessive localization of Sli15 to the mitotic spindle in pre-anaphase cells. Consistent with these results, direct interaction of Sli15 with microtubules in vitro is greatly reduced either following phosphorylation by Ipl1 or when constitutive phosphorylation at the Ipl1-dependent phosphorylation sites is mimicked by aspartate or glutamate substitutions. Furthermore, we find that mimicking Ipl1 phosphorylation of Sli15 interferes with the 'tension checkpoint'--the CPC-dependent mechanism through which cells activate the spindle assembly checkpoint to delay anaphase in the absence of tension on kinetochore-microtubule attachments. Ipl1-dependent phosphorylation of Sli15 therefore inhibits its association with microtubules both in vivo and in vitro and may negatively regulate the tension checkpoint mechanism.

  15. Phosphorylation of Sli15 by Ipl1 is important for proper CPC localization and chromosome stability in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Vasso Makrantoni

    Full Text Available The chromosomal passenger complex (CPC is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15 and two additional proteins (Survivin/Bir1 and Borealin/Nbl1. Here we have identified multiple sites of CPC autophosphorylation on yeast Sli15 that are located within its central microtubule-binding domain and examined the functional significance of their phosphorylation by Ipl1 through mutation of these sites, either to non-phosphorylatable alanine (sli15-20A or to acidic residues to mimic constitutive phosphorylation (sli15-20D. Both mutant sli15 alleles confer chromosome instability, but this is mediated neither by changes in the capacity of Sli15 to activate Ipl1 kinase nor by decreased efficiency of chromosome biorientation, a key process in cell division that requires CPC function. Instead, we find that mimicking constitutive phosphorylation of Sli15 on the Ipl1 phosphorylation sites causes delocalization of the CPC in metaphase, whereas blocking phosphorylation of Sli15 on the Ipl1 sites drives excessive localization of Sli15 to the mitotic spindle in pre-anaphase cells. Consistent with these results, direct interaction of Sli15 with microtubules in vitro is greatly reduced either following phosphorylation by Ipl1 or when constitutive phosphorylation at the Ipl1-dependent phosphorylation sites is mimicked by aspartate or glutamate substitutions. Furthermore, we find that mimicking Ipl1 phosphorylation of Sli15 interferes with the 'tension checkpoint'--the CPC-dependent mechanism through which cells activate the spindle assembly checkpoint to delay anaphase in the absence of tension on kinetochore-microtubule attachments. Ipl1-dependent phosphorylation of Sli15 therefore inhibits its association with microtubules both in vivo and in vitro and may negatively regulate the tension checkpoint mechanism.

  16. CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    Science.gov (United States)

    Du, Dan; Qi, Lei S

    2016-01-04

    Targeted modulation of transcription is necessary for understanding complex gene networks and has great potential for medical and industrial applications. CRISPR is emerging as a powerful system for targeted genome activation and repression, in addition to its use in genome editing. This protocol describes how to design, construct, and experimentally validate the function of sequence-specific single guide RNAs (sgRNAs) for sequence-specific repression (CRISPRi) or activation (CRISPRa) of transcription in mammalian cells. In this technology, the CRISPR-associated protein Cas9 is catalytically deactivated (dCas9) to provide a general platform for RNA-guided DNA targeting of any locus in the genome. Fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in mammalian cells. Delivery of multiple sgRNAs further enables activation or repression of multiple genes. By using scaffold RNAs (scRNAs), different effectors can be recruited to different genes for simultaneous activation of some and repression of others. The CRISPRi and CRISPRa methods provide powerful tools for sequence-specific control of gene expression on a genome-wide scale to aid understanding gene functions and for engineering genetic regulatory systems.

  17. Transthyretin represses neovascularization in diabetic retinopathy

    Science.gov (United States)

    Shao, Jun

    2016-01-01

    Purpose The apoptosis of human umbilical vein endothelial cells has been reportedly induced by the protein transthyretin (TTR). In human ocular tissue, TTR is generally considered to be secreted mainly by retinal pigment epithelial cells (hRPECs); however, whether TTR affects the development of neovascularization in diabetic retinopathy (DR) remains unclear. Methods Natural and simulated DR media were used to culture human retinal microvascular endothelial cells (hRECs). Hyperglycemia was simulated by increasing the glucose concentration from 5.5 mM up to 25 mM, while hypoxia was induced with 200 µM CoCl2. To understand the effects of TTR on hRECs, cell proliferation was investigated under natural and DR conditions. Overexpression of TTR, an in vitro wound-healing assay, and a tube formation assay were employed to study the repression of TTR on hRECs. Real-time fluorescence quantitative PCR (qRT-PCR) was used to study the mRNA levels of DR-related genes, such as Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2. Results The proliferation of hRECs was significantly decreased in the simulated hyperglycemic and hypoxic DR environments. The cells were further repressed by added exogenous or endogenous TTR only under hyperglycemic conditions. The in vitro migration and tube formation processes of the hRECs were inhibited with TTR; furthermore, in the hyperglycemia and hyperglycemia/hypoxia environments, the levels of Tie2 and Angpt1 mRNA were enhanced with exogenous TTR, while those of VEGFR1, VEGFR2, and Angpt1 were repressed. Conclusions In hyperglycemia, the proliferation, migration, and neovascularization of hRECs were significantly inhibited by TTR. The key genes for DR neovascularization, including Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2, were regulated by TTR. Under DR conditions, TTR significantly represses neovascularization by inhibiting the proliferation, migration and tube formation of hRECs. PMID:27746673

  18. The orphan adapter protein SLY1 as a novel anti-apoptotic protein required for thymocyte development

    Directory of Open Access Journals (Sweden)

    Beer-Hammer Sandra

    2009-07-01

    Full Text Available Abstract Background SH3 containing Lymphocyte Protein (SLY1 is a putative adapter protein exclusively expressed in lymphocytes which is involved in antigen receptor induced activation. We previously have generated SLY1Δ/Δ mice harbouring a partial deletion in the N-terminal region of SLY1 which revealed profound immunological defects in T and B cell functions. Results In this study, T cell development in SLY1-/- and SLY1Δ/Δ mice was analysed ex vivo and upon cultivation with the bone marrow stromal cell line OP9. SLY1-deficient thymocytes were compromised in inducing nutrient receptor expression and ribosomal protein S6 phosphorylation, indicating a defect in mTOR complex activation. Furthermore, SLY1 was identified as a novel anti-apoptotic protein required for developmental progression of T cell precursors to the CD4+CD8+ double-positive stage by protecting from premature programmed cell death initiation in developing CD4-CD8- double-negative thymocytes. In addition, SLY1 phosphorylation was differentially regulated upon Notch ligand-mediated stimulation and expression of the preTCR. Conclusion Thus, our results suggest a non-redundant role for SLY1 in integrating signals from both receptors in early T cell progenitors in the thymus.

  19. Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes.

    Science.gov (United States)

    Su, Yi-Ting; Chen, Jen-Chih; Lin, Chan-Pin

    2011-12-01

    Floral symptoms caused by phytoplasma largely resemble floral reversion in other plants. Periwinkle leaf yellowing (PLY) phytoplasma and peanut witches'-broom (PnWB) phytoplasma caused different degrees of floral abnormalities on infected periwinkle plants. The PLY phytoplasma-infected plants exhibited floral discoloration, virescence, small flowers, and only occasionally full floral reversion. In contrast, PnWB phytoplasma frequently induced complete floral reversion and resulted in a witches'-broom symptom from the floral reversion. Although different degrees of floral symptoms were induced by these two phytoplasmas, the morphological disorders were similar to those of other plants carrying SEPALLATA mutations or gene silencing. Here, we compared expression levels of organ-identity-related genes and pigmentation genes during floral symptom development. Accumulation of phytoplasmas in malformed flowers and their closely surrounding leaves was also compared. In infected plants, transcript abundance of all examined organ identity genes and pigmentation genes was suppressed. Indeed, CrSEP3, a SEPALLALA3 ortholog, showed the greatest suppression among genes examined. Of the pigmentation genes, transcript reduction of chalcone synthase was most highly correlated with the loss in floral pigmentation. Floral symptom severities were associated with the accumulation of either phytoplasmas. Interestingly, both phytoplasmas accumulated to higher levels in malformed flowers than in their surrounding leaves. Many plant pathogens manipulate host plant development to their advantage. It is intriguing to see whether phytoplasmas alter floral development to increase their population.

  20. SLiCE: a novel bacterial cell extract-based DNA cloning method.

    Science.gov (United States)

    Zhang, Yongwei; Werling, Uwe; Edelmann, Winfried

    2012-04-01

    We describe a novel cloning method termed SLiCE (Seamless Ligation Cloning Extract) that utilizes easy to generate bacterial cell extracts to assemble multiple DNA fragments into recombinant DNA molecules in a single in vitro recombination reaction. SLiCE overcomes the sequence limitations of traditional cloning methods, facilitates seamless cloning by recombining short end homologies (≥15 bp) with or without flanking heterologous sequences and provides an effective strategy for directional subcloning of DNA fragments from Bacteria Artificial Chromosomes (BACs) or other sources. SLiCE is highly cost effective as a number of standard laboratory bacterial strains can serve as sources for SLiCE extract. In addition, the cloning efficiencies and capabilities of these strains can be greatly improved by simple genetic modifications. As an example, we modified the DH10B Escherichia coli strain to express an optimized λ prophage Red recombination system. This strain, termed PPY, facilitates SLiCE with very high efficiencies and demonstrates the versatility of the method.

  1. Major Histocompatibility Class I Gene Transcription in Thyrocytes: A Series of Interacting Regulatory DNA Sequence Elements Mediate Thyrotropin/Cyclic Adenosine 3′,5′-Monophosphate Repression

    National Research Council Canada - National Science Library

    Kirshner, Susan; Palmer, Lisa; Bodor, Josef; Saji, Moto; Kohn, Leonard D; Singer, Dinah S

    2000-01-01

    In response to TSH, thyroid cells decrease major histocompatibility (MHC) class I expression and transcription, providing an excellent model for studying the dynamic modulation of transcription of MHC class I genes...

  2. Proximity of Radiation Desiccation Response Motif to the core promoter is essential for basal repression as well as gamma radiation-induced gyrB gene expression in Deinococcus radiodurans.

    Science.gov (United States)

    Anaganti, Narasimha; Basu, Bhakti; Mukhopadhyaya, Rita; Apte, Shree Kumar

    2017-03-02

    The radioresistant D. radiodurans regulates its DNA damage regulon (DDR) through interaction between a 17bp palindromic cis-regulatory element called the Radiation Desiccation Response Motif (RDRM), the DdrO repressor and a protease IrrE. The role of RDRM in regulation of DDR was dissected by constructing RDRM sequence-, position- or deletion-variants of Deinococcal gyrB gene (DR0906) promoter and by RDRM insertion in the non-RDRM groESL gene (DR0606) promoter, and monitoring the effect of such modifications on the basal as well as gamma radiation inducible promoter activity by quantifying fluorescence of a GFP reporter. RDRM sequence-variants revealed that the conservation of sequence at the 5th and 13th position and the ends of RDRM is essential for basal repression by interaction with DdrO. RDRM position-variants showed that the sequence acts as a negative regulatory element only when located around transcription start site (TSS) and within the span of RNA polymerase (RNAP) binding region. RDRM deletion-variants indicated that the 5' sequence of RDRM possibly possesses an enhancer-like element responsible for higher expression yields upon repressor clearance post-irradiation. The results suggest that RDRM plays both a negative as well as a positive role of in the regulation of DDR in D. radiodurans.

  3. Bending the rules of transcriptional repression: tightly looped DNA directly represses T7 RNA polymerase.

    Science.gov (United States)

    Lionberger, Troy A; Meyhöfer, Edgar

    2010-08-09

    From supercoiled DNA to the tight loops of DNA formed by some gene repressors, DNA in cells is often highly bent. Despite evidence that transcription by RNA polymerase (RNAP) is affected in systems where DNA is deformed significantly, the mechanistic details underlying the relationship between polymerase function and mechanically stressed DNA remain unclear. Seeking to gain additional insight into the regulatory consequences of highly bent DNA, we hypothesize that tightly looping DNA is alone sufficient to repress transcription. To test this hypothesis, we have developed an assay to quantify transcription elongation by bacteriophage T7 RNAP on small, circular DNA templates approximately 100 bp in size. From these highly bent transcription templates, we observe that the elongation velocity and processivity can be repressed by at least two orders of magnitude. Further, we show that minicircle templates sustaining variable levels of twist yield only moderate differences in repression efficiency. We therefore conclude that the bending mechanics within the minicircle templates dominate the observed repression. Our results support a model in which RNAP function is highly dependent on the bending mechanics of DNA and are suggestive of a direct, regulatory role played by the template itself in regulatory systems where DNA is known to be highly bent. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Can training normalize atypical passive auditory ERPs in children with SRD or SLI?

    Science.gov (United States)

    McArthur, Genevieve M; Atkinson, Carmen M; Ellis, Danielle

    2010-01-01

    This study tested if training can normalize atypical passive auditory event-related potentials in the N1-P2 time window in children with specific reading disability (SRD) or specific language impairment (SLI). Children with SRD or SLI and untrained controls were tested for their behavioral responses and N1-P2 windows to tones, backward-masked tones, vowels, and consonant-vowels. Children with SRD or SLI with poor behavioral responses to one of these sounds trained to discriminate that sound for 30 minutes a day, 4 days a week, for 6 weeks. Post-training measures revealed that training normalized atypical behavioral responses but not atypical N1-P2 windows.

  5. Complexity markers in morphosyntactic productions in French-speaking children with specific language impairment (SLI).

    Science.gov (United States)

    Prigent, Gaïd; Parisse, Christophe; Leclercq, Anne-Lise; Maillart, Christelle

    2015-01-01

    The usage-based theory considers that the morphosyntactic productions of children with SLI are particularly dependent on input frequency. When producing complex syntax, the language of these children is, therefore, predicted to have a lower variability and to contain fewer infrequent morphosyntactic markers than that of younger children matched on morphosyntactic abilities. Using a spontaneous language task, the current study compared the complexity of the morphological and structural productions of 20 children with SLI and 20 language-matched peers (matched on both morphosyntactic comprehension and mean length of utterance). As expected, results showed that although basic structures were produced in the same way in both groups, several complex forms (i.e. tenses such as Imperfect, Future or Conditional and Conjunctions) were less frequent in the productions of children with SLI. Finally, we attempted to highlight complex linguistic forms that could be good clinical markers for these children.

  6. Context effects on verb production in specific language impairment (SLI): confrontation naming versus connected speech.

    Science.gov (United States)

    Kambanaros, Maria

    2014-11-01

    A handful of studies have shown that verbs are more vulnerable than nouns to retrieval deficits on picture-based naming tasks for children with specific language impairment (SLI). The aim of this study was to examine if the disproportionate verb as opposed to noun production deficit reported for naming is also found in connected speech. Sixteen children participated in the study: eight children diagnosed with SLI (mean age: 6:3 years) and eight typically language developing (TLD, mean age: 5:9 years) controls. Verb and noun production was measured in connected speech and compared to picture confrontation naming. Both groups of children showed a significant difficulty naming verbs compared to nouns. In contrast, they did not differ on the total number of both verb tokens and verb types produced in connected speech. The findings indicate that the previously reported verb retrieval difficulties in SLI are a product of the confrontation naming task demands rather than a true verb deficit.

  7. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes

    OpenAIRE

    Di Stefano, Luisa; Jensen, Michael Rugaard; Helin, Kristian

    2003-01-01

    The E2F family of transcription factors play an essential role in the regulation of cell cycle progression. In a screen for E2F-regulated genes we identified a novel E2F family member, E2F7. Like the recently identified E2F-like proteins of Arabidopsis, E2F7 has two DNA binding domains and binds to the E2F DNA binding consensus site independently of DP co-factors. Consistent with being an E2F target gene, we found that the expression of E2F7 is cell cycle regulated. Ectopic expression of E2F7...

  8. Phosphorylation of p65(RelA on Ser(547 by ATM represses NF-κB-dependent transcription of specific genes after genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Hélène Sabatel

    Full Text Available The NF-κB pathway is involved in immune and inflammation responses, proliferation, differentiation and cell death or survival. It is activated by many external stimuli including genotoxic stress. DNA double-strand breaks activate NF-κB in an ATM-dependent manner. In this manuscript, a direct interaction between p65(RelA and the N-terminal extremity of ATM is reported. We also report that only one of the five potential ATM-(S/TQ target sites present in p65, namely Ser(547, is specifically phosphorylated by ATM in vitro. A comparative transcriptomic analysis performed in HEK-293 cells expressing either wild-type HA-p65 or a non-phosphorylatable mutant HA-p65(S547A identified several differentially transcribed genes after an etoposide treatment (e.g. IL8, A20, SELE. The transcription of these genes is increased in cells expressing the mutant. Substitution of Ser(547 to alanine does not affect p65 binding abilities on the κB site of the IL8 promoter but reduces p65 interaction with HDAC1. Cells expressing p65(S547A have a higher level of histone H3 acetylated on Lys(9 at the IL8 promoter, which is in agreement with the higher gene induction observed. These results indicate that ATM regulates a sub-set of NF-κB dependent genes after a genotoxic stress by direct phosphorylation of p65.

  9. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells.

    Science.gov (United States)

    Bui, Catherine; Ouzzine, Mohamed; Talhaoui, Ibtissam; Sharp, Sheila; Prydz, Kristian; Coughtrie, Michael W H; Fournel-Gigleux, Sylvie

    2010-02-01

    Heparan sulfate proteoglycans (HSPGs), strategically located at the cell-tissue-organ interface, regulate major biological processes, including cell proliferation, migration, and adhesion. These vital functions are compromised in tumors, due, in part, to alterations in heparan sulfate (HS) expression and structure. How these modifications occur is largely unknown. Here, we investigated whether epigenetic abnormalities involving aberrant DNA methylation affect HS biosynthetic enzymes in cancer cells. Analysis of the methylation status of glycosyltransferase and sulfotransferase genes in H-HEMC-SS chondrosarcoma cells showed a typical hypermethylation profile of 3-OST sulfotransferase genes. Exposure of chondrosarcoma cells to 5-aza-2'-deoxycytidine (5-Aza-dc), a DNA-methyltransferase inhibitor, up-regulated expression of 3-OST1, 3-OST2, and 3-OST3A mRNAs, indicating that aberrant methylation affects transcription of these genes. Furthermore, HS expression was restored on 5-Aza-dc treatment or reintroduction of 3-OST expression, as shown by indirect immunofluorescence microscopy and/or analysis of HS chains by anion-exchange and gel-filtration chromatography. Notably, 5-Aza-dc treatment of HEMC cells or expression of 3-OST3A cDNA reduced their proliferative and invading properties and augmented adhesion of chondrosarcoma cells. These results provide the first evidence for specific epigenetic regulation of 3-OST genes resulting in altered HSPG sulfation and point to a defect of HS-3-O-sulfation as a factor in cancer progression.

  10. The SOS Response Master Regulator LexA Regulates the Gene Transfer Agent of Rhodobacter capsulatus and Represses Transcription of the Signal Transduction Protein CckA

    Science.gov (United States)

    Kuchinski, Kevin S.; Brimacombe, Cedric A.; Westbye, Alexander B.; Ding, Hao

    2016-01-01

    ABSTRACT The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. IMPORTANCE This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive RcGTA-borne genes. The data show that, despite an apparent evolutionary relationship to lambdoid phages, the regulation of RcGTA gene expression differs radically. PMID:26833411

  11. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

    NARCIS (Netherlands)

    Berns, K.; Hijmans, E.M.; Bernards, R.A.

    1997-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein involved in proliferation and oncogenesis. Activation of c-myc expression in quiescent cells is sufficient to mediate cell cycle entry, whereas inhibition of c-myc expression causes cycling cells to withdraw from the cell cycle. To searc

  12. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes.

    Science.gov (United States)

    Di Stefano, Luisa; Jensen, Michael Rugaard; Helin, Kristian

    2003-12-01

    The E2F family of transcription factors play an essential role in the regulation of cell cycle progression. In a screen for E2F-regulated genes we identified a novel E2F family member, E2F7. Like the recently identified E2F-like proteins of Arabidopsis, E2F7 has two DNA binding domains and binds to the E2F DNA binding consensus site independently of DP co-factors. Consistent with being an E2F target gene, we found that the expression of E2F7 is cell cycle regulated. Ectopic expression of E2F7 results in suppression of E2F target genes and accumulation of cells in G1. Furthermore, E2F7 associates with E2F-regulated promoters in vivo, and this association increases in S phase. Interestingly, however, E2F7 binds only a subset of E2F-dependent promoters in vivo, and in agreement with this, inhibition of E2F7 expression results in specific derepression of these promoters. Taken together, these data demonstrate that E2F7 is a unique repressor of a subset of E2F target genes whose products are required for cell cycle progression.

  13. Phosphorylation of p65(RelA) on Ser(547) by ATM represses NF-κB-dependent transcription of specific genes after genotoxic stress.

    Science.gov (United States)

    Sabatel, Hélène; Di Valentin, Emmanuel; Gloire, Geoffrey; Dequiedt, Franck; Piette, Jacques; Habraken, Yvette

    2012-01-01

    The NF-κB pathway is involved in immune and inflammation responses, proliferation, differentiation and cell death or survival. It is activated by many external stimuli including genotoxic stress. DNA double-strand breaks activate NF-κB in an ATM-dependent manner. In this manuscript, a direct interaction between p65(RelA) and the N-terminal extremity of ATM is reported. We also report that only one of the five potential ATM-(S/T)Q target sites present in p65, namely Ser(547), is specifically phosphorylated by ATM in vitro. A comparative transcriptomic analysis performed in HEK-293 cells expressing either wild-type HA-p65 or a non-phosphorylatable mutant HA-p65(S547A) identified several differentially transcribed genes after an etoposide treatment (e.g. IL8, A20, SELE). The transcription of these genes is increased in cells expressing the mutant. Substitution of Ser(547) to alanine does not affect p65 binding abilities on the κB site of the IL8 promoter but reduces p65 interaction with HDAC1. Cells expressing p65(S547A) have a higher level of histone H3 acetylated on Lys(9) at the IL8 promoter, which is in agreement with the higher gene induction observed. These results indicate that ATM regulates a sub-set of NF-κB dependent genes after a genotoxic stress by direct phosphorylation of p65.

  14. Nucleolar Dominance and Repression of 45S Ribosomal RNA Genes in Hybrids between Xenopus borealis and X. muelleri (2n = 36).

    Science.gov (United States)

    Maciak, Sebastian; Michalak, Katarzyna; Kale, Shiv D; Michalak, Pawel

    2016-01-01

    Nucleolar dominance is a dramatic disruption in the formation of nucleoli and the expression of ribosomal RNA (rRNA) genes, characteristic of some plant and animal hybrids. Here, we report that F1 hybrids produced from reciprocal crosses between 2 sister species of Xenopus clawed frogs, X. muelleri and X. borealis, undergo nucleolar dominance somewhat distinct from a pattern previously reported in hybrids between phylogenetically more distant Xenopus species. Patterns of nucleolar development, 45S rRNA expression, and gene copy inheritance were investigated using a combination of immunostaining, pyrosequencing, droplet digital PCR, flow cytometry, and epigenetic inhibition. In X. muelleri × X. borealis hybrids, typically only 1 nucleolus is formed, and 45S rRNA genes are predominantly expressed from 1 progenitor's alleles, X. muelleri, regardless of the cross-direction. These changes are accompanied by an extensive (∼80%) loss of rRNA gene copies in the hybrids relative to their parents, with the transcriptionally underdominant variant (X. borealis) being preferentially lost. Chemical treatment of hybrid larvae with a histone deacetylase inhibitor resulted in a partial derepression of the underdominant variant. Together, these observations shed light on the genetic and epigenetic basis of nucleolar dominance as an underappreciated manifestation of genetic conflicts within a hybrid genome.

  15. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    OpenAIRE

    E.S.S. de Araújo; Vasques, L.R.; Stabellini,R.; A.C.V. Krepischi; Pereira, L.V.

    2014-01-01

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting thatXIST repression is due to a more stable epigenetic mar...

  16. Increasing Prevalence of Specific Language Impairment (SLI) in Primary Healthcare of a Finnish Town, 1989-99

    Science.gov (United States)

    Hannus, Sinikka; Kauppila, Timo; Launonen, Kaisa

    2009-01-01

    Background: The increasing prevalence of specific language impairment (SLI) is a matter of current debate. Aims: Speech and language therapists and other authorities in Finland have discussed the prevalence of SLI since the 1990s. This discussion has been based on international studies because of the lack of national studies. This paper presents…

  17. Core Subjects at the End of Primary School: Identifying and Explaining Relative Strengths of Children with Specific Language Impairment (SLI)

    Science.gov (United States)

    Durkin, Kevin; Mok, Pearl L. H.; Conti-Ramsden, Gina

    2015-01-01

    Background: In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. Aims: To compare the distributions of performance of…

  18. Organic acid mediated repression of sugar utilization in rhizobia.

    Science.gov (United States)

    Iyer, Bhagya; Rajput, Mahendrapal Singh; Jog, Rahul; Joshi, Ekta; Bharwad, Krishna; Rajkumar, Shalini

    2016-11-01

    Rhizobia are a class of symbiotic diazotrophic bacteria which utilize C4 acids in preference to sugars and the sugar utilization is repressed as long as C4 acids are present. This can be manifested as a diauxie when rhizobia are grown in the presence of a sugar and a C4 acid together. Succinate, a C4 acid is known to repress utilization of sugars, sugar alcohols, hydrocarbons, etc by a mechanism termed as Succinate Mediated Catabolite Repression (SMCR). Mechanism of catabolite repression determines the hierarchy of carbon source utilization in bacteria. Though the mechanism of catabolite repression has been well studied in model organisms like E. coli, B. subtilis and Pseudomonas sp., mechanism of SMCR in rhizobia has not been well elucidated. C4 acid uptake is important for effective symbioses while mutation in the sugar transport and utilization genes does not affect symbioses. Deletion of hpr and sma0113 resulted in the partial relief of SMCR of utilization of galactosides like lactose, raffinose and maltose in the presence of succinate. However, no such regulators governing SMCR of glucoside utilization have been identified till date. Though rhizobia can utilize multitude of sugars, high affinity transporters for many sugars are yet to be identified. Identifying high affinity sugar transporters and studying the mechanism of catabolite repression in rhizobia is important to understand the level of regulation of SMCR and the key regulators involved in SMCR.

  19. Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kützing, a blue-green alga, via inhibition of nuclear factor-kappaB in RAW 264.7 macrophages.

    Science.gov (United States)

    Park, Young-Ki; Rasmussen, Heather E; Ehlers, Sarah J; Blobaum, Kara R; Lu, Fan; Schlegal, Vicki L; Carr, Timothy P; Lee, Ji-Young

    2008-02-01

    We investigated whether lipid extract from a blue-green alga, N commune, modulates proinflammatory gene expression in RAW 264.7 macrophages. The cells were incubated with N commune lipid extract (0-100 microg/mL) and subsequently activated by LPS (100 ng/mL). Quantitative real-time PCR analysis showed that mRNA abundance of proinflammatory mediators, including TNF-alpha, COX-2, IL-1beta, IL-6, and iNOS, was significantly reduced by N commune lipid extract in a dose-dependent manner. Secretion of TNF-alpha and IL-1beta into cell culture medium was also significantly decreased by N commune lipid extract. Thin-layer chromatography-densitometry analysis showed that N commune lipid extract contained approximately 15% of fatty acids. To determine whether the inhibition of proinflammatory mediator production by N commune lipid extract is primarily conferred by fatty acids in the lipid extract, macrophages were incubated with 100 microg/mL of N commune lipid extract or 15 microg/mL of a fatty acid mixture, which was formulated to reflect the fatty acid composition of N commune lipid extract. The fatty acid mixture significantly reduced RNA abundance of TNF-alpha and COX-2, but to a lesser extent than did the N commune lipid extract, suggesting the presence of additional bioactive compounds with an antiinflammatory property in the lipid extract. As NF-kappaB is a major regulator for the proinflammatory gene expression, we measured its DNA-binding activity. DNA-binding activity of NF-kappaB was significantly reduced by N commune lipid extract. In conclusion, our study suggests that N commune lipid extract represses the expression of proinflammatory genes in RAW 264.7 macrophages, at least in part, by inhibiting the activation of NF-kappaB pathway.

  20. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes

    DEFF Research Database (Denmark)

    Di Stefano, Luisa; Jensen, Michael Rugaard; Helin, Kristian

    2003-01-01

    The E2F family of transcription factors play an essential role in the regulation of cell cycle progression. In a screen for E2F-regulated genes we identified a novel E2F family member, E2F7. Like the recently identified E2F-like proteins of Arabidopsis, E2F7 has two DNA binding domains and binds...... to the E2F DNA binding consensus site independently of DP co-factors. Consistent with being an E2F target gene, we found that the expression of E2F7 is cell cycle regulated. Ectopic expression of E2F7 results in suppression of E2F target genes and accumulation of cells in G1. Furthermore, E2F7 associates...... with E2F-regulated promoters in vivo, and this association increases in S phase. Interestingly, however, E2F7 binds only a subset of E2F-dependent promoters in vivo, and in agreement with this, inhibition of E2F7 expression results in specific derepression of these promoters. Taken together, these data...

  1. Nitrogen Catabolite Repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hofman-Bang, H Jacob Peider

    1999-01-01

    In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Da180, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence S' GATAA 3'. Gln3...... and Gat1 act positively on gene expression whereas :Da180 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine, GABA, and allantoine. In addition, the expression of the genes encoding...... thereby providing a nitrogen source to the cell.In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promoters are presented....

  2. Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes.

    Science.gov (United States)

    Tabaja, Nassif; Yuan, Zhenyu; Oswald, Franz; Kovall, Rhett A

    2017-06-23

    The Notch pathway is a cell-to-cell signaling mechanism that is essential for tissue development and maintenance, and aberrant Notch signaling has been implicated in various cancers, congenital defects, and cardiovascular diseases. Notch signaling activates the expression of target genes, which are regulated by the transcription factor CSL (CBF1/RBP-J, Su(H), Lag-1). CSL interacts with both transcriptional corepressor and coactivator proteins, functioning as both a repressor and activator, respectively. Although Notch activation complexes are relatively well understood at the structural level, less is known about how CSL interacts with corepressors. Recently, a new RBP-J (mammalian CSL ortholog)-interacting protein termed RITA has been identified and shown to export RBP-J out of the nucleus, thereby leading to the down-regulation of Notch target gene expression. However, the molecular details of RBP-J/RITA interactions are unclear. Here, using a combination of biochemical/cellular, structural, and biophysical techniques, we demonstrate that endogenous RBP-J and RITA proteins interact in cells, map the binding regions necessary for RBP-J·RITA complex formation, and determine the X-ray structure of the RBP-J·RITA complex bound to DNA. To validate the structure and glean more insights into function, we tested structure-based RBP-J and RITA mutants with biochemical/cellular assays and isothermal titration calorimetry. Whereas our structural and biophysical studies demonstrate that RITA binds RBP-J similarly to the RAM (RBP-J-associated molecule) domain of Notch, our biochemical and cellular assays suggest that RITA interacts with additional regions in RBP-J. Taken together, these results provide molecular insights into the mechanism of RITA-mediated regulation of Notch signaling, contributing to our understanding of how CSL functions as a transcriptional repressor of Notch target genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice.

    Science.gov (United States)

    Bai, Bo; Zhao, Jie; Li, Yaping; Zhang, Fang; Zhou, Jinjun; Chen, Fan; Xie, Xianzhi

    2016-06-01

    B-box (BBX) proteins are zinc finger proteins containing B-box domains, which have roles in Arabidopsis growth and development. However, little is known concerning rice BBXs. Herein, we identified a rice BBX protein, Oryza sativa BBX14 (OsBBX14). OsBBX14 is highly expressed in flag leaf blades. OsBBX14 expression shows a diurnal rhythm under photoperiodic conditions and subsequent continuous white light. OsBBX14 is located in the nucleus and has transcriptional activation potential. OsBBX14-overexpression (OsBBX14-OX) lines exhibited delayed heading date under long-day (LD) and short-day (SD) conditions, whereas RNAi lines of OsBBX14 lines had similar heading dates to the WT. The florigen genes, Hd3a and RFT1, were downregulated in the OsBBX14-OX lines under LD and SD conditions. Under LD conditions, Hd1 was expressed higher in the OsBBX14-OX lines than in the wild type (WT), and the rhythmic expression of circadian clock genes, OsLHY and OsPRR1, was changed in OsBBX14-OX lines. Thus, OsBBX14 acts as a floral repressor by promoting Hd1 expression under LD conditions, probably because of crosstalk with the circadian clock. Under SD conditions, Ehd1 expression was reduced in OsBBX14-OX lines, but Hd1 and circadian clock gene expressions were unaffected, indicating that OsBBX14 acts as a repressor of Ehd1. Our findings suggested that OsBBX14 regulates heading date differently under LD and SD conditions.

  4. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression.

    Directory of Open Access Journals (Sweden)

    Hussein Atta

    Full Text Available Hepatocyte growth factor (HGF gene transfer inhibits liver fibrosis by regulating aberrant cellular functions, while mutant matrix metalloproteinase-9 (mMMP-9 enhances matrix degradation by neutralizing the elevated tissue inhibitor of metalloproteinase-1 (TIMP-1. It was shown that ASH1 and EZH2 methyltransferases are involved in development of liver fibrosis; however, their role in the resolution phase of liver fibrosis has not been investigated. This study evaluated the role of ASH1 and EZH2 in two mechanistically different therapeutic modalities, HGF and mMMP-9 gene transfer in CCl4 induced rat liver fibrosis. Liver fibrosis was induced in rats with twice a week intraperitoneal injection of CCl4 for 8 weeks. Adenovirus vectors encoding mMMP-9 or HGF genes were injected through tail vein at weeks six and seven and were sacrificed one week after the second injection. A healthy animal group was likewise injected with saline to serve as a negative control. Rats treated with mMMP-9 showed significantly lower fibrosis score, less Sirius red stained collagen area, reduced hydroxyproline and ALT concentration, decreased transforming growth factor beta 1 (TGF-β1 mRNA and lower labeling indices of α smooth muscle actin (α-SMA and proliferating cell nuclear antigen (PCNA stained cells compared with HGF- or saline-treated rats. Furthermore, TIMP-1 protein expression in mMMP-9 group was markedly reduced compared with all fibrotic groups. ASH1 and EZH2 protein expression was significantly elevated in fibrotic liver and significantly decreased in mMMP-9- and HGF-treated compared to saline-treated fibrotic livers with further reduction in the mMMP-9 group.Gene transfer of mMMP-9 and HGF reduced liver fibrosis in rats. ASH1 and EZH2 methyltransferases are significantly reduced in mMMP-9 and HGF treated rats which underlines the central role of these enzymes during fibrogenesis. Future studies should evaluate the role of selective pharmacologic inhibitors

  5. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    Science.gov (United States)

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  6. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability

    Science.gov (United States)

    Liu, Nan; Zhang, Zhuqiang; Jiang, Yonghua; Meng, Lingjun; Xiong, Jun; Zhao, Zuodong; Zhou, Xiaohua; Li, Jia; Li, Hong; Zheng, Yong; Chen, She; Cai, Tao; Gao, Shaorong

    2015-01-01

    GLP and G9a are major H3K9 dimethylases and are essential for mouse early embryonic development. GLP and G9a both harbor ankyrin repeat domains that are capable of binding H3K9 methylation. However, the functional significance of their recognition of H3K9 methylation is unknown. Here, we report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. These stimulation events function in cis and are dependent on the H3K9 methylation binding activities of ankyrin repeat domains of GLP and G9a. Disruption of the H3K9 methylation-binding activity of GLP in mice causes growth retardation of embryos, ossification defects of calvaria, and postnatal lethality due to starvation of the pups. In mouse embryonic stem cells (ESCs) harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes, including Oct4 and Nanog, display inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Collectively, our study reveals a new activation mechanism for GLP and G9a that plays an important role in ESC differentiation and mouse viability. PMID:25637356

  7. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    Science.gov (United States)

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  8. Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 (K1GAL4) [corrected

    OpenAIRE

    Zachariae, W; Kuger, P; Breunig, K D

    1993-01-01

    In the budding yeast Kluyveromyces lactis glucose repression of genes involved in lactose and galactose metabolism is primarily mediated by LAC9 (or K1GAL4) the homologue of the well-known Saccharomyces cerevisiae transcriptional activator GAL4. Phenotypic difference in glucose repression existing between natural strains are due to differences in the LAC9 gene (Breunig, 1989, Mol.Gen.Genet. 261, 422-427). Comparison between the LAC9 alleles of repressible and non-repressible strains revealed ...

  9. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...... and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression...

  10. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Sun Weiwei

    2011-01-01

    Full Text Available Abstract Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2, one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of

  11. Transcriptional regulation of the human IL5 gene by ionizing radiation in Jurkat T cells: evidence for repression by an NF-AT-like element.

    Science.gov (United States)

    Lu-Hesselmann, J; Messer, G; van Beuningen, D; Kind, P; Peter, R U

    1997-12-01

    Eosinophilia is often observed in patients with parasitic infections and atopic diseases like allergic asthma and atopic dermatitis. Additionally, it is a typical feature of the inflammatory reaction after therapeutic and accidental exposure to ionizing radiation. This uniquely specific phenomenon regulated by the cytokine interleukin 5 (IL-5) suggests specific control for IL5 gene expression. In this study, we generated promoter-CAT constructs containing different human IL-5 promoter regions spanning from positions -507 to +43. Transfection experiments in Jurkat T cells revealed that the promoter sequence from -57 to +43 was required for constitutive and inducible IL-5 promoter activity. Low baseline CAT activity could be enhanced by treatment with phenylmercuric acetate (PMA) or the combination of PMA and calcium ionophore. The promoter region between positions -97 and +43 showed responsiveness to low-dose X rays. Electrophoretic mobility shift assays demonstrated that the region from -117 to -97 was responsive to irradiation. Transcription factors specifically bound to this sequence showed a dose-dependent response to single doses of X rays between 1 and 8 Gy. Competition analysis indicated that the protein-DNA complexes at this region were related to the nuclear factor of activated T cells (NF-AT). Further confirmation was obtained by the addition of specific antibodies into protein-DNA reactions. For the first time, we have demonstrated that specific DNA binding of NF-ATp at the promoter region from -117 to -97 is involved in transcriptional regulation of the human IL5 gene in response to ionizing radiation.

  12. Cognitive predictors of language development in children with specific language impairment (SLI)

    NARCIS (Netherlands)

    Daal, J.G.H.L. van; Verhoeven, L.T.W.; Balkom, L.J.M. van

    2009-01-01

    Background: Language development is generally viewed as a multifactorial process. There are increasing indications that this similarly holds for the problematic language development process. Aims: A population of 97 young Dutch children with specific language impair? ment (SLI) was followed over a 2

  13. Development of morphosyntactic accuracy and grammatical complexity in dutch school-age children with SLI

    NARCIS (Netherlands)

    Zwitserlood, Rob; van Weerdenburg, Marjolijn; Verhoeven, Ludo; Wijnen, Frank

    2015-01-01

    Purpose: The purpose of this study was to identify the development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with specific language impairment (SLI). Method: Morphosyntactic accuracy, the use of dummy auxiliaries, and complex syntax were assessed using a nar

  14. Time-related grammatical use by children with SLI across languages: Beyond tense.

    Science.gov (United States)

    Leonard, Laurence B

    2015-03-12

    For years, investigators have studied the use of tense by children with specific language impairment (SLI). This review article provides a summary of research on the use of other time-related grammatical forms by these children. The literature on children's use of grammatical and lexical aspect, modal verbs and temporal adverbs is reviewed. Findings from children with SLI acquiring a range of different languages are considered. Grammatical aspect and lexical aspect appear to be special weaknesses in children with SLI and problems with lexical aspect may also have an adverse effect on these children's ability to use past tense morphology. Although children with SLI are below age level in their use of modal verbs and temporal adverbs, the available evidence suggests that these weaknesses are no greater than these children's more general limitations with language. The evidence thus far indicates that time-related notions further on the morphosyntactic end of the language continuum (aspect) are more problematic for these children than those time-related notions (modals, temporal adverbs) that include a pragmatic and/or semantic component. In some languages, aspect may prove to be a useful clinical marker of this disorder.

  15. Development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with SLI

    NARCIS (Netherlands)

    Zwitserlood, R.L.M.; Weerdenburg, M.W.C. van; Verhoeven, L.T.W.; Wijnen, F.N.K.

    2015-01-01

    Purpose: The purpose of this study was to identify the development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with specific language impairment (SLI). Method: Morphosyntactic accuracy, the use of dummy auxiliaries, and complex syntax were assessed using a nar

  16. Development of Morphosyntactic Accuracy and Grammatical Complexity in Dutch School-Age Children with SLI

    Science.gov (United States)

    Zwitserlood, Rob; van Weerdenburg, Marjolijn; Verhoeven, Ludo; Wijnen, Frank

    2015-01-01

    Purpose: The purpose of this study was to identify the development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with specific language impairment (SLI). Method: Morphosyntactic accuracy, the use of dummy auxiliaries, and complex syntax were assessed using a narrative task that was administered at three points…

  17. Past tense productivity in Dutch children with and without SLI: The role of morphophonology and frequency

    NARCIS (Netherlands)

    Rispens, J.E.; de Bree, E.H.

    2014-01-01

    This study focuses on morphophonology and frequency in past tense production. It was assessed whether Dutch five- and seven-year-old typically developing (TD) children and eight-year-old children with specific language impairment (SLI) produce the correct allomorph in regular, irregular, and novel

  18. Cognitive predictors of language development in children with specific language impairment (SLI)

    NARCIS (Netherlands)

    Daal, J.G.H.L. van; Verhoeven, L.T.W.; Balkom, L.J.M. van

    2009-01-01

    Background: Language development is generally viewed as a multifactorial process. There are increasing indications that this similarly holds for the problematic language development process. Aims: A population of 97 young Dutch children with specific language impair? ment (SLI) was followed over a

  19. Working memory performance and executive function behaviors in young children with SLI

    NARCIS (Netherlands)

    Vugs, B.A.M.; Hendriks, M.P.H.; Cuperus, J.M.; Verhoeven, L.T.W.

    2014-01-01

    The present study compared the performances of young children with specific language impairment (SLI) to that of typically developing (TD) children on cognitive measures of working memory (WM) and behavioral ratings of executive functions (EF). The Automated Working Memory Assessment was administere

  20. Identification of two SLI profiles through WISC - IV, CELF - 4 and FON

    Directory of Open Access Journals (Sweden)

    Ana B.Martínez

    2015-06-01

    Full Text Available This work has two objectives. First of all, to offer psychometric instruments that help more precisely identify and differentiate children with specific language impairment (SLI in the educational field and, secondly, to establish profiles of the two cases that illustrate the two current subtypes of SLI: phonologic-syntactic SLI and lexical-syntactic SLI. According to bibliographic reviews, the following tests are ideal for its identification:on the one hand the CELF-4, because language should be significantly the most affected area, the WISC – IV, an optimum test for the determination of the level of non-verbal reasoning, verbal comprehension, working memory and processing speed, and the FON, on a phonetic level, due to the level of analysis of the errors found. The results obtained in both cases corroborate a Perceptual Reasoning measured with WISC - IV, above 75, and the presence of a 1.5 deviation below average, in one of the three main scales of the CELF-4 (three in two cases: basic linguistic skills, receptive language and comprehensive language.

  1. The unified theory of repression.

    Science.gov (United States)

    Erdelyi, Matthew Hugh

    2006-10-01

    Repression has become an empirical fact that is at once obvious and problematic. Fragmented clinical and laboratory traditions and disputed terminology have resulted in a Babel of misunderstandings in which false distinctions are imposed (e.g., between repression and suppression) and necessary distinctions not drawn (e.g., between the mechanism and the use to which it is put, defense being just one). "Repression" was introduced by Herbart to designate the (nondefensive) inhibition of ideas by other ideas in their struggle for consciousness. Freud adapted repression to the defensive inhibition of "unbearable" mental contents. Substantial experimental literatures on attentional biases, thought avoidance, interference, and intentional forgetting exist, the oldest prototype being the work of Ebbinghaus, who showed that intentional avoidance of memories results in their progressive forgetting over time. It has now become clear, as clinicians had claimed, that the inaccessible materials are often available and emerge indirectly (e.g., procedurally, implicitly). It is also now established that the Ebbinghaus retention function can be partly reversed, with resulting increases of conscious memory over time (hypermnesia). Freud's clinical experience revealed early on that exclusion from consciousness was effected not just by simple repression (inhibition) but also by a variety of distorting techniques, some deployed to degrade latent contents (denial), all eventually subsumed under the rubric of defense mechanisms ("repression in the widest sense"). Freudian and Bartlettian distortions are essentially the same, even in name, except for motive (cognitive vs. emotional), and experimentally induced false memories and other "memory illusions" are laboratory analogs of self-induced distortions.

  2. The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3'UTR-mediated repression of the let-7 microRNA target gene, hbl-1.

    Science.gov (United States)

    Nolde, Mona J; Saka, Nazli; Reinert, Kristy L; Slack, Frank J

    2007-05-15

    The Puf family of RNA-binding proteins directs cell fates by regulating gene expression at the level of translation and RNA stability. Here, we report that the Caenorhabditis elegans pumilio homolog, puf-9, controls the differentiation of epidermal stem cells at the larval-to-adult transition. Genetic analysis reveals that loss-of-function mutations in puf-9 enhance the lethality and heterochronic phenotypes caused by mutations in the let-7 microRNA (miRNA), while suppressing the heterochronic phenotypes of lin-41, a let-7 target and homolog of Drosophila Brat. puf-9 interacts with another known temporal regulator hbl-1, the Caenorhabditis elegans ortholog of hunchback. We present evidence demonstrating that puf-9 is required for the 3'UTR-mediated regulation of hbl-1, in both the hypodermis and the ventral nerve cord. Finally, we show that this regulation is dependent on a region of the hbl-1 3'UTR that contains putative Puf family binding sites as well as binding sites for the let-7 miRNA family, suggesting that puf-9 and let-7 may mediate hypodermal seam cell differentiation by regulating common targets.

  3. Learning an invented inflectional morpheme in Spanish by children with typical language skills and with specific language impairment (SLI).

    Science.gov (United States)

    Anderson, R T

    2001-01-01

    Cross-linguistic research on SLI has suggested that how the disorder is manifested depends on the ambient language. For example, research on Italian indicates that SLI children do not present difficulties with verb inflection, when compared with MLU-matched peers. This pattern contrasts with what has been reported for English-speaking children. The present investigation sought to examine SLI children's use of inflectional morphology through a language teaching task similar to that used by Connell (1987) and Connell and Stone (1992). To address cross-linguistic differences, children were speakers of a language similar to Italian in its verb agreement paradigm. Sixteen Puerto Rican Spanish-speaking with SLI and 16 age-matched controls were taught a subject-verb agreement suffix that established the subject's gender. Half the children in each group were taught the new form via imitation. The rest of the participants were trained via a modeling procedure. Both comprehension and production of the target form were assessed. Results indicated significant differences across the SLI and typical groups for both comprehension and production of the inflectional morpheme, regardless of instructional strategy. These findings contradict what has been observed in previous studies on teaching an invented rule to children with SLI. They also suggest that inflectional morphology may be problematic even for children who are learning a morphologically rich language. The explanatory power of the process account and the linguistic account of SLI are explored as these pertain to the present findings, and suggestions for further research are discussed.

  4. Boron deficiency results in early repression of a cytokinin receptor gene and abnormal cell differentiation in the apical root meristem of Arabidopsis thaliana.

    Science.gov (United States)

    Abreu, Isidro; Poza, Laura; Bonilla, Ildefonso; Bolaños, Luis

    2014-04-01

    The development of Arabidopsis thaliana was dramatically altered within few hours following boron (B) deprivation. This effect was particularly evident in the apical root meristem. The essentiality of boron in plants has been clearly linked to its structural role in the cell wall, however the diversity and rapidity alterations of plant organogenesis when the micronutrient is absent suggest that B deficiency could also affect gene regulation during plant development. Therefore, the effect of B deficiency on cell elongation, apical root meristem cell division, and early differentiation of root tissues was investigated in A. thaliana seedlings. Dark-growth experiments indicated that hypocotyl elongation was inhibited 2 days after removing B, but apical root growth ceased almost immediately following B deprivation. Detection of cycline B1 by GUS staining of a promoter-reporter construct revealed that low B led to a reduced zone of cell division. The expression of CRE1/WOL/AHK4, encoding an integral membrane protein with histidine kinase domain that mediates cytokinin signaling and root xylem differentiation, was inhibited under B deficiency resulting in arrested xylem development at the protoxylem stage. Because the transition from cell division to cell differentiation in apical root meristems is controlled by cytokinins, this result support the hypothesis that signaling mechanisms during cell differentiation and organogenesis are highly sensitive to B deficiency, and together with previous reports that link the micronutrient with auxin or ethylene control of root architecture, suggests that B could play a role in regulation of hormone mediated early plant development signaling. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Rule of Repression in Chile.

    Science.gov (United States)

    American Indian Journal, 1979

    1979-01-01

    This report on the current condition of the Mapuche Indians of Chile is edited from a document on the "Situation of Human Rights in Chile" and details the repressive and inhumane treatment of the largest indigenous ethnic minority in the country. (Author/RTS)

  6. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive......The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...... complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate....

  7. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...... dynamic regulated genes, strongly suggesting that the interplay of different epigenetic pathways is essential in defining specific types of heritable chromatin and associated transcriptional states....

  8. PPARα Promotes Cancer Cell Glut1 Transcription Repression.

    Science.gov (United States)

    You, Mengli; Jin, Jianhua; Liu, Qian; Xu, QingGang; Shi, Juanjuan; Hou, Yongzhong

    2017-06-01

    Abundant nutrient availability including glucose and amino acids plays an important role in maintaining cancer cell energetic and biosynthetic pathways. As a nuclear receptor, peroxisome-proliferator-activated receptor α (PPARα) regulates inflammation and cancer progression, however, it is still unclear the interaction of PPARα with the cancer cell glucose metabolism. Here we found that PPARα reduced Glut1 (Glucose transporter 1) protein and gene levels in HCT-116, SW480, HeLa, and MCF-7 cancer cell lines. In contrast, silenced PPARα reversed this event. Further analysis shows that PPARα directly targeted the consensus PPRE motif of Glut1 promoter region resulting in Glut1 transcription repression. PPARα-mediated Glut1 transcription repression led to decreased influx of glucose in cancer cells. These findings revealed a novel mechanism of PPARα-mediated cancer cell Glut1 transcription repression. J. Cell. Biochem. 118: 1556-1562, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Emily Olorin

    2015-08-01

    Full Text Available Short linear motifs (SLiMs are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder and identifying occurrences/enrichment of known SLiMs (SLiMProb within this interactive framework. SLiMScape makes it easier to (1 generate high quality hypothesis-driven datasets for these tools, and (2 visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.

  10. PICKLE acts during germination to repress expression of embryonic traits

    Science.gov (United States)

    Li, Hui-Chun; Chuang, King; Henderson, James T.; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2008-01-01

    SUMMARY PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL - a fusion of PKL to the glucocorticoid receptor (PKL:GR) - was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis. PMID:16359393

  11. Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance.

    Science.gov (United States)

    McMurry, Laura M; Levy, Stuart B

    2010-08-01

    The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site ("marbox") at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.

  12. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.

    Science.gov (United States)

    Wontakal, Sandeep N; Guo, Xingyi; Smith, Cameron; MacCarthy, Thomas; Bresnick, Emery H; Bergman, Aviv; Snyder, Michael P; Weissman, Sherman M; Zheng, Deyou; Skoultchi, Arthur I

    2012-03-06

    Two mechanisms that play important roles in cell fate decisions are control of a "core transcriptional network" and repression of alternative transcriptional programs by antagonizing transcription factors. Whether these two mechanisms operate together is not known. Here we report that GATA-1, SCL, and Klf1 form an erythroid core transcriptional network by co-occupying >300 genes. Importantly, we find that PU.1, a negative regulator of terminal erythroid differentiation, is a highly integrated component of this network. GATA-1, SCL, and Klf1 act to promote, whereas PU.1 represses expression of many of the core network genes. PU.1 also represses the genes encoding GATA-1, SCL, Klf1, and important GATA-1 cofactors. Conversely, in addition to repressing PU.1 expression, GATA-1 also binds to and represses >100 PU.1 myelo-lymphoid gene targets in erythroid progenitors. Mathematical modeling further supports that this dual mechanism of repressing both the opposing upstream activator and its downstream targets provides a synergistic, robust mechanism for lineage specification. Taken together, these results amalgamate two key developmental principles, namely, regulation of a core transcriptional network and repression of an alternative transcriptional program, thereby enhancing our understanding of the mechanisms that establish cellular identity.

  13. Influence of phonology on morpho-syntax in Romance languages in children with Specific Language Impairment (SLI).

    Science.gov (United States)

    Aguilar-Mediavilla, Eva; Sanz-Torrent, Mònica; Serra-Raventós, Miquel

    2007-01-01

    The profiles of children with Specific Language Impairment (SLI) differ greatly according to the language they speak. The Surface Hypothesis attempts to explain these differences through the theory that children with SLI will incorrectly produce elements in their language with low phonological weights or that are produced in a non-canonical prosodic structure. Previous studies have shown that the most characteristics errors produced by Catalan and Spanish-speaking children with SLI include function word omission (morpho-syntax) and weak syllable omission (phonology). The omission of function words points to a morpho-syntactic explanation of SLI, while weak syllable omission supports a phonological explanation of SLI. Yet, function words are weak syllables; thus, it is possible that the same mechanism underlies both problems. Data were extracted from spontaneous language produced by five children with SLI and five comparison children matched for age and MLU-w. They were assessed on two occasions: at 3;10 and 4;9 years of age. These interviews were then transcribed and the morphological and phonological errors coded. A non-parametric mean analysis and various regression analyses were conducted. The results show that function word omission and weak syllable omission were the most characteristic errors made by Spanish and Catalan-speaking children with SLI and established that omissions increase as prosodic weight decreases. They also indicated that weak syllabic omission may explain most function word omissions. The data support the Surface Hypothesis and suggest that the same impaired mechanism may underlie the morphological and phonological problems SLI children display.

  14. An emergent account of language impairments in children with SLI: implications for assessment and intervention.

    Science.gov (United States)

    Evans, J L

    2001-01-01

    While current theoretical accounts of language impairments in children with specific language impairment (SLI) provide clear direction with regard to intervention goal setting, these same accounts say little with regard to the intervention process. Current developments in connectionist modeling and the extension of principles of dynamical systems theory to cognitive and language development have resulted in a new theory of language development known as emergentism. In contrast to traditional formal linguistic accounts, the emergentist view holds that language is a dynamic evolving system that can be represented as a distribution of probabilistic information. Language acquisition, from this perspective, emerges from the child's simultaneous integration of multiple acoustic, linguistic, social and communicative cues within the context of the communicative interaction. An alternative account of SLI grounded within this emergentist view is presented, and preliminary implications are explored with respect to assessment and intervention.

  15. Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding.

    Science.gov (United States)

    Balan, Nicolae; Osborn, Kay; Sinclair, Alison J

    2016-03-01

    Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part, this is mediated through downregulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. This repression is achieved through a reduction in CIITA promoter activity, initiated by the EBV transcription and replication factor, Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence-specific elements in promoters, enhancers and the replication origin (ZREs), and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here, we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter.

  16. Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast.

    Science.gov (United States)

    Chatterjee, Debashree; Sanchez, Ana M; Goldgur, Yehuda; Shuman, Stewart; Schwer, Beate

    2016-07-01

    Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA.

  17. Comment on "Multiple repressive mechanisms in the hippocampus during memory formation".

    Science.gov (United States)

    Mathew, Rebecca S; Mullan, Hillary; Blusztajn, Jan Krzysztof; Lehtinen, Maria K

    2016-07-29

    Cho et al. (Reports, 2 October 2015, p. 82) report that gene repression after contextual fear conditioning regulates hippocampal memory formation. We observe low levels of expression for many of the top candidate genes in the hippocampus and robust expression in the choroid plexus, as well as repression at 4 hours after contextual fear conditioning, suggesting the inclusion of choroid plexus messenger RNAs in Cho et al. hippocampal samples.

  18. Calculations of long-range three-body interactions for Li($2\\,^2S$)-Li($2\\,^2S$)-Li($2\\,^2P$)

    CERN Document Server

    Yan, Pei-Gen; Yan, Zong-Chao; Babb, James F

    2016-01-01

    General formulas for calculating the several leading long-range interactions among three identical atoms where two atoms are in identical $S$ states and the other atom is in a $P$ state are obtained using perturbation theory for the energies up to second order. The first order (dipolar) interactions depend on the geometrical configurations of the three atoms. In second order, additive and nonadditive dispersion interactions are obtained. The nonadditive interactions depend on the geometrical configurations in marked contrast to the case where all three atoms are in identical $S$ states, for which the nonadditive (also known as triple-dipole or as Axilrod-Muto-Teller) dispersion interactions appear at the third order. The formalism is demonstrated by the calculation of the coefficients for the Li($2\\,^2S$)-Li($2\\,^2S$)-Li($2\\,^{2}P$) system using variationally-generated atomic lithium wave functions in Hylleraas coordinates. The present dipolar coefficients and additive and nonadditive dispersion coefficients ...

  19. Failure to produce direct object clitic pronouns as a clinical marker of SLI in school-aged Italian speaking children.

    Science.gov (United States)

    Arosio, Fabrizio; Branchini, Chiara; Barbieri, Lina; Guasti, Maria Teresa

    2014-09-01

    We administrated a clitic elicitation task to 16 school-aged Italian speaking children with specific language impairment (SLI) in order to investigated whether the failure to produce third person direct object clitics (DO clitics) is a persistent clinical marker of SLI in Italian; we examined whether this failure also extends to reflexive clitics. Results show that Italian children with SLI aged 6 to 9;11 years fail to produce DO clitics and tend to produce a lexical noun introduced by a determiner (full DP) in the argument postverbal position instead of the pronoun; the production of reflexive clitics is preserved in the same population. Receiver operating characteristic curve analyses and computation of likelihood ratios show that the failure to produce DO clitics is a persistent good clinical marker of SLI in Italian. We argue that DO clitic production requires complex morphosyntactic operations that are hardly achieved by children with SLI; our findings are compatible with theories considering SLI as a deficit of processing complex linguistic relations.

  20. Correlation between PFGE Groups and mrp/epf/sly Genotypes of Human Streptococcus suis Serotype 2 in Northern Thailand.

    Science.gov (United States)

    Tharavichitkul, Prasit; Wongsawan, Kanreuthai; Takenami, Naoki; Pruksakorn, Sumalee; Fongcom, Achara; Gottschalk, Marcelo; Khanthawa, Banyong; Supajatura, Volaluk; Takai, Shinji

    2014-01-01

    Streptococcus suis infection is a severe zoonotic disease commonly found in Northern Thailand where people often consume raw pork and/or pig's blood. The most frequent clinical presentations are meningitis, sepsis, and endocarditis with higher rate of mortality and hearing loss sequelae. To clarify the correlation between pulsed-field gel electrophoresis (PFGE) groups and mrp/epf/sly genotypes of S. suis serotype 2, 62 patient and 4 healthy pig isolates from Northern Thailand were studied. By PFGE analysis, at 66% homology, most human isolates (69.4%) and 1 pig isolate were in group A, whereas 14.5% of human isolates and 3 out of 4 pig isolates were in group D. According to mrp/epf/sly genotypes, 80.6% of human isolates were identified in mrp (+) epf (-) sly (-) and only 12.9% were in mrp (-) epf (-) sly (+) genotypes; in contrast, 1 and 3 pig isolates were detected in these two genotypes, respectively. Interestingly, all isolates of S. suis serotype 2 classified in PFGE groups A, B, and E were set in mrp (+) epf (-) sly (-) genotypes. These data show a close correlation between PFGE groups and mrp/epf/sly genotypes of human S. suis serotype 2.

  1. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    Science.gov (United States)

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  2. A Simple Grammar Defines Activating and Repressing cis-Regulatory Elements in Photoreceptors

    Directory of Open Access Journals (Sweden)

    Michael A. White

    2016-10-01

    Full Text Available Transcription factors often activate and repress different target genes in the same cell. How activation and repression are encoded by different arrangements of transcription factor binding sites in cis-regulatory elements is poorly understood. We investigated how sites for the transcription factor CRX encode both activation and repression in photoreceptors by assaying thousands of genomic and synthetic cis-regulatory elements in wild-type and Crx−/− retinas. We found that sequences with high affinity for CRX repress transcription, whereas sequences with lower affinity activate. This rule is modified by a cooperative interaction between CRX sites and sites for the transcription factor NRL, which overrides the repressive effect of high affinity for CRX. Our results show how simple rearrangements of transcription factor binding sites encode qualitatively different responses to a single transcription factor and explain how CRX plays multiple cis-regulatory roles in the same cell.

  3. Snai1 represses Nanog to promote embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    F. Galvagni

    2015-06-01

    Full Text Available Embryonic stem cell (ESC self-renewal and pluripotency is maintained by an external signaling pathways and intrinsic regulatory networks involving ESC-specific transcriptional complexes (mainly formed by OCT3/4, Sox2 and Nanog proteins, the Polycomb repressive complex 2 (PRC2 and DNA methylation [1–8]. Among these, Nanog represents the more ESC specific factor and its repression correlates with the loss of pluripotency and ESC differentiation [9–11]. During ESC early differentiation, many development-associated genes become upregulated and although, in general, much is known about the pluripotency self-renewal circuitry, the molecular events that lead ESCs to exit from pluripotency and begin differentiation are largely unknown. Snai1 is one the most early induced genes during ESC differentiation in vitro and in vivo [12,13]. Here we show that Snai1 is able to directly repress several stemness-associated genes including Nanog. We use a ESC stable-line expressing a inducible Snai1 protein. We here show microarray analysis of embryonic stem cells (ESC expressing Snail-ER at various time points of induction with 4-OH. Data were deposited in Gene Expression Omnibus (GEO datasets under reference GSE57854 and here: http://epigenetics.hugef-research.org/data.php.

  4. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.

    Directory of Open Access Journals (Sweden)

    Ingrid E B Lawhorn

    Full Text Available The CRISPR (clustered regularly interspaced short palindromic repeats platform has been developed as a general method to direct proteins of interest to gene targets. While the native CRISPR system delivers a nuclease that cleaves and potentially mutates target genes, researchers have recently employed catalytically inactive CRISPR-associated 9 nuclease (dCas9 in order to target and repress genes without DNA cleavage or mutagenesis. With the intent of improving repression efficiency in mammalian cells, researchers have also fused dCas9 with a KRAB repressor domain. Here, we evaluated different genomic sgRNA targeting sites for repression of TP53. The sites spanned a 200-kb distance, which included the promoter, transcript sequence, and regions flanking the endogenous human TP53 gene. We showed that repression up to 86% can be achieved with dCas9 alone (i.e., without use of the KRAB domain by targeting the complex to sites near the TP53 transcriptional start site. This work demonstrates that efficient transcriptional repression of endogenous human genes can be achieved by the targeted delivery of dCas9. Yet, the efficiency of repression strongly depends on the choice of the sgRNA target site.

  5. Effect of verb argument structure on picture naming in children with and without specific language impairment (SLI)

    Science.gov (United States)

    Andreu, Llorenç; Sanz-Torrent, Mònica; Legaz, Lucia Buil; MacWhinney, Brian

    2014-01-01

    Background This study investigated verb argument structure effects in children with specific language impairment (SLI). Aims A picture-naming paradigm was used to compare the response times and naming accuracy for nouns and verbs with differing argument structure between Spanish-speaking children with and without language impairment. Methods & Procedures Twenty-four children with SLI (ages 5;3–8;2 [years;months]), 24 age-matched controls (ages 5;3–8;2), 24 MLU-w controls (ages 3;3–7;1 years), and 31 adults participated in a picture-naming study. Outcomes & Results The results show all groups produced more correct responses and were faster for nouns than all verbs together. As regards verb type accuracy, there were no differences between groups in naming one-argument verbs. However, for both two- and three-argument verbs, children with SLI were less accurate than adults and age-matched controls, but similar to the MLU-matched controls. For verb type latency, children with SLI were slower than both the age-matched controls and adults for one- and two-argument verbs, while no differences were found in three-argument verbs. No differences were found between children with SLI and MLU-matched controls for any verb type. Conclusions & Implications It has been shown that the naming of verbs is delayed in Spanish children with SLI. It is suggested that children with SLI may have problems encoding semantic representations. PMID:23121524

  6. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available BACKGROUND: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. METHODOLOGY/PRINCIPAL FINDINGS: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. CONCLUSIONS/SIGNIFICANCE: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  7. Prevalence of self-reported suicidal thoughts in SLiCA. The survey of living conditions in the Arctic (SLiCA

    Directory of Open Access Journals (Sweden)

    Ann Ragnhild Broderstad

    2011-11-01

    Full Text Available Objectives: The Survey of Living Condition in the Arctic (SLiCA is an international research project on health and living conditions among Arctic indigenous peoples. The main objective of this article is to examine the prevalence of self-reported suicide thoughts among the study population in Alaska, Greenland, Sweden and Norway. Study design: Population-based survey. Methods: Indigenous participants aged 16 years (15 years in Greenland and older living in traditional settlement regions in Alaska, Sweden and Norway and across the entire Greenland were invited to participate. Data were collected in three periods: in Alaska from January 2002 to February 2003, in Greenland from December 2003 to August 2006, in Sweden from spring 2004 to 2006 and in Norway in 2003 and from June 2006 to June 2008. The principal method in SLiCA was standardised face-to-face interviews using a questionnaire. A questionnaire had among other things, questions about health, education, traditional activities, ethnicity and suicidal thoughts. Results: Information about suicidal thoughts, gender and age were available in 2,099 participants between the ages of 16 and 84 from Alaska, Greenland, Sweden and Norway. Greenland had the highest rates of suicidal thoughts when adjusting for age and gender (p=0.003. When stratifying on age and gender, significant differences across countries were only found for females in the two youngest age groups. Differences in suicidal thoughts across countries could partly be explained by educational level. Conclusion: Swedish respondents had less suicidal thoughts than those in any other countries. In the future, analyses of suicidal thoughts should take socioeconomic status into account as well as self- reported health, depression and anxiety.

  8. Trans-inactivation: Repression in a wrong place.

    Science.gov (United States)

    Shatskikh, Aleksei S; Abramov, Yuriy A; Lavrov, Sergey A

    2016-08-19

    Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brown(Dominant) allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brown(Dominant) and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.

  9. Nitric oxide participates in plant flowering repression by ascorbate

    Science.gov (United States)

    Senthil Kumar, Rajendran; Shen, Chin-Hui; Wu, Pei-Yin; Suresh Kumar, Subbiah; Hua, Moda Sang; Yeh, Kai-Wun

    2016-01-01

    In Oncidium, redox homeostasis involved in flowering is mainly due to ascorbic acid (AsA). Here, we discovered that Oncidium floral repression is caused by an increase in AsA-mediated NO levels, which is directed by the enzymatic activities of nitrate reductase (NaR) and nitrite reducatase (NiR). Through Solexa transcriptomic analysis of two libraries, ‘pseudobulb with inflorescent bud’ (PIB) and ‘pseudobulb with axillary bud’ (PAB), we identified differentially expressed genes related to NO metabolism. Subsequently, we showed a significant reduction of NaR enzymatic activities and NO levels during bolting and blooming stage, suggesting that NO controlled the phase transition and flowering process. Applying AsA to Oncidium PLB (protocorm-like bodies) significantly elevated the NO content and enzyme activities. Application of sodium nitroprusside (-NO donor) on Arabidopsis vtc1 mutant caused late flowering and expression level of flowering-associated genes (CO, FT and LFY) were reduced, suggesting NO signaling is vital for flowering repression. Conversely, the flowering time of noa1, an Arabidopsis NO-deficient mutant, was not altered after treatment with L-galacturonate, a precursor of AsA, suggesting AsA is required for NO-biosynthesis involved in the NO-mediated flowering-repression pathway. Altogether, Oncidium bolting is tightly regulated by AsA-mediated NO level and downregulation of transcriptional levels of NO metabolism genes. PMID:27731387

  10. Early preschool processing abilities predict subsequent reading outcomes in bilingual Spanish-Catalan children with Specific Language Impairment (SLI).

    Science.gov (United States)

    Aguilar-Mediavilla, Eva; Buil-Legaz, Lucía; Pérez-Castelló, Josep A; Rigo-Carratalà, Eduard; Adrover-Roig, Daniel

    2014-01-01

    Children with Specific Language Impairment (SLI) have severe language difficulties without showing hearing impairments, cognitive deficits, neurological damage or socio-emotional deprivation. However, previous studies have shown that children with SLI show some cognitive and literacy problems. Our study analyses the relationship between preschool cognitive and linguistic abilities and the later development of reading abilities in Spanish-Catalan bilingual children with SLI. The sample consisted of 17 bilingual Spanish-Catalan children with SLI and 17 age-matched controls. We tested eight distinct processes related to phonological, attention, and language processing at the age of 6 years and reading at 8 years of age. Results show that bilingual Spanish-Catalan children with SLI show significantly lower scores, as compared to typically developing peers, in phonological awareness, phonological memory, and rapid automatized naming (RAN), together with a lower outcome in tasks measuring sentence repetition and verbal fluency. Regarding attentional processes, bilingual Spanish-Catalan children with SLI obtained lower scores in auditory attention, but not in visual attention. At the age of 8 years Spanish-Catalan children with SLI had lower scores than their age-matched controls in total reading score, letter identification (decoding), and in semantic task (comprehension). Regression analyses identified both phonological awareness and verbal fluency at the age of 6 years to be the best predictors of subsequent reading performance at the age of 8 years. Our data suggest that language acquisition problems and difficulties in reading acquisition in bilingual children with SLI might be related to the close interdependence between a limitation in cognitive processing and a deficit at the linguistic level. After reading this article, readers will be able to: identify their understanding of the relation between language difficulties and reading outcomes; explain how processing

  11. Grammatical tense deficits in children with SLI and nonspecific language impairment: relationships with nonverbal IQ over time.

    Science.gov (United States)

    Rice, Mabel L; Tomblin, J Bruce; Hoffman, Lesa; Richman, W Allen; Marquis, Janet

    2004-08-01

    The relationship between children's language acquisition and their nonverbal intelligence has a long tradition of scientific inquiry. Current attention focuses on the use of nonverbal IQ level as an exclusionary criterion in the definition of specific language impairment (SLI). Grammatical tense deficits are known as a clinical marker of SLI, but the relationship with nonverbal intelligence below the normal range has not previously been systematically studied. This study documents the levels of grammatical tense acquisition (for third-person singular -s, regular and irregular past tense morphology) in a large, epidemiologically ascertained sample of kindergarten children that comprises 4 groups: 130 children with SLI, 100 children with nonspecific language impairments (NLI), 73 children with low cognitive levels but language within normal limits (LC), and 117 unaffected control children. The study also documents the longitudinal course of acquisition for the SLI and NLI children between the ages of 6 and 10 years. The LC group did not differ from the unaffected controls at kindergarten, showing a dissociation of nonverbal intelligence and grammatical tense marking, so that low levels of nonverbal intelligence did not necessarily yield low levels of grammatical tense. The NLI group's level of performance was lower than that of the SLI group and showed a greater delay in resolution of the overgeneralization phase of irregular past tense mastery, indicating qualitative differences in growth. Implications for clinical groupings for research and clinical purposes are discussed.

  12. Adolescents with a history of specific language impairment (SLI): strengths and difficulties in social, emotional and behavioral functioning.

    Science.gov (United States)

    Conti-Ramsden, Gina; Mok, Pearl L H; Pickles, Andrew; Durkin, Kevin

    2013-11-01

    Adolescents with specific language impairment (SLI) are at a greater risk of emotional and behavioral problems compared to their typically developing (TD) peers, but little is known about their self-perceived strengths and difficulties. In this study, the self-reported social, emotional and behavioral functioning of 139 adolescents with a history of SLI and 124 TD individuals at age 16 was examined. The self-report version of the Strengths and Difficulties Questionnaire (SDQ) was used to assess their prosocial behavior and levels of peer, emotional and behavioral difficulties. Associations of these areas of functioning with gender, verbal and non-verbal skills were also investigated. Adolescents with a history of SLI were more likely than their TD peers to report higher levels of peer problems, emotional symptoms, hyperactivity and conduct problems. The majority of adolescents in both groups (87% SLI and 96% TD), however, reported prosocial behavior within the typical range. Difficulty with peer relations was the strongest differentiator between the groups, with the odds of reporting borderline or abnormally high levels of peer problems being 12 times higher for individuals with a history of SLI. Adolescents with poorer receptive language skills were also more likely to report higher levels of emotional and behavioral difficulties. The findings of this study identify likely traits that may lead to referral to services. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. ARTICULATION CHARACTERISTICS IN CHILDREN SUFFERING FROM SLI IN EARLY SCHOOL AGE

    Directory of Open Access Journals (Sweden)

    Ana POPOSKA

    2009-11-01

    Full Text Available Getting closer to the articulation segment of SLI is important for diagnosis of children in early school age. Phonologic and articulation status of this population is specific, and acknowledging it, will secure adequate rehabilitation.The theory offers wide analysis of physiology of all speech-language aspects of the developmental period, as well as its pathology. The emphasis is put on the articulation segment in children with SLI.The goal of this study was to establish direct relation between speech-language development delay and the process of sound forming in children with SLI, and in the same time comparing it with the normal speech-language development.In this study a group of 35 children with SLI, and a group of 35 children without this problem were included.The examination was performed with four relevant tests: Global articulation test, Test for examining articulation, Articulation test for analytic estimation of phonologic and articulation disorders and Test for understanding speech.For processing data from empiric frequencies for specific categories in both tested groups, c2 test was used. In the same time, establishing correlation level between groups of different characteristics in examinees, quotient of contingency was included. Since the necessary confirmation of results correlation among different test results scored in both groups, Pearson test of correlation was also used. The results showed some important characteristics of phonologic-articulation disorders. Children suffering from SLI have approximately 20 well pronounced sounds. The biggest problem is pronunciation of sounds from fricative and affricate group, medial position of sound in a word, and the most frequent sound disorder is substitution. Detailed analysis resulted with dominant problem with the place of sound production, except in cases of sound mispronunciation of vowels and nasals.When estimating sound quality in word and sentence order, deviation of

  14. Requirements of Multiple Domains of SLI-1, a Caenorhabditis elegans Homologue of c-Cbl, and an Inhibitory Tyrosine in LET-23 in Regulating Vulval Differentiation

    Science.gov (United States)

    Yoon, Charles H.; Chang, Chieh; Hopper, Neil A.; Lesa, Giovanni M.; Sternberg, Paul W.

    2000-01-01

    SLI-1, a Caenorhabditis elegans homologue of the proto-oncogene product c-Cbl, is a negative regulator of LET-23-mediated vulval differentiation. Lack of SLI-1 activity can compensate for decreased function of the LET-23 epidermal growth factor receptor, the SEM-5 adaptor, but not the LET-60 RAS, suggesting that SLI-1 acts before RAS activation. SLI-1 and c-Cbl comprise an N-terminal region (termed SLI-1:N/Cbl-N, containing a four-helix bundle, an EF hand calcium-binding domain, and a divergent SH2 domain) followed by a RING finger domain and a proline-rich C-terminus. In a transgenic functional assay, the proline-rich C-terminal domain is not essential for sli-1(+) function. A protein lacking the SH2 and RING finger domains has no activity, but a chimeric protein with the SH2 and RING finger domains of SLI-1 replaced by the equivalent domains of c-Cbl has activity. The RING finger domain of c-Cbl has been shown recently to enhance ubiquitination of active RTKs by acting as an E3 ubiquitin–protein ligase. We find that the RING finger domain of SLI-1 is partially dispensable. Further, we identify an inhibitory tyrosine of LET-23 requiring sli-1(+) for its effects: removal of this tyrosine closely mimics the loss of sli-1 but not of another negative regulator, ark-1. Thus, we suggest that this inhibitory tyrosine mediates its effects through SLI-1, which in turn inhibits signaling upstream of LET-60 RAS in a manner not wholly dependent on the ubiquitin–ligase domain. PMID:11071924

  15. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.

    Science.gov (United States)

    Kaluarachchi, Harini; Altenstein, Matthias; Sugumar, Sonia R; Balbach, Jochen; Zamble, Deborah B; Haupt, Caroline

    2012-03-16

    SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis.

  16. Theory of mind in SLI revisited: links with syntax, comparisons with ASD.

    Science.gov (United States)

    Durrleman, Stephanie; Burnel, Morgane; Reboul, Anne

    2017-05-04

    According to the linguistic determinism approach, knowledge of sentential complements such as: John says that the earth is flat plays a crucial role in theory of mind (ToM) development by providing a means to represent explicitly people's mental attitudes and beliefs. This approach predicts that mastery of complements determines successful belief reasoning across explicit ToM tasks, even low-verbal ones, and across populations. (1) To investigate the link between a low-verbal ToM-task and complements in Specific Language Impairment (SLI), (2) To determine whether this population shows similar ToM performance to that of children with Autism Spectrum Disorder (ASD) or those with Typical Development (TD) once these groups are matched on competency for complements, (3) To explore whether complements conveying a falsehood without jeopardizing the veracity of the entire sentence, such as complements of verbs of communication, are more crucial for belief attribution than complements which do not have this property, namely complements of verbs of perception, (?John sees that the earth is flat). Children with SLI (n = 20), with ASD (n = 34) and TD (n = 30) completed sentence-picture-matching tasks assessing complementation with communication and perception verbs, as well as a picture-sequencing task assessing ToM. Children were furthermore evaluated for general grammatical and lexical abilities and non-verbal IQ. Results reveal that competency on complements relates to ToM performance with a low-verbal task in SLI, and that SLI, ASD and TD groups of equivalent performance on complements also perform similarly for ToM. Results further suggest that complements with an independent truth-value are the only ones to show a significant relation to ToM performance after teasing out the impact of non-verbal reasoning. This study suggests that clinical groups of different aetiologies as well as TD children perform comparably for ToM once they have similar complementation skills

  17. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination...

  18. The link between prosody and language skills in children with specific language impairment (SLI) and/or dyslexia.

    Science.gov (United States)

    Marshall, C R; Harcourt-Brown, S; Ramus, F; van der Lely, H K J

    2009-01-01

    Children with specific language impairment (SLI) and dyslexia are known to have impairments in various aspects of phonology, which have been claimed to cause their language and literacy impairments. However, 'phonology' encompasses a wide range of skills, and little is known about whether these phonological impairments extend to prosody. To investigate certain prosodic abilities of children with SLI and/or dyslexia, to determine whether such children have prosodic impairments, whether they have the same pattern of impairments, and whether prosodic impairments are related to language and literacy deficits. Six subtests of the Profiling Elements of Prosodic Systems - Child version (PEPS-C) were used to investigate discrimination/comprehension and imitation/production of prosodic forms that were either independent of language or that had one of two linguistic functions: chunking (prosodic boundaries) and focus (contrastive stress). The performance of three groups of 10-14-year-old children with SLI plus dyslexia, SLI, and dyslexia were compared with an age-matched control group and two younger control groups matched for various aspects of language and reading. The majority of children with SLI and/or dyslexia performed well on the tasks that tested auditory discrimination and imitation of prosodic forms. However, their ability to use prosody to disambiguate certain linguistic structures was impaired relative to age-matched controls, although these differences disappeared in comparison with language-matched controls. No, or only very weak, links were found between prosody and language and literacy skills in children with SLI and/or dyslexia. Children with SLI and/or dyslexia aged 10-14 years show an impaired ability to disambiguate linguistic structures for which prosody is required. However, they are able on the whole to discriminate and imitate the actual prosodic structures themselves, without reference to linguistic meaning. While the interaction between prosody

  19. Receptive vocabulary and semantic knowledge in children with SLI and children with Down syndrome.

    Science.gov (United States)

    Laws, Glynis; Briscoe, Josie; Ang, Su-Yin; Brown, Heather; Hermena, Ehab; Kapikian, Anna

    2015-01-01

    Receptive vocabulary and associated semantic knowledge were compared within and between groups of children with specific language impairment (SLI), children with Down syndrome (DS), and typically developing children. To overcome the potential confounding effects of speech or language difficulties on verbal tests of semantic knowledge, a novel task was devised based on picture-based semantic association tests used to assess adult patients with semantic dementia. Receptive vocabulary, measured by word-picture matching, of children with SLI was weak relative to chronological age and to nonverbal mental age but their semantic knowledge, probed across the same lexical items, did not differ significantly from that of vocabulary-matched typically developing children. By contrast, although receptive vocabulary of children with DS was a relative strength compared to nonverbal cognitive abilities (p vocabulary and depth of semantic knowledge. Overall, these data challenge the integrity of semantic-conceptual development in DS and imply that contemporary theories of semantic cognition should also seek to incorporate evidence from atypical conceptual development.

  20. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available BACKGROUND: Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha. METHODOLOGY/PRINCIPAL FINDINGS: To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function. CONCLUSION/SIGNIFICANCE: Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  1. Subject-Verb Agreement and Phonological Processing in Developmental Dyslexia and Specific Language Impairment (SLI): A Closer Look

    Science.gov (United States)

    Rispens, Judith; Been, Pieter

    2007-01-01

    Background: Problems with subject-verb agreement and phonological (processing) skills have been reported to occur in children with specific language impairment (SLI) and in those with developmental dyslexia, but only a few studies have compared such problems in these two groups. Previous studies have claimed a causal relationship between…

  2. Effect of Verb Argument Structure on Picture Naming in Children with and without Specific Language Impairment (SLI)

    Science.gov (United States)

    Andreu, Llorenc; Sanz-Torrent, Monica; Legaz, Lucia Buil; MacWhinney, Brian

    2012-01-01

    Background: This study investigated verb argument structure effects in children with specific language impairment (SLI). Aims: A picture-naming paradigm was used to compare the response times and naming accuracy for nouns and verbs with differing argument structure between Spanish-speaking children with and without language impairment. Methods &…

  3. Correlation between PFGE Groups and mrp/epf/sly Genotypes of Human Streptococcus suis Serotype 2 in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Prasit Tharavichitkul

    2014-01-01

    Full Text Available Streptococcus suis infection is a severe zoonotic disease commonly found in Northern Thailand where people often consume raw pork and/or pig’s blood. The most frequent clinical presentations are meningitis, sepsis, and endocarditis with higher rate of mortality and hearing loss sequelae. To clarify the correlation between pulsed-field gel electrophoresis (PFGE groups and mrp/epf/sly genotypes of S. suis serotype 2, 62 patient and 4 healthy pig isolates from Northern Thailand were studied. By PFGE analysis, at 66% homology, most human isolates (69.4% and 1 pig isolate were in group A, whereas 14.5% of human isolates and 3 out of 4 pig isolates were in group D. According to mrp/epf/sly genotypes, 80.6% of human isolates were identified in mrp+epf−sly− and only 12.9% were in mrp−epf−sly+ genotypes; in contrast, 1 and 3 pig isolates were detected in these two genotypes, respectively. Interestingly, all isolates of S. suis serotype 2 classified in PFGE groups A, B, and E were set in mrp+epf−sly− genotypes. These data show a close correlation between PFGE groups and mrp/epf/sly genotypes of human S. suis serotype 2.

  4. Effects of Immediate and Cumulative Syntactic Experience in Language Impairment: Evidence from Priming of Subject Relatives in Children with SLI

    Science.gov (United States)

    Garraffa, Maria; Coco, Moreno I.; Branigan, Holly P.

    2015-01-01

    We investigated the production of subject relative clauses (SRc) in Italian pre-school children with Specific Language Impairment (SLI) and age-matched typically-developing children (TD) controls. In a structural priming paradigm, children described pictures after hearing the experimenter produce a bare noun or an SRc description, as part of a…

  5. A Method for Assessing the Use of First Person Verb Forms by Preschool-Aged Children with SLI

    Science.gov (United States)

    Polite, Elgustus J.; Leonard, Laurence B.

    2007-01-01

    Children with specific language impairment (SLI) often have extraordinary difficulty in the use of tense and agreement morphemes. Because spontaneous speech samples may not provide a sufficient number of obligatory contexts for these morphemes, structured probe items are often employed. However, these usually emphasize actions that can be readily…

  6. Subject-verb agreement and phonological processing in developmental dyslexia and specific language impairment (SLI) : a closer look

    NARCIS (Netherlands)

    Rispens, Judith; Been, Pieter

    2007-01-01

    Background: Problems with subject-verb agreement and phonological ( processing) skills have been reported to occur in children with specific language impairment (SLI) and in those with developmental dyslexia, but only a few studies have compared such problems in these two groups. Previous studies ha

  7. Communication, Listening, Cognitive and Speech Perception Skills in Children with Auditory Processing Disorder (APD) or Specific Language Impairment (SLI)

    Science.gov (United States)

    Ferguson, Melanie A.; Hall, Rebecca L.; Riley, Alison; Moore, David R.

    2011-01-01

    Purpose: Parental reports of communication, listening, and behavior in children receiving a clinical diagnosis of specific language impairment (SLI) or auditory processing disorder (APD) were compared with direct tests of intelligence, memory, language, phonology, literacy, and speech intelligibility. The primary aim was to identify whether there…

  8. Language and Social Factors in the Use of Cell Phone Technology by Adolescents with and without Specific Language Impairment (SLI)

    Science.gov (United States)

    Conti-Ramsden, Gina; Durkin, Kevin; Simkin, Zoe

    2010-01-01

    Purpose: This study aimed to compare cell phone use (both oral and text-based) by adolescents with and without specific language impairment (SLI) and examine the extent to which language and social factors affect frequency of use. Method: Both interview and diary methods were used to compare oral and text-based communication using cell phones by…

  9. Subject-verb agreement and phonological processing in developmental dyslexia and specific language impairment (SLI) : a closer look

    NARCIS (Netherlands)

    Rispens, Judith; Been, Pieter

    2007-01-01

    Background: Problems with subject-verb agreement and phonological ( processing) skills have been reported to occur in children with specific language impairment (SLI) and in those with developmental dyslexia, but only a few studies have compared such problems in these two groups. Previous studies

  10. A longitudinal study of behavioral, emotional and social difficulties in individuals with a history of specific language impairment (SLI).

    Science.gov (United States)

    St Clair, Michelle C; Pickles, Andrew; Durkin, Kevin; Conti-Ramsden, Gina

    2011-01-01

    Children with specific language impairment (SLI) have often been reported to have associated behavioral, emotional and social difficulties. Most previous studies involve observations at a single time point, or cross sectional designs, and longitudinal evidence of the developmental trajectories of particular difficulties is limited. The Strengths and Difficulties Questionnaire was used to measure behavioral (hyperactivity and conduct), emotional and social (peer) problems in a sample of individuals with a history of SLI at four time points from childhood (age 7) to adolescence (age 16). A decrease in behavioral and emotional problems was observed from childhood to adolescence, although emotional problems were still evident in adolescence. In contrast, there was an increase in social problems. Reading skills and expressive language were related only to behavioral problems. Pragmatic abilities were related to behavioral, emotional and social difficulties. As a group, those with a history of SLI have poorer long term social and, to a lesser extent, emotional outcomes. In contrast, behavioral difficulties appear to decrease to normative levels by adolescence. Different aspects of early language abilities and reading skills exert different types and degrees of influence on behavioral, emotional and social difficulties. Readers will be able to: (1) understand the types of behavioral, emotional and social difficulties present in individuals with a history of SLI; (2) be familiar with the developmental trajectory of these difficulties from childhood to adolescence; and (3) understand the relationships between behavioral, emotional and social difficulties and early language and literacy ability. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Beyond Capacity Limitations: Determinants of Word Recall Performance on Verbal Working Memory Span Tasks in Children with SLI

    Science.gov (United States)

    Mainela-Arnold, Elina; Evans, Julia L.

    2005-01-01

    Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that…

  12. Cross-Linguistic Transfer Effects after Phonologically Based Cognate Therapy in a Case of Multilingual Specific Language Impairment (SLI)

    Science.gov (United States)

    Kambanaros, Maria; Michaelides, Michalis; Grohmann, Kleanthes K.

    2017-01-01

    Background: Clinicians globally recognize as exceptionally challenging the development of effective intervention practices for bi- or multilingual children with specific language impairment (SLI). Therapy in both or all of an impaired child's languages is rarely possible. An alternative is to develop treatment protocols that facilitate the…

  13. Effect of Verb Argument Structure on Picture Naming in Children with and without Specific Language Impairment (SLI)

    Science.gov (United States)

    Andreu, Llorenc; Sanz-Torrent, Monica; Legaz, Lucia Buil; MacWhinney, Brian

    2012-01-01

    Background: This study investigated verb argument structure effects in children with specific language impairment (SLI). Aims: A picture-naming paradigm was used to compare the response times and naming accuracy for nouns and verbs with differing argument structure between Spanish-speaking children with and without language impairment. Methods…

  14. Effects of Immediate and Cumulative Syntactic Experience in Language Impairment: Evidence from Priming of Subject Relatives in Children with SLI

    Science.gov (United States)

    Garraffa, Maria; Coco, Moreno I.; Branigan, Holly P.

    2015-01-01

    We investigated the production of subject relative clauses (SRc) in Italian pre-school children with Specific Language Impairment (SLI) and age-matched typically-developing children (TD) controls. In a structural priming paradigm, children described pictures after hearing the experimenter produce a bare noun or an SRc description, as part of a…

  15. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B.

    1996-01-01

    The MIG1 gene was disrupted in a haploid laboratory strain (B224) and in an industrial polyploid strain (DGI 342) of Saccharomyces cerevisiae. The alleviation of glucose repression of the expression of MAL genes and alleviation of glucose control of maltose metabolism were investigated in batch...... cultivations on glucose-maltose mixtures. In the MIG1-disrupted haploid strain, glucose repression was partly alleviated; i.e., maltose metabolism was initiated at higher glucose concentrations than in the corresponding wild-type strain. In contrast, the polyploid Delta mig1 strain exhibited an even more...... of glucose repression of the SUC genes. The disruption of MIG1 was shown to bring about pleiotropic effects, manifested in changes in the pattern of secreted metabolites and in the specific growth rate....

  16. An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    Science.gov (United States)

    Du, Dan; Qi, Lei S

    2016-01-04

    CRISPR interference/activation (CRISPRi/a) technology provides a simple and efficient approach for targeted repression or activation of gene expression in the mammalian genome. It is highly flexible and programmable, using an RNA-guided nuclease-deficient Cas9 (dCas9) protein fused with transcriptional regulators for targeting specific genes to effect their regulation. Multiple studies have shown how this method is an effective way to achieve efficient and specific transcriptional repression or activation of single or multiple genes. Sustained transcriptional modulation can be obtained by stable expression of CRISPR components, which enables directed reprogramming of cell fate. Here, we introduce the basics of CRISPRi/a technology for genome repression or activation.

  17. Repression and activation by multiprotein complexes that alter chromatin structure.

    Science.gov (United States)

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  18. Transcriptional Repression of Catalase in Mouse Skin Tumor Progression

    Directory of Open Access Journals (Sweden)

    Kevin A. Kwei

    2004-09-01

    Full Text Available Previous studies in our laboratory have shown that the elevation of reactive oxygen species levels and the repression of the antioxidant enzyme, catalase, played a critical role in the in vitro progression of benign papilloma cells to malignant carcinoma cells. Catalase message, protein levels, and activity levels were found to be downregulated in the malignantly progressed cells. The goal of this study is to further characterize the repression of catalase in malignant progression of mouse skin tumors. To validate the in vitro observations, we examined catalase expression in tumor samples generated by the multistep chemical carcinogenesis protocol. Higher levels of catalase mRNA and protein were observed in benign papillomas versus malignant carcinomas. Nuclear run-on analysis showed that catalase repression in the cultured malignant cells was transcription-dependent. Results from luciferase reporter assays indicated that malignant cells have lower catalase promoter activities than benign papilloma cells, in part through the Wilm's tumor suppressor 1 (WT1 binding site within the proximal promoter region. The WTi protein levels were found to be inversely correlated with the observed catalase promoter activities, with higher levels observed in the malignant cells versus the benign cells. These results led us to conclude that WTi is acting as a transcription repressor in catalase gene regulation during tumor progression.

  19. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.

    Science.gov (United States)

    Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R

    2006-11-01

    The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.

  20. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    Full Text Available BACKGROUND: The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity. METHODOLOGY: The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE. RESULTS: AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment. CONCLUSION: We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  1. Translational repression by PUF proteins in vitro.

    Science.gov (United States)

    Chritton, Jacqueline J; Wickens, Marvin

    2010-06-01

    PUF (Pumilio and FBF) proteins provide a paradigm for mRNA regulatory proteins. They interact with specific sequences in the 3' untranslated regions (UTRs) of target mRNAs and cause changes in RNA stability or translational activity. Here we describe an in vitro translation assay that reconstitutes the translational repression activity of canonical PUF proteins. In this system, recombinant PUF proteins were added to yeast cell lysates to repress reporter mRNAs bearing the 3'UTRs of specific target mRNAs. PUF proteins from Saccharomyces cerevisiae and Caenorhabditis elegans were active in the assay and were specific by multiple criteria. Puf5p, a yeast PUF protein, repressed translation of four target RNAs. Repression mediated by the HO 3'UTR was particularly efficient, due to a specific sequence in that 3'UTR. The sequence lies downstream from the PUF binding site and does not affect PUF protein binding. PUF-mediated repression was sensitive to the distance between the ORF and the regulatory elements in the 3'UTR: excessive distance decreased repression activity. Our data demonstrate that PUF proteins function in vitro across species, that different mRNA targets are regulated differentially, and that specific ancillary sequences distinguish one yeast mRNA target from another. We suggest a model in which PUF proteins can control translation termination or elongation.

  2. Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4.

    Science.gov (United States)

    Kim, Eun-Hye; Kim, In-Hye; Ha, Jung-Ah; Choi, Kwang-Tae; Pyo, Suhkneung; Rhee, Dong-Kwon

    2013-07-01

    Ginseng is known to have antistress effects. Previously, red ginseng (RG) was shown to repress stress-induced peptidyl arginine deiminase type IV (PADI4) via estrogen receptor β (ERβ) in the brain, thus inhibiting brain cell apoptosis. Moreover, tumor necrosis factor (TNF)-α plays a critical role in immobilization (IMO) stress. However, the signaling pathway of RG-mediated repressesion of inflammation is not completely understood. In this study, we determined how RG modulated gene expression in stressed brain cells. Since secretion of TNF-α is modulated via TNF-α converting enzyme (TACE) and nuclear factor (NF)-κB, we examined the inflammatory pathway in stressed brain cells. Immunohistochemistry revealed that TACE was induced by IMO stress, but RG repressed TACE induction. Moreover, PADI4 siRNA repressed TACE expression compared to the mock transfected control suggesting that PADI4 was required for TACE expression. A reporter assay also revealed that H2O2 oxidative stress induced NF-κB in neuroblastoma SK-N-SH cells, however, RG pretreatment repressed NF-κB induction. These findings were supported by significant induction of nitric oxide and reactive oxygen species (ROS) by oxidative stress, which could be repressed by RG administration. Taken together, RG appeared to repress stress-induced PADI4 via TACE and NF-κB in brain cells thus preventing production of ROS and subsequently protecting brain cells from apoptosis.

  3. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, E.S.S. de [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Vasques, L.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Stabellini, R.; Krepischi, A.C.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Pereira, L.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-10-17

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.

  4. microRNAs-powerful repression comes from small RNAs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally. miRNAs comprise one of the major non-coding RNA families, whose diverse bio- logical functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression. miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regu- lation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a new dimension to our understanding about the complex gene regulatory networks.

  5. microRNAs- powerful repression comes from small RNAs

    Institute of Scientific and Technical Information of China (English)

    MA Cong; LIU YuFei; HE Lin

    2009-01-01

    microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally, miRNAs comprise one of the major non-coding RNA families, whose diverse bio-logical functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression.miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regu-lation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a now dimension to our understanding about the complex gene regulatory networks.

  6. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  7. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression

    DEFF Research Database (Denmark)

    Radzisheuskaya, Aliaksandra; Shlyueva, Daria; Müller, Iris

    2016-01-01

    CRISPR interference (CRISPRi) represents a newly developed tool for targeted gene repression. It has great application potential for studying gene function and mapping gene regulatory elements. However, the optimal parameters for efficient single guide RNA (sgRNA) design for CRISPRi are not fully...

  8. Activated Glucocorticoid Receptor Interacts with the INHAT Component Set/TAF-Iβ and Releases it from a Glucocorticoid-responsive Gene Promoter, Relieving Repression: Implications for the Pathogenesis of Glucocorticoid Resistance in Acute Undifferentiated Leukemia with Set-Can Translocation

    Science.gov (United States)

    Ichijo, Takamasa; Chrousos, George P.; Kino, Tomoshige

    2008-01-01

    SUMMARY Set/template-activating factor (TAF)-Iβ, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Iβ interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Iβ was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Iβ from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Iβ acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids. PMID:18096310

  9. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    Science.gov (United States)

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  10. Fabricating 40 µm-thin silicon solar cells with different orientations by using SLiM-cut method

    Science.gov (United States)

    Wang, Teng-Yu; Chen, Chien-Hsun; Shiao, Jui-Chung; Chen, Sung-Yu; Du, Chen-Hsun

    2017-10-01

    Thin silicon foils with different crystal orientations were fabricated using the stress induced lift-off (SLiM-cut) method. The thickness of the silicon foils was approximately 40 µm. The ≤ft foil had a smoother surface than the ≤ft foil. With surface passivation, the minority carrier lifetimes of the ≤ft and ≤ft silicon foil were 1.0 µs and 1.6 µs, respectively. In this study, 4 cm2-thin silicon solar cells with heterojunction structures were fabricated. The energy conversion efficiencies were determined to be 10.74% and 14.74% for the ≤ft and ≤ft solar cells, respectively. The surface quality of the silicon foils was determined to affect the solar cell character. This study demonstrated that fabricating the solar cell by using silicon foil obtained from the SLiM-cut method is feasible.

  11. Who did Buzz see someone? Grammaticality judgement of wh-questions in typically developing children and children with Grammatical-SLI

    Science.gov (United States)

    van der Lely, Heather K.J.; Jones, Melanie; Marshall, Chloë R.

    2011-01-01

    This paper tests claims that children with Grammatical(G)-SLI are impaired in hierarchical structural dependencies at the clause level and in whatever underlies such dependencies with respect to movement, chain formation and feature checking; that is, their impairment lies in the syntactic computational system itself (the Computational Grammatical Complexity hypothesis proposed by van der Lely in previous work). We use a grammaticality judgement task to test whether G-SLI children's errors in wh-questions are due to the hypothesised impairment in syntactic dependencies at the clause level or lie in more general processes outside the syntactic system, such as working memory capacity. We compare the performance of 14 G-SLI children (aged 10–17 years) with that of 36 younger language-matched controls (aged 5–8 years). We presented matrix wh-subject and object questions balanced for wh-words (who/what/which) that were grammatical, ungrammatical, or semantically inappropriate. Ungrammatical questions contained wh-trace or T-to-C dependency violations that G-SLI children had previously produced in elicitation tasks. G-SLI children, like their language controls, correctly accepted grammatical questions, but rejected semantically inappropriate ones. However, they were significantly impaired in rejecting wh-trace and T-to-C dependency violations. The findings provide further support for the CGC hypothesis that G-SLI children have a core deficit in the computational system itself that affects syntactic dependencies at the clause level. PMID:21318176

  12. Cross-linguistic transfer effects after phonologically based cognate therapy in a case of multilingual specific language impairment (SLI).

    Science.gov (United States)

    Kambanaros, Maria; Michaelides, Michalis; Grohmann, Kleanthes K

    2017-05-01

    Clinicians globally recognize as exceptionally challenging the development of effective intervention practices for bi- or multilingual children with specific language impairment (SLI). Therapy in both or all of an impaired child's languages is rarely possible. An alternative is to develop treatment protocols that facilitate the transfer of therapy effects from a treated language to an untreated language. To explore whether cognates, words that share meaning and phonological features across languages, could be used to boost lexical retrieval in the context of multilingual SLI. This is dependent on exploiting the phonological information in the one, trained language as a mechanism for (phonological) language transfer to the other, untrained languages. The participant is an 8.5-year-old girl diagnosed with SLI who showed a severe naming deficit in her three spoken languages (Bulgarian, English and Greek). She received training on cognates (n = 20) using a picture-based naming task in English only, three times a week, over a 4-week period for 20 min each time. Phonological-based naming therapy was carried out using form-based strategies. There was a significant improvement during therapy and immediately after intervention on cognate performance in English which was maintained 1 month after intervention. Cognate production in Bulgarian and Greek also improved during all stages of the intervention. Improvement in the non-treated languages was slightly more than half of the improvement recorded in English. The findings reflected some degree of cross-linguistic transfer effects. Cross-linguistic transfer effects were evident during therapy and after therapy had finished and the effects were maintained 1 month post-treatment. Both the native language (Bulgarian) and the dominant language (Greek) benefitted equally from the treatment of cognates in English. Generalization to non-treatment words was evident, predominantly for English. The results suggest that cognates can

  13. Sucrose-induced translational repression of plant bZIP-type transcription factors

    NARCIS (Netherlands)

    Wiese, A.; Elzinga, N.; Wobbes, B.; Smeekens, S.

    2005-01-01

    Sugars as signalling molecules exert control on the transcription of many plant genes. Sugar signals also alter mRNA and protein stability. Increased sucrose concentrations specifically repress translation of the S-class basic region leucine zipper (bZIP) type transcription factor AtbZIP11/ATB2. Thi

  14. Decitabine represses osteoclastogenesis through inhibition of RANK and NF-κB.

    Science.gov (United States)

    Guan, Hanfeng; Mi, Baoguo; Li, Yong; Wu, Wei; Tan, Peng; Fang, Zhong; Li, Jing; Zhang, Yong; Li, Feng

    2015-05-01

    DNA methylation is essential for maintenance of stable repression of gene transcription during differentiation and tumorigenesis. Demethylating reagents including decitabine could release the repression, leading to perturbed transcription program. Recently others and we showed that, in B cell lymphomas, decitabine repressed B cell specific gene transcription and activated NF-κB signaling, causing decreased expression of translocated oncogenes including MYC and attenuated tumor cell proliferation. During osteoclastogenesis, changes in DNA methylation occurred in numerous genes, implicating important roles for DNA methylation in osteoclastogenesis. In the present study, we found that decitabine inhibited osteoclastogenesis. The inhibitory effect could be at least partially attributed to reduced expression of multiple osteoclast specific genes including RANK by decitabine. Moreover, decitabine inhibited activity of NF-κB, AP-1 and extracellular signal-regulated kinase (ERK), but not PI3K/Akt pathway. In vivo, using ovariectomized mouse as a model, we observed that decitabine reduced the osteoclast activity and bone loss. In conclusion, our findings demonstrated that decitabine was an inhibitor of osteoclastogenesis by repression of osteoclast specific transcription program including the RANK, NF-κB and AP-1 pathways. DNA methylation might be indispensable for osteoclastogenesis. The use of decitabine could represent a novel strategy in treatment of diseases associated with increased osteoclast activity.

  15. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome.

    Science.gov (United States)

    Schoenfelder, Stefan; Sugar, Robert; Dimond, Andrew; Javierre, Biola-Maria; Armstrong, Harry; Mifsud, Borbala; Dimitrova, Emilia; Matheson, Louise; Tavares-Cadete, Filipe; Furlan-Magaril, Mayra; Segonds-Pichon, Anne; Jurkowski, Wiktor; Wingett, Steven W; Tabbada, Kristina; Andrews, Simon; Herman, Bram; LeProust, Emily; Osborne, Cameron S; Koseki, Haruhiko; Fraser, Peter; Luscombe, Nicholas M; Elderkin, Sarah

    2015-10-01

    The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.

  16. Do Children with SLI Use Verbs to Predict Arguments and Adjuncts: Evidence from Eye Movements During Listening.

    Science.gov (United States)

    Andreu, Llorenç; Sanz-Torrent, Mònica; Rodríguez-Ferreiro, Javier

    2015-01-01

    Different psycholinguistic theories have suggested the importance of verb semantics in rapidly anticipating upcoming information during real-time sentence comprehension. To date, no study has examined if children use verbs to predict arguments and adjuncts in sentence comprehension using children with specific language impairment (SLI). Twenty-five children with SLI (aged 5 years and 3 months to 8 years and 2 months), 25 age-matched controls (aged 5 years and 3 months to 8 years and 2 months), 25 MLU-w controls (aged 3 years and 3 months to 7 years and 1 month), and 31 adults took part in the study. The eye movements of participants were monitored while they heard 24 sentences, such as El hombre lee con atención un cuento en la cama (translation: The man carefully reads a storybook in bed), in the presence of four depicted objects, one of which was the target (storybook), another, the competitor (bed), and another two, distracters (wardrobe and grape). The proportion of looks revealed that, when the meaning of the verb was retrieved, the upcoming argument and adjunct referents were rapidly anticipated. However, the proportion of looks at the theme, source/goal and instrument referents were significantly higher than the looks at the locatives. This pattern was found in adults as well as children with and without language impairment. The present results suggest that, in terms of sentence comprehension, the ability to understand verb information is not severely impaired in children with SLI.

  17. Do Children with SLI Use Verbs to Predict Arguments and Adjuncts: Evidence from Eye Movements During Listening

    Science.gov (United States)

    Andreu, Llorenç; Sanz-Torrent, Mònica; Rodríguez-Ferreiro, Javier

    2016-01-01

    Different psycholinguistic theories have suggested the importance of verb semantics in rapidly anticipating upcoming information during real-time sentence comprehension. To date, no study has examined if children use verbs to predict arguments and adjuncts in sentence comprehension using children with specific language impairment (SLI). Twenty-five children with SLI (aged 5 years and 3 months to 8 years and 2 months), 25 age-matched controls (aged 5 years and 3 months to 8 years and 2 months), 25 MLU-w controls (aged 3 years and 3 months to 7 years and 1 month), and 31 adults took part in the study. The eye movements of participants were monitored while they heard 24 sentences, such as El hombre lee con atención un cuento en la cama (translation: The man carefully reads a storybook in bed), in the presence of four depicted objects, one of which was the target (storybook), another, the competitor (bed), and another two, distracters (wardrobe and grape). The proportion of looks revealed that, when the meaning of the verb was retrieved, the upcoming argument and adjunct referents were rapidly anticipated. However, the proportion of looks at the theme, source/goal and instrument referents were significantly higher than the looks at the locatives. This pattern was found in adults as well as children with and without language impairment. The present results suggest that, in terms of sentence comprehension, the ability to understand verb information is not severely impaired in children with SLI. PMID:26779063

  18. Mg(2+) Binding Promotes SLV as a Scaffold in Varkud Satellite Ribozyme SLI-SLV Kissing Loop Junction.

    Science.gov (United States)

    Bergonzo, Christina; Cheatham, Thomas E

    2017-07-25

    Though the structure of the substrate stem loop I (SLI)-stem loop V (SLV) kissing loop junction of the Varkud Satellite ribozyme has been experimentally characterized, the dynamics of this Mg(2+)-dependent loop-loop interaction have been elusive. Specifically, each hairpin loop contains a U-turn motif, but only SLV shows a conformational shift triggered by Mg(2+) ion association. Here, we use molecular dynamics simulations to analyze the binding and dynamics of this kissing loop junction. We show that SLV acts as a scaffold, providing stability to the junction. Mg(2+) ions associate with SLV when it is part of the junction in a manner similar to when it is unbound, but there is no specificity in Mg(2+) binding for the SLI loop. This suggests that the entropic penalty of ordering the larger SLI is too high, allowing SLV to act as a scaffold for multiple substrate loop sequences. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Repression-Sensitization and Health Behavior.

    Science.gov (United States)

    Gayton, William F.; And Others

    1978-01-01

    Examined relationship between repression-sensitization (R-S) and visits to prison infirmary for males during a one-year period. Main effect for R-S dimension was significant for total number of visits, number of medically justified visits, and number of medically unjustified visits. Sensitizers had significantly more visits than repressors.…

  20. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  1. Political Repression in U.S. History

    NARCIS (Netherlands)

    van Minnen, C.A.

    2009-01-01

    The authors of the essays in this book amass considerable historical evidence illustrating various forms of political repression and its relationship with democracy in the United States, from the late-eighteenth century to the present. They discuss efforts, made mostly but not only by government age

  2. Repression-Sensitization and Health Behavior.

    Science.gov (United States)

    Gayton, William F.; And Others

    1978-01-01

    Examined relationship between repression-sensitization (R-S) and visits to prison infirmary for males during a one-year period. Main effect for R-S dimension was significant for total number of visits, number of medically justified visits, and number of medically unjustified visits. Sensitizers had significantly more visits than repressors.…

  3. Cancer, acute stress disorder, and repressive coping

    DEFF Research Database (Denmark)

    Pedersen, Anette Fischer; Zachariae, Robert

    2010-01-01

    Reaction Questionnaire, and repressive coping was assessed by a combination of scores from the Marlowe-Crowne Social Desirability Scale, and the Bendig version of the Taylor Manifest Anxiety Scale. Significantly fewer patients classified as "repressors" were diagnosed with ASD compared to patients...

  4. Small RNAs Repress Expression of Polysaccharide Utilization Loci of Gut Bacteroides Species.

    Science.gov (United States)

    Comstock, Laurie E

    2016-09-15

    Bacteroides species can metabolize numerous plant polysaccharides and host glycans present in the mammalian gut. The regulatory systems governing the induction of particular polysaccharide utilization loci when the cognate glycan is present are known, but how expression is repressed when a higher-priority glycan is present is largely unknown. In this issue of the Journal of Bacteriology, Cao et al. (J. Bacteriol. 198:2410-2418, 2016, http://dx.doi.org/10.1128/JB.00381-16) reveal a conserved mechanism in Bacteroides whereby antisense small RNAs (sRNA) repress expression of genes involved in utilization of host glycans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Renormalization of local quark-bilinear operators for Nf=3 flavors of SLiNC fermions

    CERN Document Server

    Constantinou, M; Panagopoulos, H; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M

    2014-01-01

    The renormalization factors of local quark-bilinear operators are computed non-perturbatively for $N_f=3$ flavors of SLiNC fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing $a=0.074$ fm, and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Green's functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI$'$-MOM scheme, for both the perturbative and non-perturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the ${...

  6. The role of candidate-gene CNTNAP2 in childhood apraxia of speech and specific language impairment.

    Science.gov (United States)

    Centanni, T M; Sanmann, J N; Green, J R; Iuzzini-Seigel, J; Bartlett, C; Sanger, W G; Hogan, T P

    2015-10-01

    Childhood apraxia of speech (CAS) is a debilitating pediatric speech disorder characterized by varying symptom profiles, comorbid deficits, and limited response to intervention. Specific Language Impairment (SLI) is an inherited pediatric language disorder characterized by delayed and/or disordered oral language skills including impaired semantics, syntax, and discourse. To date, the genes associated with CAS and SLI are not fully characterized. In the current study, we evaluated behavioral and genetic profiles of seven children with CAS and eight children with SLI, while ensuring all children were free of comorbid impairments. Deletions within CNTNAP2 were found in two children with CAS but not in any of the children with SLI. These children exhibited average to high performance on language and word reading assessments in spite of poor articulation scores. These findings suggest that genetic variation within CNTNAP2 may be related to speech production deficits.

  7. Plant stem cell maintenance involves direct transcriptional repression of differentiation program.

    Science.gov (United States)

    Yadav, Ram Kishor; Perales, Mariano; Gruel, Jérémy; Ohno, Carolyn; Heisler, Marcus; Girke, Thomas; Jönsson, Henrik; Reddy, G Venugopala

    2013-01-01

    In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.

  8. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    Science.gov (United States)

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.

  9. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

    Science.gov (United States)

    Hao, Yu-Jun; Song, Qing-Xin; Chen, Hao-Wei; Zou, Hong-Feng; Wei, Wei; Kang, Xu-Sheng; Ma, Biao; Zhang, Wan-Ke; Zhang, Jin-Song; Chen, Shou-Yi

    2010-10-01

    Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.

  10. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  11. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  12. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    Science.gov (United States)

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  13. Musashi mediates translational repression of the Drosophila hypoxia inducible factor

    Science.gov (United States)

    Bertolin, Agustina P.; Katz, Maximiliano J.; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M.; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-01-01

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3′ UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available. PMID:27141964

  14. DNA residence time is a regulatory factor of transcription repression.

    Science.gov (United States)

    Clauß, Karen; Popp, Achim P; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N Henriette; Gebhardt, J Christof M

    2017-08-21

    Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Possible Roles for Polycomb Repressive Complex 2 in Cereal Endosperm

    Directory of Open Access Journals (Sweden)

    Kaoru eTonosaki

    2015-03-01

    Full Text Available The Polycomb Repressive Complex 2 (PRC2 is an evolutionarily conserved multimeric protein complex in both plants and animals. In contrast to animals, plants have evolved a range of different components of PRC2 and form diverse complexes that act in the control of key regulatory genes at many stages of development during the life cycle. A number of studies, particularly in the model species Arabidopsis thaliana, have highlighted the role of PRC2 and of epigenetic controls via parent-of-origin specific gene expression for endosperm development. However, recent research in cereal plants has revealed that although some components of PRC2 show evolutionary conservation with respect to parent-of-origin specific gene expression patterns, the identity of the imprinted genes encoding PRC2 components is not conserved. This disparity may reflect the facts that cereal plant genomes have undergone different patterns of duplication during evolution compared to Arabidopsis thaliana and that the endosperm development program is not identical in monocots and eudicots. In this context, we focus this review on the expression of imprinted PRC2 genes and their roles in endosperm development in cereals.

  16. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.

    Science.gov (United States)

    Atsmon-Raz, Yoav; Raz, Yoav; Tannenbaum, Emmanuel David

    2014-01-01

    We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT) has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant [Formula: see text] for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants [Formula: see text]and [Formula: see text], respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I) class, and the non-conjugators play the role of the susceptible (S) class.

  17. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.

    Directory of Open Access Journals (Sweden)

    Yoav Atsmon-Raz

    Full Text Available We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant [Formula: see text] for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants [Formula: see text]and [Formula: see text], respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I class, and the non-conjugators play the role of the susceptible (S class.

  18. Polycomb repressive complex 1 controls uterine decidualization

    OpenAIRE

    Fenghua Bian; Fei Gao; Kartashov, Andrey V.; Jegga, Anil G; Artem Barski; Das, Sanjoy K.

    2016-01-01

    Uterine stromal cell decidualization is an essential part of the reproductive process. Decidual tissue development requires a highly regulated control of the extracellular tissue remodeling; however the mechanism of this regulation remains unknown. Through systematic expression studies, we detected that Cbx4/2, Rybp, and Ring1B [components of polycomb repressive complex 1 (PRC1)] are predominantly utilized in antimesometrial decidualization with polyploidy. Immunofluorescence analyses reveale...

  19. E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression

    DEFF Research Database (Denmark)

    Wu, L; Goodwin, E C; Naeger, L K

    2000-01-01

    . To explore the mechanism of repression of cell cycle genes in cervical carcinoma cells following E6/E7 repression, we analyzed regulation of the cdc25A promoter, which contains two consensus E2F binding sites and a consensus E2 binding site. The wild-type E2 protein inhibited expression of a luciferase gene...... E2F4-Rb DNA binding complexes. Importantly, these experiments revealed that HPV-induced alterations in E2F transcription complexes that occur during cervical carcinogenesis are reversed by repression of HPV E6/E7 expression....

  20. A comparative study of the phonology of pre-school children with specific language impairment (SLI), language delay (LD) and normal acquisition.

    Science.gov (United States)

    Aguilar-Mediavilla, Eva M; Sanz-Torrent, Mònica; Serra-Raventos, Miquel

    2002-12-01

    The phonology of two groups of SLI (n = 5) and LD (n = 5) children was analysed at age 3 and compared with two control groups: an age control (n = 5) and a language level control (measured using the MLU-W) (n = 5). Children with SLI and LD showed a delay in the acquisition of segments, syllabic structures and word structures, and in the simplification processes, compared with their age control group. However, SLI children also displayed significant differences vis-à-vis their language level controls, mainly in early acquisitions: vowels, nasals and stops at the segmental level, and in CV structures at the syllabic level. There is also a simplification process that seems to be more prevalent in these children than in their language level controls, namely, the deletion of unstressed syllables, mainly initial ones. The results enable SLI to be distinguished from LD and suggest that the development of SLI phonology is deviant. This deviation is interpreted as being a plateau in early acquisitions when later acquisitions have already appeared. The results are considered in the light of Leonard's surface hypothesis and an exclusively linguistic cause for this disorder is ruled out.

  1. Somatic sex determination in Caenorhabditis elegans is modulated by SUP-26 repression of tra-2 translation.

    Science.gov (United States)

    Mapes, James; Chen, Jeng-Ting; Yu, Jau-Song; Xue, Ding

    2010-10-19

    Translational repression mediated by RNA-binding proteins or micro RNAs has emerged as a major regulatory mechanism for fine-tuning important biological processes. In Caenorhabditis elegans, translational repression of the key sex-determination gene tra-2 (tra, transformer) is controlled by a 28-nucleotide repeat element, the TRA-2/GLI element (TGE), located in its 3' untranslated region (UTR). Mutations that disrupt TGE or the germline-specific TGE-binding factor GLD-1 increase TRA-2 protein expression and inhibit sperm production in hermaphrodites. Here we report the characterization of the sup-26 gene, which regulates sex determination in the soma and encodes an RNA recognition motif (RRM)-containing protein. We show that SUP-26 regulates the level of the TRA-2 protein through TGE in vivo and binds directly to TGE in vitro through its RRM domain. Interestingly, SUP-26 associates with poly(A)-binding protein 1 (PAB-1) in vivo and may repress tra-2 expression by inhibiting the translation-stimulating activity of PAB-1. Taken together, our results provide further insight into how mRNA-binding factors repress translation and modulate sexual development in different tissues of C. elegans.

  2. REST represses a subset of the pancreatic endocrine differentiation program

    DEFF Research Database (Denmark)

    Martin, David; Kim, Yung-Hae; Sever, Dror

    2015-01-01

    To contribute to devise successful beta-cell differentiation strategies for the cure of Type 1 diabetes we sought to uncover barriers that restrict endocrine fate acquisition by studying the role of the transcriptional repressor REST in the developing pancreas. Rest expression is prevented...... in neurons and in endocrine cells, which is necessary for their normal function. During development, REST represses a subset of genes in the neuronal differentiation program and Rest is down-regulated as neurons differentiate. Here, we investigate the role of REST in the differentiation of pancreatic...... endocrine cells, which are molecularly close to neurons. We show that Rest is widely expressed in pancreas progenitors and that it is down-regulated in differentiated endocrine cells. Sustained expression of REST in Pdx1(+) progenitors impairs the differentiation of endocrine-committed Neurog3...

  3. Do children with SLI use verbs to predict arguments and adjuncts: evidence from eye movements during listening.

    Directory of Open Access Journals (Sweden)

    Llorenç eAndreu

    2016-01-01

    Full Text Available Different psycholinguistic theories have suggested the importance of verb semantics in rapidly anticipating upcoming information during real-time sentence comprehension. To date, no study has examined if children use verbs to predict arguments and adjuncts in sentence comprehension using children with specific language impairment (SLI.Twenty-five children with SLI (aged 5 years and 3 months to 8 years and 2 months, twenty-five age-matched controls (aged 5 years and 3 months to 8 years and 2 months, twenty-five MLU-w controls (aged 3 years and 3 months to 7 years and 1 month, and 31 adults took part in the study. The eye movements of participants were monitored while they heard twenty-four sentences, such as El hombre lee con atención un cuento en la cama (translation: The man carefully reads a storybook in bed, in the presence of four depicted objects, one of which was the target (storybook, another, the competitor (bed, and another two, distracters (wardrobe and grape. The proportion of looks revealed that, when the meaning of the verb was retrieved, the upcoming argument and adjunct referents were rapidly anticipated. However, the proportion of looks at the theme, source/goal and instrument referents were significantly higher than the looks at the locatives. This pattern was found in adults as well as children with and without language impairment. The present results suggest that, in terms of sentence comprehension, the ability to understand verb information is not severely impaired in children with SLI.

  4. Active repression by RARγ signaling is required for vertebrate axial elongation.

    Science.gov (United States)

    Janesick, Amanda; Nguyen, Tuyen T L; Aisaki, Ken-ichi; Igarashi, Katsuhide; Kitajima, Satoshi; Chandraratna, Roshantha A S; Kanno, Jun; Blumberg, Bruce

    2014-06-01

    Retinoic acid receptor gamma 2 (RARγ2) is the major RAR isoform expressed throughout the caudal axial progenitor domain in vertebrates. During a microarray screen to identify RAR targets, we identified a subset of genes that pattern caudal structures or promote axial elongation and are upregulated by increased RAR-mediated repression. Previous studies have suggested that RAR is present in the caudal domain, but is quiescent until its activation in late stage embryos terminates axial elongation. By contrast, we show here that RARγ2 is engaged in all stages of axial elongation, not solely as a terminator of axial growth. In the absence of RA, RARγ2 represses transcriptional activity in vivo and maintains the pool of caudal progenitor cells and presomitic mesoderm. In the presence of RA, RARγ2 serves as an activator, facilitating somite differentiation. Treatment with an RARγ-selective inverse agonist (NRX205099) or overexpression of dominant-negative RARγ increases the expression of posterior Hox genes and that of marker genes for presomitic mesoderm and the chordoneural hinge. Conversely, when RAR-mediated repression is reduced by overexpressing a dominant-negative co-repressor (c-SMRT), a constitutively active RAR (VP16-RARγ2), or by treatment with an RARγ-selective agonist (NRX204647), expression of caudal genes is diminished and extension of the body axis is prematurely terminated. Hence, gene repression mediated by the unliganded RARγ2-co-repressor complex constitutes a novel mechanism to regulate and facilitate the correct expression levels and spatial restriction of key genes that maintain the caudal progenitor pool during axial elongation in Xenopus embryos.

  5. Transforming growth factor-β1 signaling represses testicular steroidogenesis through cross-talk with orphan nuclear receptor Nur77.

    Science.gov (United States)

    Park, Eunsook; Song, Chin-Hee; Park, Jae-Il; Ahn, Ryun-Sup; Choi, Hueng-Sik; Ko, CheMyong; Lee, Keesook

    2014-01-01

    Transforming growth factor- β1 (TGF-β1) has been reported to inhibit luteinizing hormone (LH) mediated-steroidogenesis in testicular Leydig cells. However, the mechanism by which TGF-β1 controls the steroidogenesis in Leydig cells is not well understood. Here, we investigated the possibility that TGF-β1 represses steroidogenesis through cross-talk with the orphan nuclear receptor Nur77. Nur77, which is induced by LH/cAMP signaling, is one of major transcription factors that regulate the expression of steroidogenic genes in Leydig cells. TGF-β1 signaling inhibited cAMP-induced testosterone production and the expression of steroidogenic genes such as P450c17, StAR and 3β-HSD in mouse Leydig cells. Further, TGF-β1/ALK5 signaling repressed cAMP-induced and Nur77-activated promoter activity of steroidogenic genes. In addition, TGF-β1/ALK5-activated Smad3 repressed Nur77 transactivation of steroidogenic gene promoters by interfering with Nur77 binding to DNA. In primary Leydig cells isolated from Tgfbr2flox/flox Cyp17iCre mice, TGF-β1-mediated repression of cAMP-induced steroidogenic gene expression was significantly less than that in primary Leydig cells from Tgfbr2flox/flox mice. Taken together, these results suggest that TGF-β1/ALK5/Smad3 signaling represses the expression of steroidogenic genes via the suppression of Nur77 transactivation in testicular Leydig cells. These findings may provide a molecular mechanism involved in the TGF-β1-mediated repression of testicular steroidogenesis.

  6. 茶树生长素抑制蛋白基因CsARP1的克隆与表达分析%CLONING AND EXPRESSION ANALYSIS OF AUXIN-REPRESSED PROTEIN GENE CsARP1 IN TEA PLANT(Camellia sinensis)

    Institute of Scientific and Technical Information of China (English)

    王新超; 马春雷; 杨亚军; 姚明哲; 金基强

    2011-01-01

    A 3′-end gene fragment of auxin-repressed protein gene(ARP) was screened from the tea plant dormant bud suppression subtractive hybridization(SSH) library,its full-length cDNA sequence was cloned through rapid amplification of cDNA ends(RACE),and its relative expression quantity in different stages of dormant buds was analyzed by real-time fluorescence quantitative PCR.The full length of the auxin-repressed protein gene,named CsARP1,was 711bp(GenBank accession No.HQ225758) and contained a 357bp open reading frame(ORF) encoding a 118 amino acid residues,and its 3′ untranslated region was an obvious polyadenylation signal.The deduced protein molecular weight was 12.82kD and its theoretical isoelectric point was 9.57.Sequence alignment of the deduced amino acids of CsARP1revealed a high degree of similarity with other members of plant ARP and had a typical domain characteristic.The results of real-time quantitative PCR showed that the CsARP1gene was expressed at a higher level in dormant buds than in sprouting buds.It suggests that the expression of CsARP1gene is correlated to the bud dormancy transition.%从茶树休眠芽抑制消减杂交文库中分离得到生长素抑制蛋白基因的3'-片段,以休眠芽为材料,利用RACE技术克隆了其cDNA全长,并利用荧光定量PCR研究了该基因在不同休眠阶段芽的相对表达量。结果从茶树休眠芽中获得一个全长为711bp的生长素抑制蛋白基因CsARP1(GenBank登录号为HQ225758)。该基因开放阅读框为357bp,编码118个氨基酸,推测的蛋白质分子量为12.82KD,等电点约为9.57。多序列比对结果显示,该基因编码的氨基酸序列与其他植物的ARP蛋白序列相似性达到70%以上,具有生长素抑制基因家族的保守结构域。荧光定量PCR结果表明,CsARP1基因在休眠阶段表达量较高,而在解除休眠(萌发)后表达量较低,说明CsARP1基因可能与茶树芽休眠有关。

  7. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter.

    Science.gov (United States)

    Kuwano, Mio; Mimura, Tetsuro; Takaiwa, Fumio; Yoshida, Kaoru T

    2009-01-01

    Phytic acid acts as the major storage form of phosphorus in plant seeds and is poorly digested by monogastric animals. The degradation of phytic acid in animal diets is necessary to overcome both environmental and nutritional issues. The enzyme 1D-myo-inositol 3-phosphate [Ins(3)P(1)] synthase (EC 5.5.1.4) catalyses the first step of myo-inositol biosynthesis and directs phytic acid biosynthesis in seeds. The rice Ins(3)P(1) synthase gene (RINO1) is highly expressed in developing seed embryos and in the aleurone layer, where phytic acid is synthesized and stored. In rice seeds, 18-kDa oleosin (Ole18) is expressed in a seed-specific manner, and its transcripts are restricted to the embryo and the aleurone layer. Therefore, to effectively suppress phytic acid biosynthesis, antisense RINO1 cDNA was expressed under the control of the Ole18 promoter, directing the same spatial pattern in seeds as RINO1 in transgenic rice plants. The generated transgenic rice plants showed strong 'low phytic acid' (lpa) phenotypes, in which seed phytic acid was reduced by 68% and free available phosphate was concomitantly increased. No negative effects on seed weight, germination or plant growth were observed. The available phosphate levels of the stable transgenic plants surpassed those of currently available rice lpa mutants.

  8. Green tea proanthocyanidins cause impairment of hormone-regulated larval development and reproductive fitness via repression of juvenile hormone acid methyltransferase, insulin-like peptide and cytochrome P450 genes in Anopheles gambiae sensu stricto

    Science.gov (United States)

    Nyanjom, Steven G.; Mutunga, James M.; Njeru, Sospeter N.; Bargul, Joel L.

    2017-01-01

    Successful optimization of plant-derived compounds into control of nuisance insects would benefit from scientifically validated targets. However, the close association between the genotypic responses and physiological toxicity effects mediated by these compounds remains underexplored. In this study, we evaluated the sublethal dose effects of proanthocyanidins (PAs) sourced from green tea (Camellia sinensis) on life history traits of Anopheles gambiae (sensu stricto) mosquitoes with an aim to unravel the probable molecular targets. Based on the induced phenotypic effects, genes selected for study targeted juvenile hormone (JH) biosynthesis, signal transduction, oxidative stress response and xenobiotic detoxification in addition to vitellogenesis in females. Our findings suggest that chronic exposure of larval stages (L3/L4) to sublethal dose of 5 ppm dramatically extended larval developmental period for up to 12 days, slowed down pupation rates, induced abnormal larval-pupal intermediates and caused 100% inhibition of adult emergence. Further, females exhibited significant interference of fecundity and egg hatchability relative to controls (p reproductive fitness thus could be potentially used for controlling populations of malaria vectors. PMID:28301607

  9. DELLA proteins interact with FLC to repress flowering transition

    Institute of Scientific and Technical Information of China (English)

    Hongwei Guo

    2016-01-01

    Flowering is a highly orchestrated and extremely critical process in a plant’s life cycle. Previous study has demonstrated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) integrate the gibberellic acid (GA) signaling pathway and vernalization pathway in regulating flowering time, but detailed molecular mechanisms remain largely unclear. In GA signaling pathway, DELLA proteins are a group of master transcriptional regulators, while in vernalization pathway FLOWERING LOCUS C (FLC) is a core transcriptional repressor that down-regulates the expression of SOC1 and FT. Here, we report that DELLA proteins interact with FLC in vitro and in vivo, and the LHRI domains of DELLAs and the C-terminus of MADS domain of FLC are required for these interactions. Phenotypic and gene expression analysis showed that mutation of FLC reduces while over-expression of FLC enhances the GA response in the flowering process. Further, DELLA-FLC interactions promote the repression ability of FLC on its target genes. In summary, these findings report that the interaction between MADS box transcription factor FLC and GRAS domain regulator DELLAs may integrate various signaling inputs in flowering time control, and shed new light on the regulatory mechanism both for FLC and DELLAs in regulating gene expression.

  10. Do statistical segmentation abilities predict lexical-phonological and lexical-semantic abilities in children with and without SLI?

    Science.gov (United States)

    Mainela-Arnold, Elina; Evans, Julia L.

    2014-01-01

    This study tested the predictions of the procedural deficit hypothesis by investigating the relationship between sequential statistical learning and two aspects of lexical ability, lexical-phonological and lexical-semantic, in children with and without specific language impairment (SLI). Participants included 40 children (ages 8;5–12;3), 20 children with SLI and 20 with typical development. Children completed Saffran’s statistical word segmentation task, a lexical-phonological access task (gating task), and a word definition task. Poor statistical learners were also poor at managing lexical-phonological competition during the gating task. However, statistical learning was not a significant predictor of semantic richness in word definitions. The ability to track statistical sequential regularities may be important for learning the inherently sequential structure of lexical-phonology, but not as important for learning lexical-semantic knowledge. Consistent with the procedural/declarative memory distinction, the brain networks associated with the two types of lexical learning are likely to have different learning properties. PMID:23425593

  11. MYC Association with Cancer Risk and a New Model of MYC-Mediated Repression

    Science.gov (United States)

    Cole, Michael D.

    2014-01-01

    MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase. PMID:24985129

  12. Gfi1 and gfi1b repress rag transcription in plasmacytoid dendritic cells in vitro.

    Directory of Open Access Journals (Sweden)

    Kwan T Chow

    Full Text Available Growth factor independence genes (Gfi1 and Gfi1b repress recombination activating genes (Rag transcription in developing B lymphocytes. Because all blood lineages originate from hematopoietic stem cells (HSCs and different lineage progenitors have been shown to share transcription factor networks prior to cell fate commitment, we hypothesized that GFI family proteins may also play a role in repressing Rag transcription or a global lymphoid transcriptional program in other blood lineages. We tested the level of Rag transcription in various blood cells when Gfi1 and Gfi1b were deleted, and observed an upregulation of Rag expression in plasmacytoid dendritic cells (pDCs. Using microarray analysis, we observed that Gfi1 and Gfi1b do not regulate a lymphoid or pDC-specific transcriptional program. This study establishes a role for Gfi1 and Gfi1b in Rag regulation in a non-B lineage cell type.

  13. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor

    DEFF Research Database (Denmark)

    Herranz, Nicolás; Pasini, Diego; Díaz, Víctor M

    2008-01-01

    The transcriptional factor Snail1 is a repressor of E-cadherin gene (CDH1) expression essential for triggering epithelial-mesenchymal transition (EMT). Snail1 represses CDH1 directly binding its promoter and inducing the synthesis of Zeb1 repressor. In this article we show that repression of CDH1...... by Snail1, but not by Zeb1, is dependent on the activity of the Polycomb repressive complex 2 (PRC2). ES cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumour cells, interference of PRC2 activity prevents the ability of Snail1 to down......-regulate CDH1 and partially de-represses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to CDH1 promoter and the tri-methylation of lysine 27 in the histone 3. Moreover, Snail1 interacts with Suz12 and Ezh2 as shown by coimmunoprecipitation experiments...

  14. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Yoshimitsu, Makoto; Hachiman, Miho [Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ikeda, Masanori [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  15. Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli.

    Science.gov (United States)

    Isaacs, H; Chao, D; Yanofsky, C; Saier, M H

    1994-08-01

    Repression of tryptophanase (tryptophan indole-lyase) by glucose and its non-metabolizable analogue methyl alpha-glucoside has been studied employing a series of isogenic strains of Escherichia coli lacking cyclic AMP phosphodiesterase and altered for two of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), Enzyme I and Enzyme IIAGlc. Basal activity of tryptophanase was depressed mildly by inclusion of glucose in the growth medium, but inducible tryptophanase synthesis was subject to strong glucose repression in the parental strain, which exhibited normal PTS enzyme activities. Methyl alpha-glucoside was without effect in this strain. Loss of Enzyme I decreased sensitivity to repression by glucose but enhanced sensitivity to repression by methyl alpha-glucoside. Loss of Enzyme IIAGlc activity largely abolished repression by methyl alpha-glucoside but had a less severe effect on glucose repression. The repressive effects of both sugars were fully reversed by inclusion of cyclic AMP in the growth medium. Tryptophan uptake under the same conditions was inhibited weakly by glucose and more strongly by methyl alpha-glucoside in the parental strain. Inhibition by both sugars was alleviated by partial loss of Enzyme I. Inhibition by methyl alpha-glucoside appeared to be largely due to energy competition and was not responsible for repression of tryptophanase synthesis. Measurement of net production of cyclic AMP as well as intracellular concentrations of cyclic AMP revealed a good correlation with intensity of repression. The results suggest that while basal tryptophanase synthesis is relatively insensitive to catabolite repression, inducible synthesis is subject to strong repression by two distinct mechanisms, one dependent on enzyme IIAGlc of the PTS and the other independent of this protein. Both mechanisms are attributable to depressed rates of cyclic AMP synthesis. No evidence for a cyclic-AMP-independent mechanism of catabolite

  16. ATRX represses alternative lengthening of telomeres.

    Science.gov (United States)

    Napier, Christine E; Huschtscha, Lily I; Harvey, Adam; Bower, Kylie; Noble, Jane R; Hendrickson, Eric A; Reddel, Roger R

    2015-06-30

    The unlimited proliferation of cancer cells requires a mechanism to prevent telomere shortening. Alternative Lengthening of Telomeres (ALT) is an homologous recombination-mediated mechanism of telomere elongation used in tumors, including osteosarcomas, soft tissue sarcoma subtypes, and glial brain tumors. Mutations in the ATRX/DAXX chromatin remodeling complex have been reported in tumors and cell lines that use the ALT mechanism, suggesting that ATRX may be an ALT repressor. We show here that knockout or knockdown of ATRX in mortal cells or immortal telomerase-positive cells is insufficient to activate ALT. Notably, however, in SV40-transformed mortal fibroblasts ATRX loss results in either a significant increase in the proportion of cell lines activating ALT (instead of telomerase) or in a significant decrease in the time prior to ALT activation. These data indicate that loss of ATRX function cooperates with one or more as-yet unidentified genetic or epigenetic alterations to activate ALT. Moreover, transient ATRX expression in ALT-positive/ATRX-negative cells represses ALT activity. These data provide the first direct, functional evidence that ATRX represses ALT.

  17. Nuclear receptor CAR represses TNFalpha-induced cell death by interacting with the anti-apoptotic GADD45B.

    Directory of Open Access Journals (Sweden)

    Yukio Yamamoto

    Full Text Available BACKGROUND: Phenobarbital (PB is the most well-known among numerous non-genotoxic carcinogens that cause the development of hepatocellular carcinoma (HCC. PB activates nuclear xenobiotic receptor Constitutive Active/Androstane Receptor (CAR; NR1I3 and this activation is shown to determine PB promotion of HCC in mice. The molecular mechanism of CAR-mediated tumor promotion, however, remains elusive at the present time. Here we have identified Growth Arrest and DNA Damage-inducible 45beta (GADD45B as a novel CAR target, through which CAR represses cell death. METHODOLOGY/PRINCIPAL FINDINGS: PB activation of nuclear xenobiotic receptor CAR is found to induce the Gadd45b gene in mouse liver throughout the development of HCC as well as in liver tumors. Given the known function of GADD45B as a factor that represses Mitogen-activated protein Kinase Kinase 7 - c-Jun N-terminal Kinase (MKK7-JNK pathway-mediated apoptosis, we have now demonstrated that CAR interacts with GADD45B to repress Tumor Necrosis Factor alpha ( TNFalpha-induced JNK1 phosphorylation as well as cell death. Primary hepatocytes, prepared from Car(+/+, Car(-/-, Gadd45b(+/+ and Gadd45b(-/- mice, were treated with TNFalpha and Actinomycin D to induce phosphorylation of JNK1 and cell death. Co-treatment with the CAR activating ligand TCPOBOP (1,4 bis[2-(3,5-dichloropyridyloxy]benzene has resulted in repression of both phosphorylation and cell death in the primary hepatocytes from Car(+/+ but not Car(-/- mice. Repression by TCPOBOP was not observed in those prepared from Gadd45b(-/- mice. In vitro protein-protein interaction and phosphorylation assays have revealed that CAR interacts with MKK7 and represses the MKK7-mediated phosphorylation of JNK1. CONCLUSIONS/SIGNIFICANCE: CAR can form a protein complex with GADD45B, through which CAR represses MKK7-mediated phosphorylation of JNK1. In addition to activating the Gadd45b gene, CAR may repress death of mouse primary hepatocytes by forming

  18. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation

    OpenAIRE

    Wontakal, Sandeep N.; Guo, Xingyi; Smith, Cameron; MacCarthy, Thomas; Emery H Bresnick; Bergman, Aviv; Snyder, Michael P.; Weissman, Sherman M.; Zheng, Deyou; Skoultchi, Arthur I.

    2012-01-01

    Two mechanisms that play important roles in cell fate decisions are control of a “core transcriptional network” and repression of alternative transcriptional programs by antagonizing transcription factors. Whether these two mechanisms operate together is not known. Here we report that GATA-1, SCL, and Klf1 form an erythroid core transcriptional network by co-occupying >300 genes. Importantly, we find that PU.1, a negative regulator of terminal erythroid differentiation, is a highly integrated...

  19. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis

    OpenAIRE

    Wang, Lifeng; Xu, Shiliyang; Lee, Ji-Eun; Baldridge, Anne; Grullon, Sean; Peng, Weiqun; Ge, Kai

    2012-01-01

    PPARγ promotes adipogenesis while Wnt proteins inhibit adipogenesis. However, the mechanisms that control expression of these positive and negative master regulators of adipogenesis remain incompletely understood. By genome-wide histone methylation profiling in preadipocytes, we find that among gene loci encoding adipogenesis regulators, histone methyltransferase (HMT) G9a-mediated repressive epigenetic mark H3K9me2 is selectively enriched on the entire PPARγ locus. H3K9me2 and G9a levels dec...

  20. Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae.

    Science.gov (United States)

    Shao, Yi; Bassler, Bonnie L

    2014-06-01

    Type VI secretion is critical for Vibrio cholerae to successfully combat phagocytic eukaryotes and to survive in the presence of competing bacterial species. V. cholerae type VI secretion system genes are encoded in one large and two small clusters. In V. cholerae, type VI secretion is controlled by quorum sensing, the cell-cell communication process that enables bacteria to orchestrate group behaviours. The quorum-sensing response regulator LuxO represses type VI secretion genes at low cell density and the quorum-sensing regulator HapR activates type VI secretion genes at high cell density. We demonstrate that the quorum regulatory small RNAs (Qrr sRNAs) that function between LuxO and HapR in the quorum-sensing cascade are required for these regulatory effects. The Qrr sRNAs control type VI secretion via two mechanisms: they repress expression of the large type VI secretion system cluster through base pairing and they repress HapR, the activator of the two small type VI secretion clusters. This regulatory arrangement ensures that the large cluster encoding many components of the secretory machine is expressed prior to the two small clusters that encode the secreted effectors. Qrr sRNA-dependent regulation of the type VI secretion system is conserved in pandemic and non-pandemic V. cholerae strains.

  1. The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers.

    Science.gov (United States)

    Hiratsu, Keiichiro; Ohta, Masaru; Matsui, Kyoko; Ohme-Takagi, Masaru

    2002-03-13

    SUPERMAN was identified as a putative regulator of transcription that acts in floral development, but its function remains to be clarified. We demonstrate here that SUPERMAN is an active repressor whose repression domain is located in the carboxy-terminal region. Ectopic expression of SUPERMAN that lacked the repression domain resulted in a phenotype similar to that of superman mutants, demonstrating that the repression activity of SUPERMAN is essential for the development of normal flowers. Constitutive expression of SUPERMAN resulted in a severe dwarfism but did not affect cell size, indicating that SUPERMAN might regulate genes that are involved in cell division.

  2. Nuclear receptors in inflammation control: repression by GR and beyond.

    Science.gov (United States)

    Chinenov, Yurii; Gupte, Rebecca; Rogatsky, Inez

    2013-11-05

    Inflammation is a protective response of organisms to pathogens, irritation or injury. Primary inflammatory sensors activate an array of signaling pathways that ultimately converge upon a few transcription factors such as AP1, NFκB and STATs that in turn stimulate expression of inflammatory genes to ultimately eradicate infection and repair the damage. A disturbed balance between activation and inhibition of inflammatory pathways can set the stage for chronic inflammation which is increasingly recognized as a key pathogenic component of autoimmune, metabolic, cardiovascular and neurodegenerative disorders. Nuclear receptors (NRs) are a large family of transcription factors many of which are known for their potent anti-inflammatory actions. Activated by small lipophilic ligands, NRs interact with a wide range of transcription factors, cofactors and chromatin-modifying enzymes, assembling numerous cell- and tissue-specific DNA-protein transcriptional regulatory complexes with diverse activities. Here we discuss established and emerging roles and mechanisms by which NRs and, in particular, the glucocorticoid receptor (GR) repress genes encoding cytokines, chemokines and other pro-inflammatory mediators.

  3. Commentary: Increased Risk of Later Emotional and Behavioural Problems in Children with SLI -- Reflections on Yew and O'Kearney (2013)

    Science.gov (United States)

    Conti-Ramsden, Gina

    2013-01-01

    Children with Specific Language Impairment (SLI) find it effortful to learn to talk and these difficulties can be persistent. Given the importance of language to human behaviour, it is not surprising to find that language difficulties are a risk factor for associated difficulties in other aspects of children's development. This article asks…

  4. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    T Sabari Sankar

    2009-03-01

    Full Text Available In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS-repressed locus is the bgl (aryl-beta,D-glucoside operon of E. coli. This locus is "cryptic," as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli.

  5. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum

    Directory of Open Access Journals (Sweden)

    Tsakraklides Vasiliki

    2012-11-01

    Full Text Available Abstract Background The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol. Results We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization. Conclusion Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.

  6. Different levels of catabolite repression optimize growth in stable and variable environments.

    Directory of Open Access Journals (Sweden)

    Aaron M New

    2014-01-01

    Full Text Available Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond more slowly, resulting in long periods of slow growth (the so-called "lag phase" and large differences between individual cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end of this spectrum are "specialist" strategies that display high rates of growth in stable environments, with more stringent catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite repression, resulting in leaky expression of genes that are not required for growth in glucose. This "generalist" strategy reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations leading to alternative gene regulatory strategies that allow "stochastic sensing" of the environment. Together, our study unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth.

  7. PRDM16 represses the type I interferon response in adipocytes to promote mitochondrial and thermogenic programing.

    Science.gov (United States)

    Kissig, Megan; Ishibashi, Jeff; Harms, Matthew J; Lim, Hee-Woong; Stine, Rachel R; Won, Kyoung-Jae; Seale, Patrick

    2017-06-01

    Brown adipose has the potential to counteract obesity, and thus, identifying signaling pathways that regulate the activity of this tissue is of great clinical interest. PRDM16 is a transcription factor that activates brown fat-specific genes while repressing white fat and muscle-specific genes in adipocytes. Whether PRDM16 also controls other gene programs to regulate adipocyte function was unclear. Here, we identify a novel role for PRDM16 in suppressing type I interferon (IFN)-stimulated genes (ISGs), including Stat1, in adipocytes in vitro and in vivo Ectopic activation of type I IFN signaling in brown adipocytes induces mitochondrial dysfunction and reduces uncoupling protein 1 (UCP1) expression. Prdm16-deficient adipose displays an exaggerated response to type I IFN, including higher STAT1 levels and reduced mitochondrial gene expression. Mechanistically, PRDM16 represses ISGs through binding to promoter regions of these genes and blocking the activating function of IFN regulatory factor 1 (IRF1). Together, these data indicate that PRDM16 diminishes responsiveness to type I IFN in adipose cells to promote thermogenic and mitochondrial function. © 2017 The Authors.

  8. Design and methods in a survey of living conditions in the Arctic – the SLiCA study

    Directory of Open Access Journals (Sweden)

    Bent-Martin Eliassen

    2012-03-01

    Full Text Available Objectives: The main objective of this study is to describe the methods and design of the survey of living conditions in the Arctic (SLiCA, relevant participation rates and the distribution of participants, as applicable to the survey data in Alaska, Greenland and Norway. This article briefly addresses possible selection bias in the data and also the ways to tackle it in future studies. Study design: Population-based cross-sectional survey. Methods: Indigenous individuals aged 16 years and older, living in Greenland, Alaska and in traditional settlement areas in Norway, were invited to participate. Random sampling methods were applied in Alaska and Greenland, while non-probability sampling methods were applied in Norway. Data were collected in 3 periods: in Alaska, from January 2002 to February 2003; in Greenland, from December 2003 to August 2006; and in Norway, in 2003 and from June 2006 to June 2008. The principal method in SLiCA was standardised face-to-face interviews using a questionnaire. Results: A total of 663, 1,197 and 445 individuals were interviewed in Alaska, Greenland and Norway, respectively. Very high overall participation rates of 83% were obtained in Greenland and Alaska, while a more conventional rate of 57% was achieved in Norway. A predominance of female respondents was obtained in Alaska. Overall, the Sami cohort is older than the cohorts from Greenland and Alaska. Conclusions: Preliminary assessments suggest that selection bias in the Sami sample is plausible but not a major threat. Few or no threats to validity are detected in the data from Alaska and Greenland. Despite different sampling and recruitment methods, and sociocultural differences, a unique database has been generated, which shall be used to explore relationships between health and other living conditions variables.

  9. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oliveira Ana

    2009-01-01

    Full Text Available Abstract Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.

  10. Molecular Determinants for PspA-Mediated Repression of the AAA Transcriptional Activator PspF

    OpenAIRE

    Elderkin, Sarah; Bordes, Patricia; Jones, Susan; Rappas, Mathieu; Buck, Martin

    2005-01-01

    The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the σ54 subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of σ54 AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own exp...

  11. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    Science.gov (United States)

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-08-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  12. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    Directory of Open Access Journals (Sweden)

    Andreas Czech

    2013-08-01

    Full Text Available Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA. An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP:tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  13. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28

    Science.gov (United States)

    Murphy, Kristin E.; Shylo, Natalia A.; Alexander, Katherine A.; Churchill, Angela J.; Copperman, Cecilia; García-García, María J.

    2016-01-01

    KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity. PMID:27658112

  14. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    Science.gov (United States)

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2017-02-15

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation. © The Author 2016. Published by Oxford University Press.

  15. A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9.

    Science.gov (United States)

    Shirato, Haruki; Ogawa, Satoko; Nakajima, Kuniko; Inagawa, Masayo; Kojima, Mizuyo; Tachibana, Makoto; Shinkai, Yoichi; Takeuchi, Takashi

    2009-01-09

    Covalent modifications of histone tails have critical roles in regulating gene expression. Previously, we identified the jumonji (jmj, Jarid2) gene, the jmjC domain, and a Jmj family. Recently, many Jmj family proteins have been shown to be histone demethylases, and jmjC is the catalytic domain. However, Jmj does not have histone demethylase activity because the jmjC domain lacks conserved residues for binding to cofactors. Independently of these studies, we previously showed that Jmj binds to the cyclin D1 promoter and represses the transcription of cyclin D1. Here, we show the mechanisms by which Jmj represses the transcription of cyclin D1. We found that a protein complex of Jmj had histone methyltransferase activity toward histone H3 lysine 9 (H3-K9). We also found that Jmj bound to the H3-K9 methyltransferases G9a and GLP. Expression of Jmj recruited G9a and GLP to the cyclin D1 promoter and increased H3-K9 methylation. Inactivation of both G9a and GLP, but not of only G9a, inhibited the methylation of H3-K9 in the cyclin D1 promoter and repression of cyclin D1 expression by Jmj. These results suggest that Jmj methylates H3-K9 and represses cyclin D1 expression through G9a and GLP, and that Jmj family proteins can regulate gene expression by not only histone demethylation but also other histone modification.

  16. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns.

    Science.gov (United States)

    Zhang, Linlin; Reed, Robert D

    2016-06-15

    Butterfly eyespot colour patterns are a key example of how a novel trait can appear in association with the co-option of developmental patterning genes. Little is known, however, about how, or even whether, co-opted genes function in eyespot development. Here we use CRISPR/Cas9 genome editing to determine the roles of two co-opted transcription factors that are expressed during early eyespot determination. We found that deletions in a single gene, spalt, are sufficient to reduce or completely delete eyespot colour patterns, thus demonstrating a positive regulatory role for this gene in eyespot determination. Conversely, and contrary to previous predictions, deletions in Distal-less (Dll) result in an increase in the size and number of eyespots, illustrating a repressive role for this gene in eyespot development. Altogether our results show that the presence, absence and shape of butterfly eyespots can be controlled by the activity of two co-opted transcription factors.

  17. ChREBP Mediates Glucose Repression of Peroxisome Proliferator-activated Receptor {alpha} Expression in Pancreatic {beta}-Cells

    DEFF Research Database (Denmark)

    Boergesen, Michael; Poulsen, Lars la Cour; Schmidt, Søren Fisker;

    2011-01-01

    Chronic exposure to elevated levels of glucose and fatty acids leads to dysfunction of pancreatic β-cells by mechanisms that are only partly understood. The transcription factor peroxisome proliferator-activated receptor α (PPARα) is an important regulator of genes involved in fatty acid metaboli...... of glucose repression of PPARα gene expression in pancreatic β-cells, suggesting that ChREBP may be important for glucose suppression of the fatty acid oxidation capacity of β-cells....

  18. Perspective: repression of competition and the evolution of cooperation.

    Science.gov (United States)

    Frank, Steven A

    2003-04-01

    Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study.

  19. ZBTB7A suppresses melanoma metastasis by transcriptionally repressing MCAM

    Science.gov (United States)

    Liu, Xue-Song; Genet, Matthew D; Haines, Jenna E; Mehanna, Elie K; Wu, Shaowei; Chen, Hung-I Harry; Chen, Yidong; Qureshi, Abrar A; Han, Jiali; Chen, Xiang; Fisher, David E; Pandolfi, Pier Paolo; Yuan, Zhi-Min

    2015-01-01

    The excessive metastatic propensity of melanoma makes it the most deadly form of skin cancer, yet the underlying mechanism of metastasis remains elusive. Here, mining of cancer genome datasets discovered a frequent loss of chromosome 19p13.3 and associated down-regulation of the zinc finger transcription factor ZBTB7A in metastatic melanoma. Functional assessment of ZBTB7A-regulated genes identified MCAM, which encodes an adhesion protein key to melanoma metastasis. Using an integrated approach, it is demonstrated that ZBTB7A directly binds to the promoter and transcriptionally represses the expression of MCAM, establishing ZBTB7A as a bona fide transcriptional repressor of MCAM. Consistently, down-regulation of ZBTB7A results in marked upregulation of MCAM and enhanced melanoma cell invasion and metastasis. An inverse correlation of ZBTB7A and MCAM expression in association with melanoma metastasis is further validated with data from analysis of human melanoma specimens. Implications Together these results uncover a previously unrecognized role of ZBTB7A in negative regulation of melanoma metastasis and have important clinical implications. PMID:25995384

  20. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.

    Science.gov (United States)

    Wu, Chang-Yi; Roje, Sanja; Sandoval, Francisco J; Bird, Amanda J; Winge, Dennis R; Eide, David J

    2009-10-02

    The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. Previous studies identified over 80 genes activated by Zap1 in zinc-limited cells. In this report, we identified 36 genes repressed in a zinc- and Zap1-responsive manner. As a result, we have identified a new mechanism of Zap1-mediated gene repression whereby transcription of the MET3, MET14, and MET16 genes is repressed in zinc-limited cells. These genes encode the first three enzymes of the sulfate assimilation pathway. We found that MET30, encoding a component of the SCF(Met30) ubiquitin ligase, is a direct Zap1 target gene. MET30 expression is increased in zinc-limited cells, and this leads to degradation of Met4, a transcription factor responsible for MET3, MET14, and MET16 expression. Thus, Zap1 is responsible for a decrease in sulfate assimilation in zinc-limited cells. We further show that cells that are unable to down-regulate sulfate assimilation under zinc deficiency experience increased oxidative stress. This increased oxidative stress is associated with an increase in the NADP(+)/NADPH ratio and may result from a decrease in NADPH-dependent antioxidant activities. These studies have led to new insights into how cells adapt to nutrient-limiting growth conditions.

  1. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    Science.gov (United States)

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.

  2. Citrullination of histone H3 interferes with HP1-mediated transcriptional repression.

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2012-09-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune disease associated with abnormal expression of a subset of cytokines, resulting in inappropriate T-lymphocyte activation and uncontrolled immune response. A key issue in the field is the need to understand why these cytokines are transcriptionally activated in the patients. Here, we have examined several transcription units subject to pathological reactivation in MS, including the TNFα and IL8 cytokine genes and also several Human Endogenous RetroViruses (HERVs. We find that both the immune genes and the HERVs require the heterochromatin protein HP1α for their transcriptional repression. We further show that the Peptidylarginine Deiminase 4 (PADI4, an enzyme with a suspected role in MS, weakens the binding of HP1α to tri-methylated histone H3 lysine 9 by citrullinating histone H3 arginine 8. The resulting de-repression of both cytokines and HERVs can be reversed with the PADI-inhibitor Cl-amidine. Finally, we show that in peripheral blood mononuclear cells (PBMCs from MS patients, the promoters of TNFα, and several HERVs share a deficit in HP1α recruitment and an augmented accumulation of histone H3 with a double citrulline 8 tri-methyl lysine 9 modifications. Thus, our study provides compelling evidence that HP1α and PADI4 are regulators of both immune genes and HERVs, and that multiple events of transcriptional reactivation in MS patients can be explained by the deficiency of a single mechanism of gene silencing.

  3. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  4. H3K4 demethylase activities repress proliferative and postmitotic aging

    Science.gov (United States)

    Alvares, Stacy M; Mayberry, Gaea A; Joyner, Ebony Y; Lakowski, Bernard; Ahmed, Shawn

    2014-01-01

    Homeostasis of postmitotic and proliferating cells is maintained by pathways that repress stress. We found that the Caenorhabditis elegans histone 3 lysine 4 (H3K4) demethylases RBR-2 and SPR-5 promoted postmitotic longevity of stress-resistant daf-2 adults, altered pools of methylated H3K4, and promoted silencing of some daf-2 target genes. In addition, RBR-2 and SPR-5 were required for germ cell immortality at a high temperature. Transgenerational proliferative aging was enhanced for spr-5; rbr-2 double mutants, suggesting that these histone demethylases may function sequentially to promote germ cell immortality by targeting distinct H3K4 methyl marks. RBR-2 did not play a comparable role in the maintenance of quiescent germ cells in dauer larvae, implying that it represses stress that occurs as a consequence of germ cell proliferation, rather than stress that accumulates in nondividing cells. We propose that H3K4 demethylase activities promote the maintenance of chromatin states during stressful growth conditions, thereby repressing postmitotic aging of somatic cells as well as proliferative aging of germ cells. PMID:24134677

  5. sRNA Antitoxins: More than One Way to Repress a Toxin

    Directory of Open Access Journals (Sweden)

    Jia Wen

    2014-08-01

    Full Text Available Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.

  6. Repression of hla by rot is dependent on sae in Staphylococcus aureus.

    Science.gov (United States)

    Li, Dongmei; Cheung, Ambrose

    2008-03-01

    The regulatory locus sae is a two-component system in Staphylococcus aureus that regulates many important virulence factors, including alpha-toxin (encoded by hla) at the transcriptional level. The SarA homologs Rot and SarT were previously shown to be repressors of hla in selected S. aureus backgrounds. To delineate the interaction of rot and sae and the contribution of sarT to hla expression, an assortment of rot and sae isogenic single mutants, a rot sae double mutant, and a rot sae sarT markerless triple mutant were constructed from wild-type strain COL. Using Northern blot analysis and transcriptional reporter gene green fluorescent protein, fusion, and phenotypic assays, we found that the repression of hla by rot is dependent on sae. A rot sae sarT triple mutant was not able to rescue the hla defect of the rot sae double mutant. Among the three sae promoters, the distal sae P3 promoter is the strongest in vitro. Interestingly, the sae P3 promoter activities correlate with hla expression in rot, rot sae, and rot sae sarT mutants of COL. Transcriptional study has also shown that rot repressed sae, especially at the sae P3 promoter. Collectively, our data implicated the importance of sae in the rot-mediated repression of hla in S. aureus.

  7. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  8. Photoperiodic control of the floral transition through a distinct polycomb repressive complex.

    Science.gov (United States)

    Wang, Yizhong; Gu, Xiaofeng; Yuan, Wenya; Schmitz, Robert J; He, Yuehui

    2014-03-31

    Polycomb group (PcG) complexes such as PRC1 mediate transcriptional repression. Here, we show that the plant-specific EMBRYONIC FLOWER1 (EMF1), LIKE HETEROCHROMATIN PROTEIN1, and a histone H3 lysine-4 demethylase form a distinct PcG complex, termed EMF1c, that plays PRC1-like roles and is crucial for regulation of the florigen gene FLOWERING LOCUS T (FT) in Arabidopsis. Long-day photoperiods promote FT expression activation in leaf veins specifically at dusk through the photoperiod pathway to induce Arabidopsis flowering. We found that before dusk and at night, a vascular EMF1c directly represses FT expression to prevent photoperiod-independent flowering, whereas at dusk EMF1 binding to FT chromatin is disrupted by the photoperiod pathway, leading to proper FT activation. Furthermore, a MADS-domain transcription factor and potent floral repressor binds EMF1 to repress FT expression. Our study reveals that the vascular EMF1c integrates inputs from several flowering-regulatory pathways to synchronize flowering time to environmental cues.

  9. The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA.

    Science.gov (United States)

    Schneiders, Thamarai; Barbosa, Teresa M; McMurry, Laura M; Levy, Stuart B

    2004-03-05

    The Escherichia coli MarA protein mediates a response to multiple environmental stresses through the activation or repression in vivo of a large number of chromosomal genes. Transcriptional activation for a number of these genes has been shown to occur via direct interaction of MarA with a 20-bp degenerate asymmetric "marbox" sequence. It was not known whether repression by MarA was also direct. We found that purified MarA was sufficient in vitro to repress transcription of both purA and hdeA. Transcription and electrophoretic mobility shift experiments in vitro using mutant promoters suggested that the marbox involved in the repression overlapped the -35 promoter motif and was in the "backward" orientation. This organization contrasts with that of the class II promoters activated by MarA, in which the marbox also overlaps the -35 motif but is in the "forward" orientation. We conclude that MarA, a member of the AraC/XylS family, can act directly as a repressor or an activator, depending on the position and orientation of the marbox within a promoter.

  10. Repressive coping and alexithymia in idiopathic environmental intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Zachariae, Robert; Rasmussen, Alice;

    2010-01-01

    To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI).......To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI)....

  11. Multi-Faceted Characterization of a Novel LuxR-Repressible Promoter Library for Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Susanna Zucca

    Full Text Available The genetic elements regulating the natural quorum sensing (QS networks of several microorganisms are widely used in synthetic biology to control the behaviour of single cells and engineered bacterial populations via ad-hoc constructed synthetic circuits. A number of novel engineering-inspired biological functions have been implemented and model systems have also been constructed to improve the knowledge on natural QS systems. Synthetic QS-based parts, such as promoters, have been reported in literature, to provide biological components with functions that are not present in nature, like modified induction logic or activation/repression by additional molecules. In this work, a library of promoters that can be repressed by the LuxR protein in presence of the QS autoinducer N-3-oxohexanoyl-L-homoserine lactone (AHL was reported for Escherichia coli, to expand the toolkit of genetic parts that can be used to engineer novel synthetic QS-based systems. The library was constructed via polymerase chain reaction with highly constrained degenerate oligonucleotides, designed according to the consensus -35 and -10 sequences of a previously reported constitutive promoter library of graded strength, to maximize the probability of obtaining functional clones. All the promoters have a lux box between the -35 and -10 regions, to implement a LuxR-repressible behaviour. Twelve unique library members of graded strength (about 100-fold activity range were selected to form the final library and they were characterized in several genetic contexts, such as in different plasmids, via different reporter genes, in presence of a LuxR expression cassette in different positions and in response to different AHL concentrations. The new obtained regulatory parts and corresponding data can be exploited by synthetic biologists to implement an artificial AHL-dependent repression of transcription in genetic circuits. The target transcriptional activity can be selected among the

  12. MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM.

    Directory of Open Access Journals (Sweden)

    Chiara A Airoldi

    Full Text Available Plants enter their reproductive phase when the environmental conditions are favourable for the successful production of progeny. The transition from vegetative to reproductive phase is influenced by several environmental factors including ambient temperature. In the model plant Arabidopsis thaliana, SHORT VEGETATIVE PHASE (SVP is critical for this pathway; svp mutants cannot modify their flowering time in response to ambient temperature. SVP encodes a MADS-box transcription factor that directly represses genes that promote flowering. SVP binds DNA in complexes with other MADS-box transcription factors, including FLOWERING LOCUS M (FLM, which acts with SVP to repress the floral transition at low temperatures. Small temperature changes post-transcriptionally regulate FLM through temperature-dependent alternative splicing (TD-AS. As ambient temperature increases, the predominant FLM splice isoform shifts to encode a protein incapable of exerting a repressive effect on flowering. Here we characterize a closely related MADS-box transcription facto