WorldWideScience

Sample records for gene repertoires species-specific

  1. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    Directory of Open Access Journals (Sweden)

    Kempenaers Bart

    2009-09-01

    Full Text Available Abstract Background The detection of odorants is mediated by olfactory receptors (ORs. ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis, and in two birds, the chicken (Gallus gallus and the zebra finch (Taeniopygia guttata. Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively. We show that the green anole has a higher fraction of intact OR genes (~72% compared with the chicken (~66% and the zebra finch (~38%. We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively. Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade. An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data

  2. A novel gene family controls species-specific morphological traits in Hydra.

    Directory of Open Access Journals (Sweden)

    Konstantin Khalturin

    2008-11-01

    Full Text Available Understanding the molecular events that underlie the evolution of morphological diversity is a major challenge in biology. Here, to identify genes whose expression correlates with species-specific morphologies, we compared transcriptomes of two closely related Hydra species. We find that species-specific differences in tentacle formation correlate with expression of a taxonomically restricted gene encoding a small secreted protein. We show that gain of function induces changes in morphology that mirror the phenotypic differences observed between species. These results suggest that "novel" genes may be involved in the generation of species-specific morphological traits.

  3. Species-specific duplications of NBS-encoding genes in Chinese chestnut (Castanea mollissima)

    Science.gov (United States)

    Zhong, Yan; Li, Yingjun; Huang, Kaihui; Cheng, Zong-Ming

    2015-01-01

    The disease resistance (R) genes play an important role in protecting plants from infection by diverse pathogens in the environment. The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) class of genes is one of the largest R gene families. Chinese chestnut (Castanea mollissima) is resistant to Chestnut Blight Disease, but relatively little is known about the resistance mechanism. We identified 519 NBS-encoding genes, including 374 NBS-LRR genes and 145 NBS-only genes. The majority of Ka/Ks were less than 1, suggesting the purifying selection operated during the evolutionary history of NBS-encoding genes. A minority (4/34) of Ka/Ks in non-TIR gene families were greater than 1, showing that some genes were under positive selection pressure. Furthermore, Ks peaked at a range of 0.4 to 0.5, indicating that ancient duplications arose during the evolution. The relationship between Ka/Ks and Ks indicated greater selective pressure on the newer and older genes with the critical value of Ks = 0.4–0.5. Notably, species-specific duplications were detected in NBS-encoding genes. In addition, the group of RPW8-NBS-encoding genes clustered together as an independent clade located at a relatively basal position in the phylogenetic tree. Many cis-acting elements related to plant defense responses were detected in promoters of NBS-encoding genes. PMID:26559332

  4. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    Science.gov (United States)

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  5. The repertoire of bitter taste receptor genes in canids.

    Science.gov (United States)

    Shang, Shuai; Wu, Xiaoyang; Chen, Jun; Zhang, Huanxin; Zhong, Huaming; Wei, Qinguo; Yan, Jiakuo; Li, Haotian; Liu, Guangshuai; Sha, Weilai; Zhang, Honghai

    2017-07-01

    Bitter taste receptors (Tas2rs) play important roles in mammalian defense mechanisms by helping animals detect and avoid toxins in food. Although Tas2r genes have been widely studied in several mammals, minimal research has been performed in canids. To analyze the genetic basis of Tas2r genes in canids, we first identified Tas2r genes in the wolf, maned wolf, red fox, corsac fox, Tibetan fox, fennec fox, dhole and African hunting dog. A total of 183 Tas2r genes, consisting of 118 intact genes, 6 partial genes and 59 pseudogenes, were detected. Differences in the pseudogenes were observed among nine canid species. For example, Tas2r4 was a pseudogene in the dog but might play a functional role in other canid species. The Tas2r42 and Tas2r10 genes were pseudogenes in the maned wolf and dhole, respectively, and the Tas2r5 and Tas2r34 genes were pseudogenes in the African hunting dog; however, these genes were intact genes in other canid species. The differences in Tas2r pseudogenes among canids might suggest that the loss of intact Tas2r genes in canid species is species-dependent. We further compared the 183 Tas2r genes identified in this study with Tas2r genes from ten additional carnivorous species to evaluate the potential influence of diet on the evolution of the Tas2r gene repertoire. Phylogenetic analysis revealed that most of the Tas2r genes from the 18 species intermingled across the tree, suggesting that Tas2r genes are conserved among carnivores. Within canids, we found that some Tas2r genes corresponded to the traditional taxonomic groupings, while some did not. PIC analysis showed that the number of Tas2r genes in carnivores exhibited no positive correlation with diet composition, which might be due to the limited number of carnivores included in our study.

  6. The ancestral gene repertoire of animal stem cells.

    Science.gov (United States)

    Alié, Alexandre; Hayashi, Tetsutaro; Sugimura, Itsuro; Manuel, Michaël; Sugano, Wakana; Mano, Akira; Satoh, Nori; Agata, Kiyokazu; Funayama, Noriko

    2015-12-22

    Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the "germ-line multipotency program" and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells.

  7. Gene repertoire of amoeba-associated giant viruses.

    Science.gov (United States)

    Colson, Philippe; Raoult, Didier

    2010-01-01

    Acanthamoeba polyphaga mimivirus, Marseillevirus, and Sputnik, a virophage, are intra-amoebal viruses that have been isolated from water collected in cooling towers. They have provided fascinating data and have raised exciting questions about viruses definition and evolution. Mimivirus and Marseillevirus have been classified in the nucleo-cytoplasmic large DNA viruses (NCLDVs) class. Their genomes are the largest and fifth largest viral genomes sequenced so far. The gene repertoire of these amoeba-associated viruses can be divided into four groups: the core genome, genes acquired by lateral gene transfer, duplicated genes, and ORFans. Open reading frames (ORFs) that have homologs in the NCLDVs core gene set represent 2.9 and 6.1% of the Mimivirus and Marseillevirus gene contents, respectively. A substantial proportion of the Mimivirus, Marseillevirus and Sputnik ORFs exhibit sequence similarities to homologs found in bacteria, archaea, eukaryotes or viruses. The large amount of chimeric genes in these viral genomes might have resulted from acquisitions by lateral gene transfers, implicating sympatric bacteria and viruses with an intra-amoebal lifestyle. In addition, lineage-specific gene expansion may have played a major role in the genome shaping. Altogether, the data so far accumulated on amoeba-associated giant viruses are a powerful incentive to isolate and study additional strains to gain better understanding of their pangenome.

  8. Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species

    Directory of Open Access Journals (Sweden)

    Okamura Hiroaki

    2009-09-01

    Full Text Available Abstract Background In mammals, pheromones play an important role in social and innate reproductive behavior within species. In rodents, vomeronasal receptor type 1 (V1R, which is specifically expressed in the vomeronasal organ, is thought to detect pheromones. The V1R gene repertoire differs dramatically between mammalian species, and the presence of species-specific V1R subfamilies in mouse and rat suggests that V1R plays a profound role in species-specific recognition of pheromones. In ruminants, however, the molecular mechanism(s for pheromone perception is not well understood. Interestingly, goat male pheromone, which can induce out-of-season ovulation in anestrous females, causes the same pheromone response in sheep, and vice versa, suggesting that there may be mechanisms for detecting "inter-species" pheromones among ruminant species. Results We isolated 23 goat and 21 sheep intact V1R genes based on sequence similarity with 32 cow V1R genes in the cow genome database. We found that all of the goat and sheep V1R genes have orthologs in their cross-species counterparts among these three ruminant species and that the sequence identity of V1R orthologous pairs among these ruminants is much higher than that of mouse-rat V1R orthologous pairs. Furthermore, all goat V1Rs examined thus far are expressed not only in the vomeronasal organ but also in the main olfactory epithelium. Conclusion Our results suggest that, compared with rodents, the repertoire of orthologous V1R genes is remarkably conserved among the ruminants cow, sheep and goat. We predict that these orthologous V1Rs can detect the same or closely related chemical compound(s within each orthologous set/pair. Furthermore, all identified goat V1Rs are expressed in the vomeronasal organ and the main olfactory epithelium, suggesting that V1R-mediated ligand information can be detected and processed by both the main and accessory olfactory systems. The fact that ruminant and rodent V1Rs

  9. Fuzzy tandem repeats containing p53 response elements may define species-specific p53 target genes.

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2012-06-01

    Full Text Available Evolutionary forces that shape regulatory networks remain poorly understood. In mammals, the Rb pathway is a classic example of species-specific gene regulation, as a germline mutation in one Rb allele promotes retinoblastoma in humans, but not in mice. Here we show that p53 transactivates the Retinoblastoma-like 2 (Rbl2 gene to produce p130 in murine, but not human, cells. We found intronic fuzzy tandem repeats containing perfect p53 response elements to be important for this regulation. We next identified two other murine genes regulated by p53 via fuzzy tandem repeats: Ncoa1 and Klhl26. The repeats are poorly conserved in evolution, and the p53-dependent regulation of the murine genes is lost in humans. Our results indicate a role for the rapid evolution of tandem repeats in shaping differences in p53 regulatory networks between mammalian species.

  10. Searching for Beta-Haemolysin hlb Gene in Staphylococcus pseudintermedius with Species-Specific Primers.

    Science.gov (United States)

    Kmieciak, Wioletta; Szewczyk, Eligia M; Ciszewski, Marcin

    2016-07-01

    The paper presents an analysis of 51 Staphylococcus pseudintermedius clinically isolated strains from humans and from animals. Staphylococcus pseudintermedius strains' ability to produce β-haemolysin was evaluated with phenotypic methods (hot-cold effect, reverse CAMP test). In order to determine the hlb gene presence (coding for β-haemolysin) in a genomic DNA, PCR reactions were conducted with two different pairs of primers: one described in the literature for Staphylococcus aureus and recommended for analysing SIG group staphylococci and newly designed one in CLC Main Workbench software. Only reactions with newly designed primers resulted in product amplification, the presence of which was fully compatible with the results of phenotypic β-haemolysin test. Negative results for S. aureus and S. intermedius reference ATCC strains suggest that after further analysis the fragment of hlb gene amplified with primers described in this study might be included in the process of S. pseudintermedius strains identification.

  11. Identification and differentiation of Staphylococcus carnosus and Staphylococcus simulans by species-specific PCR assays of sodA genes.

    Science.gov (United States)

    Blaiotta, Giuseppe; Casaburi, Annalisa; Villani, Francesco

    2005-08-01

    The aim of this study was to design species-specific PCR assays for rapid and reliable identification and differentiation of Staphylococcus (S.) carnosus and S. simulans strains. Two different sets of primers, targeting the manganese-dependent superoxide dismutase (sodA) gene of S. carnosus and S. simulans, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 93 strains, representing 26 different species of the genus Staphylococcus, 3 species of the genus Kocuria (K.), 1 species of the genus Micrococcus (Mic.) and 1 species of the genus Macrococcus (Mac.) as reference. By using primers simF and simR the expected PCR fragment was obtained only when purified DNA from S. simulans strains was used. Amplification performed by using primers carF and carR produced a PCR fragment of the expected length, when DNA from strains of S. carnosus and S. condimenti were used as template. Nevertheless, DraI digestion of the carF/carR PCR fragment allowed a clear differentiation of strains of these two species. Species-specific PCR assays designed during this study, overcoming many of the limitations of the traditional identification procedures, can be considered a valid strategy for detection and identification of S. carnosus and S. simulans strains. The rapidity (about 4h from DNA isolation to results), the reliability and low cost of the PCR procedures established suggests that the methods may be profitably applied for specific detection and identification of S. carnosus, S. condimenti and S. simulans strains in starter cultures and meat products.

  12. Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2006-10-01

    Full Text Available Abstract Background In teleost fishes that lack a vomeronasal organ, both main odorant receptors (ORs and vomeronasal receptors family 2 (V2Rs are expressed in the olfactory epithelium, and used for perception of water-soluble chemicals. In zebrafish, it is known that both ORs and V2Rs formed multigene families of about a hundred copies. Whereas the contribution of V2Rs in zebrafish to olfaction has been found to be substantially large, the composition and structure of the V2R gene family in other fishes are poorly known, compared with the OR gene family. Results To understand the evolutionary dynamics of V2R genes in fishes, V2R sequences in zebrafish, medaka, fugu, and spotted green pufferfish were identified from their draft genome sequences. There were remarkable differences in the number of intact V2R genes in different species. Most V2R genes in these fishes were tightly clustered in one or two specific chromosomal regions. Phylogenetic analysis revealed that the fish V2R family could be subdivided into 16 subfamilies that had diverged before the separation of the four fishes. Genes in two subfamilies in zebrafish and another subfamily in medaka increased in their number independently, suggesting species-specific evolution in olfaction. Interestingly, the arrangements of V2R genes in the gene clusters were highly conserved among species in the subfamily level. A genomic region of tetrapods corresponding to the region in fishes that contains the V2R cluster was found to have no V2R gene in any species. Conclusion Our results have indicated that the evolutionary dynamics of fish V2Rs are characterized by rapid gene turnover and lineage-specific phylogenetic clustering. In addition, the present phylogenetic and comparative genome analyses have shown that the fish V2Rs have expanded after the divergence between teleost and tetrapod lineages. The present identification of the entire V2R repertoire in fishes would provide useful foundation to

  13. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hidenori Takeuchi

    Full Text Available Genes directly involved in male/female and host/parasite interactions are believed to be under positive selection. The flowering plant Arabidopsis thaliana has more than 300 defensin-like (DEFL genes, which are likely to be involved in both natural immunity and cell-to-cell communication including pollen-pistil interactions. However, little is known of the relationship between the molecular evolution of DEFL genes and their functions. Here, we identified a recently evolved cluster of DEFL genes in A. thaliana and demonstrated that these DEFL (cysteine-rich peptide [CRP810_1] peptides, named AtLURE1 peptides, are pollen tube attractants guiding pollen tubes to the ovular micropyle. The AtLURE1 genes formed the sole species-specific cluster among DEFL genes compared to its close relative, A. lyrata. No evidence for positive selection was detected in AtLURE1 genes and their orthologs, implying neutral evolution of AtLURE1 genes. AtLURE1 peptides were specifically expressed in egg-accompanying synergid cells and secreted toward the funicular surface through the micropyle. Genetic analyses showed that gametophytic mutants defective in micropylar guidance (myb98, magatama3, and central cell guidance do not express AtLURE1 peptides. Downregulation of the expression of these peptides impaired precise pollen tube attraction to the micropylar opening of some populations of ovules. Recombinant AtLURE1 peptides attracted A. thaliana pollen tubes at a higher frequency compared to A. lyrata pollen tubes, suggesting that these peptides are species-preferential attractants in micropylar guidance. In support of this idea, the heterologous expression of a single AtLURE1 peptide in the synergid cell of Torenia fournieri was sufficient to guide A. thaliana pollen tubes to the T. fournieri embryo sac and to permit entry into it. Our results suggest the unique evolution of AtLURE1 genes, which are directly involved in male-female interaction among the DEFL multigene

  14. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    Science.gov (United States)

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  15. Evolution of C2H2-zinc finger genes and subfamilies in mammals: Species-specific duplication and loss of clusters, genes and effector domains

    Directory of Open Access Journals (Sweden)

    Aubry Muriel

    2008-06-01

    Full Text Available Abstract Background C2H2 zinc finger genes (C2H2-ZNF constitute the largest class of transcription factors in humans and one of the largest gene families in mammals. Often arranged in clusters in the genome, these genes are thought to have undergone a massive expansion in vertebrates, primarily by tandem duplication. However, this view is based on limited datasets restricted to a single chromosome or a specific subset of genes belonging to the large KRAB domain-containing C2H2-ZNF subfamily. Results Here, we present the first comprehensive study of the evolution of the C2H2-ZNF family in mammals. We assembled the complete repertoire of human C2H2-ZNF genes (718 in total, about 70% of which are organized into 81 clusters across all chromosomes. Based on an analysis of their N-terminal effector domains, we identified two new C2H2-ZNF subfamilies encoding genes with a SET or a HOMEO domain. We searched for the syntenic counterparts of the human clusters in other mammals for which complete gene data are available: chimpanzee, mouse, rat and dog. Cross-species comparisons show a large variation in the numbers of C2H2-ZNF genes within homologous mammalian clusters, suggesting differential patterns of evolution. Phylogenetic analysis of selected clusters reveals that the disparity in C2H2-ZNF gene repertoires across mammals not only originates from differential gene duplication but also from gene loss. Further, we discovered variations among orthologs in the number of zinc finger motifs and association of the effector domains, the latter often undergoing sequence degeneration. Combined with phylogenetic studies, physical maps and an analysis of the exon-intron organization of genes from the SCAN and KRAB domains-containing subfamilies, this result suggests that the SCAN subfamily emerged first, followed by the SCAN-KRAB and finally by the KRAB subfamily. Conclusion Our results are in agreement with the "birth and death hypothesis" for the evolution of

  16. An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians

    Science.gov (United States)

    Irie, Masahito; Koga, Akihiko; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    Amongst the 11 eutherian-specific genes acquired from a sushi-ichi retrotransposon is the CCHC type zinc-finger protein-encoding gene SIRH11/ZCCHC16. Its contribution to eutherian brain evolution is implied because of its involvement in cognitive function in mice, possibly via the noradrenergic system. Although, the possibility that Sirh11/Zcchc16 functions as a non-coding RNA still remains, dN/dS ratios in pairwise comparisons between its orthologs have provided supportive evidence that it acts as a protein. It became a pseudogene in armadillos (Cingulata) and sloths (Pilosa), the only two extant orders of xenarthra, which prompted us to examine the lineage-specific variations of SIRH11/ZCCHC16 in eutherians. We examined the predicted SIRH11/ZCCHC16 open reading frame (ORF) in 95 eutherian species based on the genomic DNA information in GenBank. A large variation in the SIRH11/ZCCHC16 ORF was detected in several lineages. These include a lack of a CCHC RNA-binding domain in its C-terminus, observed in gibbons (Hylobatidae: Primates) and megabats (Megachiroptera: Chiroptera). A lack of the N-terminal half, on the other hand, was observed in New World monkeys (Platyrrhini: Primates) and species belonging to New World and African Hystricognaths (Caviomorpha and Bathyergidae: Rodents) along with Cetacea and Ruminantia (Cetartiodactyla). Among the hominoids, interestingly, three out of four genera of gibbons have lost normal SIRH11/ZCCHC16 function by deletion or the lack of the CCHC RNA-binding domain. Our extensive dN/dS analysis suggests that such truncated SIRH11/ZCCHC16 ORFs are functionally diversified even within lineages. Combined, our results show that SIRH11/ZCCHC16 may contribute to the diversification of eutherians by lineage-specific structural changes after its domestication in the common eutherian ancestor, followed by putative species-specific functional changes that enhanced fitness and occurred as a consequence of complex natural selection events

  17. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution

    Directory of Open Access Journals (Sweden)

    Nash Theodore E

    2010-07-01

    Full Text Available Abstract Background Giardia lamblia trophozoites colonize the intestines of susceptible mammals and cause diarrhea, which can be prolonged despite an intestinal immune response. The variable expression of the variant-specific surface protein (VSP genes may contribute to this prolonged infection. Only one is expressed at a time, and switching expression from one gene to another occurs by an epigenetic mechanism. Results The WB Giardia isolate has been sequenced at 10× coverage and assembled into 306 contigs as large as 870 kb in size. We have used this assembly to evaluate the genomic organization and evolution of the vsp repertoire. We have identified 228 complete and 75 partial vsp gene sequences for an estimated repertoire of 270 to 303, making up about 4% of the genome. The vsp gene diversity includes 30 genes containing tandem repeats, and 14 vsp pairs of identical genes present in either head to head or tail to tail configurations (designated as inverted pairs, where the two genes are separated by 2 to 4 kb of non-coding DNA. Interestingly, over half the total vsp repertoire is present in the form of linear gene arrays that can contain up to 10 vsp gene members. Lastly, evidence for recombination within and across minor clades of vsp genes is provided. Conclusions The data we present here is the first comprehensive analysis of the vsp gene family from the Genotype A1 WB isolate with an emphasis on vsp characterization, function, evolution and contributions to pathogenesis of this important pathogen.

  18. Smallest bitter taste receptor(T2Rs)gene repertoire in carnivores%Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores

    Institute of Scientific and Technical Information of China (English)

    Ling-Ling HU; Peng SHI

    2013-01-01

    Bitter taste reception is presumably associated with dietary selection,preventing animals from ingesting potentially harmful compounds.Accordingly,carnivores,who encounter these toxic substances less often,should have fewer genes associated with bitter taste reception compared with herbivores and omnivores.To investigate the genetic basis of bitter taste reception,we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse),two omnivores (mouse and rat) and one carnivore (dog).We also identified,for the first time,the T2R repertoire from the genome of other four carnivore species (ferret,giant panda,polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes,including 12-16 intact genes,0-1 partial but putatively functional genes,and 3-8 pseudogenes.Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species,supporting earlier speculations that carnivores have fewer T2R genes,herbivores an intermediate number,and omnivores the largest T2R gene repertoire.To further explain the genetic basis for this disparity,we constructed a phylogenetic tree,which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree,suggesting that carnivore T2Rs were conserved among mammals.Similarly,the small carnivore T2R family size was likely due to rare duplication events.Collectively,these results strengthen arguments for the connection between T2R gene family size,diet and habit.

  19. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria.

    Directory of Open Access Journals (Sweden)

    Teresa Nogueira

    Full Text Available Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

  20. Comparison of the canine and human olfactory receptor gene repertoires

    NARCIS (Netherlands)

    Quignon, P; Kirkness, E; Cadieu, E; Touleimat, N; Guyon, R; Renier, C; Hitte, C; Andre, C; Fraser, C; Galibert, F

    2003-01-01

    Background: Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a

  1. Multiplex PCR using conserved and species-specific 16S rRNA gene primers for simultaneous detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis.

    OpenAIRE

    Tran, S D; Rudney, J. D.

    1996-01-01

    Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis are strongly associated with periodontitis. However, little is known about their distribution in periodontally healthy individuals, because culturing techniques are not sufficiently sensitive. A modified multiplex PCR was developed to address that question. Our method uses two species-specific forward primers in combination with a single reverse primer. These primers target variable and conserved regions of the 16S rRNA gene. S...

  2. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order.

    Science.gov (United States)

    Bilodeau, Guillaume J; Martin, Frank N; Coffey, Michael D; Blomquist, Cheryl L

    2014-07-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed based on the high copy sequences of the mitochondrial DNA utilizing gene orders that were highly conserved in the genus Phytophthora but different in the related genus Pythium and plants to reduce the importance of highly controlled annealing temperatures for specificity. An amplification primer pair designed from conserved regions of the atp9 and nad9 genes produced an amplicon of ≈340 bp specific for the Phytophthora spp. tested. The TaqMan probe for the genus-specific Phytophthora test was designed from a conserved portion of the atp9 gene whereas variable intergenic spacer sequences were used for designing the species-specific TaqMan probes. Specific probes were developed for 13 species and the P. citricola species complex. In silico analysis suggests that species-specific probes could be developed for at least 70 additional described and provisional species; the use of locked nucleic acids in TaqMan probes should expand this list. A second locus spanning three tRNAs (trnM-trnP-trnM) was also evaluated for genus-specific detection capabilities. At 206 bp, it was not as useful for systematic development of a broad range of species-specific probes as the larger 340-bp amplicon. All markers were validated against a test panel that included 87 Phytophthora spp., 14 provisional Phytophthora spp., 29 Pythium spp., 1 Phytopythium sp., and 39 plant species. Species-specific probes were validated further against a range of geographically diverse isolates to ensure uniformity of detection at an intraspecific level, as well as with other species having high levels of sequence similarity to ensure specificity. Both diagnostic

  3. Highly diverse TCRα chain repertoire of pre-immune CD8+ T cells reveals new insights in gene recombination

    Science.gov (United States)

    Genolet, Raphael; Stevenson, Brian J; Farinelli, Laurent; Østerås, Magne; Luescher, Immanuel F

    2012-01-01

    Although the T-cell receptor αδ (TCRαδ) locus harbours large libraries of variable (TRAV) and junctional (TRAJ) gene segments, according to previous studies the TCRα chain repertoire is of limited diversity due to restrictions imposed by sequential coordinate TRAV-TRAJ recombinations. By sequencing tens of millions of TCRα chain transcripts from naive mouse CD8+ T cells, we observed a hugely diverse repertoire, comprising nearly all possible TRAV-TRAJ combinations. Our findings are not compatible with sequential coordinate gene recombination, but rather with a model in which contraction and DNA looping in the TCRαδ locus provide equal access to TRAV and TRAJ gene segments, similarly to that demonstrated for IgH gene recombination. Generation of the observed highly diverse TCRα chain repertoire necessitates deletion of failed attempts by thymic-positive selection and is essential for the formation of highly diverse TCRαβ repertoires, capable of providing good protective immunity. PMID:22373576

  4. Species-specific expansion and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR gene family in plants.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available The terpene compounds represent the largest and most diverse class of plant secondary metabolites which are important in plant growth and development. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34 is one of the key enzymes contributed to terpene biosynthesis. To better understand the basic characteristics and evolutionary history of the HMGR gene family in plants, a genome-wide analysis of HMGR genes from 20 representative species was carried out. A total of 56 HMGR genes in the 14 land plant genomes were identified, but no genes were found in all 6 algal genomes. The gene structure and protein architecture of all plant HMGR genes were highly conserved. The phylogenetic analysis revealed that the plant HMGRs were derived from one ancestor gene and finally developed into four distinct groups, two in the monocot plants and two in dicot plants. Species-specific gene duplications, caused mainly by segmental duplication, led to the limited expansion of HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa and Glycine max after the species diverged. The analysis of Ka/Ks ratios and expression profiles indicated that functional divergence after the gene duplications was restricted. The results suggested that the function and evolution of HMGR gene family were dramatically conserved throughout the plant kingdom.

  5. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures

    Science.gov (United States)

    Zeng, Hongkui; Shen, Elaine H.; Hohmann, John G.; Oh, Wook Seung; Bernard, Amy; Royall, Joshua J.; Glattfelder, Katie J.; Sunkin, Susan M.; Morris, John A.; Guillozet-Bongaarts, Angela L.; Smith, Kimberly A.; Ebbert, Amanda J.; Swanson, Beryl; Kuan, Leonard; Page, Damon T.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hof, Patrick R.; Hyde, Thomas M.; Kleinman, Joel E.; Jones, Allan R.

    2012-01-01

    Summary Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ~1,000 genes important for neural functions, by in situ hybridization with cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene’s expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain. PMID:22500809

  6. Evolution of species-specific major seminal fluid proteins in placental mammals by gene death and positive selection

    NARCIS (Netherlands)

    Meslin, C.; Laurin, M.; Callebaut, I.; Druart, X.; Monget, P.

    2015-01-01

    The seminal fluid is a complex substance composed of a variety of secreted proteins and has been shown to play an important role in the fertilisation process in mammals and also in Drosophila. Several genes under positive selection have been documented in some rodents and primates. Our study documen

  7. Immunoglobulin gene repertoire diversification and selection in the stomach – from gastritis to gastric lymphomas

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2014-06-01

    Full Text Available Chronic gastritis is characterized by gastric mucosal inflammation due to autoimmune responses or infection, frequently with Helicobacter pylori. Gastritis with H. pylori background can cause gastric mucosa-associated lymphoid tissue lymphoma (MALT-L, which sometimes further transforms into diffuse large B cell lymphoma (DLBCL. However, gastric DLBCL can also be initiated de novo. The mechanisms underlying transformation into DLBCL are not completely understood. We analyzed immunoglobulin repertoires and clonal trees to investigate whether and how immunoglobulin gene repertoires, clonal diversification and selection in gastritis, gastric MALT-L and DLBCL differ from each other and from normal responses. The two gastritis types (positive or negative for H. pylori had similarly diverse repertoires. MALT-L dominant clones presented higher diversification and longer mutational histories compared with all other conditions. DLBCL dominant clones displayed lower clonal diversification, suggesting the transforming events are triggered by similar responses in different patients. These results are surprising, as we expected to find similarities between the dominant clones of gastritis and MALT-L and between those of MALT-L and DLBCL.

  8. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice

    Directory of Open Access Journals (Sweden)

    Wynn Elizabeth H

    2012-08-01

    Full Text Available Abstract Background Vomeronasal receptors (VRs, expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. Results Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. Conclusions Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice.

  9. Species-specific regulation of PXR/CAR/ER-target genes in the mouse and rat liver elicited by o, p'-DDT

    Directory of Open Access Journals (Sweden)

    Burgoon Lyle D

    2008-10-01

    Full Text Available Abstract Background Dichlorodiphenyltrichloroethane (DDT is a persistent estrogenic organochlorine pesticide that is a rodent hepatic tumor promoter, with inconclusive carcinogenicity in humans. We have previously reported that o, p'-DDT elicits primarily PXR/CAR-mediated activity, rather than ER-mediated hepatic responses, and suggested that CAR-mediated effects, as opposed to ER-mediated effects, may be more important in tumor promotion in the rat liver. To further characterize species-specific hepatic responses, gene expression analysis, with complementary histopathology and tissue level analyses were investigated in immature, ovariectomized C57BL/6 mice treated with 300 mg/kg o, p'-DDT, and compared to Sprague-Dawley rat data. Results Rats and mice exhibited negligible histopathology with rapid o, p'-DDT metabolism. Gene expression profiles were also similar, exhibiting PXR/CAR regulation with the characteristic induction of Cyp2b10 and Cyp3a11. However, PXR-specific target genes such as Apoa4 or Insig2 exhibited more pronounced induction compared to CAR-specific genes in the mouse. In addition, mouse Car mRNA levels decreased, possibly contributing to the preferential activation of mouse PXR. ER-regulated genes Cyp17a1 and Cyp7b1 were also induced, suggesting o, p'-DDT also elicits ER-mediated gene expression in the mouse, while ER-mediated effects were negligible in the rat, possibly due to the inhibitory effects of CAR on ER activities. In addition, o, p'-DDT induced Gadd45a, Gadd45b and Cdkn1, suggesting DNA damage may be an additional risk factor. Furthermore, elevated blood DHEA-S levels at 12 h after treatment in the mouse may also contribute to the endocrine-related effects of o, p'-DDT. Conclusion Although DDT is known to cause rodent hepatic tumors, the marked species differences in PXR/CAR structure, expression patterns and ligand preference as well as significant species-specific differences in steroidogenesis, especially CYP17A1

  10. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    Science.gov (United States)

    Wang, Kai; Zhao, Huabin

    2015-09-04

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds.

  11. Variation in the Genetic Repertoire of Viruses Infecting Micromonas pusilla Reflects Horizontal Gene Transfer and Links to Their Environmental Distribution

    Science.gov (United States)

    Finke, Jan F.; Winget, Danielle M.; Chan, Amy M.; Suttle, Curtis A.

    2017-01-01

    Prasinophytes, a group of eukaryotic phytoplankton, has a global distribution and is infected by large double-stranded DNA viruses (prasinoviruses) in the family Phycodnaviridae. This study examines the genetic repertoire, phylogeny, and environmental distribution of phycodnaviruses infecting Micromonas pusilla, other prasinophytes and chlorophytes. Based on comparisons among the genomes of viruses infecting M. pusilla and other phycodnaviruses, as well as the genome from a host isolate of M. pusilla, viruses infecting M. pusilla (MpVs) share a limited set of core genes, but vary strongly in their flexible pan-genome that includes numerous metabolic genes, such as those associated with amino acid synthesis and sugar manipulation. Surprisingly, few of these presumably host-derived genes are shared with M. pusilla, but rather have their closest non-viral homologue in bacteria and other eukaryotes, indicating horizontal gene transfer. A comparative analysis of full-length DNA polymerase (DNApol) genes from prasinoviruses with their overall gene content, demonstrated that the phylogeny of DNApol gene fragments reflects the gene content of the viruses; hence, environmental DNApol gene sequences from prasinoviruses can be used to infer their overall genetic repertoire. Thus, the distribution of virus ecotypes across environmental samples based on DNApol sequences implies substantial underlying differences in gene content that reflect local environmental conditions. Moreover, the high diversity observed in the genetic repertoire of prasinoviruses has been driven by horizontal gene transfer throughout their evolutionary history, resulting in a broad suite of functional capabilities and a high diversity of prasinovirus ecotypes. PMID:28534829

  12. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    Science.gov (United States)

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  13. Four-locus phylogeny of Fusarium avenaceum and related species and their species-specific identification based on partial phosphate permease gene sequences.

    Science.gov (United States)

    Stakheev, Alexander A; Khairulina, Dina R; Zavriev, Sergey K

    2016-05-16

    The fungus Fusarium avenaceum and its closest relatives are responsible for contamination of agricultural plants and their products by mycotoxins such as enniatins and moniliformin. Precise identification of mycotoxin producers is necessary for estimation of the accumulation risk of those compounds and for preventing the consumption of highly contaminated products. Nucleic acids amplification-based techniques proved to be the most rapid and reliable approach for pathogen diagnostics and identification. In this study partial phosphate permease gene (PHO) sequences were determined for Fusarium avenaceum (including one isolate identified as F. arthrosporioides), F. tricinctum, F. acuminatum and F. torulosum. Phylogenetic analysis of 40 isolates of those species from different climates and geographical regions of Russia and some neighboring countries based on sequences of PHO, translation elongation factor 1 alpha (TEF1α), beta-tubulin (β-TUB), enniatin synthetase (Esyn1) genes and combined data set demonstrated that the PHO gene possesses the highest rate of variability among them and can be considered as an informative marker for phylogenetic studies of these species. According to the combined data set phylogeny, the isolates of each species formed clusters with a high bootstrap support. Analysis of PHO sequences revealed a high intraspecific variability of F. avenaceum: there were 5 independent clusters on the dendrogram, including one cluster which was closer to F. torulosum than to other F. avenaceum isolates. Variable sites in PHO sequences have been used for the design of species-specific primers and a fluorescent hydrolysis probe. The specificity of the assay was shown for DNA samples extracted from 68 isolates of 23 Fusarium species. Quantitative PCR approach was applied to estimate the contamination rate of 17 naturally infected oat and barley samples, previously characterized by microbiological procedures.

  14. Regulation of TCR delta and alpha repertoires by local and long-distance control of variable gene segment chromatin structure.

    Science.gov (United States)

    Hawwari, Abbas; Krangel, Michael S

    2005-08-15

    Murine Tcrd and Tcra gene segments reside in a single genetic locus and undergo recombination in CD4- CD8- (double negative [DN]) and CD4+ CD8+ (double positive [DP]) thymocytes, respectively. TcraTcrd locus variable gene segments are subject to complex regulation. Only a small subset of approximately 100 variable gene segments contributes substantially to the adult TCRdelta repertoire. Moreover, although most contribute to the TCRalpha repertoire, variable gene segments that are Jalpha proximal are preferentially used during primary Tcra recombination. We investigate the role of local chromatin accessibility in determining the developmental pattern of TcraTcrd locus variable gene segment recombination. We find variable gene segments to be heterogeneous with respect to acetylation of histones H3 and H4. Those that dominate the adult TCRdelta repertoire are hyperacetylated in DN thymocytes, independent of their position in the locus. Moreover, proximal variable gene segments show dramatic increases in histone acetylation and germline transcription in DP thymocytes, a result of super long-distance regulation by the Tcra enhancer. Our results imply that differences in chromatin accessibility contribute to biases in TcraTcrd locus variable gene segment recombination in DN and DP thymocytes and extend the distance over which the Tcra enhancer can regulate chromatin structure to a remarkable 525 kb.

  15. Taste and odorant receptors of the coelacanth--a gene repertoire in transition.

    Science.gov (United States)

    Picone, Barbara; Hesse, Uljana; Panji, Sumir; Van Heusden, Peter; Jonas, Mario; Christoffels, Alan

    2014-09-01

    G-protein coupled chemosensory receptors (GPCR-CRs) aid in the perception of odors and tastes in vertebrates. So far, six GPCR-CR families have been identified that are conserved in most vertebrate species. Phylogenetic analyses indicate differing evolutionary dynamics between teleost fish and tetrapods. The coelacanth Latimeria chalumnae belongs to the lobe-finned fishes, which represent a phylogenetic link between these two groups. We searched the genome of L. chalumnae for GPCR-CRs and found that coelacanth taste receptors are more similar to those in tetrapods than in teleost fish: two coelacanth T1R2s co-segregate with the tetrapod T1R2s that recognize sweet substances, and our phylogenetic analyses indicate that the teleost T1R2s are closer related to T1R1s (umami taste receptors) than to tetrapod T1R2s. Furthermore, coelacanths are the first fish with a large repertoire of bitter taste receptors (58 T2Rs). Considering current knowledge on feeding habits of coelacanths the question arises if perception of bitter taste is the only function of these receptors. Similar to teleost fish, coelacanths have a variety of olfactory receptors (ORs) necessary for perception of water-soluble substances. However, they also have seven genes in the two tetrapod OR subfamilies predicted to recognize airborne molecules. The two coelacanth vomeronasal receptor families are larger than those in teleost fish, and similar to tetrapods and form V1R and V2R monophyletic clades. This may point to an advanced development of the vomeronasal organ as reported for lungfish. Our results show that the intermediate position of Latimeria in the phylogeny is reflected in its GPCR-CR repertoire.

  16. The heterogeneous allelic repertoire of human toll-like receptor (TLR genes.

    Directory of Open Access Journals (Sweden)

    Philippe Georgel

    Full Text Available Toll-Like Receptors (TLR are critical elements of the innate arm of the vertebrate immune system. They constitute a multigenic family of receptors which collectively bind a diverse array of--exogeneous as well as endogeneous--ligands. An exponential burst of knowledge has defined their biological role in fight against infections and generation/modulation of auto-immune disorders. Hence, they could at least be conceptually recognized--despite being structurally unrelated - as innate counterparts to Major Histocompatibility Complex (MHC molecules--equally recognizing antigenic ligands (albeit structurally more homogeneous i.e., peptides, again derived from self and/or non-self sources--preeminent this time in adaptive immunity. Our great disparities in face of infections and/or susceptibility to auto-immune diseases have provoked an intense search for genetic explanations, in part satisfied by the extraordinary MHC allelic repertoire. An equally in-depth and systematic analysis of TLR diversity is lacking despite numerous independent reports of a growing number of SNPs within these loci. The work described here aims at providing a preliminary picture of the allelic repertoire--and not purely SNPs--of all 10 human TLR coding sequences (with exception of TLR3 within a single cohort of up to 100 individuals. It appears from our work that TLR are unequally polymorphic: TLR2 (DNA alleles: 7/protein alleles: 3, 4 (4/3, 7 (6/3, 8 (9/2 and 9 (8/3 being comparatively least diverse whereas TLR1 (11/10, 5 (14/12, 6 (10/8 and 10 (15/10 show a substantial number of alleles. In addition to allelic assignment of a large number of SNPs, 10 new polymorphic positions were hereby identified. Hence this work depicts a first overview of the diversity of almost all human TLR genes, a prelude for large-scale population genetics as well as genetic association studies.

  17. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    Directory of Open Access Journals (Sweden)

    Ana Monteiro Ferreira

    Full Text Available Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy.

  18. The opsin repertoire of Jenynsia onca: a new perspective on gene duplication and divergence in livebearers

    Directory of Open Access Journals (Sweden)

    Owens Gregory L

    2009-08-01

    Full Text Available Abstract Background Jenynsia onca, commonly known as the one sided livebearer, is a member of the family Anablepidae. The opsin gene repertoires of J. onca's close relatives, the four-eyed fish (Anableps anableps and the guppy (Poecilia reticulata, have been characterized and each found to include one unique LWS opsin. Currently, the relationship among LWS paralogs and orthologs in these species are unclear, making it difficult to test the hypotheses that link vision to morphology or life history traits. The phylogenetic signal appears to have been disrupted by gene conversion. Here we have sequenced the opsin genes of J. onca in order to resolve these relationships. Findings We identified nine visual opsins; LWS S180r, LWS S180, LWS P180, SWS1, SWS2A, SWS2B, RH1, RH2-1, and RH2-2. Key site analysis revealed only one unique haplotype, RH2-2, although this is unlikely to shift λmax significantly. LWS P180 was found to be a product of a gene conversion event with LWS S180, followed by convergence to a proline residue at the 180 site. Conclusion Jenynsia onca has at least 9 visual opsins: three LWS, one RH1, two RH2, one SWS1 and two SWS2. The presence of LWS P180 moves the location of the LWS P180-S180 tandem duplication event back to the base of the Poeciliidae-Anablepidae clade, expanding the number of species possessing this unusual blue shifted LWS opsin. The presence of the LWS P180 gene also confirms that gene conversion events have homogenized opsin paralogs in fish, just as they have in humans.

  19. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes.

    Science.gov (United States)

    Barakat, Hassan; El-Garhy, Hoda A S; Moustafa, Mahmoud M A

    2014-12-01

    Detection of pork meat adulteration in "halal" meat products is a crucial issue in the fields of modern food inspection according to implementation of very strict procedures for halal food labelling. Present study aims at detecting and quantifying pork adulteration in both raw and cooked manufactured sausages. This is by applying an optimized species-specific PCR procedure followed by QIAxcel capillary electrophoresis system. Manufacturing experiment was designed by incorporating pork with beef meat at 0.01 to 10 % substitution levels beside beef and pork sausages as negative and positive controls, respectively. Subsequently, sausages were divided into raw and cooked sausages then subjected to DNA extraction. Results indicated that PCR amplifications of mitochondrial D-loop and cytochrome b (cytb) genes by porcine-specific primers produced 185 and 117 bp pork-specific DNA fragments in sausages, respectively. No DNA fragments were detected when PCR was applied on beef sausage DNA confirming primers specificity. For internal control, a 141-bp DNA fragment of eukaryotic 18S ribosomal RNA (rRNA) gene was amplified from pork and beef DNA templates. Although PCR followed by either QIAxcel or agarose techniques were efficient for targeted DNA fragments differentiation even as low as 0.01 % (pork/meat: w/w). For proficiency, adequacy, and performance, PCR-QIA procedure is highly sensitive, a time-saver, electronically documented, mutagenic-reagent free, of little manual errors, accurate in measuring PCR fragments length, and quantitative data supplier. In conclusion, it can be suggested that optimized PCR-QAI is considered as a rapid and sensitive method for routine pork detection and quantification in raw or processed meat.

  20. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus.

    Science.gov (United States)

    Vakirlis, Nikolaos; Sarilar, Véronique; Drillon, Guénola; Fleiss, Aubin; Agier, Nicolas; Meyniel, Jean-Philippe; Blanpain, Lou; Carbone, Alessandra; Devillers, Hugo; Dubois, Kenny; Gillet-Markowska, Alexandre; Graziani, Stéphane; Huu-Vang, Nguyen; Poirel, Marion; Reisser, Cyrielle; Schott, Jonathan; Schacherer, Joseph; Lafontaine, Ingrid; Llorente, Bertrand; Neuvéglise, Cécile; Fischer, Gilles

    2016-07-01

    Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.

  1. The repertoire of heavy chain immunoglobulin genes in B‑cell chronic lymphocytic leukemia in Russia and Belarus

    Directory of Open Access Journals (Sweden)

    B. V. Biderman

    2012-01-01

    Full Text Available Mutation status of the heavy chain variable region genes has long been known as an important factor in long‑term prognosis in B‑cell chronic lymphocytic leukemia (B‑CLL. A more detailed study of the gene sequences of immunoglobulin heavy chain (IgVH led to the discovery of stereotyped antigen receptors (SAR — receptors that have the same set of VH‑, D‑ and JH‑genes used. Cells with SARs have been found almost in a quarter of all B‑CLL cases. This phenomenon is not observed in other lymphatic tumors. In our study, we confirmed and extended the basic observations concerning the repertoire of IgVH in B‑CLL. Differences in the B‑CLL IgVH gene repertoirs between Russia, Вelarus and other countries are also analysed and discussed.

  2. The repertoire of heavy chain immunoglobulin genes in B‑cell chronic lymphocytic leukemia in Russia and Belarus

    Directory of Open Access Journals (Sweden)

    B. V. Biderman

    2014-07-01

    Full Text Available Mutation status of the heavy chain variable region genes has long been known as an important factor in long‑term prognosis in B‑cell chronic lymphocytic leukemia (B‑CLL. A more detailed study of the gene sequences of immunoglobulin heavy chain (IgVH led to the discovery of stereotyped antigen receptors (SAR — receptors that have the same set of VH‑, D‑ and JH‑genes used. Cells with SARs have been found almost in a quarter of all B‑CLL cases. This phenomenon is not observed in other lymphatic tumors. In our study, we confirmed and extended the basic observations concerning the repertoire of IgVH in B‑CLL. Differences in the B‑CLL IgVH gene repertoirs between Russia, Вelarus and other countries are also analysed and discussed.

  3. Inhibition of RORγT Skews TCRα Gene Rearrangement and Limits T Cell Repertoire Diversity

    Directory of Open Access Journals (Sweden)

    Yanxia Guo

    2016-12-01

    Full Text Available Recent studies have elucidated the molecular mechanism of RORγT transcriptional regulation of Th17 differentiation and function. RORγT was initially identified as a transcription factor required for thymopoiesis by maintaining survival of CD4+CD8+ (DP thymocytes. While RORγ antagonists are currently being developed to treat autoimmunity, it remains unclear how RORγT inhibition may impact thymocyte development. In this study, we show that in addition to regulating DP thymocytes survival, RORγT also controls genes that regulate thymocyte migration, proliferation, and T cell receptor (TCRα selection. Strikingly, pharmacological inhibition of RORγ skews TCRα gene rearrangement, limits T cell repertoire diversity, and inhibits development of autoimmune encephalomyelitis. Thus, targeting RORγT not only inhibits Th17 cell development and function but also fundamentally alters thymic-emigrant recognition of self and foreign antigens. The analysis of RORγ inhibitors has allowed us to gain a broader perspective of the diverse function of RORγT and its impact on T cell biology.

  4. The effects of a partitioned var gene repertoire of Plasmodium falciparum on antigenic diversity and the acquisition of clinical immunity

    Directory of Open Access Journals (Sweden)

    Arinaminpathy Nimalan

    2008-01-01

    Full Text Available Abstract Background The human malaria parasite Plasmodium falciparum exploits antigenic diversity and within-host antigenic variation to evade the host's immune system. Of particular importance are the highly polymorphic var genes that encode the family of cell surface antigens PfEMP1 (Plasmodium falciparum Erythrocyte Membrane Protein 1. It has recently been shown that in spite of their extreme diversity, however, these genes fall into distinct groups according to chromosomal location or sequence similarity, and that recombination may be confined within these groups. Methods This study presents a mathematical analysis of how recombination hierarchies affect diversity, and, by using simple stochastic simulations, investigates how intra- and inter-genic diversity influence the rate at which individuals acquire clinical immunity. Results The analysis demonstrates that the partitioning of the var gene repertoire has a limiting effect on the total diversity attainable through recombination and that the limiting effect is strongly influenced by the respective sizes of each of the partitions. Furthermore, by associating expression of one of the groups with severe malaria it is demonstrated how a small number of infections can be sufficient to protect against disease despite a seemingly limitless number of possible non-identical repertoires. Conclusion Recombination hierarchies within the var gene repertoire of P. falciparum have a severe effect on strain diversity and the process of acquiring immunity against clinical malaria. Future studies will show how the existence of these recombining groups can offer an evolutionary advantage in spite of their restriction on diversity.

  5. Natural and man-made V-gene repertoires for antibody discovery.

    Science.gov (United States)

    Finlay, William J J; Almagro, Juan C

    2012-01-01

    Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process.

  6. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts.

    Science.gov (United States)

    Al Tanoury, Ziad; Piskunov, Aleksandr; Andriamoratsiresy, Dina; Gaouar, Samia; Lutzing, Régis; Ye, Tao; Jost, Bernard; Keime, Céline; Rochette-Egly, Cécile

    2014-02-01

    Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.

  7. Species-specific diagnostics using a B-1,4-endoglucanase gene for Pratylenchus spp. occurring in the Pacific Northwest of North America

    Science.gov (United States)

    A PCR assay was designed and optimized to differentiate four Pratylenchus species commonly encountered in soil and root samples from the Pacific Northwest of North America. Species-specific primers were designed to accessions from Pratylenchus species deposited in GenBank which encoded a ß-1,4-endog...

  8. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Science.gov (United States)

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  9. DNA polymorphism analysis of Brucella lipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genes between smooth and rough Brucella species and novel species-specific markers

    Directory of Open Access Journals (Sweden)

    Cloeckaert Axel

    2009-05-01

    Full Text Available Abstract Background The lipopolysaccharide is a major antigen and virulence factor of Brucella, an important bacterial pathogen. In smooth brucellae, lipopolysaccharide is made of lipid A-core oligosaccharide and N-formylperosamine O-polysaccharide. B. ovis and B. canis (rough species lack the O-polysaccharide. Results The polymorphism of O-polysaccharide genes wbkE, manAO-Ag, manBO-Ag, manCO-Ag, wbkF and wbkD and wbo (wboA and wboB, and core genes manBcore and wa** was analyzed. Although most genes were highly conserved, species- and biovar-specific restriction patterns were found. There were no significant differences in putative N-formylperosamyl transferase genes, suggesting that Brucella A and M serotypes are not related to specific genes. In B. pinnipedialis and B. ceti (both smooth, manBO-Ag carried an IS711, confirming its dispensability for perosamine synthesis. Significant differences between smooth and rough species were found in wbkF and wbkD, two adjacent genes putatively related to bactoprenol priming for O-polysaccharide polymerization. B. ovis wbkF carried a frame-shift and B. canis had a long deletion partially encompassing both genes. In smooth brucellae, this region contains two direct repeats suggesting the deletion mechanism. Conclusion The results define species and biovar markers, confirm the dispensability of manBO-Ag for O-polysaccharide synthesis and contribute to explain the lipopolysaccharide structure of rough and smooth Brucella species.

  10. Ability to develop broadly neutralizing HIV-1 antibodies is not restricted by the germline Ig gene repertoire.

    Science.gov (United States)

    Scheepers, Cathrine; Shrestha, Ram K; Lambson, Bronwen E; Jackson, Katherine J L; Wright, Imogen A; Naicker, Dshanta; Goosen, Mark; Berrie, Leigh; Ismail, Arshad; Garrett, Nigel; Abdool Karim, Quarraisha; Abdool Karim, Salim S; Moore, Penny L; Travers, Simon A; Morris, Lynn

    2015-05-01

    The human Ig repertoire is vast, producing billions of unique Abs from a limited number of germline Ig genes. The IgH V region (IGHV) is central to Ag binding and consists of 48 functional genes. In this study, we analyzed whether HIV-1-infected individuals who develop broadly neutralizing Abs show a distinctive germline IGHV profile. Using both 454 and Illumina technologies, we sequenced the IGHV repertoire of 28 HIV-infected South African women from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 002 and 004 cohorts, 13 of whom developed broadly neutralizing Abs. Of the 259 IGHV alleles identified in this study, approximately half were not found in the International Immunogenetics Database (IMGT). This included 85 entirely novel alleles and 38 alleles that matched rearranged sequences in non-IMGT databases. Analysis of the rearranged H chain V region genes of mAbs isolated from seven of these women, as well as previously isolated broadly neutralizing Abs from other donors, provided evidence that at least eight novel or non-IMGT alleles contributed to functional Abs. Importantly, we found that, despite a wide range in the number of IGHV alleles in each individual, including alleles used by known broadly neutralizing Abs, there were no significant differences in germline IGHV repertoires between individuals who do and do not develop broadly neutralizing Abs. This study reports novel IGHV repertoires and highlights the importance of a fully comprehensive Ig database for germline gene usage prediction. Furthermore, these data suggest a lack of genetic bias in broadly neutralizing Ab development in HIV-1 infection, with positive implications for HIV vaccine design.

  11. A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy.

    Science.gov (United States)

    Tang, Nianwu; San Clemente, Hélène; Roy, Sébastien; Bécard, Guillaume; Zhao, Bin; Roux, Christophe

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi are a diverse group of soil fungi (Glomeromycota) that form the most ancient mutualistic association termed AM symbiosis with a majority of land plants, improving their nutrition uptake and resistance to stresses. In contrast to their great ecological implications, the knowledge of the molecular biological mechanisms involved is still scant, partly due to the limited genomic resources available. Here, we describe the gene repertoire of a new AM fungus Gigaspora rosea (Diversisporales). Among the 86332 non-redundant virtual transcripts assembled, 15346 presented similarities with proteins in the Refseq database and 10175 were assigned with GO terms. KOG and Interpro domain annotations clearly showed an enrichment of genes involved in signal transduction in G. rosea. KEGG pathway analysis indicates that most primary metabolic processes are active in G. rosea. However, as for Rhizophagus irregularis, several metabolic genes were not found, including the fatty acid synthase (FAS) gene. This finding supports the hypothesis that AM fungi depend on the lipids produced by their hosts. Furthermore, the presence of a large number of transporters and 100s of secreted proteins, together with the reduced number of plant cell wall degrading enzymes could be interpreted as an evolutionary adaptation to its mutualistic obligate biotrophy. The detection of meiosis-related genes suggests that G. rosea might use a cryptic sexual process. Lastly, a phylogeny of basal fungi clearly shows Glomeromycota as a sister clade to Mucoromycotina, not only to the Mucorales or Mortierellales. The characterization of the gene repertoire from an AM fungal species belonging to the order of Diversisporales and its comparison with the gene sets of R. irregularis (Glomerales) and Gigaspora margarita (Diversisporales), reveal that AM fungi share several features linked to mutualistic obligate biotrophy. This work contributes to lay the foundation for forthcoming studies

  12. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy

    Directory of Open Access Journals (Sweden)

    Nianwu eTANG

    2016-03-01

    Full Text Available Arbuscular mycorrhizal (AM fungi are a diverse group of soil fungi (Glomeromycota that form the most ancient mutualistic association termed arbuscular mycorrhizal symbiosis with a majority of land plants, improving their nutrition uptake and resistance to stresses. In contrast to their great ecological implications, the knowledge of the molecular biological mechanisms involved is still scant, partly due to the limited genomic resources available. Here, we describe the gene repertoire of a new AM fungus Gigaspora rosea (Diversisporales. Among the 86332 nonredundant virtual transcripts assembled, 15346 presented similarities with proteins in the Refseq database and 10175 were assigned with GO terms. KOG and Interpro domain annotations clearly showed an enrichment of genes involved in signal transduction in G. rosea. KEGG pathway analysis indicates that most primary metabolic processes are active in G. rosea. However, as for R. irregularis, several metabolic genes were not found, including the fatty acid synthase gene. This finding supports the hypothesis that AM fungi depend on the lipids produced by their hosts. Furthermore, the presence of a large number of transporters and hundreds of secreted proteins, together with the reduced number of plant cell wall degrading enzymes could be interpreted as an evolutionary adaptation to its mutualistic obligate biotrophy. The detection of meiosis-related genes suggests that G. rosea might use a cryptic sexual process. Lastly, a phylogeny of basal fungi clearly shows Glomeromycota as a sister clade to Mucoromycotina, not only to the Mucorales or Mortierellales. The characterization of the gene repertoire from an AM fungal species belonging to the order of Diversisporales and its comparison with the gene sets of R. irregularis (Glomerales and Gigaspora margarita (Diversisporales, reveal that AM fungi share several features linked to mutualistic obligate biotrophy. This work contributes to lay the foundation

  13. Cloning of a gene encoding a unique haemolysin from Klebsiella pneumoniae and its potential use as a species-specific gene probe.

    Science.gov (United States)

    Yin-Ching, Chuang; Jer-Horng, Su; Ching-Nan, Lin; Ming-Chung, Chang

    2002-07-01

    A gene, designated khe, that encodes a haemolysin of Klebsiella pneumoniae CMC-1 has been cloned and sequenced. When expressed in Escherichia coli, a unique peptide of approximately 20kDa was identified. Nucleotide sequence analysis predicted a single open reading frame (ORF) of 486bp encoding a 162 amino acid polypeptide with an estimated pI of 6.77. No extensive sequence homology could be identified between khe and any reported sequence at either the nucleotide or amino acid level. Furthermore, DNA hybridizations under high stringency conditions failed to show any cross hybridizations to several bacteria including K. oxytoca, K. planticola, K. terrigena and K. ornithinolytica. These data indicate that we have cloned a unique gene, which is highly conserved among tested K. pneumoniae isolates.

  14. Highly diverse TCRα chain repertoire of pre-immune CD8⁺ T cells reveals new insights in gene recombination.

    Science.gov (United States)

    Genolet, Raphael; Stevenson, Brian J; Farinelli, Laurent; Osterås, Magne; Luescher, Immanuel F

    2012-04-04

    Although the T-cell receptor αδ (TCRαδ) locus harbours large libraries of variable (TRAV) and junctional (TRAJ) gene segments, according to previous studies the TCRα chain repertoire is of limited diversity due to restrictions imposed by sequential coordinate TRAV-TRAJ recombinations. By sequencing tens of millions of TCRα chain transcripts from naive mouse CD8(+) T cells, we observed a hugely diverse repertoire, comprising nearly all possible TRAV-TRAJ combinations. Our findings are not compatible with sequential coordinate gene recombination, but rather with a model in which contraction and DNA looping in the TCRαδ locus provide equal access to TRAV and TRAJ gene segments, similarly to that demonstrated for IgH gene recombination. Generation of the observed highly diverse TCRα chain repertoire necessitates deletion of failed attempts by thymic-positive selection and is essential for the formation of highly diverse TCRαβ repertoires, capable of providing good protective immunity.

  15. Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species.

    Science.gov (United States)

    Lima, Luciana; Ortiz, Paola A; da Silva, Flávia Maia; Alves, João Marcelo P; Serrano, Myrna G; Cortez, Alane P; Alfieri, Silvia C; Buck, Gregory A; Teixeira, Marta M G

    2012-01-01

    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine

  16. Antibody repertoire development in fetal and neonatal piglets XXI. Usage of most VH genes remains constant during fetal and postnatal development.

    Science.gov (United States)

    Butler, John E; Sun, Xuizhu; Wertz, Nancy; Lager, Kelly M; Chaloner, Kathryn; Urban, Joseph; Francis, David L; Nara, Peter L; Tobin, Gregory J

    2011-12-01

    Usage of variable region gene segments during development of the antibody repertoire in mammals is unresolved in part because of the complexity of the locus in mice and humans and the difficulty of distinguishing intrinsic from extrinsic influences in these species. We present the first vertical studies on VH usage that spans the fetal and neonatal period using the piglet model. We tracked VH usage in DNA rearrangements and in VDJ transcripts throughout 75 days of gestation (DG) in outbred fetuses, thereafter in outbred germfree and colonized isolator piglets, isolator piglets infected with swine influenza and in conventionally reared nematode-infected adults. Seven VH genes account for >90% of the pre-immune repertoire which is the same among tissues and in both transcripts and DNA rearrangements. Statistical modeling supports the view that proportional usage of the major genes remains constant during fetal life and that postnatal usage ranking is similar to that during fetal life. Changes in usage ranking are developmental not antigen dependent. In this species exposure to environmental antigens results in diversification of the repertoire by somatic hypermutation of the same small number of VH genes that comprise the pre-immune repertoire, not by using other VH gene available in the germline. Therefore in swine a small number of VH genes shape the antibody repertoire throughout life questioning the need for extensive VH polygeny.

  17. The globin gene repertoire of lampreys: convergent evolution of hemoglobin and myoglobin in jawed and jawless vertebrates.

    Science.gov (United States)

    Schwarze, Kim; Campbell, Kevin L; Hankeln, Thomas; Storz, Jay F; Hoffmann, Federico G; Burmester, Thorsten

    2014-10-01

    Agnathans (jawless vertebrates) occupy a key phylogenetic position for illuminating the evolution of vertebrate anatomy and physiology. Evaluation of the agnathan globin gene repertoire can thus aid efforts to reconstruct the origin and evolution of the globin genes of vertebrates, a superfamily that includes the well-known model proteins hemoglobin and myoglobin. Here, we report a comprehensive analysis of the genome of the sea lamprey (Petromyzon marinus) which revealed 23 intact globin genes and two hemoglobin pseudogenes. Analyses of the genome of the Arctic lamprey (Lethenteron camtschaticum) identified 18 full length and five partial globin gene sequences. The majority of the globin genes in both lamprey species correspond to the known agnathan hemoglobins. Both genomes harbor two copies of globin X, an ancient globin gene that has a broad phylogenetic distribution in the animal kingdom. Surprisingly, we found no evidence for an ortholog of neuroglobin in the lamprey genomes. Expression and phylogenetic analyses identified an ortholog of cytoglobin in the lampreys; in fact, our results indicate that cytoglobin is the only orthologous vertebrate-specific globin that has been retained in both gnathostomes and agnathans. Notably, we also found two globins that are highly expressed in the heart of P. marinus, thus representing functional myoglobins. Both genes have orthologs in L. camtschaticum. Phylogenetic analyses indicate that these heart-expressed globins are not orthologous to the myoglobins of jawed vertebrates (Gnathostomata), but originated independently within the agnathans. The agnathan myoglobin and hemoglobin proteins form a monophyletic group to the exclusion of functionally analogous myoglobins and hemoglobins of gnathostomes, indicating that specialized respiratory proteins for O2 transport in the blood and O2 storage in the striated muscles evolved independently in both lineages. This dual convergence of O2-transport and O2-storage proteins in

  18. Antibody repertoire diversification through VH gene replacement in mice cloned from an IgA plasma cell.

    Science.gov (United States)

    Kumar, Rashmi; Bach, Martina P; Mainoldi, Federica; Maruya, Mikako; Kishigami, Satoshi; Jumaa, Hassan; Wakayama, Teruhiko; Kanagawa, Osami; Fagarasan, Sidonia; Casola, Stefano

    2015-02-01

    In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell. In VHQ52(NT) mice, IgA replaced IgM to drive early B-cell development and peripheral B-cell maturation. In VHQ52(NT) animals, over 20% of mature B cells disrupted the single productive, nonautoimmune IgH rearrangement through VH replacement and exchanged it with a highly diversified pool of IgH specificities. VH replacement occurred in early pro-B cells, was independent of pre-B-cell receptor signaling, and involved predominantly one adjacent VH germ-line gene. VH replacement was also identified in 5% of peripheral B cells of mice inheriting a different productive VH rearrangement expressed in the form of an IgM H chain. In summary, editing of a productive IgH rearrangement through VH replacement can account for up to 20% of the IgH repertoire expressed by mature B cells.

  19. Deep sequencing of the murine Igh repertoire reveals complex regulation of non-random V gene rearrangement frequencies

    Science.gov (United States)

    Choi, Nancy M.; Loguercio, Salvatore; Verma-Gaur, Jiyoti; Degner, Stephanie C.; Torkamani, Ali; Su, Andrew I.; Oltz, Eugene M.; Artyomov, Maxim; Feeney, Ann J.

    2013-01-01

    A diverse antibody repertoire is formed through the rearrangement of V, D, and J segments at the immunoglobulin heavy chain (Igh) loci. The C57BL/6 murine Igh locus has over 100 functional VH gene segments that can recombine to a rearranged DJH. While the non-random usage of VH genes is well documented, it is not clear what elements determine recombination frequency. To answer this question we conducted deep sequencing of 5′-RACE products of the Igh repertoire in pro-B cells, amplified in an unbiased manner. ChIP-seq results for several histone modifications and RNA polymerase II binding, RNA-seq for sense and antisense non-coding germline transcripts, and proximity to CTCF and Rad21 sites were compared to the usage of individual V genes. Computational analyses assessed the relative importance of these various accessibility elements. These elements divide the Igh locus into four epigenetically and transcriptionally distinct domains, and our computational analyses reveal different regulatory mechanisms for each region. Proximal V genes are relatively devoid of active histone marks and non-coding RNA in general, but having a CTCF site near their RSS is critical, suggesting that being positioned near the base of the chromatin loops is important for rearrangement. In contrast, distal V genes have higher levels of histone marks and non-coding RNA, which may compensate for their poorer RSSs and for being distant from CTCF sites. Thus, the Igh locus has evolved a complex system for the regulation of V(D)J rearrangement that is different for each of the four domains that comprise this locus. PMID:23898036

  20. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment.

    Science.gov (United States)

    Burgener-Kairuz, P; Zuber, J P; Jaunin, P; Buchman, T G; Bille, J; Rossier, M

    1994-08-01

    PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively.

  1. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  2. Employment of Near Full-Length Ribosome Gene TA-Cloning and Primer-Blast to Detect Multiple Species in a Natural Complex Microbial Community Using Species-Specific Primers Designed with Their Genome Sequences.

    Science.gov (United States)

    Zhang, Huimin; He, Hongkui; Yu, Xiujuan; Xu, Zhaohui; Zhang, Zhizhou

    2016-11-01

    It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.

  3. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis.

    Directory of Open Access Journals (Sweden)

    Eva E R Philipp

    Full Text Available The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species. We generated a large Mytilus transcriptome database from different tissues of immune challenged and stress treated individuals from the Baltic Sea using 454 pyrosequencing. Phylogenetic comparison of orthologous groups of 23 species demonstrated the basal position of lophotrochozoans within protostomes. The investigation of immune related transcripts revealed a complex repertoire of innate recognition receptors and downstream pathway members including transcripts for 27 toll-like receptors and 524 C1q domain containing transcripts. NOD-like receptors on the other hand were absent. We also found evidence for sophisticated TNF, autophagy and apoptosis systems as well as for cytokines. Gill tissue and hemocytes showed highest expression of putative immune related contigs and are promising tissues for further functional studies. Our results partly contrast with findings of a less complex immune repertoire in ecdysozoan and other lophotrochozoan protostomes. We show that bivalves are interesting candidates to investigate the evolution of the immune system from basal metazoans to deuterostomes and protostomes and provide a basis for future molecular work directed to immune system functioning in Mytilus.

  4. Isolation of botulinolysin, a thiol-activated hemolysin, from serotype D Clostridium botulinum: A species-specific gene duplication in Clostridia.

    Science.gov (United States)

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Mutoh, Shingo; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2016-12-01

    Botulinolysin (BLY) is a toxin produced by Clostridium botulinum that belongs to a group of thiol-activated hemolysins. In this study, a protein exhibiting hemolytic activity was purified from the culture supernatant of C. botulinum serotype D strain 4947. The purified protein displayed a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular mass of 55kDa, and its N-terminal and internal amino acid sequences exhibited high similarity to a group of thiol-activated hemolysins produced by gram-positive bacteria. Thus, the purified protein was identified as the BLY. Using the nucleotide sequences of previously cloned genes for hemolysins, two types of genes encoding BLY-like proteins were cloned unexpectedly. Molecular modeling analysis indicated that the products of both genes displayed very similar structures, despite the low sequence similarity. In silico screening revealed a specific duplication of the hemolysin gene restricted to serotypes C and D of C. botulinum and their related species among thiol-activated hemolysin-producing bacteria. Our findings provide important insights into the genetic characteristics of pathogenic bacteria.

  5. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals.

    Science.gov (United States)

    Niimura, Yoshihito; Matsui, Atsushi; Touhara, Kazushige

    2014-09-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species--reflecting the respective species' lifestyles--and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (∼ 2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory. © 2014 Niimura et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Immunoglobulin gene repertoire in ocular adnexal lymphomas: hints on the nature of the antigenic stimulation.

    Science.gov (United States)

    Dagklis, A; Ponzoni, M; Govi, S; Cangi, M G; Pasini, E; Charlotte, F; Vino, A; Doglioni, C; Davì, F; Lossos, I S; Ntountas, I; Papadaki, T; Dolcetti, R; Ferreri, A J M; Stamatopoulos, K; Ghia, P

    2012-04-01

    Evidence from certain geographical areas links lymphomas of the ocular adnexa marginal zone B-cell lymphomas (OAMZL) with Chlamydophila psittaci (Cp) infection, suggesting that lymphoma development is dependent upon chronic stimulation by persistent infections. Notwithstanding that, the actual immunopathogenetical mechanisms have not yet been elucidated. As in other B-cell lymphomas, insight into this issue, especially with regard to potential selecting ligands, could be provided by analysis of the immunoglobulin (IG) receptors of the malignant clones. To this end, we studied the molecular features of IGs in 44 patients with OAMZL (40% Cp-positive), identifying features suggestive of a pathogenic mechanism of autoreactivity. Herein, we show that lymphoma cells express a distinctive IG repertoire, with electropositive antigen (Ag)-binding sites, reminiscent of autoantibodies (auto-Abs) recognizing DNA. Additionally, five (11%) cases of OAMZL expressed IGs homologous with autoreactive Abs or IGs of patients with chronic lymphocytic leukemia, a disease known for the expression of autoreactive IGs by neoplastic cells. In contrast, no similarity with known anti-Chlamydophila Abs was found. Taken together, these results strongly indicate that OAMZL may originate from B cells selected for their capability to bind Ags and, in particular, auto-Ags. In OAMZL associated with Cp infection, the pathogen likely acts indirectly on the malignant B cells, promoting the development of an inflammatory milieu, where auto-Ags could be exposed and presented, driving proliferation and expansion of self-reactive B cells.

  7. IDENTIFIKASI DAGING BABI MENGGUNAKAN METODE PCR-RFLP GEN Cytochrome b DAN PCR PRIMER SPESIFIK GEN AMELOGENIN (Pork Identification Using PCR-RFLP of Cytochrome b Gene and Species Specific PCR of Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Yuny Erwanto

    2013-03-01

    Full Text Available A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP and species specific PCR methods had been applied for identifying pork in mixture of meat. Pork sample in various levels (1, 3, 5 and 10% was prepared in mixture with beef, chicken and mutton. The primary CYTb1 and CYTb2 were designed in the mitochondrial cytochrome b b (cytochrome b gene and PCR successfully amplified fragments of 359 bp. To distinguish pig species existence, the amplified PCR products of mitochondrial DNA were cut by BseDI restriction enzyme. The result showed that pig mitochondrial DNA was cut into 131 and 228 bp fragments. A polymerase chain reaction (PCR method based on the nucleotide sequence variation in the amelogenin gene has been chosen for the specific identification of pork DNAs in mixture meat. The primers designed generated specific fragments of 353 and 312 bp length for pork. The specificity of the primary designed was tested on 4 animal species including pig, cattle, chicken and goat species. Analysis of experimental mixture meat demonstrated that 1% of raw pork tissues could be detected using PCR-RFLP with BseDI restriction enzyme but detection using species-specific PCR showed the cross reactivity to beef, chicken and mutton. The cytochrome b PCR-RFLP species identification assay yielded excellent results for identification of pig species. PCR-RFLP is a potentially reliable technique for detection of the existence of pork in animal food product for Halal authentication. Keywords: Pork identification, cytochrome b, amelogenin, polymerase chain reaction   ABSTRAK   Penelitian ini dilakukan untuk mengaplikasikan metode deteksi daging babi dalam campuan daging dengan sapi, kambing dan ayam melalui PCR-RFLP dan PCR dengan primer spesifik untuk babi. Level kontaminasi daging babi dibuat sebesar 1, 3, 5 dan 10% dari total daging dalam campuran. Metode PCR-RFLP menggunakan sepasang primer yaitu gen cytochrome b dari mitokondria yang

  8. The VH and CH immunoglobulin genes of swine: implications for repertoire development.

    Science.gov (United States)

    Butler, J E; Sun, J; Kacskovics, I; Brown, W R; Navarro, P

    1996-11-01

    Swine have the largest number of IgG subclass genes of all species so far studied but have a single gene for IgA which occurs in two allelic forms that differ in hinge length. Swine also have constant region genes for C mu and C epsilon, but lack a gene homologous to that which encodes IgD in rodents and primates, despite the otherwise high degree of sequence similarity of all other swine CH genes with those of humans. Swine have immunoglobulin genes among species justifies the quest of veterinary immunologists to define the system for their species of interest rather than making extrapolations from mouse and human immune systems.

  9. IMPre: an accurate and efficient software for prediction of T- and B-cell receptor germline genes and alleles from rearranged repertoire data

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-11-01

    Full Text Available Large-scale study of the properties of T-cell receptor (TCR and B-cell receptor (BCR repertoires through next-generation sequencing is providing excellent insights into the understanding of adaptive immune responses. Variable(DiversityJoining V(DJ germline genes and alleles must be characterized in detail to facilitate repertoire analyses. However, most species do not have well-characterized TCR/BCR germline genes because of their high homology. Also, more germline alleles are required for humans and other species, which limits the capacity for studying immune repertoires. Herein, we developed Immune Germline Prediction (IMPre, a tool for predicting germline V/J genes and alleles using deep-sequencing data derived from TCR/BCR repertoires. We developed a new algorithm, Seed_Clust, for clustering, produced a multiway tree for assembly and optimized the sequence according to the characteristics of rearrangement. We trained IMPre on human samples of T-cell receptor beta (TRB and immunoglobulin heavy chain (IGH, and then tested it on additional human samples. Accuracy of 97.7%, 100%, 92.9% and 100% was obtained for TRBV, TRBJ, IGHV and IGHJ, respectively. Analyses of subsampling performance for these samples showed IMPre to be robust using different data quantities. Subsequently, IMPre was tested on samples from rhesus monkeys and human long sequences: the highly accurate results demonstrated IMPre to be stable with animal and multiple data types. With rapid accumulation of high-throughput sequence data for TCR and BCR repertoires, IMPre can be applied broadly for obtaining novel genes and a large number of novel alleles. IMPre is available at https://github.com/zhangwei2015/IMPre.

  10. The immune gene repertoire of an important viral reservoir, the Australian black flying fox

    Directory of Open Access Journals (Sweden)

    Papenfuss Anthony T

    2012-06-01

    Full Text Available Abstract Background Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Results Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. Conclusions This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.

  11. A Comparative In Silico Study of the Antioxidant Defense Gene Repertoire of Distinct Lifestyle Trypanosomatid Species

    Science.gov (United States)

    Beltrame-Botelho, Ingrid Thaís; Talavera-López, Carlos; Andersson, Björn; Grisard, Edmundo Carlos; Stoco, Patricia Hermes

    2016-01-01

    Kinetoplastids are an ancestral group of protists that contains free-living species and parasites with distinct mechanisms in response to stress. Here, we compared genes involved in antioxidant defense (AD), proposing an evolution model among trypanosomatids. All genes were identified in Bodo saltans, suggesting that AD mechanisms have evolved prior to adaptation for parasitic lifestyles. While most of the monoxenous and dixenous parasites revealed minor differences from B. saltans, the endosymbiont-bearing species have an increased number of genes. The absence of these genes was mainly observed in the extracellular parasites of the genera Phytomonas and Trypanosoma. In trypanosomes, a distinction was observed between stercorarian and salivarian parasites, except for Trypanosoma rangeli. Our analyses indicate that the variability of AD among trypanosomatids at the genomic level is not solely due to the geographical isolation, being mainly related to specific adaptations of their distinct biological cycles within insect vectors and to a parasitism of a wide range of hosts. PMID:27840574

  12. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution

    OpenAIRE

    2010-01-01

    Abstract Background Giardia lamblia trophozoites colonize the intestines of susceptible mammals and cause diarrhea, which can be prolonged despite an intestinal immune response. The variable expression of the variant-specific surface protein (VSP) genes may contribute to this prolonged infection. Only one is expressed at a time, and switching expression from one gene to another occurs by an epigenetic mechanism. Results The WB Giardia isolate has been sequenced at 10× coverage and assembled i...

  13. Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus.

    Directory of Open Access Journals (Sweden)

    Lillian G Acuña

    Full Text Available BACKGROUND: Acidithiobacillus caldus is a sulfur oxidizing extreme acidophile and the only known mesothermophile within the Acidithiobacillales. As such, it is one of the preferred microbes for mineral bioprocessing at moderately high temperatures. In this study, we explore the genomic diversity of A. caldus strains using a combination of bioinformatic and experimental techniques, thus contributing first insights into the elucidation of the species pangenome. PRINCIPAL FINDINGS: Comparative sequence analysis of A. caldus ATCC 51756 and SM-1 indicate that, despite sharing a conserved and highly syntenic genomic core, both strains have unique gene complements encompassing nearly 20% of their respective genomes. The differential gene complement of each strain is distributed between the chromosomal compartment, one megaplasmid and a variable number of smaller plasmids, and is directly associated to a diverse pool of mobile genetic elements (MGE. These include integrative conjugative and mobilizable elements, genomic islands and insertion sequences. Some of the accessory functions associated to these MGEs have been linked previously to the flexible gene pool in microorganisms inhabiting completely different econiches. Yet, others had not been unambiguously mapped to the flexible gene pool prior to this report and clearly reflect strain-specific adaption to local environmental conditions. SIGNIFICANCE: For many years, and because of DNA instability at low pH and recurrent failure to genetically transform acidophilic bacteria, gene transfer in acidic environments was considered negligible. Findings presented herein imply that a more or less conserved pool of actively excising MGEs occurs in the A. caldus population and point to a greater frequency of gene exchange in this econiche than previously recognized. Also, the data suggest that these elements endow the species with capacities to withstand the diverse abiotic and biotic stresses of natural

  14. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  15. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.

    Science.gov (United States)

    Hering, Lars; Mayer, Georg

    2014-09-04

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage.

  16. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae.

    Science.gov (United States)

    Lefébure, Tristan; Richards, Vince P; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J

    2012-01-01

    Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).

  17. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae.

    Directory of Open Access Journals (Sweden)

    Tristan Lefébure

    Full Text Available Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46% of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86% in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i the integration of new virulence factors (e.g. speB, and the sal locus and (ii the construction of new regulation networks (e.g. rgg, and to some extent speB.

  18. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2011-06-01

    Full Text Available Abstract Background The larvae of the greater wax moth Galleria mellonella are increasingly used (i as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. Results We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03 to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Conclusion Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our

  19. The repertoire of λ light chains causing predominant amyloid heart involvement and identification of a preferentially involved germline gene, IGLV1-44.

    Science.gov (United States)

    Perfetti, Vittorio; Palladini, Giovanni; Casarini, Simona; Navazza, Valentina; Rognoni, Paola; Obici, Laura; Invernizzi, Rosangela; Perlini, Stefano; Klersy, Catherine; Merlini, Giampaolo

    2012-01-05

    Monoclonal Ig light chains (LC) can be responsible for pathologic conditions in humans, as in systemic amyloid light amyloidosis. Protean clinical manifestations characterize this disorder with the most varied combination of symptoms generated by different degrees of diverse organ involvement. Kidney and heart are most frequently interested, with major heart involvement as the most relevant prognostic factor. The identification of the underlying mechanism involved in organ targeting is of major relevance for the pathobiology of this disorder. To this aim, we characterized the repertoire of variable region germline genes of λ LC preferentially targeting the heart and compared it with the repertoire of LC that do not in a case-control study. We found that the repertoires were highly restricted, showing preferential use of the same few germline genes but with a different frequency pattern. A single gene, IGVL1-44, was found associated with a 5-fold increase in the odds of dominant heart involvement (after adjusting for confounders in a multivariable logistic model). These results support an involvement of LC genetics in the determination of organ targeting. Study of the characteristics of IGVL1-44-LC with, and of the minority without, heart involvement might lead to identification of LC/tissue interactions.

  20. OXA-258 from Achromobacter ruhlandii: a Species Specific Marker

    OpenAIRE

    Papalia, Mariana Andrea; Almuzara, Marisa; Cejas, Daniela; Traglia, German Matias; Ramirez, Maria Soledad; Galanternik, Laura; Vay, Carlos Alberto; Gutkind, Gabriel Osvaldo; Radice, Marcela Alejandra

    2015-01-01

    A new blaOXA-258 gene is described as species specific taxonomic marker for Achromobacter ruhlandii isolates (all recovered from cystic fibrosis patients). Even if the OXA-258 differs from OXA-114 variants, isolates could be misidentified as A. xiloxosidans by the amplification of an inner fragment from the OXA coding gene. A robust Identification of A. ruhlandii can be achieved by sequencing this single OXA gene as well as a more laborious recently proposed MLST scheme Fil: Papalia, Maria...

  1. OXA-258 from Achromobacter ruhlandii: a Species-Specific Marker

    OpenAIRE

    Papalia, Mariana Andrea; Almuzara, Marisa; Cejas, Daniela; Traglia, German Matias; Ramirez, Maria Soledad; Galanternik, Laura; Vay, Carlos Alberto; Gutkind, Gabriel Osvaldo; Radice, Marcela Alejandra

    2013-01-01

    A new blaOXA-258 gene is described as species specific taxonomic marker for Achromobacter ruhlandii isolates (all recovered from cystic fibrosis patients). Even if the OXA-258 differs from OXA-114 variants, isolates could be misidentified as A. xiloxosidans by the amplification of an inner fragment from the OXA coding gene. A robust Identification of A. ruhlandii can be achieved by sequencing this single OXA gene as well as a more laborious recently proposed MLST scheme Fil: Papalia, Maria...

  2. Salmonella enterica serotypes isolated from squabs reveal multidrug resistance and a distinct pathogenicity gene repertoire.

    Science.gov (United States)

    Osman, K M; Marouf, S H; Mehana, O A; AlAtfeehy, N

    2014-12-01

    The consumption of squab (young unfledged pigeons) as part of the cuisine of many countries, together with the observation that squabs are vectors of zoonotic agents, may make them a public health risk. This study was designed to determine the serotypes, distribution of 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, bcfC) and the antimicrobial resistance profiles of salmonellae recovered from squabs. Six isolates were identified from among 45 (13.3%) squabs sampled. Three serotypes were identified according to the Kauffmann-White serotyping scheme: Salmonella Typhimurium (4/6; 66.7%), S. Braenderup (1/6; 16.7%) and S. Lomita (1/6; 16.7%). Polymerase chain reaction analyses revealed the presence of invA, sopB and bcfC in all six isolates, whereas sopE1 and gipA were absent. All six isolates were resistant to lincomycin and streptomycin, but all were susceptible to ciprofloxacin, colistin sulphate and gentamicin. Among the S. Typhimurium isolates, seven resistance profiles were identified: penicillins,aminoglycosides,fluoroquinolones, lincosamides,phenicols, tetracyclines and sulphonamides; four resistance profiles were identified in the isolates of S. Braenderup and S. Lomita: aminoglycosides, fluoroquinolones, lincosamides and polymyxin. Thus, the distribution of resistance to the antibiotics was largely dependent on serotype identity. The presence of invA, avrA, ssaQ, mgtC, siiD, sopB and bcfC was associated with resistance to chloramphenicol; invA, sopB and bcfC with resistance to streptomycin and lincosamide; and invA and sodC1 with resistance to trimethoprim-sulfamethoxazole. The identification of serotypes S. Typhimurium, S. Braenderup and S. Lomita in the squab samples has important implications because these serotypes are significant causes of food poisoning and enteric fever in humans.

  3. Species specificity in major urinary proteins by parallel evolution.

    Directory of Open Access Journals (Sweden)

    Darren W Logan

    Full Text Available Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1 diversity, to enable the signaling of multiple behaviors, 2 dynamic regulation, to indicate age and dominance, and 3 species-specificity. Recently, the major urinary proteins (Mups have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues.Our results show that the mouse Mup gene cluster is composed of two subgroups: an older, more divergent class of genes and pseudogenes, and a second class with high sequence identity formed by recent sequential duplications of a single gene/pseudogene pair. Previous work suggests that truncated Mup pseudogenes may encode a family of functional hexapeptides with the potential for pheromone activity. Sequence comparison, however, reveals that they have limited coding potential. Similar analyses of nine other completed genomes find Mup gene expansions in divergent lineages, including those of rat, horse and grey mouse lemur, occurring independently from a single ancestral Mup present in other placental mammals. Our findings illustrate that increasing genomic complexity of the Mup gene family is not evolutionarily isolated, but is instead a recurring mechanism of generating coding diversity consistent with a species-specific

  4. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes.

    Science.gov (United States)

    Gonzalez-Cendales, Yvonne; Catanzariti, Ann-Maree; Baker, Barbara; Mcgrath, Des J; Jones, David A

    2016-04-01

    The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.

  5. Polymorphic segmental duplications at 8p23.1 challenge the determination of individual defensin gene repertoires and the assembly of a contiguous human reference sequence

    Directory of Open Access Journals (Sweden)

    Loncarevic Ivan F

    2004-12-01

    Full Text Available Abstract Background Defensins are important components of innate immunity to combat bacterial and viral infections, and can even elicit antitumor responses. Clusters of defensin (DEF genes are located in a 2 Mb range of the human chromosome 8p23.1. This DEF locus, however, represents one of the regions in the euchromatic part of the final human genome sequence which contains segmental duplications, and recalcitrant gaps indicating high structural dynamics. Results We find that inter- and intraindividual genetic variations within this locus prevent a correct automatic assembly of the human reference genome (NCBI Build 34 which currently even contains misassemblies. Manual clone-by-clone alignment and gene annotation as well as repeat and SNP/haplotype analyses result in an alternative alignment significantly improving the DEF locus representation. Our assembly better reflects the experimentally verified variability of DEF gene and DEF cluster copy numbers. It contains an additional DEF cluster which we propose to reside between two already known clusters. Furthermore, manual annotation revealed a novel DEF gene and several pseudogenes expanding the hitherto known DEF repertoire. Analyses of BAC and working draft sequences of the chimpanzee indicates that its DEF region is also complex as in humans and DEF genes and a cluster are multiplied. Comparative analysis of human and chimpanzee DEF genes identified differences affecting the protein structure. Whether this might contribute to differences in disease susceptibility between man and ape remains to be solved. For the determination of individual DEF gene repertoires we provide a molecular approach based on DEF haplotypes. Conclusions Complexity and variability seem to be essential genomic features of the human DEF locus at 8p23.1 and provides an ongoing challenge for the best possible representation in the human reference sequence. Dissection of paralogous sequence variations, duplicon SNPs ans

  6. OXA-258 from Achromobacter ruhlandii: a species-specific marker.

    Science.gov (United States)

    Papalia, Mariana; Almuzara, Marisa; Cejas, Daniela; Traglia, German; Ramírez, Maria Soledad; Galanternik, Laura; Vay, Carlos; Gutkind, Gabriel; Radice, Marcela

    2013-05-01

    A new blaOXA-258 gene is described as a species-specific taxonomic marker for Achromobacter ruhlandii isolates (all recovered from cystic fibrosis patients). Even though OXA-258 differs from OXA-114 variants, isolates could be misidentified as A. xiloxosidans by the amplification of an inner fragment from the OXA-coding gene. A robust identification of A. ruhlandii can be achieved by sequencing this single OXA gene, as well as by a more laborious recently proposed multilocus sequence-typing (MLST) scheme.

  7. Species-Specific Exon Loss in Human Transcriptomes

    OpenAIRE

    Wang, Jinkai; Lu, Zhi-xiang; Tokheim, Collin J.; Miller, Sara E.; Xing, Yi

    2014-01-01

    Changes in exon–intron structures and splicing patterns represent an important mechanism for the evolution of gene functions and species-specific regulatory networks. Although exon creation is widespread during primate and human evolution and has been studied extensively, much less is known about the scope and potential impact of human-specific exon loss events. Historically, transcriptome data and exon annotations are significantly biased toward humans over nonhuman primates. This ascertainm...

  8. The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity

    DEFF Research Database (Denmark)

    Juul, L; Hougs, L; Andersen, V

    1997-01-01

    The expressed human kappa light chain gene repertoire utilized by healthy individuals was studied by two different single-sided specific PCR techniques to avoid bias for certain V genes. A total of 103 rearranged kappa sequences from peripheral blood mononuclear cells from healthy individuals were...

  9. Species-Specific Cuticular Hydrocarbon Stability within European Myrmica Ants.

    Science.gov (United States)

    Guillem, Rhian M; Drijfhout, Falko P; Martin, Stephen J

    2016-10-01

    Recognition is a fundamental process on which all subsequent behaviors are based at every organizational level, from the gene up to the super-organism. At the whole organism level, visual recognition is the best understood. However, chemical communication is far more widespread than visual communication, but despite its importance is much less understood. Ants provide an excellent model system for chemical ecology studies as it is well established that compounds known as cuticular hydrocarbons (CHCs) are used as recognition cues in ants. Therefore, stable species-specific odors should exist, irrespective of geographic locality. We tested this hypothesis by comparing the CHC profiles of workers of twelve species of Myrmica ants from four countries across Europe, from Iberia to the Balkans and from the Mediterranean to Fennoscandia. CHCs remained qualitatively stable within each species, right down to the isomer level. Despite the morphological similarity that occurs within the genus Myrmica, their CHCs were highly diverse but remarkably species-specific and stable across wide geographical areas. This indicates a genetic mechanism under strong selection that produces these species-specific chemical profiles, despite each species encountering different environmental conditions across its range.

  10. Flexible long-range loops in the VH gene region of the Igh locus facilitate the generation of a diverse antibody repertoire.

    Science.gov (United States)

    Medvedovic, Jasna; Ebert, Anja; Tagoh, Hiromi; Tamir, Ido M; Schwickert, Tanja A; Novatchkova, Maria; Sun, Qiong; Huis In 't Veld, Pim J; Guo, Chunguang; Yoon, Hye Suk; Denizot, Yves; Holwerda, Sjoerd J B; de Laat, Wouter; Cogné, Michel; Shi, Yang; Alt, Frederick W; Busslinger, Meinrad

    2013-08-22

    The immunoglobulin heavy-chain (Igh) locus undergoes large-scale contraction in pro-B cells, which facilitates VH-DJH recombination by juxtaposing distal VH genes next to the DJH-rearranged gene segment in the 3' proximal Igh domain. By using high-resolution mapping of long-range interactions, we demonstrate that local interaction domains established the three-dimensional structure of the extended Igh locus in lymphoid progenitors. In pro-B cells, these local domains engaged in long-range interactions across the Igh locus, which depend on the regulators Pax5, YY1, and CTCF. The large VH gene cluster underwent flexible long-range interactions with the more rigidly structured proximal domain, which probably ensures similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire. These long-range interactions appear to be an intrinsic feature of the VH gene cluster, because they are still generated upon mutation of the Eμ enhancer, IGCR1 insulator, or 3' regulatory region in the proximal Igh domain.

  11. Whole Genome Sequencing of the Symbiont Pseudovibrio sp. from the Intertidal Marine Sponge Polymastia penicillus Revealed a Gene Repertoire for Host-Switching Permissive Lifestyle.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2015-10-31

    Sponges harbor a complex consortium of microbial communities living in symbiotic relationship benefiting each other through the integration of metabolites. The mechanisms influencing a successful microbial association with a sponge partner are yet to be fully understood. Here, we sequenced the genome of Pseudovibrio sp. POLY-S9 strain isolated from the intertidal marine sponge Polymastia penicillus sampled from the Atlantic coast of Portugal to identify the genomic features favoring the symbiotic relationship. The draft genome revealed an exceptionally large genome size of 6.6 Mbp compared with the previously reported genomes of the genus Pseudovibrio isolated from a coral and a sponge larva. Our genomic study detected the presence of several biosynthetic gene clusters-polyketide synthase, nonribosomal peptide synthetase and siderophore-affirming the potential ability of the genus Pseudovibrio to produce a wide variety of metabolic compounds. Moreover, we identified a repertoire of genes encoding adaptive symbioses factors (eukaryotic-like proteins), such as the ankyrin repeats, tetratrico peptide repeats, and Sel1 repeats that improve the attachment to the eukaryotic hosts and the avoidance of the host's immune response : The genome also harbored a large number of mobile elements (∼5%) and gene transfer agents, which explains the massive genome expansion and suggests a possible mechanism of horizontal gene transfer. In conclusion, the genome of POLY-S9 exhibited an increase in size, number of mobile DNA, multiple metabolite gene clusters, and secretion systems, likely to influence the genome diversification and the evolvability.

  12. Flexible cultural repertoires

    DEFF Research Database (Denmark)

    Lindegaard, Marie Rosenkrantz; Zimmermann, Francisca

    2017-01-01

    rejection of crime-involved youth. Young men who perform flexible cultural repertoires, by incorporating and shifting between gang and decent repertoires, experience low victimization due to their adaptation to crime-involved youth. Findings emphasize the importance of detailed investigations of the way...

  13. The analysis of VH and VL genes repertoires of Fab library built from peripheral B cells of human rabies virus vaccinated donors.

    Science.gov (United States)

    Houimel, Mehdi

    2014-08-01

    A human combinatorial Fab antibody library was generated from immune repertoire based on peripheral B cells of ten rabies virus vaccinated donors. The analysis of random Fab fragments from the unselected library presented some bias of V gene usage towards IGHV-genes and IGLV-gen families. The screening of the Fab library on rabies virus allowed specific human Fab antibody fragments characterized for their gene encoding sequences, binding and specificities to RV. Genetic analysis of selected Fabs indicated that the IGHV and IGLV differ from the germ-line sequence. At the level of nucleotide sequences, the IGHV and IGLV domains were found to share 74-92% and 90-96% homology with sequences encoded by the corresponding human germ-line genes respectively. IGHV domains are characterized most frequently by IGHV3 genes, and large proportions of the anti-RV heavy chain IGHV domains are obtained following a VDJ recombination process that uses IGHD3, IGHD2, IGHD1 and IGHD6 genes. IGHJ3 and IGHJ4 genes are predominantly used in RV-Fab. The IGLV domains are dominated by IGKV1, IGLV1 and IGLV3 genes. Numerous somatic hypermutations in the RV-specific IGHV are detected, but only limited amino acid replacement in most of the RV-specific IGLV particularly in those encoded by J proximal IGLV or IGKV genes are found. Furthermore, IGHV3-IGKV1, IGHV3-IGVL1, and IGHV3-IGLV3 germ-line family pairings are preferentially enriched after the screening on rabies virus.

  14. Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish.

    Science.gov (United States)

    Harty, Breanne L; Krishnan, Arunkumar; Sanchez, Nicholas E; Schiöth, Helgi B; Monk, Kelly R

    2015-02-08

    Adhesion G protein-coupled receptors (aGPCRs) are the second largest of the five GPCR families and are essential for a wide variety of physiological processes. Zebrafish have proven to be a very effective model for studying the biological functions of aGPCRs in both developmental and adult contexts. However, aGPCR repertoires have not been defined in any fish species, nor are aGPCR expression profiles in adult tissues known. Additionally, the expression profiles of the aGPCR family have never been extensively characterized over a developmental time-course in any species. Here, we report that there are at least 59 aGPCRs in zebrafish that represent homologs of 24 of the 33 aGPCRs found in humans; compared to humans, zebrafish lack clear homologs of GPR110, GPR111, GPR114, GPR115, GPR116, EMR1, EMR2, EMR3, and EMR4. We find that several aGPCRs in zebrafish have multiple paralogs, in line with the teleost-specific genome duplication. Phylogenetic analysis suggests that most zebrafish aGPCRs cluster closely with their mammalian homologs, with the exception of three zebrafish-specific expansion events in Groups II, VI, and VIII. Using quantitative real-time PCR, we have defined the expression profiles of 59 zebrafish aGPCRs at 12 developmental time points and 10 adult tissues representing every major organ system. Importantly, expression profiles of zebrafish aGPCRs in adult tissues are similar to those previously reported in mouse, rat, and human, underscoring the evolutionary conservation of this family, and therefore the utility of the zebrafish for studying aGPCR biology. Our results support the notion that zebrafish are a potentially useful model to study the biology of aGPCRs from a functional perspective. The zebrafish aGPCR repertoire, classification, and nomenclature, together with their expression profiles during development and in adult tissues, provides a crucial foundation for elucidating aGPCR functions and pursuing aGPCRs as therapeutic targets.

  15. Clonal progression during the T cell-dependent B cell antibody response depends on the immunoglobulin DH gene segment repertoire.

    Directory of Open Access Journals (Sweden)

    Ahmad eTrad

    2014-08-01

    Full Text Available The diversity of the third complementarity determining region of the Ig H chain is constrained by natural selection of immunoglobulin diversity (DH sequence. To test the functional significance of this constraint in the context of thymus-dependent (TD immune responses, we immunized BALB/c mice with WT or altered DH sequence with 2-phenyloxazolone-coupled chicken serum albumin (phOx-CSA. We chose this antigen because studies of the humoral immune response to the hapten phOx were instrumental in the development of the current theoretical framework on which our understanding of the forces driving TD responses is based. To allow direct comparison, we used the classic approach of generating monoclonal Ab (mAb from various stages of the immune response to phOx to assess the effect of changing the sequence of the DH on clonal expansion, class switching and affinity maturation, which are hallmarks of TD responses. Compared to WT, TD-induced humoral IgM as well as IgG antibody production in the D-altered D-DFS and D-iD strains were significantly reduced. An increased prevalence of IgM producing hybridomas from late primary, secondary, and tertiary memory responses suggested either impaired class switch recombination (CSR or impaired clonal expansion of class switched B cells with phOx reactivity. Neither of the D-altered strains demonstrated the restriction in the VH/VL repertoire, the elimination of VH1 family-encoded antibodies, the focusing of the distribution of CDR-H3 lengths, or the selection for the normally dominant Ox1 clonotype which all are hallmarks of the anti-phOx response in WT mice. These changes in clonal selection and expansion as well as class switch recombination indicate that the genetic constitution of the DH locus, which has been selected by evolution, can strongly influence the functional outcome of a TD humoral response.

  16. Defining species specific genome differences in malaria parasites.

    Science.gov (United States)

    Liew, Kingsley J L; Hu, Guangan; Bozdech, Zbynek; Peter, Preiser R

    2010-02-23

    In recent years a number of genome sequences for different plasmodium species have become available. This has allowed the identification of numerous conserved genes across the different species and has significantly enhanced our understanding of parasite biology. In contrast little is known about species specific differences between the different genomes partly due to the lower sequence coverage and therefore relatively poor annotation of some of the draft genomes particularly the rodent malarias parasite species. To improve the current annotation and gene identification status of the draft genomes of P. berghei, P. chabaudi and P. yoelii, we performed genome-wide comparisons between these three species. Through analyses via comparative genome hybridizations using a newly designed pan-rodent array as well as in depth bioinformatics analysis, we were able to improve on the coverage of the draft rodent parasite genomes by detecting orthologous genes between these related rodent parasite species. More than 1,000 orthologs for P. yoelii were now newly associated with a P. falciparum gene. In addition to extending the current core gene set for all plasmodium species this analysis also for the first time identifies a relatively small number of genes that are unique to the primate malaria parasites while a larger gene set is uniquely conserved amongst the rodent malaria parasites. These findings allow a more thorough investigation of the genes that are important for host specificity in malaria.

  17. Voltage-gated sodium channel gene repertoire of lampreys: gene duplications, tissue-specific expression and discovery of a long-lost gene.

    Science.gov (United States)

    Zakon, Harold H; Li, Weiming; Pillai, Nisha E; Tohari, Sumanty; Shingate, Prashant; Ren, Jianfeng; Venkatesh, Byrappa

    2017-09-27

    Studies of the voltage-gated sodium (Nav) channels of extant gnathostomes have made it possible to deduce that ancestral gnathostomes possessed four voltage-gated sodium channel genes derived from a single ancestral chordate gene following two rounds of genome duplication early in vertebrates. We investigated the Nav gene family in two species of lampreys (the Japanese lamprey Lethenteron japonicum and sea lamprey Petromyzon marinus) (jawless vertebrates-agnatha) and compared them with those of basal vertebrates to better understand the origin of Nav genes in vertebrates. We noted six Nav genes in both lamprey species, but orthology with gnathostome (jawed vertebrate) channels was inconclusive. Surprisingly, the Nav2 gene, ubiquitously found in invertebrates and believed to have been lost in vertebrates, is present in lampreys, elephant shark (Callorhinchus milii) and coelacanth (Latimeria chalumnae). Despite repeated duplication of the Nav1 family in vertebrates, Nav2 is only in single copy in those vertebrates in which it is retained, and was independently lost in ray-finned fishes and tetrapods. Of the other five Nav channel genes, most were expressed in brain, one in brain and heart, and one exclusively in skeletal muscle. Invertebrates do not express Nav channel genes in muscle. Thus, early in the vertebrate lineage Nav channels began to diversify and different genes began to express in heart and muscle. © 2017 The Author(s).

  18. Analysis of the Opsin Repertoire in the Tardigrade Hypsibius dujardini Provides Insights into the Evolution of Opsin Genes in Panarthropoda

    OpenAIRE

    Hering, Lars; Mayer, Georg

    2014-01-01

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected s...

  19. Flexible cultural repertoires

    DEFF Research Database (Denmark)

    Lindegaard, Marie Rosenkrantz

    2016-01-01

    Despite extensive studies of street culture and the risks of offending and victimization in urban marginalized areas, little is known about the role of cultural repertoires for variation in victimization risks among young men not involved in crime. Based on two ethnographic studies, conducted...... varying cultural repertoires, in particularly heterogeneous flexible repertoires, influence offending and victimization patterns among young men in high-risk settings....... independently of the authors in neighbouring township areas of Cape Town, we offer insights into patterns of victimization among young men not involved in crime who live and attend school in the townships. Young men who perform decent cultural repertoires are highly exposed to victimization due to their moral...

  20. Halal authenticity of gelatin using species-specific PCR.

    Science.gov (United States)

    Shabani, Hessam; Mehdizadeh, Mehrangiz; Mousavi, Seyed Mohammad; Dezfouli, Ehsan Ansari; Solgi, Tara; Khodaverdi, Mahdi; Rabiei, Maryam; Rastegar, Hossein; Alebouyeh, Mahmoud

    2015-10-01

    Consumption of food products derived from porcine sources is strictly prohibited in Islam. Gelatin, mostly derived from bovine and porcine sources, has many applications in the food and pharmaceutical industries. To ensure that food products comply with halal regulations, development of valid and reliable analytical methods is very much required. In this study, a species-specific polymerase chain reaction (PCR) assay using conserved regions of mitochondrial DNA (cytochrome b gene) was performed to evaluate the halal authenticity of gelatin. After isolation of DNA from gelatin powders with known origin, conventional PCR using species-specific primers was carried out on the extracted DNA. The amplified expected PCR products of 212 and 271 bp were observed for porcine and bovine gelatin, respectively. The sensitivity of the method was tested on binary gelatin mixtures containing 0.1%, 1%, 10%, and 100% (w/w) of porcine gelatin within bovine gelatin and vice versa. Although most of the DNA is degraded due to the severe processing steps of gelatin production, the minimum level of 0.1% w/w of both porcine and bovine gelatin was detected. Moreover, eight food products labeled as containing bovine gelatin and eight capsule shells were subjected to PCR examination. The results showed that all samples contained bovine gelatin, and the absence of porcine gelatin was verified. This method of species authenticity is very useful to verify whether gelatin and gelatin-containing food products are derived from halal ingredients.

  1. Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites

    Directory of Open Access Journals (Sweden)

    Rensing Stefan A

    2006-05-01

    Full Text Available Abstract Background The moss Physcomitrella patens is an emerging model in comparative plant science. At present, the Physcomitrella genome is sequenced at the Joint Genome Institute (USA. In this study we present our results on the development of expressed sequence tag-derived microsatellite markers for Physcomitrella patens, their classification and applicability as genetic markers on the intra- as well as on the interspecies level. We experienced severe restrictions to compare our results on Physcomitrella with earlier studies for other plant species due to varying microsatellite search criteria and a limited selection of analysed species. As a consequence, we performed a side by side analysis of expressed sequence tag-derived microsatellites among 24 plant species covering a broad phylogenetic range and present our results on the observed frequencies. Results We identified 3,723 microsatellites using the software MISA in a non-redundant Physcomitrella expressed sequence tag database comprising more than 37 megabases of nucleotide information. For 2,951 microsatellites appendant primer sequences have been derived. PCR of 376 microsatellites yielded 88 % successful amplicons and over 30 % polymorphisms between two Physcomitrella accessions. The polymorphism information content of 64 microsatellites based on 21 different Physcomitrella accessions was comparably high with a mean of 0.47 +/- 0.17. Of the 64 Physcomitrella microsatellite markers, 34 % respectively 79.7 % revealed cross-species applicability in two closely related moss species. In our survey of two green algae, two mosses, a fern, a fern palm, the ginkgo tree, two conifers, ten dicots and five monocots we detected an up to sevenfold variation in the overall frequency with a minimum of 37 up to maximal 258 microsatellites per megabase and a high variability among the different microsatellite class and motif frequencies. Numerous species-specific microsatellite frequencies became

  2. The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity

    DEFF Research Database (Denmark)

    Juul, L; Hougs, L; Andersen, V

    1997-01-01

    The expressed human kappa light chain gene repertoire utilized by healthy individuals was studied by two different single-sided specific PCR techniques to avoid bias for certain V genes. A total of 103 rearranged kappa sequences from peripheral blood mononuclear cells from healthy individuals were....... V genes from the Jkappa-proximal duplication unit of the kappa locus were almost exclusively used. A total of 65% of the sequences could be assigned to four or five genes: A27 (humkv325), L6 (Vg), L2 (humkv328), and A3 and/or A19. N additions and P nucleotides were quite common and found in 32...

  3. Relative contributions of recombination and mutation to the diversification of the opa gene repertoire of Neisseria gonorrhoeae.

    Science.gov (United States)

    Bilek, Nicole; Ison, Catherine A; Spratt, Brian G

    2009-03-01

    To understand the rates and mechanisms of Neisseria gonorrhoeae opa gene variation, the 11 opa genes were amplified independently so that an opa allelic profile could be defined for any isolate from the sequences at each locus. The opa allelic profiles from 14 unrelated isolates were all different, with no opa alleles shared between isolates. Examination of very closely related isolates from sexual contacts and sexual networks showed that these typically shared most opa alleles, and the mechanisms by which recent changes occurred at individual opa loci could be determined. The great majority of changes were due to recombination among existing alleles that duplicated an opa allele present at another locus or resulted in a mosaic of existing opa alleles. Single nucleotide changes or insertion/deletion of a single codon also occurred, but few of these events were assigned to mutation, the majority being assigned to localized recombination. Introduction of novel opa genes from coinfecting strains was rare, and all but one were observed in the same sexual network. Changes at opa loci occurred at a greater rate than those at the porin locus, and the opa11 locus changed more rapidly than other opa loci, almost always differing even between recent sexual contacts. Examination of the neighboring pilE gene showed that changes at opa11 and pilE often occurred together, although this linkage may not be a causal one.

  4. Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade.

    Science.gov (United States)

    Hayakawa, Takashi; Suzuki-Hashido, Nami; Matsui, Atsushi; Go, Yasuhiro

    2014-08-01

    Genome studies of mammals in the superorder Euarchontoglires (a clade that comprises the orders Primates, Dermoptera, Scandentia, Rodentia, and Lagomorpha) are important for understanding the biological features of humans, particularly studies of medical model animals such as macaques and mice. Furthermore, the dynamic ecoevolutionary signatures of Euarchontoglires genomes may be discovered because many species in this clade are characterized by their successful adaptive radiation to various ecological niches. In this study, we investigated the evolutionary trajectory of bitter taste receptor genes (TAS2Rs) in 28 Euarchontoglires species based on homology searches of 39 whole-genome assemblies. The Euarchontoglires species possessed variable numbers of intact TAS2Rs, which ranged from 16 to 40, and their last common ancestor had at least 26 intact TAS2Rs. The gene tree showed that there have been at least seven lineage-specific events involving massive gene duplications. Gene duplications were particularly evident in the ancestral branches of anthropoids (the anthropoid cluster), which may have promoted the adaptive evolution of anthropoid characteristics, such as a trade-off between olfaction and other senses and the development of herbivorous characteristics. Subsequent whole-gene deletions of anthropoid cluster TAS2Rs in hominoid species suggest ongoing ectopic homologous recombination in the anthropoid cluster. These findings provide insights into the roles of adaptive sensory evolution in various ecological niches and important clues related to the molecular mechanisms that underlie taste diversity in Euarchontoglires mammalian species, including humans. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Comparative genomic analysis reveals a diverse repertoire of genes involved in prokaryote-eukaryote interactions within the Pseudovibrio genus.

    Directory of Open Access Journals (Sweden)

    Stefano eRomano

    2016-03-01

    Full Text Available Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage.Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus.Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche

  6. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

    Science.gov (United States)

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F Jerry; Glöckner, Frank O; Crowley, Susan P; O'Sullivan, Orla; Cotter, Paul D; Adams, Claire; Dobson, Alan D W; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  7. Development and Evaluation of Species-Specific PCR for Detection of Nine Acinetobacter Species.

    Science.gov (United States)

    Li, Xue Min; Choi, Ji Ae; Choi, In Sun; Kook, Joong Ki; Chang, Young-Hyo; Park, Geon; Jang, Sook Jin; Kang, Seong Ho; Moon, Dae Soo

    2016-05-01

    Molecular methods have the potential to improve the speed and accuracy of Acinetobacter species identification in clinical settings. The goal of this study is to develop species-specific PCR assays based on differences in the RNA polymerase beta-subunit gene (rpoB) to detect nine commonly isolated Acinetobacter species including Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter lwoffii, Acinetobacter ursingii, Acinetobacter bereziniae, Acinetobacter haemolyticus, and Acinetobacter schindleri. The sensitivity and specificity of these nine assays were measured using genomic DNA templates from 55 reference strains and from 474 Acinetobacter clinical isolates. The sensitivity of A. baumannii-specific PCR assay was 98.9%, and the sensitivity of species-specific PCR assays for all other species was 100%. The specificities of A. lwoffii- and A. schindleri-specific PCR were 97.8 and 98.9%, respectively. The specificity of species-specific PCR for all other tested Acinetobacter species was 100%. The lower limit of detection for the nine species-specific PCR assays developed in this study was 20 or 200 pg of genomic DNA from type strains of each species. The Acinetobacter species-specific PCR assay would be useful to determine the correct species among suggested candidate Acinetobacter species when conventional methods including MALDI-TOF MS identify Acinetobacter only to the genus level. The species-specific assay can be used to screen large numbers of clinical and environmental samples obtained for epidemiologic study of Acinetobacter for the presence of target species.

  8. Population studies of the human V kappa A18 gene polymorphism in Caucasians, blacks and Eskimos. New functional alleles and evidence for evolutionary selection of a more restricted antibody repertoire

    DEFF Research Database (Denmark)

    Juul, L; Hougs, L; Andersen, V

    1997-01-01

    and sequenced four apparently functional alleles and determined the gene frequencies in three well-defined populations: Danish Caucasians, eastern Greenland Eskimos and Mozambican blacks. The A18b allele that was recently described in Native American Navajos by Atkinson et al. was found in all three populations...... and somatically hypermutated A18b messenger RNA present in the blood lymphocytes of individuals carrying this allele. The expression clearly exceeded that of a known functional V gene, A2, indicating that functional A18 alleles contribute significantly to the available antibody repertoire. In this context...

  9. Strategies for B-cell receptor repertoire analysis in Primary Immunodeficiencies:From severe combined immunodeficiency to common variable immunodeficiency

    Directory of Open Access Journals (Sweden)

    Hanna eIJspeert

    2015-04-01

    Full Text Available The antigen receptor repertoires of B and T cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective we describe strategies and considerations for analysis of the naive and antigen selected B-cell repertoires in primary immunodeficiency (PID patients with a focus on severe combined immunodeficiency (SCID and common variable immunodeficiency (CVID.

  10. Strategies for B-Cell Receptor Repertoire Analysis in Primary Immunodeficiencies: From Severe Combined Immunodeficiency to Common Variable Immunodeficiency

    Science.gov (United States)

    IJspeert, Hanna; Wentink, Marjolein; van Zessen, David; Driessen, Gertjan J.; Dalm, Virgil A. S. H.; van Hagen, Martin P.; Pico-Knijnenburg, Ingrid; Simons, Erik J.; van Dongen, Jacques J. M.; Stubbs, Andrew P.; van der Burg, Mirjam

    2015-01-01

    The antigen receptor repertoires of B- and T-cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective, we describe strategies and considerations for analysis of the naive and antigen-selected B-cell repertoires in primary immunodeficiency patients with a focus on severe combined immunodeficiency and common variable immunodeficiency. PMID:25904919

  11. The odorant receptor repertoire of teleost fish

    Directory of Open Access Journals (Sweden)

    Alioto Tyler S

    2005-12-01

    Full Text Available Abstract Background Vertebrate odorant receptors comprise three types of G protein-coupled receptors: the OR, V1R and V2R receptors. The OR superfamily contains over 1,000 genes in some mammalian species, representing the largest gene superfamily in the mammalian genome. Results To facilitate an informed analysis of OR gene phylogeny, we identified the complete set of 143 OR genes in the zebrafish genome, as well as the OR repertoires in two pufferfish species, fugu (44 genes and tetraodon (42 genes. Although the genomes analyzed here contain fewer genes than in mammalian species, the teleost OR genes can be grouped into a larger number of major clades, representing greater overall OR diversity in the fish. Conclusion Based on the phylogeny of fish and mammalian repertoires, we propose a model for OR gene evolution in which different ancestral OR genes or gene families were selectively lost or expanded in different vertebrate lineages. In addition, our calculations of the ratios of non-synonymous to synonymous codon substitutions among more recently expanding OR subgroups in zebrafish implicate residues that may be involved in odorant binding.

  12. The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits

    Science.gov (United States)

    Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A.; Chentoufi, Aziz A.; Chilukuri, Sravya; Shukr, Nora; Fazli, Yasmin; Ong, Nicolas N.; Afifi, Rasha E.; Osorio, Nelson; Geertsema, Roger; Nesburn, Anthony B.

    2016-01-01

    ABSTRACT Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8+ T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT− TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8+ T cells in LAT+ TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8+ T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT+ versus LAT– virus. Compared to CD8+ T cells from LAT– TG, CD8+ T cells from LAT+ TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8+ T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8+ T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) than in a more restricted repertoire of functional HSV-specific CD8+ T cells in the TG of HLA transgenic rabbits latently

  13. LINE-1 repetitive DNA probes for species-specific cloning from Mus spretus and Mus domesticus genomes.

    Science.gov (United States)

    Rikke, B A; Hardies, S C

    1991-12-01

    Mus domesticus and Mus spretus mice are closely related subspecies. For genetic investigations involving hybrid mice, we have developed a set of species-specific oligonucleotide probes based on the detection of LINE-1 sequence differences. LINE-1 is a repetitive DNA family whose many members are interspersed among the genes. In this study, library screening experiments were used to fully characterize the species specificity of four M. domesticus LINE-1 probes and three M. spretus LINE-1 probes. It was found that the nucleotide differences detected by the probes define large, species-specific subfamilies. We show that collaborative use of such probes can be employed to selectively detect thousands of species-specific library clones. Consequently, these probes could be exploited to monitor and access almost any given species-specific region of interest within hybrid genomes.

  14. Inferring processes underlying B-cell repertoire diversity

    Science.gov (United States)

    Elhanati, Yuval; Sethna, Zachary; Marcou, Quentin; Callan, Curtis G.; Mora, Thierry; Walczak, Aleksandra M.

    2015-01-01

    We quantify the VDJ recombination and somatic hypermutation processes in human B cells using probabilistic inference methods on high-throughput DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis captures the statistical properties of the naive repertoire, first after its initial generation via VDJ recombination and then after selection for functionality. We also infer statistical properties of the somatic hypermutation machinery (exclusive of subsequent effects of selection). Our main results are the following: the B-cell repertoire is substantially more diverse than T-cell repertoires, owing to longer junctional insertions; sequences that pass initial selection are distinguished by having a higher probability of being generated in a VDJ recombination event; somatic hypermutations have a non-uniform distribution along the V gene that is well explained by an independent site model for the sequence context around the hypermutation site. PMID:26194757

  15. T Cell Repertoire and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Kenneth Croitoru

    1996-01-01

    Full Text Available The diversity of the T cell receptor repertoire is generated through rearrangement of the variable, junctional and constant region genes. Selection processes in the thymus and periphery serve to eliminate self-reacting T cells, thereby preventing autoimmune disease. The possibility that inflammatory bowel disease (IBD is an autoimmune disease has led to the search for an auto-antigen. In addition, studies are exploring the T cell receptor repertoire in IBD patients for changes that may provide clues regarding etiopathogenesis. Using monoclonal antibodies to T cell receptor variable-gene products or polymerase chain reaction analysis of variable-gene mRNA expression, the mucosal T cell repertoire has been examined in humans. The intestinal intraepithelial lymphocytes show a significant degree of oligoclonal expansion that may represent local antigen exposure or unique selection processes. This is in keeping with studies that show that murine intestinal intraepithelial lymphocytes undergo positive and possibly negative selection independent of the thymus. In the inflamed human gut, shifts in the T cell receptor repertoire may also reflect recruitment of peripheral T cells to the gut. In one study, a subset of Crohn’s disease patients was shown to have an increase in the proportion of variable β8 peripheral blood lymphocyte and mesenteric lymph node cells, suggesting a superantigen effect. The authors hypothesized that changes in the functional T cell receptor repertoire can also occur which might be independent of changes in the distribution of T cells expressing variable β T cell receptors. In fact, the authors have shown there is a selective decrease in the cytotoxic function of peripheral variable β8 T cells in Crohn’s disease. Furthermore, stimulation with the variable β8 selective bacterial enterotoxin staphylococcal enterotoxin E failed to increase the cytotoxic function in this subset of Crohn’s disease patients compared with

  16. Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response.

    Science.gov (United States)

    Webb, Andrew E; Gerek, Z Nevin; Morgan, Claire C; Walsh, Thomas A; Loscher, Christine E; Edwards, Scott V; O'Connell, Mary J

    2015-07-01

    It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Species-specific size expansion and molecular evolution of the oleosins in angiosperms.

    Science.gov (United States)

    Liu, Qi; Sun, Yepeng; Su, Wujie; Yang, Jing; Liu, Xiuming; Wang, Yanfang; Wang, Fawei; Li, Haiyan; Li, Xiaokun

    2012-11-10

    Oleosins are hydrophobic plant proteins thought to be important for the formation of oil bodies, which supply energy for seed germination and subsequent seedling growth. To better understand the evolutionary history and diversity of the oleosin gene family in plants, especially angiosperms, we systematically investigated the molecular evolution of this family using eight representative angiosperm species. A total of 73 oleosin members were identified, with six members in each of four monocot species and a greater but variable number in the four eudicots. A phylogenetic analysis revealed that the angiosperm oleosin genes belonged to three monophyletic lineages. Species-specific gene duplications, caused mainly by segmental duplication, led to the great expansion of oleosin genes and occurred frequently in eudicots after the monocot-eudicot divergence. Functional divergence analyses indicate that significant amino acid site-specific selective constraints acted on the different clades of oleosins. Adaptive evolution analyses demonstrate that oleosin genes were subject to strong purifying selection after their species-specific duplications and that rapid evolution occurred with a high degree of evolutionary dynamics in the pollen-specific oleosin genes. In conclusion, this study serves as a foundation for genome-wide analyses of the oleosins. These findings provide insight into the function and evolution of this gene family in angiosperms and pave the way for studies in other plants. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  18. Species-specific identity elements of tRNA Trp

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through the comparisons among 91 tRNA Trp sequences from prokaryotes, archea and eukaryotes, the potential species-specific identity elements of tRNA Trp are found to be located within acceptor stem, dihydrouridine (D) stem, anticodon(AC) stem and discriminator base. Mutagenesis of B. subtilis tRNA Trp to the eukaryotic consensus se quence, in vitro transcription and enzymatic assay of tRNA Trp toward different tryptophanyl-tRNA synthetases (TrpRS) were employed to shed light on these species-specific identity elements and demonstrate the accurate recognition and the coevolution between tRNA and TrpRS. B. subtilis tRNA Trp with its acceptor stem and discriminator base transplanted by eukaryotic counterparts exhibited diminished reactivity toward B. subtilis enzyme but could be efficiently aminoacylated by rat liver crude enzyme. In contrast, B. subtilis tRNA Trp analog with the eukaryotic anticodon stem and D stem retains its recognition by B. subtilis enzyme. The results provide a strong evidence that the species-specific identity elements of tRNA Trp are orientated within the acceptor stem and discriminator base of tRNA Trp, and the anticodon stem and D stem are of little importance to the interaction between tRNA Trp and its cognate synthetase (TrpRS).

  19. Identification of Complete Repertoire of Apis florea Odorant Receptors Reveals Complex Orthologous Relationships with Apis mellifera.

    Science.gov (United States)

    Karpe, Snehal D; Jain, Rikesh; Brockmann, Axel; Sowdhamini, Ramanathan

    2016-09-26

    We developed a computational pipeline for homology based identification of the complete repertoire of olfactory receptor (OR) genes in the Asian honey bee species, Apis florea Apis florea is phylogenetically the most basal honey bee species and also the most distant sister species to the Western honey bee Apis mellifera, for which all OR genes had been identified before. Using our pipeline, we identified 180 OR genes in A. florea, which is very similar to the number of ORs identified in A. mellifera (177 ORs). Many characteristics of the ORs including gene structure, synteny of tandemly repeated ORs and basic phylogenetic clustering are highly conserved. The composite phylogenetic tree of A. florea and A. mellifera ORs could be divided into 21 clades which are in harmony with the existing Hymenopteran tree. However, we found a few nonorthologous OR relationships between both species as well as independent pseudogenization of ORs suggesting separate evolutionary changes. Particularly, a subgroup of the OR gene clade XI, which had been hypothesized to code cuticular hydrocarbon receptors showed a high number of species-specific ORs RNAseq analysis detected a total number of 145 OR transcripts in male and 162 in female antennae. Most of the OR genes were highly expressed on the female antennae. However, we detected five distinct male-biased OR genes, out of which three genes (AfOr11, AfOr18, AfOr170P) were shown to be male-biased in A. mellifera, too, thus corroborating a behavioral function in sex-pheromone communication.

  20. Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance

    Science.gov (United States)

    Castro-Severyn, Juan; Remonsellez, Francisco; Valenzuela, Sandro L.; Salinas, Cesar; Fortt, Jonathan; Aguilar, Pablo; Pardo-Esté, Coral; Dorador, Cristina; Quatrini, Raquel; Molina, Franck; Aguayo, Daniel; Castro-Nallar, Eduardo; Saavedra, Claudia P.

    2017-01-01

    The Atacama Desert hosts diverse ecosystems including salt flats and shallow Andean lakes. Several heavy metals are found in the Atacama Desert, and microorganisms growing in this environment show varying levels of resistance/tolerance to copper, tellurium, and arsenic, among others. Herein, we report the genome sequence and comparative genomic analysis of a new Exiguobacterium strain, sp. SH31, isolated from an altiplanic shallow athalassohaline lake. Exiguobacterium sp. SH31 belongs to the phylogenetic Group II and its closest relative is Exiguobacterium sp. S17, isolated from the Argentinian Altiplano (95% average nucleotide identity). Strain SH31 encodes a wide repertoire of proteins required for cadmium, copper, mercury, tellurium, chromium, and arsenic resistance. Of the 34 Exiguobacterium genomes that were inspected, only isolates SH31 and S17 encode the arsenic efflux pump Acr3. Strain SH31 was able to grow in up to 10 mM arsenite and 100 mM arsenate, indicating that it is arsenic resistant. Further, expression of the ars operon and acr3 was strongly induced in response to both toxics, suggesting that the arsenic efflux pump Acr3 mediates arsenic resistance in Exiguobacterium sp. SH31. PMID:28377753

  1. Species-specific protein sequence and fold optimizations

    Directory of Open Access Journals (Sweden)

    Michalickova Katerina

    2002-12-01

    Full Text Available Abstract Background An organism's ability to adapt to its particular environmental niche is of fundamental importance to its survival and proliferation. In the largest study of its kind, we sought to identify and exploit the amino-acid signatures that make species-specific protein adaptation possible across 100 complete genomes. Results Environmental niche was determined to be a significant factor in variability from correspondence analysis using the amino acid composition of over 360,000 predicted open reading frames (ORFs from 17 archae, 76 bacteria and 7 eukaryote complete genomes. Additionally, we found clusters of phylogenetically unrelated archae and bacteria that share similar environments by amino acid composition clustering. Composition analyses of conservative, domain-based homology modeling suggested an enrichment of small hydrophobic residues Ala, Gly, Val and charged residues Asp, Glu, His and Arg across all genomes. However, larger aromatic residues Phe, Trp and Tyr are reduced in folds, and these results were not affected by low complexity biases. We derived two simple log-odds scoring functions from ORFs (CG and folds (CF for each of the complete genomes. CF achieved an average cross-validation success rate of 85 ± 8% whereas the CG detected 73 ± 9% species-specific sequences when competing against all other non-redundant CG. Continuously updated results are available at http://genome.mshri.on.ca. Conclusion Our analysis of amino acid compositions from the complete genomes provides stronger evidence for species-specific and environmental residue preferences in genomic sequences as well as in folds. Scoring functions derived from this work will be useful in future protein engineering experiments and possibly in identifying horizontal transfer events.

  2. Can Hyperspectral Remote Sensing Detect Species Specific Biochemicals ?

    Science.gov (United States)

    Vanderbilt, V. C.; Daughtry, C. S.

    2011-12-01

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds, invasive plant species and illegal Cannabis clandestinely grown outdoors, the subject of this research. Remote sensing technology provides an automated, computer based, land cover classification capability that holds promise for improving upon the existing approaches to Cannabis detection. In this research, we investigated whether hyperspectral reflectance of recently harvested, fully turgid Cannabis leaves and buds depends upon the concentration of the psychoactive ingredient Tetrahydrocannabinol (THC) that, if present at sufficient concentration, presumably would allow species-specific identification of Cannabis.

  3. Human KIR repertoires: shaped by genetic diversity and evolution.

    Science.gov (United States)

    Manser, Angela R; Weinhold, Sandra; Uhrberg, Markus

    2015-09-01

    Killer cell immunoglobulin-like receptors (KIRs) on natural killer (NK) cells are crucially involved in the control of cancer development and virus infection by probing cells for proper expression of HLA class I. The clonally distributed expression of KIRs leads to great combinatorial diversity that develops in the presence of the evolutionary older CD94/NKG2A receptor to create highly stochastic but tolerant repertoires of NK cells. These repertoires are present at birth and are subsequently shaped by an individuals' immunological history toward recognition of self. The single most important factor that shapes functional NK cell repertoires is the genetic diversity of KIR, which is characterized by the presence of group A and B haplotypes with complementary gene content that are present in all human populations. Group A haplotypes constitute the minimal genetic entity that provides high affinity recognition of all major human leukocyte antigen class I-encoded ligands, whereas group B haplotypes contribute to the diversification of NK cell repertoires by providing sets of stimulatory KIR genes that modify NK cell responses. We suggest a cooperative model for the balancing selection of A and B haplotypes, which is driven by the need to provide a suitable corridor of repertoire complexity in which A/A individuals with only 16 different KIR combinations coexist with A/B and B/B donors expressing up to 2048 different clone types.

  4. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    Science.gov (United States)

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves.

  5. Are temperate canopy spiders tree-species specific?

    Science.gov (United States)

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  6. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Lionel Guy

    2013-03-01

    Full Text Available Gene transfer agents (GTAs randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes.

  7. Corynebacterium endocarditis species-specific risk factors and outcomes

    Directory of Open Access Journals (Sweden)

    Pak Janet B

    2007-02-01

    Full Text Available Abstract Background Corynebacterium species are recognized as uncommon agents of endocarditis, but little is known regarding species-specific risk factors and outcomes in Corynebacterium endocarditis. Methods Case report and Medline search of English language journals for cases of Corynebacterium endocarditis. Inclusion criteria required that cases be identified as endocarditis, having persistent Corynebacterium bacteremia, murmurs described by the authors as identifying the affected valve, or vegetations found by echocardiography or in surgical or autopsy specimens. Cases also required patient-specific information on risk factors and outcomes (age, gender, prior prosthetic valve, other prior nosocomial risk factors (infected valve, involvement of native versus prosthetic valve, need for valve replacement, and death to be included in the analysis. Publications of Corynebacterium endocarditis which reported aggregate data were excluded. Univariate analysis was conducted with chi-square and t-tests, as appropriate, with p = 0.05 considered significant. Results 129 cases of Corynebacterium endocarditis involving nine species met inclusion criteria. Corynebacterium endocarditis typically infects the left heart of adult males and nearly one third of patients have underlying valvular disease. One quarter of patients required valve replacement and one half of patients died. Toxigenic C. diphtheriae is associated with pediatric infections (p C. amycolatum has a predilection for women (p = 0.024, while C. pseudodiphtheriticum infections are most frequent in men (p = 0.023. C. striatum, C. jeikeium and C. hemolyticum are associated with nosocomial risk factors (p C. pseudodiphtheriticum is associated with a previous prosthetic valve replacement (p = 0.004. C. jeikeium infections are more likely to require valve replacement (p = 0.026. Infections involving toxigenic C. diphtheriae and C. pseudodiphtheriticum are associated with decreased survival (p = 0

  8. Boechera species exhibit species-specific responses to combined heat and high light stress.

    Science.gov (United States)

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species.

  9. Annotation of a hybrid partial genome of the coffee rust (Hemileia vastatrix) contributes to the gene repertoire catalog of the Pucciniales.

    Science.gov (United States)

    Cristancho, Marco A; Botero-Rozo, David Octavio; Giraldo, William; Tabima, Javier; Riaño-Pachón, Diego Mauricio; Escobar, Carolina; Rozo, Yomara; Rivera, Luis F; Durán, Andrés; Restrepo, Silvia; Eilam, Tamar; Anikster, Yehoshua; Gaitán, Alvaro L

    2014-01-01

    Coffee leaf rust caused by the fungus Hemileia vastatrix is the most damaging disease to coffee worldwide. The pathogen has recently appeared in multiple outbreaks in coffee producing countries resulting in significant yield losses and increases in costs related to its control. New races/isolates are constantly emerging as evidenced by the presence of the fungus in plants that were previously resistant. Genomic studies are opening new avenues for the study of the evolution of pathogens, the detailed description of plant-pathogen interactions and the development of molecular techniques for the identification of individual isolates. For this purpose we sequenced 8 different H. vastatrix isolates using NGS technologies and gathered partial genome assemblies due to the large repetitive content in the coffee rust hybrid genome; 74.4% of the assembled contigs harbor repetitive sequences. A hybrid assembly of 333 Mb was built based on the 8 isolates; this assembly was used for subsequent analyses. Analysis of the conserved gene space showed that the hybrid H. vastatrix genome, though highly fragmented, had a satisfactory level of completion with 91.94% of core protein-coding orthologous genes present. RNA-Seq from urediniospores was used to guide the de novo annotation of the H. vastatrix gene complement. In total, 14,445 genes organized in 3921 families were uncovered; a considerable proportion of the predicted proteins (73.8%) were homologous to other Pucciniales species genomes. Several gene families related to the fungal lifestyle were identified, particularly 483 predicted secreted proteins that represent candidate effector genes and will provide interesting hints to decipher virulence in the coffee rust fungus. The genome sequence of Hva will serve as a template to understand the molecular mechanisms used by this fungus to attack the coffee plant, to study the diversity of this species and for the development of molecular markers to distinguish races/isolates.

  10. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles.

    Directory of Open Access Journals (Sweden)

    Yen Kuan Ng

    Full Text Available Sophisticated genetic tools to modify essential biological processes at the molecular level are pivotal in elucidating the molecular pathogenesis of Clostridium difficile, a major cause of healthcare associated disease. Here we have developed an efficient procedure for making precise alterations to the C. difficile genome by pyrE-based allelic exchange. The robustness and reliability of the method was demonstrated through the creation of in-frame deletions in three genes (spo0A, cwp84, and mtlD in the non-epidemic strain 630Δerm and two genes (spo0A and cwp84 in the epidemic PCR Ribotype 027 strain, R20291. The system is reliant on the initial creation of a pyrE deletion mutant, using Allele Coupled Exchange (ACE, that is auxotrophic for uracil and resistant to fluoroorotic acid (FOA. This enables the subsequent modification of target genes by allelic exchange using a heterologous pyrE allele from Clostridium sporogenes as a counter-/negative-selection marker in the presence of FOA. Following modification of the target gene, the strain created is rapidly returned to uracil prototrophy using ACE, allowing mutant phenotypes to be characterised in a PyrE proficient background. Crucially, wild-type copies of the inactivated gene may be introduced into the genome using ACE concomitant with correction of the pyrE allele. This allows complementation studies to be undertaken at an appropriate gene dosage, as opposed to the use of multicopy autonomous plasmids. The rapidity of the 'correction' method (5-7 days makes pyrE(- strains attractive hosts for mutagenesis studies.

  11. Annotation of a hybrid partial genome of the Coffee Rust (Hemileia vastatrix contributes to the gene repertoire catalogue of the Pucciniales

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Cristancho

    2014-10-01

    Full Text Available Coffee leaf rust caused by the fungus Hemileia vastatrix is the most damaging disease to coffee worldwide. The pathogen has recently appeared in multiple outbreaks in coffee producing countries resulting in significant yield losses and increases in costs related to its control. New races/isolates are constantly emerging as evidenced by the presence of the fungus in plants that were previously resistant. Genomic studies are opening new avenues for the study of the evolution of pathogens, the detailed description of plant-pathogen interactions and the development of molecular techniques for the identification of individual isolates. For this purpose we sequenced 8 different H. vastatrix isolates using NGS technologies and gathered partial genome assemblies due to the large repetitive content in the coffee rust hybrid genome; 74.4% of the assembled contigs harbor repetitive sequences. A hybrid assembly of 333Mb was built based on the 8 isolates; this assembly was used for subsequent analyses.Analysis of the conserved gene space showed that the hybrid H. vastatrix genome, though highly fragmented, had a satisfactory level of completion with 91.94% of core protein-coding orthologous genes present. RNA-Seq from urediniospores was used to guide the de novo annotation of the H. vastatrix gene complement. In total, 14,445 genes organized in 3,921 families were uncovered; a considerable proportion of the predicted proteins (73.8% were homologous to other Pucciniales species genomes. Several gene families related to the fungal lifestyle were identified, particularly 483 predicted secreted proteins that represent candidate effector genes and will provide interesting hints to decipher virulence in the coffee rust fungus. The genome sequence of Hva will serve as a template to understand the molecular mechanisms used by this fungus to attack the coffee plant, to study the diversity of this species and for the development of molecular markers to distinguish

  12. Forest Transpiration: Resolving Species-Specific Root Water Uptake Patterns

    Science.gov (United States)

    Blume, T.; Heidbuechel, I.; Simard, S.; Guntner, A.; Weiler, M.; Stewart, R. D.

    2016-12-01

    Transpiration and its spatio-temporal variability are still not fully understood, despite their importance for the global water cycle. This is in part due to our inability to measure transpiration comprehensively. Transpiration is usually either estimated with empirical equations based on climatic variables and crop factors, by measuring sap velocities, estimating sap wood area and scaling up to the forest stand based on a number of assumptions or by measuring the integral signal across a footprint with eddy flux towers. All these methods are focused on the cumulated loss of water to the atmosphere and do not provide information on where this water is coming from. In this study, spatio-temporal variability of root water uptake was investigated in a forest in the northeastern German lowlands. The soils are sandy and the depth of the unsaturated zone ranges from 1 to 30 m. We estimated root water uptake from different soil depths, from 0.1 m down to 2 m, based on diurnal fluctuations in soil moisture content during rain-free days. The 15 field sites cover different topographic positions and forest stands: 4 pure stands of both mature and young beech and pine and 9 mixed stands. The resulting daily data set of root water uptake shows that the forest stands differ in total amounts as well as in uptake depth distributions. Temporal dynamics of signal strength within the profile suggest a locally shifting spatial distribution of uptake that changes with water availability. The relationship of these depth-resolved uptake rates to overall soil water availability varies considerably between tree species. Using the physically-based soil hydrological model HYDRUS we investigated to what extent the observed patterns in uptake can be related to soil physical relationships alone and where tree species-specific aspects come into play. We furthermore used the model to test assumptions and estimate uncertainties of this soil moisture based estimation of plant water uptake. The

  13. Species-Specific Transmission of Novel Picornaviruses in Lemurs

    Science.gov (United States)

    Lim, Efrem S.; Deem, Sharon L.; Porton, Ingrid J.; Cao, Song

    2015-01-01

    ABSTRACT The roles of host genetics versus exposure and contact frequency in driving cross-species transmission remain the subject of debate. Here, we used a multitaxon lemur collection at the Saint Louis Zoo in the United States as a model to gain insight into viral transmission in a setting of high interspecies contact. Lemurs are a diverse and understudied group of primates that are highly endangered. The speciation of lemurs, which are endemic to the island of Madagascar, occurred in geographic isolation apart from that of continental African primates. Although evidence of endogenized viruses in lemur genomes exists, no exogenous viruses of lemurs have been described to date. Here we identified two novel picornaviruses in fecal specimens of ring-tailed lemurs (Lemur catta) and black-and-white ruffed lemurs (Varecia variegata). We found that the viruses were transmitted in a species-specific manner (lesavirus 1 was detected only in ring-tailed lemurs, while lesavirus 2 was detected only in black-and-white ruffed lemurs). Longitudinal sampling over a 1-year interval demonstrated ongoing infection in the collection. This was supported by evidence of viral clearance in some animals and new infections in previously uninfected animals, including a set of newly born triplets that acquired the infection. While the two virus strains were found to be cocirculating in a mixed-species exhibit of ring-tailed lemurs, black-and-white ruffed lemurs, and black lemurs, there was no evidence of cross-species transmission. This suggests that despite high-intensity contact, host species barriers can prevent cross-species transmissions of these viruses. IMPORTANCE Up to 75% of emerging infectious diseases in humans today are the result of zoonotic transmission. However, a challenge in understanding transmission dynamics has been the limited models of cross-species transmission. Zoos provide a unique opportunity to explore parameters defining viral transmission. We demonstrated that

  14. VH replacement in primary immunoglobulin repertoire diversification.

    Science.gov (United States)

    Sun, Amy; Novobrantseva, Tatiana I; Coffre, Maryaline; Hewitt, Susannah L; Jensen, Kari; Skok, Jane A; Rajewsky, Klaus; Koralov, Sergei B

    2015-02-01

    The genes encoding the variable (V) region of the B-cell antigen receptor (BCR) are assembled from V, D (diversity), and J (joining) elements through a RAG-mediated recombination process that relies on the recognition of recombination signal sequences (RSSs) flanking the individual elements. Secondary V(D)J rearrangement modifies the original Ig rearrangement if a nonproductive original joint is formed, as a response to inappropriate signaling from a self-reactive BCR, or as part of a stochastic mechanism to further diversify the Ig repertoire. VH replacement represents a RAG-mediated secondary rearrangement in which an upstream VH element recombines with a rearranged VHDHJH joint to generate a new BCR specificity. The rearrangement occurs between the cryptic RSS of the original VH element and the conventional RSS of the invading VH gene, leaving behind a footprint of up to five base pairs (bps) of the original VH gene that is often further obscured by exonuclease activity and N-nucleotide addition. We have previously demonstrated that VH replacement can efficiently rescue the development of B cells that have acquired two nonproductive heavy chain (IgH) rearrangements. Here we describe a novel knock-in mouse model in which the prerearranged IgH locus resembles an endogenously rearranged productive VHDHJH allele. Using this mouse model, we characterized the role of VH replacement in the diversification of the primary Ig repertoire through the modification of productive VHDHJH rearrangements. Our results indicate that VH replacement occurs before Ig light chain rearrangement and thus is not involved in the editing of self-reactive antibodies.

  15. Salmonella enterica in imported and domestic day-old turkey poults in Egypt: repertoire of virulence genes and their antimicrobial resistance profiles.

    Science.gov (United States)

    Osman, K M; Marouf, S H; Erfan, A M; AlAtfeehy, N

    2014-12-01

    Globalisation and international trade facilitate the rapid spread and transmission of foodborne pathogens. This study was designed to determine the serovars, distribution of virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, bcfC) and antibiotic resistance profiles in salmonellae recovered from imported and domestic day-old turkey poults in Egypt. The prevalence of salmonellae in the imported poults was 4% (6/150): S. Enteritidis was the most frequent isolate (1.3%; 2/150), followed by Typhimurium, Virchow, Larochelle and a non-typeable strain, each with 0.7% (1/150) prevalence. The prevalence of salmonellae in the domestic poults was < 2% (2/150) and serotyping indicated a prevalence of 1.3% (1/150) for both Typhimurium and Altona. In polymerase chain reaction screening, the genes invA, sopB and bcfC were detected in all the Enteritidis, Typhimurium, Virchow, Larochelle, Altona and non-typeable isolates (100%); the gene gipA was absent from all isolates. Carriage of invA, sopB and bcfC among the Enteritidis, Typhimurium, Virchow, Larochelle, Altona and non-typeable isolates was associated with a core pattern of resistance to three antibiotics: streptomycin, nalidixic acid and chloramphenicol. The detection of S. Enteritidis, Typhimurium, Virchow, Larochelle, and Altona in turkey poults has important implications because these serovars are a significant cause of foodborne illness and enteric fever in humans.

  16. Species-specific dynamic responses of gut bacteria to a mammalian glycan.

    Science.gov (United States)

    Raghavan, Varsha; Groisman, Eduardo A

    2015-05-01

    The mammalian intestine provides nutrients to hundreds of bacterial species. Closely related species often harbor homologous nutrient utilization genes and cocolonize the gut, raising questions regarding the strategies mediating their stable coexistence. Here we reveal that related Bacteroides species that can utilize the mammalian glycan chondroitin sulfate (CS) have diverged in the manner in which they temporally regulate orthologous CS utilization genes. Whereas certain Bacteroides species display a transient surge in CS utilization transcripts upon exposure to CS, other species exhibit sustained activation of these genes. Remarkably, species-specific expression dynamics are retained even when the key players governing a particular response are replaced by those from a species with a dissimilar response. Bacteroides species exhibiting distinct expression behaviors in the presence of CS can be cocultured on CS. However, they vary in their responses to CS availability and to the composition of the bacterial community when CS is the sole carbon source. Our results indicate that diversity resulting from regulation of polysaccharide utilization genes may enable the coexistence of gut bacterial species using a given nutrient. Genes mediating a specific task are typically conserved in related microbes. For instance, gut Bacteroides species harbor orthologous nutrient breakdown genes and may face competition from one another for these nutrients. How, then, does the gut microbial composition maintain such remarkable stability over long durations? We establish that in the case of genes conferring the ability to utilize the nutrient chondroitin sulfate (CS), microbial species vary in how they temporally regulate these genes and exhibit subtle growth differences on the basis of CS availability and community composition. Similarly to how differential regulation of orthologous genes enables related species to access new environments, gut bacteria may regulate the same genes

  17. [Thyroid hormones and their precursors. II. Species-specific properties].

    Science.gov (United States)

    Tóth, Gergo; Noszál, Béla

    2014-01-01

    This paper surveys the species-specific physico-chemical parameters (basicity and lipophilicity) and related biological functions of thyroid hormones (thyroxine, liothyronine and reverse liothyronine) and their biological precursors (tyrosine, monoiodotyrosine and diiodotyrosine). The protonation macroconstants were determined by 1H NMR-pH titrations while the microconstants were determined by a multimodal spectroscopic-deductive methodology using auxiliary derivatives of reduced complexity. Our results show that the different number and/or position of iodine are the key factors to influence the phenolate basicity. The ionization state of the phenolate site is crucial in the biosynthesis and protein binding of thyroid hormones. The role of the protonation state in the receptor binding was investigated by an in silico docking method. Microspecies of thyroid hormones were docked to the thyroid hormone receptor isoforms. Our results quantitate at the molecular level how the ionization stage and the charge distribution influence the protein binding. The anionic form of the carboxyl group is essential for the protein binding, whereas the protonated form of the amino group loosens it. The protonation state of the phenolate plays a role of secondary importance in the receptor binding. The combined results of docking and microspeciation studies show that microspecies of the highest concentration at the pH of blood are not the strongest binding ones. The site-specific lipophilicity of our investigated molecules was determined with the measurement of distribution coefficients at different pH using carboxymethyl- and O-methyl-derivatives to mimic the partition of some of the individual microspecies. Correction factors were determined and introduced. Our data show that the iodinated aromatic ring system is the definitive structural element that fundamentally determines the lipophilicity of thyroid hormones, whereas the protonation state of the aliphatic part is essential in

  18. Unifying model for molecular determinants of the preselection Vβ repertoire.

    Science.gov (United States)

    Gopalakrishnan, Suhasni; Majumder, Kinjal; Predeus, Alexander; Huang, Yue; Koues, Olivia I; Verma-Gaur, Jiyoti; Loguercio, Salvatore; Su, Andrew I; Feeney, Ann J; Artyomov, Maxim N; Oltz, Eugene M

    2013-08-20

    The primary antigen receptor repertoire is sculpted by the process of V(D)J recombination, which must strike a balance between diversification and favoring gene segments with specialized functions. The precise determinants of how often gene segments are chosen to complete variable region coding exons remain elusive. We quantified Vβ use in the preselection Tcrb repertoire and report relative contributions of 13 distinct features that may shape their recombination efficiencies, including transcription, chromatin environment, spatial proximity to their DβJβ targets, and predicted quality of recombination signal sequences (RSSs). We show that, in contrast to functional Vβ gene segments, all pseudo-Vβ segments are sequestered in transcriptionally silent chromatin, which effectively suppresses wasteful recombination. Importantly, computational analyses provide a unifying model, revealing a minimum set of five parameters that are predictive of Vβ use, dominated by chromatin modifications associated with transcription, but largely independent of precise spatial proximity to DβJβ clusters. This learned model-building strategy may be useful in predicting the relative contributions of epigenetic, spatial, and RSS features in shaping preselection V repertoires at other antigen receptor loci. Ultimately, such models may also predict how designed or naturally occurring alterations of these loci perturb the preselection use of variable gene segments.

  19. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  20. Fingerprinting the Asterid species using subtracted diversity array reveals novel species-specific sequences.

    Directory of Open Access Journals (Sweden)

    Nitin Mantri

    Full Text Available BACKGROUND: Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. METHODOLOGY/PRINCIPAL FINDINGS: Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5% subtraction efficiency. Twenty-five Asterid species (mostly medicinal representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. CONCLUSIONS/SIGNIFICANCE: Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting plant species. In addition, this method allowed detection of several new loci that can be

  1. Praxis and Poiesis in Piano Repertoire Preparation

    Science.gov (United States)

    Dos Santos, Regina Antunes Teixeira; Hentschke, Liane

    2011-01-01

    The piano repertoire preparation of three undergraduate students at three different academic levels--the first, fifth and eighth semesters--was followed during an academic semester. A phenomenological approach was used to collect data in three stages: an introductory interview, observations of the repertoire under preparation and a final…

  2. Praxis and Poiesis in Piano Repertoire Preparation

    Science.gov (United States)

    Dos Santos, Regina Antunes Teixeira; Hentschke, Liane

    2011-01-01

    The piano repertoire preparation of three undergraduate students at three different academic levels--the first, fifth and eighth semesters--was followed during an academic semester. A phenomenological approach was used to collect data in three stages: an introductory interview, observations of the repertoire under preparation and a final…

  3. Species-specific induction of CYP2B by 2,4,6-tryphenyldioxane-1,3 (TPD).

    Science.gov (United States)

    Pustylnyak, Vladimir; Pivovarova, Elena; Slynko, Nikolai; Gulyaeva, Lyudmila; Lyakhovich, Vyacheslav

    2009-12-16

    The aim of the current study was to investigate the species-specific induction of CYP2B by 2,4,6-tryphenyldioxane-1,3 (TPD) in relation to activation of CAR. 7-Pentoxyresorufin O-dealkylase (PROD) activity, RT-PCR, Western blot, Electrophoretic mobility shift assays (EMSA). Phenobarbital-like inducer administration significantly up-regulated CYP2B activity in rat and mouse liver in a species-specific manner, in contrast to the effects on CYP2B in lungs, kidneys and brains. In parallel, Western blot analysis showed that the species-specific increase of PROD in liver is related to the high content of CYP2B: phenobarbital (PB) and TPD increased CYP2B in rat liver, PB and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) - in mouse liver. The CYP2B protein level was unchanged in the lungs of rats and mice after inducer treatment, whereas it was not detected in the kidney and brain of control and treated animals. The hepatic CYP2B activity in both species paralleled the increase of CYP2B mRNA. A detectable CYP2B mRNA level was measured in the lungs of untreated mice and rats, though it was unchanged during induction. Noninducibility of CYP2B in extrahepatic tissues accompanied an absence of constitutive androstane receptor (CAR) gene expression in these tissues. In liver CYP2B induction paralleled the high level of CAR expression detected by RT-PCR. Moreover, PB, TPD and TCPOBOP treatment stimulated nuclear accumulation of CAR and increased CAR receptor NR1-binding activity in animal liver in a species-specific manner. We have shown that the increased nuclear accumulation and binding activity of CAR are associated with the species-specific up-regulation of CYP2B by TPD in rat liver.

  4. THE LYMPH SELF ANTIGEN REPERTOIRE

    Directory of Open Access Journals (Sweden)

    Laura eSantambrogio

    2013-12-01

    Full Text Available The lymphatic fluid originates from the interstitial fluid which bathes every parenchymal organ and reflects the omic composition of the tissue from which it originates in its physiological or pathological signature. Several recent proteomic analyses have mapped the proteome-degradome and peptidome of this immunologically relevant fluid pointing to the lymph as an important source of tissue-derived self-antigens. A vast array of lymph-circulating peptides have been mapped deriving from a variety of processing pathways including caspases, cathepsins, MMPs, ADAMs, kallikreins, calpains and granzymes, among others. These self peptides can be directly loaded on circulatory dendritic cells and expand the self-antigenic repertoire available for central and peripheral tolerance.

  5. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle.

    Directory of Open Access Journals (Sweden)

    Hiroaki Matsushita

    Full Text Available Large-scale production of fully human IgG (hIgG or human polyclonal antibodies (hpAbs by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs.

  6. Characterization of human αβTCR repertoire and discovery of D-D fusion in TCRβ chains.

    Science.gov (United States)

    Liu, Peipei; Liu, Di; Yang, Xi; Gao, Jing; Chen, Yan; Xiao, Xue; Liu, Fei; Zou, Jing; Wu, Jun; Ma, Juncai; Zhao, Fangqing; Zhou, Xuyu; Gao, George F; Zhu, Baoli

    2014-01-01

    The characterization of the human T-cell receptor (TCR) repertoire has made remarkable progress, with most of the work focusing on the TCRβ chains. Here, we analyzed the diversity and complexity of both the TCRα and TCRβ repertoires of three healthy donors. We found that the diversity of the TCRα repertoire is higher than that of the TCRβ repertoire, whereas the usages of the V and J genes tended to be preferential with similar TRAV and TRAJ patterns in all three donors. The V-J pairings, like the V and J gene usages, were slightly preferential. We also found that the TRDV1 gene rearranges with the majority of TRAJ genes, suggesting that TRDV1 is a shared TRAV/DV gene (TRAV42/DV1). Moreover, we uncovered the presence of tandem TRBD (TRB D gene) usage in ~2% of the productive human TCRβ CDR3 sequences.

  7. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M; Bang, Dan; Lund, Marianne;

    2003-01-01

    To validate a phenotypic Campylobacter species identification method employed to identify campylobacters in broilers by comparison with campylobacterial species identification using various species-specific PCR analyses....

  8. Species-specific aminoacylation of Oryza sativa mitochondrial tRNATrp

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Abstract The details of species- specific aminoacylation in Oryza sativa mitochondrial tRNATrp by bacterial and eukaryotic (cytoplasm) tryptophanyl-tRNA synthetases (TrpRS) were inves-tigated. Seven single or multiple mutations of three bases (G73, U72, A 68) were made in O. sativa mi-tochondrial tRNATrp to the corresponding nucleotides present in human tRNATrp. In vitro transcripts of these mutant genes were tryptophanylated by Bacillus subtilis and human tryptophanyl-tRNA synthetases (TrpRS), and the kinetic parameters were determined. The results showed that the aminoacylation of seven mutant transcripts by B. subtilis TrpRS was 53.33%―99.79% less efficient than that by wild-type O. sativa mitochondrial tRNATrp, but was 4―330 times more efficient than that by human TrpRS. The mutant MPH7 (G73, U72 and C68 in O. sativa mitochondrial tRNA were all replaced by the counterpart residues from human tRNATrp and showed a great change in aminoacylation efficiency. Our results indicate that the species-specific identity elements of O. sativa mitochondrial tRNATrp are similar to bacterial and eukaryotic (cytoplasm). They are mainly located at the discriminator base, the first and the fifth pairs of bases, the discriminator base G73, two bases in the acceptor stem G1/U72 and U5/A68. Our results also provide new data in support of the hypothesis that mitochondrial tRNATrp is of eubacterial origin.

  9. Differences in the composition of the human antibody repertoire by B cell subsets in the blood

    Directory of Open Access Journals (Sweden)

    Eva Szymanska eMroczek

    2014-03-01

    Full Text Available The vast initial diversity of the antibody repertoire is generated centrally by means of a complex series of V (D J gene rearrangement events, variation in the site of gene segment joining, and TdT catalyzed N- region addition. Although the diversity is great, close inspection has revealed distinct and unique characteristics in the antibody repertoires expressed by different B cell developmental subsets. In order to illustrate our approach to repertoire analysis, we present an in-depth comparison of V (D J gene usage, hydrophobicity, length, DH reading frame, and amino acid usage between heavy chain repertoires expressed by immature, transitional, mature, memory IgD+, memory IgD-, and plasmacytes isolated from the blood of a single individual. Our results support the view that in both human and mouse the H chain repertoires expressed by individual, developmental B cell subsets appear to differ in sequence content. Sequencing of unsorted B cells from the blood is thus likely to yield an incomplete or compressed view of what is actually happening in the immune response of the individual. Our findings support the view that studies designed to correlate repertoire expression with diseases of immune function will likely require deep sequencing of B cells sorted by subset.

  10. Identification of goose, mule duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction.

    Science.gov (United States)

    Rodríguez, Miguel A; García, Teresa; González, Isabel; Asensio, Luis; Mayoral, Belén; López-Calleja, Inés; Hernández, Pablo E; Martín, Rosario

    2003-03-12

    A specific Polymerase Chain Reaction (PCR) has been developed for the identification of goose (Anser anser), mule duck (Anas platyrhynchos x Cairina moschata), chicken (Gallus gallus), turkey (Meleagris gallopavo), and swine (Sus scrofa domesticus) in foie gras. A forward common primer was designed on a conserved DNA sequence in the mitochondrial 12S ribosomal RNA gene (rRNA), and reverse primers were designed to hybridize on species-specific DNA sequences of each species considered. The different sizes of the species-specific amplicons, separated by agarose gel electrophoresis, allowed clear identification of goose, mule duck, chicken, turkey, and swine in foie gras. Analysis of experimental mixtures demonstrated that the detection limit of the assay was approximately 1% for each species analyzed. This genetic marker can be very useful for the accurate identification of these species, avoiding mislabeling or fraudulent species substitution in foie gras.

  11. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires.

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-02-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ∼ 300 virulence proteins, termed effectors, which manipulate host cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species and predicted their effector repertoires using a previously validated machine learning approach. This analysis identified 5,885 predicted effectors. The effector repertoires of different Legionella species were found to be largely non-overlapping, and only seven core effectors were shared by all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from the natural protozoan hosts of these species. Furthermore, we detected numerous new conserved effector domains and discovered new domain combinations, which allowed the inference of as yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution.

  12. Limitations in plasticity of the T-cell receptor repertoire.

    OpenAIRE

    Nanda, N K; Apple, R; Sercarz, E.

    1991-01-01

    How constrained is T-cell recognition? Is a truncated T-cell receptor (TCR) repertoire, missing half of its V beta components (where V indicates variable), still broad enough to produce an antigen-specific T-cell response to all determinants? These questions can be answered for certain T-cell antigenic determinants whose response in the wild type is limited to specific gene segments. Our results show that mice with such a deletion in their TCR V beta genes (V beta truncated haplotype, Va beta...

  13. The porcine antibody repertoire: Variations on the textbook theme

    Directory of Open Access Journals (Sweden)

    John eButler

    2012-06-01

    Full Text Available The genes encoding the heavy and light chains of swine antibodies are organized in the same manner as in other eutherian mammals. There are ~ 30 VH genes, two functional DH genes and one functional JH gene. There are 14-60 V genes and 5 J segments, >22V genes and at least four JC cassettes. The heavy chain constant regions encode the same repertoire of isotypes common to other eutherian mammals. The piglet models offers advantage over rodent models since the fetal repertoire develops without maternal influences and the precocial nature of their multiple offspring allows the experimenter to control the influences of environmental and maternal factors on repertoire development postnatally. B cell lymphogenesis in swine begins in the fetal yolk sac at 20 days of gestation (DG, moves to the fetal liver at 30 DG and eventually to the bone marrow which dominates until birth (114 DG and to at least 5 weeks postpartum. There is no evidence that the ileal Peyers patches are a site of B cell lymphogenesis or are required for B cell maintenance. Unlike rodents and humans, light chain rearrangement begins first in the lambda locus; kappa rearrangements are not seen until late gestation.Dissimilar to lab rodents and more in the direction of the rabbit, swine utilize a small number of VH genes to form >90% of their pre-immune repertoire. Diversification in response to environmental antigen does not alter this pattern and is achieved by somatic hypermutation (SHM of the same small number of VH genes. The situation for light chains is less-well studied, but certain V and J and V and J are dominant in transcripts. The transcribed and secreted pre-immune antibodies of the fetus include mainly IgM, IgA and IgG3; this last isotype may provide a type of first responder mucosal immunity. Development of functional adaptive immunity is dependent on bacterial PAMPs or PAMPs provided by viral infections, indicating the importance of innate

  14. Diversity of the skin microbiota of fishes: evidence for host species specificity.

    Science.gov (United States)

    Larsen, Andrea; Tao, Zhen; Bullard, Stephen A; Arias, Covadonga R

    2013-09-01

    Skin microbiota of Gulf of Mexico fishes were investigated by ribosomal internal spacer analysis (RISA) and 16S rRNA gene sequencing. A total of 102 fish specimens representing six species (Mugil cephalus, Lutjanus campechanus, Cynoscion nebulosus, Cynoscion arenarius, Micropogonias undulatus, and Lagodon rhomboides) were sampled at regular intervals throughout a year. The skin microbiota from each individual fish was analyzed by RISA and produced complex profiles with 23 bands on average. Similarities between RISA profiles ranged from 97.5% to 4.0%. At 70% similarity, 11 clusters were defined, each grouping individuals from the same fish species. Multidimensional scaling and analysis of similarity correlated the RISA-defined clusters with geographic locality, date, and fish species. Global R values indicated that fish species was the most indicative variable for group separation. Analysis of 16S rRNA gene sequences (from pooled samples of 10 individual fish for each fish species) showed that the Proteobacteria was the predominant phylum in skin microbiota, followed by the Firmicutes and the Actinobacteria. The distribution and abundance of bacterial sequences were different among all species analyzed. Aeribacillus was found in all fish species representing 19% of all clones sequenced, while some genera were fish species-specific (Neorickettsia in M. cephalus and Microbacterium in L. campechanus). Our data provide evidence for the existence of specific skin microbiota associated with particular fish species. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Molecular evolution and species-specific expansion of the NAP members in plants

    Institute of Scientific and Technical Information of China (English)

    Kai Fan,; Hao Shen,; Noreen Bibi,; Feng Li,; Shuna Yuan,; Ming Wang; Xuede Wang

    2015-01-01

    The NAP (NAC-Like, Activated by AP3/PI) subfamily is one of the important plant-specific transcription factors, and controls many vital biological processes in plants. In the current study, 197 NAP proteins were identified from 31 vascular plants, but no NAP members were found in eight non-vascular plants. Al NAP proteins were phylogenetical y classified into two groups (NAP I and NAP II), and the origin time of the NAP I group might be relatively later than that of the NAP II group. Furthermore, species-specific gene duplications, caused by segmental duplication events, resulted in the expansion of the NAP subfamily after species-divergence. Different groups have different expansion rates, and the NAP group preference was found during the expansion in plants. Moreover, the expansion of NAP proteins may be related to the gain and loss of introns. Besides, functional divergence was limited after the gene duplication. Abscisic acid (ABA) might play an important role in leaf senescence, which is regulated by NAP subfamily. These results could lay an important foundation for expansion and evolutionary analysis of NAP subfamily in plants.

  16. Molecular evolution and species-specific expansion of the NAP members in plants.

    Science.gov (United States)

    Fan, Kai; Shen, Hao; Bibi, Noreen; Li, Feng; Yuan, Shuna; Wang, Ming; Wang, Xuede

    2015-08-01

    The NAP (NAC-Like, Activated by AP3 /PI) subfamily is one of the important plant-specific transcription factors, and controls many vital biological processes in plants. In the current study, 197 NAP proteins were identified from 31 vascular plants, but no NAP members were found in eight non-vascular plants. All NAP proteins were phylogenetically classified into two groups (NAP I and NAP II), and the origin time of the NAP I group might be relatively later than that of the NAP II group. Furthermore, species-specific gene duplications, caused by segmental duplication events, resulted in the expansion of the NAP subfamily after species-divergence. Different groups have different expansion rates, and the NAP group preference was found during the expansion in plants. Moreover, the expansion of NAP proteins may be related to the gain and loss of introns. Besides, functional divergence was limited after the gene duplication. Abscisic acid (ABA) might play an important role in leaf senescence, which is regulated by NAP subfamily. These results could lay an important foundation for expansion and evolutionary analysis of NAP subfamily in plants. © 2015 Institute of Botany, Chinese Academy of Sciences.

  17. Immunoglobulins, antibody repertoire and B cell development.

    Science.gov (United States)

    Butler, J E; Zhao, Y; Sinkora, M; Wertz, N; Kacskovics, I

    2009-03-01

    Swine share with most placental mammals the same five antibody isotypes and same two light chain types. Loci encoding lambda, kappa and Ig heavy chains appear to be organized as they are in other mammals. Swine differ from rodents and primates, but are similar to rabbits in using a single VH family (VH3) to encode their variable heavy chain domain, but not the family used by cattle, another artiodactyl. Distinct from other hoofed mammals and rodents, Ckappa:Clambda usage resembles the 1:1 ratio seen in primates. Since IgG subclasses diversified after speciation, same name subclass homologs do not exist among swine and other mammals unless very closely related. Swine possess six putative IgG subclasses that appear to have diversified by gene duplication and exon shuffle while retaining motifs that can bind to FcgammaRs, FcRn, C1q, protein A and protein G. The epithelial chorial placenta of swine and the precosial nature of their offspring have made piglets excellent models for studies on fetal antibody repertoire development and on the postnatal role of gut colonization, maternal colostrum and neonatal infection on the development of adaptive immunity during the "critical window" of immunological development. This chapter traces the study of the humoral immune system of this species through its various eras of discovery and compiles the results in tables and figures that should be a useful reference for educators and investigators.

  18. Determinism and stochasticity during maturation of the zebrafish antibody repertoire

    Science.gov (United States)

    Jiang, Ning; Weinstein, Joshua A.; Penland, Lolita; White, Richard A.; Fisher, Daniel S.; Quake, Stephen R.

    2011-01-01

    It is thought that the adaptive immune system of immature organisms follows a more deterministic program of antibody creation than is found in adults. We used high-throughput sequencing to characterize the diversifying antibody repertoire in zebrafish over five developmental time points. We found that the immune system begins in a highly stereotyped state with preferential use of a small number of V (variable) D (diverse) J (joining) gene segment combinations, but that this stereotypy decreases dramatically as the zebrafish mature, with many of the top VDJ combinations observed in 2-wk-old zebrafish virtually disappearing by 1 mo. However, we discovered that, in the primary repertoire, there are strong correlations in VDJ use that increase with zebrafish maturity, suggesting that VDJ recombination involves a level of deterministic programming that is unexpected. This stereotypy is masked by the complex diversification processes of antibody maturation; the variation and lack of correlation in full repertoires between individuals appears to be derived from randomness in clonal expansion during the affinity maturation process. These data provide a window into the mechanisms of VDJ recombination and diversity creation and allow us to better understand how the adaptive immune system achieves diversity. PMID:21393572

  19. Species-specific nested PCR as a diagnostic tool for Brucella ovis infection in rams

    Directory of Open Access Journals (Sweden)

    L.F. Costa

    2013-02-01

    Full Text Available The aim of the present study was to evaluate a species-specific nested PCR based on a previously described species-specific PCR for detection of B. ovis in semen and urine samples of experimentally infected rams. The performance of the species-specific nested PCR was compared with the results of a genus-specific PCR. Fourteen rams were experimentally infected with the Brucella ovis REO 198 strain and samples of semen and urine were collected every week up to 180 days post infection. Out of 83 semen samples collected, 42 (50.6% were positive for the species-specific nested PCR, and 23 (27.7% were positive for the genus-specific PCR. Out of 75 urine samples, 49 (65.3% were positive for the species-specific nested PCR, whereas 11 (14.6% were genus-specific PCR positive. Species-specific nested PCR was significantly more sensitive (P<0.001 than the genus-specific PCR in semen and urine from experimentally infected rams. In conclusion, the species-specific nested PCR developed in this study may be used as a diagnostic tool for the detection of B. ovis in semen and urine samples from suspected rams.

  20. SMRT sequencing provides insight into the diversity of the bovine immunoglobulin heavy chain repertoire

    Science.gov (United States)

    The vertebrate immune system produces a diverse antibody repertoire capable of responding to a vast array of antigens. This diversity is generated through a multifaceted process of gene segment recombination and somatic hypermutation or gene conversion. Recent advances in high-throughput sequencin...

  1. Species specificities among primates probed with commercially available fluorescence-based multiplex PCR typing kits.

    Science.gov (United States)

    Hiroshige, Yuuji; Ohtaki, Hiroyuki; Yoshimoto, Takashi; Ogawa, Hisae; Ishii, Akira; Yamamoto, Toshimichi

    2015-09-01

    To assess species specificities among primates of signals from short tandem repeat (STR) loci included in two commercially available kits, mainly the AmpFlSTR Identifiler kit and additionally the GenePrint PowerPlex 16 system, we analyzed 69 DNA samples from 22 nonhuman primate species representing apes, Old World Monkeys (OWMs), New World Monkeys (NWMs), and prosimians. Each prosimian species and the NWM cotton-top tamarin apparently lacked all STR loci probed. Only one peak, the amelogenin-X peak, was evident in samples from all other NWMs, except the owl monkey. In contrast, several loci, including the amelogenin-X peak, was evident in samples from each OWM species. Notably, for each ape sample, the amelogenin peaks were concordant with morphological gender of the individual. Among the primates, especially in apes, the numbers of alleles for STR loci were increasing according to their phylogenetic order: prosimiansprimates for a few commercially released multiplex STR kits examined in this study would contribute to forensic examinations.

  2. Segregation of Species-Specific Male Attractiveness in F2 Hybrid Lake Malawi Cichlid Fish

    Directory of Open Access Journals (Sweden)

    Ola Svensson

    2011-01-01

    Full Text Available Among the huge radiations of haplochromine cichlid fish in Lakes Malawi and Victoria, closely related species are often reproductively isolated via female mate choice although viable fertile hybrids can be produced when females are confined only with heterospecific males. We generated F2 hybrid males from a cross between a pair of closely related sympatric cichlid fish from Lake Malawi. Laboratory mate choice experiments using microsatellite paternity analysis demonstrated that F2 hybrid males differed significantly in their attractiveness to females of the two parental species, indicating heritable variation in traits involved in mate choice that may contribute to reproductive isolation between these species. We found no significant correlation between male mating success and any measurement of male colour pattern. A simple quantitative genetic model of reproductive isolation suggests that there may be as few as two chromosomal regions controlling species-specific attractiveness. We propose that adaptive radiation of Lake Malawi cichlids could be facilitated by the presence of genes with major effects on mate choice and reproductive isolation.

  3. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing.

    Science.gov (United States)

    Vander Heiden, Jason A; Stathopoulos, Panos; Zhou, Julian Q; Chen, Luan; Gilbert, Tamara J; Bolen, Christopher R; Barohn, Richard J; Dimachkie, Mazen M; Ciafaloni, Emma; Broering, Teresa J; Vigneault, Francois; Nowak, Richard J; Kleinstein, Steven H; O'Connor, Kevin C

    2017-02-15

    Myasthenia gravis (MG) is a prototypical B cell-mediated autoimmune disease affecting 20-50 people per 100,000. The majority of patients fall into two clinically distinguishable types based on whether they produce autoantibodies targeting the acetylcholine receptor (AChR-MG) or muscle specific kinase (MuSK-MG). The autoantibodies are pathogenic, but whether their generation is associated with broader defects in the B cell repertoire is unknown. To address this question, we performed deep sequencing of the BCR repertoire of AChR-MG, MuSK-MG, and healthy subjects to generate ∼518,000 unique VH and VL sequences from sorted naive and memory B cell populations. AChR-MG and MuSK-MG subjects displayed distinct gene segment usage biases in both VH and VL sequences within the naive and memory compartments. The memory compartment of AChR-MG was further characterized by reduced positive selection of somatic mutations in the VH CDR and altered VH CDR3 physicochemical properties. The VL repertoire of MuSK-MG was specifically characterized by reduced V-J segment distance in recombined sequences, suggesting diminished VL receptor editing during B cell development. Our results identify large-scale abnormalities in both the naive and memory B cell repertoires. Particular abnormalities were unique to either AChR-MG or MuSK-MG, indicating that the repertoires reflect the distinct properties of the subtypes. These repertoire abnormalities are consistent with previously observed defects in B cell tolerance checkpoints in MG, thereby offering additional insight regarding the impact of tolerance defects on peripheral autoimmune repertoires. These collective findings point toward a deformed B cell repertoire as a fundamental component of MG.

  4. Species-Specificity of Sperm Motility Activation and Chemotaxis: a Study on Ascidian Species

    National Research Council Canada - National Science Library

    MANABU YOSHIDA; YUKI HIRADATE; NOBURU SENSUI; JACKY COSSON; MASAAKI MORISAWA

    2013-01-01

    .... These phenomena constitute the first communication signaling between males and females in the process of fertilization in many animals and plants, and in many cases, these are species-specific events...

  5. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M.; Bang, Dang Duong; Lund, Marianne

    2003-01-01

    Aims: To validate a phenotypic Campylobacter species identification method employed to identify campylobacters in broilers by comparison with campylobacterial species identification using various species-specific PCR analyses. Methods and Results: From a collection of 2733 phenotypically identifi...

  6. Species-specific PCR for the identification of goat cashmere and sheep wool.

    Science.gov (United States)

    Geng, Rong-Qing

    2015-02-01

    In order to establish rapid and species-specific method of goat cashmere and sheep wool identification, a polymerase chain reaction using specific primer pairs targeting mitochondrial D-loop was developed. The goat specific primers yielded a 294 bp PCR fragment and the sheep specific primers yielded three PCR fragments of which only the 404 bp fragment was found highly diagnostic. The specificity and reliability of the developed species-specific PCR assay was validated by considering as many as 500 cashmere and wool samples. The developed species-specific PCR was found effective in detecting mixed samples of cashmere and wool precisely with the relative content over 9.09%. The species-specific PCR method proved to be low cost, fast, easy and reliable alternative to determine the addition of sheep wool in goat cashmere.

  7. Assessing species-specific contributions to craniofacial development using quail-duck chimeras.

    Science.gov (United States)

    Fish, Jennifer L; Schneider, Richard A

    2014-05-31

    The generation of chimeric embryos is a widespread and powerful approach to study cell fates, tissue interactions, and species-specific contributions to the histological and morphological development of vertebrate embryos. In particular, the use of chimeric embryos has established the importance of neural crest in directing the species-specific morphology of the craniofacial complex. The method described herein utilizes two avian species, duck and quail, with remarkably different craniofacial morphology. This method greatly facilitates the investigation of molecular and cellular regulation of species-specific pattern in the craniofacial complex. Experiments in quail and duck chimeric embryos have already revealed neural crest-mediated tissue interactions and cell-autonomous behaviors that regulate species-specific pattern in the craniofacial skeleton, musculature, and integument. The great diversity of neural crest derivatives suggests significant potential for future applications of the quail-duck chimeric system to understanding vertebrate development, disease, and evolution.

  8. Simultaneous discrimination of species and strains in Lactobacillus rhamnosus using species-specific PCR combined with multiplex mini-sequencing technology.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    This study described the use of species-specific PCR in combination with SNaPshot mini-sequencing to achieve species identification and strain differentiation in Lactobacillus rhamnosus. To develop species-specific PCR and strain subtyping primers, the dnaJ gene was used as a target, and its corresponding sequences were analyzed both in Lb. rhamnosus and in a subset of its phylogenetically closest species. The results indicated that the species-specific primer pair was indeed specific for Lb. rhamnosus, and the mini-sequencing assay was able to unambiguously distinguish Lb. rhamnosus strains into different haplotypes. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for inter- and intraspecies discrimination of Lb. rhamnosus, which can be applied to achieve efficient quality control of probiotic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Zonadhesin is essential for species specificity of sperm adhesion to the egg zona pellucida.

    Science.gov (United States)

    Tardif, Steve; Wilson, Michael D; Wagner, Rebecca; Hunt, Peter; Gertsenstein, Marina; Nagy, Andras; Lobe, Corrinne; Koop, Ben F; Hardy, Daniel M

    2010-08-06

    Interaction of rapidly evolving molecules imparts species specificity to sperm-egg recognition in marine invertebrates, but it is unclear whether comparable interactions occur during fertilization in any vertebrate species. In mammals, the sperm acrosomal protein zonadhesin is a rapidly evolving molecule with species-specific binding activity for the egg zona pellucida (ZP). Here we show using null mice produced by targeted disruption of Zan that zonadhesin confers species specificity to sperm-ZP adhesion. Sperm capacitation selectively exposed a partial von Willebrand D domain of mouse zonadhesin on the surface of living, motile cells. Antibodies to the exposed domain inhibited adhesion of wild-type spermatozoa to the mouse ZP but did not inhibit adhesion of spermatozoa lacking zonadhesin. Zan(-/-) males were fertile, and their spermatozoa readily fertilized mouse eggs in vitro. Remarkably, however, loss of zonadhesin increased adhesion of mouse spermatozoa to pig, cow, and rabbit ZP but not mouse ZP. We conclude that zonadhesin mediates species-specific ZP adhesion, and Zan(-/-) males are fertile because their spermatozoa retain adhesion capability that is not species-specific. Mammalian sperm-ZP adhesion is therefore molecularly robust, and species-specific egg recognition by a protein in the sperm acrosome is conserved between invertebrates and vertebrates, even though the adhesion molecules themselves are unrelated.

  10. Mononucleotide repeats are asymmetrically distributed in fungal genes

    Directory of Open Access Journals (Sweden)

    de Graaff Leo H

    2008-12-01

    Full Text Available Abstract Background Systematic analyses of sequence features have resulted in a better characterisation of the organisation of the genome. A previous study in prokaryotes on the distribution of sequence repeats, which are notoriously variable and can disrupt the reading frame in genes, showed that these motifs are skewed towards gene termini, specifically the 5' end of genes. For eukaryotes no such intragenic analysis has been performed, though this could indicate the pervasiveness of this distribution bias, thereby helping to expose the selective pressures causing it. Results In fungal gene repertoires we find a similar 5' bias of intragenic mononucleotide repeats, most notably for Candida spp., whereas e.g. Coccidioides spp. display no such bias. With increasing repeat length, ever larger discrepancies are observed in genome repertoire fractions containing such repeats, with up to an 80-fold difference in gene fractions at repeat lengths of 10 bp and longer. This species-specific difference in gene fractions containing large repeats could be attributed to variations in intragenic repeat tolerance. Furthermore, long transcripts experience an even more prominent bias towards the gene termini, with possibly a more adaptive role for repeat-containing short transcripts. Conclusion Mononucleotide repeats are intragenically biased in numerous fungal genomes, similar to earlier studies on prokaryotes, indicative of a similar selective pressure in gene organization.

  11. CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex.

    Science.gov (United States)

    Koning, Dan; Costa, Ana I; Hoof, Ilka; Miles, John J; Nanlohy, Nening M; Ladell, Kristin; Matthews, Katherine K; Venturi, Vanessa; Schellens, Ingrid M M; Borghans, Jose A M; Kesmir, Can; Price, David A; van Baarle, Debbie

    2013-02-01

    CD8(+) T cells recognize infected or dysregulated cells via the clonotypically expressed αβ TCR, which engages Ag in the form of peptide bound to MHC class I (MHC I) on the target cell surface. Previous studies have indicated that a diverse Ag-specific TCR repertoire can be beneficial to the host, yet the determinants of clonotypic diversity are poorly defined. To better understand the factors that govern TCR repertoire formation, we conducted a comprehensive clonotypic analysis of CD8(+) T cell populations directed against epitopes derived from EBV and CMV. Neither pathogen source nor the restricting MHC I molecule were linked with TCR diversity; indeed, both HLA-A and HLA-B molecules were observed to interact with an overlapping repertoire of expressed TRBV genes. Peptide specificity, however, markedly impacted TCR diversity. In addition, distinct peptides sharing HLA restriction and viral origin mobilized TCR repertoires with distinct patterns of TRBV gene usage. Notably, no relationship was observed between immunodominance and TCR diversity. These findings provide new insights into the forces that shape the Ag-specific TCR repertoire in vivo and highlight a determinative role for the peptide component of the peptide-MHC I complex on the molecular frontline of CD8(+) T cell-mediated immune surveillance.

  12. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects.

    Science.gov (United States)

    Kovářová, Nikola; Pecina, Petr; Nůsková, Hana; Vrbacký, Marek; Zeviani, Massimo; Mráček, Tomáš; Viscomi, Carlo; Houštěk, Josef

    2016-04-01

    Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1(-/-) knockout leads only to a mild COX defect. We used SURF1(-/-) mouse model for detailed analysis of disturbed COX assembly and COX ability to incorporate into respiratory supercomplexes (SCs) in different tissues and fibroblasts. Furthermore, we compared fibroblasts from SURF1(-/-) mouse and SURF1 patients to reveal interspecies differences in kinetics of COX biogenesis using 2D electrophoresis, immunodetection, arrest of mitochondrial proteosynthesis and pulse-chase metabolic labeling. The crucial differences observed are an accumulation of abundant COX1 assembly intermediates, low content of COX monomer and preferential recruitment of COX into I-III2-IVn SCs in SURF1 patient fibroblasts, whereas SURF1(-/-) mouse fibroblasts were characterized by low content of COX1 assembly intermediates and milder decrease in COX monomer, which appeared more stable. This pattern was even less pronounced in SURF1(-/-) mouse liver and brain. Both the control and SURF1(-/-) mice revealed only negligible formation of the I-III2-IVn SCs and marked tissue differences in the contents of COX dimer and III2-IV SCs, also less noticeable in liver and brain than in heart and muscle. Our studies support the view that COX assembly is much more dependent on SURF1 in humans than in mice. We also demonstrate markedly lower ability of mouse COX to form I-III2-IVn supercomplexes, pointing to tissue-specific and species-specific differences in COX biogenesis.

  13. A systems toxicology approach to elucidate the mechanisms involved in RDX species-specific sensitivity.

    Science.gov (United States)

    Warner, Christopher M; Gust, Kurt A; Stanley, Jacob K; Habib, Tanwir; Wilbanks, Mitchell S; Garcia-Reyero, Natàlia; Perkins, Edward J

    2012-07-17

    Interspecies uncertainty factors in ecological risk assessment provide conservative estimates of risk where limited or no toxicity data is available. We quantitatively examined the validity of interspecies uncertainty factors by comparing the responses of zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) to the energetic compound 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), a known neurotoxicant. Relative toxicity was measured through transcriptional, morphological, and behavioral end points in zebrafish and fathead minnow fry exposed for 96 h to RDX concentrations ranging from 0.9 to 27.7 mg/L. Spinal deformities and lethality occurred at 1.8 and 3.5 mg/L RDX respectively for fathead minnow and at 13.8 and 27.7 mg/L for zebrafish, indicating that zebrafish have an 8-fold greater tolerance for RDX than fathead minnow fry. The number and magnitude of differentially expressed transcripts increased with increasing RDX concentration for both species. Differentially expressed genes were enriched in functions related to neurological disease, oxidative-stress, acute-phase response, vitamin/mineral metabolism and skeletal/muscular disorders. Decreased expression of collagen-coding transcripts were associated with spinal deformity and likely involved in sensitivity to RDX. Our work provides a mechanistic explanation for species-specific sensitivity to RDX where zebrafish responded at lower concentrations with greater numbers of functions related to RDX tolerance than fathead minnow. While the 10-fold interspecies uncertainty factor does provide a reasonable cross-species estimate of toxicity in the present study, the observation that the responses between ZF and FHM are markedly different does initiate a call for concern regarding establishment of broad ecotoxicological conclusions based on model species such as zebrafish.

  14. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content

    Directory of Open Access Journals (Sweden)

    Nakai Kenta

    2009-08-01

    Full Text Available Abstract Background Streptococcus mutans is the major pathogen of dental caries, and it occasionally causes infective endocarditis. While the pathogenicity of this species is distinct from other human pathogenic streptococci, the species-specific evolution of the genus Streptococcus and its genomic diversity are poorly understood. Results We have sequenced the complete genome of S. mutans serotype c strain NN2025, and compared it with the genome of UA159. The NN2025 genome is composed of 2,013,587 bp, and the two strains show highly conserved core-genome. However, comparison of the two S. mutans strains showed a large genomic inversion across the replication axis producing an X-shaped symmetrical DNA dot plot. This phenomenon was also observed between other streptococcal species, indicating that streptococcal genetic rearrangements across the replication axis play an important role in Streptococcus genetic shuffling. We further confirmed the genomic diversity among 95 clinical isolates using long-PCR analysis. Genomic diversity in S. mutans appears to occur frequently between insertion sequence (IS elements and transposons, and these diversity regions consist of restriction/modification systems, antimicrobial peptide synthesis systems, and transporters. S. mutans may preferentially reject the phage infection by clustered regularly interspaced short palindromic repeats (CRISPRs. In particular, the CRISPR-2 region, which is highly divergent between strains, in NN2025 has long repeated spacer sequences corresponding to the streptococcal phage genome. Conclusion These observations suggest that S. mutans strains evolve through chromosomal shuffling and that phage infection is not needed for gene acquisition. In contrast, S. pyogenes tolerates phage infection for acquisition of virulence determinants for niche adaptation.

  15. Quantitative Analysis of Repertoire-Scale Immunoglobulin Properties in Vaccine-Induced B-Cell Responses

    Directory of Open Access Journals (Sweden)

    Ilja V. Khavrutskii

    2017-08-01

    Full Text Available Recent advances in the next-generation sequencing of B-cell receptors (BCRs enable the characterization of humoral responses at a repertoire-wide scale and provide the capability for identifying unique features of immune repertoires in response to disease, vaccination, or infection. Immunosequencing now readily generates 103–105 sequences per sample; however, statistical analysis of these repertoires is challenging because of the high genetic diversity of BCRs and the elaborate clonal relationships among them. To date, most immunosequencing analyses have focused on reporting qualitative trends in immunoglobulin (Ig properties, such as usage or somatic hypermutation (SHM percentage of the Ig heavy chain variable (IGHV gene segment family, and on reducing complex Ig property distributions to simple summary statistics. However, because Ig properties are typically not normally distributed, any approach that fails to assess the distribution as a whole may be inadequate in (1 properly assessing the statistical significance of repertoire differences, (2 identifying how two repertoires differ, and (3 determining appropriate confidence intervals for assessing the size of the differences and their potential biological relevance. To address these issues, we have developed a technique that uses Wilcox’ robust statistics toolbox to identify statistically significant vaccine-specific differences between Ig repertoire properties. The advantage of this technique is that it can determine not only whether but also where the distributions differ, even when the Ig repertoire properties are non-normally distributed. We used this technique to characterize murine germinal center (GC B-cell repertoires in response to a complex Ebola virus-like particle (eVLP vaccine candidate with known protective efficacy. The eVLP-mediated GC B-cell responses were highly diverse, consisting of thousands of clonotypes. Despite this staggering diversity, we identified statistically

  16. Characterization of the sortase repertoire in Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Willy Aucher

    Full Text Available LPXTG proteins, present in most if not all Gram-positive bacteria, are known to be anchored by sortases to the bacterial peptidoglycan. More than one sortase gene is often encoded in a bacterial species, and each sortase is supposed to specifically anchor given LPXTG proteins, depending of the sequence of the C-terminal cell wall sorting signal (cwss, bearing an LPXTG motif or another recognition sequence. B. anthracis possesses three sortase genes. B. anthracis sortase deleted mutant strains are not affected in their virulence. To determine the sortase repertoires, we developed a genetic screen using the property of the gamma phage to lyse bacteria only when its receptor, GamR, an LPXTG protein, is exposed at the surface. We identified 10 proteins that contain a cell wall sorting signal and are covalently anchored to the peptidoglycan. Some chimeric proteins yielded phage lysis in all sortase mutant strains, suggesting that cwss proteins remained surface accessible in absence of their anchoring sortase, probably as a consequence of membrane localization of yet uncleaved precursor proteins. For definite assignment of the sortase repertoires, we consequently relied on a complementary test, using a biochemical approach, namely immunoblot experiments. The sortase anchoring nine of these proteins has thus been determined. The absence of virulence defect of the sortase mutants could be a consequence of the membrane localization of the cwss proteins.

  17. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava.

    Science.gov (United States)

    Fan, Tzu-Pei; Su, Yi-Hsien

    2015-12-01

    Fibroblast growth factors (FGFs) are a group of ligands that play multiple roles during development by transducing signals through FGF receptors (FGFRs) to downstream factors. At least 22 FGF ligands and 4 receptors have been identified in vertebrates, while six to eight FGF ligands and a single FGFR are present in invertebrate chordates, such as tunicates and amphioxus. The chordate FGFs can be categorized into at least seven subfamilies, and the members of which expanded during the evolution of early vertebrates. In contrast, only one FGF and two FGFRs have been found in sea urchins. Thus, it is unclear whether the FGF subfamilies duplicated in the lineage leading to the chordates, or sea urchins lost several fgf genes. Analyses of the FGF signaling repertoire in hemichordates, which together with echinoderms form the closest group to the chordates, may provide insights into the evolution of FGF signaling in deuterostomes. In this study, we identified five FGFs and three FGFRs from Ptychodera flava, an indirect-developing hemichordate acorn worm. Phylogenetic analyses revealed that hemichordates possess a conserved FGF8/17/18 in addition to several putative hemichordate-specific FGFs. Analyses of sequence similarity and protein domain organizations suggested that the sea urchin and hemichordate FGFRs arose from independent lineage-specific duplications. Furthermore, the acorn worm fgf and fgfr genes were demonstrated to be expressed during P. flava embryogenesis. These results set the foundations for further functional studies of FGF signaling in hemichordates and provided insights into the evolutionary history of the FGF repertoire.

  18. Secondary Mechanisms of Affinity Maturation in the Human Antibody Repertoire

    Directory of Open Access Journals (Sweden)

    Bryan S. Briney

    2013-03-01

    Full Text Available V(DJ recombination and somatic hypermutation (SHM are the primary mechanisms for diversification of the human antibody repertoire. These mechanisms allow for rapid humoral immune responses to a wide range of pathogenic challenges. V(DJ recombination efficiently generate a virtually limitless diversity through random recombination of variable (V, diversity (D and joining (J genes with diverse nontemplated junctions between the selected gene segments. Following antigen stimulation, affinity maturation by SHM produces antibodies with refined specificity mediated by mutations typically focused in complementarity determining regions (CDRs, which form the bulk of the antigen recognition site. While V(DJ recombination and SHM are responsible for much of the diversity of the antibody repertoire, there are several secondary mechanisms that, while less frequent, make substantial contributions to antibody diversity including V(DDJ recombination (or D-D fusion, somatic-hypermutation-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced diversity, these mechanisms allow the production of antibodies that are critical to response to a variety of viral and bacterial pathogens but that would be difficult to generate using only the primary mechanisms of diversification.

  19. T cell repertoires and competitive exclusion

    NARCIS (Netherlands)

    Boer, R.J. de; Perelson, A.S.

    1994-01-01

    Self-renewal is generally thought to play a major role in the maintenance of the T-cell repertoire. Here we develop a set of mathematical models for T-cell activation by peptides on antigen presenting cells (APCs). We show that competition between T cells is inherent to the processes involved in T c

  20. The Repertoire of Black Popular Culture

    National Research Council Canada - National Science Library

    Nelson, Angela

    2009-01-01

    ... in the diaspora), of the black aesthetic (the distinctive cultural repertoires out of which popular representations were made), and of the black counternarratives we have struggled to voice" (28). Hall further declares that "good" black popular culture can pass the test of authenticity when the form or product refers to the black experience (his...

  1. Englishized Style Repertoire in Modern Japanese Literature.

    Science.gov (United States)

    Ono, Reiko

    1992-01-01

    The roles played by English borrowings in modern Japanese literary works are examined. After a brief summary of previous studies, this paper describes the style repertoire and the kinds of stylistic effects produced in Japanese literature by English borrowings, such as attention attractors and in-group-identity markers. (23 references) (Author/LB)

  2. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  3. Rat salivary gland reveals a more restricted IgA repertoire than ileum

    NARCIS (Netherlands)

    Stoel, Maaike; Evenhuis, Willem N. H.; Kroese, Frans G. M.; Bos, Nicolaas A.

    Secretory IgA is the most abundantly produced Ig in different mucosal tissues, such as the gastrointestinal tract and the salivary glands. These mucosal tissues are considered to be part of the common mucosal immune system. The specificity and immunoglobulin (19) V-H gene repertoire of the IgA

  4. Species-specific chemosensory gene expression in the olfactory organs of the malaria vector Anopheles gambiae

    NARCIS (Netherlands)

    Hodges, Theresa K.; Cosme, Luciano V.; Athrey, Giridhar; Pathikonda, Sharmila; Takken, Willem; Slotman, Michel A.

    2014-01-01

    Background: The malaria mosquito Anopheles gambiae has a high preference for human hosts, a characteristic that contributes greatly to its capacity for transmitting human malaria. A sibling species, An. quadriannulatus, has a quite different host preference and feeds mostly on bovids. For this re

  5. Systematic comparative evaluation of methods for investigating the TCRβ repertoire

    DEFF Research Database (Denmark)

    Liu, Xiao; Zhang, Wei; Zeng, Xiaojing;

    2016-01-01

    advantages and disadvantages; however, a systematic evaluation and direct comparison of them would benefit researchers in the selection of the most suitable method. In this study, we used both pooled control plasmids and spiked-in cells to benchmark the MPCR bias. RNA from three healthy donors...... was subsequently processed with the two methods to perform a comparative evaluation of the TCR β chain sequences. Both approaches demonstrated high reproducibility (R2 = 0.9958 and 0.9878, respectively). No differences in gene usage were identified for most V/J genes (>60%), and an average of 52.03% of the CDR3...... variability was smaller compared with the biological variability. Through direct comparison, these findings provide novel insights into the two experimental methods, which will prove to be valuable in immune repertoire research and its interpretation....

  6. Effects of sedimentation on macroalgae : Species-specific responses are related to reproductive traits

    NARCIS (Netherlands)

    Eriksson, Klemens; Johansson, Gustav

    2005-01-01

    Although increases in sedimentation have been proposed to interfere with benthic communities in many coastal areas worldwide, few experimental studies have investigated the effect of sedimentation on community composition and assessed species-specific responses. In a field experiment on a rocky shor

  7. In silico analysis of the cyclophilin repertoire of apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    von Samson-Himmelstjerna Georg

    2009-06-01

    Full Text Available Abstract Background Cyclophilins (Cyps are peptidyl cis/trans isomerases implicated in diverse processes such as protein folding, signal transduction, and RNA processing. They are also candidate drug targets, in particular for the immunosuppressant cyclosporine A. In addition, cyclosporine is known to exhibit anti-parasitic effects on a wide range of organisms including several apicomplexa. In order to obtain new non-immunosuppressive drugs targeting apicomplexan cyclophilins, a profound knowledge of the cyclophilin repertoire of this phylum would be necessary. Results BLAST and maximum likelihood analyses identified 16 different cyclophilin subfamilies within the genomes of Cryptosporidium hominis, Toxoplasma gondii, Plasmodium falciparum, Theileria annulata, Theileria parva, and Babesia bovis. In addition to good statistical support from the phylogenetic analysis, these subfamilies are also confirmed by comparison of cyclophilin domain architecture. Within an individual genome, the number of different Cyp genes that could be deduced varies between 7–9 for Cryptosporidia and 14 for T. gondii. Many of the putative apicomplexan cyclophilins are predicted to be nuclear proteins, most of them presumably involved in RNA processing. Conclusion The genomes of apicomplexa harbor a cyclophilin repertoire that is at least as complex as that of most fungi. The identification of Cyp subfamilies that are specific for lower eukaryotes, apicomplexa, or even the genus Plasmodium is of particular interest since these subfamilies are not present in host cells and might therefore represent attractive drug targets.

  8. Repertoire of free-living protozoa in contact lens solutions.

    Science.gov (United States)

    Bouchoucha, Ibtissem; Aziz, Aurore; Hoffart, Louis; Drancourt, Michel

    2016-10-29

    The repertoire of free-living protozoa in contact lens solutions is poorly known despite the fact that such protozoa may act as direct pathogens and may harbor intra-cellular pathogens. Between 2009 and 2014, the contact lens solutions collected from patients presenting at our Ophthalmology Department for clinically suspected keratitis, were cultured on non-nutrient agar examined by microscope for the presence of free-living protozoa. All protozoa were identified by 18S rRNA gene sequencing. A total of 20 of 233 (8.6 %) contact lens solution specimens collected from 16 patients were cultured. Acanthamoeba amoeba in 16 solutions (80 %) collected from 12 patients and Colpoda steini, Cercozoa sp., Protostelium sp. and a eukaryotic more closely related to Vermamoeba sp., were each isolated in one solution. Cercozoa sp., Colpoda sp., Protostelium sp. and Vermamoeba sp. are reported for the first time as contaminating contact lens solutions. The repertoire of protozoa in contact lens solutions is larger than previously known.

  9. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    Science.gov (United States)

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV.IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  10. Repertoire and frequency of consumption in wine

    DEFF Research Database (Denmark)

    Chrysochou, Polymeros; Krystallis, Athanasios

    Frequency of consumption has always been an important criterion for characterising and segmenting buyers. The aim of this paper is to provide a deeper understanding of the repertoire and loyalty structures between heavy and light wine buyers. Based on a study conducted with stated preference data......, basic brand performance measures are estimated through Juster purchase probabilities of brand choice. The polarisation index f (phi) is used as a measure to model loyalty. Results show that light buyers have a wider repertoire than heavy buyers, buying more small brands. In terms of loyalty, heavy...... buyers are more loyalty prone than light buyers, both as regards the brand name and the wine attributes examined in this study....

  11. The human IgE repertoire.

    Science.gov (United States)

    Gadermaier, Elisabeth; Levin, Mattias; Flicker, Sabine; Ohlin, Mats

    2014-01-01

    IgE is a key mediator in allergic diseases. However, in strong contrast to other antibody isotypes, many details of the composition of the human IgE repertoire are poorly defined. The low levels of human IgE in the circulation and the rarity of IgE-producing B cells are important reasons for this lack of knowledge. In this review, we summarize the current knowledge on these repertoires both in terms of their complexity and activity, i.e. knowledge which despite the difficulties encountered when studying the molecular details of human IgE has been acquired in recent years. We also take a look at likely future developments, for instance through improvements in sequencing technology and methodology that allow the isolation of additional allergen-specific human antibodies mimicking IgE, as this certainly will support our understanding of human IgE in the context of human disease in the years to come.

  12. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    Science.gov (United States)

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus.

  13. Repertoire and frequency of consumption in wine

    DEFF Research Database (Denmark)

    Chrysochou, Polymeros; Krystallis, Athanasios

    Frequency of consumption has always been an important criterion for characterising and segmenting buyers. The aim of this paper is to provide a deeper understanding of the repertoire and loyalty structures between heavy and light wine buyers. Based on a study conducted with stated preference data...... buyers are more loyalty prone than light buyers, both as regards the brand name and the wine attributes examined in this study....

  14. New real-time PCR tests for species-specific detection of Chlamydophila psittaci and Chlamydophila abortus from tissue samples.

    Science.gov (United States)

    Pantchev, Alexandra; Sting, Reinhard; Bauerfeind, Rolf; Tyczka, Judith; Sachse, Konrad

    2009-08-01

    Chlamydophila psittaci and Chlamydophila abortus are the causative agents of avian chlamydiosis (psittacosis) and ovine enzootic abortion, respectively. Both pathogens are known to possess zoonotic potential. Due to their close genetic relatedness, direct and rapid species identification is difficult. In the present study, new real-time PCR assays are reported for both species. The tests are based on highly specific probes targeting the ompA gene region and were conducted as duplex PCRs including an internal amplification control. The Cp. psittaci assay successfully passed a proficiency test at national level. Examination of field samples revealed Cp. psittaci as the dominating species in birds, but also Cp. abortus in a few psittacines. Real-time PCR assays for species-specific detection of Cp. psittaci and Cp. abortus are suited for routine diagnosis, which renders them important tools for the recognition of outbreaks of psittacosis and ovine enzootic abortion.

  15. Species specific cpDNA markers useful for studies on the hybridisation between Pinus mugo and P. sylvestris

    Directory of Open Access Journals (Sweden)

    Witold Wachowiak

    2014-01-01

    Full Text Available PCR-RFLP technique has been used to detect species-specific mutations of organelles DNA for closely related dwarf mountain pine (Pinus mugo and Scots pine (P. sylvestris. Restriction fragment patterns have been compared of amplification products for trnL-trnF cpDNA and for coxI and orf25 genes of mtDNA. The difference has been found in the Dral and Hinfl restriction patterns of the amplification products for trnL-trnF region of cpDNA with two haplotypes detected. The haplotype M is characteristic for P. mugo and the haplotype S for P. sylvestris. These markers may be useful for the analysis of the natural hybridisation and introgression between these species postulated for some sympatric populations on the basis of morphological analysis. No differences have been disclosed in the studied mtDNA regions.

  16. Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA.

    Science.gov (United States)

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M; Villegas, Leopoldo; Escalante, Ananias A; Kachur, S Patrick; Barnwell, John W; Peterson, David S; Udhayakumar, Venkatachalam; Kissinger, Jessica C

    2011-07-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms.

  17. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute.

    Science.gov (United States)

    Islam, Md Tariqul; Ferdous, Ahlan Sabah; Najnin, Rifat Ara; Sarker, Suprovath Kumar; Khan, Haseena

    2015-01-01

    MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.

  18. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute

    Directory of Open Access Journals (Sweden)

    Md. Tariqul Islam

    2015-01-01

    Full Text Available MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.

  19. Species-specific toxicity of troglitazone on rats and human by gel entrapped hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chong [College of Materials Science and Chemical Engineering, Zhejiang University, Zhejiang 310027 (China); Meng, Qin, E-mail: mengq@zju.edu.cn [College of Materials Science and Chemical Engineering, Zhejiang University, Zhejiang 310027 (China); Zhang, Guoliang [Institute of Biological and Environmental Engineering, Zhejiang University of Technology, Zhejiang 310012 (China)

    2012-01-01

    Troglitazone, despite passing preclinical trials on animals, was shortly withdrawn from market due to its severe hepatotoxicity in clinic. As rat hepatocyte monolayer consistently showed sensitive troglitazone toxicity as human hepatocyte monolayer in contrast to the species-specific toxicity in vivo, this paper utilized both hepatocytes in three-dimensional culture of gel entrapment to reflect the species difference on hepatotoxicity. Rat hepatocytes in gel entrapment did not show obvious cellular damage even under a long-term exposure for 21 days while gel entrapped human hepatocytes significantly displayed oxidative stress, steatosis, mitochondrial damage and cell death at a short exposure for 4 days. As a result, the detected species-specific toxicity of troglitazone between gel entrapped rat and human hepatocytes consisted well with the situation in vivo but was in a sharp contrast to the performance of two hepatocytes by monolayer culture. Such contradictory toxicity of rat hepatocytes between monolayer and gel entrapment culture could be explained by the fact that troglitazone was cleared more rapidly in gel entrapment than in monolayer culture. Similarly, the differential clearance of troglitazone in rat and human might also explain its species-specific toxicity. Therefore, gel entrapment of hepatocytes might serve as a platform for evaluation of drug toxicity at early stage of drug development by reducing costs, increasing the likelihood of clinical success and limiting human exposure to unsafe drugs. -- Highlights: ► Species-specific toxicity of troglitazone reflected by rat/human hepatocytes ► 3D hepatocytes in 21 days’ long-term culture used for drug hepatotoxicity ► Oversensitive toxicity in hepatocyte monolayer by slow troglitazone clearance.

  20. Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    OpenAIRE

    Kadri Koorem; Price, Jodi N; Mari Moora

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest--evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two specie...

  1. Species-specific PCR for the identification of Cooperia curticei (Nematoda: Trichostrongylidae) in sheep.

    Science.gov (United States)

    Amarante, M R V; Bassetto, C C; Neves, J H; Amarante, A F T

    2014-12-01

    Agricultural ruminants usually harbour mixed infections of gastrointestinal nematodes. A specific diagnosis is important because distinct species can differ significantly in their fecundity and pathogenicity. Haemonchus spp. and Cooperia spp. are the most important gastrointestinal nematodes infecting ruminants in subtropical/tropical environments. In Brazil, C. punctata is more adapted to cattle than sheep. Additionally, C. spatulata appears to be more adapted to cattle, whereas C. curticei is more adapted to sheep. However, infection of sheep with C. punctata is common when cattle and sheep share the same pasture. Although morphological analyses have been widely used to identify nematodes, molecular methods can overcome technical limitations and help improve species-specific diagnoses. Genetic markers in the first and second internal transcribed spacers (ITS-1 and ITS-2, respectively) of nuclear ribosomal DNA (rDNA) have been used successfully to detect helminths. In the present study, the ITS-1 region was analysed and used to design a species-specific oligonucleotide primer pair to identify C. curticei. The polymerase chain reaction (PCR) product was sequenced and showed 97% similarity to C. oncophora partial ITS-1 clones and 99% similarity to the C. curticei sequence JF680982. The specificity of this primer pair was corroborated by the analysis of 17 species of helminths, including C. curticei, C. punctata and C. spatulata. Species-specific diagnosis, which has implications for rapid and reliable identification, can support studies on the biology, ecology and epidemiology of trichostrongylid nematodes in a particular geographical location.

  2. To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors.

    Science.gov (United States)

    Merilo, Ebe; Jõesaar, Indrek; Brosché, Mikael; Kollist, Hannes

    2014-04-01

    Plant stomatal responses to single environmental factors are well studied; however, responses to a change in two (or more) factors - a common situation in nature - have been less frequently addressed. We studied the stomatal responses to a simultaneous application of opposing environmental factors in six evolutionarily distant mono- and dicotyledonous herbs representing different life strategies (ruderals, competitors and stress-tolerators) to clarify whether the crosstalk between opening- and closure-inducing pathways leading to stomatal response is universal or species-specific. Custom-made gas exchange devices were used to study the stomatal responses to a simultaneous application of two opposing factors: decreased/increased CO2 concentration and light availability or reduced air humidity. The studied species responded similarly to changes in single environmental factors, but showed species-specific and nonadditive responses to two simultaneously applied opposing factors. The stomata of the ruderals Arabidopsis thaliana and Thellungiella salsuginea (previously Thellungiella halophila) always opened, whereas those of competitor-ruderals either closed in all two-factor combinations (Triticum aestivum), remained relatively unchanged (Nicotiana tabacum) or showed a response dominated by reduced air humidity (Hordeum vulgare). Our results, indicating that in changing environmental conditions species-specific stomatal responses are evident that cannot be predicted from studying one factor at a time, might be interesting for stomatal modellers, too.

  3. Development of a species-specific coproantigen ELISA for human Taenia solium taeniasis.

    Science.gov (United States)

    Guezala, Maria-Claudia; Rodriguez, Silvia; Zamora, Humberto; Garcia, Hector H; Gonzalez, Armando E; Tembo, Alice; Allan, James C; Craig, Philip S

    2009-09-01

    Taenia solium causes human neurocysticercosis and is endemic in underdeveloped countries where backyard pig keeping is common. Microscopic fecal diagnostic methods for human T. solium taeniasis are not very sensitive, and Taenia saginata and Taenia solium eggs are indistinguishable under the light microscope. Coproantigen (CoAg) ELISA methods are very sensitive, but currently only genus (Taenia) specific. This paper describes the development of a highly species-specific coproantigen ELISA test to detect T. solium intestinal taeniasis. Sensitivity was maintained using a capture antibody of rabbit IgG against T. solium adult whole worm somatic extract, whereas species specificity was achieved by utilization of an enzyme-conjugated rabbit IgG against T. solium adult excretory-secretory (ES) antigen. A known panel of positive and negative human fecal samples was tested with this hybrid sandwich ELISA. The ELISA test gave 100% specificity and 96.4% sensitivity for T. solium tapeworm carriers (N = 28), with a J index of 0.96. This simple ELISA incorporating anti-adult somatic and anti-adult ES antibodies provides the first potentially species-specific coproantigen test for human T. solium taeniasis.

  4. Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax.

    Directory of Open Access Journals (Sweden)

    Eldin Talundzic

    Full Text Available Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.

  5. Schizophyllum commune has an extensive and functional alternative splicing repertoire.

    Science.gov (United States)

    Gehrmann, Thies; Pelkmans, Jordi F; Lugones, Luis G; Wösten, Han A B; Abeel, Thomas; Reinders, Marcel J T

    2016-09-23

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.

  6. Structural and genetic diversity in antibody repertoires from diverse species.

    Science.gov (United States)

    de los Rios, Miguel; Criscitiello, Michael F; Smider, Vaughn V

    2015-08-01

    The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.

  7. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  8. Insights into immune system development and function from mouse T-cell repertoires

    Science.gov (United States)

    Sethna, Zachary; Elhanati, Yuval; Dudgeon, Chrissy S.; Callan, Curtis G.; Levine, Arnold J.; Mora, Thierry; Walczak, Aleksandra M.

    2017-01-01

    The ability of the adaptive immune system to respond to arbitrary pathogens stems from the broad diversity of immune cell surface receptors. This diversity originates in a stochastic DNA editing process (VDJ recombination) that acts on the surface receptor gene each time a new immune cell is created from a stem cell. By analyzing T-cell receptor (TCR) sequence repertoires taken from the blood and thymus of mice of different ages, we quantify the changes in the VDJ recombination process that occur from embryo to young adult. We find a rapid increase with age in the number of random insertions and a dramatic increase in diversity. Because the blood accumulates thymic output over time, blood repertoires are mixtures of different statistical recombination processes, and we unravel the mixture statistics to obtain a picture of the time evolution of the early immune system. Sequence repertoire analysis also allows us to detect the statistical impact of selection on the output of the VDJ recombination process. The effects we find are nearly identical between thymus and blood, suggesting that our analysis mainly detects selection for proper folding of the TCR receptor protein. We further find that selection is weaker in laboratory mice than in humans and it does not affect the diversity of the repertoire. PMID:28196891

  9. Aging affects B-cell antigen receptor repertoire diversity in primary and secondary lymphoid tissues.

    Science.gov (United States)

    Tabibian-Keissar, Hilla; Hazanov, Lena; Schiby, Ginette; Rosenthal, Noemie; Rakovsky, Aviya; Michaeli, Miri; Shahaf, Gitit Lavy; Pickman, Yishai; Rosenblatt, Kinneret; Melamed, Doron; Dunn-Walters, Deborah; Mehr, Ramit; Barshack, Iris

    2016-02-01

    The elderly immune system is characterized by reduced responses to infections and vaccines, and an increase in the incidence of autoimmune diseases and cancer. Age-related deficits in the immune system may be caused by peripheral homeostatic pressures that limit bone marrow B-cell production or migration to the peripheral lymphoid tissues. Studies of peripheral blood B-cell receptor spectratypes have shown that those of the elderly are characterized by reduced diversity, which is correlated with poor health status. In the present study, we performed for the first time high-throughput sequencing of immunoglobulin genes from archived biopsy samples of primary and secondary lymphoid tissues in old (74 ± 7 years old, range 61-89) versus young (24 ± 5 years old, range 18-45) individuals, analyzed repertoire diversities and compared these to results in peripheral blood. We found reduced repertoire diversity in peripheral blood and lymph node repertoires from old people, while in the old spleen samples the diversity was larger than in the young. There were no differences in somatic hypermutation characteristics between age groups. These results support the hypothesis that age-related immune frailty stems from altered B-cell homeostasis leading to narrower memory B-cell repertoires, rather than changes in somatic hypermutation mechanisms.

  10. Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins.

    Science.gov (United States)

    d'Alençon, Emmanuelle; Bierne, Nicolas; Girard, Pierre-Alain; Magdelenat, Ghislaine; Gimenez, Sylvie; Seninet, Imène; Escoubas, Jean-Michel

    2013-01-01

    The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αβ (CS-αβ) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori). Synteny and phylogenetic analyses showed that the x-tox exons encoding CS-αβ motifs were phylogenetically closely related to defensin genes mapping to chromosomal positions close to the x-tox genes. We were able to define two groups of paralogous x-tox exons (three in Noctuids) that each followed the expected species tree. These results suggest that the ancestor of the three species already possessed an x-tox gene with at least two proto-domains, and an additional duplication/fusion should have occurred in the ancestor of the two noctuid species. An expansion of the number of exons subsequently occurred in each lineage. Alternatively, the proto x-tox gene possessed more copy and each group of x-tox domains might undergo concerted evolution through gene conversion. Accelerated protein evolution was detected in x-tox domains when compared to related defensins, concomitantly to multiplication of exons and/or the possible activation of concerted evolution. The x-tox genes of the three species have similar structural organizations, with repeat motifs composed of CS-αβ-encoding exons flanked by introns in phase 1. Diverse mechanisms underlie this organization: (i) the acquisition of new repeat motifs, (ii) the duplication of preexisting repeat motifs and (iii) the duplication of modules. A comparison of gDNA and cDNA structures showed that alternative splicing results in the production of multiple X-tox protein isoforms from the x-tox genes. Differences in the number and sequence of CS

  11. Species-specific and mating type-specific DNA regions adjacent to mating type idiomorphs in the genus Neurospora.

    Science.gov (United States)

    Randall, T A; Metzenberg, R L

    1995-09-01

    Mating type idiomorphs control mating and subsequent sexual development in Neurospora crassa and were previously shown to be well conserved in other Neurospora species. The centromere-proximal flanks of the A and a idiomorphs, but not the distal flanks from representative heterothallic, pseudohomothallic, and homothallic Neurospora species contain apparent species-specific and/or mating type-specific sequences adjacent to the well-conserved idiomorphs. The variable flank is bordered by regions that are highly homologous in all species. The sequence of approximately 1 kb immediately flanking the conserved idiomorphs of each species was determined. Sequence identity between species ranged from 20% (essentially unrelated) to > 90%. By contrast, the mt-A1 gene shows 88-98% identity. Sequence and hybridization data also show that the centromere-proximal flanks are very different between the two mating types for N. intermedia, N. discreta, and N. tetrasperma, but not for N. sitophila and N. crassa. The data suggest a close evolutionary relationship between several of the species; this is suppported by phylogenetic analysis of their respective mt-A1 genes. The origin of the variable regions adjacent to the evolutionarily conserved mating type idiomorphs is unknown.

  12. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action.

    Science.gov (United States)

    Dach, Katharina; Bendt, Farina; Huebenthal, Ulrike; Giersiefer, Susanne; Lein, Pamela J; Heuer, Heike; Fritsche, Ellen

    2017-03-20

    Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants causing developmental neurotoxicity (DNT) in humans and rodents. Their DNT effects are suspected to involve thyroid hormone (TH) signaling disruption. Here, we tested the hypothesis whether disturbance of neural progenitor cell (NPC) differentiation into the oligodendrocyte lineage (O4(+) cells) by BDE-99 involves disruption of TH action in human and mouse (h,m)NPCs. Therefore, we quantified differentiation of NPCs into O4(+) cells and measured their maturation via expression of myelin-associated genes (hMBP, mMog) in presence and absence of TH and/or BDE-99. T3 promoted O4(+) cell differentiation in mouse, but not hNPCs, and induced hMBP/mMog gene expression in both species. BDE-99 reduced generation of human and mouse O4(+) cells, but there is no indication for BDE-99 interfering with cellular TH signaling during O4(+) cell formation. BDE-99 reduced hMBP expression due to oligodendrocyte reduction, but concentrations that did not affect the number of mouse O4(+) cells inhibited TH-induced mMog transcription by a yet unknown mechanism. In addition, ascorbic acid antagonized only the BDE-99-dependent loss of human, not mouse, O4(+) cells by a mechanism probably independent of reactive oxygen species. These data point to species-specific modes of action of BDE-99 on h/mNPC development into the oligodendrocyte lineage.

  13. Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species.

    Science.gov (United States)

    Rahman, K Shamsur; Chowdhury, Erfan U; Poudel, Anil; Ruettger, Anke; Sachse, Konrad; Kaltenboeck, Bernhard

    2015-05-01

    Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens.

  14. Species-specific impact of the autophagy machinery on Chikungunya virus infection.

    Science.gov (United States)

    Judith, Delphine; Mostowy, Serge; Bourai, Mehdi; Gangneux, Nicolas; Lelek, Mickaël; Lucas-Hourani, Marianne; Cayet, Nadège; Jacob, Yves; Prévost, Marie-Christine; Pierre, Philippe; Tangy, Frédéric; Zimmer, Christophe; Vidalain, Pierre-Olivier; Couderc, Thérèse; Lecuit, Marc

    2013-06-01

    Chikungunya virus (CHIKV) is a recently re-emerged arbovirus that triggers autophagy. Here, we show that CHIKV interacts with components of the autophagy machinery during its replication cycle, inducing a cytoprotective effect. The autophagy receptor p62 protects cells from death by binding ubiquitinated capsid and targeting it to autophagolysosomes. By contrast, the human autophagy receptor NDP52--but not its mouse orthologue--interacts with the non-structural protein nsP2, thereby promoting viral replication. These results highlight the distinct roles of p62 and NDP52 in viral infection, and identify NDP52 as a cellular factor that accounts for CHIKV species specificity.

  15. In vivo synthesized 34S enriched amino acid standards for species specific isotope dilution of proteins

    DEFF Research Database (Denmark)

    Hermann, Gerrit; Moller, Laura Hyrup; Gammelgaard, Bente

    2016-01-01

    A generic quantification approach was introduced addressing the characterization of protein standards while fulfilling the principles of metrology. Traceable absolute quantification was achieved combining a proven biochemical method, i.e. protein hydrolysis followed by amino acid quantification...... in yeast fermentations provided species specific isotopically enriched standards for IDA quantification of cysteine and methionine in the oxidized forms, methionine sulfone and cysteic acid. Reverse isotope dilution mass spectrometry (IDMS) characterization by inductively coupled plasma mass spectrometry...... and methionine sulfone, respectively, was assessed. The established IDA method was validated for the absolute quantification of commercially available lysozyme and ceruloplasmin standards including the calculation of a total combined uncertainty budget....

  16. Development of species-specific primers for detection of Streptococcus mutans in mixed bacterial samples

    OpenAIRE

    Chen, Zhou; Saxena, Deepak; Caufield, Page W.; Ge, Yao; Wang, Minqi; Li, Yihong

    2007-01-01

    Streptococcus mutans is the major microbial pathogen associated with dental caries in children. The objectives of this study were to design and evaluate species-specific primers for the identification of S. mutans. Validation of the best primer set, Sm479F/R, was performed using 7 S. mutans reference strains, 48 ATCC non-S. mutans strains, 92 S. mutans clinical isolates, DNA samples of S. mutans-S. sobrinus or S. mutans-S. sanguinis, and mixed bacterial DNA of saliva samples from 33 18-month-...

  17. Systematic Comparative Evaluation of Methods for Investigating the TCRβ Repertoire.

    Science.gov (United States)

    Liu, Xiao; Zhang, Wei; Zeng, Xiaojing; Zhang, Ruifang; Du, Yuanping; Hong, Xueyu; Cao, Hongzhi; Su, Zheng; Wang, Changxi; Wu, Jinghua; Nie, Chao; Xu, Xun; Kristiansen, Karsten

    2016-01-01

    High-throughput sequencing has recently been applied to profile the high diversity of antibodyome/B cell receptors (BCRs) and T cell receptors (TCRs) among immune cells. To date, Multiplex PCR (MPCR) and 5'RACE are predominately used to enrich rearranged BCRs and TCRs. Both approaches have advantages and disadvantages; however, a systematic evaluation and direct comparison of them would benefit researchers in the selection of the most suitable method. In this study, we used both pooled control plasmids and spiked-in cells to benchmark the MPCR bias. RNA from three healthy donors was subsequently processed with the two methods to perform a comparative evaluation of the TCR β chain sequences. Both approaches demonstrated high reproducibility (R2 = 0.9958 and 0.9878, respectively). No differences in gene usage were identified for most V/J genes (>60%), and an average of 52.03% of the CDR3 amino acid sequences overlapped. MPCR exhibited a certain degree of bias, in which the usage of several genes deviated from 5'RACE, and some V-J pairings were lost. In contrast, there was a smaller rate of effective data from 5'RACE (11.25% less compared with MPCR). Nevertheless, the methodological variability was smaller compared with the biological variability. Through direct comparison, these findings provide novel insights into the two experimental methods, which will prove to be valuable in immune repertoire research and its interpretation.

  18. Systematic Comparative Evaluation of Methods for Investigating the TCRβ Repertoire.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available High-throughput sequencing has recently been applied to profile the high diversity of antibodyome/B cell receptors (BCRs and T cell receptors (TCRs among immune cells. To date, Multiplex PCR (MPCR and 5'RACE are predominately used to enrich rearranged BCRs and TCRs. Both approaches have advantages and disadvantages; however, a systematic evaluation and direct comparison of them would benefit researchers in the selection of the most suitable method. In this study, we used both pooled control plasmids and spiked-in cells to benchmark the MPCR bias. RNA from three healthy donors was subsequently processed with the two methods to perform a comparative evaluation of the TCR β chain sequences. Both approaches demonstrated high reproducibility (R2 = 0.9958 and 0.9878, respectively. No differences in gene usage were identified for most V/J genes (>60%, and an average of 52.03% of the CDR3 amino acid sequences overlapped. MPCR exhibited a certain degree of bias, in which the usage of several genes deviated from 5'RACE, and some V-J pairings were lost. In contrast, there was a smaller rate of effective data from 5'RACE (11.25% less compared with MPCR. Nevertheless, the methodological variability was smaller compared with the biological variability. Through direct comparison, these findings provide novel insights into the two experimental methods, which will prove to be valuable in immune repertoire research and its interpretation.

  19. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles.

    Science.gov (United States)

    Brykczynska, Urszula; Tzika, Athanasia C; Rodriguez, Ivan; Milinkovitch, Michel C

    2013-01-01

    The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment.

  20. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  1. Species-specific seed dispersal in an obligate ant-plant mutualism.

    Directory of Open Access Journals (Sweden)

    Elsa Youngsteadt

    Full Text Available Throughout lowland Amazonia, arboreal ants collect seeds of specific plants and cultivate them in nutrient-rich nests, forming diverse yet obligate and species-specific symbioses called Neotropical ant-gardens (AGs. The ants depend on their symbiotic plants for nest stability, and the plants depend on AGs for substrate and nutrients. Although the AGs are limited to specific participants, it is unknown at what stage specificity arises, and seed fate pathways in AG epiphytes are undocumented. Here we examine the specificity of the ant-seed interaction by comparing the ant community observed at general food baits to ants attracted to and removing seeds of the AG plant Peperomia macrostachya. We also compare seed removal rates under treatments that excluded vertebrates, arthropods, or both. In the bait study, only three of 70 ant species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to the AG ant Camponotus femoratus. In the exclusion experiment, arthropod exclusion significantly reduced seed removal rates, but vertebrate exclusion did not. We provide the most extensive empirical evidence of species specificity in the AG mutualism and begin to quantify factors that affect seed fate in order to understand conditions that favor its departure from the typical diffuse model of plant-animal mutualism.

  2. How tree species-specific drought responses influence the carbon-water interaction in temperate forests

    Science.gov (United States)

    Wolf, Annett; Leuzinger, Sebastian; Bugmann, Harald

    2010-05-01

    Climate-change-induced differences in soil moisture conditions will influence the carbon uptake of tree species and hence the carbon budget of ecosystems. Experimental data showed that in a mature deciduous forest tree transpiration during a prolonged drought was reduced in a species-specific manner (Leuzinger et al. 2005). We implemented such a differential drought responses using the ecosystem model LPJ-GUESS. We simulated forest ecosystems in central Europe, using mixed forests and single species stands. The model showed that one result of the species specific drought response are differences in tree species diversity in the long run. At the intra-annual scale, we showed that a reduction in ecosystem evapotranspiration at an early stage during the drought period resulted in lower water stress later on in the drought. A consequence was that drought sensitive tree species could maintain a positive carbon balance during longer drought periods. As drought periods are likely to become more frequent and/or longer in many parts of the world, projections of ecosystem responses will be sensitive to the processes investigated here, and therefore ecosystem models should be upgraded to take them into account. Leuzinger et al. (2005) Tree physiology 25: 641-650.

  3. Species-specific seed dispersal in an obligate ant-plant mutualism.

    Science.gov (United States)

    Youngsteadt, Elsa; Baca, Jeniffer Alvarez; Osborne, Jason; Schal, Coby

    2009-01-01

    Throughout lowland Amazonia, arboreal ants collect seeds of specific plants and cultivate them in nutrient-rich nests, forming diverse yet obligate and species-specific symbioses called Neotropical ant-gardens (AGs). The ants depend on their symbiotic plants for nest stability, and the plants depend on AGs for substrate and nutrients. Although the AGs are limited to specific participants, it is unknown at what stage specificity arises, and seed fate pathways in AG epiphytes are undocumented. Here we examine the specificity of the ant-seed interaction by comparing the ant community observed at general food baits to ants attracted to and removing seeds of the AG plant Peperomia macrostachya. We also compare seed removal rates under treatments that excluded vertebrates, arthropods, or both. In the bait study, only three of 70 ant species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to the AG ant Camponotus femoratus. In the exclusion experiment, arthropod exclusion significantly reduced seed removal rates, but vertebrate exclusion did not. We provide the most extensive empirical evidence of species specificity in the AG mutualism and begin to quantify factors that affect seed fate in order to understand conditions that favor its departure from the typical diffuse model of plant-animal mutualism.

  4. Molecular identification of scallop planktonic larvae using species-specific microsatellites

    Institute of Scientific and Technical Information of China (English)

    ZHAN Aibin; HU Xiaoli; BAO Lisui; LU Wei; PENG Wei; WANG Mingling; HU Jingjie

    2008-01-01

    The identification of scallop larvae is essential to understand the population structure and community dynamics and to assess the potential environmental impacts caused by scallop larvae released or escaped. However, the larvae identification by morphological characteristics is notoriously difficult, mainly due to the small size (usually being less than 150 μm) and vague morphological characteristics among different scallop species. A simple and accurate molecular method was developed to identify four economically farmed scallop species, the Zhikong scallop Chlamys farreri, the noble scallop C. nobilis, the bay scallop Argopecten irradians and the Yesso scallop Mizuhopecten yessoensis. The tests used the high degree of species-specific micresatellite markers, which was specified by transferability analyses, assessed by reference individuals and evaluated by BLAST searches. The sensitivity test indicated that the species-specific micresatellites were sensitive enough for the detection of 1%~2% larvae in mixed plankton samples, larvae collected from scallop hatcheries and their effluents and from the artificially controlled crosses were well identified to the species/hybrid level. The results demonstrated that the one-step PCR-based assay was technically simple, inexpensive and robust in identification analyses, and also less sensitive to initial quality of template DNA extracted from the ethanol-preserved samples for several years.

  5. Response of testicular antioxidant enzymes to hexachlorocy—clohexane is species specific

    Institute of Scientific and Technical Information of China (English)

    LunaSamanta; G·B·N·Chainy

    2002-01-01

    Aim:To find out whether the response of testicular oxidative stess parameters to hexachlorocyclohexane(HCH)is species specific.Methods:In rats and mice(n=5in each group).HCHwas administered at a dose of 20mg/kg/day intraperitoneally for 30daysin0.1ml of refined rgoundnut oil.The control groups received equal volume of the vehicle.Animals were sacrificed 24hours after the last injection and various oxidative stress parameters were measured immediately.Results:The level of both endogenous as well as FeSO4and ascorbic acid-stimulated lipid peroxidation was increased significantly in the HCH-treated rats,whereas the pattern was just the reverse in case of mice.Although the level of H2O2content increased inresponse to HCHinboth groups,a totally different trend was observed for the activity of the principal H2O2-metabolising emzyme,catalase,In case of rats,a significant decline inthe activity of catalase was recorded in response to HCH whereas a sharp augmentation in the enzyme activity was noticed im mice,Similarly,the decreased activity of superoxide dismutase observed in rast remained unaltered in mice.Conclusion:HCH induces oxidative stress in the testis of both rats and mice,However,the pattern of response of testicular oxidative stress parameters seems to be species specific.

  6. Species-specific responses to landscape fragmentation: implications for management strategies.

    Science.gov (United States)

    Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine

    2010-05-01

    Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem.

  7. The repertoire of equine intestinal α-defensins

    Directory of Open Access Journals (Sweden)

    Tetens Jens

    2009-12-01

    Full Text Available Abstract Background Defensins represent an important class of antimicrobial peptides. These effector molecules of the innate immune system act as endogenous antibiotics to protect the organism against infections with pathogenic microorganisms. Mammalian defensins are classified into three distinct sub-families (α-, β- and θ-defensins according to their specific intramolecular disulfide-bond pattern. The peptides exhibit an antimicrobial activity against a broad spectrum of microorganisms including bacteria and fungi. Alpha-Defensins are primarily synthesised in neutrophils and intestinal Paneth cells. They play a role in the pathogenesis of intestinal diseases and may regulate the flora of the intestinal tract. An equine intestinal α-defensin (DEFA1, the first characterised in the Laurasiatheria, shows a broad antimicrobial spectrum against human and equine pathogens. Here we report a first investigation of the repertoire of equine intestinal α-defensins. The equine genome was screened for putative α-defensin genes by using known α-defensin sequences as matrices. Based on the obtained sequence information, a set of oligonucleotides specific to the α-defensin gene-family was designed. The products generated by reverse-transcriptase PCR with cDNA from the small intestine as template were sub-cloned and numerous clones were sequenced. Results Thirty-eight equine intestinal α-defensin transcripts were determined. After translation it became evident that at least 20 of them may code for functional peptides. Ten transcripts lacked matching genomic sequences and for 14 α-defensin genes apparently present in the genome no appropriate transcript could be verified. In other cases the same genomic exons were found in different transcripts. Conclusions The large repertoire of equine α-defensins found in this study points to a particular importance of these peptides regarding animal health and protection from infectious diseases. Moreover, these

  8. Structural repertoire of immunoglobulin λ light chains

    KAUST Repository

    Chailyan, Anna

    2011-03-01

    The immunoglobulin λ isotype is present in nearly all vertebrates and plays an important role in the human immune system. Despite its importance, few systematic studies have been performed to analyze the structural conformation of its variable regions, contrary to what is the case for κ and heavy chains. We show here that an analysis of the structures of λ chains allows the definition of a discrete set of recurring conformations (canonical structures) of their hypervariable loops and, most importantly, the identification of sequence constraints that can be used to predict their structure. We also show that the structural repertoire of λ chains is different and more varied than that of the κ chains, consistently with the current view of the involvement of the two major light-chain families in complementary strategies of the immune system to ensure a fine tuning between diversity and stability in antigen recognition. © 2011 Wiley-Liss, Inc.

  9. Personal receptor repertoires: olfaction as a model

    Directory of Open Access Journals (Sweden)

    Olender Tsviya

    2012-08-01

    Full Text Available Abstract Background Information on nucleotide diversity along completely sequenced human genomes has increased tremendously over the last few years. This makes it possible to reassess the diversity status of distinct receptor proteins in different human individuals. To this end, we focused on the complete inventory of human olfactory receptor coding regions as a model for personal receptor repertoires. Results By performing data-mining from public and private sources we scored genetic variations in 413 intact OR loci, for which one or more individuals had an intact open reading frame. Using 1000 Genomes Project haplotypes, we identified a total of 4069 full-length polypeptide variants encoded by these OR loci, average of ~10 per locus, constituting a lower limit for the effective human OR repertoire. Each individual is found to harbor as many as 600 OR allelic variants, ~50% higher than the locus count. Because OR neuronal expression is allelically excluded, this has direct effect on smell perception diversity of the species. We further identified 244 OR segregating pseudogenes (SPGs, loci showing both intact and pseudogene forms in the population, twenty-six of which are annotatively “resurrected” from a pseudogene status in the reference genome. Using a custom SNP microarray we validated 150 SPGs in a cohort of 468 individuals, with every individual genome averaging 36 disrupted sequence variations, 15 in homozygote form. Finally, we generated a multi-source compendium of 63 OR loci harboring deletion Copy Number Variations (CNVs. Our combined data suggest that 271 of the 413 intact OR loci (66% are affected by nonfunctional SNPs/indels and/or CNVs. Conclusions These results portray a case of unusually high genetic diversity, and suggest that individual humans have a highly personalized inventory of functional olfactory receptors, a conclusion that might apply to other receptor multigene families.

  10. Proposed Hydrodynamic Model Improves Resolution of Species-Specific Responses to Drought and Disturbance

    Science.gov (United States)

    Matheny, A. M.; Bohrer, G.; Fiorella, R.; Mirfenderesgi, G.

    2015-12-01

    Plant functional types in land surface models (LSMs) are broadly defined, and often represent species with different physiologies within the same category. For example, trees of opposing hydraulic strategies and traits are commonly grouped together, as is the case of red oak and red maple. As a result, LSMs generate typical patterns of errors in predictions of transpiration and production. We studied sap flux, stem water storage, stomatal conductance, photosynthesis, rooting depth, and bole growth of these species at disturbed and undisturbed field sites in Michigan. Species-specific differences significantly impact temporal patterns of stomatal conductance and overall transpiration responses to both drought and disturbance. During drought, maples relied heavily on stem-stored water, while oaks did not. After disturbance, oaks increased stomatal conductance while maple conductance declined. Isotopic analysis of xylem water revealed that oak roots can access a deep groundwater source, which maple roots cannot. This deep rooting strategy permits transpiration and growth to continue in oaks during periods of water limitation, even when maples cease transpiration. Using 16 years of bole growth data, we show that maple growth is strongly correlated with mean annual precipitation, yet oak growth is not. We propose a framework to incorporate these species-specific differences into LSMs using the Finite-Element Tree-Crown Hydrodynamics model version 2 (FETCH2) that resolves the fast dynamics and diurnal hysteresis of stomatal conductance at the tree level. FETCH2 uses atmospheric and biological forcings from the LSM, simulates water movement through trees as flow through a system of porous media conduits, and calculates realistic hydraulic restrictions to stomatal conductance. This model replaces the current, non-physical link which empirically connects soil moisture to stomatal conductance in LSMs. FETCH2 resolved transpiration is then easily scaled to the plot level

  11. Revisiting the missing protein-coding gene catalog of the domestic dog

    Directory of Open Access Journals (Sweden)

    Galibert Francis

    2009-02-01

    Full Text Available Abstract Background Among mammals for which there is a high sequence coverage, the whole genome assembly of the dog is unique in that it predicts a low number of protein-coding genes, ~19,000, compared to the over 20,000 reported for other mammalian species. Of particular interest are the more than 400 of genes annotated in primates and rodent genomes, but missing in dog. Results Using over 14,000 orthologous genes between human, chimpanzee, mouse rat and dog, we built multiple pairwise synteny maps to infer short orthologous intervals that were targeted for characterizing the canine missing genes. Based on gene prediction and a functionality test using the ratio of replacement to silent nucleotide substitution rates (dN/dS, we provide compelling structural and functional evidence for the identification of 232 new protein-coding genes in the canine genome and 69 gene losses, characterized as undetected gene or pseudogenes. Gene loss phyletic pattern analysis using ten species from chicken to human allowed us to characterize 28 canine-specific gene losses that have functional orthologs continuously from chicken or marsupials through human, and 10 genes that arose specifically in the evolutionary lineage leading to rodent and primates. Conclusion This study demonstrates the central role of comparative genomics for refining gene catalogs and exploring the evolutionary history of gene repertoires, particularly as applied for the characterization of species-specific gene gains and losses.

  12. Identification of Clostridium tyrobutyricum as the causative agent of late blowing in cheese by species-specific PCR amplification.

    Science.gov (United States)

    Klijn, N; Nieuwenhof, F F; Hoolwerf, J D; van der Waals, C B; Weerkamp, A H

    1995-08-01

    Butyric acid fermentation, the late-blowing defect in cheese, caused by the outgrowth of clostridial spores present in raw milk, can create considerable loss of product, especially in the production of semihard cheeses like Gouda cheese, but also in grana and Gruyère cheeses. To demonstrate the causative relationship between Clostridium tyrobutyricum and late blowing in cheese, many cheesemaking experiments were performed to provoke this defect by using spores from several strains of the major dairy-related clostridia. A method of PCR amplification of a part of the 16S rRNA gene in combination with hybridization with species-specific DNA probes was developed to allow the specific detection of clostridial sequences in DNAs extracted from cheeses. The sensitivity was increased by using nested PCR. Late blowing was provoked in experimental cheeses with 28 of the 32 C. tyrobutyricum strains tested, whereas experimental cheeses made with spores from C. beijerinckii, C. butyricum, and C. sporogenes showed no signs of butyric acid fermentation. In all experimental and commercial cheeses with obvious signs of late blowing, DNA from C. tyrobutyricum was detected; in some cheeses, signals for C. beijerinckii were also found. It was concluded that only C. tyrobutyricum strains are able to cause butyric acid fermentation in cheese.

  13. The human anti-thyroid peroxidase autoantibody repertoire in Graves' and Hashimoto's autoimmune thyroid diseases.

    Science.gov (United States)

    Chardès, Thierry; Chapal, Nicolas; Bresson, Damien; Bès, Cédric; Giudicelli, Véronique; Lefranc, Marie-Paule; Péraldi-Roux, Sylvie

    2002-06-01

    Human anti-thyroid peroxidase (TPO) autoantibodies (aAb) are generated during autoimmune thyroid diseases (AITD). Within recent years, increasing knowledge of the TPO-specific aAb repertoire, gained mainly by the use of combinatorial library methodology, has led to the cloning and sequencing of around 180 human anti-TPO aAb. Analysis of the immunoglobulin (Ig) variable (V) genes encoding the TPO aAb in the ImMunoGeneTics database (IMGT) (http://imgt.cines.fr) reveals major features of the TPO-directed aAb repertoire during AITD. Heavy chain VH domains of TPO-specific aAb from Graves' disease patients preferentially use D proximal IGHV1 genes, whereas those from Hashimoto's thyroiditis are characterized more frequently by IGHV3 genes, mainly located in the middle of the IGH locus. A large proportion of the anti-TPO heavy chain VH domains is obtained following a VDJ recombination process that uses inverted D genes. J distal IGKV1 and IGLV1 genes are predominantly used in TPO aAb. In contrast to the numerous somatic hypermutations in the TPO-specific heavy chains, there is only limited amino acid replacement in most of the TPO-specific light chains, particularly in those encoded by J proximal IGLV or IGKV genes, suggesting that a defect in receptor editing can occur during aAb generation in AITD. Among the predominant IGHV1 or IGKV1 TPO aAb, conserved somatic mutations are the hallmark of the TPO aAb repertoire. The aim of this review is to provide new insights into aAb generation against TPO, a major autoantigen involved in AITD.

  14. [Species specificity of the isoenzyme profile of lactate dehydrogenase in organs of rodents of various ecogenesis].

    Science.gov (United States)

    Kozhevnikova, L K; Tiutiunnik, N N; Unzhakov, A R; Meldo, Kh I

    2004-02-01

    Separation of isoenzymes of lactate dehydrogenase (LDH, EC. 1.1.1.27) in extracts of heart, kidney, liver, spleen, lungs of nutrias, chinchillas by agar gel electrophoresis reveals a species specificity in ratio of electrophoretic fractions of the enzyme. The isoenzymes of LDH were seem to play an important role in adaptation of fur animals to environmental conditions. It has been shown that in semiaquatic mammals--nutrias, the relative content of the A-subunits in the isoenzymatic spectrum of LDH in organs was increased as compared with terrestrial animals--chinchillas, whereas relative content of B-subunits in these organs of chinchillas was very high. This is an example of subtle biochemical specialisation of function at molecular level to environmental conditions.

  15. LINE-1 distribution in six rodent genomes follow a species-specific pattern

    Indian Academy of Sciences (India)

    A. Vieira-Da-Silva; F. Adega; H. Guedes-Pinto; R. Chaves

    2016-03-01

    L1 distribution in mammal’s genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertionand when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are discussed.

  16. Molecular basis for species-specific sensitivity to "hot" chili peppers.

    Science.gov (United States)

    Jordt, Sven-Eric; Julius, David

    2002-02-08

    Chili peppers produce the pungent vanilloid compound capsaicin, which offers protection from predatory mammals. Birds are indifferent to the pain-producing effects of capsaicin and therefore serve as vectors for seed dispersal. Here, we determine the molecular basis for this species-specific behavioral response by identifying a domain of the rat vanilloid receptor that confers sensitivity to capsaicin to the normally insensitive chicken ortholog. Like its mammalian counterpart, the chicken receptor is activated by heat or protons, consistent with the fact that both mammals and birds detect noxious heat and experience thermal hypersensitivity. Our findings provide a molecular basis for the ecological phenomenon of directed deterence and suggest that the capacity to detect capsaicin-like inflammatory substances is a recent acquisition of mammalian vanilloid receptors.

  17. Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration

    Science.gov (United States)

    Korrensalo, Aino; Alekseychik, Pavel; Hájek, Tomáš; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina

    2017-01-01

    In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in the photosynthetic rate and leaf area of different species. Photosynthetic properties (light response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance (EC) measurements.Species areal cover, rather than differences in photosynthetic properties, determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which, in turn, determined the seasonal variation in ecosystem PG. The upscaled growing season PG estimate, 230 g C m-2, agreed well with the GPP estimated by the EC (243 g C m-2).Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species, together with their differences in photosynthetic parameters, shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity, i.e., the presence of plant groups with different seasonal timing and efficiency of photosynthesis, may increase the stability of C sinks of boreal bogs.

  18. A crowd-sourcing approach for the construction of species-specific cell signaling networks.

    Science.gov (United States)

    Bilal, Erhan; Sakellaropoulos, Theodore; Melas, Ioannis N; Messinis, Dimitris E; Belcastro, Vincenzo; Rhrissorrakrai, Kahn; Meyer, Pablo; Norel, Raquel; Iskandar, Anita; Blaese, Elise; Rice, John J; Peitsch, Manuel C; Hoeng, Julia; Stolovitzky, Gustavo; Alexopoulos, Leonidas G; Poussin, Carine

    2015-02-15

    Animal models are important tools in drug discovery and for understanding human biology in general. However, many drugs that initially show promising results in rodents fail in later stages of clinical trials. Understanding the commonalities and differences between human and rat cell signaling networks can lead to better experimental designs, improved allocation of resources and ultimately better drugs. The sbv IMPROVER Species-Specific Network Inference challenge was designed to use the power of the crowds to build two species-specific cell signaling networks given phosphoproteomics, transcriptomics and cytokine data generated from NHBE and NRBE cells exposed to various stimuli. A common literature-inspired reference network with 220 nodes and 501 edges was also provided as prior knowledge from which challenge participants could add or remove edges but not nodes. Such a large network inference challenge not based on synthetic simulations but on real data presented unique difficulties in scoring and interpreting the results. Because any prior knowledge about the networks was already provided to the participants for reference, novel ways for scoring and aggregating the results were developed. Two human and rat consensus networks were obtained by combining all the inferred networks. Further analysis showed that major signaling pathways were conserved between the two species with only isolated components diverging, as in the case of ribosomal S6 kinase RPS6KA1. Overall, the consensus between inferred edges was relatively high with the exception of the downstream targets of transcription factors, which seemed more difficult to predict. ebilal@us.ibm.com or gustavo@us.ibm.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  19. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    Science.gov (United States)

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms.

  20. Environmental drivers of Culicoides phenology: how important is species-specific variation when determining disease policy?

    Directory of Open Access Journals (Sweden)

    Kate R Searle

    Full Text Available Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV, which cause bluetongue (BT disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the 'seasonally vector free period': SVFP. We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP, we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments

  1. Species-specific variation in the phosphorus nutritional sources by microphytoplankton in a Mediterranean estuary

    Directory of Open Access Journals (Sweden)

    MARLY CAROLINA MARTINEZ SOTO

    2015-08-01

    Full Text Available We investigated the species-specific phosphorus (P nutrition sources in the microphytoplankton community in the Mahon estuary (Minorca, Western Mediterranean in 2011, under two contrasting hydrographic scenarios. Estuarine flow, nutrient concentrations, phytoplankton community composition and enzyme-labeled fluorescence (ELF were measured in June and October, corresponding to the beginning and the end of summer. Dissolved inorganic nitrogen (DIN and inorganic phosphate (Pi exhibited enhanced concentrations in the inner estuary where N:P molar ratios suggested P-limitation in both surveys. Pi was low and variable (0.09±0.02 μmol•l-1 in June and 0.06±0.02 μmol•l-1 in October, whereas organic phosphorus remained a more reliable P source. Even though ambient Pi concentrations were slightly higher on June, when the microphytoplankton assemblage was dominated by dinoflagellates, the percentage of cells expressing ELF labeling was notably higher (65% of total cells than in October (12%, when the presence of diatoms characterized the microphytoplankton community. ELF was mainly expressed by dinoflagellate taxa, whereas diatoms only expressed significant AP in the inner estuary during the June survey. A P-addition bioassay in which response of AP to Pi enrichment was evaluated showed remarkable reduction in AP with increasing Pi. However, some dinoflagellate species maintained AP even when Pi was supplied in excess. We suggest that in the case of some dinoflagellate species AP is not as tightly controlled by ambient Pi as previously believed. AP activity in these species could indicate selective use of organic phosphorus, or slow metabolic response to changes in P forms, rather than physiological stress to low Pi availability. We emphasize the importance of identifying the links between the different P sources and the species-specific requirements, in order to understand the ecological response to anthropogenic biogeochemical perturbations.

  2. Environmental drivers of Culicoides phenology: how important is species-specific variation when determining disease policy?

    Science.gov (United States)

    Searle, Kate R; Barber, James; Stubbins, Francesca; Labuschagne, Karien; Carpenter, Simon; Butler, Adam; Denison, Eric; Sanders, Christopher; Mellor, Philip S; Wilson, Anthony; Nelson, Noel; Gubbins, Simon; Purse, Bethan V

    2014-01-01

    Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV), which cause bluetongue (BT) disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the 'seasonally vector free period': SVFP). We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP), we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments of species-specific

  3. Species Specificity of the Putative Male Antennal Aphrodisiac Pheromone in Leptopilina heterotoma, Leptopilina boulardi, and Leptopilina victoriae

    OpenAIRE

    Ingmar Weiss; Joachim Ruther; Johannes Stökl

    2015-01-01

    Male antennal aphrodisiac pheromones have been suggested to elicit female receptiveness in several parasitic Hymenoptera, including Leptopilina boulardi. None of the proposed pheromones, however, has been fully identified to date. It is also unknown whether these antennal pheromones are species specific, because the species specificity of mate recognition and courtship elicitation in Leptopilina prevented such experiments. In this study we present an experimental design that allows the invest...

  4. Next generation sequencing reveals skewing of the T and B cell receptor repertoires in patients with Wiskott Aldrich syndrome

    Directory of Open Access Journals (Sweden)

    Amy E O'Connell

    2014-07-01

    Full Text Available The Wiskott Aldrich syndrome (WAS is due to mutations of the WAS gene encoding for the cytoskeletal WAS protein (WASp, leading to abnormal downstream signaling from the T cell and B cell antigen receptors (TCR, BCR. We hypothesized that the impaired signaling through the TCR and BCR in WAS would subsequently lead to aberrations in the immune repertoire of WAS patients. Using next generation sequencing, the T cell receptor beta (TRB and B cell immunoglobulin heavy chain (IGH repertoires of 8 patients with WAS and 6 controls were sequenced. Clonal expansions were identified within memory CD4+ cells, as well as in total, naïve and memory CD8+ cells from WAS patients. In the B cell compartment, WAS patient IGH repertoires were also clonally expanded and showed skewed usage of IGHV and IGHJ genes, and increased usage of IGHG constant genes, compared with controls. To our knowledge, this is the first study that demonstrates significant abnormalities of the immune repertoire in WAS patients using next generation sequencing.

  5. Next Generation Sequencing Reveals Skewing of the T and B Cell Receptor Repertoires in Patients with Wiskott–Aldrich Syndrome

    Science.gov (United States)

    O’Connell, Amy E.; Volpi, Stefano; Dobbs, Kerry; Fiorini, Claudia; Tsitsikov, Erdyni; de Boer, Helen; Barlan, Isil B.; Despotovic, Jenny M.; Espinosa-Rosales, Francisco J.; Hanson, I. Celine; Kanariou, Maria G.; Martínez-Beckerat, Roxana; Mayorga-Sirera, Alvaro; Mejia-Carvajal, Carmen; Radwan, Nesrine; Weiss, Aaron R.; Pai, Sung-Yun; Lee, Yu Nee; Notarangelo, Luigi D.

    2014-01-01

    The Wiskott–Aldrich syndrome (WAS) is due to mutations of the WAS gene encoding for the cytoskeletal WAS protein, leading to abnormal downstream signaling from the T cell and B cell antigen receptors (TCR and BCR). We hypothesized that the impaired signaling through the TCR and BCR in WAS would subsequently lead to aberrations in the immune repertoire of WAS patients. Using next generation sequencing (NGS), the T cell receptor β and B cell immunoglobulin heavy chain (IGH) repertoires of eight patients with WAS and six controls were sequenced. Clonal expansions were identified within memory CD4+ cells as well as in total, naïve and memory CD8+ cells from WAS patients. In the B cell compartment, WAS patient IGH repertoires were also clonally expanded and showed skewed usage of IGHV and IGHJ genes, and increased usage of IGHG constant genes, compared with controls. To our knowledge, this is the first study that demonstrates significant abnormalities of the immune repertoire in WAS patients using NGS. PMID:25101082

  6. The MicroRNA Repertoire of Symbiodinium, the Dinoflagellate Symbiont of Reef-Building Corals

    KAUST Repository

    Baumgarten, Sebastian

    2013-07-01

    Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous microRNAs and potential gene targets, we conducted smRNA and mRNA expression profiling over nine experimental treatments of cultures from the dinoflagellate Symbiodinium sp. A1, a photosynthetic symbiont of scleractinian corals. We identified a total of 75 novel smRNAs in Symbiodinum sp. A1 that share stringent key features with functional microRNAs from other model organisms. A subset of 38 smRNAs was predicted independently over all nine treatments and their putative gene targets were identified. We found 3,187 animal-like target sites in the 3’UTRs of 12,858 mRNAs and 53 plantlike target sites in 51,917 genes. Furthermore, we identified the core RNAi protein machinery in Symbiodinium. Integration of smRNA and mRNA expression profiling identified a variety of processes that could be under microRNA control, e.g. regulation of translation, DNA modification, and chromatin silencing. Given that Symbiodinium seems to have a paucity of transcription factors and differentially expressed genes, identification and characterization of its smRNA repertoire establishes the possibility of a range of gene regulatory mechanisms in dinoflagellates acting post-transcriptionally.

  7. Human gut microbiota: repertoire and variations

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eLagier

    2012-11-01

    Full Text Available The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism.

  8. Contribution of V(H replacement products in mouse antibody repertoire.

    Directory of Open Access Journals (Sweden)

    Lin Huang

    Full Text Available VH replacement occurs through RAG-mediated recombination between the cryptic recombination signal sequence (cRSS near the 3' end of a rearranged VH gene and the 23-bp RSS from an upstream unrearranged VH gene. Due to the location of the cRSS, VH replacement leaves a short stretch of nucleotides from the previously rearranged VH gene at the newly formed V-D junction, which can be used as a marker to identify VH replacement products. To determine the contribution of VH replacement products to mouse antibody repertoire, we developed a Java-based VH Replacement Footprint Analyzer (VHRFA program and analyzed 17,179 mouse IgH gene sequences from the NCBI database to identify VH replacement products. The overall frequency of VH replacement products in these IgH genes is 5.29% based on the identification of pentameric VH replacement footprints at their V-D junctions. The identified VH replacement products are distributed similarly in IgH genes using most families of VH genes, although different families of VH genes are used differentially. The frequencies of VH replacement products are significantly elevated in IgH genes derived from several strains of autoimmune prone mice and in IgH genes encoding autoantibodies. Moreover, the identified VH replacement footprints in IgH genes from autoimmune prone mice or IgH genes encoding autoantibodies preferentially encode positively charged amino acids. These results revealed a significant contribution of VH replacement products to the diversification of antibody repertoire and potentially, to the generation of autoantibodies in mice.

  9. Apa antigen of Mycobacterium avium subsp. paratuberculosis as a target for species-specific immunodetection of the bacteria in infected tissues of cattle with paratuberculosis.

    Science.gov (United States)

    Souza, Giliane S; Rodrigues, Ana Bárbara F; Gioffré, Andrea; Romano, Maria I; Carvalho, Eulógio C Q; Ventura, Thatiana L B; Lasunskaia, Elena B

    2011-09-15

    Comparative genomics of Mycobacterium spp. have revealed conservative genes and respective proteins differently expressed in mycobacteria that could be used as targets for the species-specific immunodiagnostics. The alanine and proline-rich antigen Apa is a mycobacterial protein that present significant variability in primary sequence length and composition between members of M. avium and M. tuberculosis complexes. In this study, the recombinant Apa protein encoded by the MAP1569/ModD gene of M. avium subsp. paratuberculosis (Map) was used to generate a panel of monoclonal antibodies which were shown to recognize the most important veterinary pathogens of the M. avium complex, specifically Map and M. avium subsp. hominissuis, and which did not cross-react with M. bovis or M. tuberculosis. The produced antibodies were demonstrated to be a useful tool for the species-specific immunofluorescence or immunohistochemical detection of Map in experimentally infected cell cultures or intestinal tissues from cattle with bovine paratuberculosis and, additionally, they may be employed for the discrimination of pathogenic M. avium subspecies via Western blotting. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Development of Species-specific Primers for Rapid Detection of Phellinus linteus and P. baumii.

    Science.gov (United States)

    Kim, Mun-Ok; Kim, Gi-Young; Nam, Byung-Hyouk; Jin, Cheng-Yun; Lee, Ki-Won; Park, Jae-Min; Lee, Sang-Joon; Lee, Jae-Dong

    2005-06-01

    Genus Phellinus taxonomically belongs to Aphyllophorales and some species of this genus have been used as a medicinal ingredients and Indian folk medicines. Especially, P. linteus and morphological-related species are well-known medicinal fungi that have various biological activities such as humoral and cell-mediated, anti-mutagenic, and anti-cancer activities. However, little is known about the rapid detection for complex Phellinus species. Therefore, this study was carried out to develop specific primers for the rapid detection of P. linteus and other related species. Designing the species-specific primers was done based on internal transcribed spacer sequence data. Each primer set detected specifically P. linteus (PL2/PL5R) and P. baumii (PB1/PB4R). These primer sets could be useful for the rapid detection of specific-species among unidentified Phellinus species. Moreover, restriction fragment length polymorphism analysis of the ITS region with HaeIII was also useful for clarifying the relationship between each 5 Phellinus species.

  11. Species-specific visitation and removal of baits for delivery of pharmaceuticals to feral swine.

    Science.gov (United States)

    Campbell, Tyler A; Long, David B

    2007-07-01

    Within the domestic swine industry there is growing trepidation about the role feral swine (Sus scrofa) play in the maintenance and transmission of important swine diseases. Innovative disease management tools for feral swine are needed. We used field trials conducted in southern Texas from February to March 2006 to compare species-specific visitation and removal rates of fish-flavored and vegetable-flavored baits with and without commercially available raccoon (Procyon lotor) repellent (trial 1) and removal rates of baits deployed in a systematic and cluster arrangement (trial 2). During trial 1, 1) cumulative bait removal rates after four nights ranged from 93% to 98%; 2) bait removal rates by feral swine, raccoons, and collared peccaries (Pecari tajacu) did not differ by treatment; and 3) coyotes (Canis latrans) removed more fish-flavored baits without raccoon repellent and white-tailed deer removed more vegetable-flavored baits without raccoon repellent than expected. During trial 2, feral swine removed fish-flavored baits distributed in a cluster arrangement (eight baits within 5 m2) at a rate greater than expected. Our observed bait removal rates illustrate bait attractiveness to feral swine. However, the diverse assemblage of omnivores in the United States compared with Australia where the baits were manufactured adds complexity to the development of a feral swine-specific baiting system for pharmaceutical delivery.

  12. Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens.

    Science.gov (United States)

    Lidén, Marlene; Jonsson Cabrajić, Anna V; Ottosson-Löfvenius, Mikaell; Palmqvist, Kristin; Lundmark, Tomas

    2010-05-01

    Photosystem II (PSII) activation after hydration with water or humid air was measured in four hydrophilic and a generalist lichen to test the hypothesis that slow activation might explain habitat restriction in the former group. For the hydrophilic species, activation was after 4 h nearly completed in Lobaria amplissima and Platismatia norvegica, while only c. 50% for Bryoria bicolor and Usnea longissima. The generalist Platismatia glauca was activated instantaneously. The effect of this on lichen field performance was investigated using a dynamic model separating the two water sources rain and humid air. Model simulations were made using the species-specific characteristics and climate data from 12 stream microhabitats. For U. longissima, slow PSII activation could reduce realized photosynthesis by a factor of five. Bryoria bicolor was almost as severely affected, while P. norvegica displayed moderate reductions. Lobaria amplissima displayed longer realized activity periods even in unfavourable microclimates, possibly because of a higher water loss resistance. Both close proximity to streams and presence of turbulent water had a positive impact on realized activity among the slowly activated species, coinciding with observed distribution patterns of hydrophilic species. The results presented here may thus partly explain observed habitat restrictions of rare hydrophilic lichens.

  13. Species-specific immunity induced by infection with Entamoeba histolytica and Entamoeba moshkovskii in mice.

    Science.gov (United States)

    Shimokawa, Chikako; Culleton, Richard; Imai, Takashi; Suzue, Kazutomo; Hirai, Makoto; Taniguchi, Tomoyo; Kobayashi, Seiki; Hisaeda, Hajime; Hamano, Shinjiro

    2013-01-01

    Entamoeba histolytica, the parasitic amoeba responsible for amoebiasis, causes approximately 100,000 deaths every year. There is currently no vaccine against this parasite. We have previously shown that intracecal inoculation of E. histolytica trophozoites leads to chronic and non-healing cecitis in mice. Entamoeba moshkovskii, a closely related amoeba, also causes diarrhea and other intestinal disorders in this model. Here, we investigated the effect of infection followed by drug-cure of these species on the induction of immunity against homologous or heterologous species challenge. Mice were infected with E. histolytica or E. moshkovskii and treated with metronidazole 14 days later. Re-challenge with E. histolytica or E. moshkovskii was conducted seven or 28 days following confirmation of the clearance of amoebae, and the degree of protection compared to non-exposed control mice was evaluated. We show that primary infection with these amoebae induces a species-specific immune response which protects against challenge with the homologous, but not a heterologous species. These findings pave the way, therefore, for the identification of novel amoebae antigens that may become the targets of vaccines and provide a useful platform to investigate host protective immunity to Entamoeba infections.

  14. Cytotaxonomy of the subgenus Artibeus (Phyllostomidae, Chiroptera by characterization of species-specific markers

    Directory of Open Access Journals (Sweden)

    Marcela de Lemos Pinto

    2012-01-01

    Full Text Available The genus Artibeus represents a highly diverse group of bats from the Neotropical region, with four large species occurring in Brazil. In this paper, a comparative cytogenetic study was carried out on the species Artibeus obscurus Schinz, 1821, A. fimbriatus Gray, 1838, A. lituratus Olfers, 1818 and A. planirostris Spix, 1823 that live sympatrically in the northeast of Brazil, through C-banding, silver staining and DNA-specific fluorochromes (CMA3 and DAPI. All the species had karyotypes with 2n=30,XX and 2n=31,XY1Y2, and FN=56. C-banding showed constitutive heterochromatin (CH blocks in the pericentromeric regions of all the chromosomes and small CH blocks at the terminal region of pairs 5, 6, and 7 for all species. Notably, our C-banding data revealed species-specific autosomic CH blocks for each taxon, as well as different heterochromatic constitution of Y2 chromosomes of A. planirostris. Ag-NORs were observed in the short arms of chromosomes 5, 6 and 7 in all species. The sequential staining AgNO3/CMA3/DA/DAPI indicated a positive association of CH with Ag-NORs and positive CMA3 signals, thus reflecting GC-richness in these regions in A. obscurus and A. fimbriatus. In this work it was possible to identify interespecific divergences in the Brazilian large Artibeus species using C-banding it was possible provided a suitable tool in the cytotaxonomic differentiation of this genus.

  15. Steroid control of steroidogenesis in isolated adrenocortical cells: molecular and species specificity.

    Science.gov (United States)

    Carsia, R V; Macdonald, G J; Malamed, S

    1983-06-01

    The molecular and species specificity of glucocorticoid suppression of corticosteroidogenesis was investigated in isolated adrenocortical cells. Trypsin-isolated cells from male rat, domestic fowl and bovine adrenal glands were incubated with or without steroidogenic agents and with or without steroids. Glucocorticoids were measured by radioimmunoassay or fluorometric assay after 1-2 h incubation. Glucocorticoids suppressed ACTH-induced steroidogenesis of isolated rat cells with the following relative potencies: corticosterone greater than cortisol = cortisone greater than dexamethasone. The mineralocorticoid, aldosterone did not affect steroidogenesis. Suppression by glucocorticoids was acute (within 1-2 h), and varied directly with the glucocorticoid concentration. Testosterone also suppressed ACTH-induced steroidogenesis. Glucocorticoid-type steroids have equivalent suppressive potencies, thus suggesting that these steroids may induce suppression at least partly by a common mechanism. Although corticosterone caused the greatest suppression, testosterone was more potent. The steroid specificity of suppression of cyclic AMP (cAMP)-induced and ACTH-induced steroidogenesis were similar, suggesting that suppression is not solely the result of interference with ACTH receptor function or the induction of adenylate cyclase activity. Exogenous glucocorticoids also suppressed ACTH-induced steroidogenesis of cells isolated from domestic fowl and beef adrenal glands, thus suggesting that this observed suppression may be a general mechanism of adrenocortical cell autoregulation.

  16. Species-specific cutaneous biotransformation of the pesticide propoxur during percutaneous absorption in vitro.

    Science.gov (United States)

    van de Sandt, J J; Rutten, A A; van Ommen, B

    1993-11-01

    Propoxur (2-isopropoxyphenyl N-methylcarbamate) is a pesticide with a wide spectrum of applications, including use in agriculture and greenhouses. Percutaneous absorption and concurrent cutaneous metabolism of propoxur were studied in a two-compartment organ culture model. Nontoxic concentrations of [14C]propoxur were applied topically to skin discs from human, rabbit, and porcine origin. Permeation rates were comparable in human and rabbit skin, while pig skin was found to be twice as permeable. Furthermore, it was demonstrated that skin tissue of all three species had the capacity to metabolize propoxur. Hydrolysis of propoxur yielded 2-isopropoxyphenol (IPP), followed by phase II conjugation reactions. Interestingly, the type of IPP conjugation appeared to be species specific. In porcine skin cultures, glucuronides and sulfates were detected in equal amounts, whereas in human skin only sulfate conjugation was observed. For rabbit skin, glucuronidation was the major route of conjugation, with minor amounts of the sulfate conjugate and an unidentified metabolite. The percentage of propoxur metabolism in rabbit skin was not influenced by the dose in the range of 25-200 micrograms/cm2; in contrast, human skin metabolism was virtually saturated at 100 micrograms/cm2.

  17. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  18. Behavioral Relevance of Species-Specific Vasotocin Anatomy in Gregarious Finches

    Directory of Open Access Journals (Sweden)

    Aubrey M Kelly

    2013-12-01

    Full Text Available Despite substantial species differences in the vasotocin/vasopressin (VT/VP circuitry of the medial bed nucleus of the stria terminalis (BSTm and lateral septum (LS; a primary projection target of BSTm VT/VP cells, functional consequences of this variation are poorly known. Previous experiments in the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata demonstrate that BSTm VT neurons promote gregariousness in a male-specific manner and reduce anxiety in both sexes. However, in contrast to the zebra finch, the less gregarious Angolan blue waxbill (Estrildidae: Uraeginthus angolensis exhibits fewer VT-immunoreactive cells in the BSTm as well as differences in receptor distribution across the LS subnuclei, suggesting that knockdown of VT production in the BSTm would produce behavioral effects in Angolan blue waxbills that are distinct from zebra finches. Thus, we here quantified social contact, gregariousness (i.e. preference for the larger of two groups, and anxiety-like behavior following bilateral antisense knockdown of VT production in the BSTm of male and female Angolan blue waxbills. We find that BSTm VT neurons promote social contact, but not gregariousness (as in male zebra finches, and that antisense effects on social contact are significantly stronger in male waxbills than in females. Knockdown of BSTm VT production has no effect on anxiety-like behavior. These data provide novel evidence that species differences in the VT/VP circuitry arising in the BSTm are accompanied by species-specific effects on affiliation behaviors.

  19. Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules.

    Science.gov (United States)

    Pan, Shih-Jung; Tapley, Asa; Adamson, John; Little, Tessa; Urbanowski, Michael; Cohen, Keira; Pym, Alexander; Almeida, Deepak; Dorasamy, Afton; Layre, Emilie; Young, David C; Singh, Ravesh; Patel, Vinod B; Wallengren, Kristina; Ndung'u, Thumbi; Wilson, Douglas; Moody, D Branch; Bishai, William

    2015-12-01

    Improved biomarkers are needed for tuberculosis. To develop tests based on products secreted by tubercle bacilli that are strictly associated with viability, we evaluated 3 bacterial-derived, species-specific, small molecules as biomarkers: 2 mycobactin siderophores and tuberculosinyladenosine. Using liquid chromatography-tandem mass spectrometry, we demonstrated the presence of 1 or both mycobactins and/or tuberculosinyladenosine in serum and whole lung tissues from infected mice and sputum, cerebrospinal fluid (CSF), or lymph nodes from infected patients but not uninfected controls. Detection of the target molecules distinguished host infection status in 100% of mice with both serum and lung as the target sample. In human subjects, we evaluated detection of the bacterial small molecules (BSMs) in multiple body compartments in 3 patient cohorts corresponding to different forms of tuberculosis. We detected at least 1 of the 3 molecules in 90%, 71%, and 40% of tuberculosis patients' sputum, CSF, and lymph node samples, respectively. In paucibacillary forms of human tuberculosis, which are difficult to diagnose even with culture, detection of 1 or more BSM was rapid and compared favorably to polymerase chain reaction-based detection. Secreted BSMs, detectable in serum, warrant further investigation as a means for diagnosis and therapeutic monitoring in patients with tuberculosis.

  20. Species-specific immunity induced by infection with Entamoeba histolytica and Entamoeba moshkovskii in mice.

    Directory of Open Access Journals (Sweden)

    Chikako Shimokawa

    Full Text Available Entamoeba histolytica, the parasitic amoeba responsible for amoebiasis, causes approximately 100,000 deaths every year. There is currently no vaccine against this parasite. We have previously shown that intracecal inoculation of E. histolytica trophozoites leads to chronic and non-healing cecitis in mice. Entamoeba moshkovskii, a closely related amoeba, also causes diarrhea and other intestinal disorders in this model. Here, we investigated the effect of infection followed by drug-cure of these species on the induction of immunity against homologous or heterologous species challenge. Mice were infected with E. histolytica or E. moshkovskii and treated with metronidazole 14 days later. Re-challenge with E. histolytica or E. moshkovskii was conducted seven or 28 days following confirmation of the clearance of amoebae, and the degree of protection compared to non-exposed control mice was evaluated. We show that primary infection with these amoebae induces a species-specific immune response which protects against challenge with the homologous, but not a heterologous species. These findings pave the way, therefore, for the identification of novel amoebae antigens that may become the targets of vaccines and provide a useful platform to investigate host protective immunity to Entamoeba infections.

  1. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  2. Thinking through Text Comprehension III: The Programing of Verbal and Investigative Repertoires

    Science.gov (United States)

    Leon, Marta; Layng, T. V. Joe; Sota, Melinda

    2011-01-01

    Reading comprehension can be considered a complex human performance involving two integrated repertoires: a verbal repertoire and an investigative (generative) repertoire. The analytical and reasoning skills necessary to demonstrate reading comprehension can be systematically taught by analyzing the verbal and investigative repertoires involved…

  3. Pairwise comparison of orthologous olfactory receptor genes between two sympatric sibling sea kraits of the genus Laticauda in Vanuatu.

    Science.gov (United States)

    Kishida, Takushi; Hayano, Azusa; Inoue-Murayama, Miho; Hikida, Tsutomu

    2013-06-01

    Olfaction-based reproductive isolation is widely observed in animals, but little is known about the genetic basis of such isolation mechanisms. Two species of sibling amphibious sea snakes, Laticauda colubrina and L. frontalis live in Vanuatu sympatrically and syntopically, but no natural hybrids have been reported. Adult females of both taxa possess distinctive lipids in the skin, and male L. frontalis distinguishes conspecific females based on olfactory cues. To shed light on the molecular basis of the evolution of olfaction-based isolation mechanisms, olfactory receptor (OR) gene repertoires of both taxa were identified using pyrosequencing-based technology, and orthologous OR gene sets were identified. Few species-specific gene duplications or species-specific gene losses were found. However, the nonsynonymous-to-synonymous substitution rate ratio was relatively higher between orthologous OR genes of L. frontalis and L. colubrina, indicating that L. frontalis and L. colubrina have evolved to possess different olfactory senses. We suggest that L. frontalis and L. colubrina have evolved allopatrically, and this may be a byproduct of the allopatric evolution, and that this dissimilarity may function as a premating isolation barrier, since L. frontalis has returned to the ancestral range (Vanuatu).

  4. Accurate and High-Coverage Immune Repertoire Sequencing Reveals Characteristics of Antibody Repertoire Diversification in Young Children with Malaria

    Science.gov (United States)

    Jiang, Ning

    Accurately measuring the immune repertoire sequence composition, diversity, and abundance is important in studying repertoire response in infections, vaccinations, and cancer immunology. Using molecular identifiers (MIDs) to tag mRNA molecules is an effective method in improving the accuracy of immune repertoire sequencing (IR-seq). However, it is still difficult to use IR-seq on small amount of clinical samples to achieve a high coverage of the repertoire diversities. This is especially challenging in studying infections and vaccinations where B cell subpopulations with fewer cells, such as memory B cells or plasmablasts, are often of great interest to study somatic mutation patterns and diversity changes. Here, we describe an approach of IR-seq based on the use of MIDs in combination with a clustering method that can reveal more than 80% of the antibody diversity in a sample and can be applied to as few as 1,000 B cells. We applied this to study the antibody repertoires of young children before and during an acute malaria infection. We discovered unexpectedly high levels of somatic hypermutation (SHM) in infants and revealed characteristics of antibody repertoire development in young children that would have a profound impact on immunization in children.

  5. Species-specific fine root biomass distribution alters competition in mixed forests under climate change

    Science.gov (United States)

    Reyer, Christopher; Gutsch, Martin; Lasch, Petra; Suckow, Felicitas; Sterck, Frank; Mohren, Frits

    2010-05-01

    The importance of mixed forests in European silviculture has increased due to forest conversion policies and multifunctional forest management. Concurrently, evidences for substantial impacts of climate change on forest ecosystems accumulate. Projected drier and warmer conditions alter the water relations of tree species, their growth and ultimately their inter-specific competition in mixed stands. Process-based models are scientific tools to study the impact of climate change on and to deepen the understanding of the functioning of these systems based on ecological mechanisms. They allow for long-term, stand-level studies of forest dynamics which could only be addressed with great difficulty in an experimental or empirical setup. We used the process-based forest model 4C to simulate inter-specific competition in mixed stands of Douglas-fir (Pseudotsuga menziesii) and Common beech (Fagus sylvatica) as well as Scots pine (Pinus sylvestris) and Sessile / Pedunculate oak (Quercus petraea and Quercus robur) under a) historical climate for model verification and b) under climate change scenario realizations of the climate model STAR 2.0 in Brandenburg, Germany. Some of the climate change scenario realizations feature a substantially drier and warmer summer climate which decreases the climatic water balance during the growing season. We assumed species-specific fine root biomass distributions which feature broadleaved fine roots in deeper soil layers and coniferous fine roots in upper soil layers according to several root excavation studies from mixed stands. The stands themselves were constructed from yield tables of the contributing species. The model verification provided good results for the basal area predictions under the historical climate. Under climate change, the number of days when the tree water demand exceeded the soil water supply was higher for the coniferous species than for broadleaved species. Furthermore, after 45 simulation years the basal area

  6. Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice.

    Science.gov (United States)

    Peterson, Daniel A; Planer, Joseph D; Guruge, Janaki L; Xue, Lai; Downey-Virgin, Whitt; Goodman, Andrew L; Seedorf, Henning; Gordon, Jeffrey I

    2015-05-15

    The adaptive immune response to the human gut microbiota consists of a complex repertoire of antibodies interacting with a broad range of taxa. Fusing intestinal lamina propria lymphocytes from mice monocolonized with Bacteroides thetaiotaomicron to a myeloma fusion partner allowed us to recover hybridomas that captured naturally primed, antigen-specific antibody responses representing multiple isotypes, including IgA. One of these hybridomas, 260.8, produced a monoclonal antibody that recognizes an epitope specific for B. thetaiotaomicron isolates in a large panel of hospital- and community-acquired Bacteroides. Whole genome transposon mutagenesis revealed a 19-gene locus, involved in LPS O-antigen polysaccharide synthesis and conserved among multiple B. thetaiotaomicron isolates, that is required for 260.8 epitope expression. Mutants in this locus exhibited marked fitness defects in vitro during growth in rich medium and in gnotobiotic mice colonized with defined communities of human gut symbionts. Expression of the 260.8 epitope was sustained during 10 months of daily passage in vitro and during 14 months of monocolonization of gnotobiotic wild-type, Rag1-/-, or Myd88-/- mice. Comparison of gnotobiotic Rag1-/- mice with and without subcutaneous 260.8 hybridomas disclosed that this IgA did not affect B. thetaiotaomicron population density or suppress 260.8 epitope production but did affect bacterial gene expression in ways emblematic of a diminished host innate immune response. Our study illustrates an approach for (i) generating diagnostic antibodies, (ii) characterizing IgA responses along a continuum of specificity/degeneracy that defines the IgA repertoire to gut symbionts, and (iii) identifying immunogenic epitopes that affect competitiveness and help maintain host-microbe mutualism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Characterizing the Interactions between a Naturally Primed Immunoglobulin A and Its Conserved Bacteroides thetaiotaomicron Species-specific Epitope in Gnotobiotic Mice*

    Science.gov (United States)

    Peterson, Daniel A.; Planer, Joseph D.; Guruge, Janaki L.; Xue, Lai; Downey-Virgin, Whitt; Goodman, Andrew L.; Seedorf, Henning; Gordon, Jeffrey I.

    2015-01-01

    The adaptive immune response to the human gut microbiota consists of a complex repertoire of antibodies interacting with a broad range of taxa. Fusing intestinal lamina propria lymphocytes from mice monocolonized with Bacteroides thetaiotaomicron to a myeloma fusion partner allowed us to recover hybridomas that captured naturally primed, antigen-specific antibody responses representing multiple isotypes, including IgA. One of these hybridomas, 260.8, produced a monoclonal antibody that recognizes an epitope specific for B. thetaiotaomicron isolates in a large panel of hospital- and community-acquired Bacteroides. Whole genome transposon mutagenesis revealed a 19-gene locus, involved in LPS O-antigen polysaccharide synthesis and conserved among multiple B. thetaiotaomicron isolates, that is required for 260.8 epitope expression. Mutants in this locus exhibited marked fitness defects in vitro during growth in rich medium and in gnotobiotic mice colonized with defined communities of human gut symbionts. Expression of the 260.8 epitope was sustained during 10 months of daily passage in vitro and during 14 months of monocolonization of gnotobiotic wild-type, Rag1−/−, or Myd88−/− mice. Comparison of gnotobiotic Rag1−/− mice with and without subcutaneous 260.8 hybridomas disclosed that this IgA did not affect B. thetaiotaomicron population density or suppress 260.8 epitope production but did affect bacterial gene expression in ways emblematic of a diminished host innate immune response. Our study illustrates an approach for (i) generating diagnostic antibodies, (ii) characterizing IgA responses along a continuum of specificity/degeneracy that defines the IgA repertoire to gut symbionts, and (iii) identifying immunogenic epitopes that affect competitiveness and help maintain host-microbe mutualism. PMID:25795776

  8. Temperature has species-specific effects on corticosterone in alligator lizards.

    Science.gov (United States)

    Telemeco, Rory S; Addis, Elizabeth A

    2014-09-15

    In response to conditions that threaten homeostasis and/or life, vertebrates generally increase production of glucocorticoid hormones, such as corticosterone (CORT), which induces an emergency physiological state referred to as the stress response. Given that extreme temperatures pose a threat to performance and survival, glucocorticoid upregulation might be an important component of a vertebrate ectotherm's response to extreme thermal conditions. To address this hypothesis, we experimentally examined the effects of body temperature (10, 20, 28, and 35°C; 5-h exposure) on CORT in two congeneric species of lizard naturally exposed to different thermal environments, northern and southern alligator lizards (Elgaria coerulea and Elgaria multicarinata, respectively). In both species, CORT was similarly elevated at medium and high temperatures (28 and 35°C, respectively), but CORT was only elevated at low temperatures (10°C) in southern alligator lizards. We also examined CORT before and after adrenocorticotrophic hormone (ACTH) challenge. In both species, ACTH induced higher CORT levels than any temperature, suggesting that these animals could respond to further stressors at all experimental temperatures. Finally, we compared our laboratory results to measurements of CORT in field-active southern alligator lizards. Plasma CORT concentrations from our laboratory experiment had the same mean and less variance than the field lizards, suggesting that our laboratory lizards displayed CORT within natural levels. Our results demonstrate that body temperature directly affects CORT in alligator lizards. Moreover, the CORT response of these lizards appears to be adapted to their respective thermal environments. Species-specific differences in the thermal CORT response might be common in vertebrate ectotherms and have implications for species' biogeography and responses to climate change.

  9. Molecular diagnostic for boll weevil (Coleoptera: Curculionidae) based on amplification of three species-specific microsatellites.

    Science.gov (United States)

    Kim, Kyung Seok; Szendrei, Zsofia; Rodriguez-Saona, Cesar; Mulder, Phillip G; Sappington, Thomas W

    2009-04-01

    The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a serious pest of cultivated cotton, Gossypium hirsutum L., in the Americas, and reinfestation of zones from which they have been eradicated is of perpetual concern. Extensive arrays of pheromone traps monitor for reintroductions, but occasionally the traps collect nontarget weevils that can be misidentified by scouts. For example, the congeneric pepper weevil, Anthonomus eugenii Cano, and other superficially similar weevils are attracted to components of the boll weevil lure or trap color. Although morphologically distinguishable by trained personnel, the potential for misidentification is compounded when captured weevils are dismembered or partially consumed by ants or ground beetles that sometimes feed on them in the traps. Because misidentification can have expensive consequences, a molecular diagnostic tool would be of great value to eradication managers. We demonstrate that a cocktail of three primer pairs in a single polymerase chain reaction (PCR) amplify species-specific microsatellites that unambiguously distinguish the boll weevil from three other weevil species tested, including pepper weevil; cranberry weevil, Anthonomus eugenii musculus Say; and pecan weevil, Curculio caryae Horn. However, it does not distinguish the boll weevil from the subspecific "thurberia" weevil. A universal internal transcribed spacer primer pair included in the cocktail cross-amplifies DNA from all species, serving as a positive control. Furthermore, the diagnostic primers amplified the target microsatellites from various boll weevil adult body parts, indicating that the PCR technology using the primer cocktail is sensitive enough to positively identify a boll weevil even when the body is partly degraded.

  10. Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Stephanie; Guerin, Thierry [Agence Nationale de Securite Sanitaire de l' Alimentation, Laboratoire de Securite des Aliments de Maisons-Alfort, Unite des Contaminants Inorganiques et Mineraux de l' Environnement, ANSES, Maisons-Alfort (France); Monperrus, Mathilde; Donard, Olivier F.X.; Amouroux, David [IPREM UMR 5254 CNRS - Universite de Pau et des Pays de l' Adour, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l' Environnement et les Materiaux, Pau Cedex (France)

    2011-11-15

    Methylmercury (MeHg) and total mercury (THg) in seafood were determined using species-specific isotope dilution analysis and gas chromatography combined with inductively coupled plasma mass spectrometry. Sample preparation methods (extraction and derivation step) were evaluated on certified reference materials using isotopically enriched Hg species. Solid-liquid extraction, derivation by propylation and automated agitation gave excellent accuracy and precision results. Satisfactory figures of merit for the selected method were obtained in terms of limit of quantification (1.2 {mu}g Hg kg{sup -1} for MeHg and 1.4 {mu}g Hg kg{sup -1} for THg), repeatability (1.3-1.7%), intermediate precision reproducibility (1.5% for MeHg and 2.2% for THg) and trueness (bias error less than 7%). By means of a recent strategy based on accuracy profiles ({beta}-expectation tolerance intervals), the selected method was successfully validated in the range of approximately 0.15-5.1 mg kg{sup -1} for MeHg and 0.27-5.2 mg kg{sup -1} for THg. Probability {beta} was set to 95% and the acceptability limits to {+-}15%. The method was then applied to 62 seafood samples representative of consumption in the French population. The MeHg concentrations were generally low (1.9-588 {mu}g kg{sup -1}), and the percentage of MeHg varied from 28% to 98% in shellfish and from 84% to 97% in fish. For all real samples tested, methylation and demethylation reactions were not significant, except in one oyster sample. The method presented here could be used for monitoring food contamination by MeHg and inorganic Hg in the future to more accurately assess human exposure. (orig.)

  11. Species-specific markers provide molecular genetic evidence for natural introgression of bullhead catfishes in Hungary

    Science.gov (United States)

    Béres, Beatrix; Kánainé Sipos, Dóra; Müller, Tamás; Staszny, Ádám; Farkas, Milán; Bakos, Katalin; Urbányi, Béla

    2017-01-01

    Since three bullhead catfish species were introduced to Europe in the late 19th century, they have spread to most European countries. In Hungary, the brown bullhead (Ameiurus nebulosus) was more widespread in the 1970s–1980s, but the black bullhead (Ameiurus melas) has gradually supplanted since their second introduction in 1980. The introgressive hybridization of the two species has been presumed based on morphological examinations, but it has not previously been supported by genetic evidence. In this study, 11 different Hungarian habitats were screened with a new species-specific nuclear genetic, duplex PCR based, marker system to distinguish the introduced catfish species, Ameiurus nebulosus, Ameiurus melas, and Ameiurus natalis, as well as the hybrids of the first two. More than 460 specimens were analyzed using the above markers and additional mitochondrial sequence analyses were also conducted on >25% of the individuals from each habitat sampled. The results showed that only 7.9% of the specimens from two habitats belonged to Ameiurus nebulosus, and 92.1% were classified as Ameiurus melas of all habitats, whereas the presence of Ameiurus natalis was not detected. Two specimens (>0.4%) showed the presence of both nuclear genomes and they were identified as hybrids of Ameiurus melas and Ameiurus nebulosus. An additional two individuals showed contradicting results from the nuclear and mitochondrial assays as a sign of a possible footprint of introgressive hybridization that might have happened two or more generations before. Surprisingly, the level of hybridization was much smaller than expected based on the analyses of the North American continent’s indigenous stock from the hybrid zones. This phenomenon has been observed in several invasive fish species and it is regarded as an added level of complexity in the management of their rapid adaptation. PMID:28265489

  12. Assessment of Anopheles salivary antigens as individual exposure biomarkers to species-specific malaria vector bites

    Directory of Open Access Journals (Sweden)

    Ali Zakia M I

    2012-12-01

    Full Text Available Abstract Background Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis. Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. Methods For this purpose, salivary gland proteins 6 (SG6 and 5′nucleotidases (5′nuc from An. gambiae (gSG6 and g-5′nuc and An. funestus (fSG6 and f-5′nuc were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46 that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n = 45. Results The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5′nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5′nucleotidase protein. Conclusion This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed.

  13. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea

    KAUST Repository

    Lee, Onon

    2010-11-18

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored. © 2011 International Society for Microbial Ecology All rights reserved.

  14. Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry.

    Science.gov (United States)

    Ren, Yao; Walczyk, Thomas

    2014-09-01

    Ferritin is a hollow sphere protein composed of 24 subunits that can store up to 4500 iron atoms in its inner cavity. It is mainly found in the liver and spleen but also in serum at trace levels. Serum ferritin is considered as the best single indicator in assessing body iron stores except liver or bone marrow biopsy. However, it is confounded by other disease conditions. Ferritin bound iron (FBI) and ferritin saturation have been suggested as more robust biomarkers. The current techniques for FBI determination are limited by low antibody specificity, low instrument sensitivity and possible analyte losses during sample preparation. The need for a highly sensitive and reliable method is widely recognized. Here we describe a novel technique to detect serum FBI using species-specific isotope dilution mass spectrometry (SS-IDMS). [(57)Fe]-ferritin was produced by biosynthesis and in vitro labeling with the (57)Fe spike in the form of [(57)Fe]-citrate after cell lysis and heat treatment. [(57)Fe]-ferritin for sample spiking was further purified by fast liquid protein chromatography. Serum ferritin and added [(57)Fe]-ferritin were separated from other iron species by ultrafiltration followed by isotopic analysis of FBI using negative thermal ionization mass spectrometry. Repeatability of our assay is 8% with an absolute detection limit of 18 ng FBI in the sample. As compared to other speciation techniques, SS-IDMS offers maximum control over sample losses and species conversion during analysis. The described technique may therefore serve as a reference technique for clinical applications of FBI as a new biomarker for assessing body iron status.

  15. Development of a species-specific polymerase chain reaction assay for Gardnerella vaginalis

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); A. Koeken (A.); A.M. Vandamme (Anne Mieke); M. van Esbroeck (M.); H. Goossens; J. Koopmans (J.); J.C. Kuijpers (Johan); E. Falsen (E.); W.G.V. Quint (Wim)

    1995-01-01

    textabstractThe nucleotide sequence of the region between the 16S and 23S rRNA genes of the facultative anaerobic bacteriumGardnerella vaginalishas been determined, together with the 5′ proximal 500 nucleotides of the 23S rRNA gene. Regions suited for the development of specific, probe-confirmable

  16. Development of a species-specific polymerase chain reaction assay for Gardnerella vaginalis

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); A. Koeken (A.); A.M. Vandamme (Anne Mieke); M. van Esbroeck (M.); H. Goossens; J. Koopmans (J.); J.C. Kuijpers (Johan); E. Falsen (E.); W.G.V. Quint (Wim)

    1995-01-01

    textabstractThe nucleotide sequence of the region between the 16S and 23S rRNA genes of the facultative anaerobic bacteriumGardnerella vaginalishas been determined, together with the 5′ proximal 500 nucleotides of the 23S rRNA gene. Regions suited for the development of specific, probe-confirmable p

  17. Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila

    DEFF Research Database (Denmark)

    Clifton, Bryan D.; Sanz, Pablo Librado; Yeh, Shu-Dan

    2017-01-01

    Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typical...

  18. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1 are components of developmental signaling pathways, 2 regulate fundamental developmental processes, 3 are critical for the development of tissues of vector importance, 4 function in developmental processes known to have diverged within insects, and 5 encode microRNAs (miRNAs that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  19. Wnt repertoire and developmental expression patterns in the crustacean Thamnocephalus platyurus.

    Science.gov (United States)

    Constantinou, Savvas J; Pace, Ryan M; Stangl, A J; Nagy, Lisa M; Williams, Terri A

    2016-12-01

    Wnt genes are a family of conserved glycoprotein ligands that play a role in a wide variety of cell and developmental processes, from cell proliferation to axis elongation. There are 13 Wnt subfamilies found among metazoans. Eleven of these appear conserved in arthropods with a pattern of loss during evolution of as many as six subfamilies among hexapods. Here we report on Wnt genes in the branchiopod crustacean, Thamnocephalus platyurus, including the first documentation of the expression of the complete Wnt gene family in a crustacean. Our results suggest fewer Wnt genes were retained in Thamnocephalus than in the related crustacean, Daphnia, although the Thamnocephalus Wnt repertoire is larger than that found in insects. We also find an intriguing pattern of staggered expression of Wnts-an anterior-posterior stagger within the posterior growth zone and a dorsal-ventral stagger in the developing segments-suggesting a potential for subfunctionalization of Wnts in these regions. © 2016 Wiley Periodicals, Inc.

  20. Organ- and species-specific accumulation of metals in two land snail species (Gastropoda, Pulmonata)

    Energy Technology Data Exchange (ETDEWEB)

    Boshoff, Magdalena, E-mail: magdalena.boshoff@ua.ac.be [University of Antwerp, Systemic Physiological and Ecotoxicological Research, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordaens, Kurt [Royal Museum for Central Africa (JEMU), Leuvensesteenweg 13, B-3080 Tervuren (Belgium); University of Antwerp, Evolutionary Ecology Group, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Backeljau, Thierry [University of Antwerp, Evolutionary Ecology Group, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Royal Belgian Institute of Natural Sciences (JEMU), Vautierstraat 29, B-1000 Brussels (Belgium); Lettens, Suzanna [Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels (Belgium); Tack, Filip [Ghent University, Laboratory of Analytical Chemistry and Applied Ecochemistry, Coupure Links 265, B-9000 Ghent (Belgium); Vandecasteele, Bart [Institute for Agricultural and Fisheries Research (ILVO), Burg van Gansberghelaan 109, B-9820 Merelbeke (Belgium); De Jonge, Maarten; Bervoets, Lieven [University of Antwerp, Systemic Physiological and Ecotoxicological Research, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-04-01

    In order to evaluate the usefulness of terrestrial gastropods as bioindicators there is a need for studies that simultaneously compare (1) concentrations of metals in reference and polluted plots, (2) species within the same polluted habitat, (3) metal accumulation patterns in different organs and (4) metal accumulation patterns in relation to soil physicochemical properties. This study aims to assess metal accumulation patterns in two land snail species. Instead of analyzing an organism as a whole, investigating the partitioning of metals in different organs can provide information on the actual toxicological relevant fractions. Therefore, concentrations of Ag, Cd, Cr, Cu, Ni and Zn were examined in five different organs of Cepaea nemoralis, as well as in the foot and the body of Succinea putris. Snails were sampled at four polluted dredged sediment disposal localities and three adjacent less polluted reference plots situated along waterways in Flanders, Belgium. Due to the small size and problematic dissection of S. putris only the concentrations in the foot of both species could be compared. For this reason only, C. nemoralis can be described as a better bioindicator species that allows a far more detailed analysis of organ metal accumulation. This study showed that organs other than the digestive gland may be involved in the immobilization and detoxification of metals. Furthermore, pH, soil fractionation (clay %, silt %, sand %) and organic matter, correlate with metal accumulation in organs. However, most often the soil metal concentrations did not correlate with the concentrations found in snail organs. Metal concentrations in organs of both species (1) differed among polluted plots but rarely between polluted and reference plots within a locality, (2) were organ-specific (digestive gland > foot > albumen gland = spermoviduct = ovotestis), (3) were species-specific and (4) depended on the metal type (high Cd and Cu concentrations were observed in the

  1. Species-specific responses to drought have strong long-term consequences at the ecosystem scale

    Science.gov (United States)

    Wolf, A.; Leuzinger, S.; Bugmann, H.

    2009-04-01

    Future climate-induced changes in soil moisture conditions will influence ecosystems, which in turn partly control and/or facilitate evapotranspiration and hence have a direct feedback effect on the regional climate. Small-scale experimental data from a mature deciduous forest suggest species-specific reductions in transpiration during drought. We used these data to investigate the long-term consequences of the differential drought responses of trees at the ecosystem scale by incorporating two alternative mechanisms in the ecosystem model LPJ-GUESS. According to the first mechanism, tree species differ physiologically, i.e. in their water uptake capacity under drought conditions. According to the second mechanism, they differ morphologically by featuring different vertical root distribution patterns. We performed simulations for temperate deciduous forest ecosystems in central Europe, using mixed forests and single species stands. Predictions on long-term trends in tree diversity differed strongly depending on the type of drought response that was used, leading to either strong suppression of the most sensitive tree species in the case of differences in water uptake capacity, or to a mixed-species forest in case of differential root distribution patterns. The reduction in ecosystem evapotranspiration on days with low soil moisture was considerable for the drought sensitive species, but less important for the other species and for mixed forests. This pattern could be reversed during prolonged droughts, because reduced water uptake earlier in the drought may result in higher water availability later on. This implies that, paradoxically, drought sensitive tree species may be able to maintain a positive carbon balance during longer drought periods. We scale up these vegetation changes for a whole inner alpine catchment, characterized by a strong gradient of both temperature and precipitation, where drought stress was shown to be of high importance in the lower

  2. Species-specificity of equine and porcine Lawsonia intracellularis isolates in laboratory animals.

    Science.gov (United States)

    Sampieri, Francesca; Vannucci, Fabio A; Allen, Andrew L; Pusterla, Nicola; Antonopoulos, Aphroditi J; Ball, Katherine R; Thompson, Julie; Dowling, Patricia M; Hamilton, Don L; Gebhart, Connie J

    2013-10-01

    Lawsonia intracellularis infection causes proliferative enteropathy (PE) in many mammalian species, with porcine and equine proliferative enteropathy (PPE and EPE) known worldwide. Hamsters are a well-published animal model for PPE infection studies in pigs. There is no laboratory animal model for EPE infection studies and it is not known whether there is species-specificity for equine or porcine isolates of L. intracellularis in animal models. The objective of this study was to determine whether it is possible to generate typical EPE lesions in hamsters after inoculation with an equine strain of L. intracellularis (EPE strain) and whether it is comparatively possible to generate PPE lesions in rabbits after inoculation with a porcine strain of L. intracellularis (PPE strain). In 2 separate trials, 4-week-old and 3-week-old weanling golden Syrian hamsters were challenged with EPE strains and compared to uninfected (both trials) and PPE-infected controls (Trial 2 only). Concurrently, 6 female New Zealand white juvenile rabbits were infected with PPE strain and observed concomitantly to 8 similar rabbits infected with EPE strain for a different experiment. Hamsters and rabbits were observed for 21 to 24 days post-infection (DPI), depending on the experiment. Neither infected species developed clinical signs. The presence of disease was assessed with diagnostic techniques classically used for pigs and horses: immune-peroxidase monolayer assay on sera; quantitative polymerase chain reaction (qPCR) detection of molecular DNA in feces; and hematoxylin and eosin (H&E) stain and immunohistochemistry (IHC) on intestinal tissues. Our results showed that EPE-challenged hamsters do not develop infection when compared with PPE controls (IHC, P = 0.009; qPCR, P = 0.0003). Conversely, PPE-challenged rabbits do not develop typical intestinal lesions in comparison to EPE-challenged rabbits, with serological response at 14 DPI being significantly lower (P = 0.0023). In conclusion

  3. Species-specific photosynthetic responses of four coniferous seedlings to open-field experimental warming

    Science.gov (United States)

    Han, S.; Yoon, S. J.; Yoon, T. K.; Han, S. H.; Lee, J.; Lee, D.; Kim, S.; Hwang, J.; Cho, M.; Son, Y.

    2014-12-01

    in chlorophyll contents resulted from heat stress were observed for PD and PK. We found the species-specific responses of Pn related to the change in photosynthetic parameters following experimental warming of four 1-year-old coniferous seedlings.

  4. Examining the species-specificity of rhesus macaque cytomegalovirus (RhCMV in cynomolgus macaques.

    Directory of Open Access Journals (Sweden)

    Angie K Marsh

    Full Text Available Cytomegalovirus (CMV is a highly species-specific virus that has co-evolved with its host over millions of years and thus restricting cross-species infection. To examine the extent to which host restriction may prevent cross-species research between closely related non-human primates, we evaluated experimental infection of cynomolgus macaques with a recombinant rhesus macaque-derived CMV (RhCMV-eGFP. Twelve cynomolgus macaques were randomly allocated to three groups: one experimental group (RhCMV-eGFP and two control groups (UV-inactivated RhCMV-eGFP or media alone. The animals were given two subcutaneous inoculations at week 0 and week 8, and a subset of animals received an intravenous inoculation at week 23. No overt clinical or haematological changes were observed and PBMCs isolated from RhCMV-eGFP inoculated animals had comparable eGFP- and IE-1-specific cellular responses to the control animals. Following inoculation with RhCMV-eGFP, we were unable to detect evidence of infection in any blood or tissue samples up to 4 years post-inoculation, using sensitive viral co-culture, qPCR, and Western blot assays. Co-culture of urine and saliva samples demonstrated the presence of endogenous cynomolgus CMV (CyCMV cytopathic effect, however no concomitant eGFP expression was observed. The absence of detectable RhCMV-eGFP suggests that the CyCMV-seropositive cynomolgus macaques were not productively infected with RhCMV-eGFP under these inoculation conditions. In a continued effort to develop CMV as a viral vector for an HIV/SIV vaccine, these studies demonstrate that CMV is highly restricted to its host species and can be highly affected by laboratory cell culture. Consideration of the differences between lab-adapted and primary viruses with respect to species range and cell tropism should be a priority in evaluating CMV as vaccine vector for HIV or other pathogens at the preclinical development stage.

  5. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65–88%), compared to the sensitivity (91–100%) of the new molecular diagnostic workflow. Conclusions/Significance Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited. PMID:28915255

  6. Evidence of species specific vascular plant functions as regulators of methane emissions from northern peatlands

    Science.gov (United States)

    Oquist, M. G.

    2001-05-01

    Peatlands play an indisputable role in the global carbon cycle by their net accumulation of atmospheric carbon dioxide and storage of carbon in the form of peat. They are also intimately tied into the fundamental processes of the atmospheric greenhouse gas balance through their production and concomitant emission of methane. During the last decade several studies have emphasized the function of vegetation as an important regulator of methane emissions from wetland ecosystems, including northern peatlands. Vascular plants can affect methane emissions either by facilitating transportation of methane over the soil/atmosphere interface, or by supplying the microbial soil communities with readily degradable organic substrates through root activity, stimulating biogeochemical transformation rates including methanogenesis. We found evidence of both these types of vegetation-based interactions in a sub-arctic peatland ecosystem and also indications that the two different processes of vegetation induced stimulation of methane emission rates are species specific with respect to the vascular plant communities. By reducing incoming PAR through shading manipulations and comparing these to ambient light control plots we created an intra-habitat gradient of vascular plant photosynthesis at two contrasting sites, one ombrotrophic (dominated by Eriophorum vaginatum/Carex rotundata) and one minerotrophic (dominated by Eriophorum angustifolium). The position of the water table was found to be the dominating environmental factor controlling methane emission rates in both habitat types. At the ombrotrophic site the photosynthetic rate was the second most important factor, especially during peak vascular plant activity (late June- early August) when this variable could explain ca 15% of the variations in methane flux rates. Furthermore, the photosynthetic rates in the shaded plots were reduced by ca 25% and was accompanied by a significant 20% (P=0.01) reduction in methane emission

  7. Neural crest-mediated bone resorption is a determinant of species-specific jaw length.

    Science.gov (United States)

    Ealba, Erin L; Jheon, Andrew H; Hall, Jane; Curantz, Camille; Butcher, Kristin D; Schneider, Richard A

    2015-12-01

    Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm

  8. Species-specificity of equine and porcine Lawsonia intracellularis isolates in laboratory animals

    Science.gov (United States)

    Sampieri, Francesca; Vannucci, Fabio A.; Allen, Andrew L.; Pusterla, Nicola; Antonopoulos, Aphroditi J.; Ball, Katherine R.; Thompson, Julie; Dowling, Patricia M.; Hamilton, Don L.; Gebhart, Connie J.

    2013-01-01

    Lawsonia intracellularis infection causes proliferative enteropathy (PE) in many mammalian species, with porcine and equine proliferative enteropathy (PPE and EPE) known worldwide. Hamsters are a well-published animal model for PPE infection studies in pigs. There is no laboratory animal model for EPE infection studies and it is not known whether there is species-specificity for equine or porcine isolates of L. intracellularis in animal models. The objective of this study was to determine whether it is possible to generate typical EPE lesions in hamsters after inoculation with an equine strain of L. intracellularis (EPE strain) and whether it is comparatively possible to generate PPE lesions in rabbits after inoculation with a porcine strain of L. intracellularis (PPE strain). In 2 separate trials, 4-week-old and 3-week-old weanling golden Syrian hamsters were challenged with EPE strains and compared to uninfected (both trials) and PPE-infected controls (Trial 2 only). Concurrently, 6 female New Zealand white juvenile rabbits were infected with PPE strain and observed concomitantly to 8 similar rabbits infected with EPE strain for a different experiment. Hamsters and rabbits were observed for 21 to 24 days post-infection (DPI), depending on the experiment. Neither infected species developed clinical signs. The presence of disease was assessed with diagnostic techniques classically used for pigs and horses: immune-peroxidase monolayer assay on sera; quantitative polymerase chain reaction (qPCR) detection of molecular DNA in feces; and hematoxylin and eosin (H&E) stain and immunohistochemistry (IHC) on intestinal tissues. Our results showed that EPE-challenged hamsters do not develop infection when compared with PPE controls (IHC, P = 0.009; qPCR, P = 0.0003). Conversely, PPE-challenged rabbits do not develop typical intestinal lesions in comparison to EPE-challenged rabbits, with serological response at 14 DPI being significantly lower (P = 0.0023). In conclusion

  9. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, Anders; On, Stephen L. W.

    2007-01-01

    bactericidal activity against several clinical bacterial isolates and type strains. We identified and subcloned the genes coding for putative deoxyribonucleoside kinases in Escherichia coli, Pasteurella multocida, Salmonella enterica, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens...

  10. Contrasted Evolution of the Vomeronasal Receptor Repertoires in Mammals and Squamate Reptiles

    OpenAIRE

    Brykczynska, Urszula; Tzika, Athanasia C; Rodriguez, Ivan; Michel C Milinkovitch

    2013-01-01

    The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have ...

  11. Repertoires of spike avalanches are modulated by behavior and novelty

    Directory of Open Access Journals (Sweden)

    Tiago Lins Ribeiro

    2016-03-01

    Full Text Available Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here we show that spike avalanches, recorded from hippocampus and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  12. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    Science.gov (United States)

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  13. Silent performances: Are "repertoires" really post-Kuhnian?

    Science.gov (United States)

    Sample, Matthew

    2017-02-01

    Ankeny and Leonelli (2016) propose "repertoires" as a new way to understand the stability of certain research programs as well as scientific change in general. By bringing a more complete range of social, material, and epistemic elements into one framework, they position their work as a correction to the Kuhnian impulse in philosophy of science and other areas of science studies. I argue that this "post-Kuhnian" move is not complete, and that repertoires maintain an internalist perspective. Comparison with an alternative framework, the "sociotechnical imaginaries" of Jasanoff and Kim (2015), illustrates precisely which elements of practice are externalized by Ankeny and Leonelli. Specifically, repertoires discount the role of audience, without whom the repertoires of science are unintelligible, and lack an explicit place for ethical and political imagination, which provide meaning for otherwise mechanical promotion of particular research programs. This comparison reveals, I suggest, two distinct modes of scholarship, one internalist and the other critical. While repertoires can be modified to meet the needs of critical STS scholars and to completely reject Kuhn's internalism, whether or not we do so depends on what we want our scholarship to achieve.

  14. Analysis of the Repertoire Features of TCR Beta Chain CDR3 in Human by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Xianliang Hou

    2016-07-01

    Full Text Available Background/Aims: To ward off a wide variety of pathogens, the human adaptive immune system harbors a vast array of T-cell receptors, collectively referred to as the TCR repertoire. Assessment of the repertoire features of TCR is vital for us to deeper understand of immune behaviour and immune response. Methods: In this study, we used a combination of multiplex-PCR, Illumina sequencing and IMGT (ImMunoGeneTics/HighV-QUEST for a standardized analysis of the repertoire features of TCR beta chain in the blood of healthy individuals, including the repertoire features of public TCR complementarity-determining regions (CDR3 sequences, highly expanded clones, long TCR CDR3 sequences. Results: We found that public CDR3 sequences and high-frequency sequences had the same characteristics, both of them had fewer nucleotide additions and shorter CDR3 length, which were closer to the germline sequence. Moreover, our studies provided evidence that public amino acid sequences are produced by multiple nucleotide sequences. Notably, there was skewed VDJ segment usage in long CDR3 sequences, the expression levels of 10 TRβV segments, 7 TRβJ segments and 2 TRβD segments were significantly different in the long CDR3 sequences compared to the short CDR3 sequences. Moreover, we identified that extensive N additions and increase of D gene usage contributing to TCR CDR3 length, and observed there was distinct usage frequency of amino acids in long CDR3 sequences compared to the short CDR3 sequences. Conclusions: Some repertoire features could be observed in the public sequences, highly abundance clones, and long TCR CDR3 sequences, which might be helpful for further study of immune behavior and immune response.

  15. Expansion of the preimmune antibody repertoire by junctional diversity in Bos taurus.

    Directory of Open Access Journals (Sweden)

    Jenni Liljavirta

    Full Text Available Cattle have a limited range of immunoglobulin genes which are further diversified by antigen independent somatic hypermutation in fetuses. Junctional diversity generated during somatic recombination contributes to antibody diversity but its relative significance has not been comprehensively studied. We have investigated the importance of terminal deoxynucleotidyl transferase (TdT -mediated junctional diversity to the bovine immunoglobulin repertoire. We also searched for new bovine heavy chain diversity (IGHD genes as the information of the germline sequences is essential to define the junctional boundaries between gene segments. New heavy chain variable genes (IGHV were explored to address the gene usage in the fetal recombinations. Our bioinformatics search revealed five new IGHD genes, which included the longest IGHD reported so far, 154 bp. By genomic sequencing we found 26 new IGHV sequences that represent potentially new IGHV genes or allelic variants. Sequence analysis of immunoglobulin heavy chain cDNA libraries of fetal bone marrow, ileum and spleen showed 0 to 36 nontemplated N-nucleotide additions between variable, diversity and joining genes. A maximum of 8 N nucleotides were also identified in the light chains. The junctional base profile was biased towards A and T nucleotide additions (64% in heavy chain VD, 52% in heavy chain DJ and 61% in light chain VJ junctions in contrast to the high G/C content which is usually observed in mice. Sequence analysis also revealed extensive exonuclease activity, providing additional diversity. B-lymphocyte specific TdT expression was detected in bovine fetal bone marrow by reverse transcription-qPCR and immunofluorescence. These results suggest that TdT-mediated junctional diversity and exonuclease activity contribute significantly to the size of the cattle preimmune antibody repertoire already in the fetal period.

  16. Species Specificity of the Putative Male Antennal Aphrodisiac Pheromone in Leptopilina heterotoma, Leptopilina boulardi, and Leptopilina victoriae.

    Science.gov (United States)

    Weiss, Ingmar; Ruther, Joachim; Stökl, Johannes

    2015-01-01

    Male antennal aphrodisiac pheromones have been suggested to elicit female receptiveness in several parasitic Hymenoptera, including Leptopilina boulardi. None of the proposed pheromones, however, has been fully identified to date. It is also unknown whether these antennal pheromones are species specific, because the species specificity of mate recognition and courtship elicitation in Leptopilina prevented such experiments. In this study we present an experimental design that allows the investigation of the species specificity of the putative male aphrodisiac pheromone of L. heterotoma, L. boulardi, and L. victoriae. This is achieved by chemical manipulation of the odour profile of heterospecific females, so that males perceive them as conspecifics and show antennal courtship behaviour. Males courted the manipulated heterospecific females and antennal contact between the male and the female was observed. However, males elicited receptiveness only in conspecific females, never in the manipulated heterospecific females. Chemical analysis showed the presence of species specific unsaturated hydrocarbons on the antennae of males. Only trace amounts of these hydrocarbons are found on the antennae of females. Our results are an important step towards the understanding and identification of antennal pheromones of parasitic wasps.

  17. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils

    CSIR Research Space (South Africa)

    Ramond, JB

    2015-02-01

    Full Text Available -1 Journal of Basic Microbiology Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils Jean-Baptiste Ramond1, Joseph D. W. Lako2, William H. L. Stafford3, Marla I. Tuffin4 and Don A. Cowan1...

  18. B cell repertoires in HLA-sensitized kidney transplant candidates undergoing desensitization therapy.

    Science.gov (United States)

    Beausang, John F; Fan, H Christina; Sit, Rene; Hutchins, Maria U; Jirage, Kshama; Curtis, Rachael; Hutchins, Edward; Quake, Stephen R; Yabu, Julie M

    2017-01-13

    Kidney transplantation is the most effective treatment for end-stage renal disease. Sensitization refers to pre-existing antibodies against human leukocyte antigen (HLA) protein and remains a major barrier to successful transplantation. Despite implementation of desensitization strategies, many candidates fail to respond. Our objective was to determine whether measuring B cell repertoires could differentiate candidates that respond to desensitization therapy. We developed an assay based on high-throughput DNA sequencing of the variable domain of the heavy chain of immunoglobulin genes to measure changes in B cell repertoires in 19 highly HLA-sensitized kidney transplant candidates undergoing desensitization and 7 controls with low to moderate HLA sensitization levels. Responders to desensitization had a decrease of 5% points or greater in cumulated calculated panel reactive antibody (cPRA) levels, and non-responders had no decrease in cPRA. Dominant B cell clones were not observed in highly sensitized candidates, suggesting that the B cells responsible for sensitization are either not present in peripheral blood or present at comparable levels to other circulating B cells. Candidates that responded to desensitization therapy had pre-treatment repertoires composed of a larger fraction of class-switched (IgG and IgA) isotypes compared to non-responding candidates. After B cell depleting therapy, the proportion of switched isotypes increased and the mutation frequencies of the remaining non-switched isotypes (IgM and IgD) increased in both responders and non-responders, perhaps representing a shift in the repertoire towards memory B cells or plasmablasts. Conversely, after transplantation, non-switched isotypes with fewer mutations increased, suggesting a shift in the repertoire towards naïve B cells. Relative abundance of different B cell isotypes is strongly perturbed by desensitization therapy and transplantation, potentially reflecting changes in the relative

  19. Antibody repertoire development in cartilaginous fish.

    Science.gov (United States)

    Dooley, H; Flajnik, M F

    2006-01-01

    There are 3 H chain and 3 L chain isotypes in the cartilaginous fish, all encoded by genes in the so-called cluster (VDDJ, VJ) organization. The H chain isotypes IgM and IgNAR, are readily detected at the protein level in most species. The third is readily identified at the protein level in skates (IgR) but only via immunoprecipitation or at the transcript level in sharks (IgW). High levels of diversity in CDR3 and up to 200 germline genes have been detected for IgM depending upon the species examined. IgNAR displays very high levels of CDR3 diversity but almost none in the germline. At least IgNAR and L chain genes have been shown to hypermutate to very high levels, apparently in response to antigen. The mutation footprints are similar to those in mammals except that the shark genes uniquely mutate nucleotide residues in tandem. A conspicuous feature of cartilaginous fish Ig genes is the presence of germline-joined genes, which are a result of RAG activity in germ cells. Such genes are expressed early in ontogeny and then extinguished or expressed at lower levels. 19S IgM and IgW expression precede that of 7S IgM and IgNAR during ontogeny. The 'switch' from 19S to 7S IgM, the regulation of expression of the Ig clusters, and the microenvironments for mutation/selection of cartilaginous fish B cells are all areas of ongoing research.

  20. Clade- and species-specific features of genome evolution in the Saccharomycetaceae.

    Science.gov (United States)

    Wolfe, Kenneth H; Armisén, David; Proux-Wera, Estelle; ÓhÉigeartaigh, Seán S; Azam, Haleema; Gordon, Jonathan L; Byrne, Kevin P

    2015-08-01

    Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm-for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components. © FEMS 2015.

  1. TRAV and TRBV repertoire, clonality and the proliferative history of umbilical cord blood T-cells.

    Science.gov (United States)

    Li, Yangqiu; Chen, Shaohua; Yang, Lijian; Yin, Qingsong; Geng, Suxia; Wu, Xiuli; Schmidt, Christian A; Przybylski, Grzegorz K

    2007-11-01

    Umbilical cord blood (CB) has been used successfully as a source of hematopoietic stem cells for transplantation. But the distribution and clonality of T-cell receptor alpha variable region (TRAV) and T-cell receptor beta variable region (TRBV) subfamily T-cells, the naïve T-cells level and the diversity of thymic recent output function in CB has not been yet clearly defined. In order to characterize the repertoire of CB T-cells, the CDR3 of 29 TRAV and 24 TRBV subfamily genes were analyzed in T-cells from 12 cord blood samples, using RT-PCR and genescan technique. To determine the proliferative history of CB T-cells, quantitative analysis of deltaRec-psiJalpha signal joint T-cell receptor excision circles (sjTRECs) was performed in mononuclear cells, CD3+, CD4+ and CD8+ T-cells from 20 CB samples by real-time PCR. In addition the analysis of 23 TRBV-TRBD1 sjTRECs in 10 cases of CB CD4+ T-cells and CB CD8+ T-cells was performed by semi-nested PCR. We found a marked restriction of TRBV expression pattern in CBMCs compared to peripheral blood mononuclear cells (PBMC), which expressed all 24 TRBV genes. All PCR products of TRAV and TRBV subfamilies from CB, except for 3 cases, displayed polyclonal rearrangement pattern. The deltaRec-psiJalpha sjTRECs counts were significantly higher in CB, than in PB samples. Also the number of detectable TRBV sjTRECs was higher in CB than in peripheral blood. In conclusion, our results indicate polyclonal but restricted repertoire and a very short proliferative history of CB T-cells. The incomplete repertoire and naivety of CB T-cells might be the reason that CB hematopoietic stem cells transplant recipients are less likely to develop graft vs host disease.

  2. Effect of granulocyte colony-stimulating factor mobilization on the expression patterns, clonality and signal transduction of TRAV and TRBV repertoire.

    Science.gov (United States)

    Xuan, Li; Wu, Xiuli; Wu, Meiqing; Zhang, Yu; Liu, Hui; Fan, Zhiping; Sun, Jing; Liu, Qifa

    2012-08-01

    The immune modulatory effect of granulocyte colony-stimulating factor (G-CSF) on T cells resulted in an unexpected low incidence of graft-versus-host disease (GVHD) in allogeneic peripheral blood stem cell transplantation (allo-PBSCT). Recently, αβ(+) T cells are identified as the primary effector cells for GVHD. However, whether G-CSF could influence the repertoire of αβ(+) T cells (TRAV and TRBV repertoire) and CD3 genes remains unclear. To further characterize this feature, we investigated the effect of G-CSF mobilization on the T cell receptors (TCR) of αβ(+) T cells (TRAV and TRBV repertoire) and CD3 genes, as well as the association between the changes of TCR repertoire and GVHD in patients undergoing G-CSF mobilized allo-PBSCT. We found that G-CSF mobilization had an effect on the expression patterns, clonality and signal transduction of TRAV and TRBV repertoire. This alteration might play a role in mediating GVHD in G-CSF mobilized allo-PBSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    Directory of Open Access Journals (Sweden)

    Astrid Vieler

    Full Text Available Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis

  4. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand.

    Science.gov (United States)

    Supikamolseni, A; Ngaoburanawit, N; Sumontha, M; Chanhome, L; Suntrarachun, S; Peyachoknagul, S; Srikulnath, K

    2015-10-30

    DNA barcodes of mitochondrial COI and Cytb genes were constructed from 54 specimens of 16 species for species identification. Intra- and interspecific sequence divergence of the COI gene (10 times) was greater than that of the Cytb gene (4 times), which suggests that the former gene may be a better marker than the latter for species delimitation in snakes. The COI barcode cut-off scores differed by more than 3% between most species, and the minimum interspecific divergence was greater than the maximum intraspecific divergence. Clustering analysis indicated that most species fell into monophyletic clades. These results suggest that these species could be reliably differentiated using COI DNA barcodes. Moreover, a novel species-specific multiplex PCR assay was developed to distinguish between Naja spp, Ophiophagus hannah, Trimeresurus spp, Hydrophiinae, Daboia siamensis, Bungarus fasciatus, and Calloselasma rhodostoma. Antivenom for these species is produced and kept by the Thai Red Cross for clinical use. Our novel PCR assay could easily be applied to venom and saliva samples and could be used effectively for the rapid and accurate identification of species during forensic work, conservation study, and medical research.

  5. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice.

    Science.gov (United States)

    Candéias, Serge M; Mika, Justyna; Finnon, Paul; Verbiest, Tom; Finnon, Rosemary; Brown, Natalie; Bouffler, Simon; Polanska, Joanna; Badie, Christophe

    2017-06-30

    While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.

  6. Development and evaluation of 16S rRNA gene targeting Enterococcus genus- and species-specific assays

    Science.gov (United States)

    Enterococci have been widely used as indicators of fecal pollution in recreational waters. Most studies enumerate enterococci using culture-based techniques that are time consuming and do not provide information on the identity of enterococci species within a given sample. Althou...

  7. The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis

    NARCIS (Netherlands)

    Rigola, D.; Fiers, M.W.E.J.; Vurro, E.; Aarts, M.G.M.

    2006-01-01

    ¿ Thlaspi caerulescens is a natural zinc (Zn), cadmium (Cd) and nickel (Ni) hyperaccumulator and an emerging plant model species to study heavy metal hyperaccumulation and tolerance. This paper describes the analysis of the first expressed sequence tag (EST) collection from T. caerulescens. This

  8. Dietary Conjugated Linoleic Acid and Hepatic Steatosis: Species-Specific Effects on Liver and Adipose Lipid Metabolism and Gene Expression

    Directory of Open Access Journals (Sweden)

    Diwakar Vyas

    2012-01-01

    Full Text Available Objective. To summarize the recent studies on effect of conjugated linoleic acid (CLA on hepatic steatosis and hepatic and adipose lipid metabolism highlighting the potential regulatory mechanisms. Methods. Sixty-four published experiments were summarized in which trans-10, cis-12 CLA was fed either alone or in combination with other CLA isomers to mice, rats, hamsters, and humans were compared. Summary and Conclusions. Dietary trans-10, cis-12 CLA induces a severe hepatic steatosis in mice with a more muted response in other species. Regardless of species, when hepatic steatosis was present, a concurrent decrease in body adiposity was observed, suggesting that hepatic lipid accumulation is a result of uptake of mobilized fatty acids (FA from adipose tissue and the liver's inability to sufficiently increase FA oxidation and export of synthesized triglycerides. The potential role of liver FA composition, insulin secretion and sensitivity, adipokine, and inflammatory responses are discussed as potential mechanisms behind CLA-induced hepatic steatosis.

  9. Development and evaluation of 16S rRNA gene targeting Enterococcus genus- and species-specific assays

    Science.gov (United States)

    Enterococci have been widely used as indicators of fecal pollution in recreational waters. Most studies enumerate enterococci using culture-based techniques that are time consuming and do not provide information on the identity of enterococci species within a given sample. Althou...

  10. BRILIA: Integrated Tool for High-Throughput Annotation and Lineage Tree Assembly of B-Cell Repertoires

    Science.gov (United States)

    Lee, Donald W.; Khavrutskii, Ilja V.; Wallqvist, Anders; Bavari, Sina; Cooper, Christopher L.; Chaudhury, Sidhartha

    2017-01-01

    The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable (V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) during B-cell development and affinity maturation. The VDJ junction of the BCR heavy chain forms the highly variable complementarity determining region 3 (CDR3), which plays a critical role in antigen specificity and binding affinity. Tracking the selection and mutation of the CDR3 can be useful in characterizing humoral responses to infection and vaccination. Although tens to hundreds of thousands of unique BCR genes within an expressed B-cell repertoire can now be resolved with high-throughput sequencing, tracking SHMs is still challenging because existing annotation methods are often limited by poor annotation coverage, inconsistent SHM identification across the VDJ junction, or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, and SHM identification. On benchmark tests against simulated human and mouse BCR repertoires, BRILIA correctly annotated germline and clonally expanded sequences with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate in the CDR3 of heavily mutated sequences; these are substantial improvements over existing methods. We used BRILIA to process BCR sequences obtained from splenic germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell lineage trees and yielded SHM patterns that are consistent across the VDJ junction and agree with known biological mechanisms of SHM. By contrast, existing BCR annotation tools, which do not account for repertoire-wide clonal relationships, systematically underestimated both the size of clonally related B-cell clusters and yielded inconsistent SHM frequencies. We demonstrate

  11. High Throughput Sequencing of T Cell Antigen Receptors Reveals a Conserved TCR Repertoire

    Science.gov (United States)

    Hou, Xianliang; Lu, Chong; Chen, Sisi; Xie, Qian; Cui, Guangying; Chen, Jianing; Chen, Zhi; Wu, Zhongwen; Ding, Yulong; Ye, Ping; Dai, Yong; Diao, Hongyan

    2016-01-01

    Abstract The T-cell receptor (TCR) repertoire is a mirror of the human immune system that reflects processes caused by infections, cancer, autoimmunity, and aging. Next-generation sequencing has become a powerful tool for deep TCR profiling. Herein, we used this technology to study the repertoire features of TCR beta chain in the blood of healthy individuals. Peripheral blood samples were collected from 10 healthy donors. T cells were isolated with anti-human CD3 magnetic beads according to the manufacturer's protocol. We then combined multiplex-PCR, Illumina sequencing, and IMGT/High V-QUEST to analyze the characteristics and polymorphisms of the TCR. Most of the individual T cell clones were present at very low frequencies, suggesting that they had not undergone clonal expansion. The usage frequencies of the TCR beta variable, beta joining, and beta diversity gene segments were similar among T cells from different individuals. Notably, the usage frequency of individual nucleotides and amino acids within complementarity-determining region (CDR3) intervals was remarkably consistent between individuals. Moreover, our data show that terminal deoxynucleotidyl transferase activity was biased toward the insertion of G (31.92%) and C (27.14%) over A (21.82%) and T (19.12%) nucleotides. Some conserved features could be observed in the composition of CDR3, which may inform future studies of human TCR gene recombination. PMID:26962778

  12. Surveillance and Management Repertoires in Distributed Forms of Organisations

    DEFF Research Database (Denmark)

    Buser, Martine; Koch, Christian

    on the relations between changes in management and surveillance. Management is here understood as a repertoire of activities including coordination, assignment of tasks, coaching, control surveillance and others, drawing on the genre concept used by Orlikowsky & Yates (1994). It is understood that these attributes...

  13. Perspectives on Linguistic Repertoires in Adult Multilinguals: An Epilogue

    Science.gov (United States)

    Gorter, Durk

    2017-01-01

    This article introduces this special issue by declaring that the studies contained here build on the idea that multilinguals, in the sense of learners or speakers that have more than two languages in their linguistic repertoire, are different from bilinguals and monolinguals in various ways. Several authors in the area of third language…

  14. Need for species-specific detection for the diagnosis of amoebiasis in a non-endemic setting

    DEFF Research Database (Denmark)

    Hartmeyer, Gitte N; Høgh, Silje V; Chen, Ming;

    2013-01-01

    The diagnosis of amoebiasis caused by Entamoeba histolytica is traditionally based on microscopy. However, the specificity of this method may be questioned, especially in areas where infections by E. histolytica are rare. In the present study, a species-specific real-time PCR was used...... for the identification of the morphologically similar species E. histolytica and Entamoeba dispar. Out of 15 microscopy-positive stool samples, all were negative for E. histolytica and positive for E. dispar. In 2 cases, a suspicion of amoebic liver abscesses was confirmed by detection of E. histolytica DNA in stored...... sample material. Microscopy alone is clearly insufficient for the detection of E. histolytica in a setting where this parasite is rare. Microscopy-positive stool samples should be further tested by species-specific tests to distinguish E. histolytica from the non-pathogenic parasite E. dispar...

  15. Species-specific SSR alleles for studies of hybrid cattails (Typha latifolia x T. angustifolia; Typhaceae) in North America.

    Science.gov (United States)

    Snow, Allison A; Travis, Steven E; Wildová, Radka; Fér, Tomás; Sweeney, Patricia M; Marburger, Joy E; Windels, Steven; Kubátová, Barbora; Goldberg, Deborah E; Mutegi, Evans

    2010-12-01

    Studies of hybridizing species are facilitated by the availability of species-specific molecular markers for identifying early- and later-generation hybrids. Cattails are a dominant feature of wetland communities, and a better understanding of the prevalence of hybrids is needed to assess the ecological and evolutionary effects of hybridization. Hybridization between Typha angustifolia and T. latifolia produce long-lived clones, known as Typha ×glauca, which are considered to be invasive. Although morphological variation in cattails makes it difficult to recognize early- and later-generation hybrids, several dominant, species-specific RAPD markers are available. Our goal was to find codominant, species-specific markers with greater polymorphism than RAPDs, to identify later-generation hybrids more efficiently. • We screened nine SSR (simple sequence repeat) loci that were described from populations in Ukraine, and we surveyed 31 cattail populations from the upper Midwest and eastern USA. • Seven SSR loci distinguished the parent taxa and were consistent with known species-specific RAPD markers, allowing easier detection of backcrossing. We used linear discriminant analysis to show that F(1) hybrid phenotypes were intermediate between the parent taxa, while those of backcrossed plants overlapped with the hybrids and their parents. Log(leaf length/leaf width), spike gap length, spike length, and stem diameter explained much of the variation among groups. • We provide the first documentation of backcrossed plants in hybridizing cattail populations in Michigan. The diagnostic SSR loci we identified should be extremely useful for examining the evolutionary and ecology interactions of hybridizing cattails in North America.

  16. SPECIE-SPECIFIC OUTCOMES OF WILD RAPTORS ATTENDED AT A WILDLIFE REHABILITATION CENTRE IN CATALONIA (1997-2005)

    OpenAIRE

    Rafael A. Molina-Lopez; Jordi Casal; Laila Darwich

    2014-01-01

    Outcome research of rehabilitation of wild birds of prey and owls are scarcely reported. The aim of this study is to investigate specie-specific outcomes of the rehabilitation practice in wild raptor attended in a wildlife center. A total of 6221 hospitalized wild raptors (3241 Strigiformes; 2980 Falconiformes) admitted at a Wildlife Rehabilitation Centre (WRC) of Catalonia from 1995 to 2007 were analysed. The outcomes indicators were based on ratios of Euthanasia (Er),...

  17. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    Science.gov (United States)

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Synergism between Enantiomers Creates Species-Specific Pheromone Blends and Minimizes Cross-Attraction for Two Species of Cerambycid Beetles.

    Science.gov (United States)

    Meier, Linnea R; Zou, Yunfan; Millar, Jocelyn G; Mongold-Diers, Judith A; Hanks, Lawrence M

    2016-11-01

    Research over the last decade has revealed extensive parsimony among pheromones within the large insect family Cerambycidae, with males of many species producing the same, or very similar aggregation pheromones. Among some species in the subfamily Cerambycinae, interspecific attraction is minimized by temporal segregation, and/or by minor pheromone components that synergize attraction of conspecifics or inhibit attraction of heterospecifics. Less is known about pheromone-based mechanisms of reproductive isolation among species in the largest subfamily, the Lamiinae. Here, we present evidence that the pheromone systems of two sympatric lamiine species consist of synergistic blends of enantiomers of (E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol) and the structurally related (E)-6,10-dimethyl-5,9-undecadien-2-yl acetate (fuscumol acetate), as a mechanism by which species-specific blends of pheromone components can minimize interspecific attraction. Male Astylidius parvus (LeConte) were found to produce (R)- and (S)-fuscumol + (R)-fuscumol acetate + geranylacetone, whereas males of Lepturges angulatus (LeConte) produced (R)- and (S)-fuscumol acetate + geranylacetone. Field experiments confirmed that adult beetles were attracted only by their species-specific blend of the enantiomers of fuscumol and fuscumol acetate, respectively, and not to the individual enantiomers. Because other lamiine species are known to produce single enantiomers or blends of enantiomers of fuscumol and/or fuscumol acetate, synergism between enantiomers, or inhibition by enantiomers, may be a widespread mechanism for forming species-specific pheromone blends in this subfamily.

  19. Species-specific identification from incomplete sampling: applying DNA barcodes to monitoring invasive solanum plants.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling-through this, DNA barcoding will greatly benefit the current fields of its application.

  20. Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water.

    Science.gov (United States)

    Cho, Min Seok; Ahn, Tae-Young; Joh, Kiseong; Lee, Eui Seok; Park, Dong Suk

    2015-11-01

    Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples.

  1. Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA.

    Science.gov (United States)

    Röder, Christoph; König, Helmut; Fröhlich, Jürgen

    2007-09-01

    Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.

  2. Analysis of the 16S-23S rDNA intergenic spacers (IGSs) of marine vibrios for species-specific signature DNA sequences.

    Science.gov (United States)

    Lee, Simon K Y; Wang, H Z; Law, Sheran H W; Wu, Rudolf S S; Kong, Richard Y C

    2002-05-01

    Vibrios are widespread in the marine environment and a few pathogenic species are known to be commonly associated with outbreaks of diarrheal diseases in humans due to the consumption of raw or improperly cooked seafood. However, there are also many Vibrio species which are potentially pathogenic to vertebrate and invertebrate aquatic animals, and of which little is known. In an attempt to develop rapid PCR detection methods for these latter class of vibrios, we have examined the 16S-23S intergenic spacers (IGSs) of 10 lesser-known Vibrio species and successfully developed species-specific primers for eight of them--Vibrio costicola, V. diazotrophicus, V. fluvialis, V. nigripulchritudo, V. proteolyticus, V. salmonicida, V. splendidus and V. tubiashii. The IGS amplicons were amplified using primers complementary to conserved regions of the 16S and 23S rRNA genes, and cloned into plasmid vectors and sequenced. Analysis of the IGS sequences showed that 37 ribosomal RNA (rrn) operons representing seven different IGS types have been cloned from the 10 vibrios. The three IGS types--IGS(0), IGS(IA) and IGS(Glu)--were the most prevalent forms detected. Multiple alignment of representative sequences of these three IGS types from different Vibrio species revealed several domains of high sequence variability, which were used to design species-specific primers for PCR. The specificity of the primers were evaluated using total DNA prepared from different Vibrio species and bacterial genera. The results showed that the PCR method can be used to reliably detect eight of the 10 Vibrio species in marine waters in this study.

  3. CRISPRs of Enterococcus faecalis and E. hirae isolates from pig feces have species-specific repeats but share some common spacer sequences.

    Science.gov (United States)

    Katyal, Isha; Chaban, Bonnie; Ng, Beata; Hill, Janet E

    2013-07-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are currently a topic of interest in microbiology due to their role as a prokaryotic immune system. Investigations of CRISPR distribution and characterization to date have focused on pathogenic bacteria, while less is known about CRISPR in commensal bacteria, where they may have a significant role in the ecology of the microbiota of humans and other animals, and act as a recorder of interactions between bacteria and viruses. A combination of PCR and sequencing was used to determine prevalence and distribution of CRISPR arrays in Enterococcus faecalis and Enterococcus hirae isolates from the feces of healthy pigs. Both type II CRISPR-Cas and Orphan CRISPR (without Cas genes) were detected in the 195 isolates examined. CRISPR-Cas was detected in 52 (46/88) and 42 % (45/107) E. faecalis and E. hirae isolates, respectively. The prevalence of Orphan CRISPR arrays was higher in E. faecalis isolates (95 %, 84/88) compared with E. hirae isolates (49 %, 53/107). Species-specific repeat sequences were identified in Orphan CRISPR arrays, and 42 unique spacer sequences were identified. Only two spacers matched previously characterized pig virome sequences, and many were apparently derived from chromosomal sequences of enterococci. Surprisingly, 17 (40 %) of the spacers were detected in both species. Shared spacer sequences are evidence of a lack of species specificity in the agents and mechanisms responsible for integration of spacers, and the abundance of spacer sequences corresponding to bacterial chromosomal sequences reflects interspecific interactions within the intestinal microbiota.

  4. Sox9 Expression in Amniotes: Species-Specific Differences in the Formation of Digits

    Science.gov (United States)

    Montero, Juan A.; Lorda-Diez, Carlos I.; Francisco-Morcillo, Javier; Chimal-Monroy, Jesus; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2017-01-01

    In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The number of digits varies between species or even between hindlimb and forelimb within the same species. These facts illustrate the plasticity of embryonic limb autopods. Sox9 is a precocious marker of skeletal differentiation of limb mesenchymal cells. Its pattern of expression in the developing limb has been widely studied and reflects the activity of signaling cascades responsible for skeletogenesis. In this assay we stress previously overlooked differences in the pattern of expression of Sox9 in limbs of avian, mouse and turtle embryos which may reflect signaling differences associated with distinct limb skeletal morphologies observed in these species. Furthermore, we show that Sox9 gene expression is higher and maintained in the interdigital region in species with webbed digits in comparison with free digit animals. PMID:28386540

  5. The past, present and future of immune repertoire biology – the rise of next-generation repertoire analysis

    Directory of Open Access Journals (Sweden)

    Adrien eSix

    2013-11-01

    Full Text Available T and B cell repertoires are collections of lymphocytes, each characterised by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess Immunoglobulin (IG and T cell receptor (TR repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS, offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardisation and ontology development. We then present the variety of available statistical analysis and modelling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of modelling approaches. To conclude, we provide some examples of recent mathematical modelling strategies and perspectives that illustrate the active rise of a next-generation of repertoire analysis.

  6. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    Science.gov (United States)

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  7. Sequence similarity is more relevant than species specificity in probabilistic backtranslation

    Directory of Open Access Journals (Sweden)

    Di Pietro Cinzia

    2007-02-01

    Full Text Available Abstract Background Backtranslation is the process of decoding a sequence of amino acids into the corresponding codons. All synthetic gene design systems include a backtranslation module. The degeneracy of the genetic code makes backtranslation potentially ambiguous since most amino acids are encoded by multiple codons. The common approach to overcome this difficulty is based on imitation of codon usage within the target species. Results This paper describes EasyBack, a new parameter-free, fully-automated software for backtranslation using Hidden Markov Models. EasyBack is not based on imitation of codon usage within the target species, but instead uses a sequence-similarity criterion. The model is trained with a set of proteins with known cDNA coding sequences, constructed from the input protein by querying the NCBI databases with BLAST. Unlike existing software, the proposed method allows the quality of prediction to be estimated. When tested on a group of proteins that show different degrees of sequence conservation, EasyBack outperforms other published methods in terms of precision. Conclusion The prediction quality of a protein backtranslation methis markedly increased by replacing the criterion of most used codon in the same species with a Hidden Markov Model trained with a set of most similar sequences from all species. Moreover, the proposed method allows the quality of prediction to be estimated probabilistically.

  8. Rhizosphere microbiomes of European seagrasses are selected by the plant, but are not species specific

    Directory of Open Access Journals (Sweden)

    Catarina eCúcio

    2016-03-01

    Full Text Available Seagrasses are marine flowering plants growing in soft-body sediments of intertidal and shallow sub-tidal zones. They play an important role in coastal ecosystems by stabilizing sediments, providing food and shelter for animals, and recycling nutrients. Like other plants, seagrasses live intimately with both beneficial and unfavourable microorganisms. Although much is known about the microbiomes of terrestrial plants, little is known about the microbiomes of seagrasses. Here we present the results of a detailed study on the rhizosphere microbiome of seagrass species across the North-eastern Atlantic Ocean: Zostera marina, Zostera noltii and Cymodocea nodosa. High-resolution amplicon sequencing of 16S rRNA genes showed that the rhizobiomes were significantly different from the bacterial communities of surrounding bulk sediment and seawater. Although we found no significant differences between the rhizobiomes of different seagrass species within the same region, those of seagrasses in different geographical locations differed strongly. These results strongly suggest that the seagrass rhizobiomes are shaped by plant metabolism, but not coevolved with their host. The core rhizobiome of seagrasses includes mostly bacteria involved in the sulfur cycle, thereby highlighting the importance of sulfur-related processes in seagrass ecosystems.

  9. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    LENUS (Irish Health Repository)

    Browne, Patrick

    2010-11-25

    Abstract Background Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5\\' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate

  10. Sensory analysis and species-specific PCR detect bovine milk adulteration of frescal (fresh) goat cheese.

    Science.gov (United States)

    Golinelli, L P; Carvalho, A C; Casaes, R S; Lopes, C S C; Deliza, R; Paschoalin, V M F; Silva, J T

    2014-11-01

    The Brazilian market for dairy products made from goat milk is increasing despite the seasonality of production and naturally small milk production per animal, factors that result in high-priced products and encourage fraud. In Brazil, no official analytical method exists for detecting adulteration of goat dairy products with cow milk. The aim of this study was to design a strategy to investigate the adulteration of frescal (fresh) goat cheeses available in the Rio de Janeiro retail market, combining analysis of cheese composition and the perception of adulteration by consumers. Commercial goat cheeses were tested by using a duplex PCR assay previously designed to authenticate cheeses, by targeting the mitochondrial 12S ribosomal RNA genes of both species simultaneously. The PCR test was able to detect 0.5% (vol/vol) cow milk added during goat cheese formulation. The analysis of 20 locally produced goat cheeses (20 lots of 4 brands) showed that all were adulterated with cow milk, even though the labels did not indicate the addition of cow milk. To estimate the ability of consumers to perceive the fraudulent addition of cow milk, a triangle test was performed, in which cheeses formulated with several different proportions of goat and cow milk were offered to 102 regular consumers of cheese. Detection threshold analysis indicated that almost half of the consumers were able to perceive adulteration at 10% (vol/vol) cow milk. Effective actions must be implemented to regulate the market for goat dairy products in Brazil, considering the rights and choices of consumers with respect to their particular requirements for diet and health, preference, and cost. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA.

    Science.gov (United States)

    Wetton, Jon H; Tsang, Carol S F; Roney, Chris A; Spriggs, Adrian C

    2004-02-10

    The survival of the tiger (Panthera tigris) is seriously threatened by poaching to provide raw materials for Traditional Chinese Medicines (TCMs). Most highly prized are the tiger's bones, which are used in combination with other animal and plant derivatives in pills and plasters for the treatment of rheumatism and other ailments. Hundreds of patent remedies have been produced which claim to contain tiger bone, but proof of its presence is needed, if legislation prohibiting the trade in endangered species is to be enforced. A highly sensitive tiger-specific real-time PCR assay has been developed to address this problem. Using primers specific to the tiger mitochondrial cytochrome b gene, successful amplification has been reliably achieved from blood, hair and bone as well as from a range of TCMs spiked with 0.5% tiger bone. Although capable of detecting fewer than 10 substrate molecules, the seven varieties of TCM pills and plasters tested showed no detectable trace of tiger DNA before spiking. Furthermore, sequencing several "tiger bone" fragments seized from TCM shops has shown that they actually originated from cattle and pigs. The potential effects of traditional bone preparation methods, evidence that much lower concentrations are used than alleged on TCM packaging, and substitution of bones from other species all suggest a low likelihood of detecting tiger DNA in patent medicines. Despite this, the basic methods have been thoroughly proven and can be readily applied to derivatives from other CITES protected species providing a rapid and highly sensitive forensic test for species of origin. Potential applications to the monitoring of wild populations are demonstrated by the successful identification of shed hairs and faecal samples.

  12. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning.

    Science.gov (United States)

    Moyle-Heyrman, Georgette; Zaichuk, Tetiana; Xi, Liqun; Zhang, Quanwei; Uhlenbeck, Olke C; Holmgren, Robert; Widom, Jonathan; Wang, Ji-Ping

    2013-12-10

    Using a recently developed chemical approach, we have generated a genome-wide map of nucleosomes in vivo in Schizosaccharomyces pombe (S. pombe) at base pair resolution. The shorter linker length previously identified in S. pombe is due to a preponderance of nucleosomes separated by ∼4/5 bp, placing nucleosomes on opposite faces of the DNA. The periodic dinucleotide feature thought to position nucleosomes is equally strong in exons as in introns, demonstrating that nucleosome positioning information can be superimposed on coding information. Unlike the case in Saccharomyces cerevisiae, A/T-rich sequences are enriched in S. pombe nucleosomes, particularly at ±20 bp around the dyad. This difference in nucleosome binding preference gives rise to a major distinction downstream of the transcription start site, where nucleosome phasing is highly predictable by A/T frequency in S. pombe but not in S. cerevisiae, suggesting that the genomes and DNA binding preferences of nucleosomes have coevolved in different species. The poly (dA-dT) tracts affect but do not deplete nucleosomes in S. pombe, and they prefer special rotational positions within the nucleosome, with longer tracts enriched in the 10- to 30-bp region from the dyad. S. pombe does not have a well-defined nucleosome-depleted region immediately upstream of most transcription start sites; instead, the -1 nucleosome is positioned with the expected spacing relative to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. Although there is generally very good agreement between nucleosome maps generated by chemical cleavage and micrococcal nuclease digestion, the chemical map shows consistently higher nucleosome occupancy on DNA with high A/T content.

  13. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Abramyan, John; Stajich, Jason E

    2012-01-01

    Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide

  14. Genetic diversity of Helicobacter pylori indexed with respect to clinical symptomatology, using a 16S rRNA and a species-specific DNA probe.

    Science.gov (United States)

    Desai, M; Linton, D; Owen, R J; Cameron, H; Stanley, J

    1993-12-01

    DNA probes are described which identify group and fingerprint strains of the human gastric pathogen Helicobacter pylori, on the basis of well-defined band homologies. A 544 bp internal fragment of the 16S ribosomal RNA gene was generated by polymerase chain reaction (PCR) with primers derived from the Escherichia coli rRNA gene sequence. In genomic Southern blots this probe detected restriction site variation around these loci, generating simple but strain-specific molecular fingerprints. A small conserved chromosomal fragment of 1.2 kbp, Hps, species-specific for H. pylori, was obtained by cloning random HindIII fragments into pUC19. It was useful for dot-blot identification, and also separated isolates into one major and two minor groups. When results for these two probes were combined, a baseline characterization of genotype was obtained. A band-matching database of molecular fingerprints for the type strain and 63 clinical isolates of H. pylori from asymptomatic, ulcer and gastritis contexts is presented. No significant association between the genotypes at this level of definition and the associated clinical symptomatology of the isolates was detected.

  15. Linking experiences with emotions and the development of interpretive repertoires

    Science.gov (United States)

    McRae, Norah I.

    2010-03-01

    In this paper I consider the case of one student, Todd Alexander, through analyzing the transcripts of his interviews between him and his teacher (Wolff-Michael Roth). I examine the role that emotions play in the development of the interpretive repertoires that Todd employed as he talked about his scientific and his religious beliefs. I identify how lived experiences support the development of emotions and what educational conditions are necessary to allow for appropriate lived experiences. In so doing we might be able to support educational conditions that result in interpretive repertoires that allow for acceptance of multiple perspectives with a moral grounding, leading to students who are well positioned to be valuable contributors to society.

  16. BRAZILIAN FEMINIST MOVEMENT: REPERTOIRE AND STRATEGIES FOR ACTION

    Directory of Open Access Journals (Sweden)

    Carla de Paiva Bezerra

    2014-08-01

    Full Text Available This article aims at analyzing the development of and changes in, the repertoire and strategies for action of the Brazilian feminist movement, in the period between the democratic “re-opening” set in the 1980s and the first decade of the XXI century. Our interest is centered in two foci of analysis: on the one hand, it focuses on the movement’s positioning in relation to the State, which varied from a situation of opposition, or even of indifference, to direct attempts at influencing public policies and actions in the State sphere, whether through party politics or participative institutions. On the other hand, we are interested in analyzing how, and in which specific moments, agency beyond the national feminist frontiers takes place and in which measure this influences the local repertoires and vice-versa.

  17. Species-specific lipophilicity of thyroid hormones and their precursors in view of their membrane transport properties.

    Science.gov (United States)

    Tóth, Gergő; Mazák, Károly; Hosztafi, Sándor; Kökösi, József; Noszál, Béla

    2013-03-25

    A total of 30 species-specific partition coefficients of three thyroid hormones (thyroxine, liothyronine, reverse liothyronine) and their two biological precursors (monoiodotyrosine, diiodotyrosine) are presented. The molecules were studied using combined methods of microspeciation and lipophilicity. Microspeciation was carried out by (1)H NMR-pH and UV-pH titration techniques on the title compounds and their auxiliary derivatives of reduced complexity. Partition of some of the individual microspecies was mimicked by model compounds of the closest possible similarity, then correction factors were determined and introduced. Our data show that the iodinated aromatic ring system is the definitive structural element that fundamentally determines the lipophilicity of thyroid hormones, whereas the protonation state of the aliphatic part plays a role of secondary importance. On the other hand, the lipophilicity of the precursors is highly influenced by the protonation state due to the relative lack of overwhelmingly lipophilic moieties. The different logp values of the positional isomers liothyronine and reverse liothyronine represent the importance of steric and electronic factors in lipophilicity. Our investigations provided clear indication that overall partition, the best membrane transport - predicting physico-chemical parameter depends collectively on the site-specific basicity and species-specific partition coefficient. At physiological pH these biomolecules are strongly amphipathic due to the lipophilic aromatic rings and hydrophilic amino acid side chains which can well be the reason why thyroid hormones cannot cross membranes by passive diffusion and they are constituents of biological membranes. The lipophilicity profile of thyroid hormones and their precursors are calculated and depicted in terms of species-specific lipophilicities over the entire pH range. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Species-specific detection and identification of fusarium species complex, the causal agent of sugarcane pokkah boeng in China.

    Directory of Open Access Journals (Sweden)

    Zhenyue Lin

    Full Text Available BACKGROUND: Pokkah boeng disease caused by the Fusarium species complex results in significant yield losses in sugarcane. Thus, the rapid and accurate detection and identification of the pathogen is urgently required to manage and prevent the spreading of sugarcane pokkah boeng. METHODS: A total of 101 isolates were recovered from the pokkah boeng samples collected from five major sugarcane production areas in China throughout 2012 and 2013. The causal pathogen was identified by morphological observation, pathogenicity test, and phylogenetic analysis based on the fungus-conserved rDNA-ITS. Species-specific TaqMan real-time PCR and conventional PCR methods were developed for rapid and accurate detection of the causal agent of sugarcane pokkah boeng. The specificity and sensitivity of PCR assay were also evaluated on a total of 84 isolates of Fusarium from China and several isolates from other fungal pathogens of Sporisorium scitamineum and Phoma sp. and sugarcane endophyte of Acremonium sp. RESULT: Two Fusarium species (F. verticillioides and F. proliferatum that caused sugarcane pokahh boeng were identified by morphological observation, pathogenicity test, and phylogenetic analysis. Species-specific TaqMan PCR and conventional PCR were designed and optimized to target their rDNA-ITS regions. The sensitivity of the TaqMan PCR was approximately 10 pg of fungal DNA input, which was 1,000-fold over conventional PCR, and successfully detected pokkah boeng in the field-grown sugarcane. CONCLUSIONS/SIGNIFICANCE: This study was the first to identify two species, F. verticillioides and F. proliferatum, that were causal pathogens of sugarcane pokkah boeng in China. It also described the development of a species-specific PCR assay to detect and confirm these pathogens in sugarcane plants from mainland China. This method will be very useful for a broad range of research endeavors as well as the regulatory response and management of sugarcane pokkah boeng.

  19. Species-Specific Effects on Throughfall Kinetic Energy in Subtropical Forest Plantations Are Related to Leaf Traits and Tree Architecture.

    Science.gov (United States)

    Goebes, Philipp; Bruelheide, Helge; Härdtle, Werner; Kröber, Wenzel; Kühn, Peter; Li, Ying; Seitz, Steffen; von Oheimb, Goddert; Scholten, Thomas

    2015-01-01

    Soil erosion is a key threat to many ecosystems, especially in subtropical China where high erosion rates occur. While the mechanisms that induce soil erosion on agricultural land are well understood, soil erosion processes in forests have rarely been studied. Throughfall kinetic energy (TKE) is influenced in manifold ways and often determined by the tree's leaf and architectural traits. We investigated the role of species identity in mono-specific stands on TKE by asking to what extent TKE is species-specific and which leaf and architectural traits account for variation in TKE. We measured TKE of 11 different tree species planted in monocultures in a biodiversity-ecosystem-functioning experiment in subtropical China, using sand-filled splash cups during five natural rainfall events in summer 2013. In addition, 14 leaf and tree architectural traits were measured and linked to TKE. Our results showed that TKE was highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus saponaria, while Schima superba showed lowest TKE. These species-specific effects were mediated by leaf habit, leaf area (LA), leaf pinnation, leaf margin, stem diameter at ground level (GD), crown base height (CBH), tree height, number of branches and leaf area index (LAI) as biotic factors and throughfall as abiotic factor. Among these, leaf habit, tree height and LA showed the highest effect sizes on TKE and can be considered as major drivers of TKE. TKE was positively influenced by LA, GD, CBH, tree height, LAI, and throughfall amount while it was negatively influenced by the number of branches. TKE was lower in evergreen, simple leaved and dentate leaved than in deciduous, pinnated or entire leaved species. Our results clearly showed that soil erosion in forest plantations can be mitigated by the appropriate choice of tree species.

  20. Species-Specific Effects on Throughfall Kinetic Energy in Subtropical Forest Plantations Are Related to Leaf Traits and Tree Architecture.

    Directory of Open Access Journals (Sweden)

    Philipp Goebes

    Full Text Available Soil erosion is a key threat to many ecosystems, especially in subtropical China where high erosion rates occur. While the mechanisms that induce soil erosion on agricultural land are well understood, soil erosion processes in forests have rarely been studied. Throughfall kinetic energy (TKE is influenced in manifold ways and often determined by the tree's leaf and architectural traits. We investigated the role of species identity in mono-specific stands on TKE by asking to what extent TKE is species-specific and which leaf and architectural traits account for variation in TKE. We measured TKE of 11 different tree species planted in monocultures in a biodiversity-ecosystem-functioning experiment in subtropical China, using sand-filled splash cups during five natural rainfall events in summer 2013. In addition, 14 leaf and tree architectural traits were measured and linked to TKE. Our results showed that TKE was highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus saponaria, while Schima superba showed lowest TKE. These species-specific effects were mediated by leaf habit, leaf area (LA, leaf pinnation, leaf margin, stem diameter at ground level (GD, crown base height (CBH, tree height, number of branches and leaf area index (LAI as biotic factors and throughfall as abiotic factor. Among these, leaf habit, tree height and LA showed the highest effect sizes on TKE and can be considered as major drivers of TKE. TKE was positively influenced by LA, GD, CBH, tree height, LAI, and throughfall amount while it was negatively influenced by the number of branches. TKE was lower in evergreen, simple leaved and dentate leaved than in deciduous, pinnated or entire leaved species. Our results clearly showed that soil erosion in forest plantations can be mitigated by the appropriate choice of tree species.

  1. Comparative analysis of species-specific ligand recognition in Toll-like receptor 8 signaling: a hypothesis.

    Directory of Open Access Journals (Sweden)

    Rajiv Gandhi Govindaraj

    Full Text Available Toll-like receptors (TLRs play a central role in the innate immune response by recognizing conserved structural patterns in a variety of microbes. TLRs are classified into six families, of which TLR7 family members include TLR7, 8, and 9, which are localized to endolysosomal compartments recognizing viral infection in the form of foreign nucleic acids. In our current study, we focused on TLR8, which has been shown to recognize different types of ligands such as viral or bacterial ssRNA as well as small synthetic molecules. The primary sequences of rodent and non-rodent TLR8s are similar, but the antiviral compound (R848 that activates the TLR8 pathway is species-specific. Moreover, the factors underlying the receptor's species-specificity remain unknown. To this end, comparative homology modeling, molecular dynamics simulations refinement, automated docking and computational mutagenesis studies were employed to probe the intermolecular interactions between this anti-viral compound and TLR8. Furthermore, comparative analyses of modeled TLR8 (rodent and non-rodent structures have shown that the variation mainly occurs at LRR14-15 (undefined region; hence, we hypothesized that this variation may be the primary reason for the exhibited species-specificity. Our hypothesis was further bolstered by our docking studies, which clearly showed that this undefined region was in close proximity to the ligand-binding site and thus may play a key role in ligand recognition. In addition, the interface between the ligand and TLR8s varied depending upon the amino acid charges, free energy of binding, and interaction surface. Therefore, our current work provides a hypothesis for previous in vivo studies in the context of TLR signaling.

  2. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses.

    Directory of Open Access Journals (Sweden)

    Yu-Huan Tsai

    Full Text Available Listeria monocytogenes (Lm is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA with its host receptor E-cadherin (Ecad. InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been "murinized" to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlA(m mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlA(m-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlA(m-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen.

  3. The induction of species-specific immunity against Schistosoma japonicum by exposure of rats to ultra-violet attenuated cercariae.

    Science.gov (United States)

    Moloney, N A; Webbe, G; Hinchcliffe, P

    1987-02-01

    Single percutaneous immunizations of Fischer rats with 1000 ultra-violet attenuated Schistosoma japonicum cercariae induced 52-88% resistance to challenge 4 weeks later. Increasing this to 3 immunizations induced 90% resistance to challenge, and this level of protection remained undiminished for up to 40 weeks after vaccination. Rats vaccinated with gamma-irradiated S. mansoni cercariae were resistant to challenge with S. mansoni but not S. japonicum. Similarly rats vaccinated with u.v.-attenuated S. japonicum cercariae were not resistant to heterologous challenge. Thus irradiated vaccines are species-specific in both permissive and non-permissive hosts.

  4. Induction of species-specific immunity against Schistosoma japonicum by exposure of rats to ultra-violet attenuated cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Moloney, N.A.; Webbe, G.; Hinchcliffe, P.

    1987-02-01

    Single percutaneous immunizations of Fischer rats with 1000 ultra-violet attenuated Schistosoma japonicum cercariae induced 52-88% resistance to challenge 4 weeks later. Increasing this to 3 immunizations induced 90% resistance to challenge, and this level of protection remained undiminished for up to 40 weeks after vaccination. Rats vaccinated with gamma-irradiated S. mansoni cercariae were resistant to challenge with S. mansoni but not S. japonicum. Similarly rats vaccinated with u.v.-attenuated S. japonicum cercariae were not resistant to heterologous challenge. Thus irradiated vaccines are species-specific in both permissive and non-permissive hosts.

  5. Species-specific PCR for the identification of ovine, porcine and chicken species in meta and bone meal (MBM).

    Science.gov (United States)

    Lahiff, S; Glennon, M; O'Brien, L; Lyng, J; Smith, T; Maher, M; Shilton, N

    2001-02-01

    BSE, first identified in the UK in 1986 is thought to have arisen from feeding scrapie infected Meat and Bone Meal (MBM), produced under sub-optimal conditions, to cattle. For quality and safety reasons there is a requirement for a good analytical test for the surveillance of processed MBM. This study describes species-specific PCR assays for the identification of ovine, porcine and poultry species in MBM. A comparison between two distinct DNA extraction methods, i.e. the silicaguanidiumthiocyanate DNA isolation procedure and a commercial DNA extraction kit, is also presented. Application of this technology to species identification in industrial MBM was investigates as part of this study.

  6. Mother and child T cell receptor repertoires: deep profiling study

    Directory of Open Access Journals (Sweden)

    Ekaterina V Putintseva

    2013-12-01

    Full Text Available The relationship between maternal and child immunity has been actively studied in the context of complications during pregnancy, autoimmune diseases, and haploidentical transplantation of hematopoietic stem cells (HSC and solid organs. Here, we have for the first time used high-throughput Illumina HiSeq sequencing to perform deep quantitative profiling of T-cell receptor (TCR repertoires for peripheral blood samples of three mothers and their six children. Advanced technology allowed accurate identification of 5х105–2х106 TCR beta clonotypes per individual. We performed comparative analysis of these TCR repertoires with the aim of revealing characteristic features that distinguish related mother-child pairs, such as relative TRBV segment usage frequency and relative overlap of TCR beta CDR3 repertoires. We show that thymic selection essentially and similarly shapes the initial output of the TCR recombination machinery in both related and unrelated pairs, with minor effect from inherited differences. The achieved depth of TCR profiling also allowed us to test the hypothesis that mature T cells transferred across the placenta during pregnancy can expand and persist as functional microchimeric clones in their new host, using characteristic TCR beta CDR3 variants as clonal identifiers.

  7. Serum Antibody Repertoire Profiling Using In Silico Antigen Screen.

    Directory of Open Access Journals (Sweden)

    Xinyue Liu

    Full Text Available Serum antibodies are valuable source of information on the health state of an organism. The profiles of serum antibody reactivity can be generated by using a high throughput sequencing of peptide-coding DNA from combinatorial random peptide phage display libraries selected for binding to serum antibodies. Here we demonstrate that the targets of immune response, which are recognized by serum antibodies directed against sequential epitopes, can be identified using the serum antibody repertoire profiles generated by high throughput sequencing. We developed an algorithm to filter the results of the protein database BLAST search for selected peptides to distinguish real antigens recognized by serum antibodies from irrelevant proteins retrieved randomly. When we used this algorithm to analyze serum antibodies from mice immunized with human protein, we were able to identify the protein used for immunizations among the top candidate antigens. When we analyzed human serum sample from the metastatic melanoma patient, the recombinant protein, corresponding to the top candidate from the list generated using the algorithm, was recognized by antibodies from metastatic melanoma serum on the western blot, thus confirming that the method can identify autoantigens recognized by serum antibodies. We demonstrated also that our unbiased method of looking at the repertoire of serum antibodies reveals quantitative information on the epitope composition of the targets of immune response. A method for deciphering information contained in the serum antibody repertoire profiles may help to identify autoantibodies that can be used for diagnosing and monitoring autoimmune diseases or malignancies.

  8. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions.

    Science.gov (United States)

    Schwarze, Kim; Singh, Abhilasha; Burmester, Thorsten

    2015-06-15

    Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina.

  9. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions

    Science.gov (United States)

    Schwarze, Kim; Singh, Abhilasha; Burmester, Thorsten

    2015-01-01

    Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina. PMID:26078264

  10. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide.

    Science.gov (United States)

    Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie

    2014-07-01

    Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy.

  11. Analysis of the CDR3 Length Repertoire and the Diversity of TCRα Chain in Human Peripheral Blood T Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Xinsheng Yao; Ying Diao; Wanbang Sun; Junmin Luo; Ming Qin; Xianying Tang

    2007-01-01

    Analysis of complementarity determining region 3 (CDR3) length of T lymphocyte receptors (TCRs) by immunoscope spectratyping technique has been used successfully to investigate the diversity of TCR in autoimmune diseases and infection diseases. In this study, we investigated the patterns of CDR3 length distribution for all 32 TCR AV gene families in human peripheral blood lymphocytes of four normal volunteers by the immunoscope spectratyping technique. It was found that PCR products exhibited an obscure band on 1.5% agarose gel electrophoresis. Each TCR AV family exhibited more than 8 bands on 6% sequencing gel electrophoresis. The CDR3 spectratyping of all TCR AV families showed a standard Gaussian distribution with different CDR3 length,and the expression frequency of CDR3 was similar among the gene families. Most of CDR3 in TCR AV family recombine in frame. However, some of the CDR3 showed out-of frame gene rearrangement. Additionally, we found that in some of TCR AV families there were 18 amino acid discrepancies between the longest CDR3 and shortest CDR3. These results may be helpful to further study the recombination mechanism of human TCR genes, the TCR CDR3 gene repertoire, and the repertoire drift in health people and disease state.

  12. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    Science.gov (United States)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  13. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture.

    Science.gov (United States)

    Fanouraki, E; Mylonas, C C; Papandroulakis, N; Pavlidis, M

    2011-09-01

    The aim of the present study was to examine the species-specific stress response for seven Mediterranean fishes in culture. Also, to evaluate the method of measuring free cortisol concentration in the rearing water as a non-invasive and reliable indicator of stress in marine species, of aquaculture importance. Gilthead sea bream, Sparus aurata (Sparidae); common dentex, Dentex dentex (Sparidae); common Pandora, Pagellus erythrinus (Sparidae); sharpsnout sea bream, Diplodus puntazzo (Sparidae); dusky grouper, Epinephelus marginatus (Serranidae); meagre, Argyrosomus regius (Sciaenidae) and European sea bass, Dicentrarchus labrax (Moronidae) were subjected to identical acute stress (5-6 min chasing and 1-1.5 min air exposure) under the same environmental conditions and samples were analyzed by the same procedures. Results indicated that there was a clear species-specificity in the magnitude, timing and duration of the stress response in terms of cortisol, glucose and lactate. European sea bass showed a very high response and dusky grouper and meagre a very low response, except plasma glucose concentrations of dusky grouper which was constantly high, while sharpsnout sea bream presented a protracted stress response, up to 8h. The present study confirmed that free cortisol release rate into the water can be used as a reliable stress indicator. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens.

    Science.gov (United States)

    Barkway, Christopher P; Pocock, Rebecca L; Vrba, Vladimir; Blake, Damer P

    2015-02-20

    Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm's anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.

  15. Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA.

    Science.gov (United States)

    Kamstra, S A; Kuipers, A G; De Jeu, M J; Ramanna, M S; Jacobsen, E

    1997-10-01

    Fluorescence in situ hybridization (FISH) was used to localise two species-specific repetitive DNA sequences, A001-I and D32-13, and two highly conserved 25S and 5S rDNA sequences on the metaphase chromosomes of two species of Alstroemeria. The Chilean species, Alstroemeria aurea (2n = 16), has abundant constitutive heterochromatin, whereas the Brazilian species, Alstroemeria inodora, has hardly any heterochromatin. The A. aurea specific A001-I probe hybridized specifically to the C-band regions on all chromosomes. The FISH patterns on A. inodora chromosomes using species-specific probe D32-13 resembled the C-banding pattern and the A001-I pattern on A. aurea chromosomes. There were notable differences in number and distribution of rDNA sites between the two species. The 25S rDNA probe revealed 16 sites in A. aurea that closely colocalised with A001-I sites and 12 in A. inodora that were predominantly detected in the centromeric regions. FISH karyotypes of the two Alstroemeria species were constructed accordingly, enabling full identification of all individual chromosomes. These FISH karyotypes will be useful for monitoring the chromosomes of both Alstroemeria species in hybrids and backcross derivatives.

  16. Species-Specific Standard Redox Potential of Thiol-Disulfide Systems: A Key Parameter to Develop Agents against Oxidative Stress

    Science.gov (United States)

    Mirzahosseini, Arash; Noszál, Béla

    2016-11-01

    Microscopic standard redox potential, a new physico-chemical parameter was introduced and determined to quantify thiol-disulfide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of thiols could so far be converted into pH-dependent, apparent redox potentials (E’°) only. Since the formation of stable metal-thiolate complexes precludes the direct thiol-disulfide redox potential measurements by usual electrochemical techniques, an indirect method had to be elaborated. In this work, the species-specific, pH-independent standard redox potentials of glutathione were determined primarily by comparing it to 1-methylnicotinamide, the simplest NAD+ analogue. Secondarily, the species-specific standard redox potentials of the two-electron redox transitions of cysteamine, cysteine, homocysteine, penicillamine, and ovothiol were determined using their microscopic redox equilibrium constants with glutathione. The 30 different, microscopic standard redox potential values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  17. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars.

    Science.gov (United States)

    Savi, Tadeja; Casolo, Valentino; Luglio, Jessica; Bertuzzi, Stefano; Trifilo', Patrizia; Lo Gullo, Maria A; Nardini, Andrea

    2016-09-01

    Recent reports on tree mortality associated with anomalous drought and heat have raised interest into processes underlying tree resistance/resilience to water stress. Hydraulic failure and carbon starvation have been proposed as main causes of tree decline, with recent theories treating water and carbon metabolism as interconnected processes. We subjected young plants of two native (Quercus pubescens [Qp] and Prunus mahaleb [Pm]) and two invasive (Robinia pseudoacacia [Rp] and Ailanthus altissima [Aa]) woody angiosperms to a prolonged drought leading to stomatal closure and xylem embolism, to induce carbon starvation and hydraulic failure. At the end of the treatment, plants were measured for embolism rates and NSC content, and re-irrigated to monitor recovery of xylem hydraulics. Data highlight different hydraulic strategies in native vs invasive species under water stress, and provide physiological explanations for species-specific impacts of recent severe droughts. Drought-sensitive species (Qp and Rp) suffered high embolism rates and were unable to completely refill xylem conduits upon restoration of water availability. Species that better survived recent droughts were able to limit embolism build-up (Pm) or efficiently restored hydraulic functionality after irrigation (Aa). Species-specific capacity to reverse xylem embolism correlated to stem-level concentration of soluble carbohydrates, but not to starch content. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Selective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling.

    Science.gov (United States)

    Dong, Chuanfu; Dolke, Franziska; von Reuss, Stephan H

    2016-08-14

    The indole ascarosides (icas) represent a highly potent class of nematode-derived modular signalling components that integrate structural inputs from amino acid, carbohydrate, and fatty acid metabolism. Comparative analysis of the crude exo-metabolome of hermaphroditic Caenorhabditis briggsae using a highly sensitive mass spectrometric screen reveals an indole ascaroside blend dominated by two new components. The structures of isolated icas#2 and icas#6.2 were determined by NMR spectroscopy and confirmed by total synthesis and chemical correlation. Low atto- to femtomolar amounts of icas#2 and icas#6.2 act in synergism to attract males indicating a function as sex pheromone. Comparative analysis of 14 Caenorhabditis species further demonstrates that species-specific indole ascaroside biosynthesis is highly conserved in the Elegans group. Functional characterization of the dominating indole ascarosides icas#2, icas#3, and icas#9 reveals a high degree of species-specificity and considerable variability with respect to gender-specificity, thus, confirming that indole ascarosides modulate different biological functions within the Elegans group. Although the nematode response was usually most pronounced towards conspecific signals, Caenorhabditis brenneri, the only species of the Elegans group that does not produce any indole ascarosides, exhibits a robust response to icas#2 suggesting the potential for interspecies interactions.

  19. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.

    Science.gov (United States)

    Brunet, Frédéric G; Volff, Jean-Nicolas; Schartl, Manfred

    2016-06-03

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.

  20. Hybridization leads to sensory repertoire expansion in a gynogenetic fish, the Amazon molly (poecilia formosa): a test of the hybrid-sensory expansion hypothesis.

    Science.gov (United States)

    Sandkam, Benjamin A; Joy, Jeffrey B; Watson, Corey T; Gonzalez-Bendiksen, Pablo; Gabor, Caitlin R; Breden, Felix

    2013-01-01

    Expansions in sensory systems usually require processes such as gene duplication and divergence, and thus evolve slowly. We evaluate a novel mechanism leading to rapid sensory repertoire expansion: hybrid-sensory expansion (HSE). HSE occurs when two species with differently tuned sensory systems form a hybrid, bringing together alleles from each of the parental species. In one generation, a sensory repertoire is created that is the sum of the variance between parental species. The Amazon molly presents a unique opportunity to test the HSE hypothesis in a "frozen" hybrid. We compared opsin sequences of the Amazon molly, Poecilia formosa, to those of the parental species. Both parental species are homozygous at the RH2-1 locus and each of the four long wavelength sensitive loci, while P. formosa possess two different alleles at these loci; one matching each parental allele. Gene expression analysis showed P. formosa use the expanded opsin repertoire that was the result of HSE. Additionally, behavioral tests revealed P. formosa respond to colored stimuli in a manner similar or intermediate to the parental species P. mexicana and P. latipinna. Together these results strongly support the HSE hypothesis. Hybrid-sensory repertoire expansion is likely important in other hybrid species and in other sensory systems.

  1. Extremely Long-Range Chromatin Loops Link Topological Domains to Facilitate a Diverse Antibody Repertoire

    Directory of Open Access Journals (Sweden)

    Lindsey Montefiori

    2016-02-01

    Full Text Available Early B cell development is characterized by large-scale Igh locus contraction prior to V(DJ recombination to facilitate a highly diverse Ig repertoire. However, an understanding of the molecular architecture that mediates locus contraction remains unclear. We have combined high-resolution chromosome conformation capture (3C techniques with 3D DNA FISH to identify three conserved topological subdomains. Each of these topological folds encompasses a major VH gene family that become juxtaposed in pro-B cells via megabase-scale chromatin looping. The transcription factor Pax5 organizes the subdomain that spans the VHJ558 gene family. In its absence, the J558 VH genes fail to associate with the proximal VH genes, thereby providing a plausible explanation for reduced VHJ558 gene rearrangements in Pax5-deficient pro-B cells. We propose that Igh locus contraction is the cumulative effect of several independently controlled chromatin subdomains that provide the structural infrastructure to coordinate optimal antigen receptor assembly.

  2. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors.

    Science.gov (United States)

    Gros, Alena; Robbins, Paul F; Yao, Xin; Li, Yong F; Turcotte, Simon; Tran, Eric; Wunderlich, John R; Mixon, Arnold; Farid, Shawn; Dudley, Mark E; Hanada, Ken-Ichi; Almeida, Jorge R; Darko, Sam; Douek, Daniel C; Yang, James C; Rosenberg, Steven A

    2014-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.

  3. Characterization of neonatal vocal and motor repertoire of reelin mutant mice.

    Science.gov (United States)

    Romano, Emilia; Michetti, Caterina; Caruso, Angela; Laviola, Giovanni; Scattoni, Maria Luisa

    2013-01-01

    Reelin is a large secreted extracellular matrix glycoprotein playing an important role in early neurodevelopment. Several genetic studies found an association between RELN gene and increased risk of autism suggesting that reelin deficiency may be a vulnerability factor in its etiology. Moreover, a reduced reelin expression has been observed in several brain regions of subjects with Autism Spectrum Disorders. Since a number of reports have documented presence of vocal and neuromotor abnormalities in patients with autism and suggested that these dysfunctions predate the onset of the syndrome, we performed a fine-grain characterization of the neonatal vocal and motor repertoire in reelin mutant mice to explore the developmental precursors of the disorder. Our findings evidence a general delay in motor and vocal development in heterozygous (50% reduced reelin) and reeler (lacking reelin gene) mutant mice. As a whole, an increased number of calls characterized heterozygous pup's emission. Furthermore, the typical ontogenetic peak in the number of calls characterizing wild-type pups on postnatal day 4 appeared slightly delayed in heterozygous pups (to day 6) and was quite absent in reeler littermates, which exhibited a flat profile during development. We also detected a preferential use of a specific call category (two-components) by heterozygous and reeler mice at postnatal days 6 and 8 as compared to their wild-type littermates. With regard to the analysis of spontaneous movements, a differential profile emerged early in development among the three genotypes. While only slight coordination difficulties are exhibited by heterozygous pups, all indices of motor development appear delayed in reeler mice. Overall, our results evidence a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reelin mutant pups.

  4. Characterization of neonatal vocal and motor repertoire of reelin mutant mice.

    Directory of Open Access Journals (Sweden)

    Emilia Romano

    Full Text Available Reelin is a large secreted extracellular matrix glycoprotein playing an important role in early neurodevelopment. Several genetic studies found an association between RELN gene and increased risk of autism suggesting that reelin deficiency may be a vulnerability factor in its etiology. Moreover, a reduced reelin expression has been observed in several brain regions of subjects with Autism Spectrum Disorders. Since a number of reports have documented presence of vocal and neuromotor abnormalities in patients with autism and suggested that these dysfunctions predate the onset of the syndrome, we performed a fine-grain characterization of the neonatal vocal and motor repertoire in reelin mutant mice to explore the developmental precursors of the disorder. Our findings evidence a general delay in motor and vocal development in heterozygous (50% reduced reelin and reeler (lacking reelin gene mutant mice. As a whole, an increased number of calls characterized heterozygous pup's emission. Furthermore, the typical ontogenetic peak in the number of calls characterizing wild-type pups on postnatal day 4 appeared slightly delayed in heterozygous pups (to day 6 and was quite absent in reeler littermates, which exhibited a flat profile during development. We also detected a preferential use of a specific call category (two-components by heterozygous and reeler mice at postnatal days 6 and 8 as compared to their wild-type littermates. With regard to the analysis of spontaneous movements, a differential profile emerged early in development among the three genotypes. While only slight coordination difficulties are exhibited by heterozygous pups, all indices of motor development appear delayed in reeler mice. Overall, our results evidence a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reelin mutant pups.

  5. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  6. SPECIE-SPECIFIC OUTCOMES OF WILD RAPTORS ATTENDED AT A WILDLIFE REHABILITATION CENTRE IN CATALONIA (1997-2005

    Directory of Open Access Journals (Sweden)

    Rafael A. Molina-Lopez

    2014-01-01

    Full Text Available Outcome research of rehabilitation of wild birds of prey and owls are scarcely reported. The aim of this study is to investigate specie-specific outcomes of the rehabilitation practice in wild raptor attended in a wildlife center. A total of 6221 hospitalized wild raptors (3241 Strigiformes; 2980 Falconiformes admitted at a Wildlife Rehabilitation Centre (WRC of Catalonia from 1995 to 2007 were analysed. The outcomes indicators were based on ratios of Euthanasia (Er, Mortality (Mr, Release (Rr and Captivity (Cr. Stratified analyses by main causes of admission were performed for the different raptor species. Species from the Falconiformes order presented higher rates of euthanasia (33.9% compared to the Strigiformes (18.6%. Species like B. buteo (45.7% and M. migrans (47.6% in the Falconiformes and B. bubo (33.6% in the Strigiformes, presented the highest Er. Despite no differences between orders could be observed in the row mortality rates, data analysed by the causes of admission showed that the Mr of owls was significant higher than the Falconiformes for the trauma (13.2%; χ2 = 49.97; p<0.001, non trauma (12.7%; χ2 = 17.41; p<0.001 and orphaned young categories (4.9%; χ2 = 5.4; p = 0.02. The release rate was similar between orders. Based on species, G. fulvus (69.2%, C. aeruginosus (56.3% and A. gentillis (43.1% in the Falconiformes and O. scops (48.5% in the Strigiformes showed the highest Rr. In the orphaned young category owls had better Rr than the diurnal raptors, being S. aluco the specie with the best rates of release (84%, whereas B. bubo had the worst values (50%. Specie-specific differences were found in the rehabilitation outcomes according to the different causes of admission. The stratified analysis of outcomes can be useful in order to to

  7. Generation of a safe and effective live viral vaccine by virus self-attenuation using species-specific artificial microRNA.

    Science.gov (United States)

    Li, Junwei; Arévalo, Maria T; Diaz-Arévalo, Diana; Chen, Yanping; Choi, Jang-Gi; Zeng, Mingtao

    2015-06-10

    Vaccination with live attenuated vaccines (LAVs) is an effective way for prevention of infectious disease. While several methods are employed to create them, efficacy and safety are still a challenge. In this study, we evaluated the feasibility of creating a self-attenuated RNA virus expressing a functional species-specific artificial microRNA. Using influenza virus as a model, we produced an attenuated virus carrying a mammalian-specific miR-93 expression cassette that expresses a viral nucleoprotein (NP)-specific artificial microRNA from an insertion site within the non-structural (NS) gene segment. The resulting engineered live-attenuated influenza virus, PR8-amiR-93NP, produced mature and functional artificial microRNA against NP in mammalian cells, but not in avian cells. Furthermore, PR8-amiR-93NP was attenuated by 10(4) fold in mice compared with its wild-type counterpart. Importantly, intranasal immunization with PR8-amiR-93NP conferred cross-protective immunity against heterologous influenza virus strains. In short, this method provides a safe and effective platform for creation of live attenuated RNA viral vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Isolation and characterization of species-specific DNA probes from Taenia solium and Taenia saginata and their use in an egg detection assay.

    Science.gov (United States)

    Chapman, A; Vallejo, V; Mossie, K G; Ortiz, D; Agabian, N; Flisser, A

    1995-05-01

    Cysticercosis results from ingestion of the eggs of the tapeworm Taenia solium. Reduction of the incidence of human and swine cysticercosis requires identification and treatment of individuals who carry the adult tapeworm. T. solium and Taenia saginata eggs cannot be differentiated on the basis of morphology; thus, in order to improve existing methods for the diagnosis of taeniasis, we have developed highly sensitive, species-specific DNA probes which differentiate T. solium and T. saginata. Recombinant clones containing repetitive DNA sequences which hybridize specifically with genomic DNAs from either species were isolated and characterized. T. solium-specific DNA sequences contained complete and truncated forms of a tandemly repeated 158-bp DNA sequence. An unrelated T. saginata DNA sequence was also characterized and shown to encode a portion of the mitochondrial cytochrome c oxidase I gene. T. solium- and T. saginata-specific DNA probes did not hybridize in dot blot assays either with genomic DNA from the platyhelminths Taenia hydatigena, Taenia pisiformis, Taenia taeniaeformis, Echinococcus granulosus, and Schistosoma mansoni or with genomic DNA from other eukaryotes, including Saccharomyces cerevisiae, Candida albicans, Cryptosporidium parvum, Entamoeba histolytica, Trypanosoma gambiense, Trypanosoma brucei, and Giardia lamblia, Caenorhabditis elegans, and human DNA. By using these T. solium and T. saginata DNA probes, a rapid, highly sensitive and specific dot blot assay for the detection of T. solium eggs was developed.

  9. Reciprocal controlled crosses between Pinus sylvestris and P. mugo verified by a species-specific cpDNA marker.

    Science.gov (United States)

    Wachowiak, Witold; Lewandowski, Andrzej; Prus-Głowacki, Wiesław

    2005-01-01

    A species-specific marker of cpDNA (paternally inherited in pines) was used to verify the hybrid origin of seedlings from controlled reciprocal crosses between Pinus sylvestris and P. mugo. A very low degree of compatibility between those two species has been revealed. In the three consecutive years of experiments, no filled seeds were obtained in the combination with P. mugo as the seed parent. From P. sylvestris as the seed parent and P. mugo as the pollen donor, we succeeded to obtain four filled seeds (about 1 %), but only in one year. The seedling obtained from the seeds had cpDNA haplotypes specific to P. mugo, which proves their hybrid origin. This method enables verification of the result of controlled crosses. The importance of the results has been discussed in the aspect of postulated natural hybridisation in sympatric populations of the two species.

  10. Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility.

    Science.gov (United States)

    Fischer, G; Schwalbe, R; Möller, M; Ostrowski, R; Dott, W

    1999-08-01

    Thirteen airborne fungal species frequently isolated in composting plants were screened for microbial volatile organic compounds (MVOC), i.e., Aspergillus candidus, A. fumigatus, A. versicolor, Emericella nidulans, Paecilomyces variotii, Penicillium brevicompactum, Penicillium clavigerum, Penicillium crustosum, Penicillium cyclopium, Penicillium expansum, Penicillium glabrum, Penicillium verruculosum, and Tritirachium oryzae. Air samples from pure cultures were sorbed on Tenax GR and analyzed by thermal desorption in combination with GC/MS. Various hydrocarbons of different chemical groups and a large number of terpenes were identified. Some compounds such as 3-methyl-1-butanol and 1-octen-3-ol were produced by a number of species, whereas some volatiles were specific for single species. An inventory of microbial metabolites will allow identification of potential health hazards due to an exposure to fungal propagules and metabolites in the workplace. Moreover, species-specific volatiles may serve as marker compounds for the selective detection of fungal species in indoor domestic and working environments.

  11. Species-specific PCR to describe local-scale distributions of four cryptic species in the Penicillium chrysogenum complex.

    Science.gov (United States)

    Browne, Alexander G P; Fisher, Matthew C; Henk, Daniel A

    2013-10-01

    Penicillium chrysogenum is a ubiquitous airborne fungus detected in every sampled region of the Earth. Owing to its role in Alexander Fleming's serendipitous discovery of Penicillin in 1928, the fungus has generated widespread scientific interest; however its natural history is not well understood. Research has demonstrated speciation within P. chrysogenum, describing the existence of four cryptic species. To discriminate the four species, we developed protocols for species-specific diagnostic PCR directly from fungal conidia. 430 Penicillium isolates were collected to apply our rapid diagnostic tool and explore the distribution of these fungi across the London Underground rail transport system revealing significant differences between Underground lines. Phylogenetic analysis of multiple type isolates confirms that the 'Fleming species' should be named Penicillium rubens and that divergence of the four 'Chrysogenum complex' fungi occurred about 0.75 million yr ago. Finally, the formal naming of two new species, Penicillium floreyi and Penicillium chainii, is performed.

  12. Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays.

    Science.gov (United States)

    Pantchev, Alexandra; Sting, Reinhard; Bauerfeind, Rolf; Tyczka, Judith; Sachse, Konrad

    2010-12-01

    The aim of the present study was to analyse the occurrence of chlamydiae in several mammalian host species. Clinical samples that previously tested positive in a Chlamydiaceae-specific real-time PCR were retested using six species-specific real-time PCR assays to identify the chlamydial species involved. Chlamydophila (Cp.) abortus was the agent most frequently found in cattle, sheep, horses, goats, and pigs. Detection in cattle of Cp. psittaci (11% of samples) and Chlamydia (C.) suis (9%), as well as Cp. psittaci in a goat sample was somewhat unexpected. DNA of two different chlamydiae was identified in 56 (12.7%) of 440 samples tested. Cp. felis was the predominant species found in cats, while in guinea pigs and rabbits only Cp. caviae was detected. Interestingly, the latter two pathogens were also identified in samples from dogs. The data show that mixed chlamydial infections are not rare and suggest an extended host range of individual species.

  13. Flexible knowledge repertoires: communication by leaders in trauma teams

    Directory of Open Access Journals (Sweden)

    Jacobsson Maritha

    2012-07-01

    Full Text Available Abstract Background In emergency situations, it is important for the trauma team to efficiently communicate their observations and assessments. One common communication strategy is “closed-loop communication”, which can be described as a transmission model in which feedback is of great importance. The role of the leader is to create a shared goal in order to achieve consensus in the work for the safety of the patient. The purpose of this study was to analyze how formal leaders communicate knowledge, create consensus, and position themselves in relation to others in the team. Methods Sixteen trauma teams were audio- and video-recorded during high fidelity training in an emergency department. Each team consisted of six members: one surgeon or emergency physician (the designated team leader, one anaesthesiologist, one nurse anaesthetist, one enrolled nurse from the theatre ward, one registered nurse and one enrolled nurse from the emergency department (ED. The communication was transcribed and analyzed, inspired by discourse psychology and Strauss’ concept of “negotiated order”. The data were organized and coded in NVivo 9. Results The findings suggest that leaders use coercive, educational, discussing and negotiating strategies to work things through. The leaders in this study used different repertoires to convey their knowledge to the team, in order to create a common goal of the priorities of the work. Changes in repertoires were dependent on the urgency of the situation and the interaction between team members. When using these repertoires, the leaders positioned themselves in different ways, either on an authoritarian or a more egalitarian level. Conclusion This study indicates that communication in trauma teams is complex and consists of more than just transferring messages quickly. It also concerns what the leaders express, and even more importantly, how they speak to and involve other team members.

  14. Characterizing Vocal Repertoires--Hard vs. Soft Classification Approaches.

    Directory of Open Access Journals (Sweden)

    Philip Wadewitz

    Full Text Available To understand the proximate and ultimate causes that shape acoustic communication in animals, objective characterizations of the vocal repertoire of a given species are critical, as they provide the foundation for comparative analyses among individuals, populations and taxa. Progress in this field has been hampered by a lack of standard in methodology, however. One problem is that researchers may settle on different variables to characterize the calls, which may impact on the classification of calls. More important, there is no agreement how to best characterize the overall structure of the repertoire in terms of the amount of gradation within and between call types. Here, we address these challenges by examining 912 calls recorded from wild chacma baboons (Papio ursinus. We extracted 118 acoustic variables from spectrograms, from which we constructed different sets of acoustic features, containing 9, 38, and 118 variables; as well 19 factors derived from principal component analysis. We compared and validated the resulting classifications of k-means and hierarchical clustering. Datasets with a higher number of acoustic features lead to better clustering results than datasets with only a few features. The use of factors in the cluster analysis resulted in an extremely poor resolution of emerging call types. Another important finding is that none of the applied clustering methods gave strong support to a specific cluster solution. Instead, the cluster analysis revealed that within distinct call types, subtypes may exist. Because hard clustering methods are not well suited to capture such gradation within call types, we applied a fuzzy clustering algorithm. We found that this algorithm provides a detailed and quantitative description of the gradation within and between chacma baboon call types. In conclusion, we suggest that fuzzy clustering should be used in future studies to analyze the graded structure of vocal repertoires. Moreover, the use of

  15. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms.

    Science.gov (United States)

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-11-24

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together

  16. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms

    Directory of Open Access Journals (Sweden)

    Maya Emmons-Bell

    2015-11-01

    Full Text Available The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina. We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts, and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies

  17. Gastrointestinal tract distribution of Salmonella enteritidis in orally infected mice with a species-specific fluorescent quantitative polymerase chain reaction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To identify and understand the regular distribution pattern and primary penetration site for Salmonella enteritidis (S. enteritidis) in the gastrointestinal tract.METHODS: Based on the species-specific DNA sequence of S. enteritidis from GenBank, a species-specific real-time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) was developed for the detection of S.enteritidis. We used this assay to detect genomic DNA of S. enteritidis in the gastrointestinal tract, including duodenum, jejunum, ileum, cecum, colon, rectum,esophagus and stomach, from mice after oral infection.RESULTS: S. enteritidis was consistently detected in all segments of the gastrointestinal tract. The jejunum and ileum were positive at 8 h post inoculation, and the final organ to show a positive result was the stomach at 18 h post inoculation. The copy number of S. enteritidis DNA in each tissue reached a peak at 24-36 h post inoculation,with the jejunum, ileum and cecum containing high concentrations of S. enteritidis, whereas the duodenum,colon, rectum, stomach and esophagus had low concentrations. S. enteritidis began to decrease and vanished at 2 d post inoculation, but it was still present up to 5 d post inoculation in the jejunum, ileum and cecum, without causing apparent symptoms. By 5 d post inoculation, the cecum had significantly higher numbers of S. enteritidis than any of the other areas (P < 0.01),and this appeared to reflect its function as a repository for S. enteritidis.CONCLUSION: The results provided significant data for clarifying the pathogenic mechanism of S. enteritidis in the gastrointestinal tract, and showed that the jejunum,ileum and cecum are the primary sites of invasion in normal mice after oral infection. This study will help to further understanding of the mechanisms of action of S.enteritidis.

  18. Species-specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover.

    Science.gov (United States)

    Walser, J C; Zoller, S; Büchler, U; Scheidegger, C

    2001-09-01

    The foliose lichen Lobaria pulmonaria has suffered a substantial decline in central and northern Europe during the twentieth century and is now considered to be critically endangered in many European lowland regions. Based on demographic studies, it has been proposed that under the present environmental conditions and forest management regimes, dispersal of diaspores and subsequent establishment of new thalli are insufficient to maintain the remnant small lowland populations. Chances of long-term survival may therefore be reduced. The data and analytical power of these demographic studies are limited. Since lichen diaspores show very few species-specific morphological characteristics, and are therefore almost indistinguishable, the accurate assessment of diaspore flux would be a fundamental first step in better understanding the life cycle of L. pulmonaria. Here we present a new molecular approach to investigate the dispersal of L. pulmonaria diaspores in its natural environment by specifically identifying small amounts of DNA in snow litter samples at varying distances from known sources. We used a species-specific polymerase chain reaction (PCR) primer pair to amplify the ribosomal internal transcribed spacer region (ITS rDNA) and a sensitive automated PCR product detection system using fluorescent labelled primers. We detected considerable amounts of naturally dispersed diaspores, deposited as far as 50 m away from the closest potential source. Diaspores were only found in the direction of the prevailing wind. Diaspore deposition varied from 1.2 diaspores per m(2) per day at 50 m distance from the source to 15 diaspores per m(2) per day at 1 m distance. The method described in this paper opens up perspectives for studies of population dynamics and dispersal ecology mainly in lichenized ascomycetes but also in other organisms with small, wind-dispersed diaspores.

  19. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  20. Species-specificity of the BamA component of the bacterial outer membrane protein-assembly machinery.

    Directory of Open Access Journals (Sweden)

    Elena B Volokhina

    Full Text Available The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded β-barrel conformation of the membrane-embedded domain of BamA.

  1. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  2. MD-2 Residues Tyrosine 42, Arginine 69, Aspartic Acid 122, and Leucine 125 Provide Species Specificity for Lipid IVA*

    Science.gov (United States)

    Meng, Jianmin; Drolet, Joshua R.; Monks, Brian G.; Golenbock, Douglas T.

    2010-01-01

    Lipopolysaccharide (LPS) activates the innate immune response through the Toll-like receptor 4 (TLR4)·MD-2 complex. A synthetic lipid A precursor, lipid IVA, induces an innate immune response in mice but not in humans. Both TLR4 and MD-2 are required for the agonist activity of lipid IVA in mice, with TLR4 interacting through specific surface charges at the dimerization interface. In this study, we used site-directed mutagenesis to identify the MD-2 residues that determine lipid IVA species specificity. A single mutation of murine MD-2 at the hydrophobic pocket entrance, E122K, substantially reduced the response to lipid IVA. Combining the murine MD-2 E122K with the murine TLR4 K367E/S386K/R434Q mutations completely abolished the response to lipid IVA, effectively converting the murine cellular response to a human-like response. In human cells, however, simultaneous mutations of K122E, K125L, Y41F, and R69G on human MD-2 were required to promote a response to lipid IVA. Combining the human MD-2 quadruple mutations with the human TLR4 E369K/Q436R mutations completely converted the human MD-2/human TLR4 receptor to a murine-like receptor. Because MD-2 residues 122 and 125 reside at the dimerization interface near the pocket entrance, surface charge differences here directly affect receptor dimerization. In comparison, residues 42 and 69 reside at the MD-2/TLR4 interaction surface opposite the dimerization interface. Surface charge differences there likely affect the binding angle and/or rigidity between MD-2 and TLR4, exerting an indirect influence on receptor dimerization and activation. Thus, surface charge differences at the two MD-2/TLR4 interfaces determine the species-specific activation of lipid IVA. PMID:20592019

  3. Microbial culturomics unravels the halophilic microbiota repertoire of table salt: description of Gracilibacillus massiliensis sp. nov.

    Directory of Open Access Journals (Sweden)

    Awa Diop

    2016-10-01

    Full Text Available Background: Microbial culturomics represents an ongoing revolution in the characterization of environmental and human microbiome. Methods: By using three media containing high salt concentration (100, 150, and 200 g/L, the halophilic microbial culturome of a commercial table salt was determined. Results: Eighteen species belonging to the Terrabacteria group were isolated including eight moderate halophilic and 10 halotolerant bacteria. Gracilibacillus massiliensis sp. nov., type strain Awa-1T (=CSUR P1441=DSM 29726, is a moderately halophilic gram-positive, non-spore-forming rod, and is motile by using a flagellum. Strain Awa-1T shows catalase activity but no oxidase activity. It is not only an aerobic bacterium but also able to grow in anaerobic and microaerophilic atmospheres. The draft genome of G. massiliensis is 4,207,226 bp long, composed of 13 scaffolds with 36.05% of G+C content. It contains 3,908 genes (3,839 protein-coding and 69 RNA genes. At least 1,983 (52% orthologous proteins were not shared with the closest phylogenetic species. Hundred twenty-six genes (3.3% were identified as ORFans. Conclusions: Microbial culturomics can dramatically improve the characterization of the food and environmental microbiota repertoire, deciphering new bacterial species and new genes. Further studies will clarify the geographic specificity and the putative role of these new microbes and their related functional genetic content in environment, health, and disease.

  4. Enrichment of an in vivo phage display repertoire by subtraction for easy identification of pathology biomarkers

    Directory of Open Access Journals (Sweden)

    karina Vargas Sanchez

    2015-03-01

    Conclusion. This physical subtraction discarded from a complex repertoire the non-specific selected ligands. STRATEGY 1 Three rounds of in vivo phage peptide selection in EAE female Lewis rats ("EAE repertoire" vs controls ("HEALTHY repertoire". 2 DNA subtraction of the most common sequences between «HEALTHY» and «EAE» phage repertoires to obtain a third EAE specific «SUBTRACTION » phage repertoire. 3 Massive sequencing of the three repertoires and bioinformatic analysis to identify the peptides sequences with high EAE specificity. 4 Biological tests of potential EAE specific phage clones with CNS tissues from EAE and Healthy control rats. 5 Biological tests of the EAE specific peptide and phage clones on the BBB in vitro model (hCMEC/D3 cells under inflammatory conditions (IL-1β stimulation. 6 Target separation and identification by cross-link between the selected phage clones and hMEC/D3 endothelial cells targets under IL-1β stimulation vs controls.

  5. From everyday communicative figurations to rigorous audience news repertoires

    DEFF Research Database (Denmark)

    Kobbernagel, Christian; Schrøder, Kim Christian

    2016-01-01

    In the last couple of decades there has been an unprecedented explosion of news media platforms and formats, as a succession of digital and social media have joined the ranks of legacy media. We live in a ‘hybrid media system’ (Chadwick, 2013), in which people build their cross-media news reperto...... of six audience news repertoires in Denmark, also preserves the qualitative thickness of the participants’ verbal accounts of the communicative figurations of their day-in-the-life with the news media...

  6. A REPERTOIRE OF INSTRUMENTS EMPLOYED IN PSYCHOLOGICAL COUNSELING

    Directory of Open Access Journals (Sweden)

    Dorina Maria PASCA

    2014-10-01

    Full Text Available According to Carl Rogers and Albert Ellis [1] [2], a new approach to psychological counseling is needed. Consequently, new and practical means to solve problems that ensue as part of the counseling process are required. From this point of view, this article aims at offering a range of alternatives to approach and involve the client (student in order to achieve the envisaged results of counseling. As such, it offers a concise repertoire of instruments that can be employed in psychological counseling.

  7. Units of analysis and kinetic structure of behavioral repertoires.

    Science.gov (United States)

    Thompson, T; Lubinski, D

    1986-09-01

    It is suggested that molar streams of behavior are constructed of various arrangements of three elementary constituents (elicited, evoked, and emitted response classes). An eight-cell taxonomy is elaborated as a framework for analyzing and synthesizing complex behavioral repertoires based on these functional units. It is proposed that the local force binding functional units into a smoothly articulated kinetic sequence arises from temporally arranged relative response probability relationships. Behavioral integration is thought to reflect the joint influence of the organism's hierarchy of relative response probabilities, fluctuating biological states, and the arrangement of environmental and behavioral events in time.

  8. Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark

    Directory of Open Access Journals (Sweden)

    Dooley Helen

    2004-05-01

    Full Text Available Abstract Background Adult cartilaginous fish express three immunoglobulin (Ig isotypes, IgM, IgNAR and IgW. Newborn nurse sharks, Ginglymostoma cirratum, produce 19S (multimeric IgM and monomeric/dimeric IgM1gj, a germline-joined, IgM-related VH, and very low amounts of 7S (monomeric IgM and IgNAR proteins. Newborn IgNAR VH mRNAs are diverse in the complementarity-determining region 3 (CDR3 with non-templated nucleotide (N-region addition, which suggests that, unlike in many other vertebrates, terminal deoxynucleotidyl transferase (TdT expressed at birth is functional. IgW is present in the lungfish, a bony fish sharing a common ancestor with sharks 460 million years ago, implying that the IgW VH family is as old as the IgM VH family. This nurse shark study examined the IgM and IgW VH repertoire from birth through adult life, and analyzed the phylogenetic relationships of these gene families. Results IgM and IgW VH cDNA clones isolated from newborn nurse shark primary and secondary lymphoid tissues had highly diverse and unique CDR3 with N-region addition and VDJ gene rearrangement, implicating functional TdT and RAG gene activity. Despite the clear presence of N-region additions, newborn CDR3 were significantly shorter than those of adults. The IgM clones are all included in a conventional VH family that can be classified into five discrete groups, none of which is orthologous to IgM VH genes in other elasmobranchs. In addition, a novel divergent VH family was orthologous to a published monotypic VH horn shark family. IgW VH genes have diverged sufficiently to form three families. IgM and IgW VH serine codons using the potential somatic hypermutation hotspot sequence occur mainly in VH framework 1 (FR1 and CDR1. Phylogenetic analysis of cartilaginous fish and lungfish IgM and IgW demonstrated they form two major ancient gene groups; furthermore, these VH genes generally diversify (duplicate and diverge within a species. Conclusion As in ratfish

  9. Can rarefaction be used to estimate song repertoire size in birds?

    Directory of Open Access Journals (Sweden)

    Kathleen R. PESHEK, Daniel T. BLUMSTEIN

    2011-06-01

    Full Text Available Song repertoire size is the number of distinct syllables, phrases, or song types produced by an individual or population. Repertoire size estimation is particularly difficult for species that produce highly variable songs and those that produce many song types. Estimating repertoire size is important for ecological and evolutionary studies of speciation, studies of sexual selection, as well as studies of how species may adapt their songs to various acoustic environments. There are several methods to estimate repertoire size, however prior studies discovered that all but a full numerical count of song types might have substantial inaccuracies associated with them. We evaluated a somewhat novel approach to estimate repertoire size—rarefaction; a technique ecologists use to measure species diversity on individual and population levels. Using the syllables within American robins’ Turdus migratorius repertoire, we compared the most commonly used techniques of estimating repertoires to the results of a rarefaction analysis. American robins have elaborate and unique songs with few syllables shared between individuals, and there is no evidence that robins mimic their neighbors. Thus, they are an ideal system in which to compare techniques. We found that the rarefaction technique results resembled that of the numerical count, and were better than two alternative methods (behavioral accumulation curves, and capture-recapture to estimate syllable repertoire size. Future estimates of repertoire size, particularly in vocally complex species, may benefit from using rarefaction techniques when numerical counts are unable to be performed [Current Zoology 57 (3: 300–306, 2011].

  10. Element repertoire: change and development with age in Whitethroat Sylvia communis song

    DEFF Research Database (Denmark)

    Balsby, T.J.S.; Hansen, P.

    2010-01-01

    individual male Whitethroats Sylvia communis sampled as 1- and 2-year olds. These males increased the size of their element repertoire between their first and second year, but song length and number of different elements per song did not change. On average, 44.3% of the song elements in the first...... based on the first-year repertoire, which may explain why large song repertoires are mainly expressed by males at least 2 years of age. It would appear, therefore, that song element repertoire size could be a reliable signal of male age....

  11. The repertoire and features of human platelet microRNAs.

    Directory of Open Access Journals (Sweden)

    Hélène Plé

    Full Text Available Playing a central role in the maintenance of hemostasis as well as in thrombotic disorders, platelets contain a relatively diverse messenger RNA (mRNA transcriptome as well as functional mRNA-regulatory microRNAs, suggesting that platelet mRNAs may be regulated by microRNAs. Here, we elucidated the complete repertoire and features of human platelet microRNAs by high-throughput sequencing. More than 492 different mature microRNAs were detected in human platelets, whereas the list of known human microRNAs was expanded further by the discovery of 40 novel microRNA sequences. As in nucleated cells, platelet microRNAs bear signs of post-transcriptional modifications, mainly terminal adenylation and uridylation. In vitro enzymatic assays demonstrated the ability of human platelets to uridylate microRNAs, which correlated with the presence of the uridyltransferase enzyme TUT4. We also detected numerous microRNA isoforms (isomiRs resulting from imprecise Drosha and/or Dicer processing, in some cases more frequently than the reference microRNA sequence, including 5' shifted isomiRs with redirected mRNA targeting abilities. This study unveils the existence of a relatively diverse and complex microRNA repertoire in human platelets, and represents a mandatory step towards elucidating the intraplatelet and extraplatelet role, function and importance of platelet microRNAs.

  12. The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus

    Science.gov (United States)

    Kelley, Laura A.; Healy, Susan D.

    2011-06-01

    Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.

  13. Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors.

    Science.gov (United States)

    De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S

    2017-01-01

    Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder

  14. Discovery of diverse and functional antibodies from large human repertoire antibody libraries.

    Science.gov (United States)

    Schwimmer, Lauren J; Huang, Betty; Giang, Hoa; Cotter, Robyn L; Chemla-Vogel, David S; Dy, Francis V; Tam, Eric M; Zhang, Fangjiu; Toy, Pamela; Bohmann, David J; Watson, Susan R; Beaber, John W; Reddy, Nithin; Kuan, Hua-Feng; Bedinger, Daniel H; Rondon, Isaac J

    2013-05-31

    Phage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250 billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries.

  15. High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia.

    Science.gov (United States)

    Ramesh, Manish; Simchoni, Noa; Hamm, David; Cunningham-Rundles, Charlotte

    2015-12-01

    To examine the T cell receptor structure in the absence of B cells, the TCR β CDR3 was sequenced from DNA of 15 X-linked agammaglobulinemia (XLA) subjects and 18 male controls, using the Illumina HiSeq platform and the ImmunoSEQ analyzer. V gene usage and the V-J combinations, derived from both productive and non-productive sequences, were significantly different between XLA samples and controls. Although the CDR3 length was similar for XLA and control samples, the CDR3 region of the XLA T cell receptor contained significantly fewer deletions and insertions in V, D, and J gene segments, differences intrinsic to the V(D)J recombination process and not due to peripheral T cell selection. XLA CDR3s demonstrated fewer charged amino acid residues, more sharing of CDR3 sequences, and almost completely lacked a population of highly modified Vβ gene segments found in control DNA, suggesting both a skewed and contracted T cell repertoire in XLA.

  16. Impact of trace metal concentrations on coccolithophore growth and morphology: species-specific responses in past and present ocean

    Science.gov (United States)

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart Thomas; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-04-01

    The Cretaceous witnessed intervals of profound perturbation named "Oceanic Anoxic Events (OAEs)" characterized by volcanic injection of large amounts of CO2, ocean anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a number of nannofossil species. To detect the cause/s of such changes in the fossil record is challenging. Evidence of a correspondence between intervals of high trace metals concentrations and nannofossil dwarfism may be suggestive for a negative effect of these elements on nannoplankton biocalcification process. In order to verify the hypothesis that anomalously high quantities of essential and/or toxic metals were the cause of coccolith dwarfism, we explored the toxicities of a mixture of trace metals on four living coccolithophores species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The trace metals tested were chosen based upon concentration peaks identified in the geological record and upon known trace metal interaction with living coccolithophores algae. Our results demonstrate a species-specific response to trace metal enrichment in living coccolithophores: E. huxleyi, G. oceanica and C. pelagicus showed a decrease in their growth rate with progressively and exponentially increased trace metal concentrations, while P. carterae is unresponsive to trace metal content. Furthermore, E. huxleyi, G. oceanica and C. pelagicus evidenced a decrease in the cell diameter. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccolith of G. oceanica showed a decrease in size only at the highest trace metal concentrations tested. P. carterae size was unresponsive for changing trace metal concentration. Our results on living coccolithophore algae, demonstrate that elevated trace metal concentrations not only affect growth but also coccolith size and/or weight and that

  17. Reconstructing and mining the B cell repertoire with ImmunediveRsity.

    Science.gov (United States)

    Cortina-Ceballos, Bernardo; Godoy-Lozano, Elizabeth Ernestina; Sámano-Sánchez, Hugo; Aguilar-Salgado, Andrés; Velasco-Herrera, Martín Del Castillo; Vargas-Chávez, Carlos; Velázquez-Ramírez, Daniel; Romero, Guillermo; Moreno, José; Téllez-Sosa, Juan; Martínez-Barnetche, Jesús

    2015-01-01

    The B cell antigen receptor repertoire is highly diverse and constantly modified by clonal selection. High-throughput DNA sequencing (HTS) of the lymphocyte repertoire (Rep-Seq) represents a promising technology to explore such diversity ex-vivo and assist in the identification of antigen-specific antibodies based on molecular signatures of clonal selection. Therefore, integrative tools for repertoire reconstruction and analysis from antibody sequences are needed. We developed ImmunediveRity, a stand-alone pipeline primarily based in R programming for the integral analysis of B cell repertoire data generated by HTS. The pipeline integrates GNU software and in house scripts to perform quality filtering, sequencing noise correction and repertoire reconstruction based on V, D and J segment assignment, clonal origin and unique heavy chain identification. Post-analysis scripts generate a wealth of repertoire metrics that in conjunction with a rich graphical output facilitates sample comparison and repertoire mining. Its performance was tested with raw and curated human and mouse 454-Roche sequencing benchmarks providing good approximations of repertoire structure. Furthermore, ImmunediveRsity was used to mine the B cell repertoire of immunized mice with a model antigen, allowing the identification of previously validated antigen-specific antibodies, and revealing different and unexpected clonal diversity patterns in the post-immunization IgM and IgG compartments. Although ImmunediveRsity is similar to other recently developed tools, it offers significant advantages that facilitate repertoire analysis and repertoire mining. ImmunediveRsity is open source and free for academic purposes and it runs on 64 bit GNU/Linux and MacOS. Available at: https://bitbucket.org/ImmunediveRsity/immunediversity/.

  18. Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1

    Science.gov (United States)

    Mandal, Goutam; Mandal, Srotoswati; Sharma, Mansi; Charret, Karen Santos; Papadopoulou, Barbara; Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita

    2015-01-01

    Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3’-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species. PMID:25714343

  19. Persistent organochlorines in 13 shark species from offshore and coastal waters of Korea: Species-specific accumulation and contributing factors.

    Science.gov (United States)

    Lee, Hyun-Kyung; Jeong, Yunsun; Lee, Sunggyu; Jeong, Woochang; Choy, Eun-Jung; Kang, Chang-Keun; Lee, Won-Chan; Kim, Sang-Jo; Moon, Hyo-Bang

    2015-05-01

    Data on persistent organochlorines (OCs) in sharks are scarce. Concentrations of OCs such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in the muscle tissue of 13 shark species (n=105) collected from offshore (Indian and Pacific Oceans) and coastal waters of Korea, to investigate species-specific accumulation of OCs and to assess the potential health risks associated with consumption of shark meat. Overall OC concentrations were highly variable not only among species but also within the same species of shark. The concentrations of PCBs, DDTs, chlordanes, hexachlorobenzene, and heptachlor in all shark species ranged from shark in our study were relatively lower than those reported in other studies. Aggressive shark species and species inhabiting the Indian Ocean had the highest levels of OCs. Inter-species differences in the concentrations and accumulation profiles of OCs among shark species could be explained by differences in feeding habit and sampling locations. Several confounding factors such as growth velocity, trophic position, and regional contamination status may affect the bioaccumulation of OCs in sharks. Hazard ratios of non-cancer risk for all the OCs were below one, whereas the hazard ratios of lifetime cancer risks of PCBs and DDTs exceeded one, implying potential carcinogenic effects in the general population in Korea. This is the first report to document the occurrence of OCs in sharks from Korea.

  20. Species-specific antimonial sensitivity in Leishmania is driven by post-transcriptional regulation of AQP1.

    Directory of Open Access Journals (Sweden)

    Goutam Mandal

    2015-02-01

    Full Text Available Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V acts as a pro-drug, which is converted to the more active trivalent form (Sb(III. However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL are more sensitive to Sb(III than the species responsible for visceral leishmaniasis (VL. Leishmania aquaglyceroporin (AQP1 facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3'-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species.

  1. Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities

    Energy Technology Data Exchange (ETDEWEB)

    Cammarato, Anthony, E-mail: acammara@burnham.org [Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 (United States); Craig, Roger [Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 (United States); Lehman, William [Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 (United States)

    2010-01-01

    Throughout the animal kingdom striated muscle contraction is regulated by the thin filament troponin-tropomyosin complex. Homologous regulatory components are shared among vertebrate and arthropod muscles; however, unique protein extensions and/or components characterize the latter. The Troponin T (TnT) isoforms of Drosophila indirect flight and tarantula femur muscle for example contain distinct C-terminal extensions and are {approx}20% larger overall than their vertebrate counterpart. Using electron microscopy and three-dimensional helical reconstruction of native Drosophila, tarantula and frog muscle thin filaments we have identified species-specific differences in tropomyosin regulatory strand densities. The strands on the arthropod thin filaments were significantly larger in diameter than those from vertebrates, although not significantly different from each other. These findings reflect differences in the regulatory troponin-tropomyosin complex, which are likely due to the larger TnT molecules aligning and extending along much of the tropomyosin strands' length. Such an arrangement potentially alters the physical properties of the regulatory strands and may help establish contractile characteristics unique to certain arthropod muscles.

  2. Species-specific flight styles of flies are reflected in the response dynamics of a homologue motion sensitive neuron

    Directory of Open Access Journals (Sweden)

    Bart eGeurten

    2012-03-01

    Full Text Available Hoverflies and blowflies have distinctly different flight styles. Yet, both species have been shown to structure their flight behaviour in a way that facilitates extraction of 3D information from the image flow on the retina (optic flow. Neuronal candidates to analyse the optic flow are the tangential cells in the third optical ganglion – the lobula complex. These neurons are directionally selective and integrate the optic flow over large parts of the visual field. Homologue tangential cells in hoverflies and blowflies have a similar morphology. Because blowflies and hoverflies have similar neuronal layout but distinctly different flight behaviours, they are an ideal substrate to pinpoint potential neuronal adaptations to the different flight styles.In this article we describe the relationship between locomotion behaviour and motion vision on three different levels:1.We compare the different flight styles based on the categorisation of flight behaviour into prototypical movements.2.We measure the species specific dynamics of the optic flow under naturalistic flight conditions. We found the translational optic flow of both species to be very different.3.We describe possible adaptations of a homologue motion sensitive neuron. We stimulate this cell in blowflies (Calliphora and hoverflies (Eristalis with naturalistic optic flow generated by both species during free flight. The characterized hoverfly tangential cell responds faster to transient changes in the optic flow than its blowfly homologue. It is discussed whether and how the different dynamical response properties aid optic flow analysis.

  3. Comparison of pollination and defensive buzzes in bumblebees indicates species-specific and context-dependent vibrations

    Science.gov (United States)

    De Luca, Paul A.; Cox, Darryl A.; Vallejo-Marín, Mario

    2014-04-01

    Bees produce vibrations in many contexts, including for defense and while foraging. Buzz pollination is a unique foraging behavior in which bees vibrate the anthers of flowers to eject pollen which is then collected and used as food. The relationships between buzzing properties and pollen release are well understood, but it is less clear to what extent buzzing vibrations vary among species, even though such information is crucial to understanding the functional relationships between bees and buzz-pollinated plants. Our goals in this study were (1) to examine whether pollination buzzes differ from those produced during defense, (2) to evaluate the similarity of buzzes between different species of bumblebees ( Bombus spp.), and (3) to determine if body size affects the expression of buzzing properties. We found that relative peak amplitude, peak frequency, and duration were significantly different between species, but only relative peak amplitude differed between pollination and defensive buzzes. There were significant interactions between species and buzz type for peak frequency and duration, revealing that species differed in their patterns of expression in these buzz properties depending on the context. The only parameter affected by body size was duration, with larger bees producing shorter buzzes. Our findings suggest that although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component. Species differences in pollination buzzes may have important implications for foraging preferences in bumblebees, especially if bees select flowers best matched to release pollen for their specific buzzing characteristics.

  4. DETECTION OF BRUGIA MALAYI INFECTED MOSQUITOES WITH SPECIES SPECIFIC DNA PROBE pBm 15, IN RIAU, INDONESIA

    Directory of Open Access Journals (Sweden)

    L. Kurniawan

    2012-09-01

    Full Text Available A species specific DNA probe (pBm15 was used in a field area where 2 filarial infections coexist: B.malayi in man and B.pahangi in cats. In our laboratory in Jakarta, this DNA probe proved to be sensitive enough to detect 500 ng DNA. One to two infective larvae of B.malayi could be detected with ease. This DNA probe did not react with infective larvae of wuchereria bancrofti, B.pahangi, and Dirofilaria spp. Non specific binding caused by undefined mosquito components was overcome with proteinase K and chitinase treatment. This additional step, made it possible for whole body mosquitoes to be squashed directly onto nitrocellulose paper. A comparative study of experimental infections of laboratory bred mosquitoes infected with B.malayi, showed no difference in infection rate between the group examined by dissection or by DNA probing. Mosquitoes which are vectors in Riau were collected and fed on microfilaremic patients of Riau. The set of mosquitoes were tested in parallel with mosquitoes infected with B.pahangi from cats. All fed mosquitoes were tested after 10-12 days. Only mosquitoes infected with B.malayi reacted in the assay. This study shows a success in applying the DNA probe technique in Jakarta. Further application in the field should be encouraged, with some modification of the DNA probing technique, for cheaper and easier implementation.

  5. Diversity of murine norovirus in wild-rodent populations: species-specific associations suggest an ancient divergence.

    Science.gov (United States)

    Smith, Donald B; McFadden, Nora; Blundell, Richard J; Meredith, Anna; Simmonds, Peter

    2012-02-01

    A survey of wild-rodent populations has revealed that murine norovirus (MNV) is present and diverse in wild-house mice Mus musculus. This virus is genetically similar to MNV infecting show mice and previously described variants circulating in laboratory mice. The detection of MNV in wild-mouse populations suggests that MNV infection of laboratory mice and show mice (from which laboratory mice are derived) derives from contact with or their origins from wild-mouse progenitors. The survey additionally identified frequent infection of wood mice (Apodemus sylvaticus) with genetically divergent variants of MNV. These viruses are distinct from previously described MNV variants, differing by 22-23 % over the complete genome sequence compared with a maximum of 13 % between M. musculus-derived strains. Comparison with other noroviruses reveals that the Apodemus MNV groups with MNV in genogroup V and shares the same overall genome organization, predicted lengths of proteins encoded by ORFs 1-3 and the existence of a conserved alternative reading frame in VP1 encoding a homologue of the MNV ORF4. Different Apodemus MNV isolates were as variable as MNV isolates and showed evidence for inter-isolate recombination. Our observation of species-specific associations of MNV variants in wild populations suggests that murine noroviruses have an ancient origin, a feature that they may share with other norovirus genogroups.

  6. Species-specific vulnerability of benthic marine embryos of congeneric snails (Haminoea spp.) to ultraviolet radiation and other intertidal stressors.

    Science.gov (United States)

    Russell, Janine; Phillips, Nicole

    2009-08-01

    We used field surveys and multi-factorial experiments to examine synergistic effects of ultraviolet radiation (UVR) and low tide conditions on the embryonic mortality of two bubble-shell snail species that deposit gelatinous egg masses in intertidal mudflats: Haminoea zelandiae from New Zealand, and Haminoea vesicula from Washington, USA. Egg masses of both species were predominantly found in shallow pools at low tide, and a substantial proportion of both were found in sunny as well as shaded microhabitats. Both exposure to sun and desiccation led to increased embryonic mortality for naturally deposited egg masses of H. zelandiae compared to those that were shaded or submerged. For H. vesicula, although mortality was double for embryos within desiccated egg masses, there was no additional mortality due to sun exposure. In manipulative experiments, UVR and low tide conditions increased embryonic mortality for both species; however, H. zelandiae appeared to be more vulnerable to UVR, whereas H. vesicula was particularly vulnerable to desiccation. Simulated tidal pool conditions significantly increased mortality only for H. vesicula. These results suggest an important role of species-specific differences in vulnerability to different stressors, even for ecologically similar congeners; here, these differences may be related to development time or egg mass characteristics.

  7. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features

    Science.gov (United States)

    Li, Yuan; Wang, Mingjun; Wang, Huilin; Tan, Hao; Zhang, Ziding; Webb, Geoffrey I.; Song, Jiangning

    2014-07-01

    Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms, identification of substrates and specific acetylation sites is crucial. Experimental identification is often time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a high-throughput manner to generate relatively precise predictions. Here we develop a method termed as SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine sequence-derived and functional features with two-step feature selection. Feature importance analysis indicates functional features, applied for lysine acetylation site prediction for the first time, significantly improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and identify many high-confidence putative substrates that are not previously identified. The results along with the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and facilitate hypothesis-driven experimental design and validation.

  8. Development of species-specific PCR primers and polyphasic characterization of Lactobacillus sanfranciscensis isolated from Korean sourdough.

    Science.gov (United States)

    Lee, Hyeongrho; Baek, Hyunwook; Lim, Sae Bom; Hur, Jin Soo; Shim, Sangmin; Shin, So-Yeon; Han, Nam Soo; Seo, Jin-Ho

    2015-05-04

    Lactobacillus sanfranciscensis is a bacterium used in sourdough that provides desirable properties such as better flavor and texture to the sourdough bread. Here, the intra-species diversity of L. sanfranciscensis strains isolated from Korean sourdough was studied using genotypic (multiplex-RAPD-PCR: multiplex-Randomly Amplified Polymorphic DNA-polymerase chain reaction) and phenotypic (VITEK2 Compact system) analyses. For this, a novel species-specific set of PCR primers was developed to identify L. sanfranciscensis using the recently published genome database. The primers were able to detect L. sanfranciscensis isolated from Korean sourdough with 100% accuracy. Genotyping and phenotyping analyses at the strain level demonstrated that Korean sourdough possesses various biotypes of L. sanfranciscensis strains. These strains were clustered into 5 subtypes (genotyping) or 7 subtypes (phenotyping). In summary, this strategy to construct novel primers reduced the chance of cross amplification and was able to identify the desired strain. The various strains isolated in this study can be used to develop a sourdough starter after the analysis of their fermentation characteristics.

  9. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody.

    Science.gov (United States)

    Gao, Jian-Fang; Wang, Jin; Qu, Yan-Fu; Ma, Xiao-Mei; Ji, Xiang

    2013-01-31

    We studied the immunoreactivity between venoms and commercial antiserums in four Chinese venomous snakes, Bungarus multicinctus, Naja atra, Deinagkistrodon acutus and Gloydius brevicaudus. Venoms from the four snakes shared common antigenic components, and most venom components expressed antigenicity in the immunological reaction between venoms and antiserums. Antiserums cross-reacted with heterologous venoms. Homologous venom and antiserum expressed the highest reaction activity in all cross-reactions. Species-specific antibodies (SSAbs) were obtained from four antiserums by immunoaffinity chromatography: the whole antiserum against each species was gradually passed through a medium system coated with heterologous venoms, and the cross-reacting components in antiserum were immunoabsorbed by the common antigens in heterologous venoms; the unbound components (i.e., SSAbs) were collected, and passed through Hitrap G protein column and concentrated. The SSAbs were found to have high specificity by western blot and enzyme-linked immunosorbent assay (ELISA). A 6-well ELISA strip coated with SSAbs was used to assign a venom sample and blood and urine samples from the envenomed rats to a given snake species. Our detections could differentiate positive and negative samples, and identify venoms of a snake species in about 35 min. The ELISA strips developed in this study are clinically useful in rapid and reliable identification of venoms from the above four snake species. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments.

    Science.gov (United States)

    Urban-Malinga, Barbara; Drgas, Aleksander; Gromisz, Sławomira; Barnes, Natalie

    2014-01-01

    Three functionally different macrofaunal species (the filter- and/or surface deposit-feeding polychaete Hediste diversicolor, and the suspension-feeding bivalves Mya arenaria and Cerastoderma glaucum) were introduced as single- and two-species treatments into microcosms containing sandy sediment with a natural meiofaunal community. H. diversicolor is a burrowing species building a system of galleries, C. glaucum lives actively near the sediment surface acting as a biodiffuser and M. arenaria buries deeply and leads a sessile lifestyle. It is shown that H. diversicolor extended the vertical distribution of meiofauna into deeper sediment layers compared to the control and non-Hediste treatments. The response of the nematode community varied significantly among treatments and was dependant on the macrobenthic species composition but not on the species number. Nematode assemblages in all treatments with the polychaete, both in monoculture and with either bivalve, differed significantly from those recorded in other treatments and were more similar than replicates within any other single treatment. H. diversicolor also appeared to have stimulated nematode species diversity. The present study demonstrated that the impact of macrobenthic assemblages on meiofauna is not a simple summation of individual species effects but is species specific.

  11. Construction of Agropyrum intermedium 2Ai-2 Chromosome DNA Library and Cloning of Species-Specific DNA Sequences

    Institute of Scientific and Technical Information of China (English)

    HE Cong-fen; MA You-zhi; XIN Zhi-yong; XU Qiong-fang; LI Lian-cheng

    2004-01-01

    The univalent from the meiosis-metaphase spreads of F1 (Z2× wheat variety Wan7107) was identified to be Agropyrum intermedium 2Ai-2 chromosome by GISH. The 2Ai-2 chromosomes were microisolated and collected. After two rounds of PCR amplification, the PCR products were ranged from 150 - 3 000 bp,with predominant fragments at about 200 - 2 000 bp. Using Ag.intermediumgenomic DNA as a probe, Southern blotting analysis confirmed the products originated from Ag. intermediumgenome. The products were purified, ligated to pUC18 and then transformed into competence E.coli DH5α to produce a 2Ai-2 chromosome DNA library. The microcloning experiments produced approximately 5×105 clones, the size range of the cloned inserts was 200- 1 500 bp, with an average of 580bp. Using Ag. intermediumgenomic DNA as a probe, dot blotting results showed that 56% clones are unique/low copy sequences, 44% are repetitive sequences in the library. Four Ag. intermedium clones were screened from the library by RFLP, and three clones(Mag065, Mag088, Mag139)belong to low/single sequences, one clone(Mag104)was repetitive sequence, and GISH results indicated that Mag104 was Ag.intermedium species-specific repetitive DNA sequence.

  12. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    Science.gov (United States)

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species.

  13. THE ANTIGENIC COMPLEX OF STREPTOCOCCUS HAEMOLYTICUS : III. CHEMICAL AND IMMUNOLOGICAL PROPERTIES OF THE SPECIES-SPECIFIC SUBSTANCE.

    Science.gov (United States)

    Lancefield, R C

    1928-02-29

    1. The chemical and immunological characteristics of the species-specific substance (C) of Streptococcus haemolyticus are considered. (a) It seems to be a carbohydrate because considerably purified preparations of C resisted prolonged tryptic and peptic digestion and were negative for the ordinary protein color tests but gave positive Molisch reactions to the limit of the precipitin titer. One such "purified" lot, however, had 4.2 per cent nitrogen and only 28 per cent reducing sugars on hydrolysis. Whether the nitrogen was due to impurities or was combined in the C substance itself, as is true of the Type I pneumococcus specific polysaccharide, cannot be stated without more material. (b) The C substance forms precipitates with antibacterial sera prepared against heterologous, as well as against homologous hemolytic streptococci. These precipitates are typical discs like those formed by type-specific carbohydrates of other species of bacteria. C does not precipitate antinucleoprotein sera. (c) While there is only slight direct evidence that the C substance is not antigenic, there is considerable indirect proof that this is the case. It probably is a haptene in the sense of Landsteiner. 2. A discussion is included of the chemical and immunological relationships of all the serologically active substances so far identified in extracts of the hemolytic streptococcus.

  14. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Chen Da, E-mail: chen@vims.ed [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Hale, Robert C. [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Watts, Bryan D. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States); La Guardia, Mark J.; Harvey, Ellen [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Mojica, Elizabeth K. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States)

    2010-05-15

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for SIGMAPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  15. Does song repertoire size in Common Blackbirds play a role in an intra-sexual context?

    DEFF Research Database (Denmark)

    Hesler, Nana; Mundry, Roger; Dabelsteen, Torben

    2011-01-01

    Bird song is thought to have a function in both inter- and intra-sexual contexts with song complexity serving as an honest signal of male quality. Theory predicts that males use repertoire sizes to estimate rivals’ fighting ability. Here we tested whether element repertoire size plays a role in a...

  16. Lineage Structure of the Human Antibody Repertoire in Response to Influenza Vaccination

    Science.gov (United States)

    Jiang, Ning; He, Jiankui; Weinstein, Joshua A.; Penland, Lolita; Sasaki, Sanae; He, Xiao-Song; Dekker, Cornelia L.; Zheng, Nai-ying; Huang, Min; Sullivan, Meghan; Wilson, Patrick C.; Greenberg, Harry B.; Davis, Mark M.; Fisher, Daniel S.; Quake, Stephen R.

    2013-01-01

    The human antibody repertoire is one of the most important defenses against infectious disease, and the development of vaccines has enabled the conferral of targeted protection to specific pathogens. However, there are many challenges to measuring and analyzing the immunoglobulin sequence repertoire, such as the fact that each B cell contains a distinct antibody sequence encoded in its genome, that the antibody repertoire is not constant but changes over time, and the high similarity between antibody sequences. We have addressed this challenge by using high-throughput long read sequencing to perform immunogenomic characterization of expressed human antibody repertoires in the context of influenza vaccination. Informatic analysis of 5 million antibody heavy chain sequences from healthy individuals allowed us to perform global characterizations of isotype distributions, determine the lineage structure of the repertoire and measure age and antigen related mutational activity. Our analysis of the clonal structure and mutational distribution of individuals’ repertoires shows that elderly subjects have a decreased number of lineages but an increased pre-vaccination mutation load in their repertoire and that some of these subjects have an oligoclonal character to their repertoire in which the diversity of the lineages is greatly reduced relative to younger subjects. We have thus shown that global analysis of the immune system’s clonal structure provides direct insight into the effects of vaccination and provides a detailed molecular portrait of age-related effects. PMID:23390249

  17. Building the repertoire of measures of walking in Rett syndrome

    DEFF Research Database (Denmark)

    Stahlhut, Michelle; Downs, Jenny; Leonard, Helen;

    2017-01-01

    BACKGROUND: The repertoire of measures of walking in Rett syndrome is limited. This study aimed to determine measurement properties of a modified two-minute walk test (2MWT) and a modified Rett syndrome-specific functional mobility scale (FMS-RS) in Rett syndrome. METHODS: Forty-two girls and women...... with Rett syndrome (median 18.4 years, range 2.4-60.9 years) were assessed for clinical severity, gross motor skills, and mobility. To measure walking capacity, 27 of this group completed a 2MWT twice on two different assessment days. To assess walking performance, the FMS-RS was administered to the total......) and the Rett syndrome-specific functional mobility scale (FMS-RS). The 2MWT and FMS-RS offer detailed information of the capacity and performance of walking, respectively, in girls and women with RTT....

  18. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    Science.gov (United States)

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  19. Sequencing and characterisation of an extensive Atlantic salmon (Salmo salar L. microRNA repertoire.

    Directory of Open Access Journals (Sweden)

    Michaël Bekaert

    Full Text Available Atlantic salmon (Salmo salar L., a member of the family Salmonidae, is a totemic species of ecological and cultural significance that is also economically important in terms of both sports fisheries and aquaculture. These factors have promoted the continuous development of genomic resources for this species, furthering both fundamental and applied research. MicroRNAs (miRNA are small endogenous non-coding RNA molecules that control spatial and temporal expression of targeted genes through post-transcriptional regulation. While miRNA have been characterised in detail for many other species, this is not yet the case for Atlantic salmon. To identify miRNAs from Atlantic salmon, we constructed whole fish miRNA libraries for 18 individual juveniles (fry, four months post hatch and characterised them by Illumina high-throughput sequencing (total of 354,505,167 paired-ended reads. We report an extensive and partly novel repertoire of miRNA sequences, comprising 888 miRNA genes (547 unique mature miRNA sequences, quantify their expression levels in basal conditions, examine their homology to miRNAs from other species and identify their predicted target genes. We also identify the location and putative copy number of the miRNA genes in the draft Atlantic salmon reference genome sequence. The Atlantic salmon miRNAs experimentally identified in this study provide a robust large-scale resource for functional genome research in salmonids. There is an opportunity to explore the evolution of salmonid miRNAs following the relatively recent whole genome duplication event in salmonid species and to investigate the role of miRNAs in the regulation of gene expression in particular their contribution to variation in economically and ecologically important traits.

  20. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (molossidae.

    Directory of Open Access Journals (Sweden)

    Kirsten Jung

    Full Text Available Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design

  1. Needles in the blue Sea: Sub-species specificity by targeted metaproteomics of the vast oceanic microbial metaproteome

    Science.gov (United States)

    Saito, M. A.; Dorsk, A.; Post, A.; McIlvin, M.; Moran, D. M.; Rappe, M. S.; DiTullio, G. R.

    2015-12-01

    Targeted metaproteomics is the application of mass spectrometry-based quantitative protein measurements to natural microbial populations. It has significant potential for providing novel biogeochemical insights, for example by measurement of specific biomarkers indicative of nutrient stress, as well as direct measurements of enzymes that can be used to provide estimates of potential reaction rates. High microbial diversity presents unique challenges to this method. We examined the feasibility of a targeted metaproteomics workflow in Pacific Ocean environments for two cyanobacterial nitrogen regulatory proteins, NtcA and P-II. Genomic analyses using new METATRYP software found the number of shared (redundant) tryptic peptides between different marine bacteria species to typically being 1% or less. Closely related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8+1.9% of their tryptic peptides, while shared intraspecies peptides were higher, with 13+15% shared peptides. Measurements of an NtcA peptide in the Pacific Ocean was found to target multiple cyanobacteria species, whereas a P-II peptide showed sub-species specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ~4e7, 1000-fold larger an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples. These oceanic quantitative protein distributions in the oceans demonstrate sub-species resolution is achievable combining in silico and empirical approaches.

  2. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    Directory of Open Access Journals (Sweden)

    Thurnheer Thomas

    2011-01-01

    Full Text Available Abstract Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of

  3. SPECIES-SPECIFIC FOREST VARIABLE ESTIMATION USING NON-PARAMETRIC MODELING OF MULTI-SPECTRAL PHOTOGRAMMETRIC POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    J. Bohlin

    2012-07-01

    Full Text Available The recent development in software for automatic photogrammetric processing of multispectral aerial imagery, and the growing nation-wide availability of Digital Elevation Model (DEM data, are about to revolutionize data capture for forest management planning in Scandinavia. Using only already available aerial imagery and ALS-assessed DEM data, raster estimates of the forest variables mean tree height, basal area, total stem volume, and species-specific stem volumes were produced and evaluated. The study was conducted at a coniferous hemi-boreal test site in southern Sweden (lat. 58° N, long. 13° E. Digital aerial images from the Zeiss/Intergraph Digital Mapping Camera system were used to produce 3D point-cloud data with spectral information. Metrics were calculated for 696 field plots (10 m radius from point-cloud data and used in k-MSN to estimate forest variables. For these stands, the tree height ranged from 1.4 to 33.0 m (18.1 m mean, stem volume from 0 to 829 m3 ha-1 (249 m3 ha-1 mean and basal area from 0 to 62.2 m2 ha-1 (26.1 m2 ha-1 mean, with mean stand size of 2.8 ha. Estimates made using digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet showed RMSEs (in percent of the surveyed stand mean of 7.5% for tree height, 11.4% for basal area, 13.2% for total stem volume, 90.6% for pine stem volume, 26.4 for spruce stem volume, and 72.6% for deciduous stem volume. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.

  4. Characterization of the host response to pichinde virus infection in the Syrian golden hamster by species-specific kinome analysis.

    Science.gov (United States)

    Falcinelli, Shane; Gowen, Brian B; Trost, Brett; Napper, Scott; Kusalik, Anthony; Johnson, Reed F; Safronetz, David; Prescott, Joseph; Wahl-Jensen, Victoria; Jahrling, Peter B; Kindrachuk, Jason

    2015-03-01

    The Syrian golden hamster has been increasingly used to study viral hemorrhagic fever (VHF) pathogenesis and countermeasure efficacy. As VHFs are a global health concern, well-characterized animal models are essential for both the development of therapeutics and vaccines as well as for increasing our understanding of the molecular events that underlie viral pathogenesis. However, the paucity of reagents or platforms that are available for studying hamsters at a molecular level limits the ability to extract biological information from this important animal model. As such, there is a need to develop platforms/technologies for characterizing host responses of hamsters at a molecular level. To this end, we developed hamster-specific kinome peptide arrays to characterize the molecular host response of the Syrian golden hamster. After validating the functionality of the arrays using immune agonists of defined signaling mechanisms (lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α), we characterized the host response in a hamster model of VHF based on Pichinde virus (PICV(1)) infection by performing temporal kinome analysis of lung tissue. Our analysis revealed key roles for vascular endothelial growth factor (VEGF), interleukin (IL) responses, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and Toll-like receptor (TLR) signaling in the response to PICV infection. These findings were validated through phosphorylation-specific Western blot analysis. Overall, we have demonstrated that hamster-specific kinome arrays are a robust tool for characterizing the species-specific molecular host response in a VHF model. Further, our results provide key insights into the hamster host response to PICV infection and will inform future studies with high-consequence VHF pathogens.

  5. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Furdek, Martina; Mikac, Nevenka [Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, Zagreb (Croatia); Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France); Monperrus, Mathilde, E-mail: mathilde.monperrus@univ-pau.fr [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France)

    2016-04-15

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  6. Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2016-08-01

    The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures. The goal of the study reported here was to build a more comprehensive understanding of the effects of mean temperature, low-temperature extremes, shading, and their interactions on seedling survival at tropical treelines. We conducted a seedling transplant study using three dominant canopy-forming treeline species in the southern tropical Andes. We found species-specific differences and contrasting responses in seedling survival to changes in mean temperature. The most abundant naturally occurring species at the seedling stage outside the treeline, Weinmannia fagaroides, showed a negative relationship between the survival of transplanted seedlings and mean temperature, the opposite of a priori expectations. Conversely, Clethra cuneata showed increased survival at higher mean temperatures, but survival also increased with higher absolute low temperatures and the presence of shade. Finally, the survival of Gynoxys nitida seedlings was insensitive to temperature but increased under shade. These findings show that multiple factors can determine the upper distributional limit of species forming the current tropical treeline. As such, predictions of future local and regional tropical treeline shifts may need to consider several factors beyond changes in mean temperature. If the treeline remains stationary and cloud forests are unable to expand into higher elevations, there may be severe species loss in this biodiversity hotspot.

  7. Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis

    Directory of Open Access Journals (Sweden)

    Kazutaka Kitaura

    2017-05-01

    Full Text Available A diverse antibody repertoire is primarily generated by the rearrangement of V, D, and J genes and subsequent somatic hypermutation (SHM. Class-switch recombination (CSR produces various isotypes and subclasses with different functional properties. Although antibody isotypes and subclasses are considered to be produced by both direct and sequential CSR, it is still not fully understood how SHMs accumulate during the process in which antibody subclasses are generated. Here, we developed a new next-generation sequencing (NGS-based antibody repertoire analysis capable of identifying all antibody isotype and subclass genes and used it to examine the peripheral blood mononuclear cells of 12 healthy individuals. Using a total of 5,480,040 sequences, we compared percentage frequency of variable (V, junctional (J sequence, and a combination of V and J, diversity, length, and amino acid compositions of CDR3, SHM, and shared clones in the IgM, IgD, IgG3, IgG1, IgG2, IgG4, IgA1, IgE, and IgA2 genes. The usage and diversity were similar among the immunoglobulin (Ig subclasses. Clonally related sequences sharing identical V, D, J, and CDR3 amino acid sequences were frequently found within multiple Ig subclasses, especially between IgG1 and IgG2 or IgA1 and IgA2. SHM occurred most frequently in IgG4, while IgG3 genes were the least mutated among all IgG subclasses. The shared clones had almost the same SHM levels among Ig subclasses, while subclass-specific clones had different levels of SHM dependent on the genomic location. Given the sequential CSR, these results suggest that CSR occurs sequentially over multiple subclasses in the order corresponding to the genomic location of IGHCs, but CSR is likely to occur more quickly than SHMs accumulate within Ig genes under physiological conditions. NGS-based antibody repertoire analysis should provide critical information on how various antibodies are generated in the immune system.

  8. Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity.

    Directory of Open Access Journals (Sweden)

    Haiyan Huang

    Full Text Available UDP-glucuronosyltransferases (Ugts are a supergene family of phase II drug-metabolizing enzymes that catalyze the conjugation of numerous hydrophobic small molecules with the UDP-glucuronic acid, converting them into hydrophilic molecules. Here, we report the identification and cloning of the complete zebrafish Ugt gene repertoire. We found that the zebrafish genome contains 45 Ugt genes that can be divided into three families: Ugt1, Ugt2, and Ugt5. Both Ugt1 and Ugt2 have two unlinked clusters: a and b. The Ugt1a, Ugt1b, Ugt2a, and Ugt2b clusters each contain variable and constant regions, similar to that of the protocadherin (Pcdh, immunoglobulin (Ig, and T-cell receptor (Tcr clusters. Cloning the full-length coding sequences confirmed that each of the variable exons is separately spliced to the set of constant exons within each zebrafish Ugt cluster. Comparative analyses showed that both a and b clusters of the zebrafish Ugt1 and Ugt2 genes have orthologs in other teleosts, suggesting that they may be resulted from the "fish-specific" whole-genome duplication event. The Ugt5 genes are a novel family of Ugt genes that exist in teleosts and amphibians. Their entire open reading frames are encoded by single large exons. The zebrafish Ugt1, Ugt2, and Ugt5 genes can generate additional transcript diversity through alternative splicing. Based on phylogenetic analyses, we propose that the ancestral tetrapod and teleost Ugt1 clusters contained multiple Ugt1 paralogs. After speciation, these ancestral Ugt1 clusters underwent lineage-specific gene loss and duplication. The ancestral vertebrate Ugt2 cluster also underwent lineage-specific duplication. The intronless Ugt5 open reading frames may be derived from retrotransposition followed by gene duplication. They have been expanded dramatically in teleosts and have become the most abundant Ugt family in these lineages. These findings have interesting implications regarding the molecular evolution of

  9. Identification of weakly beta-hemolytic porcine spirochetes by biochemical reactions, PCR-based restriction fragment length polymorphism analysis and species-specific PCR.

    Science.gov (United States)

    Ohya, Tatsuo; Araki, Hiroshi; Sueyoshi, Masuo

    2008-08-01

    We examined the usefulness of PCR-based restriction fragment length polymorphism (PCR-RFLP) and species-specific PCR combined with a newly devised rapid biochemical test using microplates for identifying weakly beta-hemolytic intestinal spirochetes (WBHIS) isolated from pigs. WBHIS strains showing atypical biochemical characteristics were decisively identified at the species level by PCR-RFLP and species-specific PCR. Identification of WBHIS at the species level in routine diagnostic work will certainly contribute to clarifying the pathogenicity of WBHIS.

  10. Evolutionary patterns and selective pressures of odorant/pheromone receptor gene families in teleost fishes.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Hashiguchi

    Full Text Available BACKGROUND: Teleost fishes do not have a vomeronasal organ (VNO, and their vomeronasal receptors (V1Rs, V2Rs are expressed in the main olfactory epithelium (MOE, as are odorant receptors (ORs and trace amine-associated receptors (TAARs. In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (K(A/K(S in TAARs tended to be higher than those in ORs and V2Rs. CONCLUSIONS/SIGNIFICANCE: Frequent gene gains/losses and high K(A/K(S in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors.

  11. "Is English Also the Place Where I Belong?": Linguistic Biographies and Expanding Communicative Repertoires in Central Java

    Science.gov (United States)

    Zentz, Lauren

    2015-01-01

    This article employs the term "communicative repertoire" in order to highlight that when one learns any new "language", one introduces new communicative resources into a unified communicative repertoire. As repertoires represent such singular "grammars" in individuals' minds, learned communicative resources can…

  12. "Is English Also the Place Where I Belong?": Linguistic Biographies and Expanding Communicative Repertoires in Central Java

    Science.gov (United States)

    Zentz, Lauren

    2015-01-01

    This article employs the term "communicative repertoire" in order to highlight that when one learns any new "language", one introduces new communicative resources into a unified communicative repertoire. As repertoires represent such singular "grammars" in individuals' minds, learned communicative resources can…

  13. Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Michalopoulou, Vasiliki A; Adamakis, Ioannis-Dimosthenis S

    2015-05-01

    Because the detrimental effects of chromium (Cr) to higher plants have been poorly investigated, the present study was undertaken to verify the toxic attributes of hexavalent chromium [Cr(VI)] to plant mitotic microtubules (MTs), to determine any differential disruption of MTs during mitosis of taxonomically related species and to clarify the relationship between the visualized chromosomal aberrations and the Cr(VI)-induced MT disturbance. For this purpose, 5-day-old uniform seedlings of Vicia faba, Pisum sativum, Vigna sinensis and Vigna angularis, all belonging to the Fabaceae family, were exposed to 250 μM Cr(VI) supplied as potassium dichromate (K₂Cr₂O₇) for 24, 72 and 120 h and others in distilled water serving as controls. Root tip samples were processed for tubulin immunolabelling (for MT visualization) and DNA fluorescent staining (for chromosomal visualization). Microscopic preparations of cell squashes were then examined and photographed by confocal laser scanning microscopy (CLSM). Cr(VI) halted seedling growth turning roots brown and necrotic. Severe chromosomal abnormalities and differential disturbance of the corresponding MT arrays were found in all mitotic phases. In particular, in V. faba MTs were primarily depolymerized and replaced by atypical tubulin conformations, whereas in P. sativum, V. sinensis and V. angularis they became bundled in a time-dependent manner. In P. sativum, the effects were milder compared to those of the other species, but in all cases MT disturbance adversely affected the proper aggregation of chromosomes on the metaphase plate, their segregation at anaphase and organization of the new nuclei at telophase. Cr(VI) is very toxic to seedling growth. The particular effect depends on the exact stage the cell is found at the time of Cr(VI) entrance and is species-specific. Mitotic MT arrays are differentially deranged by Cr(VI) in the different species examined, even if they are taxonomically related, while their

  14. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.

    Directory of Open Access Journals (Sweden)

    Ricardo Rajsbaum

    Full Text Available Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1 proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04, avian (HK156, swine (SwTx98 and mouse-adapted (PR8 influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

  15. Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant

    Directory of Open Access Journals (Sweden)

    Slat Emily A

    2007-07-01

    Full Text Available Abstract Background Voltage-gated Na+ channel β1 (Scn1b subunits are multi-functional proteins that play roles in current modulation, channel cell surface expression, cell adhesion, cell migration, and neurite outgrowth. We have shown previously that β1 modulates electrical excitability in vivo using a mouse model. Scn1b null mice exhibit spontaneous seizures and ataxia, slowed action potential conduction, decreased numbers of nodes of Ranvier in myelinated axons, alterations in nodal architecture, and differences in Na+ channel α subunit localization. The early death of these mice at postnatal day 19, however, make them a challenging model system to study. As a first step toward development of an alternative model to investigate the physiological roles of β1 subunits in vivo we cloned two β1-like subunit cDNAs from D. rerio. Results Two β1-like subunit mRNAs from zebrafish, scn1ba_tv1 and scn1ba_tv2, arise from alternative splicing of scn1ba. The deduced amino acid sequences of Scn1ba_tv1 and Scn1ba_tv2 are identical except for their C-terminal domains. The C-terminus of Scn1ba_tv1 contains a tyrosine residue similar to that found to be critical for ankyrin association and Na+ channel modulation in mammalian β1. In contrast, Scn1ba_tv2 contains a unique, species-specific C-terminal domain that does not contain a tyrosine. Immunohistochemical analysis shows that, while the expression patterns of Scn1ba_tv1 and Scn1ba_tv2 overlap in some areas of the brain, retina, spinal cord, and skeletal muscle, only Scn1ba_tv1 is expressed in optic nerve where its staining pattern suggests nodal expression. Both scn1ba splice forms modulate Na+ currents expressed by zebrafish scn8aa, resulting in shifts in channel gating mode, increased current amplitude, negative shifts in the voltage dependence of current activation and inactivation, and increases in the rate of recovery from inactivation, similar to the function of mammalian β1 subunits. In

  16. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR

    Directory of Open Access Journals (Sweden)

    Van Esbroeck Marjan

    2011-03-01

    Full Text Available Abstract Background This study describes the use of malaria rapid diagnostic tests (RDTs as a source of DNA for Plasmodium species-specific real-time PCR. Methods First, the best method to recover DNA from RDTs was investigated and then the applicability of this DNA extraction method was assessed on 12 different RDT brands. Finally, two RDT brands (OptiMAL Rapid Malaria Test and SDFK60 malaria Ag Plasmodium falciparum/Pan test were comprehensively evaluated on a panel of clinical samples submitted for routine malaria diagnosis at ITM. DNA amplification was done with the 18S rRNA real-time PCR targeting the four Plasmodium species. Results of PCR on RDT were compared to those obtained by PCR on whole blood samples. Results Best results were obtained by isolating DNA from the proximal part of the nitrocellulose component of the RDT strip with a simple DNA elution method. The PCR on RDT showed a detection limit of 0.02 asexual parasites/μl, which was identical to the same PCR on whole blood. For all 12 RDT brands tested, DNA was detected except for one brand when a low parasite density sample was applied. In RDTs with a plastic seal covering the nitrocellulose strip, DNA extraction was hampered. PCR analysis on clinical RDT samples demonstrated correct identification for single species infections for all RDT samples with asexual parasites of P. falciparum (n = 60, Plasmodium vivax (n = 10, Plasmodium ovale (n = 10 and Plasmodium malariae (n = 10. Samples with only gametocytes were detected in all OptiMAL and in 10 of the 11 SDFK60 tests. None of the negative samples (n = 20 gave a signal by PCR on RDT. With PCR on RDT, higher Ct-values were observed than with PCR on whole blood, with a mean difference of 2.68 for OptiMAL and 3.53 for SDFK60. Mixed infections were correctly identified with PCR on RDT in 4/5 OptiMAL tests and 2/5 SDFK60 tests. Conclusions RDTs are a reliable source of DNA for Plasmodium real-time PCR. This study demonstrates the

  17. Isoscapes resolve species-specific spatial patterns in plant-plant interactions in an invaded Mediterranean dune ecosystem.

    Science.gov (United States)

    Hellmann, Christine; Rascher, Katherine G; Oldeland, Jens; Werner, Christiane

    2016-12-01

    Environmental heterogeneity and plant-plant interactions are key factors shaping plant communities. However, the spatial dimension of plant-plant interactions has seldom been addressed in field studies. This is at least partially rooted in a lack of methods that can accurately resolve functional processes in a spatially explicit manner. Isoscapes, that is, spatially explicit representations of stable isotope data, provide a versatile means to trace functional changes on spatial scales, for example, related to N-cycling (foliar δ(15)N) and water use efficiency (WUEi, foliar δ(13)C). In a case study in a nutrient-depleted Mediterranean dune ecosystem, we analysed the spatial impact of the invasive N2-fixing Acacia longifolia on three native species of different functional types using δ(15)N and δ(13)C isoscapes and spatial autocorrelation analyses. Isoscapes revealed strong spatial patterns in δ(15)N and δ(13)C with pronounced species-specific differences, demonstrating distinct spatial ranges of plant-plant interactions. A coniferous tree and an ericaceous dwarf shrub showed significant enrichment in δ(15)N within a range of 5-8 m surrounding the canopy of A. longifolia, indicating input of N originating from symbiotic N2-fixation by the invader. In the dwarf shrub, which was most responsive to invader influence, enrichment in δ(13)C additionally demonstrated spatially explicit changes to WUEi, while a native N2-fixer was unresponsive to the presence of the invader. Furthermore, δ(15)N and δ(13)C isoscapes yielded different patterns, indicating that plant-plant interactions can have distinct spatial distributions and ranges based on the process measured. Additionally, the magnitude of the effect differed between field situations with high and low invasion pressure. This study highlights that the spatial scale must be accounted for when assessing the effects and outcome of species interactions. Functional tracers such as stable isotopes enable us to

  18. TRGV and TRDV repertoire distribution and clonality of T cells from umbilical cord blood.

    Science.gov (United States)

    Li, Yangqiu; Chen, Shaohua; Yang, Lijian; Li, Bo; Chan, John Yeuk-Hon; Cai, Dongqing

    2009-01-01

    Umbilical cord blood (CB) has been used as a valuable source of hematopoietic stem cells for allogeneic transplantation, specific CTL response and immunotherapy for decades. We previously analyzed the distribution and clonality of T-cell receptor alpha and beta variable region (TRAV) and (TRBV) of the subfamily T cell receptors in T cells from umbilical cord blood. Recent data indicated that gammadelta(+) T cells may play an important role in mediating the graft versus leukemia effect after stem cells transplantation and in anti-cancer response. In order to further characterize the repertoire of CB T-cells, the frequency of alphabeta(+) and gammadelta(+) T cells were examined in CB by FACS. The CDR3 size of 4 TRGV and 8 TRDV subfamily genes were analyzed in mononuclear cells (MCs) from 16 CB samples, using RT-PCR and genescan technique. To determine the expression level of TRGV subfamily genes, we performed quantitative analysis of TRGVI-III subfamilies by real-time PCR. Low percentage of CD3(+)TCRgammadelta(+) cells was observed in CB. The frequency of expression in TRGVI, TRGVII and TRGVIII in CBMCs was 93.75%, 81.25% and 56.25%, respectively. The mean value of the number of expressed TRDV subfamilies in CBMCs is higher than that from adult peripheral blood (PB) group. The frequently expressed members in CB were TRDV1 (100%), TRDV2 (93.75%), TRDV8 (93.75%) and TRDV3 (81.25%), respectively. The frequencies of TRDV5 and TRDV8 in CBMCs were significantly higher than those from PBMCs. Most of the PCR products of TRGV and TRDV subfamilies from 10 CB samples displayed polyclonal rearrangement pattern, whereas one or two PCR products from 6 CB samples showed oligoclonality or biclonality. In contrast, PCR products from 9 of 10 adult healthy controls contained at least an oligoclonal peak in different TRGV or TRDV subfamilies respectively. The pattern of TRGV subfamily expression level in CBMCs was TRGVI>TRGVIII>TRGVII, and in contrast, TRGVII>TRGVI>TRGVIII was found in

  19. Determining epithelial contribution to in vivo mesenchymal tumour expression signature using species-specific microarray profiling analysis of xenografts.

    Science.gov (United States)

    Purdom, E; Restall, C; Busuttil, R A; Schluter, H; Boussioutas, A; Thompson, E W; Anderson, R L; Speed, T P; Haviv, I

    2013-02-01

    Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.

  20. A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains.

    Science.gov (United States)

    Kitaura, Kazutaka; Shini, Tadasu; Matsutani, Takaji; Suzuki, Ryuji

    2016-10-11

    High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.

  1. Song repertoire size correlates with measures of body size in Eurasian blackbirds

    DEFF Research Database (Denmark)

    Hesler, Nana; Mundry, Roger; Sacher, Thomas;

    2012-01-01

    organisation. Here we investigated whether repertoire size in Eurasian blackbirds correlates with measures of body size, namely length of wing, 8th primary, beak and tarsus. So far, very few studies have investigated species with large repertoires and a flexible song organisation in this context. We found...... positive correlations, meaning that larger males had larger repertoires. Larger males may have better fighting abilities and, thus, advantages in territorial defence. Larger structural body size may also reflect better conditions during early development. Therefore, under the assumption that body size...

  2. Improved Molecular Detection of Angiostrongylus cantonensis in Mollusks and Other Environmental Samples with a Species-Specific Internal Transcribed Spacer 1-Based TaqMan Assay ▿

    Science.gov (United States)

    Qvarnstrom, Yvonne; da Silva, Ana Cristina Aramburu; Teem, John L.; Hollingsworth, Robert; Bishop, Henry; Graeff-Teixeira, Carlos; da Silva, Alexandre J.

    2010-01-01

    Angiostrongylus cantonensis is the most common cause of human eosinophilic meningitis. Humans become infected by ingesting food items contaminated with third-stage larvae that develop in mollusks. We report the development of a real-time PCR assay for the species-specific identification of A. cantonensis in mollusk tissue. PMID:20543049

  3. Varying importance of cuticular hydrocarbons and iridoids in the species-specific mate recognition pheromones of three closely related Leptopilina species

    Directory of Open Access Journals (Sweden)

    Ingmar eWeiss

    2015-03-01

    Full Text Available Finding a suitable mate for reproduction is one of the most important tasks for almost all animals. In insects this task is often facilitated by pheromone-mediated communication. While insect pheromones in general show enormous chemical diversity, closely related species often use structurally similar compounds in their pheromones. Despite this similarity, pheromones of congeneric species living in sympatry need to be species specific.We investigated the pheromone-mediated mate recognition by males of three closely related species of Leptopilina, a genus of parasitoid wasps that utilize the larvae of Drosophila as hosts. The study species, L. heterotoma, L. boulardi, and L. victoriae, occur sympatrically and have a similar ecology and life history. We have found that mate recognition is species specific in all three species. This species specificity is achieved by a differing importance of cuticular hydrocarbons (CHCs and iridoids in the female mate recognition pheromones. In L. heterotoma the iridoids are of major importance while CHCs play a negligible role. In L. boulardi, however, the CHCs are as important as the iridoids, while in L. victoriae, the CHCs alone elicit a full behavioral response of males.Our results provide novel insights into pheromone evolution in insects by showing that selection on two completely different classes of chemical compounds may generate conditions where compounds from both classes contribute to a varying degree to the chemical communication of closely related species and that this variation also generates the species specificity of the signals.

  4. Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae.

    Directory of Open Access Journals (Sweden)

    Severine Matthijs

    Full Text Available THE skin secretion of many amphibians contains peptides that are able to kill a broad range of microorganisms (antimicrobial peptides: AMPs and potentially play a role in innate immune defense. Similar to the toxin arsenals of various animals, amphibian AMP repertoires typically show major structural variation, and previous studies have suggested that this may be the result of diversifying selection in adaptation to a diverse spectrum of pathogens. Here we report on transcriptome analyses that indicate a very different pattern in the dwarf clawed frog H. boettgeri. Our analyses reveal a diverse set of transcripts containing two to six tandem repeats, together encoding 14 distinct peptides. Five of these have recently been identified as AMPs, while three more are shown here to potently inhibit the growth of gram-negative bacteria, including multi-drug resistant strains of the medically important Pseudomonas aeruginosa. Although the number of predicted peptides is similar to the numbers of related AMPs in Xenopus and Silurana frog species, they show significantly lower structural variation. Selection analyses confirm that, in contrast to the AMPs of other amphibians, the H. boettgeri peptides did not evolve under diversifying selection. Instead, the low sequence variation among tandem repeats resulted from purifying selection, recent duplication and/or concerted gene evolution. Our study demonstrates that defense peptide repertoires of closely related taxa, after diverging from each other, may evolve under differential selective regimes, leading to contrasting patterns of structural diversity.

  5. Sheep (Ovis aries) T cell receptor alpha (TRA) and delta (TRD) genes and genomic organization of the TRA/TRD locus.

    Science.gov (United States)

    Piccinni, Barbara; Massari, Serafina; Caputi Jambrenghi, Anna; Giannico, Francesco; Lefranc, Marie-Paule; Ciccarese, Salvatrice; Antonacci, Rachele

    2015-09-18

    In mammals, T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T cell receptors. Human and mouse display a low peripheral blood γδ T cell percentage ("γδ low species") while sheep, bovine and pig accounts for a high proportion of γδ T lymphocytes ("γδ high species"). While the T cell receptor alpha (TRA) and delta (TRD) genes and the genomic organization of the TRA/TRD locus has been determined in human and mouse, this information is still poorly known in artiodactyl species, such as sheep. The analysis of the current Ovis aries whole genome assembly, Oar_v3.1, revealed that, as in the other mammalian species, the sheep TRD locus is nested within the TRA locus. In the most 5' part the TRA/TRD locus contains TRAV genes which are intermingled with TRDV genes, then TRD genes which include seven TRDD, four TRDJ genes, one TRDC and a single TRDV gene with an inverted transcriptional orientation, and finally in the most 3' part, the TRA locus is completed by 61 TRAJ genes and one TRAC gene. Comparative sequence and analysis and annotation led to the identification of 66 TRAV genes assigned to 34 TRAV subgroups and 25 TRDV genes belonging to the TRDV1 subgroup, while one gene was found for each TRDV2, TRDV3 and TRDV4 subgroups. Multiple duplication events within several TRAV subgroups have generated the sheep TRAV germline repertoire, which is substantially larger than the human one. A significant proportion of these TRAV gene duplications seems to have occurred simultaneously with the amplification of the TRDV1 subgroup genes. This dynamic of expansion has also generated novel multigene subgroups, which are species-specific. Ovis aries TRA and TRD genes identified in this study were assigned IMGT definitive or temporary names and were approved by the IMGT/WHO-IUIS nomenclature committee. The completeness of the genome assembly in the 3' part of the locus has allowed us to interpret rearranged CDR3 of cDNA from

  6. Degeneracy-driven self-structuring dynamics in selective repertoires.

    Science.gov (United States)

    Atamas, Sergei P; Bell, Jonathan

    2009-08-01

    Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or "sloppy," systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka-Volterra and Verhulst types. In the degenerate systems of Lotka-Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka-Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple "mirroring" of the environment by the "fittest" elements of population.

  7. Comprehensive repertoire of foldable regions within whole genomes.

    Directory of Open Access Journals (Sweden)

    Guilhem Faure

    2013-10-01

    Full Text Available In order to get a comprehensive repertoire of foldable domains within whole proteomes, including orphan domains, we developed a novel procedure, called SEG-HCA. From only the information of a single amino acid sequence, SEG-HCA automatically delineates segments possessing high densities in hydrophobic clusters, as defined by Hydrophobic Cluster Analysis (HCA. These hydrophobic clusters mainly correspond to regular secondary structures, which together form structured or foldable regions. Genome-wide analyses revealed that SEG-HCA is opposite of disorder predictors, both addressing distinct structural states. Interestingly, there is however an overlap between the two predictions, including small segments of disordered sequences, which undergo coupled folding and binding. SEG-HCA thus gives access to these specific domains, which are generally poorly represented in domain databases. Comparison of the whole set of SEG-HCA predictions with the Conserved Domain Database (CDD also highlighted a wide proportion of predicted large (length >50 amino acids segments, which are CDD orphan. These orphan sequences may either correspond to highly divergent members of already known families or belong to new families of domains. Their comprehensive description thus opens new avenues to investigate new functional and/or structural features, which remained so far uncovered. Altogether, the data described here provide new insights into the protein architecture and organization throughout the three kingdoms of life.

  8. Criticism of TV in Brazil: values and repertoires

    Directory of Open Access Journals (Sweden)

    Rosana Soares

    2013-07-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 TV criticism in cultural journalism faces nowadays some challenges for programming evaluation, among them, the set up of a repertoire. This article aims at identifying, and discussing the values (aesthetical, market, pedagogical which are raised in critical texts written by the journalists Patricia Kogut, from O Globo, and Daniel Castro, from the internet portal R7. Results obtained indicate that Kogut´s criticism favours the examination of television narrative discourse while Castro´s privileges aspects related mainly to the audience. As common points, both sets of critical texts share values related to innovation, interactivity, and transmediality as parameters for a quality TV. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabela normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  9. A Survey on Current Repertoire for 5G

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Nadeem

    2017-02-01

    Full Text Available Cellular technology progressed miraculously in the last decade. It has redefined communication paradigm. Statistics provided by Ericson and Cisco show the number of mobile connected devices will reach figures of 9.2 billion and 11.6 billion respectively by 2020. Overall connected devices will surpass 50 billion then. Extremely higher data rates, zero latency, massively scalable, connecting everything anywhere is what that 5G promises. To meet such ambitious goals which apparently seems challenging, the tools and technologies that mobile communication has in its repertoire and what it needs more either enhancement in existing solutions or new solution or joint venture of both, is a question that demands an answer. To realize 5G, evolution and revolution both approaches are being employed. Evolution seeks enhancements in existing technologies while revolution looks for new innovations and technologies. Extension in frequency spectrum, network densification, MIMO, carrier aggregation, CentralizedRAN, HetNets, and Network Functionality Virtualization are the key enablers. This paper disseminates information about ongoing research and development of 5G

  10. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum.

  11. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Ouyang Shu

    2005-09-01

    Full Text Available Abstract Background The Solanaceae is a family of closely related species with diverse phenotypes that have been exploited for agronomic purposes. Previous studies involving a small number of genes suggested sequence conservation across the Solanaceae. The availability of large collections of Expressed Sequence Tags (ESTs for the Solanaceae now provides the opportunity to assess sequence conservation and divergence on a genomic scale. Results All available ESTs and Expressed Transcripts (ETs, 449,224 sequences for six Solanaceae species (potato, tomato, pepper, petunia, tobacco and Nicotiana benthamiana, were clustered and assembled into gene indices. Examination of gene ontologies revealed that the transcripts within the gene indices encode a similar suite of biological processes. Although the ESTs and ETs were derived from a variety of tissues, 55–81% of the sequences had significant similarity at the nucleotide level with sequences among the six species. Putative orthologs could be identified for 28–58% of the sequences. This high degree of sequence conservati