WorldWideScience

Sample records for gene regulationin cellular

  1. Analysis of HPV-16 early gene regulationin cellular differentiation, includingcharacterisation of the possiblerole of CPEB proteins

    DEFF Research Database (Denmark)

    Hansen, Christina Neigaard

    cytoplasmic polyadenylation elements (CPEs) situated in the distal part of the messengers. These CPE sequences bind the CPE-binding protein CPEB. In this study, the mRNA levels of the 4 CPEBs in primary keratinocytes, in 8 different cell lines, and in both normal and cancer genital tissues have been analysed....... Huge variations among both the different cell types and the 4 CPEBs were observed. Interestingly, in ovarian cancer we found downregulated mRNA levels of CPEB1, a protein that previously has been suggested to be a tumor suppressor protein. We also found a tendency for the CPEB3 mRNA to be downregulated...... E6/E7 expression. HPV-16 preferably infects the proliferating cells of the continually renewing stratified epithelium lining the genital tract. These proliferating cells will differentiate as they are pushed upwards in the epithelium by newly produced daughter cells. The virus life cycle is tightly...

  2. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2013-11-25

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... entitled ``Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy,...

  3. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-26

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Tumor Vaccines and Biotechnology Branch, Office of Cellular, Tissue and Gene Therapies, Center...

  4. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakashima

    2014-02-01

    Full Text Available Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption, knock-in (insertion, and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering.

  5. Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability.

    Science.gov (United States)

    Liu, Gaowen; Yong, Mei Yun Jacy; Yurieva, Marina; Srinivasan, Kandhadayar Gopalan; Liu, Jaron; Lim, John Soon Yew; Poidinger, Michael; Wright, Graham Daniel; Zolezzi, Francesca; Choi, Hyungwon; Pavelka, Norman; Rancati, Giulia

    2015-12-03

    Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cellular senescence and tumor suppressor gene p16.

    Science.gov (United States)

    Rayess, Hani; Wang, Marilene B; Srivatsan, Eri S

    2012-04-15

    Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16. Copyright © 2011 UICC.

  7. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Science.gov (United States)

    2011-02-16

    ... Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene therapy (CGT) products with recommendations for developing... document entitled ``Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products''...

  8. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-07-23

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... on guidance documents issued from the Office of Cellular, Tissue and Gene Therapies, Center...

  9. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2012-11-29

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... for Biologics Research and Evaluation (CBER), Office of Cellular, Tissue, and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy, gene therapy, therapeutic...

  10. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2012-10-30

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... Register of October 17, 2012, FDA announced that a meeting of the Cellular, Tissue and Gene Therapies..., Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, FDA. On...

  11. [Maintenance of cellular memory by Polycomb group genes].

    Science.gov (United States)

    Netter, S; Boivin, A

    2001-07-01

    The Polycomb-group genes (PcG) encode a group of repressors well known for their function in stably maintaining the inactive expression patterns of key developmental regulators, including homeotic genes. PcG genes are structurally and functionally conserved in Drosophila and Mammalians, and some homologues have been found in worms, yeast and plants. Their products act through different complexes and at least one of these complexes seems to induce histone deacetylation. In Drosophila, building of PcG complexes depends on both protein-protein interactions and recognition near target genes of specific DNA sequences called Polycomb-group response element (PRE). Together with the counteracting trithorax-group proteins, PcG products establish a form of cellular memory by faithfully maintaining transcription states determined early in embryogenesis. Here, we discuss several aspects of PcG functions: the composition of the different complexes, the establishment and the transmission of silencing to subsequent cell generations as well as the subnuclear localisation of the PcG products.

  12. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Chronic hepatitis B virus (HBV infection is etiologically related to human hepatocellular carcinoma (HCC. Most HCCs contain integrated HBV DNA in hepatocyte, suggesting that the integration may be involved in carcinogenesis. Available data on the integrants from human hepatocellular carcinomas seem to represent primary integrants as well as the products of secondary rearrangements. By means of structural analyses of the possible primary integrants, it has been observed that the replication intermediates of the viral genome are the preferred substrates for integration. The integrated HBV DNA and the target cellular DNA are invariably associated with deletions, possibly reflecting the substrate for, and the mechanism of, the integration reaction. The host DNA sequences as well as the target site of integration in chromosomes are selected randomly suggesting that HBV DNA integration should bring about random mutagenic effects. Analysis of the samples recovered from hepatocellular carcinomas show that the integrated HBV DNA can mediate secondary rearrangements of chromosomes, such as translocations, inversions, deletions and (possibly amplifications. The integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion. The integration has been shown in a number of cases to affect a variety of cancer-related genes and to exert insertional mutagenesis. However, in contrast to the woodchuck model, in which specific HBV-DNA integration is detectable in most cases, insertional activation or inactivation of cellular genes appears to be a rare event in man. The discovery of transactivating functions exerted by HBx and truncated HBs(urface proteins supports the notion that these could be relevant to hepatocarcinogenesis as these transactivator sequences have been found in a large number of HCC tumors or hepatoma-derived cell lines. The HBx

  13. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  14. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... Lentiviral Vector Based Gene Therapy Products. FDA intends to make background material available to...

  15. 77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-17

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee..., Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and..., Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, and...

  16. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-12-31

    ... No. FDA-2013-N-0001] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting... the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General..., Tissue, and Gene Therapies, Center for Biologics Evaluation and Research (CBER), FDA. On February...

  17. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-21

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... gene therapy products for the treatment of retinal disorders. Topics to be considered include...

  18. Emerging cellular and gene therapies for congenital anemias.

    Science.gov (United States)

    Ludwig, Leif S; Khajuria, Rajiv K; Sankaran, Vijay G

    2016-12-01

    Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    Science.gov (United States)

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  20. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice...

  1. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-03-12

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  2. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-05

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  3. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory...

  4. Cut and Paste: restoring cellular function by gene correction

    Institute of Scientific and Technical Information of China (English)

    Guang-Hui Liu; Ignacio Sancho-Martinez; Juan Carlos Izpisua Belmonte

    2012-01-01

    Gene-editing technologies and patient-specific induced pluripotent stem cells (iPSCs) may represent an unprecedented opportunity for merging the stem cell and traditional gene therapy fields to fulfill the promises of regenerative medicine.

  5. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee..., Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Gene Therapies, Center for Biologics Evaluation and Research, FDA. FDA intends to make...

  6. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    徐永忠; 谢建平; 李瑶; 乐军; 陈建平; 淳于利娟; 王洪海

    2003-01-01

    Objective To examine the global effects of Mycobacterium tuberculosis (M.tuberculosis) infection on macrophages. Methods The gene expression profiling of macrophage U937, in response to infection with M.tuberculosis H37Ra, was monitored using a high-density cDNA microarray. Results M.tuberculosis infection caused 463 differentially expressed genes, of which 366 genes are known genes registered in the Gene Bank. These genes function in various cellular processes including intracellular signalling, cytoskeletal rearrangement, apoptosis, transcriptional regulation, cell surface receptors, cell-mediated immunity as well as a variety of cellular metabolic pathways, and may play key roles in M.tuberculosis infection and intracellular survival. Conclusions M.tuberculosis infection alters the expression of host-cell genes, and these genes will provide a foundation for understanding the infection process of M.tuberculosis. The cDNA microarray is a powerful tool for studying pathogen-host cell interaction.

  7. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype.

    Science.gov (United States)

    Burnight, E R; Wiley, L A; Drack, A V; Braun, T A; Anfinson, K R; Kaalberg, E E; Halder, J A; Affatigato, L M; Mullins, R F; Stone, E M; Tucker, B A

    2014-07-01

    Mutations in CEP290 are the most common cause of Leber congenital amaurosis (LCA), a severe inherited retinal degenerative disease for which there is currently no cure. Autosomal recessive CEP290-associated LCA is a good candidate for gene replacement therapy, and cells derived from affected individuals give researchers the ability to study human disease and therapeutic gene correction in vitro. Here we report the development of lentiviral vectors carrying full-length CEP290 for the purpose of correcting the CEP290 disease-specific phenotype in human cells. A lentiviral vector containing CMV-driven human full-length CEP290 was constructed. Following transduction of patient-specific, iPSC-derived, photoreceptor precursor cells, reverse transcriptase-PCR analysis and western blotting revealed vector-derived expression. As CEP290 is important in ciliogenesis, the ability of fibroblast cultures from CEP290-associated LCA patients to form cilia was investigated. In cultures derived from these patients, fewer cells formed cilia compared with unaffected controls. Cilia that were formed were shorter in patient-derived cells than in cells from unaffected individuals. Importantly, lentiviral delivery of CEP290 rescued the ciliogenesis defect. The successful construction and viral transfer of full-length CEP290 brings us closer to the goal of providing gene- and cell-based therapies for patients affected with this common form of LCA.

  8. GO-2D: identifying 2-dimensional cellular-localized functional modules in Gene Ontology

    Directory of Open Access Journals (Sweden)

    Yang Da

    2007-01-01

    Full Text Available Abstract Background Rapid progress in high-throughput biotechnologies (e.g. microarrays and exponential accumulation of gene functional knowledge make it promising for systematic understanding of complex human diseases at functional modules level. Based on Gene Ontology, a large number of automatic tools have been developed for the functional analysis and biological interpretation of the high-throughput microarray data. Results Different from the existing tools such as Onto-Express and FatiGO, we develop a tool named GO-2D for identifying 2-dimensional functional modules based on combined GO categories. For example, it refines biological process categories by sorting their genes into different cellular component categories, and then extracts those combined categories enriched with the interesting genes (e.g., the differentially expressed genes for identifying the cellular-localized functional modules. Applications of GO-2D to the analyses of two human cancer datasets show that very specific disease-relevant processes can be identified by using cellular location information. Conclusion For studying complex human diseases, GO-2D can extract functionally compact and detailed modules such as the cellular-localized ones, characterizing disease-relevant modules in terms of both biological processes and cellular locations. The application results clearly demonstrate that 2-dimensional approach complementary to current 1-dimensional approach is powerful for finding modules highly relevant to diseases.

  9. Air Pollution, Obesity, Genes, and Cellular Adhesion Molecules

    Science.gov (United States)

    Madrigano, Jaime; Baccarelli, Andrea; Wright, Robert O.; Suh, Helen; Sparrow, David; Vokonas, Pantel S.; Schwartz, Joel

    2011-01-01

    Objectives Particulate matter (PM) has been associated with acute cardiovascular outcomes, but our understanding of the mechanism is incomplete. We examined the association between PM and cell adhesion molecules. We also investigated the modifying effect of genotype and phenotype variation to gain insight into the relevant biological pathways for this association. Methods We used mixed regression models to examine the association of PM2.5 and black carbon (BC) with serum concentrations of soluble Intercellular Adhesion Molecule (sICAM-1) and soluble Vascular Cell Adhesion Molecule (sVCAM-1), markers of endothelial function and inflammation, in a longitudinal study of 809 participants in the Normative Aging Study (1819 total observations). We also examined whether this association was modified by genotype, obesity, or diabetes status. Genes selected for analyses were either related to oxidative stress, endothelial function, lipid metabolism or metal processing. Results BC during the 2 days prior to blood draw was significantly associated with increased sVCAM-1 (4.5% increase per 1μg/m3 95% CI 1.1, 8.0). Neither pollutant was associated with sICAM-1. Larger effects of BCon sVCAM were seen in subjects with obesity (p=0.007) and who were GSTM1 null (p=0.02). Conclusions BC is associated with markers of endothelial function and inflammation. Genes related to oxidative defense may modify this association. PMID:19884647

  10. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better?

    Science.gov (United States)

    Tomatsu, Shunji; Azario, Isabella; Sawamoto, Kazuki; Pievani, Alice Silvia; Biondi, Andrea; Serafini, Marta

    2016-03-01

    Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs). The increasing interest in newborn screening procedures for LSDs underlines the need for alternative cellular and gene therapy approaches to be developed during the perinatal period, supporting the treatment of MPS patients before the onset of clinical signs and symptoms. The rationale for considering these early therapies results from the clinical experience in the treatment of MPSs and other genetic disorders. The normal or gene-corrected hematopoiesis transplanted in patients can produce the missing protein at levels sufficient to improve and/or halt the disease-related abnormalities. However, these current therapies are only partially successful, probably due to the limited efficacy of the protein provided through the hematopoiesis. An alternative explanation is that the time at which the cellular or gene therapy procedures are performed could be too late to prevent pre-existing or progressive organ damage. Considering these aspects, in the last several years, novel cellular and gene therapy approaches have been tested in different animal models at birth, a highly early stage, showing that precocious treatment is critical to prevent long-term pathological consequences. This review provides insights into the state-of-art accomplishments made with neonatal cellular and gene-based therapies and the major barriers that need to be overcome before they can be implemented in the medical community.

  11. A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body.

    Science.gov (United States)

    Muranaka, Tomoaki; Kubota, Saya; Oyama, Tokitaka

    2013-12-01

    Gene expression is a fundamental cellular process and expression dynamics are of great interest in life science. We succeeded in monitoring cellular gene expression in a duckweed plant, Lemna gibba, using bioluminescent reporters. Using particle bombardment, epidermal and mesophyll cells were transfected with the luciferase gene (luc+) under the control of a constitutive [Cauliflower mosaic virus 35S (CaMV35S)] and a rhythmic [Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1)] promoter. Bioluminescence images were captured using an EM-CCD (electron multiply charged couple device) camera. Luminescent spots of the transfected cells in the plant body were quantitatively measured at the single-cell level. Luminescence intensities varied over a 1,000-fold range among CaMV35S::luc+-transfected cells in the same plant body and showed a log-normal-like frequency distribution. We monitored cellular gene expression under light-dark conditions by capturing bioluminescence images every hour. Luminescence traces of ≥50 individual cells in a frond were successfully obtained in each monitoring procedure. Rhythmic and constitutive luminescence behaviors were observed in cells transfected with AtCCA1::luc+ and CaMV35S::luc+, respectively. Diurnal rhythms were observed in every AtCCA1::luc+-introduced cell with traceable luminescence, and slight differences were detected in their rhythmic waveforms. Thus the single-cell bioluminescence monitoring system was useful for the characterization of cellular gene expression in a plant body.

  12. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. ...... imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). CONCLUSION: These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.......BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes....... As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC...

  13. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    NARCIS (Netherlands)

    Chornokur, G.; Lin, H.Y.; Tyrer, J.P.; Lawrenson, K.; Dennis, J.; Amankwah, E.K.; Qu, X.; Tsai, Y.Y.; Jim, H.S.; Chen, Z.; Chen, A.Y.; Permuth-Wey, J.; Aben, K.; Anton-Culver, H.; Antonenkova, N.; Bruinsma, F.; Bandera, E.V.; Bean, Y.T.; Beckmann, M.W.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bunker, C.H.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Bois, A. du; Despierre, E.; Dicks, E.; Doherty, J.A.; Dork, T.; Durst, M.; Easton, D.F.; Eccles, D.M.; Edwards, R.P.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goodman, M.T.; Gronwald, J.; Harrington, P.; Harter, P.; Hein, A.; Heitz, F.; Hildebrandt, M.A.T.; Hillemanns, P.; Hogdall, C.K.; Hogdall, E.; Hosono, S.; Jakubowska, A.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kelemen, L.E.; Kellar, M.; Kiemeney, L.A.L.M.; Krakstad, C.; Kjaer, S.K.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lim, B.K.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.A.G.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; McNeish, I.; Menon, U.; Milne, R.L.; Modugno, F.; Moysich, K.B.; Ness, R.B.; Nevanlinna, H.; Eilber, U.; Odunsi, K.; Olson, S.H.; Orlow, I., et al.

    2015-01-01

    BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As

  14. Gene markers of cellular aging in human multipotent stromal cells in culture.

    Science.gov (United States)

    Bellayr, Ian H; Catalano, Jennifer G; Lababidi, Samir; Yang, Amy X; Lo Surdo, Jessica L; Bauer, Steven R; Puri, Raj K

    2014-04-28

    Human multipotent stromal cells (MSCs) isolated from bone marrow or other tissue sources have great potential to treat a wide range of injuries and disorders in the field of regenerative medicine and tissue engineering. In particular, MSCs have inherent characteristics to suppress the immune system and are being studied in clinical studies to prevent graft-versus-host disease. MSCs can be expanded in vitro and have potential for differentiation into multiple cell lineages. However, the impact of cell passaging on gene expression and function of the cells has not been determined. Commercially available human MSCs derived from bone marrow from six different donors, grown under identical culture conditions and harvested at cell passages 3, 5, and 7, were analyzed with gene-expression profiling by using microarray technology. The phenotype of these cells did not change as reported previously; however, a statistical analysis revealed a set of 78 significant genes that were distinguishable in expression between passages 3 and 7. None of these significant genes corresponded to the markers established by the International Society for Cellular Therapy (ISCT) for MSC identification. When the significant gene lists were analyzed through pathway analysis, these genes were involved in the top-scoring networks of cellular growth and proliferation and cellular development. A meta-analysis of the literature for significant genes revealed that the MSCs seem to be undergoing differentiation into a senescent cell type when cultured extensively. Consistent with the differences in gene expression at passage 3 and 7, MSCs exhibited a significantly greater potential for cell division at passage 3 in comparison to passage 7. Our results identified specific gene markers that distinguish aging MSCs grown in cell culture. Confirmatory studies are needed to correlate these molecular markers with biologic attributes that may facilitate the development of assays to test the quality of MSCs

  15. Stochastic fluctuations and distributed control of gene expression impact cellular memory.

    Directory of Open Access Journals (Sweden)

    Guillaume Corre

    Full Text Available Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.

  16. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  17. Network-Guided Key Gene Discovery for a Given Cellular Process

    DEFF Research Database (Denmark)

    He, Feng Q; Ollert, Markus

    2017-01-01

    Identification of key genes for a given physiological or pathological process is an essential but still very challenging task for the entire biomedical research community. Statistics-based approaches, such as genome-wide association study (GWAS)- or quantitative trait locus (QTL)-related analysis...... have already made enormous contributions to identifying key genes associated with a given disease or phenotype, the success of which is however very much dependent on a huge number of samples. Recent advances in network biology, especially network inference directly from genome-scale data...... and the following-up network analysis, opens up new avenues to predict key genes driving a given biological process or cellular function. Here we review and compare the current approaches in predicting key genes, which have no chances to stand out by classic differential expression analysis, from gene...

  18. Identification of the candidate genes associated with cellular rejection in pig-to-human xenotransplantation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To identify the genes associated with cellular rejection in pig-to-human xenotransplantation, the suppression subtractive hybridization (SSH) was used in screening the up-regulated genes from a co-culture of human peripheral blood mononuclear cells (PBMCs) and porcine vascular endothelial cell line PIEC. The up-regulated cDNAs were cloned into pGEM-T Easy vector and then sequenced. Nucleic acid homology searches were performed using the BLAST program. A subtracted cDNA library including about 300 clones with the expected up-regulated genes was obtained. Twenty-four of these clones were analyzed by sequencing and homology comparison was made. These clones represent the genes of human perforin (PRF1), proteasome, lymphocyte specific interferon regulatory factor/interferon regulatory factor 4 (LSIRF/IRF 4), muscleblind-like (MBNL) protein and a porcine expressed sequence tag (EST) which has 81% homology with human oxidative-stress responsive 1 (OSR 1). These genes might be the candidate genes which are associated with cellular rejection in pig-to-human xenotransplantation.

  19. Analysis of genes differentially expressed during initial cellular dedifferentiation in cotton

    Institute of Scientific and Technical Information of China (English)

    ZHU HuaGuo; TU LiLi; JIN ShuangXia; XU Li; TAN JiaFu; DENG FengLin; ZHANG XianLong

    2008-01-01

    The early phase of phytohormone induction is a vital stage of somatic embryogenesis. This phase includes a key process for acquiring cellular totipotency through cellular dedifferentiation. To unravel the molecular mechanism of cellular dedifferentiation in cotton, we constructed a cDNA library using the suppression subtractive hybridization method. A total of 286 differential cDNA clones were sequenced and identified. Among these clones, 112 unique ESTs were significantly up-regulated during the early phase of phytohormone induction, and 40.2% of the ESTs were first identified. GST was highly expressed from 6 to 24 h after induction with phytohormone treatment. PRPs were predominantly expressed and exhibited distinct expression patterns in different treatments, suggesting that they are closely related to cellular dedifferentiation in cotton. Putative GhSAMS, GhSAMDC, GhSAHH and GhACO3 involvement in SAM metabolism was identified in this library. The analysis of qRT-PCR showed that two remarkable increased expressions of the four SAM-related genes happened during the early phase of phytohormone induction, and that a highly positive correlation existed between GhSAMS and GhSAHH. The highest expression level of GhSAMS might be associated with its reentry into the cell cycle. The histological observations further showed that some cells accomplished cellular dedifferentiation and division within 72 h in 2,4-D treatment, and that cellular dedifferentiation might be regulated through two alterations in SAM-dependent transmethylation activity in cotton. In addition, the expression patterns of differential genes in different treatments disclosed the complicated interaction between 2, 4-D and kinetin.

  20. Visualization of Gene Mutation Complicated Pattern of Hepatitis B Virus Based on Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    SHAO Shi-huang; XIAO Xuan; DING Yong-sheng; HUANG Zhen-de

    2005-01-01

    Hepatitis B virus shows instantaneous and high rate mutations in biological experiments, some sorts of which affect the efficiency of virus replication greatly through enhancing or depressing the viral replication, while others have no influence at all. Taking advantage of prominent features of cellular automata, we simulate the effect of hepatitis B virus gene mutation on its replication efficiency. The computer simulation results demonstrate the feasibility of our novel model by comparing with the results of biological experiments.

  1. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish

    Directory of Open Access Journals (Sweden)

    Kazuhide eAsakawa

    2013-05-01

    Full Text Available Bacterial artificial chromosome (BAC transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS. Here, we applied these techniques to zebrafish (danio rerio in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labelling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organisation of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterisation of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.

  2. Cellular automata-based artificial life system of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ji-xin Liu

    2016-02-01

    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  3. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  4. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Science.gov (United States)

    Simpkins, Jessica A.; Rickel, Kirby E.; Madeo, Marianna; Ahlers, Bethany A.; Carlisle, Gabriel B.; Nelson, Heidi J.; Cardillo, Andrew L.; Weber, Emily A.; Vitiello, Peter F.; Pearce, David A.

    2016-01-01

    ABSTRACT Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. PMID:27142334

  5. Immediate-Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses.

    Science.gov (United States)

    Torres, Lilith; Tang, Qiyi

    2014-12-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus-host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate-early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate-early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.

  6. Immediate–Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses

    Science.gov (United States)

    Torres, Lilith; Tang, Qiyi

    2015-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses. PMID:25501994

  7. Immediate–Early(IE) gene regulation of cytomegalovirus:IE1-and pp71-mediated viral strategies against cellular defenses

    Institute of Scientific and Technical Information of China (English)

    Lilith; Torres; Qiyi; Tang

    2014-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus(HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host(latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early(IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.

  8. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC Risk.

    Directory of Open Access Journals (Sweden)

    Ganna Chornokur

    Full Text Available Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC, we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC. Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS. SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020; this SNP was also associated with the borderline/low malignant potential (LMP tumors (P = 0.021. Other genes significantly associated with EOC histological subtypes (p<0.05 included the UGT1A (endometrioid, SLC25A45 (mucinous, SLC39A11 (low malignant potential, and SERPINA7 (clear cell carcinoma. In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4.These results, generated on a large cohort of women, revealed associations between inherited cellular

  9. Identification of driving network of cellular differentiation from single sample time course gene expression data

    Science.gov (United States)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  10. Transcriptional Activity of HTLV-I Tax Influences the Expression of Marker Genes Associated with Cellular Transformation

    Directory of Open Access Journals (Sweden)

    Francene J. Lemoine

    2001-01-01

    Full Text Available Human T cell leukemia virus type I (HTLV-I has been identified as the etiologic agent of adult T cell leukemia (ATL. HTLV-I encodes a transcriptional regulatory protein, Tax, which also functions as the viral transforming protein. Through interactions with a number of cellular transcription factors Tax can modulate cellular gene expression. Since the majority of Tax-responsive cellular genes are important regulators of cellular proliferation, the transactivating functions of Tax appear to be necessary for cellular transformation by HTLV-I. Gaining a complete understanding of the broad range of genes regulated by Tax, the temporal pattern of their expression, and their effects on cell function may identify early markers of disease progression mediated by this virus.

  11. HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation

    Directory of Open Access Journals (Sweden)

    Valencia-Hernández Armando

    2011-05-01

    Full Text Available Abstract Background Human Papillomavirus (HPV E2 plays several important roles in the viral cycle, including the transcriptional regulation of the oncogenes E6 and E7, the regulation of the viral genome replication by its association with E1 helicase and participates in the viral genome segregation during mitosis by its association with the cellular protein Brd4. It has been shown that E2 protein can regulate negative or positively the activity of several cellular promoters, although the precise mechanism of this regulation is uncertain. In this work we constructed a recombinant adenoviral vector to overexpress HPV16 E2 and evaluated the global pattern of biological processes regulated by E2 using microarrays expression analysis. Results The gene expression profile was strongly modified in cells expressing HPV16 E2, finding 1048 down-regulated genes, and 581 up-regulated. The main cellular pathway modified was WNT since we found 28 genes down-regulated and 15 up-regulated. Interestingly, this pathway is a convergence point for regulating the expression of genes involved in several cellular processes, including apoptosis, proliferation and cell differentiation; MYCN, JAG1 and MAPK13 genes were selected to validate by RT-qPCR the microarray data as these genes in an altered level of expression, modify very important cellular processes. Additionally, we found that a large number of genes from pathways such as PDGF, angiogenesis and cytokines and chemokines mediated inflammation, were also modified in their expression. Conclusions Our results demonstrate that HPV16 E2 has regulatory effects on cellular gene expression in HPV negative cells, independent of the other HPV proteins, and the gene profile observed indicates that these effects could be mediated by interactions with cellular proteins. The cellular processes affected suggest that E2 expression leads to the cells in to a convenient environment for a replicative cycle of the virus.

  12. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?

    Science.gov (United States)

    Nykjaer, Anders; Willnow, Thomas E

    2002-06-01

    The low-density lipoprotein receptor gene family is an evolutionarily conserved group of cell-surface receptors produced by mammals and other organisms. Initially thought to be endocytic receptors that mediate the uptake of lipoproteins, recent findings have shown that these receptors have other roles in a range of cellular processes. Among other activities, members of this family act as signal transducers in neuronal migration processes, regulate synaptic plasticity or control vitamin homeostasis. Such multifunctionality is achieved by interaction with diverse cell-surface proteins including glycolipid-anchored receptors, G-protein-coupled receptors and ion channels. Here, we review the molecular interactions of this protein family with other cell-surface proteins that provide specificity and versatility - a versatility that may be reminiscent of a cellular Swiss army knife.

  13. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets.

    Science.gov (United States)

    Burke, B; Sumner, S; Maitland, N; Lewis, C E

    2002-09-01

    The appearance and activation of macrophages are thought to be rapid events in the development of many pathological lesions, including malignant tumors, atherosclerotic plaques, and arthritic joints. This has prompted recent attempts to use macrophages as novel cellular vehicles for gene therapy, in which macrophages are genetically modified ex vivo and then reintroduced into the body with the hope that a proportion will then home to the diseased site. Here, we critically review the efficacy of various gene transfer methods (viral, bacterial, protozoan, and various chemical and physical methods) in transfecting macrophages in vitro, and the results obtained when transfected macrophages are used as gene delivery vehicles. Finally, we discuss the use of various viral and nonviral methods to transfer genes to macrophages in vivo. As will be seen, definitive evidence for the use of macrophages as gene transfer vehicles has yet to be provided and awaits detailed trafficking studies in vivo. Moreover, although methods for transfecting macrophages have improved considerably in efficiency in recent years, targeting of gene transfer specifically to macrophages in vivo remains a problem. However, possible solutions to this include placing transgenes under the control of macrophage-specific promoters to limit expression to macrophages or stably transfecting CD34(+) precursors of monocytes/macrophages and then differentiating these cells into monocytes/macrophages ex vivo. The latter approach could conceivably lead to the bone marrow precursor cells of patients with inherited genetic disorders being permanently fortified or even replaced with genetically modified cells.

  14. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression.

    Directory of Open Access Journals (Sweden)

    Victoria Wahl-Jensen

    2011-10-01

    Full Text Available Zaire ebolavirus (ZEBOV infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP(1,2 is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP(1,2 (VLP(VP40-GP triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLP(VP40 (particles lacking GP(1,2 caused an aberrant response. This suggests that GP(1,2 binding to macrophages plays an important role in the immediate cellular response.

  15. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression

    Directory of Open Access Journals (Sweden)

    Meiri Eti

    2009-02-01

    Full Text Available Abstract Background RNA interference is a gene regulatory mechanism that employs small RNA molecules such as microRNA. Previous work has shown that HIV-1 produces TAR viral microRNA. Here we describe the effects of the HIV-1 TAR derived microRNA on cellular gene expression. Results Using a variation of standard techniques we have cloned and sequenced both the 5' and 3' arms of the TAR miRNA. We show that expression of the TAR microRNA protects infected cells from apoptosis and acts by down-regulating cellular genes involved in apoptosis. Specifically, the microRNA down-regulates ERCC1 and IER3, protecting the cell from apoptosis. Comparison to our cloned sequence reveals possible target sites for the TAR miRNA as well. Conclusion The TAR microRNA is expressed in all stages of the viral life cycle, can be detected in latently infected cells, and represents a mechanism wherein the virus extends the life of the infected cell for the purpose of increasing viral replication.

  16. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    Directory of Open Access Journals (Sweden)

    Nuria Troyano-Suárez

    2015-01-01

    Full Text Available Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK, a scaffold protein at cell-extracellular matrix (ECM adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.

  17. Cellular effects and gene expression after exposure to amorphous silica nanoparticles in vitro

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Beer, Christiane; Wang, Jing

    ). Accordingly, the present study focused on the cytotoxicity of amorphous silica NPs in six different cell lines selected to explore the significance of tissue type and species. The cells were selected as three pairs of human/mouse cell lines derived from lung epithelium (A549 and ASB-XIV), colon epithelium (Ca...... lung cell line, A549, to investigate the mechanism of action. A concentration-dependent increase of cellular reactive oxygen species was demonstrated in silica NP exposed A549 cells. However, induction of oxidative stress related pathways was not found after silica NP exposure in gene array studies...

  18. An efficient method for in vitro gene delivery via regulation of cellular endocytosis pathway

    Directory of Open Access Journals (Sweden)

    Luo J

    2015-03-01

    Full Text Available Jing Luo,1,2,* Caixia Li,3,* Jianlin Chen,1,2 Gang Wang,2 Rong Gao,1 Zhongwei Gu2 1Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, People’s Republic of China; 2National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People’s Republic of China; 3Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People’s Republic of China *These authors contributed equally to this work Abstract: Transfection efficiency was the primary goal for in vitro gene delivery mediated by nonviral gene carriers. Here, we report a modified gene transfection method that could greatly increase the efficiency of, and accelerate the process mediated by, 25 kDa branched polyethyleneimine and Lipofectamine™ 2000 in a broad range of cell strains, including tumor, normal, primary, and embryonic stem cells. In this method, the combination of transfection procedure with optimized complexation volume had a determinant effect on gene delivery result. The superiorities of the method were found to be related to the change of cellular endocytosis pathway and decrease of particle size. The efficient and simple method established in this study can be widely used for in vitro gene delivery into cultured cells. We think it may also be applicable for many more nonviral gene delivery materials than polyethyleneimine and liposome. Keywords: gene delivery, gene expression, endocytosis, polyethyleneimine, Lipofectamine™ 2000

  19. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer

    Science.gov (United States)

    Mendoza-Rodriguez, Mónica; Arreola, Hugo; Valdivia, Alejandra; Peralta, Raúl; Serna, Humberto; Villegas, Vanessa; Romero, Pablo; Alvarado-Hernández, Beatriz; Paniagua, Lucero; Marrero-Rodríguez, Daniel; Meraz, Marco A; Salcedo, Mauricio

    2013-01-01

    Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC. PMID:24040446

  20. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises

    Science.gov (United States)

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz

    2017-01-01

    Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870

  1. Lentiviral gene therapy using cellular promoters cures type 1 Gaucher disease in mice.

    Science.gov (United States)

    Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan

    2015-05-01

    Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease.

  2. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system.

    Science.gov (United States)

    Schlecht, Ulrich; Suresh, Sundari; Xu, Weihong; Aparicio, Ana Maria; Chu, Angela; Proctor, Michael J; Davis, Ronald W; Scharfe, Curt; St Onge, Robert P

    2014-04-05

    Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu's positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson's disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.

  3. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library.

    Science.gov (United States)

    Yoshino, Seiko; Hara, Toshiro; Weng, Jane S; Takahashi, Yuka; Seiki, Motoharu; Sakamoto, Takeharu

    2012-01-01

    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.

  4. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes

    Directory of Open Access Journals (Sweden)

    Oscar Takeo Suzuki

    2014-08-01

    Full Text Available New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibroblasts isolated from 32 genetically-characterized inbred mouse strains were treated in concentration-response format with 65 compounds, including pharmaceutical drugs, environmental chemicals, and compounds with known modes-of-action. Integrated cellular responses were measured at 24 and 72 hours using high-content imaging and included cell loss, membrane permeability, mitochondrial function, and apoptosis. Genetic association analysis of cross-strain differences in the cellular responses resulted in a collection of candidate loci potentially underlying the variable strain response to each chemical. As a demonstration of the approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all chemicals identified a number of over-connected nodes that may serve as core regulatory points in toxicity pathways.

  5. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Directory of Open Access Journals (Sweden)

    McGraw Elizabeth A

    2011-08-01

    Full Text Available Abstract Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements.

  6. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development.

    Directory of Open Access Journals (Sweden)

    Harriet E Feilotter

    Full Text Available The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.

  7. Comparative study of Hippo pathway genes in cellular conveyor belts of a ctenophore and a cnidarian

    Directory of Open Access Journals (Sweden)

    Alicia Coste

    2016-02-01

    Full Text Available Abstract Background The Hippo pathway regulates growth rate and organ size in fly and mouse, notably through control of cell proliferation. Molecular interactions at the heart of this pathway are known to have originated in the unicellular ancestry of metazoans. They notably involve a cascade of phosphorylations triggered by the kinase Hippo, with subsequent nuclear to cytoplasmic shift of Yorkie localisation, preventing its binding to the transcription factor Scalloped, thereby silencing proliferation genes. There are few comparative expression data of Hippo pathway genes in non-model animal species and notably none in non-bilaterian phyla. Results All core Hippo pathway genes could be retrieved from the ctenophore Pleurobrachia pileus and the hydrozoan cnidarian Clytia hemisphaerica, with the important exception of Yorkie in ctenophore. Expression study of the Hippo, Salvador and Scalloped genes in tentacle “cellular conveyor belts” of these two organisms revealed striking differences. In P. pileus, their transcripts were detected in areas where undifferentiated progenitors intensely proliferate and where expression of cyclins B and D was also seen. In C. hemisphaerica, these three genes and Yorkie are expressed not only in the proliferating but also in the differentiation zone of the tentacle bulb and in mature tentacle cells. However, using an antibody designed against the C. hemiphaerica Yorkie protein, we show in two distinct cell lineages of the medusa that Yorkie localisation is predominantly nuclear in areas of active cell proliferation and mainly cytoplasmic elsewhere. Conclusions This is the first evidence of nucleocytoplasmic Yorkie shift in association with the arrest of cell proliferation in a cnidarian, strongly evoking the cell division-promoting role of this protein and its inhibition by the activated Hippo pathway in bilaterian models. Our results furthermore highlight important differences in terms of deployment and

  8. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma

    Science.gov (United States)

    Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  9. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    Science.gov (United States)

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests.

  10. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Lian-Xing Zhang; Li-Feng Zhao; An-Shi Zhang; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level.METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array.RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G0-G1(4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity,these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total upand down-regulated expression times were 419 and 274,respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns,they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.

  11. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures

    Science.gov (United States)

    Zeng, Hongkui; Shen, Elaine H.; Hohmann, John G.; Oh, Wook Seung; Bernard, Amy; Royall, Joshua J.; Glattfelder, Katie J.; Sunkin, Susan M.; Morris, John A.; Guillozet-Bongaarts, Angela L.; Smith, Kimberly A.; Ebbert, Amanda J.; Swanson, Beryl; Kuan, Leonard; Page, Damon T.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hof, Patrick R.; Hyde, Thomas M.; Kleinman, Joel E.; Jones, Allan R.

    2012-01-01

    Summary Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ~1,000 genes important for neural functions, by in situ hybridization with cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene’s expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain. PMID:22500809

  12. Mechanistic links between cellular trade-offs, gene expression, and growth.

    Science.gov (United States)

    Weiße, Andrea Y; Oyarzún, Diego A; Danos, Vincent; Swain, Peter S

    2015-03-01

    Intracellular processes rarely work in isolation but continually interact with the rest of the cell. In microbes, for example, we now know that gene expression across the whole genome typically changes with growth rate. The mechanisms driving such global regulation, however, are not well understood. Here we consider three trade-offs that, because of limitations in levels of cellular energy, free ribosomes, and proteins, are faced by all living cells and we construct a mechanistic model that comprises these trade-offs. Our model couples gene expression with growth rate and growth rate with a growing population of cells. We show that the model recovers Monod's law for the growth of microbes and two other empirical relationships connecting growth rate to the mass fraction of ribosomes. Further, we can explain growth-related effects in dosage compensation by paralogs and predict host-circuit interactions in synthetic biology. Simulating competitions between strains, we find that the regulation of metabolic pathways may have evolved not to match expression of enzymes to levels of extracellular substrates in changing environments but rather to balance a trade-off between exploiting one type of nutrient over another. Although coarse-grained, the trade-offs that the model embodies are fundamental, and, as such, our modeling framework has potentially wide application, including in both biotechnology and medicine.

  13. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Science.gov (United States)

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  14. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  15. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    Science.gov (United States)

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  16. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes.

    Science.gov (United States)

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D; Dobner, Thomas

    2013-04-01

    Death domain-associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein-protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.

  17. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    Science.gov (United States)

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  18. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots.

    Science.gov (United States)

    Wei, Qiang; Jiao, Chen; Guo, Lin; Ding, Yulong; Cao, Junjie; Feng, Jianyuan; Dong, Xiaobo; Mao, Linyong; Sun, Honghe; Yu, Fen; Yang, Guangyao; Shi, Peijian; Ren, Guodong; Fei, Zhangjun

    2017-04-01

    The primary thickening growth of Moso (Phyllostachys edulis) underground shoots largely determines the culm circumference. However, its developmental mechanisms remain largely unknown. Using an integrated anatomy, mathematics and genomics approach, we systematically studied cellular and molecular mechanisms underlying the growth of Moso underground shoots. We discovered that the growth displayed a spiral pattern and pith played an important role in promoting the primary thickening process of Moso underground shoots and driving the evolution of culms with different sizes among different bamboo species. Different with model plants, the shoot apical meristem (SAM) of Moso is composed of six layers of cells. Comparative transcriptome analysis identified a large number of genes related to the vascular tissue formation that were significantly upregulated in a thick wall variant with narrow pith cavity, mildly spiral growth, and flat and enlarged SAM, including those related to plant hormones and those involved in cell wall development. These results provide a systematic perspective on the primary thickening growth of Moso underground shoots, and support a plausible mechanism resulting in the narrow pith cavity, weak spiral growth but increased vascular bundle of the thick wall Moso. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Temporal dynamics of immediate early gene expression during cellular consolidation of spatial memory.

    Science.gov (United States)

    Barry, Daniel N; Commins, Sean

    2017-06-01

    The consolidation of newly acquired memories on a cellular level is thought to take place in the first few hours following learning. This process is dependent on de novo protein synthesis during this time, which ultimately leads to long-term structural and functional neuronal changes and the stabilisation of a memory trace. Immediate early genes (IEGs) are rapidly expressed in neurons following learning, and previous research has suggested more than one wave of IEG expression facilitates consolidation in the hours following learning. We analysed the expression of Zif268, c-Fos and Arc protein in a number of brain regions involved in spatial learning either 90min, 4h or 8h following training in the Morris water maze task. Consistent with the role of IEGs in the earliest stages of consolidation, a single wave of expression was observed in most brain regions at 90min, however a subsequent wave of expression was not observed at 8h. In fact, Zif268 expression was observed to fall below the levels of naïve controls at this time-point in the medial prefrontal and perirhinal cortices. This may be indicative of synaptic downscaling in these regions in the hours following learning, and an important marker of the consolidation of spatial memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2014-08-01

    Full Text Available CRBP1 (cellular retinol binding protein 1 and CRBP3 (cellular retinol binding protein 3, are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE, age at first egg (AFE, weight at first egg (WFE and total number of eggs with 300 age (EN. The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken.

  1. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley

    DEFF Research Database (Denmark)

    Shirvanehdeh, Behrooz Darbani; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular...... protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes...... and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs’ functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear...

  2. Cellular processing and nuclear targeting of non-viral gene delivery systems

    NARCIS (Netherlands)

    Aa, M.A.E.M. van der

    2005-01-01

    Gene therapy utilizes genetic material in order to cure patients either by DNA vaccines or by replacement of a defective gene with a normal one. For successful gene therapy certain elements are required: gene delivery systems with low toxicity and immunity, with efficient gene transfer and high gene

  3. Identification of genes that regulate multiple cellular processes/responses in the context of lipotoxicity to hepatoma cells

    Directory of Open Access Journals (Sweden)

    Yedwabnick Matthew

    2007-10-01

    Full Text Available Abstract Background In order to devise efficient treatments for complex, multi-factorial diseases, it is important to identify the genes which regulate multiple cellular processes. Exposure to elevated levels of free fatty acids (FFAs and tumor necrosis factor alpha (TNF-α alters multiple cellular processes, causing lipotoxicity. Intracellular lipid accumulation has been shown to reduce the lipotoxicity of saturated FFA. We hypothesized that the genes which simultaneously regulate lipid accumulation as well as cytotoxicity may provide better targets to counter lipotoxicity of saturated FFA. Results As a model system to test this hypothesis, human hepatoblastoma cells (HepG2 were exposed to elevated physiological levels of FFAs and TNF-α. Triglyceride (TG accumulation, toxicity and the genomic responses to the treatments were measured. Here, we present a framework to identify such genes in the context of lipotoxicity. The aim of the current study is to identify the genes that could be altered to treat or ameliorate the cellular responses affected by a complex disease rather than to identify the causal genes. Genes that regulate the TG accumulation, cytotoxicity or both were identified by a modified genetic algorithm partial least squares (GA/PLS analysis. The analyses identified NADH dehydrogenase and mitogen activated protein kinases (MAPKs as important regulators of both cytotoxicity and lipid accumulation in response to FFA and TNF-α exposure. In agreement with the predictions, inhibiting NADH dehydrogenase and c-Jun N-terminal kinase (JNK reduced cytotoxicity significantly and increased intracellular TG accumulation. Inhibiting another MAPK pathway, the extracellular signal regulated kinase (ERK, on the other hand, improved the cytotoxicity without changing TG accumulation. Much greater reduction in the toxicity was observed upon inhibiting the NADH dehydrogenase and MAPK (which were identified by the dual-response analysis, than for the

  4. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; García-Fontana, Cristina; Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  5. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  6. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  7. Computational deconvolution of gene expression by individual host cellular subsets from microarray analyses of complex, parasite-infected whole tissues.

    Science.gov (United States)

    Banskota, Nirad; Odegaard, Justin I; Rinaldi, Gabriel; Hsieh, Michael H

    2016-06-01

    Analyses of whole organs from parasite-infected animals can reveal the entirety of the host tissue transcriptome, but conventional approaches make it difficult to dissect out the contributions of individual cellular subsets to observed gene expression. Computational deconvolution of gene expression data may be one solution to this problem. We tested this potential solution by deconvoluting whole bladder gene expression microarray data derived from a model of experimental urogenital schistosomiasis. A supervised technique was used to group B-cell and T-cell related genes based on their cell types, with a semi-supervised technique to calculate the proportions of urothelial cells. We demonstrate that the deconvolution technique was able to group genes into their correct cell types with good accuracy. A clustering-based methodology was also used to improve prediction. However, incorrectly predicted genes could not be discriminated using this methodology. The incorrect predictions were primarily IgH- and IgK-related genes. To our knowledge, this is the first application of computational deconvolution to complex, parasite-infected whole tissues. Other computational techniques such as neural networks may need to be used to improve prediction. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms.

    Science.gov (United States)

    Ugarte-Uribe, Begoña; Grijalvo, Santiago; Pertíñez, Samuel Núñez; Busto, Jon V; Martín, César; Alagia, Adele; Goñi, Félix M; Eritja, Ramón; Alkorta, Itziar

    2017-01-01

    The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Enhanced cellular responses and distinct gene profiles in human fetoplacental artery endothelial cells under chronic low oxygen.

    Science.gov (United States)

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-12-01

    Fetoplacental endothelial cells are exposed to oxygen levels ranging from 2% to 8% in vivo. However, little is known regarding endothelial function within this range of oxygen because most laboratories use ambient air (21% O2) as a standard culture condition (SCN). We asked whether human umbilical artery endothelial cells (HUAECs) that were steadily exposed to the physiological chronic normoxia (PCN, 3% O2) for ∼20-25 days differed in their proliferative and migratory responses to FGF2 and VEGFA as well as in their global gene expression compared with those in the SCN. We observed that PCN enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. In oxygen reversal experiments (i.e., when PCN cells were exposed to SCN for 24 h and vice versa), we found that preexposure to 21% O2 decreased the migratory ability, but not the proliferative ability, of the PCN-HUAECs in response to FGF2 and VEGFA. These PCN-enhanced cellular responses were associated with increased protein levels of HIF1A and NOS3, but not FGFR1, VEGFR1, and VEGFR2. Microarray analysis demonstrated that PCN up-regulated 74 genes and down-regulated 86, 14 of which were directly regulated by hypoxia-inducible factors as evaluated using in silico analysis. Gene function analysis further indicated that the PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from our functional assays. Given that PCN significantly alters cellular responses to FGF2 and VEGFA as well as transcription in HUAECs, it is likely that we may need to reexamine the current cellular and molecular mechanisms controlling fetoplacental endothelial functions, which were largely derived from endothelial models established under ambient O2.

  10. The role of the Parkinson's disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast.

    Science.gov (United States)

    Chesi, Alessandra; Kilaru, Austin; Fang, Xiaodong; Cooper, Antony A; Gitler, Aaron D

    2012-01-01

    YPK9 (Yeast PARK9; also known as YOR291W) is a non-essential yeast gene predicted by sequence to encode a transmembrane P-type transport ATPase. However, its substrate specificity is unknown. Mutations in the human homolog of YPK9, ATP13A2/PARK9, have been linked to genetic forms of early onset parkinsonism. We previously described a strong genetic interaction between Ypk9 and another Parkinson's disease (PD) protein α-synuclein in multiple model systems, and a role for Ypk9 in manganese detoxification in yeast. In humans, environmental exposure to toxic levels of manganese causes a syndrome similar to PD and is thus an environmental risk factor for the disease. How manganese contributes to neurodegeneration is poorly understood. Here we describe multiple genome-wide screens in yeast aimed at defining the cellular function of Ypk9 and the mechanisms by which it protects cells from manganese toxicity. In physiological conditions, we found that Ypk9 genetically interacts with essential genes involved in cellular trafficking and the cell cycle. Deletion of Ypk9 sensitizes yeast cells to exposure to excess manganese. Using a library of non-essential gene deletions, we screened for additional genes involved in tolerance to excess manganese exposure, discovering several novel pathways involved in manganese homeostasis. We defined the dependence of the deletion strain phenotypes in the presence of manganese on Ypk9, and found that Ypk9 deletion modifies the manganese tolerance of only a subset of strains. These results confirm a role for Ypk9 in manganese homeostasis and illuminates cellular pathways and biological processes in which Ypk9 likely functions.

  11. The role of the Parkinson's disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast.

    Directory of Open Access Journals (Sweden)

    Alessandra Chesi

    Full Text Available YPK9 (Yeast PARK9; also known as YOR291W is a non-essential yeast gene predicted by sequence to encode a transmembrane P-type transport ATPase. However, its substrate specificity is unknown. Mutations in the human homolog of YPK9, ATP13A2/PARK9, have been linked to genetic forms of early onset parkinsonism. We previously described a strong genetic interaction between Ypk9 and another Parkinson's disease (PD protein α-synuclein in multiple model systems, and a role for Ypk9 in manganese detoxification in yeast. In humans, environmental exposure to toxic levels of manganese causes a syndrome similar to PD and is thus an environmental risk factor for the disease. How manganese contributes to neurodegeneration is poorly understood. Here we describe multiple genome-wide screens in yeast aimed at defining the cellular function of Ypk9 and the mechanisms by which it protects cells from manganese toxicity. In physiological conditions, we found that Ypk9 genetically interacts with essential genes involved in cellular trafficking and the cell cycle. Deletion of Ypk9 sensitizes yeast cells to exposure to excess manganese. Using a library of non-essential gene deletions, we screened for additional genes involved in tolerance to excess manganese exposure, discovering several novel pathways involved in manganese homeostasis. We defined the dependence of the deletion strain phenotypes in the presence of manganese on Ypk9, and found that Ypk9 deletion modifies the manganese tolerance of only a subset of strains. These results confirm a role for Ypk9 in manganese homeostasis and illuminates cellular pathways and biological processes in which Ypk9 likely functions.

  12. Localization of the cellular retinoic acid binding protein (CRABP) gene relative to the acute promyelocytic leukemia-associated breakpoint on human chromosome 15

    NARCIS (Netherlands)

    A.H.M. Geurts van Kessel (Ad); H. de Leeuw (H.); E.J. Dekker (E.); J.M. Rijks (Jolianne); N. Spurr (N.); A.M. Ledbetter (Andrew M.); E. Kootwijk (E.); M.J. Vaessen (Marie-Josée)

    1991-01-01

    textabstractA human genomic fragment comprising the cellular retinoic acid binding protein (CRABP) gene was isolated. By using a panel of somatic cell hybrids, this gene could be assigned to human chromosome 15. Subsequently, a possible involvement of the CRABP gene in translocation (15;17) (q22;q11

  13. A digital framework to build, visualize and analyze a gene expression atlas with cellular resolution in zebrafish early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Carlos Castro-González

    2014-06-01

    Full Text Available A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization. They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages.

  14. A digital framework to build, visualize and analyze a gene expression atlas with cellular resolution in zebrafish early embryogenesis.

    Science.gov (United States)

    Castro-González, Carlos; Luengo-Oroz, Miguel A; Duloquin, Louise; Savy, Thierry; Rizzi, Barbara; Desnoulez, Sophie; Doursat, René; Kergosien, Yannick L; Ledesma-Carbayo, María J; Bourgine, Paul; Peyriéras, Nadine; Santos, Andrés

    2014-06-01

    A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages.

  15. Hepatitis Bx Antigen Stimulates Expression of a Novel Cellular Gene, URG4, that Promotes Hepatocellular Growth and Survival

    Directory of Open Access Journals (Sweden)

    N. Lale Satiroglu Tufan

    2002-01-01

    Full Text Available Hepatitis B virus encoded X antigen (HBxAg may contribute to the development of hepatocellular carcinoma (HCC by up-or downregulating the expression of cellular genes that promote cell growth and survival. To test this hypothesis, HBxAg-positive and-negative HepG2 cells were constructed, and the patterns of cellular gene expression compared by polymerase chain reaction select cDNA subtraction. The full-length clone of one of these upregulated genes (URG, URG4, encoded a protein of about 104 kDa. URG4 was strongly expressed in hepatitis 13-infected liver and in HCC cells, where it costained with HBxAg, and was weakly expressed in uninfected liver, suggesting URG4 was an effector of HBxAg in vivo. Overexpression of URG4 in HepG2 cells promoted hepatocellular growth and survival in tissue culture and in soft agar, and accelerated tumor development in nude mice. Hence, URG4 may be a natural effector of HBxAg that contributes importantly to multistep hepatocarcinogenesis.

  16. Characterization, sub-cellular localization and expression profiling of the isoprenylcysteine methylesterase gene family in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-09-01

    Full Text Available Abstract Background Isoprenylcysteine methylesterases (ICME demethylate prenylated protein in eukaryotic cell. Until now, knowledge about their molecular information, localization and expression pattern is largely unavailable in plant species. One ICME in Arabidopsis, encoded by At5g15860, has been identified recently. Over-expression of At5g15860 caused an ABA hypersensitive phenotype in transgenic Arabidopsis plants, indicating that it functions as a positive regulator of ABA signaling. Moreover, ABA induced the expression of this gene in Arabidopsis seedlings. The current study extends these findings by examining the sub-cellular localization, expression profiling, and physiological functions of ICME and two other ICME-like proteins, ICME-LIKE1 and ICME-LIKE2, which were encoded by two related genes At1g26120 and At3g02410, respectively. Results Bioinformatics investigations showed that the ICME and other two ICME-like homologs comprise a small subfamily of carboxylesterase (EC 3.1.1.1 in Arabidopsis. Sub-cellular localization of GFP tagged ICME and its homologs showed that the ICME and ICME-like proteins are intramembrane proteins predominantly localizing in the endoplasmic reticulum (ER and Golgi apparatus. Semi-quantitative and real-time quantitative PCR revealed that the ICME and ICME-like genes are expressed in all examined tissues, including roots, rosette leaves, cauline leaves, stems, flowers, and siliques, with differential expression levels. Within the gene family, the base transcript abundance of ICME-LIKE2 gene is very low with higher expression in reproductive organs (flowers and siliques. Time-course analysis uncovered that both ICME and ICME-like genes are up-regulated by mannitol, NaCl and ABA treatment, with ICME showing the highest level of up-regulation by these treatments. Heat stress resulted in up-regulation of the ICME gene significantly but down-regulation of the ICME-LIKE1 and ICME-LIKE2 genes. Cold and dehydration

  17. Contribution of Viral Mimics of Cellular Genes to KSHV Infection and Disease

    Directory of Open Access Journals (Sweden)

    Shuhei Sakakibara

    2014-09-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV, also named Human herpesvirus 8 HHV-8 is the cause of Kaposi sarcoma (KS, the most common malignancy in HIV-infected individuals worldwide, primary effusion lymphoma (PEL and multicentric Castleman disease (MCD. KSHV is a double-stranded DNA virus that encodes several homologues of cellular proteins. The structural similarity between viral and host proteins explains why some viral homologues function as their host counterparts, but sometimes at unusual anatomical sites and inappropriate times. In other cases, structural modification in the viral proteins can suppress or override the function of the host homologue, contributing to KSHV-related diseases. For example, viral IL-6 (vIL-6 is sufficiently different from human IL-6 to activate gp130 signaling independent of the α subunit. As a consequence, vIL-6 can activate many cell types that are unresponsive to cellular IL-6, contributing to MCD disease manifestations. Here, we discuss the molecular biology of KSHV homologues of cellular products as conduits of virus/host interaction with a focus on identifying new strategies for therapy of KS and other KSHV-related diseases.

  18. SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease.

    Science.gov (United States)

    Rivat, Christine; Booth, Claire; Alonso-Ferrero, Maria; Blundell, Michael; Sebire, Neil J; Thrasher, Adrian J; Gaspar, H Bobby

    2013-02-14

    X-linked lymphoproliferative disease (XLP1) arises from mutations in the gene encoding SLAM-associated protein (SAP) and leads to abnormalities of NKT-cell development, NK-cell cytotoxicity, and T-dependent humoral function. Curative treatment is limited to allogeneic hematopoietic stem cell (HSC) transplantation. We tested whether HSC gene therapy could correct the multilineage defects seen in SAP(-/-) mice. SAP(-/-) murine HSCs were transduced with lentiviral vectors containing either SAP or reporter gene before transplantation into irradiated recipients. NKT-cell development was significantly higher and NK-cell cytotoxicity restored to wild-type levels in mice receiving the SAP vector in comparison to control mice. Baseline immunoglobulin levels were significantly increased and T-dependent humoral responses to NP-CGG, including germinal center formation, were restored in SAP-transduced mice.We demonstrate for the first time that HSC gene transfer corrects the cellular and humoral defects in SAP(-/-) mice providing proof of concept for gene therapy in XLP1.

  19. Control of intestinal promoter activity of the cellular migratory regulator gene ELMO3 by CDX2 and SP1

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Boyd, Mette; Olsen, Jørgen;

    2010-01-01

    An important aspect of the cellular differentiation in the intestine is the migration of epithelial cells from the crypt to the villus tip. As homeodomaine transcription factor CDX2 has been suggested to influence cell migration, we performed a genome-wide promoter analysis for CDX2 binding...... migration. However, no information is available about the transcriptional regulation of the ELMO3 gene. The aim of this study was to investigate the potential role of CDX2 in the regulation of the ELMO3 promoter activity. Electrophoretic mobility shift assays showed that CDX2 bound to conserved CDX2...... sequences and mutations of the CDX2-binding sites, significantly reduced the promoter activity. Reporter gene assays demonstrated that the region mediating ELMO3 basal transcriptional activity to be located between -270 and -31 bp. Sequence analysis revealed no typical TATA-box, but four GC-rich sequences...

  20. Cloning, expression and cellular localization of the Doublesex gene in the water flea, Daphnia carinata, during different developmental stages.

    Science.gov (United States)

    Zhang, Mingqing; Li, Haixia; Liu, Ajing; Wu, Donglei; Wang, Danli; Zhao, Yunlong

    2014-10-25

    In this study, one of Doublesex genes from the common freshwater cladoceran Daphnia carinata, designated DapcaDsx1, was cloned using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). qPCR was employed to quantify differences in DapcaDsx1 expression between the different sexual phases, with expression levels being higher in sexual females. The role of DapcaDsx1 in the reproductive transformation was further investigated in parthenogenetic-phase females and sexual-phase females using whole-mount in situ hybridization. This cellular localization study showed specific expression of DapcaDsx1 in the thoracic segments, second antenna and part of the ventral carapace. Higher expression levels were exhibited in sexual females compared to parthenogenetic females. This suggests that the DapcaDsx1 gene plays significant roles in switching modes of reproduction and during sexual differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Non-invasive imaging using reporter genes altering cellular water permeability

    Science.gov (United States)

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-12-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

  2. Expression of cellular genes in HPV16-immortalized and cigarette smoke condensate-transformed human endocervical cells.

    Science.gov (United States)

    Yang, X; Nakao, Y; Pater, M M; Tang, S C; Pater, A

    1997-09-01

    We studied the molecular mechanism of successive multistep cervical carcinogenic progression with our previously established in vitro model system. This system was composed of primary human endocervical cells (HEN), two lines of HEN immortalized by HPV16 and their counterparts subsequently malignantly transformed by cigarette smoke condensate (CSC). The expression was examined of diverse cellular genes associated with oncogenesis and senescence, especially for cervical cancer. Consistent results were seen for the pairs of immortalized and malignantly transformed lines. Immortalization of HEN by HPV16 resulted in enhanced expression of H-ras, c-myc, B-myb, p53, p16INK4 and PCNA mRNA; enhanced expression of p16 and PCNA proteins; decreased expression of WAF1/p21/Cip1/Sid1 and fibronectin mRNA; and decreased p53 protein. On the other hand, the CSC-transformed counterparts of HPV16-immortalized cells had up-regulated levels of B-myb, p53 and WAF1 mRNA and p53 protein. Our results indicate that the differential activation or inactivation of multiple cellular genes is important for the immortalization, as well as the transformation, of human cervical cells. Further, we suggest that our in vitro model system is useful for investigating the molecular mechanism of multistep cervical carcinogenesis.

  3. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  4. Cellular defects caused by hypomorphic variants of the Bloom syndrome helicase gene BLM.

    Science.gov (United States)

    Shastri, Vivek M; Schmidt, Kristina H

    2016-01-01

    Bloom syndrome is an autosomal recessive disorder characterized by extraordinary cancer incidence early in life and an average life expectancy of ~27 years. Premature stop codons in BLM, which encodes a DNA helicase that functions in DNA double-strand-break repair, make up the vast majority of Bloom syndrome mutations, with only 13 single amino acid changes identified in the syndrome. Sequencing projects have identified nearly one hundred single nucleotide variants in BLM that cause amino acid changes of uncertain significance. Here, in addition to identifying five BLM variants incapable of complementing certain defects of Bloom syndrome cells, making them candidates for new Bloom syndrome causing mutations, we characterize a new class of BLM variants that cause some, but not all, cellular defects of Bloom syndrome. We find elevated sister-chromatid exchanges, a delayed DNA damage response and inefficient DNA repair. Conversely, hydroxyurea sensitivity and quadriradial chromosome accumulation, both characteristic of Bloom syndrome cells, are absent. These intermediate variants affect sites in BLM that function in ATP hydrolysis and in contacting double-stranded DNA. Allele frequency and cellular defects suggest candidates for new Bloom syndrome causing mutations, and intermediate BLM variants that are hypomorphic which, instead of causing Bloom syndrome, may increase a person's risk for cancer or possibly other Bloom-syndrome-associated disorders, such as type-2 diabetes.

  5. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors.

    Science.gov (United States)

    Zhang, Yunfei; Charvat, Robert A; Kim, Seong K; O'Callaghan, Dennis J

    2014-01-20

    The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1.

  6. Human nucleotide sequences related to the transforming gene of a murine sarcoma virus: studies with cloned viral and cellular DNAs.

    Science.gov (United States)

    Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Kisselev, L L

    1982-01-01

    A recombinant plasmid, pI26, has been constructed by cloning into pBR322 a transforming gene of murine sarcoma virus (a Moloney strain, clone 124, MSV) synthesized by detergent-treated virions. From this plasmid a XbaI-HindIII fragment has been isolated which contains only mos-specific sequences. This mos-specific probe has been used for screening a human gene library cloned in bacteriophage lambda Charon 4A. Of these, 19 clones have been isolated containing mos-related sequences. By physical mapping and molecular hybridization it has been shown that these sequences are neighboured by DNA regions related to Moloney murine leukemia virus. Recombinant phages have also been found containing human inserts related to MLV, not to the mos gene. The possible existence of murine-like endogenous retroviruses in the normal human genome, including that of a sarcoma type, is discussed. By Northern blotting, expression of the cellular c-mos gene has been detected in mouse liver treated with a hepatocarcinogen. The general significance of the suggested model for evaluating the relationship between chemical carcinogenesis and oncogene expression is discussed.

  7. Cellular phenotype-dependent and -independent effects of vitamin C on the renewal and gene expression of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shiu-Ming Kuo

    Full Text Available Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10(-5 M, but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2-/- MEF did not respond to vitamin C. SVCT2-/- MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2-/- MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was

  8. A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility

    DEFF Research Database (Denmark)

    Damotte, V; Guillot-Noel, L; Patsopoulos, N A;

    2014-01-01

    Genome-wide association studies (GWASs) perform per-SNP association tests to identify variants involved in disease or trait susceptibility. However, such an approach is not powerful enough to unravel genes that are not individually contributing to the disease/trait, but that may have a role in in...

  9. Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation

    Science.gov (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-01-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. PMID:22927829

  10. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    Science.gov (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-08-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  11. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    Directory of Open Access Journals (Sweden)

    Paola Rossolillo

    2012-08-01

    Full Text Available In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K, an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  12. Gene Transfer and Expression of Platelet-derived Growth Factors Modulate Periodontal Cellular Activity

    OpenAIRE

    Zhu, Z.; Lee, C. S.; Tejeda, K.M.; Giannobile, W.V.

    2001-01-01

    Platelet-derived growth factor (PDGF) is a potent stimulator of wound healing. PDGF gene therapy may promote greater periodontal regeneration than local protein application, due to sustained growth factor delivery to the target tissue. This investigation tested the ability of recombinant adenoviruses (rAds) encoding PDGF-A or PDGF-1308 (a PDGF-A dominant-negative mutant that disrupts endogenous PDGF bioactivity) to affect cells derived from the periodontium. Osteoblasts, periodontal ligament ...

  13. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    OpenAIRE

    Gerosolimo Germano; Dallapiccola Bruno; Bruni Roberto; Ferraris Alessandro; Tataseo Paola; Tritarelli Elena; Marcantonio Cinzia; Ciccaglione Anna; Costantino Angela; Rapicetta Maria

    2008-01-01

    Abstract Background Hepatitis C virus (HCV) RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system). Results First, we compared the expression profile of HCV replicon clone 21-5 ...

  14. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders

    Science.gov (United States)

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Bárbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.

    2014-01-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. PMID:24768552

  15. Differential gene expression and clonal selection during cellular transformation induced by adhesion deprivation

    Directory of Open Access Journals (Sweden)

    Kumar Mahesh J

    2010-12-01

    Full Text Available Abstract Background Anchorage independent growth is an important hallmark of oncogenic transformation. Previous studies have shown that when adhesion dependent fibroblasts were prevented from adhering to a substrate they underwent anoikis. In the present study we have demonstrated how anoikis resistant cells gain the transformation related properties with sequential selection of genes. We have proposed this process as a model system for selection of transformed cells from normal cells. Results This report demonstrates that some fibroblasts can survive during late stages of anoikis, at which time they exhibit transformation-associated properties such as in vitro colony formation in soft agar and in vivo subcutaneous tumour formation in nude mice. Cytogenetic characterisation of these cells revealed that they contained a t (2; 2 derivative chromosome and they have a selective survival advantage in non adherent conditions. Gene expression profile indicated that these cells over expressed genes related to hypoxia, glycolysis and tumor suppression/metastasis which could be helpful in their retaining a transformed phenotype. Conclusion Our results reveal some new links between anoikis and cell transformation and they provide a reproducible model system which can potentially be useful to study multistage cancer and to identify new targets for drug development.

  16. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.

    Science.gov (United States)

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A S; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T; Oliveira, Bárbara; Marshall, Christian R; Magalhaes, Tiago R; Lowe, Jennifer K; Howe, Jennifer L; Griswold, Anthony J; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A; De Jonge, Maretha V; Cuccaro, Michael; Crawford, Emily L; Correia, Catarina T; Conroy, Judith; Conceição, Inês C; Chiocchetti, Andreas G; Casey, Jillian P; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L Alison; McGrew, Susan G; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M; Vieland, Veronica J; Vicente, Astrid M; Schellenberg, Gerard D; Pericak-Vance, Margaret; Paterson, Andrew D; Parr, Jeremy R; Oliveira, Guiomar; Nurnberger, John I; Monaco, Anthony P; Maestrini, Elena; Klauck, Sabine M; Hakonarson, Hakon; Haines, Jonathan L; Geschwind, Daniel H; Freitag, Christine M; Folstein, Susan E; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W

    2014-05-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.

  17. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway.

    Science.gov (United States)

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon; Li, Fang; Sarchet, Kara N; DiStasi, Matthew R; Conway, Simon J; Kapur, Reuben; Ingram, David A

    2013-03-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.

  18. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    Science.gov (United States)

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  19. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology.

    Science.gov (United States)

    Hou, Tim Y; Davidson, Laurie A; Kim, Eunjoo; Fan, Yang-Yi; Fuentes, Natividad R; Triff, Karen; Chapkin, Robert S

    2016-07-17

    The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.

  20. Effect of Lower and Upper Body High Intensity Training on Genes Associated with Cellular Stress Response

    Science.gov (United States)

    Kochanowicz, Andrzej; Kochanowicz, Kazimierz; Mieszkowski, Jan; Niespodziński, Bartłomiej; Sawczyn, Stanisław

    2017-01-01

    This study aimed to compare the effect of upper and lower body high intensity exercise (HIE) on select gene expression in athletes. Fourteen elite male artistic gymnasts (age 20.9 ± 2.6 years; weight 68.6 ± 7.2 kg; fat free mass 63.6 ± 6.7 kg; height 1.70 ± 0.04 m) performed lower and upper body 30 s Wingate Tests (WAnTs) before and after eight weeks of specific HIIT. Two milliliters of blood was collected before and after (5, 30 min, resp.) lower and upper body WAnTs, and select gene expression was determined by PCR. Eight weeks of HIIT caused a significant increase in maximal power (722 to 751 Wat), relative peak power in the lower body WAnTs (10.1 to 11 W/kg), mean power (444 to 464 W), and relative mean power (6.5 to 6.8 W/kg). No significant differences in lower versus upper body gene expression were detected after HIIT, and a significant decrease in the IL6/IL10 ratio was observed after lower (−2∧0.57 p = 0.0019) and upper (−2∧0.5 p = 0.03) WAnTs following eight weeks of HIIT. It is hypothesized that a similar adaptive response to exercise may be obtained by lower and upper body exercise. PMID:28589135

  1. Genetic polymorphisms in host antiviral genes: associations with humoral and cellular immunity to measles vaccine.

    Science.gov (United States)

    Haralambieva, Iana H; Ovsyannikova, Inna G; Umlauf, Benjamin J; Vierkant, Robert A; Shane Pankratz, V; Jacobson, Robert M; Poland, Gregory A

    2011-11-08

    Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella (MMR) vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction for FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-valuemeasles vaccine in Caucasians and African-Americans.

  2. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays

    DEFF Research Database (Denmark)

    Heinen, Christopher D; Juel Rasmussen, Lene

    2012-01-01

    provided an important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete biochemical steps or other aspects of MMR function. Here, we describe......ABSTRACT: With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis...

  3. Novel metastasis-related gene CIM functions in the regulation of multiple cellular stress-response pathways.

    Science.gov (United States)

    Yanagisawa, Kiyoshi; Konishi, Hiroyuki; Arima, Chinatsu; Tomida, Shuta; Takeuchi, Toshiyuki; Shimada, Yukako; Yatabe, Yasushi; Mitsudomi, Tetsuya; Osada, Hirotaka; Takahashi, Takashi

    2010-12-01

    Various stresses of the tumor microenvironment produced by insufficient nutrients, pH, and oxygen can contribute to the generation of altered metabolic and proliferative states that promote the survival of metastatic cells. Among many cellular stress-response pathways activated under such conditions are the hypoxia-inducible factor (HIF) pathway and the unfolded protein response (UPR), which is elicited as a response to endoplasmic reticulum (ER) stress. In this study, we report the identification of a novel cancer invasion and metastasis-related gene (hereafter referred to as CIM, also called ERLEC1), which influences both of these stress-response pathways to promote metastasis. CIM was identified by comparing the gene expression profile of a highly metastatic human lung cancer cell line with its weakly metastatic parental clone. We showed that CIM is critical for metastatic properties in this system. Proteomic approaches combined with bioinformatic analyses revealed that CIM has multifaceted roles in controlling the response to hypoxia and ER stress. Specifically, CIM sequestered OS-9 from the HIF-1α complex and PHD2, permitting HIF-1α accumulation by preventing its degradation. Ectopic expression of CIM in lung cancer cells increased their tolerance to hypoxia. CIM also modulated UPR through interaction with the key ER stress protein BiP, influencing cell proliferation under ER stress conditions. Our findings shed light on how tolerance to multiple cellular stresses at a metastatic site can be evoked by an integrated mechanism involving CIM, which can function to coordinate those responses in a manner that promotes metastatic cell survival.

  4. Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta

    Directory of Open Access Journals (Sweden)

    Liu Teng

    2016-12-01

    Full Text Available The placenta expressed transcript 1 (PLET1 gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days, indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3′ UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA, and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs.

  5. Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta

    Science.gov (United States)

    Teng, Liu; Hong, Linjun; Liu, Ruize; Chen, Ran; Li, Xinyun; Yu, Mei

    2016-01-01

    The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days), indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3′ UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA), and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs. PMID:27941613

  6. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M. [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  7. Peptide-derived Method to Transport Genes and Proteins Across Cellular and Organellar Barriers in Plants.

    Science.gov (United States)

    Chuah, Jo-Ann; Horii, Yoko; Numata, Keiji

    2016-12-16

    The capacity to introduce exogenous proteins and express (or down-regulate) specific genes in plants provides a powerful tool for fundamental research as well as new applications in the field of plant biotechnology. Viable methods that currently exist for protein or gene transfer into plant cells, namely Agrobacterium and microprojectile bombardment, have disadvantages of low transformation frequency, limited host range, or a high cost of equipment and microcarriers. The following protocol outlines a simple and versatile method, which employs rationally-designed peptides as delivery agents for a variety of nucleic acid- and protein-based cargoes into plants. Peptides are selected as tools for development of the system due to their biodegradability, reduced size, diverse and tunable properties as well as the ability to gain intracellular/organellar access. The preparation, characterization and application of optimized formulations for each type of the wide range of delivered cargoes (plasmid DNA, double-stranded DNA or RNA, and protein) are described. Critical steps within the protocol, possible modifications and existing limitations of the method are also discussed.

  8. Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context.

    Directory of Open Access Journals (Sweden)

    Azree Nazri

    Full Text Available The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT and Fisher's inverse combined probability test (FICPT; and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR, Maximum Relevance Minimum Redundancy (MRNET, Relevance Network (RN and Bayesian Network (BN. We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.

  9. Glutathione S-Transferase (GST Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.

  10. Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus – Contributors to Cellular Detoxification

    Science.gov (United States)

    Roncalli, Vittoria; Cieslak, Matthew C.; Passamaneck, Yale; Christie, Andrew E.; Lenz, Petra H.

    2015-01-01

    Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST) superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival. PMID:25945801

  11. Association of Angiotensin-Converting Enzyme (ACE Gene Polymorphism with Inflammation and Cellular Cytotoxicity in Vitiligo Patients.

    Directory of Open Access Journals (Sweden)

    Laila Rashed

    Full Text Available Vitiligo is a disorder with profound heterogeneity in its aetio-pathophysiology. Angiotensin converting enzyme (ACE plays an important role in the physiology of the vasculature, blood pressure and inflammation. An insertion/deletion (I/D polymorphism of the ACE gene was reported be associated with the development of vitiligo.Our aim was to evaluate the ACE I/D polymorphism in vitiligo patients and controls. Our second aim was to find a possible association between ACE gene polymorphism and inflammatory mediators (as interleukin (IL-6 and/or cellular cytotoxicity induced by serum nitrite (as a breakdown product of the cytotoxic nitric oxide in vitiligo patients.This case-control study included 74 vitiligo patients and 75 apparently healthy controls. The distribution of ACE gene I/D genotype was investigated using PCR. Serum ACE, IL-6 and nitrite were measured by colorimetric method, ELISA and Griess assay respectively.The ACE allele frequency was significantly different between vitiligo patients and healthy controls (P = 0.026. However there was no significant difference between the ACE genotyping frequency in both groups (P = 0.115. There were statistically significant higher VIDA score (P = 0.007, and serum IL-6 (P < 0.001 in patients with the DD genotype when compared to other genotypes. Serum nitrite in patients with the DD genotype was significantly higher (P = 0.007 when compared to patients with II genotype. Serum levels of ACE, IL-6 and nitrite in vitiligo patients were statistically significantly higher than those in controls.As a conclusion, ACE gene polymorphism might grant susceptibility to develop vitiligo. Serum IL-6 and nitrite levels might have an important role in the pathogenesis of vitiligo. Targeting these two factors might have an implication in the treatment of some resistant cases.

  12. Gene Expression Profile Changes and Cellular Responses to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Rohde, Larry; Wu, Honglu

    2016-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. In addition, DNA in space can be damaged by toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage affects the accuracy of the radiation risk assessment for astronauts and the mutation rate in microorganisms. Although possible synergistic effects of space radiation and microgravity have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on cellular responses to DNA damage, confluent human fibroblast cells (AG1522) flown on the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB). Damages in the DNA were quantified by immunofluorescence staining for ?-H2AX, which showed similar percentages of different types of stained cells between flight and ground. However, there was a slight shift in the distribution of the ?-H2AX foci number in the flown cells with countable foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. A microarray analysis of gene expressions in response to bleomycin treatment was also performed. Comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. Similar responses at the RNA level between different gravity conditions were also observed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly

  13. Gene trap mutagenesis of hnRNP A2/B1: a cryptic 3' splice site in the neomycin resistance gene allows continued expression of the disrupted cellular gene

    Directory of Open Access Journals (Sweden)

    DeGregori James V

    2003-01-01

    Full Text Available Abstract Background Tagged sequence mutagenesis is a process for constructing libraries of sequenced insertion mutations in embryonic stem cells that can be transmitted into the mouse germline. To better predict the functional consequences of gene entrapment on cellular gene expression, the present study characterized the effects of a U3Neo gene trap retrovirus inserted into an intron of the hnRNP A2/B1 gene. The mutation was selected for analysis because it occurred in a highly expressed gene and yet did not produce obvious phenotypes following germline transmission. Results Sequences flanking the integrated gene trap vector in 1B4 cells were used to isolate a full-length cDNA whose predicted amino acid sequence is identical to the human A2 protein at all but one of 341 amino acid residues. hnRNP A2/B1 transcripts extending into the provirus utilize a cryptic 3' splice site located 28 nucleotides downstream of the neomycin phosphotransferase start codon. The inserted Neo sequence and proviral poly(A site function as an 3' terminal exon that is utilized to produce hnRNP A2/B1-Neo fusion transcripts, or skipped to produce wild-type hnRNP A2/B1 transcripts. This results in only a modest disruption of hnRNPA2/B1 gene expression. Conclusions Expression of the occupied hnRNP A2/B1 gene and utilization of the viral poly(A site are consistent with an exon definition model of pre-mRNA splicing. These results reveal a mechanism by which U3 gene trap vectors can be expressed without disrupting cellular gene expression, thus suggesting ways to improve these vectors for gene trap mutagenesis.

  14. Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes.

    Science.gov (United States)

    Rees, Matthew G; Ng, David; Ruppert, Sarah; Turner, Clesson; Beer, Nicola L; Swift, Amy J; Morken, Mario A; Below, Jennifer E; Blech, Ilana; Mullikin, James C; McCarthy, Mark I; Biesecker, Leslie G; Gloyn, Anna L; Collins, Francis S

    2012-01-01

    Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.

  15. Nucleotide Excision Repair in Cellular Chromatin: Studies with Yeast from Nucleotide to Gene to Genome

    Directory of Open Access Journals (Sweden)

    Simon Reed

    2012-09-01

    Full Text Available Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

  16. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis.

    Directory of Open Access Journals (Sweden)

    Anita Ayer

    Full Text Available Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a cellular/organellar level are poorly understood. The genetic bases of cellular redox homeostasis were investigated using a green fluorescent protein (GFP based redox probe, roGFP2 and a pH sensitive GFP-based probe, pHluorin. The use of roGFP2, in conjunction with pHluorin, enabled determination of pH-adjusted sub-cellular redox potential in a non-invasive and real-time manner. A genome-wide screen using both the non-essential and essential gene collections was carried out in Saccharomyces cerevisiae using cytosolic-roGFP2 to identify factors essential for maintenance of cytosolic redox state under steady-state conditions. 102 genes of diverse function were identified that are required for maintenance of cytosolic redox state. Mutations in these genes led to shifts in the half-cell glutathione redox potential by 75-10 mV. Interestingly, some specific oxidative stress-response processes were identified as over-represented in the data set. Further investigation of the role of oxidative stress-responsive systems in sub-cellular redox homeostasis was conducted using roGFP2 constructs targeted to the mitochondrial matrix and peroxisome and E(GSH was measured in cells in exponential and stationary phase. Analyses allowed for the identification of key redox systems on a sub-cellular level and the identification of novel genes involved in the regulation of cellular redox homeostasis.

  17. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells; Identification de genes humains impliques dans la reponse cellulaire aux radiations ionisantes: etudes moleculaire et cellulaire du gene codant l'helicase p68 dans les cellules de mammiferes

    Energy Technology Data Exchange (ETDEWEB)

    Menaa, F.

    2003-12-15

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 {gamma}-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in {gamma}-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to {gamma}-rays. (author)

  18. Identification, expression pattern, cellular location and potential role of the caveolin-1 gene from Artemia sinica.

    Science.gov (United States)

    Li, Xuejie; Yao, Feng; Zhang, Wei; Cheng, Cheng; Chu, Bing; Liu, Yan; Mei, Yanli; Wu, Yang; Zou, Xiangyang; Hou, Lin

    2014-05-01

    Caveolins are integral membrane proteins that serve as scaffolds to recruit numerous signaling molecules. Caveolins play an important role in membrane trafficking, signal transduction, substrate transport and endocytosis in differentiated cells. In this study, a caveolin-1 gene from Artemia sinica (As-cav-1) was successfully cloned for the first time. The full-length cDNA of As-cav-1 comprises 974 bp, with a 675 bp open reading frame (ORF) that encodes a polypeptide of 224 amino acids with a caveolin scaffolding domain (CSD) and two transmembrane domains. Multiple sequence alignment revealed that the putative As-CAV-1 protein sequence was relatively conserved across species, especially in the CSD domain. Real-time PCR revealed high levels of the As-cav-1 transcript at 0h of embryo development. Furthermore, As-cav-1 transcripts were highly upregulated under high salinity (200‰) and low temperature stresses (15°C). To further characterize As-cav-1, recombinant pET30a-cav-1 protein was expressed using a prokaryotic expression system. The recombinant protein comprised 290 amino acids with a theoretical molecular weight of 32kDa, and a predicted isoelectric point of 5.6. Western blotting of the expression levels of As-CAV-1 during different embryo development stages revealed that As-CAV-1 levels decreased gradually during development stages from 0 h to 40 h, and increased at 3d. Furthermore, western blotting showed that As-CAV-1 was upregulated to its highest expression level by low temperature stress (15°C) and high salinity. Confocal laser microscopy analysis, using antibodies generated against the recombinant As-CAV-1 protein, showed that As-CAV-1 was mostly located in the cell membrane. Our results suggested that As-cav-1 plays a vital role in protecting embryos from high salt damage and low temperature stress, especially during post-diapause embryonic development.

  19. Murine hyperglycemic vasculopathy and cardiomyopathy: whole-genome gene expression analysis predicts cellular targets and regulatory networks influenced by mannose binding lectin

    Directory of Open Access Journals (Sweden)

    Chenhui eZou

    2012-02-01

    Full Text Available Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies.

  20. Study Strategies Comparison and Self-Regulationin University Students

    Directory of Open Access Journals (Sweden)

    Irma Rosa Alvarado Guerrero

    2014-04-01

    Full Text Available The main factors associated with academic performance are study strategies and self-regulation in university students, thus the objective of this paper is to compare two sample groups: those in a regular status and others under certain academic lag. The Study Strategies Inventory and Self-Regulation (IEEA BY Castaneda was applied to 41 learners. It was observed that both groups need support to develop strategies for the four scales of the instrument: Information acquisition, memory resource management, information processing and self-regulation in all three dimensions: people, tasks and materials. In conclusion there is a need to develop programs to help the consolidation of study strategies and self-regulation and highlights the importance of analyzing the factors in teacher’s education and development of programs and curricula, to improve academic performance in higher educationinstitutions.

  1. The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. PMID:24093723

  2. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Directory of Open Access Journals (Sweden)

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  3. Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii.

    Science.gov (United States)

    Vergara, Hernando Martínez; Bertucci, Paola Yanina; Hantz, Peter; Tosches, Maria Antonietta; Achim, Kaia; Vopalensky, Pavel; Arendt, Detlev

    2017-06-06

    The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal. We investigate three-segmented young worms of the marine annelid Platynereis dumerilii, with a rich diversity of differentiated cells present in relatively low number. Starting from whole-mount expression images for close to 100 neural specification and differentiation genes, our atlas identifies and molecularly characterizes 605 bilateral pairs of neurons at specific locations in the ventral nerve cord. Among these pairs, we identify sets of neurons expressing similar combinations of transcription factors, located at spatially coherent anterior-posterior, dorsal-ventral, and medial-lateral coordinates that we interpret as cell types. Comparison with motor and interneuron types in the vertebrate neural tube indicates conserved combinations, for example, of cell types cospecified by Gata1/2/3 and Tal transcription factors. These include V2b interneurons and the central spinal fluid-contacting Kolmer-Agduhr cells in the vertebrates, and several neuron types in the intermediate ventral ganglionic mass in the annelid. We propose that Kolmer-Agduhr cell-like mechanosensory neurons formed part of the mucociliary sole in protostome-deuterostome ancestors and diversified independently into several neuron types in annelid and vertebrate descendants.

  4. Antisense expression of a rice cellular apoptosis susceptibility gene (OsCAS) alters the height of transgenic rice

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiao; HE Chaozu

    2007-01-01

    Cellular apoptosis susceptibility (CAS) gene plays important roles in mitosis, development and export of importin αfrom the nucleus, but its function in plant is unknown. In this study, a rice CAS ortholog (OsCAS), which encodes a predicted protein of 983 amino acids with 62% similarity to human CAS, was identified. DNA gel blot analysis revealed a single copy of OsCAS in the rice genome. A 973 bp fragment at the 3' end of OsCAS cDNA was cloned from rice cDNA library and transferred into rice in the antisense direction under the control of CaMV 35S promoter via Agrobacterium-mediated transformation method, 105 transgenic lines were obtained. Expression of OsCAS was suppressed in the antisense transgenic lines as revealed by semi-quantitative RT-PCR. The antisense transgenic lines showed dwarf phenotypes. The results indicated that OsCAS was involved in culm development of rice.

  5. The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection.

    Science.gov (United States)

    Spolarics, Zoltán

    2007-06-01

    Females as compared with males display better general health status, longevity, and improved clinical course after injury and infection. It is generally believed that the female advantage is associated with the effects of sex hormones. This review argues that the sex benefit of females during the host response is associated with polymorphism of X-linked genes and cellular mosaicism for X-linked parental alleles. Cells from females carry both parental X chromosomes (maternal, Xm; or paternal, Xp), whereas males carry only one (Xm). Because of dosage compensation and random X inactivation, half of the cells from females express either Xm or Xp. Therefore, females are cellular mosaics for their X-linked polymorphic genes. This cellular mosaicism in females represents a more adaptive and balanced cellular machinery that is advantageous during the innate immune response. Several genes encoding key metabolic and regulatory proteins reside on the X chromosome, including members of the apoptotic cascade, hormone homeostasis, glucose metabolic enzymes, superoxide-producing machinery, and the toll-like receptor/nuclear factor kappaB/c-Jun N-terminal kinase signaling pathway. Polymorphic forms of these X-linked proteins are likely to manifest in phenotypic differences in the mosaic cell populations in females and may contribute to sex-related differences in the host response to injury and infection. The unique inheritance pattern of X-linked polymorphisms and their potential confounding effects in clinical trials are also discussed; furthermore, we present potential biomarkers for studying mosaic cell populations of innate immunity.

  6. A Stable HeLa Cell Line That Inducibly Expresses Poliovirus 2Apro: Effects on Cellular and Viral Gene Expression

    Science.gov (United States)

    Barco, Angel; Feduchi, Elena; Carrasco, Luis

    2000-01-01

    A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2Apro) under the control of tetracycline has been obtained. Synthesis of 2Apro induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2Apro cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2Apro, prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2Apro still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2Apro. Moreover, synthesis of 2Apro in 2A7d cells complements the translational defect of a poliovirus 2Apro-defective variant. These results show that poliovirus 2Apro expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2Apro functions, to complement poliovirus 2Apro mutants, and to test antiviral compounds. PMID:10666269

  7. Analysis of the src gene of sarcoma viruses generated by recombination between transformation-defective mutants and quail cellular sequences.

    Science.gov (United States)

    Wang, L H; Moscovici, C; Karess, R E; Hanafusa, H

    1979-01-01

    Tumors were produced in quails about 2 months after injection with a transformation-defective mutant of the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup A (SR-A), that retains a small portion of the src gene. Sarcoma viruses were isolated from each of five such tumors. A transformation-defective mutant which has a nearly complete deletion of the src gene was unable to induce tumors. The avian sarcoma viruses recovered from quail tumors (rASV-Q) had biological properties similar to those of the avian sarcoma viruses previously acquired from chicken tumors (rASV-C); these chicken tumors had been induced by the same transformation-defective mutants. Both rASV-Q and rASV-C transformed cells in culture with similar focus morphology and produced tumors within 7 to 14 days after injection into chickens or quails. The size of rASV-Q genomic RNA was indistinguishable from that of SR-A by polyacrylamide gel electrophoresis. The sequences of rASV-Q RNA genomes were analyzed and compared with those of the parental transformation-defective virus, SR-A and of rASV-C by RNase T1 fingerprinting and oligonucleotide mapping. We found that the src sequences of all five isolates of rASV-Q were identical to each other but different from those of SR-A and rASV-C. Of 13 oligonucleotides of rASV-Q identified as src specific, two were not found in either SR-A or rASV-C RNA. Furthermore, some oligonucleotides present in SR-A or rASV-C or both were absent in rASV-Q. No differences were found for the sequences outside the src region in any of the viruses examined. In addition, rASV-Q-infected cells possessed a 60,000-dalton protein specifically precipitable by rabbit serum raised against SR-D-induced tumors. The facts that the src sequences are essentially the same for rASV's recovered from one animal species and different for rASV's obtained from different species provide conclusive evidence that cellular sequences of normal birds were inserted into the viral genome and supplied to

  8. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  9. Conserved Molecular and Epigenetic Determinants of Aromatase Gene Induction by the Herbicide Atrazine in Human and Rat Cellular Models Relevant to Breast Cancer Risk

    OpenAIRE

    2011-01-01

    AbstractConserved Molecular and Epigenetic Determinants of Aromatase Gene Induction by the Herbicide Atrazine in Human and Rat Cellular Models Relevant to Breast Cancer Risk ByTheresa Ryan StueveDoctor of Philosophy in Molecular ToxicologyUniversity of California, BerkeleyProfessor Gary Firestone, Co-ChairProfessor Dale Leitman, Co-ChairFall 2011The widely-applied herbicide atrazine (ATR) is a potent endocrine disruptor that elicits anti-androgenic and estrogenic effects, often at concentrat...

  10. Roles of Breast Cancer Genes in DNA Homologous Recombination and Cellular Sensitivity to Radiation and Anticancer Drugs

    Science.gov (United States)

    2002-06-01

    cells using GenePorter transfection reagent ( GeneTherapy Sys- tems). Forty-eight hours after transfection, cells were collected, treated A C-terminal...into HeLa cells using GenePorter transfection reagent ( GeneTherapy Systems). Forty-eight hours after transfection, cells were collected, treated with

  11. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism.

    Science.gov (United States)

    Das, Joydeep; Han, Jae Woong; Choi, Yun-Jung; Song, Hyuk; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2016-07-06

    Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)-nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications.

  12. Mechanisms of Nrf2/Keap1-Dependent Phase II Cytoprotective and Detoxifying Gene Expression and Potential Cellular Targets of Chemopreventive Isothiocyanates

    Directory of Open Access Journals (Sweden)

    Biswa Nath Das

    2013-01-01

    Full Text Available Isothiocyanates (ITCs are abundantly found in cruciferous vegetables. Epidemiological studies suggest that chronic consumption of cruciferous vegetables can lower the overall risk of cancer. Natural ITCs are key chemopreventive ingredients of cruciferous vegetables, and one of the prime chemopreventive mechanisms of natural isothiocyanates is the induction of Nrf2/ARE-dependent gene expression that plays a critical role in cellular defense against electrophiles and reactive oxygen species. In the present review, we first discuss the underlying mechanisms how natural ITCs affect the intracellular signaling kinase cascades to regulate the Keap1/Nrf2 activities, thereby inducing phase II cytoprotective and detoxifying enzymes. We also discuss the potential cellular protein targets to which natural ITCs are directly conjugated and how these events aid in the chemopreventive effects of natural ITCs. Finally, we discuss the posttranslational modifications of Keap1 and nucleocytoplasmic trafficking of Nrf2 in response to electrophiles and oxidants.

  13. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  14. The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity.

    Science.gov (United States)

    Scofield, Simon; Dewitte, Walter; Nieuwland, Jeroen; Murray, James A H

    2013-07-01

    The Arabidopsis class-1 KNOX gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor essential for shoot apical meristem (SAM) formation and sustained activity. STM activates cytokinin (CK) biosynthesis in the SAM, but the extent to which STM function is mediated through CK is unclear. Here we show that STM inhibits cellular differentiation and endoreduplication, acting through CK and the CK-inducible CYCD3 cell cycle regulators, establishing a mechanistic link to cell cycle control which provides sustained mitotic activity to maintain a pool of undifferentiated cells in the SAM. Equivalent functions are revealed for the related KNOX genes KNAT1/BP and KNAT2 through ectopic expression. STM is also required for proper meristem organisation and can induce de novo meristem formation when expressed ectopically, even when CK levels are reduced or CK signaling is impaired. This function in meristem establishment and organisation can be replaced by KNAT1/BP, but not KNAT2, despite its activation of CK responses, suggesting that promotion of CK responses alone is insufficient for SAM organisation. We propose that STM has dual cellular and meristem-organisational functions that are differentially represented in the class-1 KNOX gene family and have differing requirements for CK and CYCD3. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  15. Study of cellular immunity response of mB7-1 gene transfected mouse ovarian cancer cell line and its tumorigeneeities in vivo

    Institute of Scientific and Technical Information of China (English)

    Jiang Jie; Liang Huamao; Yang Xingsheng; Cui Baoxia; Zhang Youzhong; Kong Beihua

    2003-01-01

    Objective: To investigate the cellular immunity response in vitro and the tumorigenecities in vivo of mB7-1 gene transfected murine ovarian cancer cell line. Methods: mB7-1 gene was transfected into the NuTu-19 cell line by retrovirus vector, and the expression of mB7-1 gene was confirmed by flow cytometry(FCM).NuTu-19/neo and NuTu-19/mB7-1 cells were injected subcutaneously into syngeneic Fischer 344 rats respectively, and their tumorigenecities were recorded. Proliferation indices of lymphocyte were assayed after syngenieic mixed tumor-lymphocyte cultures(MTLCs). The lysis activity of CTL toward tumor cells was determined using methyl thiazolyl tetrazolium(MTT) assay. Results: Successful transfection of mB7-1 gene into NuTu-19 cell line was comfirmed with FCM. In vitro study showed that there was no obvious changes in cell growth of gene transfected cell line, compared with the cell line NuTu-19. NuTu-19/mB7-1 cells could induce more effective proliferation of effector lymphocytes( P < 0.05). The lysis activity of CTL activated by NuTu-19/mB7-1 was stronger than that of NuTu-19/neo ( P < 0.01). Tumor sizes were smaller in the NuTu-19/mB7-1 receptance syngeneic Fischer 344 rats compared with those in the control group. Conclusion: mB7-1 genetically modified ovarian cancer cells could induce the cellular immunity response in vitro and the tumorigenecitiy of NuTu-19 cells was decreased after inoculation with the experimental vaccine.

  16. Unraveling the cellular uptake of bioreducible poly(amido amine) — Gene complexes in cells of the retinal pigment epithelium

    NARCIS (Netherlands)

    Vercauteren, D.; Piest, M.; Soraj, M. Al; Jones, A.T.; Engbersen, J.F.J.; Smedt, de S.C.; Braeckmans, K.

    2010-01-01

    In vitro endocytosis of gene complexes composed of a bioreducible polyamidoamine CBA ABOL and plasmid DNA, in cells of the retinal pigment epithelium (RPE) was studied, the latter being an interesting target for ocular gene therapy. We found that cationic CBA ABOL DNA polyplexes attach to cell surfa

  17. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max).

    Science.gov (United States)

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome

  18. Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.

    Science.gov (United States)

    Kamneva, Olga K; Knight, Stormy J; Liberles, David A; Ward, Naomi L

    2012-01-01

    The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies.

  19. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-03-01

    Full Text Available The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1 gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk.

  20. The Cyanobacterial NAD Kinase Gene sll1415 Is Required for Photoheterotrophic Growth and Cellular Redox Homeostasis in Synechocystis sp. Strain PCC 6803

    Science.gov (United States)

    Gao, Hong

    2012-01-01

    NAD kinase (NADK), which phosphorylates NAD to NADP, is one of the key enzymes regulating the cellular NADP(H) level. In Synechocystis sp. strain PCC 6803, slr0400 and sll1415 were shown to encode NAD kinases. The NADP(H) pool in the cyanobacterium was remarkably reduced by an sll1415-null mutation but slightly reduced by an slr0400-null mutation. The reduction of the NADP(H) level in the sll1415 mutant led to a significant accumulation of glucose-6-phosphate and a loss of photoheterotrophic growth. As the primary NADK gene, sll1415 was found to inhibit the transcription of genes involved in redox homeostasis and to exert stronger effects on methyl viologen tolerance than slr0040. PMID:22056937

  1. Gene Expression of Glucose Transporter 1 (GLUT1, Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

    Directory of Open Access Journals (Sweden)

    Andreas Kjaer

    2013-10-01

    Full Text Available Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs and hexokinases (HKs, which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET. The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs in comparison with 14 colorectal adenocarcinomas (CRAs. The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38% compared to CRAs (86%, P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111 and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53. There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047, but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36% than CRAs (86%, (P = 0.04. The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

  2. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system.

    Science.gov (United States)

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L

    2015-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.

  3. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    Science.gov (United States)

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  4. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    Directory of Open Access Journals (Sweden)

    Ding X

    2012-02-01

    Full Text Available Wei Fan1,2,*, Xin Wu1,*, Baoyue Ding3,*, Jing Gao4, Zhen Cai1, Wei Zhang1, Dongfeng Yin1, Xiang Wang1, Quangang Zhu1, Jiyong Liu1, Xueying Ding4, Shen Gao1 1Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 2Department of Pharmaceutics, The 425th Hospital of PLA, Sanya, 3Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, 4Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China*These authors contributed equally to this workBackground: Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers' structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake.Methods: This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers.Results: Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to

  5. Identification and prioritization of candidate genes for symptom variability in breast cancer survivors based on disease characteristics at the cellular level

    Directory of Open Access Journals (Sweden)

    Koleck TA

    2016-03-01

    Full Text Available Theresa A Koleck,1 Yvette P Conley2 1School of Nursing, 2Department of Human Genetics, School of Nursing and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Research is beginning to suggest that the presence and/or severity of symptoms reported by breast cancer survivors may be associated with disease-related factors of cancer. In this article, we present a novel approach to the identification and prioritization of biologically plausible candidate genes to investigate relationships between genomic variation and symptom variability in breast cancer survivors. Cognitive dysfunction is utilized as a representative breast cancer survivor symptom to elucidate the conceptualization of and justification for our cellular, disease-based approach to address symptom variability in cancer survivors. Initial candidate gene identification was based on genes evaluated as part of multigene expression profiles for breast cancer, which are commonly used in the clinical setting to characterize the biology of cancer cells for the purpose of describing overall tumor aggressiveness, prognostication, and individualization of therapy. A list of genes evaluated within five multigene expression profiles for breast cancer was compiled. In order to prioritize candidate genes for investigation, genes used in each profile were compared for duplication. Twenty-one genes (BAG1, BCL2, BIRC5, CCNB1, CENPA, CMC2, DIAPH3, ERBB2, ESR1, GRB7, MELK, MKI67, MMP11, MYBL2, NDC80, ORC6, PGR, RACGAP1, RFC4, RRM2, and SCUBE2 are utilized in two or more profiles, including five genes (CCNB1, CENPA, MELK, MYBL2, and ORC6 used in three profiles. To ensure that the parsimonious 21 gene set is representative of the more global biological hallmarks of cancer, an Ingenuity Pathway Analysis was conducted. Evaluation of genes known to impact pathways involved with cancer development and progression provide a means to evaluate the overlap between the

  6. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  7. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    Science.gov (United States)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  8. Hemocompatible pullulan-polyethyleneimine conjugates for liver cell gene delivery: In vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency.

    Science.gov (United States)

    Rekha, M R; Sharma, Chandra P

    2011-01-01

    Polyethyleneimine (PEI; 25 kDa)-conjugated pullulans (PPE1, PPE2 and PPE3) were developed and investigated for possible use in gene delivery applications. The cytotoxicity, blood component interactions such as red blood cell/white blood cell aggregation, platelet and complement activation, and protein interaction of the pullulan-conjugated PEI was drastically reduced in comparison to PEI-based nanocomplexes. Based on the blood compatibility studies, PPE1 was selected for further study. The buffering capacity of this derivative was similar to that of PEI, which plays an important role in efficient gene transfection. The particle size, zeta potential, stability in the presence of plasma and resistance to nuclease degradation were evaluated. In addition, cellular uptake and localization of plasmid, as well as transgene expression, were evaluated following in vitro transfection of HepG2 cells. Endocytosis inhibitors, confocal laser scanning microscopy and fluorescent labeling techniques were used to visualize the nanoplex uptake mechanism, cellular distribution and nuclear localization. The results from inhibitor experiments in the presence of asialofetuin indicated that the asialoglycoprotein receptor is involved in transfection of hepatocytes with pullulan-PEI complexes. The conjugation of pullulan with PEI did not hinder the plasmid nuclear localization ability of PEI. The transfection efficiency of pullulan conjugate was similar to PEI, with the added advantage of hemocompatibility and non-cytotoxicity. The transfection efficiency of PEI and PPE1 was 1.6- and 2-fold more, respectively, in the presence of serum than in the absence of serum. Therefore, the pullulan-PEI conjugate seems to be a promising gene delivery vector with good hemocompatibility and low toxicity but without compromising the transfection efficacy of PEI.

  9. Expression of Senescence-Associated microRNAs and Target Genes in Cellular Aging and Modulation by Tocotrienol-Rich Fraction

    Directory of Open Access Journals (Sweden)

    Sharon Gwee Sian Khee

    2014-01-01

    Full Text Available Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a and established target genes of miR-34a (CCND1, CDK4, and SIRT1 during replicative senescence of human diploid fibroblasts (HDFs. Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5 mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P<0.05. TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P<0.05. TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression.

  10. Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters.

    Science.gov (United States)

    Houde, Magali; Douville, Mélanie; Gagnon, Pierre; Sproull, Jim; Cloutier, François

    2015-06-01

    Trichloroethylene (TCE) is a ubiquitous contaminant classified as a human carcinogen. Vinyl chloride (VC) is primarily used to manufacture polyvinyl chloride and can also be a degradation product of TCE. Very few data exist on the toxicity of TCE and VC in aquatic organisms particularly at environmentally relevant concentrations. The aim of this study was to evaluate the sub-lethal effects (10 day exposure; 0.1; 1; 10 µg/L) of TCE and VC in Daphnia magna at the gene, cellular, and life-history levels. Results indicated impacts of VC on the regulation of genes related to glutathione-S-transferase (GST), juvenile hormone esterase (JHE), and the vitelline outer layer membrane protein (VMO1). On the cellular level, exposure to 0.1, 1, and 10 µg/L of VC significantly increased the activity of JHE in D. magna and TCE increased the activity of chitinase (at 1 and 10 µg/L). Results for life-history parameters indicated a possible tendency of TCE to affect the number of molts at the individual level in D. magna (p=0.051). Measurement of VG-like proteins using the alkali-labile phosphates (ALP) assay did not show differences between TCE treated organisms and controls. However, semi-quantitative measurement using gradient gel electrophoresis (213-218 kDa) indicated significant decrease in VG-like protein levels following exposure to TCE at all three concentrations. Overall, results indicate effects of TCE and VC on genes and proteins related to metabolism, reproduction, and growth in D. magna.

  11. Metabolomic changes during cellular transformation monitored by metabolite-metabolite correlation analysis and correlated with gene expression.

    Science.gov (United States)

    Madhu, Basetti; Narita, Masako; Jauhiainen, Alexandra; Menon, Suraj; Stubbs, Marion; Tavaré, Simon; Narita, Masashi; Griffiths, John R

    To investigate metabolic changes during cellular transformation, we used a (1)H NMR based metabolite-metabolite correlation analysis (MMCA) method, which permits analysis of homeostatic mechanisms in cells at the steady state, in an inducible cell transformation model. Transcriptomic data were used to further explain the results. Transformed cells showed many more metabolite-metabolite correlations than control cells. Some had intuitively plausible explanations: a shift from glycolysis to amino acid oxidation after transformation was accompanied by a strongly positive correlation between glucose and glutamine and a strongly negative one between lactate and glutamate; there were also many correlations between the branched chain amino acids and the aromatic amino acids. Others remain puzzling: after transformation strong positive correlations developed between choline and a group of five amino acids, whereas the same amino acids showed negative correlations with phosphocholine, a membrane phospholipid precursor. MMCA in conjunction with transcriptome analysis has opened a new window into the metabolome.

  12. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    Science.gov (United States)

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  13. A comparison of ovarian follicular and luteal cell gene expression profiles provides insight into cellular identities and functions

    Science.gov (United States)

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  14. GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells

    Science.gov (United States)

    Fazil, Mobashar Hussain Urf Turabe; Ong, Seow Theng; Chalasani, Madhavi Latha Somaraju; Low, Jian Hui; Kizhakeyil, Atish; Mamidi, Akshay; Lim, Carey Fang Hui; Wright, Graham D.; Lakshminarayanan, Rajamani; Kelleher, Dermot; Verma, Navin Kumar

    2016-01-01

    Post-transcriptional gene silencing holds great promise in discovery research for addressing intricate biological questions and as therapeutics. While various gene silencing approaches, such as siRNA and CRISPR-Cas9 techniques, are available, these cannot be effectively applied to “hard-to-transfect” primary T-lymphocytes. The locked nucleic acid-conjugated chimeric antisense oligonucleotide, called “GapmeR”, is an emerging new class of gene silencing molecule. Here, we show that GapmeR internalizes into human primary T-cells through macropinocytosis. Internalized GapmeR molecules can associate with SNX5-positive macropinosomes in T-cells, as detected by super-resolution microscopy. Utilizing the intrinsic self-internalizing capability of GapmeR, we demonstrate significant and specific depletion (>70%) of the expression of 5 different endogenous proteins with varying molecular weights (18 kDa Stathmin, 80 kDa PKCε, 180 kDa CD11a, 220 kDa Talin1 and 450 kDa CG-NAP/AKAP450) in human primary and cultured T-cells. Further functional analysis confirms CG-NAP and Stathmin as regulators of T-cell motility. Thus, in addition to screening, identifying or verifying critical roles of various proteins in T-cell functioning, this study provides novel opportunities to silence individual or multiple genes in a subset of purified human primary T-cells that would be exploited as future therapeutics. PMID:27883055

  15. Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner.

    Science.gov (United States)

    Pitman, Ryan T; Fong, Jason T; Billman, Penny; Puri, Neelu

    2012-01-01

    Recent studies suggest that FTO variants strongly correlate with obesity and mainly influence energy intake with little effect on the basal metabolic rate. We suggest that FTO influences eating behavior by modulating intracellular energy levels and downstream signaling mechanisms which control energy intake and metabolism. Since FTO plays a particularly important role in adipocytes and in hypothalamic neurons, SH-SY5Y neuronal cells and 3T3-L1 adipocytes were used to understand how siRNA mediated knockdown of FTO expression alters cellular energy homeostasis. Cellular energy status was evaluated by measuring ATP levels using a luminescence assay and uptake of fluorescent glucose. FTO siRNA in SH-SY5Y cells mediated mRNA knockdown (-82%), increased ATP concentrations by up to 46% (P = 0.013) compared to controls, and decreased phosphorylation of AMPk and Akt in SH-SY5Y by -52% and -46% respectively as seen by immunoblotting. In contrast, FTO siRNA in 3T3-L1 cells decreased ATP concentration by -93% (penergy levels in a cell-type specific manner. Furthermore, glucose uptake was decreased in both SH-SY5Y (-51% p = 0.015) and 3T3-L1 cells (-30%, p = 0.0002). We also show that FTO knockdown decreases NPY mRNA expression in SH-SY5Y cells (-21%) through upregulation of pSTAT3 (118%). These results provide important evidence that FTO-variant linked obesity may be associated with altered metabolic functions through activation of downstream metabolic mediators including AMPk.

  16. Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner.

    Directory of Open Access Journals (Sweden)

    Ryan T Pitman

    Full Text Available Recent studies suggest that FTO variants strongly correlate with obesity and mainly influence energy intake with little effect on the basal metabolic rate. We suggest that FTO influences eating behavior by modulating intracellular energy levels and downstream signaling mechanisms which control energy intake and metabolism. Since FTO plays a particularly important role in adipocytes and in hypothalamic neurons, SH-SY5Y neuronal cells and 3T3-L1 adipocytes were used to understand how siRNA mediated knockdown of FTO expression alters cellular energy homeostasis. Cellular energy status was evaluated by measuring ATP levels using a luminescence assay and uptake of fluorescent glucose. FTO siRNA in SH-SY5Y cells mediated mRNA knockdown (-82%, increased ATP concentrations by up to 46% (P = 0.013 compared to controls, and decreased phosphorylation of AMPk and Akt in SH-SY5Y by -52% and -46% respectively as seen by immunoblotting. In contrast, FTO siRNA in 3T3-L1 cells decreased ATP concentration by -93% (p<0.0005, and increased AMPk and Akt phosphorylation by 204% and 70%, respectively suggesting that FTO mediates control of energy levels in a cell-type specific manner. Furthermore, glucose uptake was decreased in both SH-SY5Y (-51% p = 0.015 and 3T3-L1 cells (-30%, p = 0.0002. We also show that FTO knockdown decreases NPY mRNA expression in SH-SY5Y cells (-21% through upregulation of pSTAT3 (118%. These results provide important evidence that FTO-variant linked obesity may be associated with altered metabolic functions through activation of downstream metabolic mediators including AMPk.

  17. Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468

    Directory of Open Access Journals (Sweden)

    Andreas Antje

    2010-03-01

    Full Text Available Abstract Background Increased transcription of oncogenes like the epidermal growth factor receptor (EGFR is frequently caused by amplification of the whole gene or at least of regulatory sequences. Aim of this study was to pinpoint mechanistic parameters occurring during egfr copy number gains leading to a stable EGFR overexpression and high sensitivity to extracellular signalling. A deeper understanding of those marker events might improve early diagnosis of cancer in suspect lesions, early detection of cancer progression and the prediction of egfr targeted therapies. Methods The basal-like/stemness type breast cancer cell line subpopulation MDA-MB-468 CD44high/CD24-/low, carrying high egfr amplifications, was chosen as a model system in this study. Subclones of the heterogeneous cell line expressing low and high EGF receptor densities were isolated by cell sorting. Genomic profiling was carried out for these by means of SNP array profiling, qPCR and FISH. Cell cycle analysis was performed using the BrdU quenching technique. Results Low and high EGFR expressing MDA-MB-468 CD44+/CD24-/low subpopulations separated by cell sorting showed intermediate and high copy numbers of egfr, respectively. However, during cell culture an increase solely for egfr gene copy numbers in the intermediate subpopulation occurred. This shift was based on the formation of new cells which regained egfr gene copies. By two parametric cell cycle analysis clonal effects mediated through growth advantage of cells bearing higher egfr gene copy numbers could most likely be excluded for being the driving force. Subsequently, the detection of a fragile site distal to the egfr gene, sustaining uncapped telomere-less chromosomal ends, the ladder-like structure of the intrachromosomal egfr amplification and a broader range of egfr copy numbers support the assumption that dynamic chromosomal rearrangements, like breakage-fusion-bridge-cycles other than proliferation drive the gain

  18. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements.

    Science.gov (United States)

    Zhang, Tingting; Stilwell, Jackie L; Gerion, Daniele; Ding, Lianghao; Elboudwarej, Omeed; Cooke, Patrick A; Gray, Joe W; Alivisatos, A Paul; Chen, Fanqing Frank

    2006-04-01

    Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10-20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing approximately 22,000 total probe sets, containing 18,400 probe sets from known genes. Only approximately 50 genes (approximately 0.2% of all the genes tested) exhibited a statistically significant

  19. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat ( Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Bernard, Stéphanie M; Møller, Anders Laurell Blom; Dionisio, Giuseppe

    2008-01-01

    We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2...... sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle......, glumes and roots. Expression of GS genes in leaves was developmentally regulated, with both GS2 and GS1 assimilating or recycling ammonia in leaves during the period of grain development and filling. During leaf senescence the cytosolic isozymes, GS1 and GSr, were the predominant forms, suggesting major...

  20. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-11-01

    Full Text Available Aging is accompanied by gradually increasing impairment of cognitive abilities and constitutes the main risk factor of neurodegenerative conditions like Alzheimer’s disease. The underlying mechanisms are however not well understood. Here we analyze the hippocampal transcriptome of young adult mice and two groups of mice at advanced age using RNA sequencing. This approach enabled us to test differential expression of coding and non-coding transcripts, as well as differential splicing and RNA editing. We report a specific age-associated gene expression signature that is associated with major genetic risk factors for late-onset Alzheimer’s disease. This signature is dominated by neuroinflammatory processes, specifically activation of the complement system at the level of increased gene expression, while de-regulation of neuronal plasticity appears to be mediated by compromised RNA splicing.

  1. Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Magdalena eCzeredys

    2013-11-01

    Full Text Available Huntington’s disease (HD is a hereditary neurodegenerative disease caused by the expansion of a polyglutamine stretch in the huntingtin (HTT protein and characterized by dysregulated calcium homeostasis. We investigated whether these disturbances are correlated with changes in the mRNA level of the genes that encode proteins involved in calcium homeostasis and signaling (i.e., the calciosome. Using custom-made TaqMan low-density arrays containing probes for 96 genes, we quantified mRNA in the striatum in YAC128 mice, a model of HD, and wildtype mice. HTT mutation caused the increased expression of some components of the calcium signalosome, including calretinin, presenilin 2, and calmyrin 1, and the increased expression of genes indirectly involved in calcium homeostasis, such as huntingtin-associated protein 1 and calcyclin-binding protein. To verify these findings in a different model, we used PC12 cells with an inducible expression of mutated full-length HTT. Using single-cell imaging with Fura-2AM, we found that store-operated Ca2+ entry but not endoplasmic reticulum store content was changed as a result of the expression of mutant HTT. Statistically significant downregulation of the Orai calcium channel subunit 2, calmodulin, and septin 4 was detected in cells that expressed mutated HTT. Our data indicate that the dysregulation of calcium homeostasis correlates with changes in the gene expression of members of the calciosome. These changes, however, differed in the two models of HD used in this study. Our results indicate that each HD model exhibits distinct features that may only partially resemble the human disease.

  2. Association of Angiotensin-Converting Enzyme (ACE) Gene Polymorphism with Inflammation and Cellular Cytotoxicity in Vitiligo Patients

    OpenAIRE

    Laila Rashed; Rania Abdel Hay; Rania Mahmoud; Nermeen Hasan; Amr Zahra; Salwa Fayez

    2015-01-01

    Background Vitiligo is a disorder with profound heterogeneity in its aetio-pathophysiology. Angiotensin converting enzyme (ACE) plays an important role in the physiology of the vasculature, blood pressure and inflammation. An insertion/deletion (I/D) polymorphism of the ACE gene was reported be associated with the development of vitiligo. Objective Our aim was to evaluate the ACE I/D polymorphism in vitiligo patients and controls. Our second aim was to find a possible association between ACE ...

  3. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway

    OpenAIRE

    Stansfield, Brian K.; Bessler, Waylan K.; Mali, Raghuveer; Mund, Julie A.; Downing, Brandon; Li, Fang; Sarchet, Kara N.; Distasi, Matthew R.; Conway, Simon J; Kapur, Reuben; Ingram, David A.

    2012-01-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf...

  4. Effect of passage number on cellular response to DNA-damaging agents: Cell survival and gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Liu, C.M.; Woloschak, G.E. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology

    1997-08-01

    The effect of different passage numbers on plating efficiency, doubling time, cell growth, and radiation sensitivity was assessed in Syrian hamster embryo (SHE) cells. Changes in gene expression after UV or {gamma}-ray irradiation at different passage numbers were also examined. The SHE cells were maintained in culture medium for up to 64 passages. Cells were exposed to {sup 60}Co {gamma} rays or 254-nm UV radiation. Differential display of cDNAs and northern blots were used for the study of gene expression. With increasing passage number, SHE cells demonstrated decreased doubling time, increased plating efficiency, and a decreased yield in the number of cells per plate. Between passages 41 and 48 a crisis period was evident during which time cell growth in high serum was no longer optimal, and serum concentrations were reduced to maintain cell growth. Sensitivity to ionizing radiation was no different between early- and intermediate-passage cells. However, after UV exposure at low passages (passage 3), confluent cells were more sensitive to the killing effects of UV than were log-phase cells. At intermediate passages (passages 43, 48), confluent cells were slightly more radioresistant than were log-phase cells. By passage 64, however, both confluent and log-phase cells showed similar patterns of UV sensitivity. Expression of {gamma}-actin, PCNA, and p53 transcripts did not change following UV exposure. p53 mRNA was induced following {gamma}-ray exposure of the intermediate (passage 45) epithelial cells. The observed differences in radiation sensitivity associated with increasing passage number may be influenced by radiation-induced gene expression. The authors are conducted experiments to identify these genes.

  5. Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores.

    Directory of Open Access Journals (Sweden)

    Jean-Raymond Teyssier

    Full Text Available BACKGROUND: Major depressive disorder (MDD is frequently associated with chronic medical illness responsible of increased disability and mortality. Inflammation and oxidative stress are considered to be the major mediators of the allostatic load, and has been shown to correlate with telomere erosion in the leucocytes of MDD patients, leading to the model of accelerated aging. However, the significance of telomere length as an exclusive biomarker of aging has been questioned on both methodological and biological grounds. Furthermore, telomeres significantly shorten only in patients with long lasting MDD. Sensitive and dynamic functional biomarkers of aging would be clinically useful to evaluate the somatic impact of MDD. METHODOLOGY: To address this issue we have measured in the blood leucocytes of MDD patients (N=17 and controls (N=16 the expression of two genes identified as robust biomarkers of human aging and telomere dysfunction: p16(INK4a and STMN1. We have also quantified the transcripts of genes involved in the repair of oxidative DNA damage at telomeres (OGG1, telomere regulation and elongation (TERT, and in the response to biopsychological stress (FOS and DUSP1. RESULTS: The OGG1, p16(INK4a, and STMN1 gene were significantly up-regulated (25 to 100% in the leucocytes of MDD patients. Expression of p16(INK4a and STMN1 was directly correlated with anxiety scores in the depression group, and that of p16(INK4a, STMN and TERT with the depression and anxiety scores in the combined sample (MDD plus controls. Furthermore, we identified a unique correlative pattern of gene expression in the leucocytes of MDD subjects. CONCLUSIONS: Expression of p16(INK4 and STMN1 is a promising biomarker for future epidemiological assessment of the somatic impact of depressive and anxious symptoms, at both clinical and subclinical level in both depressive patients and general population.

  6. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Veronica L Martinez-Marignac

    Full Text Available Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3 and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.

  7. A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina.

    Science.gov (United States)

    Berteaux-Lecellier, V; Zickler, D; Debuchy, R; Panvier-Adoutte, A; Thompson-Coffe, C; Picard, M

    1998-01-01

    The Podospora anserina cro1 gene was identified as a gene required for sexual sporulation. Crosses homozygous for the cro1-1 mutation yield fruiting bodies which produce few asci due to the formation of giant plurinucleate cells instead of dikaryotic cells after fertilization. This defect does not impair karyogamy, but meioses of the resultant polyploid nuclei are most often abortive. Cytological studies suggest that the primary defect of the mutant is its inability to form septa between the daughter nuclei after each mitosis, a step specific for normal dikaryotic cell divisions. The cro1-1 mutant would thus be unable to leave the syncytial vegetative state while abiding by the meiotic programme. cro1-1 also shows defects in ascospore germination and growth rate. GFP-tagging of the CRO1 protein reveals that it is a cytosolic protein mainly expressed at the beginning of the dikaryotic stage and at the time of ascospore maturation. The CRO1 protein exhibits significant similarity to the SHE4 protein, which is required for asymmetric mating-type switching in budding yeast cells. Thus, a gene involved in asymmetric cell divisions in a unicellular organism plays a key role at the transition between the syncytial (vegetative) state and the cellular (sexual) state in a filamentous fungus. PMID:9482722

  8. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Yungang Xu

    Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional

  9. Molecular and cellular aspects of mental retardation in the Fragile X syndrome: from gene mutation/s to spine dysmorphogenesis.

    Science.gov (United States)

    De Rubeis, Silvia; Fernández, Esperanza; Buzzi, Andrea; Di Marino, Daniele; Bagni, Claudia

    2012-01-01

    The Fragile X syndrome (FXS) is the most frequent form of inherited mental retardation and also considered a monogenic cause of Autism Spectrum Disorder. FXS symptoms include neurodevelopmental delay, anxiety, hyperactivity, and autistic-like behavior. The disease is due to mutations or loss of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein abundant in the brain and gonads, the two organs mainly affected in FXS patients. FMRP has multiple functions in RNA metabolism, including mRNA decay, dendritic targeting of mRNAs, and protein synthesis. In neurons lacking FMRP, a wide array of mRNAs encoding proteins involved in synaptic structure and function are altered. As a result of this complex dysregulation, in the absence of FMRP, spine morphology and functioning is impaired. Consistently, model organisms for the study of the syndrome recapitulate the phenotype observed in FXS patients, such as dendritic spine anomalies and defects in learning. Here, we review the fundamentals of genetic and clinical aspects of FXS, devoting a specific attention to ASD comorbidity and FXS-related diseases. We also review the current knowledge on FMRP functions through structural, molecular, and cellular findings. Finally, we discuss the neuroanatomical, electrophysiological, and behavioral defects caused by FMRP loss, as well as the current treatments able to partially revert some of the FXS abnormalities.

  10. Study on cellular internalization of poly(vinyldiaminotriazine)-based hydrosen bonding type non-viral trans-gene vector

    Institute of Scientific and Technical Information of China (English)

    YE GuiXiang; CAO ZhiQiang; LIN Lin; CHEN DaYong; LIU WenGuang

    2008-01-01

    Previously we successfully prepared poly(vinyldiaminotriazine)(PVDT)-based non-viral vectors which complexed plasmid DNA via hydrogen bonding with adenine-thymine base pairs. In this report, surface charges and complex sizes of this system were further examined. The results showed that PVDT-based polymer could cover surface charges of DNA resulting in slightly negative or neutral complexes. It was also found that the complex sizes were governed by two events: the aggregation induced by the instability of neutral particles, and more compact complexes produced by PVDT-based polymers. In the study of cellular uptake, chlorpromazine and filipin III were used to inhibit clathrin- and caveolae-mediated endocytosis, respectively. We found that PVDT-based systems were transported into cells via a non-clathrin, non-caveolae mediated endocytosis. This special process was studied by temperature inhibition and kinetics assays. It was revealed that such a pathway was characterized by (i) a more energy dependent process and (ii) a much slow transfection-effective internalization.

  11. Transcriptional Regulation of the p53 Tumor Suppressor Gene in S-Phase of the Cell-Cycle and the Cellular Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    David Reisman

    2012-01-01

    Full Text Available The p53 tumor suppressor induces the transcription of genes that negatively regulate progression of the cell cycle in response to DNA damage or other cellular stressors and thus participates in maintaining genome stability. Numerous studies have demonstrated that p53 transcription is activated before or during early S-phase in cells progressing from G0/G1 into S-phase through the combined action of two DNA-binding factors RBP-Jκ and C/EBPβ-2. Here, we review evidence that this induction occurs to provide available p53 mRNA in order to prepare the cell for DNA damage in S-phase, this ensuring a rapid response to DNA damage before exiting this stage of the cell cycle.

  12. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Peter Gee

    2017-01-01

    Full Text Available In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic.

  13. Effects of Salmonella enterica serovar Enteritidis on cellular recruitment and cytokine gene expression in caecum of vaccinated chickens.

    Science.gov (United States)

    Carvajal, Bárbara González; Methner, Ulrich; Pieper, Jana; Berndt, Angela

    2008-10-01

    Although vaccination of poultry is a suitable method to limit human food borne gastroenteritis caused by Salmonella (S.), the immune mechanisms responsible for a longer lasting protection against Salmonella infection in birds are not completely understood. To reveal unique protection-related immune parameters, day-old chicks were vaccinated with a commercial live S. Enteritidis vaccine and challenged with wild-type S. Enteritidis 147N at day 56 of life. The bacterial cell count was determined in gut and liver, while the immune cell composition and cytokine gene expression patterns were analysed by immunohistochemistry and quantitative real-time RT-PCR in caecum samples. The presented data suggest that the vaccine-elicited immune protection against the Salmonella wild-type infection was rather related to the bacterial count in gut mucosa and liver than to the colonisation in gut lumen. The higher number of Salmonella wild-type organisms found in caecal wall and liver of the non-immunised compared to immunised birds after challenge correlated with a more pronounced gene expression rate for IL-8, LITAF, iNOS, IL-12 and IFN-gamma. In contrast, immunised birds exhibited higher amounts of CD8(+) T cells as well as IgA than the non-immunised chickens after S. Enteritidis 147N infection in caecum. The results demonstrated a distinctive immune reaction pattern of previously vaccinated compared to non-vaccinated chickens upon S. Enteritidis wild-type challenge.

  14. Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment

    Science.gov (United States)

    Pósfai, B; Cserép, C; Hegedüs, P; Szabadits, E; Otte, D M; Zimmer, A; Watanabe, M; Freund, T F; Nyiri, G

    2016-01-01

    Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment. PMID:27163208

  15. Semi-automated curation of protein subcellular localization: a text mining-based approach to Gene Ontology (GO Cellular Component curation

    Directory of Open Access Journals (Sweden)

    Chan Juancarlos

    2009-07-01

    Full Text Available Abstract Background Manual curation of experimental data from the biomedical literature is an expensive and time-consuming endeavor. Nevertheless, most biological knowledge bases still rely heavily on manual curation for data extraction and entry. Text mining software that can semi- or fully automate information retrieval from the literature would thus provide a significant boost to manual curation efforts. Results We employ the Textpresso category-based information retrieval and extraction system http://www.textpresso.org, developed by WormBase to explore how Textpresso might improve the efficiency with which we manually curate C. elegans proteins to the Gene Ontology's Cellular Component Ontology. Using a training set of sentences that describe results of localization experiments in the published literature, we generated three new curation task-specific categories (Cellular Components, Assay Terms, and Verbs containing words and phrases associated with reports of experimentally determined subcellular localization. We compared the results of manual curation to that of Textpresso queries that searched the full text of articles for sentences containing terms from each of the three new categories plus the name of a previously uncurated C. elegans protein, and found that Textpresso searches identified curatable papers with recall and precision rates of 79.1% and 61.8%, respectively (F-score of 69.5%, when compared to manual curation. Within those documents, Textpresso identified relevant sentences with recall and precision rates of 30.3% and 80.1% (F-score of 44.0%. From returned sentences, curators were able to make 66.2% of all possible experimentally supported GO Cellular Component annotations with 97.3% precision (F-score of 78.8%. Measuring the relative efficiencies of Textpresso-based versus manual curation we find that Textpresso has the potential to increase curation efficiency by at least 8-fold, and perhaps as much as 15-fold, given

  16. Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2013-03-01

    Mutations in the WAS gene cause Wiskott-Aldrich syndrome (WAS, which is characterized by eczema, immunodeficiency and microthrombocytopenia. Although the role of WASP in lymphocytes and myeloid cells is well characterized, its role on megakaryocyte (MK development is poorly understood. In order to develop a human cellular model that mimics the megakaryocytic-derived defects observed in WAS patients we used K562 cells, a well-known model for study of megakaryocytic development. We knocked out the WAS gene in K562 cells using a zinc-finger nuclease (ZFN pair targeting the WAS intron 1 and a homologous donor DNA that disrupted WASP expression. Knockout of WASP on K562 cells (K562WASKO cells resulted in several megakaryocytic-related defects such as morphological alterations, lower expression of CD41ɑ, lower increments in F-actin polymerization upon stimulation, reduced CD43 expression and increased phosphatidylserine exposure. All these defects have been previously described either in WAS-knockout mice or in WAS patients, validating K562WASKO as a cell model for WAS. However, K562WASPKO cells showed also increased basal F-actin and adhesion, increased expression of CD61 and reduced expression of TGFβ and Factor VIII, defects that have never been described before for WAS-deficient cells. Interestingly, these phenotypic alterations correlate with different roles for WASP in megakaryocytic differentiation. All phenotypic alterations observed in K562WASKO cells were alleviated upon expression of WAS following lentiviral transduction, confirming the role of WASP in these phenotypes. In summary, in this work we have validated a human cellular model, K562WASPKO, that mimics the megakaryocytic-related defects found in WAS-knockout mice and have found evidences for a role of WASP as regulator of megakaryocytic differentiation. We propose the use of K562WASPKO cells as a tool to study the molecular mechanisms involved in the megakaryocytic-related defects observed in WAS

  17. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Directory of Open Access Journals (Sweden)

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  18. In vivo monitoring of transfected DNA, gene expression kinetics, and cellular immune responses in mice immunized with a human NIS gene-expressing plasmid.

    Science.gov (United States)

    Son, Hye-Youn; Jeon, Yong-Hyun; Chung, June-Key; Kim, Chul-Woo

    2016-12-01

    In assessing the effectiveness of DNA vaccines, it is important to monitor: (1) the kinetics of target gene expression in vivo; and (2) the movement of cells that become transfected with the plasmid DNA used in the immunization of a subject. In this study, we used, as a visual imaging marker, expression of the transfected human sodium/iodide symporter (hNIS) gene, which enhances intracellular radio-pertechnetate (TcO4-) accumulation. After intradermal (i.d.) and systemic injection of mice with pcDNA-hNIS and radioactive Technetium-99m (Tc-99m), respectively, whole-body images were obtained by nuclear scintigraphy. The migration of mice cells transfected with the hNIS gene was monitored over a 2-week period by gamma-radioactivity counting of isolated cell populations and was demonstrated in peripheral lymphoid tissues, especially in the draining lymph nodes (dLNs). Beginning at 24 h after DNA inoculation and continuing for the 2-week monitoring period, hNIS-expressing cells were observed specifically in the T-cell-rich zones of the paracortical area of the dLNs. Over the same time period, high levels of INF-γ-secreting CD8 T-cells were found in the dLNs of the pcDNA-hNIS immunized mice. Tumor growth was also significantly retarded in the mice that received hNIS DNA immunization followed by inoculation with CT26 colorectal adenocarcinoma cells that had been transfected with the rat NIS gene (rNIS), which is 93% homologous to the hNIS gene. In conclusion, mouse cells transfected with hNIS DNA after i.d. immunization were found to traffic to the dLNs, and hNIS gene expression in these cells continued for at least 2 weeks post immunization. Furthermore, sequential presentation of NIS DNA to T-cells by migratory antigen presenting cells could induce NIS DNA-specific Th1 immune responses and thus retard the growth of NIS-expressing tumors.

  19. Effect of hydrophobic scaffold on the cellular uptake and gene transfection activities of DNA-encapsulating liposomal nanoparticles via intracerebroventricular administration.

    Science.gov (United States)

    Akita, Hidetaka; Nakatani, Taichi; Kuroki, Kimiko; Maenaka, Katsumi; Tange, Kota; Nakai, Yuta; Harashima, Hideyoshi

    2015-07-25

    Efficient DNA carriers are needed as a gene medication for curing brain disorders. In the present study, the function of a neutral lipid envelope-type nanoparticle (LNP) encapsulating pDNA was evaluated after intracerebroventricular administration. The lipid envelope was composed of a series of SS-cleavable and pH-activated lipid like materials (ssPalm) including myristic acid, vitamin A and vitamin E in the hydrophobic scaffold (LNPssPalmM, LNPssPalmA, LNPssPalmE, respectively). The LNPssPalmA and LNPssPalmE were extensively distributed in the corpus callosum, and then gene expression occurred mainly astrocytes in this region, while not in LNPssPalmM. The recombinant human ApoE3-dependent enhancement of the uptake into an astrocyte-derived cell line (KT-5) was observed in LNPssPalmA and LNPssPalmE. Thus, ApoE in the brain plays a key role in the cellular uptake of these particles by astrocytes, and this uptake is dependent on the structure of the hydrophobic scaffold.

  20. Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma.

    Science.gov (United States)

    Bak, Xiao Ying; Lam, Dang Hoang; Yang, Jingye; Ye, Kai; Wei, Esther Lee Xing; Lim, Sai Kiang; Wang, Shu

    2011-11-01

    Mesenchymal stem cells (MSCs) possess tumor-tropic properties and consequently have been used to deliver therapeutic agents for cancer treatment. Their potential in cancer therapy highlights the need for a consistent and renewable source for the production of uniform human MSCs suitable for clinical applications. In this study, we seek to investigate whether human embryonic stem cells can be used as a cell source to fulfill this goal. We generated MSC-like cells from two human embryonic stem cell lines, HuES9 and H1, and observed that MSC-like cells derived from human embryonic stem cells were able to migrate into human glioma intracranial xenografts after being injected into the cerebral hemisphere contralateral to the tumor inoculation site. We engineered these cells with baculoviral and lentiviral vectors, respectively, for transient and stable expression of the herpes simplex virus thymidine kinase gene. In tumor-bearing mice the engineered MSC-like cells were capable of inhibiting tumor growth and prolonging survival in the presence of ganciclovir after they were injected either directly into the xenografts or into the opposite hemisphere. Our findings suggest that human embryonic stem cell-derived MSCs may be a viable and attractive alternative for large-scale derivation of targeting vehicles for cancer therapy.

  1. Inactivation of RAD52 and HDF1 DNA repair genes leads to premature chronological aging and cellular instability

    Indian Academy of Sciences (India)

    SILVIA MERCADO-SÁENZ; BEATRIZ LÓPEZ-DÍAZ; FRANCISCO SENDRA-PORTERO; MANUEL MARTÍNEZ-MORILLO; MIGUEL J RUIZ-GÓMEZ

    2017-06-01

    The present study aims to investigate the role of radiation sensitive 52 (RAD52) and high-affinity DNA binding factor1 (HDF1) DNA repair genes on the life span of budding yeasts during chronological aging. Wild type (wt) and rad52,hdf1, and rad52 hdf1 mutant Saccharomyces cerevisiae strains were used. Chronological aging and survival assayswere studied by clonogenic assay and drop test. DNA damage was analyzed by electrophoresis after phenol extraction.Mutant analysis, colony forming units and the index of respiratory competence were studied by growing on dextroseand glycerol plates as a carbon source. Rad52 and rad52 hdf1 mutants showed a gradual decrease in surviving fractionin relation to wt and hdf1 mutant during aging. Genomic DNA was spontaneously more degraded during aging,mainly in rad52 mutants. This strain showed an increased percentage of revertant colonies. Moreover, all mutantsshowed a decrease in the index of respiratory competence during aging. The inactivation of RAD52 leads to prematurechronological aging with an increase in DNA degradation and mutation frequency. In addition, RAD52 and HDF1contribute to maintain the metabolic state, in a different way, during chronological aging. The results obtained couldhave important implications in the chronobiology of aging.

  2. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization

    Directory of Open Access Journals (Sweden)

    Cady Ryan J

    2011-12-01

    Full Text Available Abstract Background Calcitonin gene-related peptide (CGRP, a neuropeptide released from trigeminal nerves, is implicated in the underlying pathology of temporomandibular joint disorder (TMD. Elevated levels of CGRP in the joint capsule correlate with inflammation and pain. CGRP mediates neurogenic inflammation in peripheral tissues by increasing blood flow, recruiting immune cells, and activating sensory neurons. The goal of this study was to investigate the capability of CGRP to promote peripheral and central sensitization in a model of TMD. Results Temporal changes in protein expression in trigeminal ganglia and spinal trigeminal nucleus were determined by immunohistochemistry following injection of CGRP in the temporomandibular joint (TMJ capsule of male Sprague-Dawley rats. CGRP stimulated expression of the active forms of the MAP kinases p38 and ERK, and PKA in trigeminal ganglia at 2 and 24 hours. CGRP also caused a sustained increase in the expression of c-Fos neurons in the spinal trigeminal nucleus. In contrast, levels of P2X3 in spinal neurons were only significantly elevated at 2 hours in response to CGRP. In addition, CGRP stimulated expression of GFAP in astrocytes and OX-42 in microglia at 2 and 24 hours post injection. Conclusions Our results demonstrate that an elevated level of CGRP in the joint, which is associated with TMD, stimulate neuronal and glial expression of proteins implicated in the development of peripheral and central sensitization. Based on our findings, we propose that inhibition of CGRP-mediated activation of trigeminal neurons and glial cells with selective non-peptide CGRP receptor antagonists would be beneficial in the treatment of TMD.

  3. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  4. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.

    Science.gov (United States)

    Marcano-Velázquez, Joan G; Batey, Robert T

    2015-02-13

    Riboswitches are a broadly distributed form of RNA-based gene regulation in Bacteria and, more rarely, Archaea and Eukarya. Most often found in the 5'-leader sequence of bacterial mRNAs, they are generally composed of two functional domains: a receptor (aptamer) domain that binds an effector molecule and a regulatory domain (or expression platform) that instructs the expression machinery. One of the most studied riboswitches is the Bacillus subtilis adenine-responsive pbuE riboswitch, which regulates gene expression at the transcriptional level, up-regulating expression in response to increased intracellular effector concentrations. In this work, we analyzed sequence and structural elements that contribute to efficient ligand-dependent regulatory activity in a co-transcriptional and cellular context. Unexpectedly, we found that the P1 helix, which acts as the antitermination element of the switch in this RNA, supported ligand-dependent activation of a reporter gene over a broad spectrum of lengths from 3 to 10 bp. This same trend was also observed using a minimal in vitro single-turnover transcription assay, revealing that this behavior is intrinsic to the RNA sequence. We also found that the sequences at the distal tip of the terminator not directly involved in alternative secondary structure formation are highly important for efficient regulation. These data strongly support a model in which the switch is highly localized to the P1 helix adjacent to the ligand-binding pocket that likely presents a local kinetic block to invasion of the aptamer by the terminator.

  5. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  6. Comparative study of cellular kinetics of reporter probe [{sup 131}I]FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China)], E-mail: lxl730724@hotmail.com; Yin Xiaohua; Wang Ruihua; Liu Ying [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China) and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China)], E-mail: zhyx1229@163.com

    2009-02-15

    Aim: Reporter gene imaging is a promising approach for noninvasive monitoring of cardiac gene therapy. In this study, HSV1-tk (herpes simplex virus type 1 thymidine kinase) and FIAU (2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyl-5-iodouracil) were used as the reporter gene and probe, respectively. Cellular uptakes of radiolabeled FIAU of neonatal rat cardiac myocytes transferred with HSV1-tk were compared between two vectors, adenovirus and liposome. The aims of this study were to choose the better vector and to provide a theoretical basis for good nuclide images. Methods: Neonatal cardiac myocytes were obtained from rat heart by single collagenase digestion. HSV1-tk inserted into adenovirus vector (recombinant adenovirus type 5, Ad5-tk) and plasmid (pDC316-tk) coated with Lipofectamine 2000 (pDC316-tk/lipoplex) were developed; thus, HSV1-tk could be transferred into neonatal cardiac myocytes. FAU (2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyluracil) was labeled with {sup 131}I, and the product was assessed after purification with reversed-phase Sep-Pak C-18 column. The uptake rates of [{sup 131}I]FIAU in the transferred cardiac myocytes at different times (0.5, 1, 2, 3, 4 and 5 h) were detected. Furthermore, mRNA expression and protein expression of HSV1-tk were detected by semiquantitative reverse-transcriptase polymerase chain reaction and immunocytochemistry. Results: FAU could be labeled with {sup 131}I, and the labeling efficiency and radiochemical purity rates were 53.82{+-}2.05% and 94.85{+-}1.76%, respectively. Time-dependent increase of the accumulation of [{sup 131}I]FIAU was observed in both the Ad5-tk group and the pDC316/lipoplex group, and the highest uptake rate occurred at 5 h, with peak values of 12.55{+-}0.37% and 2.09{+-}0.34%, respectively. Greater uptakes of [{sup 131}I]FIAU in Ad5-tk-infected cells compared with pDC316/lipoplex-transfected ones occurred at all the time points (t=12.978-38.253, P<.01). The exogenous gene

  7. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    Science.gov (United States)

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  8. The basis for colorless hemolymph and cocoons in the Y-gene recessive Bombyx mori mutants: a defect in the cellular uptake of carotenoids.

    Science.gov (United States)

    Tsuchida, Kozo; Katagiri, Chihiro; Tanaka, Yoshiro; Tabunoki, Hiroko; Sato, Ryoichi; Maekawa, Hideaki; Takada, Naoko; Banno, Yutaka; Fujii, Hiroshi; Wells, Michael A; Jouni, Zeina E

    2004-10-01

    Bombyx mori is an excellent model for the study of carotenoid-binding proteins (CBP). In previous papers, we identified and molecularly characterized a CBP from the Y-gene dominant mutants. In the present study, we attempted to correlate and establish lipid metabolism and distribution in these mutants. When [3H]-triolein was fed to the mutants, typical patterns of uptake of labeled fatty acids from midgut to hemolymph and subsequent delivery to fat body and silk glands were obtained in all mutants. Further analysis of lipid and carotenoid profiles revealed that the yellow coloration in the hemolymph associated with lipophorin is not attributed to a difference in lipophorin concentrations among the mutants, nor to its lipid composition, but rather to its carotenoid content. Lipophorin of the Y+I mutant exhibited the highest concentration of total carotenoids of 55.8 microg/mg lipophorin compared to 3.1 microg/mg in the +Y+I mutant, 1.2 microg/mg in the YI mutant and 0.5 microg/mg in the +YI mutant. Characteristic retention time in HPLC of the different classes of carotenoids of lipophorin identified the presence of lutein as the major chromophore (62-77%), followed by beta-carotenes (22-38%). Although lutein and beta-carotene content of mutants' lipophorin differed significantly, the ratio of lutein to beta-carotene of 3:1 was not different among mutants. Similarly, lipid compositions of mutant silk glands were not significantly different, but carotenoid contents were. The significantly high concentration of lutein in the Y+I mutant silk gland represented more than 160-fold increase compared to +Y+I mutant (plipid metabolism in the mutants is not defected and that the molecular basis for colorless hemolymph and cocoons is a defect in the cellular uptake of lutein associated with the Y-gene recessive mutants.

  9. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Taijiro Yabe

    2009-06-01

    Full Text Available Females homozygous for a mutation in cellular island (cei produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.

  10. Cell type specific repression of the varicella zoster virus immediate early gene 62 promoter by the cellular Oct-2 transcription factor.

    Science.gov (United States)

    Patel, Y; Gough, G; Coffin, R S; Thomas, S; Cohen, J I; Latchman, D S

    1998-05-11

    The cellular transcription factor Oct-2.1 has previously been shown to repress the transactivation of the varicella zoster virus (VZV) immediate early gene promoter by viral transactivators but not to inhibit its basal activity. In the case of the related virus herpes simplex virus (HSV), the effect of Oct-2 on the IE promoters has been shown to be cell type specific and to differ between the different alternatively spliced forms of Oct-2. Here we show that as well as Oct-2.1, the Oct-2.4 and 2.5 isoforms which are expressed in neuronal cells can inhibit transactivation of the VZV immediate early promoter regardless of the cell type used. In contrast, all the isoforms of Oct-2 can inhibit basal activity of the VZV promoter in neuronal cells but not in other cell types indicating that this effect is cell type specific. These effects are discussed in terms of the differential regulation of latent infections with HSV or VZV in dorsal root ganglia.

  11. Review of cellular mechanotransduction

    Science.gov (United States)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  12. Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes

    Science.gov (United States)

    Twigg, Stephen R.F.; Babbs, Christian; van den Elzen, Marijke E.P.; Goriely, Anne; Taylor, Stephen; McGowan, Simon J.; Giannoulatou, Eleni; Lonie, Lorne; Ragoussis, Jiannis; Akha, Elham Sadighi; Knight, Samantha J.L.; Zechi-Ceide, Roseli M.; Hoogeboom, Jeannette A.M.; Pober, Barbara R.; Toriello, Helga V.; Wall, Steven A.; Rita Passos-Bueno, M.; Brunner, Han G.; Mathijssen, Irene M.J.; Wilkie, Andrew O.M.

    2013-01-01

    Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundaries—a process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5′ untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69%. The 5′ UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females. PMID:23335590

  13. RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions.

    Science.gov (United States)

    Xiaofei, E; Stadler, Bradford M; Debatis, Michelle; Wang, Shixia; Lu, Shan; Kowalik, Timothy F

    2012-05-01

    Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.

  14. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    Science.gov (United States)

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  15. The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress

    Directory of Open Access Journals (Sweden)

    Areum Lee

    2016-07-01

    Full Text Available Alternative splicing (AS is an important molecular mechanism by which single genes can generate multiple mRNA isoforms. We reported previously that, in Oryza sativa, the cyclophilin 19-4 (OsCYP19-4.1 transcript was significantly upregulated in response to cold stress, and that transgenic plants were cold tolerant. Here we show that, under cold stress, OsCYP19-4 produces eight transcript variants by intron retention and exon skipping, resulting in production of four distinct protein isoforms. The OsCYP19-4 AS isoforms exhibited different cellular localizations in the epidermal cells: in contrast to OsCYP19-4.1, the OsCYP19-4.2 and OsCYP19-4.3 proteins were primarily targeted to guard and subsidiary cells, whereas OsCYP19-4.5, which consists largely of an endoplasmic reticulum (ER targeting signal, was co-localized with the RFP-BiP marker in the ER. In OsCYP19-4.2, the key residues of the PPIase domain are altered; consistent with this, recombinant OsCYP19-4.2 had significantly lower PPIase activity than OsCYP19-4.1 in vitro. Specific protein-protein interactions between OsCYP19-4.2/3 and AtRCN1 were verified in yeast two-hybrid (Y2H and bimolecular fluoresence complementation (BiFC assays, although the OsCYP19-4 isoforms could not bind each other. Based on these results, we propose that two OsCYP19-4 AS isoforms, OsCYP19-4.2 and OsCYP19-4.3, play roles linking auxin transport and cold stress via interactions with RCN1.

  16. A stable HeLa cell line that inducibly expresses poliovirus 2A(pro): effects on cellular and viral gene expression.

    Science.gov (United States)

    Barco, A; Feduchi, E; Carrasco, L

    2000-03-01

    A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2A(pro)) under the control of tetracycline has been obtained. Synthesis of 2A(pro) induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2A(pro) cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2A(pro), prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2A(pro) still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2A(pro). Moreover, synthesis of 2A(pro) in 2A7d cells complements the translational defect of a poliovirus 2A(pro)-defective variant. These results show that poliovirus 2A(pro) expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2A(pro) functions, to complement poliovirus 2A(pro) mutants, and to test antiviral compounds.

  17. Characterization of Epstein-Barr virus (EBV) BZLF1 gene promoter variants and comparison of cellular gene expression profiles in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Imajoh, Masayuki; Hashida, Yumiko; Murakami, Masanao; Maeda, Akihiko; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2012-06-01

    Epstein-Barr virus (EBV) genotypes can be distinguished based on gene sequence differences in EBV nuclear antigens 2, 3A, 3B, and 3C, and the BZLF1 promoter zone (Zp). EBV subtypes and BZLF1 Zp variants were examined in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis. The results of EBV typing showed that samples of infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis all belonged to EBV type 1. However, sequencing analysis of BZLF1 Zp found three polymorphic Zp variants in the same samples. The Zp-P prototype and the Zp-V3 variant were both detected in infectious mononucleosis and chronic active EBV infection. Furthermore, a novel variant previously identified in Chinese children with infectious mononucleosis, Zp-V1, was also found in 3 of 18 samples of infectious mononucleosis, where it coexisted with the Zp-P prototype. This is the first evidence that the EBV variant distribution in Japanese patients resembles that found in other Asian patients. The expression levels of 29 chronic active EBV infection-associated cellular genes were also compared in the three EBV-related disorders, using quantitative real-time reverse transcription polymerase chain reaction analysis. Two upregulated genes, RIPK2 and CDH9, were identified as common specific markers for chronic active EBV infection in both in vitro and in vivo studies. RIPK2 activates apoptosis and autophagy, and could be responsible for the pathogenesis of chronic active EBV infection.

  18. Aryl Hydrocarbon Receptor Activation in Hematopoietic Stem/Progenitor Cells Alters Cell Function and Pathway-Specific Gene Modulation Reflecting Changes in Cellular Trafficking and MigrationS⃞

    OpenAIRE

    Casado, Fanny L.; Singh, Kameshwar P.; Gasiewicz, Thomas A.

    2011-01-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the Per-ARNT-Sim family of proteins. These proteins sense molecules and stimuli from the cellular/tissue environment and initiate signaling cascades to elicit appropriate cellular responses. Recent literature reports suggest an important function of AhR in hematopoietic stem cell (HSC) biology. However, the molecular mechanisms by which AhR signaling regulates HSC functions are unknown. In previous studies, we and othe...

  19. Gene dose influences cellular and calcium channel dysregulation in heterozygous and homozygous T4826I-RYR1 malignant hyperthermia-susceptible muscle.

    Science.gov (United States)

    Barrientos, Genaro C; Feng, Wei; Truong, Kim; Matthaei, Klaus I; Yang, Tianzhong; Allen, Paul D; Lopez, José R; Pessah, Isaac N

    2012-01-20

    Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca(2+) concentration ([Ca(2+)](rest)) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca(2+) from the sarcoplasmic reticulum and Ca(2+) entry contributed to halothane-triggered increases in [Ca(2+)](rest) in Hom FDBs and elicited pronounced Ca(2+) oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca(2+)](rest) (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser(2844) phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [(3)H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca(2+), Mg(2+), and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca(2+)](rest), and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are

  20. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng-Fei [Xijing Hospital, Fourth Military Medical University, Xi' an (China); Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China); Han, Ya-Ling, E-mail: hanyaling53@gmail.com [Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China); Jie-Deng,; Yan, Cheng-Hui; Jian-Kang,; Bo-Luan,; Jie-Li [Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China)

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study

  1. [Senescence and cellular immortality].

    Science.gov (United States)

    Trentesaux, C; Riou, J-F

    2010-11-01

    Senescence was originally described from the observation of the limited ability of normal cells to grow in culture, and may be generated by telomere erosion, accumulation of DNA damages, oxidative stress and modulation of oncogenes or tumor suppressor genes. Senescence corresponds to a cellular response aiming to control tumor progression by limiting cell proliferation and thus constitutes an anticancer barrier. Senescence is observed in pre-malignant tumor stages and disappears from malignant tumors. Agents used in standard chemotherapy also have the potential to induce senescence, which may partly explain their therapeutic activities. It is possible to restore senescence in tumors using targeted therapies that triggers telomere dysfunction or reactivates suppressor genes functions, which are essential for the onset of senescence.

  2. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus

    Science.gov (United States)

    Muhammad, Syed Aun; Raza, Waseem; Nguyen, Thanh; Bai, Baogang; Wu, Xiaogang; Chen, Jake

    2017-01-01

    Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes (p < 0.05), we found 9-T2DM related genes using extensive data mapping. In our constructed gene-network, T2DM-related differentially expressed seeder genes (9-genes) are found to interact with functionally related gene signatures (31-genes). The genetic interaction network of both T2DM-associated seeder as well as signature genes generally relates well with the disease condition based on toxicogenomic and data curation. Results: These networks showed significant enrichment of insulin signaling, insulin secretion and other T2DM-related pathways including JAK-STAT, MAPK, TGF, Toll-like receptor, p53 and mTOR, adipocytokine, FOXO, PPAR, P13-AKT, and triglyceride metabolic pathways. We found some enriched pathways that are common in different conditions. We recognized 11-signaling pathways as a connecting link between gene signatures in insulin resistance and T2DM. Notably, in the drug-gene network, the interacting genes showed significant overlap with 13-FDA approved and few non-approved drugs. This study demonstrates the value of systems genetics for identifying 18 potential genes associated with T2DM that are probable drug targets. Conclusions: This integrative and network based approaches for finding variants in genomic data expect to accelerate identification of new drug target molecules for different diseases and can speed up drug discovery outcomes. PMID:28179884

  3. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer.

    Science.gov (United States)

    Podlutsky, Andrej; Valcarcel-Ares, Marta Noa; Yancey, Krysta; Podlutskaya, Viktorija; Nagykaldi, Eszter; Gautam, Tripti; Miller, Richard A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-02-23

    Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period

  4. [Polymorphism in HLA and KIR genes and the impact on hematopoietic stem cell transplantation outcomes and unrelated donor selection: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    Science.gov (United States)

    Dubois, Valérie; Brignier, Anne; Elsermans, Vincent; Gagne, Katia; Kennel, Anne; Pedron, Béatrice; Picard, Christophe; Ravinet, Aurélie; Varlet, Pauline; Cesbron, Anne; Delbos, Florent; Yakoub-Agha, Ibrahim; Loiseau, Pascale

    2016-11-01

    In an attempt to harmonize clinical practices among French hematopoietic stem cell transplantation centers, the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) held its sixth annual workshop series in September 2015 in Lille. This event brought together practitioners from across the country with the purpose of offering careful analysis of published studies on clinical practice issues that remain to be disputed. This article addresses the impact of HLA and KIR gene polymorphism on the outcome of the transplantation in order to optimize unrelated donor selection.

  5. Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Raza, Sobia; Baillie, J Kenneth; Freeman, Thomas C

    2010-06-01

    Very large microarray datasets showing gene expression across multiple tissues and cell populations provide a window on the transcriptional networks that underpin the differences in functional activity between biological systems. Clusters of co-expressed genes provide lineage markers, candidate regulators of cell function and, by applying the principle of guilt by association, candidate functions for genes of currently unknown function. We have analysed a dataset comprising pure cell populations from hemopoietic and non-hemopoietic cell types (http://biogps.gnf.org). Using a novel network visualisation and clustering approach, we demonstrate that it is possible to identify very tight expression signatures associated specifically with embryonic stem cells, mesenchymal cells and hematopoietic lineages. Selected examples validate the prediction that gene function can be inferred by co-expression. One expression cluster was enriched in phagocytes, which, alongside endosome-lysosome constituents, contains genes that may make up a 'pathway' for phagocyte differentiation. Promoters of these genes are enriched for binding sites for the ETS/PU.1 and MITF families. Another cluster was associated with the production of a specific extracellular matrix, with high levels of gene expression shared by cells of mesenchymal origin (fibroblasts, adipocytes, osteoblasts and myoblasts). We discuss the limitations placed upon such data by the presence of alternative promoters with distinct tissue specificity within many protein-coding genes.

  6. Transcriptome meta-analysis reveals a dysregulation in extra cellular matrix and cell junction associated gene signatures during Dengue virus infection

    Science.gov (United States)

    Afroz, Sumbul; Giddaluru, Jeevan; Abbas, Mohd. Manzar; Khan, Nooruddin

    2016-01-01

    Dengue Viruses (DENVs) cause one of the most prevalent arthropod-borne viral diseases affecting millions of people worldwide. Identification of genes involved in DENV pathogenesis would help in deciphering molecular mechanisms responsible for the disease progression. Here, we carried out a meta-analysis of publicly available gene expression data of dengue patients and further validated the meta-profile using in-vitro infection in THP-1 cells. Our findings reveal that DENV infection modulates expression of several genes and signalling pathways including interferons, detoxification of ROS and viral assembly. Interestingly, we have identified novel gene signatures comprising of INADL/PATJ and CRTAP (Cartilage Associated Protein), which were significantly down-regulated across all patient data sets as well as in DENV infected THP-1 cells. PATJ and CRTAP genes are involved in maintaining cell junction integrity and collagen assembly (extracellular matrix component) respectively, which together play a crucial role in cell-cell adhesion. Our results categorically reveal that overexpression of CRTAP and PATJ genes restrict DENV infection, thereby suggesting a critical role of these genes in DENV pathogenesis. Conclusively, these findings emphasize the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease pathogenesis and possibly lead towards the development of better therapeutic interventions. PMID:27651116

  7. Expression of the zebrafish CD133/prominin1 genes in cellular proliferation zones in the embryonic central nervous system and sensory organs.

    Science.gov (United States)

    McGrail, Maura; Batz, Lindsey; Noack, Kristin; Pandey, Saumya; Huang, Yong; Gu, Xun; Essner, Jeffrey J

    2010-06-01

    The CD133/prominin1 gene encodes a pentamembrane glycoprotein cell surface marker that is expressed in stem cells from neuroepithelial, hematopoietic, and various organ tissues. Here we report the analysis of two zebrafish CD133/prominin1 orthologues, prominin1a and prominin1b. The expression patterns of the zebrafish prominin1a and b genes were analyzed during embryogenesis using whole mount in situ hybridization. prominin1a and b show novel complementary and overlapping patterns of expression in proliferating zones in the developing sensory organs and central nervous system. The expression patterns suggest functional conservation of the zebrafish prominin1 genes. Initial analyses of prominin1a and b in neoplastic tissue show increased expression of both genes in a subpopulation of cells in malignant peripheral nerve sheath tumors in tp53 mutants. Based on these analyses, the zebrafish prominin1 genes will be useful markers for examining proliferating cell populations in adult organs, tissues, and tumors.

  8. Cellular Distribution and Gene Expression Pattern of Metastasin (S100A4), Calgranulin A (S100A8), and Calgranulin B (S100A9) in Oral Lesions as Markers for Molecular Pathology.

    Science.gov (United States)

    Reckenbeil, Jan; Kraus, Dominik; Probstmeier, Rainer; Allam, Jean-Pierre; Novak, Natalija; Frentzen, Matthias; Martini, Markus; Wenghoefer, Matthias; Winter, Jochen

    2016-07-02

    The objective of this study was to analyze cellular localization and expression levels of oncologic relevant members of the S100 family in common oral lesions.Biopsies of various oral lesions were analyzed. S100A4 showed a higher expression rate in leukoplakias and oral squamous cell carcinomas. Transcript levels of S100A8 and S100A9 were significantly decreased in malignant OSCCs. A correlation could be drawn between the expression levels of these genes and the pathological characteristics of the investigated lesions. S100A4, A8, and A9 proteins represent promising marker genes to evaluate the risk potential of suspicious oral lesions in molecular pathology.

  9. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Muhammad, Syed Aun; Raza, Waseem; Nguyen, Thanh; Bai, Baogang; Wu, Xiaogang; Chen, Jake

    2017-01-01

    Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes (p new drug target molecules for different diseases and can speed up drug discovery outcomes.

  10. Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women

    OpenAIRE

    Maningat, Patricia D.; Sen, Partha; Rijnkels, Monique; Hadsell, Darryl L.; Bray, Molly S.; Haymond, Morey W.

    2011-01-01

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determine...

  11. Energy Landscape of Cellular Networks

    Science.gov (United States)

    Wang, Jin

    2008-03-01

    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  12. [Correlation on a cellular level of gene transcriptional silencing and heterochromatin compartment dragging in case of PEV-producing eu-heterochromatin rearrangement in Drosophila melanogaster].

    Science.gov (United States)

    Lavrov, S A; Shatskikh, A S; Kibanov, M V; Gvozdev, V A

    2013-01-01

    Eu-heterochromatic rearrangements transfer genes into the heterochromatin and cause their variegated inactivation (PEV). Genes affected by PEV often demonstrate association with heterochromatic nuclear compartment (a distinct area composed of heterochromatin sequences like satellite DNA and enriched in specific chromatin proteins e.g. HP1). Here, we investigate the nuclear localization and the expression levels of the genes subjected to PEV caused by chromosome inversion, In(2)A4. We demonstrate that the degree of PEV-caused gene inactivation depends on a developmental stage, and the maximum of repression corresponds to the gene expression activation period. In the case of In(2)A4 rearrangement we detect the dragging of affected euchromatic region into heterochromatic nuclear compartment and the increase in HP1 occupancy in this region. We developed a protocol of simultaneous RNA-DNA-protein staining to demonstrate firstly in a single cell a strong correlation between transcriptional activity of affected gene and its distance from chromosome 2 satellite DNA.

  13. Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements

    OpenAIRE

    Zhang, Tingting; Stilwell, Jackie L.; Gerion, Daniele; Ding, Lianghao; Elboudwarej, Omeed; Cooke, Patrick A.; Gray, Joe W.; Alivisatos, A. Paul; Chen, Fanqing Frank

    2006-01-01

    Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxici...

  14. Cellular identity of an 18S rRNA gene sequence clade within the class Kinetoplastea: the novel genus Actuariola gen. nov. (Neobodonida) with description of the type species Actuariola framvarensis sp. nov.

    Science.gov (United States)

    Stoeck, Thorsten; Schwarz, M V Julian; Boenigk, Jens; Schweikert, Michael; von der Heyden, Sophie; Behnke, Anke

    2005-11-01

    Environmental molecular surveys of microbial diversity have uncovered a vast number of novel taxonomic units in the eukaryotic tree of life that are exclusively known by their small-subunit (SSU) rRNA gene signatures. In this study, we reveal the cellular and taxonomic identity of a novel eukaryote SSU rRNA gene sequence clade within the Kinetoplastea. Kinetoplastea are ubiquitously distributed flagellated protists of high ecological and medical importance. We isolated an organism from the oxic-anoxic interface of the anoxic Framvaren Fjord (Norway), which branches within an unidentified kinetoplastean sequence clade. Ultrastructural studies revealed a typical cellular organization that characterized the flagellated isolate as a member of the order Neobodonida Vickerman 2004, which contains five genera. The isolate differed in several distinctive characters from Dimastigella, Cruzella, Rhynchobodo and Rhynchomonas. The arrangement of the microtubular rod that supports the apical cytostome and the cytopharynx differed from the diagnosis of the fifth described genus (Neobodo Vickerman 2004) within the order Neobodonida. On the basis of both molecular and microscopical data, a novel genus within the order Neobodonida, Actuariola gen. nov., is proposed. Here, we characterize its type species, Actuariola framvarensis sp. nov., and provide an in situ tool to access the organism in nature and study its ecology.

  15. INCURVATA2 Encodes the Catalytic Subunit of DNA Polymerase α and Interacts with Genes Involved in Chromatin-Mediated Cellular Memory in Arabidopsis thaliana

    Science.gov (United States)

    Barrero, José María; González-Bayón, Rebeca; del Pozo, Juan Carlos; Ponce, María Rosa; Micol, José Luis

    2007-01-01

    Cell type–specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase α of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity. PMID:17873092

  16. INCURVATA2 encodes the catalytic subunit of DNA Polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana.

    Science.gov (United States)

    Barrero, José María; González-Bayón, Rebeca; del Pozo, Juan Carlos; Ponce, María Rosa; Micol, José Luis

    2007-09-01

    Cell type-specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase alpha of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity.

  17. Evaluation of cellular retinoic acid binding protein 2 gene expression through the retinoic acid pathway by co-incubation of Blastocystis ST-1 with HT29 cells in vitro.

    Science.gov (United States)

    Liao, Chen-Chieh; Song, Eing-Ju; Chang, Tsuey-Yu; Lin, Wei-Chen; Liu, Hsiao-Sheng; Chen, Lih-Ren; Huang, Lynn L H; Shin, Jyh-Wei

    2016-05-01

    Blastocystis is a parasitic protist with a worldwide distribution that is commonly found in patients with colon and gastrointestinal pathological symptoms. Blastocystis infection has also commonly been reported in colorectal cancer and HIV/AIDS patients with gastrointestinal symptoms. To understand the pathway networks of gene regulation and the probable mechanisms influencing functions of HT-29 host cells in response to parasite infection, we examined the expression of 163 human oncogenes and kinases in human colon adenocarcinoma HT-29 cells co-incubated with Blastocystis by in-house cDNA microarray and PCR analysis. At least 10 genes were shown to be modified following Blastocystis co-incubation, including those with immunological, tumorigenesis, and antitumorigenesis functions. The expression of genes encoding cellular retinoic acid binding protein 2 (CRABP2) and proliferating cell nuclear antigen (PCNA) was markedly upregulated and downregulated, respectively. Reverse transcriptase-PCR validated the modified transcript expression of CRABP2 and other associated genes such as retinoic acid (RA)-related nuclear-receptor (RARα). Together, our data indicate that CRABP2, RARα, and PCNA expressions are involved in RA signaling regulatory networks that affect the growth, proliferation, and inflammation of HT-29 cells.

  18. Disulfide-Based Poly(amido amine)s for siRNA Delivery: Effects of Structure on siRNA Complexation, Cellular Uptake, Gene Silencing and Toxicity

    NARCIS (Netherlands)

    Vader, Pieter; Aa, van der Leonardus J.; Engbersen, Johan F.J.; Storm, Gert; Schiffelers, Raymond M.

    2011-01-01

    Purpose RNA interference (RNAi) is a process by which small interfering RNAs (siRNA) induce sequence-specific gene silencing. Therefore, siRNA is an emerging promise as a novel therapeutic. In order to realize the high expectations for therapeutic applications, efficient delivery systems for siRNA

  19. Short-term administration of rhGH increases markers of cellular proliferation, but not milk protein gene expression in normal lactating women.

    Science.gov (United States)

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained fro...

  20. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  1. Deficiency of the purine metabolic gene HPRT dysregulates microRNA-17 family cluster and guanine-based cellular functions: a role for EPAC in Lesch-Nyhan syndrome.

    Science.gov (United States)

    Guibinga, Ghiabe-Henri; Murray, Fiona; Barron, Nikki; Pandori, William; Hrustanovic, Gorjan

    2013-11-15

    Lesch-Nyhan syndrome (LNS) is a neurodevelopmental disorder caused by mutations in the gene encoding the purine metabolic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). A series of motor, cognitive and neurobehavioral anomalies characterize this disease phenotype, which is still poorly understood. The clinical manifestations of this syndrome are believed to be the consequences of deficiencies in neurodevelopmental pathways that lead to disordered brain function. We have used microRNA array and gene ontology analysis to evaluate the gene expression of differentiating HPRT-deficient human neuron-like cell lines. We set out to identify dysregulated genes implicated in purine-based cellular functions. Our approach was based on the premise that HPRT deficiency affects preeminently the expression and the function of purine-based molecular complexes, such as guanine nucleotide exchange factors (GEFs) and small GTPases. We found that several microRNAs from the miR-17 family cluster and genes encoding GEF are dysregulated in HPRT deficiency. Most notably, our data show that the expression of the exchange protein activated by cAMP (EPAC) is blunted in HPRT-deficient human neuron-like cell lines and fibroblast cells from LNS patients, and is altered in the cortex, striatum and midbrain of HPRT knockout mouse. We also show a marked impairment in the activation of small GTPase RAP1 in the HPRT-deficient cells, as well as differences in cytoskeleton dynamics that lead to increased motility for HPRT-deficient neuron-like cell lines relative to control. We propose that the alterations in EPAC/RAP1 signaling and cell migration in HPRT deficiency are crucial for neuro-developmental events that may contribute to the neurological dysfunctions in LNS.

  2. Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear.

    Science.gov (United States)

    Jones, Chonnettia; Qian, Dong; Kim, Sun Myoung; Li, Shuangding; Ren, Dongdong; Knapp, Lindsey; Sprinzak, David; Avraham, Karen B; Matsuzaki, Fumio; Chi, Fanglu; Chen, Ping

    2014-11-01

    The coordinated polarization of neighboring cells within the plane of the tissue, known as planar cell polarity (PCP), is a recurring theme in biology. It is required for numerous developmental processes for the form and function of many tissues and organs across species. The genetic pathway regulating PCP was first discovered in Drosophila, and an analogous but distinct pathway is emerging in vertebrates. It consists of membrane protein complexes known as core PCP proteins that are conserved across species. Here we report that the over-expression of the murine Ankrd6 (mAnkrd6) gene that shares homology with Drosophila core PCP gene diego causes a typical PCP phenotype in Drosophila, and mAnkrd6 can rescue the loss of function of diego in Drosophila. In mice, mAnkrd6 protein is asymmetrically localized in cells of the inner ear sensory organs, characteristic of components of conserved core PCP complexes. The loss of mAnkrd6 causes PCP defects in the inner ear sensory organs. Moreover, canonical Wnt signaling is significantly increased in mouse embryonic fibroblasts from mAnkrd6 knockout mice in comparison to wild type controls. Together, these results indicated that mAnkrd6 is a functional homolog of the Drosophila diego gene for mammalian PCP regulation and act to suppress canonical Wnt signaling.

  3. The promoter of the white spot syndrome virus immediate-early gene WSSV108 is activated by the cellular KLF transcription factor.

    Science.gov (United States)

    Liu, Wang-Jing; Lo, Chu-Fang; Kou, Guang-Hsiung; Leu, Jiann-Horng; Lai, Ying-Jang; Chang, Li-Kwan; Chang, Yun-Shiang

    2015-03-01

    A series of deletion and mutation assays of the white spot syndrome virus (WSSV) immediate-early gene WSSV108 promoter showed that a Krüppel-like factor (KLF) binding site located from -504 to -495 (relative to the transcription start site) is important for the overall level of WSSV108 promoter activity. Electrophoretic mobility shift assays further showed that overexpressed recombinant Penaeus monodon KLF (rPmKLF) formed a specific protein-DNA complex with the (32)P-labeled KLF binding site of the WSSV108 promoter, and that higher levels of Litopenaeus vannamei KLF (LvKLF) were expressed in WSSV-infected shrimp. A transactivation assay indicated that the WSSV108 promoter was strongly activated by rPmKLF in a dose-dependent manner. Lastly, we found that specific silencing of LvKLF expression in vivo by dsRNA injection dramatically reduced both WSSV108 expression and WSSV replication. We conclude that shrimp KLF is important for WSSV genome replication and gene expression, and that it binds to the WSSV108 promoter to enhance the expression of this immediate-early gene.

  4. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells.

    Science.gov (United States)

    Kempisty, B; Ziółkowska, A; Ciesiółka, S; Piotrowska, H; Antosik, P; Bukowska, D; Nowicki, M; Brüssow, K P; Zabel, M

    2014-01-01

    Granulosa cells (GCs) play an important role during follicle growth and development in preovulatory stage. Moreover, the proteins such as connexins are responsible for formation of protein channel between follicular-cumulus cells and oocyte. This study was aimed to investigate the role of connexin expression in porcine GCs in relation to their cellular distribution and real-time cell proliferation. In the present study, porcine GCs were isolated from the follicles of puberal gilts and then cultured in a real-time cellular analyzer (RTCA) system for 168 h. The expression levels of connexins (Cxs) Cx36, Cx37, Cx40 and Cx43 mRNA were measured by RQ-PCR analysis, and differences in the expression and distribution of Cx30, Cx31, Cx37, Cx43 and Cx45 proteins were analyzed by confocal microscopic visualization. We found higher level of Cx36, Cx37, and Cx43 mRNA expression in GCs at recovery (at 0 h of in vitro culture, IVC) compared to all analyzed time periods of IVC (24, 48, 72, 96, 120, 144 and 168 h; Pproteins were higher before (0 h) compared to after 168 h of IVC. The expression of Cx30 and Cx43, however, did not vary between the groups. In all, the proteins were distributed throughout the cell membrane rather than in the cytoplasm both before and after IVC. After 24 h of IVC, we observed a significant increase in the proliferation of GCs (log phase). We found differences in the proliferation index between 72-96 and 96- 140 h within the same population of GCs. In conclusion, the decrease in the expression of Cx mRNAs and proteins following IVC could be associated with a breakdown in gap-junction connections (GJCs), and leads to the decreased of their activity, which may be a reason of non-functional existence of connexon in follicular granulosa cells. These data indicated that the differentiation and proliferation of GCs and lutein cells are regulated by distinct mechanisms in pigs.

  5. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  6. Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells

    Science.gov (United States)

    Hamauchi, Shuji; Shichinohe, Hideo; Uchino, Haruto; Yamaguchi, Shigeru; Nakayama, Naoki; Kazumata, Ken; Osanai, Toshiya; Abumiya, Takeo; Houkin, Kiyohiro; Era, Takumi

    2016-01-01

    Background and purpose Moyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cell (iPSC)-derived ECs. Methods iPSC lines were established from the peripheral blood of three patients with MMD carrying the variant RNF213 R4810K, and three healthy persons used as controls. After the endothelial differentiation of iPSCs, CD31+CD144+ cells were purified as ECs using a cell sorter. We analyzed their proliferation, angiogenesis, and responses to some angiogenic factors, namely VEGF, bFGF, TGF-β, and BMP4. The ECs were also analyzed using DNA microarray and proteomics to perform comprehensive gene and protein expression analysis. Results Angiogenesis was significantly impaired in MMD regardless of the presence of any angiogenic factor. On the contrary, endothelial proliferation was not significant between control- and MMD-derived cells. Regarding DNA microarray, pathway analysis illustrated that extracellular matrix (ECM) receptor-related genes, including integrin β3, were significantly downregulated in MMD. Proteomic analysis revealed that cytoskeleton-related proteins were downregulated and splicing regulation-related proteins were upregulated in MMD. Conclusions Downregulation of ECM receptor-related genes may be associated with impaired angiogenic activity in ECs derived from iPSCs from patients with MMD. Upregulation of splicing regulation-related proteins implied differences in splicing patterns between control and MMD ECs. PMID:27662211

  7. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wang Tao-Yeuan

    2011-09-01

    Full Text Available Abstract Background Mesenchymal stem cell (MSC found in bone marrow (BM-MSCs and the Wharton's jelly matrix of human umbilical cord (WJ-MSCs are able to transdifferentiate into neuronal lineage cells both in vitro and in vivo and therefore hold the potential to treat neural disorders such as stroke or Parkinson's disease. In bone marrow MSCs, miR-130a and miR-206 have been show to regulate the synthesis of neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. However, how neuronal differentiation is controlled in WJ-MSC remains unclear. Methods WJ-MSCs were isolated from human umbilical cords. We subjected WJ-MSCs into neurogenesis by a published protocol, and the miRNome patterns of WJ-MSCs and their neuronal progenitors (day 9 after differentiation were analyzed by the Agilent microRNA microarray. Results Five miRNAs were enriched in WJ-MSCs, including miR-345, miR-106a, miR-17-5p, miR-20a and miR-20b. Another 11 miRNAs (miR-206, miR-34a, miR-374, miR-424, miR-100, miR-101, miR-323, miR-368, miR-137, miR-138 and miR-377 were abundantly expressed in transdifferentiated neuronal progenitors. Among these miRNAs, miR-34a and miR-206 were the only 2 miRNAs been linked to BM-MSC neurogenesis. Overexpressing miR-34a in cells suppressed the expression of 136 neuronal progenitor genes, which all possess putative miR-34a binding sites. Gene enrichment analysis according to the Gene Ontology database showed that those 136 genes were associated with cell motility, energy production (including those with oxidative phosphorylation, electron transport and ATP synthesis and actin cytoskeleton organization, indicating that miR-34a plays a critical role in precursor cell migration. Knocking down endogenous miR-34a expression in WJ-MSCs resulted in the augment of WJ-MSC motility. Conclusions Our data suggest a critical role of miRNAs in MSC neuronal differentiation, and miR-34a contributes in neuronal precursor motility, which may

  8. Effects of 17a-ethinylestradiol on the expression of three estrogen-responsive genes and cellular ultrastructure of liver and testes in male zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Islinger, Markus; Willimski, Daniel; Voelkl, Alfred; Braunbeck, Thomas

    2003-01-24

    In order to monitor the influence of estrogenic compounds on the reproductive physiology of fish, molecular markers for zebrafish vitellogenin, estrogen receptor and ZP2 were developed. For this purpose, sequence information about the zebrafish estrogen receptor and vitellogenin had to be obtained. By means of RT-PCR, a sequence fragment of the zebrafish estrogen receptor {alpha} was cloned and sequenced. Continuous cDNAs of two zebrafish vitellogenin-like gene products (zfvg1 and zfvg3) were constructed by the help of expressed sequence tags of zebrafish and completely sequenced. The sequences of the estrogen receptor and of the vitellogenins showed significant similarities to corresponding cDNAs of other fish species. Expression of these gene products was measured following exposure to 17{alpha}-ethinylestradiol and compared with histological endpoints. RT-PCR was used as a semiquantitative technique to record gene expression in adult male zebrafish, which were exposed to 17{alpha}-ethinylestradiol in time-and dose-response experiments. As for time-dependent expression, all hepatic genes investigated were expressed at considerable amounts from 24 h after onset of exposure to 50 ng/l 17{alpha}-ethinylestradiol to the end of experiment (17 days). In testes, expression of the estrogen receptor- as well as ZP2-mRNA remained unchanged for the entire experiment, except for the individuals exposed for 17 days, which displayed elevated expression levels of ZP2. In the dose-response experiment, male zebrafish were exposed to 17{alpha}-ethinylestradiol in concentrations from 0.25-85 ng/l for 4 and 21 days. LOECs for vitellogenin as well as estrogen receptor {alpha} expression were found to be 2.5 ng/l already after 4 d of exposure. Extension of the exposure time to 21 days resulted in enhanced transcription of vitellogenin-mRNAs at 2.5 ng/l 17{alpha}-ethinylestradiol, whereas the detection limit could not be lowered. In contrast, in testes no induction of both ZP2 as well

  9. New role of lupeol in reticence of angiogenesis, the cellular parameter of neoplastic progression in tumorigenesis models through altered gene expression.

    Science.gov (United States)

    Vijay Avin, B R; Prabhu, T; Ramesh, C K; Vigneshwaran, V; Riaz, Mahmood; Jayashree, K; Prabhakar, B T

    2014-05-30

    There is a major unmet medical need for effective and well tolerated treatment options for cancer. The search now seeks to identify active biomolecules with multiple targets. Lupeol, an important dietary triterpenoid known as anticarcinogen by inducing apoptosis. But it is still more to reveal the potency of lupeol in the inhibition of neovascularization in cancer context. The study aimed to explore the efficacy of the lupeol in targeting angiogenesis. In this study, the inhibition of neovessel formation was assessed by preliminary antiangiogenesis assays like chorio allontoic membrane (CAM) and rat corneal micro pocket models. Further, validated for the micro vessel density (MVD) in histological sections of peritoneum, solid tumor and xenograft tumor by immunostaining with anti CD31 antibody. Antitumor potency was verified in ascites carcinoma, solid lymphoma and human nueroblastoma xenograft in CAM. Altered angiogenic gene expression by RT-PCR, ELISA and gelatin zymography. Lupeol significantly inhibits the neovessel formation in CAM and in the rat cornea. The similar effect was ascertained in mice and human xenograft tumor models with the regressed growth. Eventually reflecting on the differential transcription of angiogenic genes like MMP-2 & 9, HIF-1α, VEGFa and Flt-1 was noteworthy. It is now evident from our studies that, a new avenue of dietary triterpenoid lupeol by targeting angiogenesis, potentially inferring the multimode action in cancer prevention.

  10. A new 2-aminosteroid induces cellular differentiation and upregulates the expression of MafB and Egr-1 genes respectively in HL-60 and K562 leukemia cells

    Institute of Scientific and Technical Information of China (English)

    HE Qun; LI Qiong; YUAN Lin-bo; HE Jun

    2005-01-01

    Background In previous work, we suggested that some 2-aminosteroids inhibited proliferation and induced differentiation of both human and murine leukemia cells. Here, we reported the actions of another new 2-aminosteroid designated as H89712 on human leukemia cells. Methods Cell colony counting and MTT assay were used to determine proliferation. Cell morphology, histochemical staining, UV detection and cytometry were used to determine differentiation. RT-PCR was used to detect gene expression. Standard statistical method was used to analyze data.Results H89712 inhibited proliferation of HL-60 leukemia cells and the inhibition percentage in MTT assay was 18% at the dose of 10-8 mol/L and 65% at the dose of 10-5 mol/L, respectively. The inhibition for HL-60 in colony assay was 23% at the dose of 10-8 mol/L and 96% at the dose of 10-5 mol/L, respectively. H89712 also induced HL-60 cells toward macrophage-like differentiation. It was verified by flow cytometry that the percentage of positive CD14 expression in differentiated HL-60 cells was about 9 times higher than that of the control at the dose of 10-8 mol/L and 20 times higher than that of the control at the dose of 10-5 mol/L respectively, and this action involved upregulation of MafB gene in HL-60 leukemia cells. On the other hand, H89712 inhibited proliferation of K562 leukemia cells and the inhibition of K562 leukemia cells in MTT assay was shown by 34% at the dose of 10-8 mol/L and 88% at the dose of 10-5 mol/L respectively. The inhibition of K562 leukemia cells in colony assay was 53% at the dose of 10-8 mol/L and 100% at the dose of 10-5 mol/L respectively. H89712 also induced K562 cells toward erythroid-like differentiation and it was verified by flow cytometry that the percentage of positive CD71 expression in differentiated K562 cells was about 9 times higher than that of the control at the dose of 10-8 mol/L and 16 times higher than that of the control at the dose of 10-5 mol/L respectively. This action

  11. Human cellular protein patterns and their link to genome DNA mapping and sequencing data: towards an integrated approach to the study of gene expression

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Leffers, H

    1993-01-01

    two-dimensional gel protein databases will provide an integrated picture of the expression levels and properties of the thousands of protein components of organelles, pathways, and cytoskeletal systems, both under physiological and abnormal conditions, and are expected to lead to the identification...... mapping and sequence information and that offer an integrated approach to the study of gene expression. With the integrated approach offered by two-dimensional gel protein databases it is now possible to reveal phenotype-specific protein(s), to microsequence them, to search for homology with previous...... of new regulatory networks. So far, about 20% (600 out of 2,980) of the total number of proteins recorded in the human keratinocyte protein database have been identified and we are actively gathering qualitative and quantitative biological data on all resolved proteins. Given the current improvements...

  12. Cellular Mechanism for Impaired Hepatitis C Virus Clearance by Interferon Associated with IFNL3 Gene Polymorphisms Relates to Intrahepatic Interferon-λ Expression.

    Science.gov (United States)

    Ferraris, Pauline; Chandra, Partha K; Panigrahi, Rajesh; Aboulnasr, Fatma; Chava, Srinivas; Kurt, Ramazan; Pawlotsky, Jean-Michel; Wilkens, Ludwig; Osterlund, Pamela; Hartmann, Rune; Balart, Luis A; Wu, Tong; Dash, Srikanta

    2016-04-01

    The single nucleotide polymorphism located within the IFNL3 (also known as IL28B) promoter is one of the host factors associated with hepatitis C virus (HCV) clearance by interferon (IFN)-α therapy; however the mechanism remains unknown. We investigated how IL28B gene polymorphism influences HCV clearance with infected primary human hepatocytes, liver biopsies, and hepatoma cell lines. Our study confirms that the rs12979860-T/T genotype has a strong correlation with ss469415590-ΔG/ΔG single nucleotide polymorphism that produces IFN-λ4 protein. We found that IFN-α and IFN-λ1 antiviral activity against HCV was impaired in IL28B T/T infected hepatocytes compared with C/C genotype. Western blot analysis showed that IL28B TT genotype hepatocytes expressed higher levels of IFN-λ proteins (IL28B, IL-29), preactivated IFN-stimulated gene (ISG) expression, and impaired Stat phosphorylation when stimulated with either IFN-α or IFN-λ1. Furthermore, we showed that silencing IFN-λ1 in T/T cell line reduced basal ISG expression and improved antiviral activity. Likewise, overexpression of IFN-λ (1 to 4) in C/C cells induced basal ISG expression and prevented IFN-α antiviral activity. We showed that IFN-λ4, produced at low level only in T/T cells induced expression of IL28B and IL-29 and prevented IFN-α antiviral activity in HCV cell culture. Our results suggest that IFN-λ4 protein expression associated with the IL28B-T/T variant preactivates the Janus kinase-Stat signaling, leading to impaired HCV clearance by both IFN-α and IFN-λ. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Synthesis, and Characterization, and Evaluation of Cellular Effects of the FOL-PEG-g-PEI-GAL Nanoparticles as a Potential Non-Viral Vector for Gene Delivery

    Directory of Open Access Journals (Sweden)

    S. Ghiamkazemi

    2010-01-01

    Full Text Available In this manuscript, we synthesized the potential non viral vector for gene delivery with proper transfection efficiency and low cytotoxicity. Polyethylenimine (PEI is a well-known cationic polymer which has high positive surface charge for condensing plasmid DNA. However; it is highly cytotoxic in many cell lines because of the high surface charge, non-biodegradability and non-biocompatibility. To enhance PEI biodegradability, the graft copolymer “PEG-g-PEI” was synthesized. To target cancer liver cells, two targeting ligands folic acid and galactose (lactobionic acid which are over expressed on human hepatocyte carcinoma were attached to graft copolymer and “FOL-PEG-g-PEI-GAL” copolymer was synthesized. Composition of this grafted copolymer was characterized using 1H-NMR and FTIR spectra. The molecular weight and zeta potential of this copolymer was compared to PEI. The particle size and zeta potential of FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratio were measured using dynamic light scattering (DLS. Cytotoxicity of the copolymer was also studied in cultured HepG2 human hepatoblastoma cell line. The FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratios exhibited no cytotoxicity in HepG2 cell line compared to PEI 25K as a control. The novel copolymer showed enhanced biodegradability in physiological conditions in compared with PEI and targeted cultured HepG2 cells. More importantly, significant transfection efficiency was exhibited in cancer liver cells. Together, our results showed that “FOL-PEG-g-PEI-GAL” nanoparticals could be considered as a useful non-viral vector for targeted gene delivery.

  14. Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation.

    Science.gov (United States)

    Gonzalvez, François; D'Aurelio, Marilena; Boutant, Marie; Moustapha, Aoula; Puech, Jean-Philippe; Landes, Thomas; Arnauné-Pelloquin, Laeticia; Vial, Guillaume; Taleux, Nellie; Slomianny, Christian; Wanders, Ronald J; Houtkooper, Riekelt H; Bellenguer, Pascale; Møller, Ian Max; Gottlieb, Eyal; Vaz, Frederic M; Manfredi, Giovanni; Petit, Patrice X

    2013-08-01

    Cardiolipin is a mitochondrion-specific phospholipid that stabilizes the assembly of respiratory chain complexes, favoring full-yield operation. It also mediates key steps in apoptosis. In Barth syndrome, an X chromosome-linked cardiomyopathy caused by tafazzin mutations, cardiolipins display acyl chain modifications and are present at abnormally low concentrations, whereas monolysocardiolipin accumulates. Using immortalized lymphoblasts from Barth syndrome patients, we showed that the production of abnormal cardiolipin led to mitochondrial alterations. Indeed, the lack of normal cardiolipin led to changes in electron transport chain stability, resulting in cellular defects. We found a destabilization of the supercomplex (respirasome) I+III2+IVn but also decreased amounts of individual complexes I and IV and supercomplexes I+III and III+IV. No changes were observed in the amounts of individual complex III and complex II. We also found decreased levels of complex V. This complex is not part of the supercomplex suggesting that cardiolipin is required not only for the association/stabilization of the complexes into supercomplexes but also for the modulation of the amount of individual respiratory chain complexes. However, these alterations were compensated by an increase in mitochondrial mass, as demonstrated by electron microscopy and measurements of citrate synthase activity. We suggest that this compensatory increase in mitochondrial content prevents a decrease in mitochondrial respiration and ATP synthesis in the cells. We also show, by extensive flow cytometry analysis, that the type II apoptosis pathway was blocked at the mitochondrial level and that the mitochondria of patients with Barth syndrome cannot bind active caspase-8. Signal transduction is thus blocked before any mitochondrial event can occur. Remarkably, basal levels of superoxide anion production were slightly higher in patients' cells than in control cells as previously evidenced via an increased

  15. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  16. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  17. Analysis of expression, cellular localization, and function of three inhibitors of apoptosis (IAPs from Litopenaeus vannamei during WSSV infection and in regulation of antimicrobial peptide genes (AMPs.

    Directory of Open Access Journals (Sweden)

    Pei-Hui Wang

    Full Text Available Inhibitors of apoptosis (IAPs play important roles in apoptosis and NF-κB activation. In this study, we cloned and characterized three IAPs (LvIAP1-3 from the Pacific white shrimp, Litopenaeusvannamei. LvIAP1-3 proteins shared signature domains and exhibited significant similarities with other IAP family proteins. The tissue distributions of LvIAP1-3 were studied. The expression of LvIAP1-3 was induced in the muscle after white spot syndrome virus (WSSV infection. LvIAP1 expression in the gill, hemocytes, hepatopancreas, and intestine was responsive to WSSV and Vibrioalginolyticus infections. LvIAP2 expression in the gill, hemocytes, and hepatopancreas was also responsive to WSSV infection. The expression of LvIAP3 in the gill, hemocytes, and intestine was reduced after V. alginolyticus infection. When overexpressed in Drosophila S2 cells, GFP labeled-LvIAP2 was distributed in the cytoplasm and appeared as speck-like aggregates in the nucleus. Both LvIAP1 and LvIAP3 were widely distributed throughout the cytoplasm and nucleus. The expression of LvIAP1, LvIAP2, and LvIAP3 was significantly knocked down by dsRNA-mediated gene silencing. In the gill of LvIAP1- or LvIAP3-silenced shrimp, the expression of WSSV VP28 was significantly higher than that of the dsGFP control group, suggesting that LvIAP1 and LvIAP3 may play protective roles in host defense against WSSV infection. Intriguingly, the LvIAP2-silenced shrimp all died within 48 hours after dsLvIAP2 injection. In the hemocytes of LvIAP2-silenced shrimps, the expression of antimicrobial peptide genes (AMPs, including Penaeidins, lysozyme, crustins, Vibriopenaeicidae-induced cysteine and proline-rich peptides (VICPs, was significantly downregulated, while the expression of anti-lipopolysaccharide factors (ALFs was upregulated. Moreover, LvIAP2 activated the promoters of the NF-κB pathway-controlled AMPs, such as shrimp Penaeidins and Drosophila drosomycin and attacin A, in Drosophila S2 cells

  18. Engineering the cellular protein secretory pathway for enhancement of recombinant tissue plasminogen activator expression in Chinese hamster ovary cells: effects of CERT and XBP1s genes.

    Science.gov (United States)

    Rahimpour, Azam; Vaziri, Behrouz; Moazzami, Reza; Nematollahi, Leila; Barkhordari, Farzaneh; Kokabee, Leila; Adeli, Ahmad; Mahboudi, Fereidoun

    2013-08-01

    Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERTS132A- based secretion engineering could be an effective strategy for enhancing recombinant t- PA production in CHO cells.

  19. Discordant cellular response to pre-surgical letrozole in bilateral synchronous ER+ breast cancers with a KRAS mutation or FGFR1 gene amplification

    Science.gov (United States)

    Balko, Justin M.; Mayer, Ingrid A.; Sanders, Melinda E.; Miller, Todd W.; Kuba, Maria G.; Meszoely, Ingrid M.; Wagle, Nikhil; Garraway, Levi A.; Arteaga, Carlos L.

    2013-01-01

    We describe herein a patient presenting with bilateral ER+ breast tumors who was enrolled in a clinical trial exploring molecular aberrations associated with hormone-refractory tumor cell proliferation. Short-term (2-week) hormonal therapy with the aromatase inhibitor letrozole substantially reduced proliferation as measured by Ki67 immunohistochemistry in one tumor, while the second was essentially unchanged. Extensive molecular and genetic workup of the two tumors yielded divergent lesions in the two tumors: an activating KRAS mutation in the responsive tumor, and an amplification of the FGFR1 locus in the treatment-refractory tumor. These findings provide an insight to possible mechanisms of resistance to antiestrogen therapy in ER+ breast cancers. First, they illustrate the necessity of clinically approved assays to identify FGFR1 gene amplification, which occur in ~5% of breast tumors and have been linked to antiestrogen resistance. It is quite possible that the addition of FGFR inhibitors to ER-targeted therapy will yield a superior antitumor effect and improved patient outcome. Second, they suggest that the role of activating mutations in RAS, although rare in breast cancer, may need to be explored in the context of ER+ breast tumors. PMID:22879364

  20. Sponging of Cellular Proteins by Viral RNAs

    OpenAIRE

    Charley, Phillida A.; Wilusz, Jeffrey

    2014-01-01

    Viral RNAs accumulate to high levels during infection and interact with a variety of cellular factors including miRNAs and RNA-binding proteins. Although many of these interactions exist to directly modulate replication, translation and decay of viral transcripts, evidence is emerging that abundant viral RNAs may in certain cases serve as a sponge to sequester host non coding RNAs and proteins. By effectively reducing the ability of cellular RNA binding proteins to regulate host cell gene exp...

  1. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  2. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  3. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  4. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  5. CML的基因沉默与过继免疫治疗的研究进展%Advance in research on CML therapy by gene silence and adoptive cellular immunotherapy

    Institute of Scientific and Technical Information of China (English)

    高炳华; 王新生

    2013-01-01

    Chronic myeloid leukemia is a kind of malignant cloning hyperplastic disease of hematopoietic stem cell .The treatments based on molecular biological and immunological techniques will become the new therapies .Gene silence can improve the effects of molecular targeted therapeutic drugs through two ways: one is the target mRNA can be digested by siRNA and the other is target gene lose the stability and reduce the generation of protein mediated by miRNA .Adoptive cel-lular immunotherapy is a treatment method through injecting immunocompetent cells such as CIK , NK, etc into the body of cancerous person .This can improve the immunity of body and the effects of molecular targeted therapeutic drugs .The fur-ther study about basic theory , molecular mechanism and clinical effects will be continued .%慢性粒细胞白血病是一种造血干细胞的恶性克隆增殖性疾病,以分子生物学、免疫学、细胞生物学为基础的治疗手段成为新的研究方向。 siRNA介导的基因沉默通过降解靶标mRNA,miRNA介导的基因沉默通过使靶mRNA失去稳定性以减少蛋白质的生成,从而提高靶向治疗药物的治疗效果。过继免疫治疗是通过将CIK、NK等免疫活性细胞注入肿瘤宿主体内,提高机体免疫力,与靶向治疗药物协同提升治疗效果。其理论基础、分子机制、临床疗效等还需进一步深入研究。

  6. Further Stimulation of Cellular Immune Responses through Association of HPV-16 E6, E7 and L1 Genes in order to produce more Effective Therapeutic DNA Vaccines in Cervical Cancer Model.

    Science.gov (United States)

    Fazeli, Maryam; Soleimanjahi, Hoorieh; Dadashzadeh, Simin

    2015-01-01

    Cervical cancer has been shown to be highly associated with human papillomavirus (HPV) infection. The viral oncogenes E6 and E7 are constantly expressed by the tumor cells and are therefore potent targets for therapeutic genetic vaccination. In the present study, it was investigated the potential effect of HPV-16 E6, E7 and L1 co-administration to activate specific cytotoxic T lymphocytes in tumor mice models. The HPV-16 E6, E7 and L1 genes from Iranian isolate were separately inserted into the mammalian expression vector, pcDNA3, to construct the DNA vaccine candidates. Tumor-bearing Animals (C57BL/6 mice) were immunized with the vaccine candidate; then, Lymphocyte Proliferation Assay (LPA) and relative tumor volume measurements were carried out in order to examine the immunological effects of the vaccine. Obtained results showed that co-administration of the HPV-16 E6, E7 and L1 DNA induced HPV-16 specific cellular immune responses and also protected against TC-1-induced tumor in vivo compared with negative controls. The results showed that mixed delivery systems might be valuable to improve the magnitude of the induced immune responses and confirmed therapeutic effects of HPV-16 E6, E7 through cytotoxic T lymphocyte induction and illustrate the new promising role for HPV-16 L1 CTL epitopes as a suitable CTL inducer.

  7. Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector.

    Directory of Open Access Journals (Sweden)

    Linfeng Cheng

    Full Text Available Heat shock proteins (HSPs display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV glycoprotein (GP and nucleocapsid protein (NP immunogenicity by heat shock protein 70 (HSP70, a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359-610 aa, HSP70C to the Gn and 0.7 kb fragment of the NP (aa1-274-S0.7. C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7 and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV.

  8. 低剂量辐射诱导细胞激活过程中基因和蛋白分子的变化%Genes and protein molecules involved in the cellular activation induced by low dose radiation

    Institute of Scientific and Technical Information of China (English)

    刘树铮; 白欧; 陈东; 叶飞

    2000-01-01

    本文报道全身X射线照射后小鼠胸腺和/或脾脏中与细胞存活及细胞周期调控相关基因转录和表达水平,与免疫反应相关基因的转录水平以及信号分子表达的变化.结果显示,高、低剂量照射引起所检测的大多数参数的相反效应.分析了这些变化在不同剂量电离辐射所致细胞反应发生中的意义.%The effect of whole-body X-irradiation on the transcription and expression level of genes related to cell survival and cell cycle control, the transcription level of gcnes related to immune responses as well as the signal molecules of mouse thymocytes and/or splenocytes was reviewed. Opposite effects from low versus high doses of irradiation were demonstrated in most of the parameters examined. The implications of these changes in connection with the cellular responses after different doses of ionizing radiation were analyzed.

  9. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  10. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  11. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  12. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  13. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    Science.gov (United States)

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  14. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  15. Inhibition of p38 MAPK during cellular activation modulate gene expression of head kidney leukocytes isolated from Atlantic salmon (Salmo salar) fed soy bean oil or fish oil based diets.

    Science.gov (United States)

    Holen, E; Winterthun, S; Du, Z-Y; Krøvel, A V

    2011-01-01

    Head kidney leukocytes isolated from Atlantic salmon fed either a diet based on fish oil (FO) or soy bean oil (VO) were used in order to evaluate if different lipid sources could contribute to cellular activation of the salmon innate immune system. A specific inhibitor of p38 MAPK, SB202190, was used to investigate the effect of lipopolysaccharide (LPS) signalling in the head kidney leukocytes. The results show that LPS up regulate IL-1β, TNF-α, Cox2 expression in leukocytes isolated from fish fed either diet. The p38 MAPK inhibitor, SB202190, reduced the LPS induced expression of these genes in both dietary groups. In LPS stimulated leukocytes isolated from VO fed fish, SB202190 showed a clear dose dependent inhibitory effect on IL-1β, TNF-α and Cox2 expression. This effect was also observed for Cox2 in leukocytes isolated from FO fed fish. Furthermore, there was a stronger mean induction of Cox2 in LPS stimulated leucocytes isolated from the VO-group compared to LPS stimulated leukocytes isolated from the FO-group. In both dietary groups, LPS stimulation of salmon head kidney leukocytes increased the induction of CD83, a dendrite cell marker, while the inhibitor reduced CD83 expression in the VO fed fish only. The inhibitor also clearly reduced hsp27 expression in VO fed fish. Indicating a p38 MAPK feedback loop, LPS significantly inhibited the expression of p38MAPK itself in both diets, while SB202190 increased p38MAPK expression especially in the VO diet group. hsp70 expression was not affected by any treatment or feed composition. There were also differences in p38MAPK protein phosphorylation comparing treatment groups but no obvious difference comparing the two dietary groups. The results indicate that dietary fatty acids have the ability to modify signalling through p38 MAPK which may have consequences for the fish's ability to handle infections and stress. Signalling through p38MAPK is ligand dependent and affects gene and protein expression differently.

  16. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  17. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  18. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  19. Cellular structural biology.

    Science.gov (United States)

    Ito, Yutaka; Selenko, Philipp

    2010-10-01

    While we appreciate the complexity of the intracellular environment as a general property of every living organism, we collectively lack the appropriate tools to analyze protein structures in a cellular context. In-cell NMR spectroscopy represents a novel biophysical tool to investigate the conformational and functional characteristics of biomolecules at the atomic level inside live cells. Here, we review recent in-cell NMR developments and provide an outlook towards future applications in prokaryotic and eukaryotic cells. We hope to thereby emphasize the usefulness of in-cell NMR techniques for cellular studies of complex biological processes and for structural analyses in native environments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  1. Insights Into Quantitative Biology: analysis of cellular adaptation

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    In the last years many powerful techniques have emerged to measure protein interactions as well as gene expression. Many progresses have been done since the introduction of these techniques but not toward quantitative analysis of data. In this paper we show how to study cellular adaptation and how to detect cellular subpopulations. Moreover we go deeper in analyzing signal transduction pathways dynamics.

  2. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    Science.gov (United States)

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani

    2017-04-01

    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Cellular modelling using P systems and process algebra

    Institute of Scientific and Technical Information of China (English)

    Francisco J.Romero-Campero; Marian Gheorghe; Gabriel Ciobanu; John M. Auld; Mario J. Pérez-Jiménez

    2007-01-01

    In this paper various molecular chemical interactions are modelled under different computational paradigms. P systems and π-calculus are used to describe intra-cellular reactions like protein-protein interactions and gene regulation control.

  4. Cellular functions of the microprocessor.

    Science.gov (United States)

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  5. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  6. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  7. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Cellular rehabilitation of photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao

    2007-05-01

    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  9. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  10. 苜蓿中华根瘤菌nifA基因突变影响多种细胞学过程%Disruption of nifA Gene Influences Multiple Cellular Processes in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    巩子英; 朱家璧; 俞冠翘; 邹华松

    2007-01-01

    Sinorhizobium meliloti nifA is important in fixing nitrogen during symbiosis. A nifA null mutant induces small white invalid nodules in the roots of host plant. The additional phenotypic alterations associated with the disruption of the nifA gene are reported in this study. Under a free-living state, S. meliloti nifA mutant reduces its ability to swarm on a half-solid plate. Interestingly, the AHL (Acylhomoserine lactones) contents in the nifA mutant are lower than that of the wild type during the lag phase,whereas it is reversed in the logarithmic and stationary phases. Quantitative spectrophotometric assays reveal that the total amount of extracellular proteins of the nifA mutant are lower than that of the wild type. In addition, the mutant abolishes its nodulation competitive ability during symbiosis. These findings indicate that NifA plays a regulatory role in multiple cellular processes in S.meliloti.%苜蓿中华根瘤菌nifA基因在共生固氮过程中担负着调控功能,nifA突变株Rm1354在宿主植物的根部诱导白色无效根瘤.本文报道Rm1354在自生状态下的表型变化.nifA的突变导致根瘤菌在半固体培养基上泳动变慢,胞外蛋白含量降低.有趣的是,Rm1354在延宕期间高丝氨酸内酯含量比野生型低,在指数期和静止期却比野生型高.另外,突变株Rm1354的竞争结瘤能力也大大减弱.这些结果揭示了苜蓿中华根瘤菌nifA基因对许多细胞学过程都有调控作用.

  11. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  12. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  13. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  14. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning

    OpenAIRE

    Tsatsoulis Costas; Amthauer Heather A

    2010-01-01

    Abstract Background There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces ce...

  15. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  16. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  17. Cellular automata: structures

    OpenAIRE

    Ollinger, Nicolas

    2002-01-01

    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  18. Cellular circadian clocks in mood disorders.

    Science.gov (United States)

    McCarthy, Michael J; Welsh, David K

    2012-10-01

    Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain's primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks

  19. Interference of Hepatitis B Virus with Cellular Signaling

    Institute of Scientific and Technical Information of China (English)

    Yang XU; Chun-wei SHE; Xiao-yong ZHANG; Rong-juan PEI; Meng-ji LU

    2008-01-01

    The presence of hepatitis B virus (HBV) proteins leads to changes in the cellular gene expression. As a consequence, the cellular signaling processes are influenced by the actions of HBV proteins. It has been shown that HBV nucleocapsid protein and the amino-terminal part of polymerase termed as terminal protein (TP) could inhibit interferon signaling. Further, the global gene expression profiles differ in hepatoma cells with and without HBV gene expression and replication. The expression of interferon (IFN) stimulated genes (ISGs) was differently regulated in cells with HBV replication and could be modulated by antiviral treatments. The HBV TP has been found to modulate the ISG expression and enhance the HBV replication. The modulation of the cellular signaling processes by HBV may have significant implications for pathogenesis.

  20. A transcriptome map of cellular transformation by the fos oncogene

    Directory of Open Access Journals (Sweden)

    Ruan Hong

    2005-05-01

    Full Text Available Abstract Background The c-fos gene was originally identified as the cellular homolog of the oncogene v-fos carried by the Finkel-Biskis-Jenkins and Finkel-Biskis-Reilly murine osteogenic sarcoma retroviruses. Sustained expression of fos is sufficient to induce cellular transformation in vitro and tumorigenesis in vivo. Fos functions as a component of the AP-1 transcription factor complex to regulate gene transcription and several differentially expressed genes have been identified in cells transformed by fos. We have extended these studies by constructing a cellular system for conditional transformation by v-fos. Using Affymetrix-based DNA microarray technology, we analyzed transcriptional changes over the course of transformation and reversion in an inducible v-fos system. Results Microarray analyses of temporal gene expression during the process of v-fos mediated cellular transformation and morphological reversion revealed a remarkably dynamic transcriptome. Of the more than 8000 genes analyzed in this study, 3766 genes were categorized into 18 gene-expression patterns by using self-organizing map analysis. By combining the analysis of gene expression profiles in stably transformed cells with the analysis of sequential expression patterns during conditional transformation, we identified a relatively small cohort of genes implicated in v-fos mediated cellular transformation. Conclusion This approach defines a general conditional cell transformation system that can be used to study the endogenous transcription regulatory mechanisms involved in transformation and tumorigenesis. In addition, this study is the first reported analysis of dynamic changes in gene expression throughout experimentally controlled morphological transformation mediated by v-fos.

  1. Modulation at a cellular level of the thyroid hormone receptor-mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4,4'-diiodobiphenyl (DIB), and nitrofen (NIP).

    Science.gov (United States)

    Yamada-Okabe, Toshiko; Sakai, Haruya; Kashima, Yuji; Yamada-Okabe, Hisafumi

    2005-01-15

    Previously, we demonstrated that some endocrine disrupting chemicals affected thyroid hormone receptor (TR)-mediated gene expression in HeLaTR cells that stably expressed the human TRalpha1. To examine whether widely used brominated flame retardants and pesticides affect TR-mediated gene expression, those with organohalogen, which is also present in T3, were screened. To monitor the TR-mediated gene expression, HeLaTR cells were transfected with a luciferase gene that was linked to the thyroid hormone responsive element. Thus, transcription of the luciferase gene in HeLaTR cells is driven by TR. By screening 38 chemical agents, it was found that 4,4'-diiodobiphenyl (DIB), markedly, and 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and nitrofen (NIP), to a much lesser extent but significantly, enhanced the expression of the luciferase gene at concentrations that did not affect the growth of HeLaTR cells. DIB also augmented the E2-induced expression of the luciferase gene that was linked to the estrogen responsive element in MCF7 cells, whereas HBCD and NIP did not. These results indicate that DIB augments TR- and ER-mediated gene expression, but HBCD and NIP affect only TR-mediated gene expression. Thus, there is a potential risk that HBCD, DIB, and NIP act as endocrine disrupters in animals and human beings.

  2. Engineering Cellular Metabolism.

    Science.gov (United States)

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  3. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  4. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  5. Cellular basis of memory for addiction.

    Science.gov (United States)

    Nestler, Eric J

    2013-12-01

    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders.

  6. Cellular and molecular biology of neuronal dystonin.

    Science.gov (United States)

    Ferrier, Andrew; Boyer, Justin G; Kothary, Rashmi

    2013-01-01

    Neuronal dystonin isoforms are giant cytoskeletal cross-linking proteins capable of interacting with actin and microtubule networks, protein complexes, membrane-bound organelles and cellular membranes. In the neuromuscular system, dystonin proteins are involved in maintaining cytoarchitecture integrity and have more recently been ascribed roles in other cellular processes such as organelle structure and intracellular transport. Loss of dystonin expression in mice results in a profound sensory ataxia termed dystonia musculorum (dt), which is attributed to the degeneration of sensory nerves. This chapter provides a comprehensive overview of the dystonin gene, the structure of encoded proteins, biological functions of neuronal dystonin isoforms, and known roles of dystonin in dt pathogenesis and human disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  8. Cellular neurothekeoma with melanocytosis.

    Science.gov (United States)

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong

    2008-02-01

    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  9. Organization of immunoglobulin genes.

    Science.gov (United States)

    Tonegawa, S; Brack, C; Hozumi, N; Pirrotta, V

    1978-01-01

    The nucleotide-sequence determination of a cloned, embryonic Vlambda gene directly demonstrated that V genes are separate from a corresponding C gene in embryonic cells. Analysis by restriction enzymes of total cellular DNA from various sources strongly suggested that the two separate immunoglobulin genes become continuous during differentiation of B lymphocytes. There seems to be a strict correlation between the joining event and activation of the joined genes. Cloning of more immunoglobulin genes from embryo and plasma cells will not only provide direct demonstration of such a gene-joining event but also help in the elucidation of a possible relationship of the event to gene activation mechanisms.

  10. Free fall and cellular automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2016-03-01

    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  11. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  12. Reactive Programming of Cellular Automata

    OpenAIRE

    Boussinot, Frédéric

    2004-01-01

    Implementation of cellular automata using reactive programming gives a way to code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible. The paper describes the implementation of cellular automata with the reactive programming language LOFT, a thread-based extension of C. Self replicating loops considered in artificial life are coded to show the interest of the approach.

  13. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  14. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  15. A metabolic-transcriptional network links sleep and cellular energetics in the brain.

    Science.gov (United States)

    Wisor, Jonathan P

    2012-01-01

    This review proposes a mechanistic link between cellular metabolic status, transcriptional regulatory changes and sleep. Sleep loss is associated with changes in cellular metabolic status in the brain. Metabolic sensors responsive to cellular metabolic status regulate the circadian clock transcriptional network. Modifications of the transcriptional activity of circadian clock genes affect sleep/wake state changes. Changes in sleep state reverse sleep loss-induced changes in cellular metabolic status. It is thus proposed that the regulation of circadian clock genes by cellular metabolic sensors is a critical intermediate step in the link between cellular metabolic status and sleep. Studies of this regulatory relationship may offer insights into the function of sleep at the cellular level.

  16. [Cellular and molecular mechanisms of memory].

    Science.gov (United States)

    Laroche, Serge

    2010-01-01

    A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that one key neurobiological mechanism underlying the formation of memories reside in activity-driven modifications of synaptic strength and structural remodelling of neural networks activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation, a long-lasting activity-dependent form of synaptic strengthening, opened a new chapter in the study of the neurobiological substrate of memory in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity and memory formation are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of neuronal gene programs is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.

  17. Cellular systems biology profiling applied to cellular models of disease.

    Science.gov (United States)

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing

    2009-11-01

    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  18. Molecular and Cellular Therapies: New challenges and opportunities

    OpenAIRE

    Wang, Xiangdong; Peer, Dan; Petersen, Bryon,

    2013-01-01

    Gene therapy is suggested to be one of the most specific and efficient modulations for gene deficient diseases and extended to other diseases like cancer and inflammation, even though there are still challenges to be faced, such as specific and selective delivery, minimal to no toxicity, efficient metabolism, simplicity, and measurable efficiency. It is important to identify and validate drug-able disease-specific targets for molecular and cellular therapies, while it is equally important to ...

  19. Effect of Gold Nanorod Surface Chemistry on Cellular Response

    Science.gov (United States)

    2011-03-15

    Recombi - nation DNA Repair Network for Targeted Cancer Therapy. World J. Clin. Oncol. 2011, 2, 73–79. 36. Higashi, H.; Vallb€ohmer, D.; Warnecke-Eberz, U...cellular morphology, mitochondrial function, mitochondrial membrane potential (MMP), intracellular calcium levels, DNA damage-related gene expression, and of...observed in the MMP and Ca++ levels, up or down regulation of DNA damage related gene expression suggested a differential cell death mechanism based on

  20. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  1. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... by providing platforms that offer biocompatible surfaces for the cell culturing in lab-on-chip devices integrated with optimized nanosensors with high specificities and sensitivities towards cellular analytes. In this project, novel materials were investigated with a focus on providing suitable surface...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...

  2. Regulation of ARE-mRNA Stability by Cellular Signaling

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2013-01-01

    but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly...

  3. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  4. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Lars-Oliver Klotz

    2014-09-01

    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  5. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  6. Imaging reporter gene for monitoring gene therapy; Imagerie par gene rapporteur: un atout pour la therapie genique

    Energy Technology Data Exchange (ETDEWEB)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L. [Centre Hospitalier Universitaire Avicenne, Service Central de Medecine Nucleaire et Biophysique, UPRES 2360, 93 - Bobigny (France); Tamgac, G. [Univetsite d' Uludag, Service de Medecine Nucleaire, Bursa (Turkey)

    2002-06-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  7. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  8. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  9. Classifying cellular automata using grossone

    Science.gov (United States)

    D'Alotto, Louis

    2016-10-01

    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  10. Transcriptional Elongation Regulator 1 Affects Transcription and Splicing of Genes Associated with Cellular Morphology and Cytoskeleton Dynamics and Is Required for Neurite Outgrowth in Neuroblastoma Cells and Primary Neuronal Cultures

    DEFF Research Database (Denmark)

    Muñoz-Cobo, Juan Pablo; Sánchez-Hernández, Noemí; Gutiérrez-Enríquez, Sara

    2017-01-01

    ) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad......TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington’s disease (HD...... role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons...

  11. Cellular models for Parkinson's disease.

    Science.gov (United States)

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth

    2016-10-01

    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  12. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN......(-) and H2O, respectively), were included as control samples. The results indicated that B12 derivatives delivered cisplatin to both cellular cytosol and nuclei with an efficiency of one third compared to the uptake of free cisplatin cis-[Pt(II)Cl2(NH3)2]. In addition, uptake of charged B12 derivatives...

  13. Cellular basis of Alzheimer's disease.

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  14. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  15. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  16. YAP/TEAD-mediated transcription controls cellular senescence.

    Science.gov (United States)

    Xie, Qi; Chen, Jing; Feng, Han; Peng, Shengyi; Adams, Ursula; Bai, Yujie; Huang, Li; Li, Ji; Huang, Junjian; Meng, Songshu; Yuan, Zengqiang

    2013-06-15

    Transcription coactivator Yes-associated protein (YAP) plays an important role in the regulation of cell proliferation and apoptosis. Here, we identify a new role of YAP in the regulation of cellular senescence. We find that the expression levels of YAP proteins decrease following the replication-induced cellular senescence in IMR90 cells. Silencing of YAP inhibits cell proliferation and induces premature senescence. In additional experiments, we observe that cellular senescence induced by YAP deficiency is TEAD- and Rb/p16/p53-dependent. Furthermore, we show that Cdk6 is a direct downstream target gene of YAP in the regulation of cellular senescence, and the expression of Cdk6 is through the YAP-TEAD complex. Ectopic expression of Cdk6 rescued YAP knockdown-induced senescence. Finally, we find that downregulation of YAP in tumor cells increases senescence in response to chemotherapeutic agents, and YAP or Cdk6 expression rescues cellular senescence. Taken together, our findings define the critical role of YAP in the regulation of cellular senescence and provide a novel insight into a potential chemotherapeutic avenue for tumor suppression. ©2013 AACR.

  17. The liver X receptor : Control of cellular lipid homeostasis and beyond Implications for drug design

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; Grefhorst, Aldo; Groen, Albert K.; Kuipers, Folkert

    2010-01-01

    Liver X receptor (LXR) alpha and beta are nuclear receptors that control cellular metabolism. LXRs modulate the expression of genes involved in cholesterol and lipid metabolism in response to changes in cellular cholesterol status. Because of their involvement in cholesterol homeostasis, LXRs have e

  18. Typhoid fever as cellular microbiological model

    Directory of Open Access Journals (Sweden)

    Andrade Dahir Ramos de

    2003-01-01

    Full Text Available The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a Bacterial type III protein secretion system; b The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein A, B, C, D and E, which are capable of induce apoptosis in macrophages; c The function of Toll R2 and Toll R4 receptors present in the macrophage surface (discovered in the Drosophila. The Toll family receptors are critical in the signalizing mediated by LPS in macrophages in association with LBP and CD14; d The lines of immune defense between intestinal lumen and internal organs; e The fundamental role of the endothelial cells in the inflammatory deviation from bloodstream into infected tissues by bacteria. In addition to above subjects, the authors comment the correlation between the clinical features of typhoid fever and the cellular and molecular phenomena of this disease, as well as the therapeutic consequences of this knowledge.

  19. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  20. Cellular uptake and trafficking of antisense oligonucleotides.

    Science.gov (United States)

    Crooke, Stanley T; Wang, Shiyu; Vickers, Timothy A; Shen, Wen; Liang, Xue-Hai

    2017-03-01

    Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.

  1. Cellular senescence mediates fibrotic pulmonary disease

    Science.gov (United States)

    Schafer, Marissa J.; White, Thomas A.; Iijima, Koji; Haak, Andrew J.; Ligresti, Giovanni; Atkinson, Elizabeth J.; Oberg, Ann L.; Birch, Jodie; Salmonowicz, Hanna; Zhu, Yi; Mazula, Daniel L.; Brooks, Robert W.; Fuhrmann-Stroissnigg, Heike; Pirtskhalava, Tamar; Prakash, Y. S.; Tchkonia, Tamara; Robbins, Paul D.; Aubry, Marie Christine; Passos, João F.; Kirkland, James L.; Tschumperlin, Daniel J.; Kita, Hirohito; LeBrasseur, Nathan K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function. PMID:28230051

  2. Complex cellular responses to reactive oxygen species.

    Science.gov (United States)

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W

    2005-06-01

    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  3. Microfluidic electroporation for cellular analysis and delivery.

    Science.gov (United States)

    Geng, Tao; Lu, Chang

    2013-10-01

    Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.

  4. Sub-Cellular Localization and Expression Analysis of Genes Involved in Grapevine Floral Development%葡萄花发育基因的亚细胞定位和表达分析

    Institute of Scientific and Technical Information of China (English)

    杨光; 曹雪; 房经贵; 黄振喜; 陶建敏; 王晨

    2011-01-01

    [Objective] The aim of this study was to isolate the open reading frame sequence of Vitis vinifera AGAMOUS (VvAG), Vitis vinifera APETALA 3 (VvAP3), Vitis vinifera FLOWERING LOCUS C (VvFLC), Vitis vinifera FRUITFUL (VvFUL),Vitis vinifera FLOWERING LOCUS T (VvFT), Vitis vinifera APETALA2 (VvAP2) and Vitis vinifera SUPPRESSOR OF OVER EXPRESSION OF CO 1 (VvSOC1) fiom ‘Xiangyue’, one of the most popular table grape cultivars, and for some preliminary study on their functions. [Method] Specific primers RT-PCR method was used to clone genes, and semi-quantitative PCR was used to analyze the expression of genes in different organs and tissues. Recombinant plasmid was introduced into onion epidermal cells by the particle bombardment method with a PDS1000/He. Transformed cells were incubated for 24 h at 25℃ in the dark and green fluorescence was monitored under a Laser scanning confocal microscope. [ Result ] The expression results of the genes in different tissues showed that they were expressed ubiquitously in all the organs and tissues, but the expression levels were some different.VvFT, VvFUL and VvAP3 were expressed highest in young fruit, VvAG and VvAP2 highest in flower, and VvSOC1 and VvFLC highest in young leaves. VvSOC1, VvFT, VvFLC and VvAP2 combined with GFP were only located in nucleus of onion epidermal cell, which showed typical characteristics of transcription factor; however, VvAG, VvFUL and VvAP3 combined with GFP were located in both the plasma membrane and nucleus. [Conclusion] All these genes were involved in the developments both of reproductive and vegetative organs, and showed the nucleus location phenomena by combining with GFP except that VvAG, VvFUL,and VvAP3 showed signal at plasma membrane.%[目的]分离和克隆菊萄品种‘香悦'Vitis vinifera AGAMOUS MAO,Vitis vinifera APBTALA 3(VVAPA、Vitis vinifera FLOWERING LOCUS C(VvFLC)、Vitis vinifera FRUITFUL(VVFUL)、Vitis vinifera FLOWERING LOCUS T(VVF7)、Vitis vinifera 4PBT4L,42 MAM

  5. Redox control of cellular signalling

    NARCIS (Netherlands)

    Putker, M.

    2014-01-01

    Reactive oxygen species (ROS) are natural by-products of cellular energy production. Consequently, mammalian cells encounter them on a daily basis. Increased ROS levels are associated with the onset of cancer and accelerated ageing, and historically, ROS are therefore considered harmful molecules.

  6. On Cellular MIMO Channel Capacity

    Science.gov (United States)

    Adachi, Koichi; Adachi, Fumiyuki; Nakagawa, Masao

    To increase the transmission rate without bandwidth expansion, the multiple-input multiple-output (MIMO) technique has recently been attracting much attention. The MIMO channel capacity in a cellular system is affected by the interference from neighboring co-channel cells. In this paper, we introduce the cellular channel capacity and evaluate its outage capacity, taking into account the frequency-reuse factor, path loss exponent, standard deviation of shadowing loss, and transmission power of a base station (BS). Furthermore, we compare the cellular MIMO downlink channel capacity with those of other multi-antenna transmission techniques such as single-input multiple-output (SIMO) and space-time block coded multiple-input single-output (STBC-MISO). We show that the optimum frequency-reuse factor F that maximizes 10%-outage capacity is 3 and both 50%- and 90%-outage capacities is 1 irrespective of the type of multi-antenna transmission technique, where q%-outage capacity is defined as the channel capacity that gives an outage probability of q%. We also show that the cellular MIMO channel capacity is always higher than those of SIMO and STBC-MISO.

  7. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, MQT; Stürup, Stefan; Lambert, Ian H.;

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-...

  8. Cellular bystander effects and radiation hormesis

    Directory of Open Access Journals (Sweden)

    Loredana MARCU

    2009-05-01

    Full Text Available Bystander effects describe the effects of extracellular mediators from irradiated cells on neighbouring non-irradiated cells resulting in radiation-induced effects in unirradiated cells. Although the underlying mechanisms are largely unknown, it is widely recognised that two types of cellular communication (i.e. via gap junctions and/or release of molecular messengers into the extracellular environment play an essential role. Additionally, the effects can be significantly modulated by parameters such as cell type, cell-cycle stage and cell density. Some of the common bystander effects or biological end points which are evidenced after low-dose irradiation are: chromosomal instability, cell killing and delayed cell death, mutagenesis, micronucleus formation, gene and protein expression changes. Through these end points it is likely that bystander effects can be both detrimental and beneficial. By increasing mutation levels of cells bystander effects increase the likelihood of genetic defects and in turn cancer. On the other hand by removing damaged cells from the population and preventing the growth of cancer cells, bystander effects are beneficial.Radiation hormesis is a term used to relate the beneficial effects of small doses of radiation on living cells, whether plant, animal or human. Experiments on bacteria, plants and animals have demonstrated that several biological mechanisms are stimulated by low dose radiation, such as: protein synthesis, gene activation, detoxication of free radicals and stimulation of the immune system. These mechanisms were also observed in humans.The present review paper is a compilation of the most recent data on bystander effects and the possible implications of cellular response to radiation on cell growth and development.

  9. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Science.gov (United States)

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2015-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods. PMID:24166372

  10. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Close, Dan [University of Tennessee, Knoxville (UTK); Sayler, Gary Steven [ORNL; Xu, Tingting [ORNL; Ripp, Steven Anthony [ORNL

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

  11. Peroxisome Metabolism and Cellular Aging

    Science.gov (United States)

    Titorenko, Vladimir I.; Terlecky, Stanley R.

    2010-01-01

    The essential role of peroxisomes in fatty acid oxidation, anaplerotic metabolism, and hydrogen peroxide turnover is well established. Recent findings suggest these and other related biochemical processes governed by the organelle may also play a critical role in regulating cellular aging. The goal of this review is to summarize and integrate into a model, the evidence that peroxisome metabolism actually helps define the replicative and chronological age of a eukaryotic cell. In this model, peroxisomal reactive oxygen species (ROS) are seen as altering organelle biogenesis and function, and eliciting changes in the dynamic communication networks that exist between peroxisomes and other cellular compartments. At low levels, peroxisomal ROS activate an anti-aging program in the cell; at concentrations beyond a specific threshold, a pro-aging course is triggered. PMID:21083858

  12. Cellular proliferation and hypusine synthesis.

    Science.gov (United States)

    Torrelio, B M; Paz, M A; Gallop, P M

    1984-10-01

    Hypusine (N(-)-(4-amino-2-hydroxybutyl) lysine), a spermidine-dependent post-translational protein modification, is synthesized by various mammalian cells in culture. Experiments described in this paper demonstrated a relationship between rates of cellular growth and the synthesis of hypusine. Cells that divide at fast rates have a high rate of hypusine synthesis. In kinetic experiments, a positive relationship is evident between the rates of protein, DNA and hypusine synthesis. Cells seeded at high density, growing non-exponentially, synthesized less hypusine than logarithmically growing cells seeded at low density. Slowing the growth rate of cells by modification of the external milieu also results in a decreased rate of hypusine synthesis. These results provide additional evidence of the association of hypusine with cell proliferation in cultured cell lines and suggest a possible role for this unusual post-translational modification in the complex macromolecular events leading to cellular growth.

  13. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Directory of Open Access Journals (Sweden)

    Stroncek David F

    2012-03-01

    Full Text Available Abstract A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL, are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs, chimeric antibody-T cell receptors (CARs and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies.

  14. Identification of Nonstationary Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    AndrewI.Adamatzky

    1992-01-01

    The principal feature of nonstationary cellular automata(NCA) is that a local transitiol rule of each cell is changed at each time step depending on neighborhood configuration at previous time step.The identification problem for NCA is extraction of local transition rules and the establishment of mechanism for changing these rules using sequence of NCA configurations.We present serial and parallel algorithms for identification of NCA.

  15. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    OpenAIRE

    Popescu, O.; Sumanovski, L. T.; I. Checiu; Elisabeta Popescu; G. N. Misevic

    1999-01-01

    Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals) have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of...

  16. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  17. Cellular fiber–reinforced concrete

    OpenAIRE

    Isachenko S.; Kodzoev M.

    2016-01-01

    Methods disperse reinforcement of concrete matrix using polypropylene, glass, basalt and metal fibers allows to make the construction of complex configuration, solve the problem of frost products. Dispersed reinforcement reduces the overall weight of the structures. The fiber replaces the secondary reinforcement, reducing the volume of use of structural steel reinforcement. Cellular Fiber concretes are characterized by high-performance properties, especially increased bending strength and...

  18. Cellular and molecular aspects of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Malcolm G Smith; Georgina L Hold; Eiichi Tahara; Emad M El-Omar

    2006-01-01

    Gastric cancer remains a global killer with a shifting burden from the developed to the developing world.The cancer develops along a multistage process that is defined by distinct histological and pathophysiological phases. Several genetic and epigenetic alterations mediate the transition from one stage to another and these include mutations in oncogenes, tumour suppressor genes and cell cycle and mismatch repair genes. The most significant advance in the fight against gastric caner came with the recognition of the role of Helicobacter pylori (H pylori) as the most important acquired aetiological agent for this cancer. Recent work has focussed on elucidating the complex host/microbial interactions that underlie the neoplastic process. There is now considerable insight into the pathogenesis of this cancer and the prospect of preventing and eradicating the disease has become a reality. Perhaps more importantly, the study of H pylori-induced gastric carcinogenesis offers a paradigm for understanding more complex human cancers. In this review, we examine the molecular and cellular events that underlie H pyloriinduced gastric cancer.

  19. Endothelial Cellular Responses to Biodegradable Metal Zinc.

    Science.gov (United States)

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn(2+)) will be released to the surrounding tissue. For stent applications, the local Zn(2+)concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn(2+), which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0-140 μM) of extracellular Zn(2+). Zn(2+) had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn(2+) promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn(2+) had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn(2+)in stent and other related medical applications.

  20. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  1. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  2. [Cellular phones and public health].

    Science.gov (United States)

    Leventhal, Alex; Karsenty, Eric; Sadetzki, Siegal

    2004-08-01

    The increased use of mobile cellular phone by the public is associated with a wave of contradictory reports about the possible health effects, due to the exposure of the users to electromagnetic non-ionizing radiation. This article reviews the state of the art of the present knowledge concerning the biological and medical effects of exposure to cellular phones, with an emphasis on its possible carcinogenic effect. Health conditions, which have been ascribed to the use of mobile phones mainly include some types of cancer and changes of brain activity. However, the balance of evidence from available studies has not yet supported these claims. Following the recommendation of special international expert committees, the IARC (International Association for Research on Cancer) is conducting a multi-center study to determine the possible effect of cellular phone use on brain and salivary gland tumors. Israel is one of the participants of this study. The only established health effect associated with the use of such technology is an increased risk for road accidents, unrelated to the amount of radiation emitted by phone. The challenge posed by this new technology to health authorities all over the world has lead to the definition of a new principle, the so-called "prudent avoidance", used as guidelines for the definition of an adequate public health policy. The public policy in Israel has used the prudent avoidance principles, while awaiting the results of the multi-national epidemiological studies.

  3. The gene expression of oral squamous cells carcinomas and buccal mucosa premalignant lesions and the research on the difference of cellular pathways%口腔鳞状细胞癌和颊黏膜癌前病变基因表达和细胞通路的差异性研究∗

    Institute of Scientific and Technical Information of China (English)

    张福军; 张国栋; 杨凯; 梅杰

    2015-01-01

    Objective To screen and analysis the virulent genes and pathways in golden hamster cheek pouch mucosa precan-cerous lesions and squamous cell carcinomas.Methods The experimental models of golden hamster cheek pouch mucosa precancer-ous lesions and squamous cell carcinomas were induced by DMBA.The total RNA of precancerous lesions and squamous cell carci-nomas of golden hamster cheek pouch was extracted and the cRNA was labeled by Cy3.Then gene chip was used to screen the dif-ferentially expressed genes.At last,the Gene Ontology and pathway was used to analysis the biology function of important virulent genes.Meanwhile,we confirmed the correctness of the results by using the RT-PCR.Results A total of 1 981 differentially ex-pressed genes were detected during the process from precancerous lesions to squamous cell carcinomas (120 genes remained known).One thousand and thirty-seven genes were up-regulated and 944 genes down-regulated.GO analysis showed that these dif-ferentially expressed genes mainly related to the macromolecular metabolism,signal transduction and so on.Pathway analysis showed that 9 pathways were significant changes.14 genes were enriched in above 9 change pathways.Conclusion There were 1 981 differentially expressed genes and 9 abnormal changes pathways during the process from precancerous lesions to squamous cell carcinomas,in which 14 differentially expressed genes led to changes in cellular pathways.These genes might be likely to have the important pathogenic genes in the process of transformation.%目的:筛选出口腔鳞状细胞癌与颊黏膜癌前病变组织中的差异基因,并进行生物信息分析,探讨癌前病变转向鳞癌的分子机制。方法通过二羟甲基丁酸(DMBA)诱导金黄地鼠来建立颊黏膜癌前病变和鳞癌模型,提取病变组织总 RNA,合成单标 Cy3荧光标记的 cRNA,采用基因芯片技术,筛选出两组模型口腔组织中表达差异的基因,对筛选出的差异基因进行功能分

  4. Cellular strategies for regulating functional and nonfunctional protein aggregation.

    Science.gov (United States)

    Gsponer, Jörg; Babu, M Madan

    2012-11-29

    Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier's principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control.

  5. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  6. Flexible substrata for the detection of cellular traction forces

    Science.gov (United States)

    Beningo, Karen A.; Wang, Yu-Li

    2002-01-01

    By modulating adhesion signaling and cytoskeletal organization, mechanical forces play an important role in various cellular functions, from propelling cell migration to mediating communication between cells. Recent developments have resulted in several new approaches for the detection, analysis and visualization of mechanical forces generated by cultured cells. Combining these methods with other approaches, such as green-fluorescent protein (GFP) imaging and gene manipulation, proves to be particularly powerful for analyzing the interplay between extracellular physical forces and intracellular chemical events.

  7. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  8. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  9. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  10. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat...... pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas...... and nateglinide, may have a clinically undesirable general stimulatory effect on cells within the endocrine system....

  11. ING proteins in cellular senescence.

    Science.gov (United States)

    Menéndez, Camino; Abad, María; Gómez-Cabello, Daniel; Moreno, Alberto; Palmero, Ignacio

    2009-05-01

    Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.

  12. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  13. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  14. CELLULAR AUTOMATA AND COMPUTER GRAPHICS

    Directory of Open Access Journals (Sweden)

    Şen ÇAKIR

    1999-01-01

    Full Text Available Cellular Automata (CA are simple mathematical systems which provide models for a variety of physical processes. They show how minute changes and simple rules lead to enormous changes in the behaviour of a system. They can also be used as computer graphics tools to produce a rich reservoir of interesting figures. In recent years, CA have attracked the attention of many scientists. Today, CA are used in many fields from ecology to image processing. In this paper, it is shown that a large number of complex and interesting patterns can be created with relatively simple CA rules.

  15. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  16. Melanoma screening with cellular phones.

    Directory of Open Access Journals (Sweden)

    Cesare Massone

    Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  17. Melanoma screening with cellular phones.

    Science.gov (United States)

    Massone, Cesare; Hofmann-Wellenhof, Rainer; Ahlgrimm-Siess, Verena; Gabler, Gerald; Ebner, Christoph; Soyer, H Peter

    2007-05-30

    Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria). Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp) where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  18. Cellular automata modelling of SEIRS

    Institute of Scientific and Technical Information of China (English)

    Liu Quan-Xing; Jin Zhen

    2005-01-01

    In this paper the SEIRS epidemic spread is analysed, and a two-dimensional probability cellular automata model for SEIRS is presented. Each cellular automation cell represents a part of the population that may be found in one of five states of individuals: susceptible, exposed (or latency), infected, immunized (or recovered) and death. Here studied are the effects of two cases on the epidemic spread. i.e. the effects of non-segregation and segregation on the latency and the infected of population. The conclusion is reached that the epidemic will persist in the case of non-segregation but it will decrease in the case of segregation. The proposed model can serve as a basis for the development of algorithms to simulate real epidemics based on real data. Last we find the density series of the exposed and the infected will fluctuate near a positive equilibrium point, when the constant for the immunized is less than its corresponding constant τ0. Our theoretical results are verified by numerical simulations.

  19. Human more complex than mouse at cellular level.

    Directory of Open Access Journals (Sweden)

    Alexander E Vinogradov

    Full Text Available The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain. In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes. The evolutionary turnover of C2H2-ZF(-KRAB genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues, whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend. These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.

  20. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  1. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  2. Sensing Phosphatidylserine in Cellular Membranes

    Directory of Open Access Journals (Sweden)

    Jason G. Kay

    2011-01-01

    Full Text Available Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  3. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  4. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  5. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  6. REGULATORY MECHANISMS OF CELLULAR RESPIRATION

    Science.gov (United States)

    Barron, E. S. Guzman; Nelson, Leonard; Ardao, Maria Isabel

    1948-01-01

    Oxidizing agents of sulfhydryl groups such as iodosobenzoate, alkylating agents such as iodoacetamide, and mercaptide-forming agents such as cadmium chloride, mercuric chloride, p-chloromercuribenzoate, sodium arsenite, and p-carboxyphenylarsine oxide, added in small concentrations to a suspension of sea urchin sperm produced an increase in respiration. When the concentration was increased there was an inhibition. These effects are explained by postulating the presence in the cells of two kinds of sulfhydryl groups: soluble sulfhydryl groups, which regulate cellular respiration, and fixed sulfhydryl groups, present in the protein moiety of enzymes. Small concentrations of sulfhydryl reagents combine only with the first, thus producing an increase in respiration; when the concentration is increased, the fixed sulfhydryl groups are also attacked and inhibition of respiration is the consequence. Other inhibitors of cell respiration, such as cyanide and urethanes, which do not combine with —SH groups, did not stimulate respiration in small concentration. PMID:18891144

  7. Cellular mechanisms that control mistranslation

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Lazazzera, Beth A; Ibba, Michael

    2010-01-01

    Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation...

  8. Fundamental Limits to Cellular Sensing

    Science.gov (United States)

    ten Wolde, Pieter Rein; Becker, Nils B.; Ouldridge, Thomas E.; Mugler, Andrew

    2016-03-01

    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade

  9. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  10. Transcription of human respiratory syncytial virus genome RNA in vitro: requirement of cellular factor(s).

    OpenAIRE

    Barik, S

    1992-01-01

    Extracts made from human respiratory syncytial virus (RSV)-infected Hep-2 cells synthesized mRNAs encoded by all known viral genes. In contrast, RSV ribonucleoproteins purified from infected cells failed to transcribe in vitro; transcription was restored by addition of a cytoplasmic extract of uninfected Hep-2 cells, demonstrating that a cellular factor(s) has a role in RSV gene expression. Quantitation of the individual gene mRNAs transcribed in vitro revealed polarity of transcription of th...

  11. A synthetic biology approach to understanding cellular information processing.

    Science.gov (United States)

    Riccione, Katherine A; Smith, Robert P; Lee, Anna J; You, Lingchong

    2012-09-21

    The survival of cells and organisms requires proper responses to environmental signals. These responses are governed by cellular networks, which serve to process diverse environmental cues. Biological networks often contain recurring network topologies called "motifs". It has been recognized that the study of such motifs allows one to predict the response of a biological network and thus cellular behavior. However, studying a single motif in complete isolation of all other network motifs in a natural setting is difficult. Synthetic biology has emerged as a powerful approach to understanding the dynamic properties of network motifs. In addition to testing existing theoretical predictions, construction and analysis of synthetic gene circuits has led to the discovery of novel motif dynamics, such as how the combination of simple motifs can lead to autonomous dynamics or how noise in transcription and translation can affect the dynamics of a motif. Here, we review developments in synthetic biology as they pertain to increasing our understanding of cellular information processing. We highlight several types of dynamic behaviors that diverse motifs can generate, including the control of input/output responses, the generation of autonomous spatial and temporal dynamics, as well as the influence of noise in motif dynamics and cellular behavior.

  12. The nucleolus—guardian of cellular homeostasis and genome integrity.

    Science.gov (United States)

    Grummt, Ingrid

    2013-12-01

    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  13. Selfish cellular networks and the evolution of complex organisms.

    Science.gov (United States)

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment.

  14. The effect of extrinsic noise on cellular decision making

    Science.gov (United States)

    Roberts, Elijah; Assaf, Michael; Luthey-Schulten, Zaida; Goldenfeld, Nigel

    2013-03-01

    Many cellular processes are not deterministic, i.e., genetically identical cells can display different phenotypic behavior even in identical environments. Such processes involve cellular decision making, in which individual cells randomly make choices determining their fate. One view is that the stochastic nature of cellular decision making is due to noise present in the biomolecular interaction networks. Most previous work has focused on the role of intrinsic noise of these networks. Yet, especially in the high copy-number regime, extrinsic noise may be much more significant, likely governing the overall dynamics. Here we develop a theoretical framework describing the combined effect of intrinsic and extrinsic noise on the stochastic dynamics of genetic switches responsible for cellular decision making. We do so by devising a semi-classical theory accounting for extrinsic noise as an effective species. Our theory, corroborated by extensive Monte-Carlo simulations, is tested on a simple bistable self-regulating gene model, and is then generalized to gain insight on the behavior of the lac genetic switch under extrinsic noise. We show that extrinsic noise not only significantly lowers the escape time from a phenotypic state, but can fundamentally change the actual escape process.

  15. Cytomegalovirus Destruction of Focal Adhesions Revealed in a High-Throughput Western Blot Analysis of Cellular Protein Expression† ▿

    OpenAIRE

    Stanton, Richard James; McSharry, Brian Patrick; Rickards, Carole Ruth; Wang, Edward Chung Yern; Tomasec, Peter; Wilkinson, Gavin William Grahame

    2007-01-01

    Human cytomegalovirus (HCMV) systematically manages the expression of cellular functions, rather than exerting the global shutoff of host cell protein synthesis commonly observed with other herpesviruses during the lytic cycle. While microarray technology has provided remarkable insights into viral control of the cellular transcriptome, HCMV is known to encode multiple mechanisms for posttranscriptional and posttranslation regulation of cellular gene expression. High-throughput Western blotti...

  16. Using cellular network diagrams to interpret large-scale datasets: past progress and future challenges

    Science.gov (United States)

    Karp, Peter D.; Latendresse, Mario; Paley, Suzanne

    2011-03-01

    Cellular networks are graphs of molecular interactions within the cell. Thanks to the confluence of genome sequencing and bioinformatics, scientists are now able to reconstruct cellular network models for more than 1,000 organisms. A variety of bioinformatics tools have been developed to support the visualization and navigation of cellular network data. Another important application is the use of cellular network diagrams to visualize and interpret large-scale datasets, such as gene-expression data. We present the Cellular Overview, a network visualization tool developed at SRI International (SRI) to support visualization, navigation, and interpretation of large-scale datasets on metabolic networks. Different variations of the diagram have been generated algorithmically for more than 1,000 organisms. We discuss the graphical design of the diagram and its interactive capabilities.

  17. Autoantigenic proteins that bind recombinogenic sequences in Epstein-Barr virus and cellular DNA.

    OpenAIRE

    1994-01-01

    We have identified conserved autoantigenic cellular proteins that bind to G-rich sequence motifs in recombinogenic regions of Epstein-Barr virus (EBV) DNA. This binding activity, called TRBP, recognizes the EBV terminal repeats, a locus responsible for interconversion of linear and circular EBV DNA. We found that TRBP also binds to EBV DNA sequences involved in deletion of EBNA2, a gene product required for immortalization. We show that TRBP binds sequences present in repetitive cellular DNA,...

  18. Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization

    OpenAIRE

    2008-01-01

    For many microRNAs, in many normal tissues and in cancer cells, the cellular levels of mature microRNAs are not simply determined by transcription of microRNA genes. This mini-review will discuss how microRNA biogenesis and function can be regulated by various nuclear and cytoplasmic processing events, including emerging evidence that microRNA pathway components can be selectively regulated by control of their subcellular localization and by modifications that occur during dynamic cellular si...

  19. Cellular phones: are they detrimental?

    Science.gov (United States)

    Salama, Osama E; Abou El Naga, Randa M

    2004-01-01

    The issue of possible health effects of cellular phones is very much alive in the public's mind where the rapid increase in the number of the users of cell phones in the last decade has increased the exposure of people to the electromagnetic fields (EMFs). Health consequences of long term use of mobile phones are not known in detail but available data indicates the development of non specific annoying symptoms on acute exposure to mobile phone radiations. In an attempt to determine the prevalence of such cell phones associated health manifestations and the factors affecting their occurrence, a cross sectional study was conducted in five randomly selected faculties of Alexandria University. Where, 300 individuals including teaching staff, students and literate employee were equally allocated and randomly selected among the five faculties. Data about mobile phone's users and their medical history, their pattern of mobile usage and the possible deleterious health manifestations associated with cellular phone use was collected. The results revealed 68% prevalence of mobile phone usage, nearly three quarters of them (72.5%) were complainers of the health manifestations. They suffered from headache (43%), earache (38.3%), sense of fatigue (31.6%), sleep disturbance (29.5%), concentration difficulty (28.5%) and face burning sensation (19.2%). Both univariate and multivariate analysis were consistent in their findings. Symptomatic users were found to have significantly higher frequency of calls/day, longer call duration and longer total duration of mobile phone usage/day than non symptomatic users. For headache both call duration and frequency of calls/day were the significant predicting factors for its occurrence (chi2 = 18.208, p = 0.0001). For earache, in addition to call duration, the longer period of owning the mobile phone were significant predictors (chi2 = 16.996, p = 0.0002). Sense of fatigue was significantly affected by both call duration and age of the user

  20. Protein aggregation as a mechanism of adaptive cellular responses.

    Science.gov (United States)

    Saarikangas, Juha; Barral, Yves

    2016-11-01

    Coalescence of proteins into different types of intracellular bodies has surfaced as a widespread adaptive mechanism to re-organize cells and cellular functions in response to specific cues. These structures, composed of proteins or protein-mRNA-complexes, regulate cellular processes through modulating enzymatic activities, gene expression or shielding macromolecules from damage. Accordingly, such bodies are associated with a wide-range of processes, including meiosis, memory-encoding, host-pathogen interactions, cancer, stress responses, as well as protein quality control, DNA replication stress and aneuploidy. Importantly, these distinct coalescence responses are controlled, and in many cases regulated by chaperone proteins. While cells can tolerate and proficiently coordinate numerous distinct types of protein bodies, some of them are also intimately linked to diseases or the adverse effects of aging. Several protein bodies that differ in composition, packing, dynamics, size, and localization were originally discovered in budding yeast. Here, we provide a concise and comparative review of their nature and nomenclature.

  1. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  2. Intrinsic Simulations between Stochastic Cellular Automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2012-08-01

    Full Text Available The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.

  3. Cellular peptide composition governed by major histocompatibility complex class I molecules.

    Science.gov (United States)

    Falk, K; Rötzschke, O; Rammensee, H G

    1990-11-15

    Major histocompatibility complex (MHC) class I molecules present peptides derived from cellular proteins to cytotoxic T lymphocytes (CTLs), which check these peptides for abnormal features. How such peptides arise in the cell is not known. Here we show that the MHC molecules themselves are substantially involved in determining which peptides occur intracellularly: normal mouse spleen cells identical at all genes but MHC class I express different patterns of peptides derived from cellular non-MHC proteins. We suggest several models to explain this influence of MHC class I molecules on cellular peptide composition.

  4. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  5. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  6. Cellular Mechanisms of Transcranial Direct Current Stimulation

    Science.gov (United States)

    2016-07-14

    effects of any number of cellular processes , where the endogenous state is such that it can only be modulated in one direction. Conclusions and...activated synaptic processes and provided a cellular substrate for these changes. This proposal therefore provided a detailed cellular-level...which are involved in synaptic processing , might additionally contribute to the effects of DCS (Purpura and McMurtry, 1965a, b; Bikson et al., 2004

  7. THE RELATIONSHIPS OF THREE ELEMENTARY CELLULAR AUTOMATA

    Institute of Scientific and Technical Information of China (English)

    Zhisong JIANG

    2006-01-01

    Limit language complexity of cellular automata which is first posed by S. Wolfram has become a new branch of cellular automata. In this paper, we obtain two interesting relationships between elementary cellular automata of rules 126, 146(182) and 18, and prove that if the limit language of rule 18 is not regular, nor are the limit languages of rules 126 and 146(182).

  8. The Convergent Cancer Evolution toward a Single Cellular Destination.

    Science.gov (United States)

    Chen, Han; He, Xionglei

    2016-01-01

    The essence of Darwin's theory is that evolution is driven by purposeless mutations that are subsequently selected by natural environments, so there is often no predefined destination in organismal evolution. Using gene expressions of 107 cell types, we built a functional space of human cells to trace the evolutionary trajectory of 18 types of solid tumor cancers. We detected a dominant evolving trend toward the functional status of embryonic stem cells (ESC) for approximately 3,000 tumors growing in distinct tissue environments. This pattern remained the same after excluding known cancer/ESC signature genes (∼ 3,000 genes) or excluding all oncogenic gene sets (∼ 12,000 genes) annotated in MSigDB, suggesting a convergent evolution of the overall functional status in cancers. In support of this, the functional distance to ESC served as a common prognostic indicator for cancers of various types, with shorter distance corresponding to poor prognosis, which was true even when randomly selected gene sets were considered. Thus, regardless of the external environments, cancer evolution is a directional process toward a defined cellular destination, a finding reconciling development and evolution, the two seemingly incompatible philosophies both adopted by the cancer research community, and also raising new questions to evolutionary biology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Efficiency of cellular information processing

    CERN Document Server

    Barato, Andre C; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  10. The origins of cellular life.

    Science.gov (United States)

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W

    2010-09-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  11. Cellular Senescence: A Translational Perspective

    Directory of Open Access Journals (Sweden)

    James L. Kirkland

    2017-07-01

    Full Text Available Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP. Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative.

  12. The cellular toxicity of aluminium.

    Science.gov (United States)

    Exley, C; Birchall, J D

    1992-11-07

    Aluminium is a serious environmental toxicant and is inimical to biota. Omnipresent, it is linked with a number of disorders in man including Alzheimer's disease, Parkinson's dementia and osteomalacia. Evidence supporting aluminium as an aetiological agent in such disorders is not conclusive and suffers principally from a lack of consensus with respect to aluminium's toxic mode of action. Obligatory to the elucidation of toxic mechanisms is an understanding of the biological availability of aluminium. This describes the fate of and response to aluminium in any biological system and is thus an important influence of the toxicity of aluminium. A general theme in much aluminium toxicity is an accelerated cell death. Herein mechanisms are described to account for cell death from both acute and chronic aluminium challenges. Aluminium associations with both extracellular surfaces and intracellular ligands are implicated. The cellular response to aluminium is found to be biphasic having both stimulatory and inhibitory components. In either case the disruption of second messenger systems is observed and GTPase cycles are potential target sites. Specific ligands for aluminium at these sites are unknown though are likely to be proteins upon which oxygen-based functional groups are orientated to give exceptionally strong binding with the free aluminium ion.

  13. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  14. Integration of mobile satellite and cellular systems

    Science.gov (United States)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  15. Exploring cellular memory molecules marking competent and active transcriptions

    Directory of Open Access Journals (Sweden)

    Liu De-Pei

    2007-05-01

    Full Text Available Abstract Background Development in higher eukaryotes involves programmed gene expression. Cell type-specific gene expression is established during this process and is inherited in succeeding cell cycles. Higher eukaryotes have evolved elegant mechanisms by which committed gene-expression states are transmitted through numerous cell divisions. Previous studies have shown that both DNase I-sensitive sites and the basal transcription factor TFIID remain on silenced mitotic chromosomes, suggesting that certain trans-factors might act as bookmarks, maintaining the information and transmitting it to the next generation. Results We used the mouse globin gene clusters as a model system to examine the retention of active information on M-phase chromosomes and its contribution to the persistence of transcriptional competence of these gene clusters in murine erythroleukemia cells. In cells arrested in mitosis, the erythroid-specific activator NF-E2p45 remained associated with its binding sites on the globin gene loci, while the other major erythroid factor, GATA-1, was removed from chromosome. Moreover, despite mitotic chromatin condensation, the distant regulatory regions and promoters of transcriptionally competent globin gene loci are marked by a preserved histone code consisting in active histone modifications such as H3 acetylation, H3-K4 dimethylation and K79 dimethylation. Further analysis showed that other active genes are also locally marked by the preserved active histone code throughout mitotic inactivation of transcription. Conclusion Our results imply that certain kinds of specific protein factors and active histone modifications function as cellular memory markers for both competent and active genes during mitosis, and serve as a reactivated core for the resumption of transcription when the cells exit mitosis.

  16. Ataxia telangiectasia: more variation at clinical and cellular levels.

    Science.gov (United States)

    Taylor, A M R; Lam, Z; Last, J I; Byrd, P J

    2015-03-01

    Ataxia telangiectasia (A-T) is a rare recessively inherited disorder resulting in a progressive neurological decline. It is caused by biallelic mutation of the ATM gene that encodes a 370 kDa serine/threonine protein kinase responsible for phosphorylating many target proteins. ATM is activated by auto(trans)phosphorylation in response to DNA double strand breaks and leads to the activation of cell cycle checkpoints and either DNA repair or apoptosis as part of the cellular response to DNA damage. The allelic heterogeneity in A-T is striking. While the majority of mutations are truncating, leading to instability and loss of the ATM protein from the allele, a significant proportion of patients carry one of a small number of mutations that are either missense or leaky splice site mutations resulting in retention of some ATM with activity. The allelic heterogeneity in ATM, therefore, results in an equally striking clinical heterogeneity. There is also locus heterogeneity because mutation of the MRE11 gene can cause an obvious A-T like disorder both clinically and also at the cellular level and mutation of the RNF168 gene results in a much milder clinical phenotype, neurologically, with the major clinical feature being an immunological defect. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Daily magnesium fluxes regulate cellular timekeeping and energy balance.

    Science.gov (United States)

    Feeney, Kevin A; Hansen, Louise L; Putker, Marrit; Olivares-Yañez, Consuelo; Day, Jason; Eades, Lorna J; Larrondo, Luis F; Hoyle, Nathaniel P; O'Neill, John S; van Ooijen, Gerben

    2016-04-21

    Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.

  18. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L; Gasch, Audrey P

    2012-10-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments.

  19. Rapid detection of biothreat agents based on cellular machinery.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.; Gantt, Richard W.

    2004-12-01

    This research addresses rapid and sensitive identification of biological agents in a complex background. We attempted to devise a method by which the specificity of the cellular transcriptional machinery could be used to detect and identify bacterial bio-terror agents in a background of other organisms. Bacterial cells contain RNA polymerases and transcription factors that transcribe genes into mRNA for translation into proteins. RNA polymerases in conjunction with transcription factors recognize regulatory elements (promoters) upstream of the gene. These promoters are, in many cases, recognized by the polymerase and transcription factor combinations of one species only. We have engineered a plasmid, for Escherichia coli, containing the virA promoter from the target species Shigella flexneri. This promoter was fused to a reporter gene Green Fluorescent Protein (GFP). In theory the indicator strain (carrying the plasmid) is mixed with the target strain and the two are lysed. The cellular machinery from both cells mixes and the GFP is produced. This report details the results of testing this system.

  20. COPA and SLC4A4 are required for cellular entry of arginine-rich peptides.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Tsumuraya

    Full Text Available Cell-penetrating peptides (CPPs have gained attention as promising tools to enable the delivery of various molecules in a non-invasive manner. Among the CPPs, TAT and poly-arginine have been extensively utilized in numerous studies for the delivery of functional proteins, peptides, and macromolecules to analyze cellular signaling. However, the molecular mechanisms of cellular entry remain largely unknown. Here, we applied siRNA library screening to identify the regulatory genes for the cellular entry of poly-arginine peptide based on microscopic observation of the entry of fluorescent peptides in siRNA-treated cells. In this screening, we identified the cell membrane gene SLC4A4 and the trafficking regulator gene COPA, which also plays an important role in early endosome maturation. These results demonstrated that cellular entry of poly-arginine requires at least two different steps, probably binding on the cell surface and endosomal entry. The identification of genes for cellular entry of poly-arginine provides insights into its mechanisms and should further aid in the development of highly efficient cell-penetrating peptides.

  1. A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export.

    Science.gov (United States)

    Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen; Du, Yushen; Xie, Yafang; Lee, Kevin K; Feng, Jun; Farhat, Nisar; Zhao, Dawei; Shu, Sara; Dai, Xinghong; Chanda, Sumit K; Rana, Tariq M; Krogan, Nevan J; Sun, Ren; Wu, Ting-Ting

    2016-11-09

    Nuclear mRNA export is highly regulated to ensure accurate cellular gene expression. Viral inhibition of cellular mRNA export can enhance viral access to the cellular translation machinery and prevent anti-viral protein production but is generally thought to be nonselective. We report that ORF10 of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. Nuclear export inhibition by ORF10 requires an interaction with an RNA export factor, Rae1. Genome-wide analysis reveals a subset of cellular mRNAs whose nuclear export is blocked by ORF10 with the 3' UTRs of ORF10-targeted transcripts conferring sensitivity to export inhibition. The ORF10-Rae1 interaction is important for the virus to express viral genes and produce infectious virions. These results suggest that a nuclear DNA virus can selectively interfere with RNA export to restrict host gene expression for optimal replication. Published by Elsevier Inc.

  2. Representing and analysing molecular and cellular function using the computer.

    Science.gov (United States)

    van Helden, J; Naim, A; Mancuso, R; Eldridge, M; Wernisch, L; Gilbert, D; Wodak, S J

    2000-01-01

    Determining the biological function of a myriad of genes, and understanding how they interact to yield a living cell, is the major challenge of the post genome-sequencing era. The complexity of biological systems is such that this cannot be envisaged without the help of powerful computer systems capable of representing and analysing the intricate networks of physical and functional interactions between the different cellular components. In this review we try to provide the reader with an appreciation of where we stand in this regard. We discuss some of the inherent problems in describing the different facets of biological function, give an overview of how information on function is currently represented in the major biological databases, and describe different systems for organising and categorising the functions of gene products. In a second part, we present a new general data model, currently under development, which describes information on molecular function and cellular processes in a rigorous manner. The model is capable of representing a large variety of biochemical processes, including metabolic pathways, regulation of gene expression and signal transduction. It also incorporates taxonomies for categorising molecular entities, interactions and processes, and it offers means of viewing the information at different levels of resolution, and dealing with incomplete knowledge. The data model has been implemented in the database on protein function and cellular processes 'aMAZE' (http://www.ebi.ac.uk/research/pfbp/), which presently covers metabolic pathways and their regulation. Several tools for querying, displaying, and performing analyses on such pathways are briefly described in order to illustrate the practical applications enabled by the model.

  3. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  4. Cellular Players in the Herpes Simplex Virus Dependent Apoptosis Balancing Act

    Directory of Open Access Journals (Sweden)

    John A. Blaho

    2009-11-01

    Full Text Available Apoptosis is triggered as an intrinsic defense against numerous viral infections. Almost every virus encodes apoptotic modulators, and the herpes simplex viruses (HSV are no exception. During HSV infection, there is an intricate balance between pro- and anti-apoptotic factors that delays apoptotic death until the virus has replicated. Perturbations in the apoptotic balance can cause premature cell death and have the potential to dramatically alter the outcome of infection. Recently, certain cellular genes have been shown to regulate sensitivity to HSV-dependent apoptosis. This review summarizes current knowledge of the cellular genes that impact the apoptotic balance during HSV infection.

  5. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins.

    Science.gov (United States)

    Ringrose, Leonie; Paro, Renato

    2004-01-01

    During the development of multicellular organisms, cells become different from one another by changing their genetic program in response to transient stimuli. Long after the stimulus is gone, "cellular memory" mechanisms enable cells to remember their chosen fate over many cell divisions. The Polycomb and Trithorax groups of proteins, respectively, work to maintain repressed or active transcription states of developmentally important genes through many rounds of cell division. Here we review current ideas on the protein and DNA components of this transcriptional memory system and how they interact dynamically with each other to orchestrate cellular memory for several hundred genes.

  6. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  7. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

    Science.gov (United States)

    Bishop, Corey J; Kim, Jayoung; Green, Jordan J

    2014-07-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.

  8. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  9. LMS filters for cellular CDMA overlay

    OpenAIRE

    1996-01-01

    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular CDMA overlay situations. In this paper, an adaptive LMS filter is applied to cellular CDMA overlay situations in order to reject narrowband interference.

  10. From Cnn Dynamics to Cellular Wave Computers

    Science.gov (United States)

    Roska, Tamas

    2013-01-01

    Embedded in a historical overview, the development of the Cellular Wave Computing paradigm is presented, starting from the standard CNN dynamics. The theoretical aspects, the physical implementation, the innovation process, as well as the biological relevance are discussed in details. Finally, the latest developments, the physical versus virtual cellular machines, as well as some open questions are presented.

  11. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    P K Arora; A Haleem; M K Singh

    2013-06-01

    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  12. Cellular encoding for interactive evolutionary robotics

    NARCIS (Netherlands)

    Gruau, F.C.; Quatramaran, K.

    1996-01-01

    This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar experiments ha

  13. The mammary cellular hierarchy and breast cancer.

    Science.gov (United States)

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  14. Interworking of wireless lans and cellular networks

    CERN Document Server

    Song, Wei

    2014-01-01

    The next-generation of wireless communications are envisioned to be supported by heterogeneous networks by using various wireless access technologies. The popular cellular networks and wireless local area networks (WLANs) present perfectly complementary characteristics in terms of service capacity, mobility support, and quality-of-service (QoS) provisioning. The cellular/WLAN interworking is an effective way to promote the evolution of wireless networks. Interworking of Wireless LANs and Cellular Networks focuses on three aspects, namely access selection, call admission control and load sharing to investigate heterogeneous interworking for cellular/WLAN integrated networks. It not only reveals important observations but also offers useful tools for performance evaluation. The unique traffic and network characteristics are exploited to enhance interworking effectiveness. Theoretical analysis and simulation validation demonstrate benefits of cellular/WLAN interworking in real networks. Last but not the least,...

  15. The Universe as a Cellular System

    CERN Document Server

    Aragón-Calvo, Miguel A

    2014-01-01

    Cellular systems are observed everywhere in nature, from crystal domains in metals, soap froth and cucumber cells to the network of cosmological voids. Surprisingly, despite their disparate scale and origin all cellular systems follow certain scaling laws relating their geometry, topology and dynamics. Using a cosmological N-body simulation we found that the Cosmic Web, the largest known cellular system, follows the same scaling relations seen elsewhere in nature. Our results extend the validity of scaling relations in cellular systems by over 30 orders of magnitude in scale with respect to previous studies. The dynamics of cellular systems can be used to interpret local observations such as the local velocity anomaly as the result of a collapsing void in our cosmic backyard. Moreover, scaling relations depend on the curvature of space, providing an independent measure of geometry.

  16. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  17. 人E1A激活基因阻遏子的表达、抗体制备及生物学活性分析%Expression,antibody production and bioactivity detection of cellular repressor of E1A-stimulated gene

    Institute of Scientific and Technical Information of China (English)

    韩雅玲; 刘海伟; 闫承慧; 康建; 王效增; 胡叶

    2005-01-01

    目的: 构建人E1A激活基因阻遏子(human cellular repressor of E1A-stimulated gene,hCREG)基因的原核表达载体,纯化重组的hCREG融合蛋白并制备兔抗hCREG抗体.探讨hCREG蛋白在人血管平滑肌细胞克隆株(HITASY)中的表达、定位.方法:用PCR技术,扩增hCREG并构建pGEX-4T-1/hCREG原核表达载体.诱导表达重组谷胱甘肽巯基转移酶(glutathioneS-transferase,GST)-hCREG融合蛋白.以GST-hCREG为抗原,制备兔抗人GST-hCREG的抗血清,并通过蛋白A和GST亲和层析纯化.用ELISA和Western blot法检测抗体的效价和特异性;用免疫荧光染色法检查去血清培养前后HITASY细胞中hCREG蛋白的表达及定位;用BrdU染色观察分泌型hCREG蛋白对HITASY细胞增殖的影响.结果:经鉴定证实构建的重组质粒正确.诱导后pGEX-4T-1/hCREG菌株可表达大量的GST-hCREG融合蛋白,层析纯化后其纯度达90%.Western blot检测表明,纯化的兔抗hCREG抗体可与hCREG蛋白特异性结合.ELISA测得该抗体的效价>1∶105.免疫荧光染色检测显示,去血清培养诱导的HITASY细胞中hCREG蛋白的表达增加且定位在核周围.BrdU染色表明,hCREG可明显抑制HITASY细胞增殖.结论:成功地获得兔抗hCREG抗体.证实去血清培养的血管平滑肌细胞中CREG蛋白的表达上调.表达的hCREG蛋白可抑制HITASY细胞增殖,提示hCREG可能参与调控血管平滑肌细胞的增殖与分化.

  18. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss.

    Science.gov (United States)

    Park, Joohong; Halliday, Gary M; Surjana, Devita; Damian, Diona L

    2010-01-01

    UV radiation is carcinogenic by causing mutations in the skin and also by suppressing cutaneous antitumor immunity. We previously found nicotinamide (vitamin B3) to be highly effective at reducing UV-induced immunosuppression in human volunteers, with microarray studies on in vivo irradiated human skin suggesting that nicotinamide normalizes subsets of apoptosis, immune function and energy metabolism-related genes that are downregulated by UV exposure. Using human adult low calcium temperature keratinocytes, we further investigated nicotinamide's effects on cellular energy metabolism. We found that nicotinamide prevented UV-induced cellular ATP loss and protected against UV-induced glycolytic blockade. To determine whether nicotinamide alters the effects of UV-induced oxidative stress posttranslationally, we also measured UV-induced reactive oxygen species (ROS). Nicotinamide had no effect on ROS formation, and at the low UV doses used in these studies, equivalent to ambient daily sun exposure, there was no evidence of apoptosis. Hence, nicotinamide appears to exert its UV protective effects on the skin via its role in cellular energy pathways.

  19. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis

    Science.gov (United States)

    2017-01-01

    Copper sulfate-induced premature senescence (CuSO4-SIPS) consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan. PMID:28280523

  20. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis

    Directory of Open Access Journals (Sweden)

    Liliana Matos

    2017-01-01

    Full Text Available Copper sulfate-induced premature senescence (CuSO4-SIPS consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan.

  1. Global functional analyses of cellular responses to pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Kao

    2011-03-01

    Full Text Available Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs. PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK pathways, one (p38 studied in detail and the other (JNK not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  2. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Science.gov (United States)

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  3. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour.

    Science.gov (United States)

    Fokkelman, Michiel; Balcıoğlu, Hayri E; Klip, Janna E; Yan, Kuan; Verbeek, Fons J; Danen, Erik H J; van de Water, Bob

    2016-08-17

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour.

  4. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    Directory of Open Access Journals (Sweden)

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  5. Cellular reprogramming in skin cancer.

    Science.gov (United States)

    Song, Ihn Young; Balmain, Allan

    2015-06-01

    Early primitive stem cells have long been viewed as the cancer cells of origin (tumor initiating target cells) due to their intrinsic features of self-renewal and longevity. However, emerging evidence suggests a surprising capacity for normal committed cells to function as reserve stem cells upon reprogramming as a consequence of tissue damage resulting in inflammation and wound healing. This results in an alternative concept positing that tumors may originate from differentiated cells that can re-acquire stem cell properties due to genetic or epigenetic reprogramming. It is likely that both models are correct, and that a continuum of potential cells of origin exists, ranging from early primitive stem cells to committed progenitor or even terminally differentiated cells. A combination of the nature of the target cell and the specific types of gene mutations introduced determine tumor cell lineage, as well as potential for malignant conversion. Evidence from mouse skin models of carcinogenesis suggests that initiated cells at different stages within a stem cell hierarchy have varying degrees of requirement for reprogramming (e.g. inflammation stimuli), depending on their degree of differentiation. This article will present evidence in favor of these concepts that has been developed from studies of several mouse models of skin carcinogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Apoptosis: cellular and clinical aspects].

    Science.gov (United States)

    Løvschall, H; Mosekilde, L

    1997-04-01

    Removal of damaged cells is essential for the maintenance of life in multicellular organisms. The process of self destruction, apoptosis, eliminates surplus or damaged cells as part of the pathophysiological defence system. Apoptosis is essential in structural and functional organogenesis during embryological development. The physiological regulation of tissue kinetics is a product of both cell proliferation and cell death. Internal and external regulatory stimuli regulate the balance between apoptosis and mitosis by genetic interaction. Apoptosis is characterized by condensation of chromatine as a result of DNA degradation, formation of blebs in the plasma and nuclear membranes, condensation of cytoplasma, formation of vesicular apoptotic bodies, and phagocytosis by neighbouring cells without inflammatory response. A number of observations indicate that programmed cell death plays an important role in the regulation of cytofunctional homeostasis and defense against accumulation of damaged cells, eg with DNA alterations. Dysregulation of the apoptotic gene program, eg by mutations, may not only lead to loss or degeneration of tissue, but also to hyperproliferative and tumorigenic disorders. New evidence indicates that apoptosis regulation is important both in aging processes and diseases such as: neuropathies, immunopathies, viral infections, cancer, etc. Pharmacological intervention designed to modulate apoptosis seems to raise new possibilities in the treatment of disease.

  7. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning

    Directory of Open Access Journals (Sweden)

    Tsatsoulis Costas

    2010-05-01

    Full Text Available Abstract Background There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. Results We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80 of the classification rules produced. Conclusions We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes.

  8. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning.

    Science.gov (United States)

    Amthauer, Heather A; Tsatsoulis, Costas

    2010-05-28

    There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80) of the classification rules produced. We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes.

  9. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  10. Cellular Factors Required for Lassa Virus Budding

    OpenAIRE

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro

    2006-01-01

    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicula...

  11. Cryptographic primitives based on cellular transformations

    Directory of Open Access Journals (Sweden)

    B.V. Izotov

    2003-11-01

    Full Text Available Design of cryptographic primitives based on the concept of cellular automata (CA is likely to be a promising trend in cryptography. In this paper, the improved method performing data transformations by using invertible cyclic CAs (CCA is considered. Besides, the cellular operations (CO as a novel CAs application in the block ciphers are introduced. Proposed CCAs and COs, integrated under the name of cellular transformations (CT, suit well to be used in cryptographic algorithms oriented to fast software and cheap hardware implementation.

  12. Cellular Cell Bifurcation of Cylindrical Detonations

    Institute of Scientific and Technical Information of China (English)

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan

    2008-01-01

    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  13. Optimal Band Allocation for Cognitive Cellular Networks

    CERN Document Server

    Liu, Tingting

    2011-01-01

    FCC new regulation for cognitive use of the TV white space spectrum provides a new means for improving traditional cellular network performance. But it also introduces a number of technical challenges. This letter studies one of the challenges, that is, given the significant differences in the propagation property and the transmit power limitations between the cellular band and the TV white space, how to jointly utilize both bands such that the benefit from the TV white space for improving cellular network performance is maximized. Both analytical and simulation results are provided.

  14. On-Chip Detection of Cellular Activity

    Science.gov (United States)

    Almog, R.; Daniel, R.; Vernick, S.; Ron, A.; Ben-Yoav, H.; Shacham-Diamand, Y.

    The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring devices. In this chapter we survey different on-chip cellular activity detection technologies based on electrochemical, bio-impedance and optical detection. Both prokaryotic and eukaryotic cell-on-chip technologies are mentioned and reviewed.

  15. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  16. Glaucoma Genes and Mechanisms.

    Science.gov (United States)

    Wiggs, Janey L

    2015-01-01

    Genetic studies have yielded important genes contributing to both early-onset and adult-onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate in a broad range of cellular processes and biological systems. Approximately half the glaucoma-related genes function in the extracellular matrix, however proteins involved in cytokine signaling, lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular development also contribute to the disease pathogenesis. While the function of these proteins in health and disease are not completely understood, recent studies are providing insight into underlying disease mechanisms, a critical step toward the development of gene-based therapies. In this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are organized according to the cell processes or biological systems that are impacted by the function of the disease-related protein product.

  17. Cellular reprogramming for understanding and treating human disease.

    Directory of Open Access Journals (Sweden)

    Riya Rajan Kanherkar

    2014-11-01

    Full Text Available In the last two decades we have witnessed a paradigm shift in our understanding of cells so radical that it has rewritten the rules of biology. The study of cellular reprogramming has gone from little more than a hypothesis, to applied bioengineering, with the creation of a variety of important cell types. By way of metaphor, we can compare the discovery of reprogramming with the archaeological discovery of the Rosetta stone. This stone slab made possible the initial decipherment of Egyptian hieroglyphics because it allowed us to see this language in a way that was previously impossible. We propose that cellular reprogramming will have an equally profound impact on understanding and curing human disease, because it allows us to perceive and study molecular biological processes such as differentiation, epigenetics, and chromatin in ways that were likewise previously impossible. Stem cells could be called cellular Rosetta stones because they allow also us to perceive the connections between development, disease, cancer, aging, and regeneration in novel ways. Here we present a comprehensive historical review of stem cells and cellular reprogramming, and illustrate the developing synergy between many previously unconnected fields. We show how stem cells can be used to create in vitro models of human disease and provide examples of how reprogramming is being used to study and treat such diverse diseases as cancer, aging and accelerated aging syndromes, infectious diseases such as AIDS, and epigenetic diseases such as polycystic ovary syndrome. While the technology of reprogramming is being developed and refined there have also been significant ongoing developments in other complementary technologies such as gene editing, progenitor cell production, and tissue engineering. These technologies are the foundations of what is becoming a fully-functional field of regenerative medicine and are converging to a point that will allow us to treat almost any

  18. In vivo cellular imaging with microscopes enabled by MEMS scanners

    Science.gov (United States)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  19. The ING tumor suppressors in cellular senescence and chromatin.

    Science.gov (United States)

    Ludwig, Susann; Klitzsch, Alexandra; Baniahmad, Aria

    2011-07-18

    The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin.A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis.Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.

  20. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    Science.gov (United States)

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  1. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    Science.gov (United States)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  2. Implications of TGFβ on transcriptome and cellular biofunctions of palatal mesenchyme

    Directory of Open Access Journals (Sweden)

    Xiujuan eZhu

    2012-04-01

    Full Text Available Development of the palate comprises sequential stages of growth, elevation and fusion of the palatal shelves. The mesenchymal component of palates plays a major role in early phases of palatogenesis, such as growth and elevation. Failure in these steps may result in cleft palate, the second most common birth defect in the world. These early stages of palatogenesis require precise and chronological orchestration of key physiological processes, such as growth, proliferation, differentiation, migration, and apoptosis. There is compelling evidence for the vital role of TGFβ-mediated regulation of palate development. We hypothesized that the isoforms of TGFβ regulate different cellular biofunctions of the palatal mesenchyme to various extents. Human embryonic palatal mesenchyme (HEPM cells were treated with TGFβ1, β2, and β3 for microarray-based gene expression studies in order to identify the roles of TGFβ in the transcriptome of the palatal mesenchyme. Following normalization and modeling of 28,869 human genes, 566 transcripts were detected as differentially expressed in TGFβ-treated HEPM cells. Out of these altered transcripts, 234 of them were clustered in cellular biofunctions, including growth and proliferation, development, morphology, movement, cell cycle, and apoptosis. Biological interpretation and network analysis of the genes active in cellular biofunctions were performed using IPA. Among the differentially expressed genes, 11 of them were previously identified as being crucial for palatogenesis (EDN1, INHBA, LHX8, PDGFC, PIGA, RUNX1, SNAI1, SMAD3, TGFβ1, TGFβ2, and TGFβR1. These genes were used for a merged interaction network with cellular behaviors. Overall, we have determined that more than 2% of human transcripts were differentially expressed in response to TGFβ treatment in HEPM cells. Our results suggest that both TGFβ1 and TGFβ2 orchestrate major cellular biofunctions within the palatal mesenchyme in vitro by

  3. Cellular development of the human cochlea and the regenerative potential of hair follicle bulge stem cells

    OpenAIRE

    2015-01-01

    The embryonic development of the human cochlea (the organ of hearing) has been investigated for over one hundred years. However, little is still known about the development on a cellular and protein level, which is important to better understand etiologies and pathologies of various types of sensorineural hearing loss. Knowledge of the normal gene expression patterns and cell fate specification in the human cochlea has therefore the potential to aid in the development of gene and cell-based t...

  4. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles.

    Science.gov (United States)

    Song, Sarah; Nones, Katia; Miller, David; Harliwong, Ivon; Kassahn, Karin S; Pinese, Mark; Pajic, Marina; Gill, Anthony J; Johns, Amber L; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Newell, Felicity; Cowley, Mark J; Wu, Jianmin; Wilson, Peter; Fink, Lynn; Biankin, Andrew V; Waddell, Nic; Grimmond, Sean M; Pearson, John V

    2012-01-01

    Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 ([Formula: see text]-value=0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 ([Formula: see text]-value [Formula: see text] 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 ([Formula: see text]-value=0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.

  5. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles.

    Directory of Open Access Journals (Sweden)

    Sarah Song

    Full Text Available Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 ([Formula: see text]-value=0.0001 between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 ([Formula: see text]-value [Formula: see text] 2.2e-16 between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 ([Formula: see text]-value=0.004 between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.

  6. A Matrix Construction of Cellular Algebras

    Institute of Scientific and Technical Information of China (English)

    Dajing Xiang

    2005-01-01

    In this paper, we give a concrete method to construct cellular algebras from matrix algebras by specifying certain fixed matrices for the data of inflations. In particular,orthogonal matrices can be chosen for such data.

  7. Densities and entropies in cellular automata

    CERN Document Server

    Guillon, Pierre

    2012-01-01

    Following work by Hochman and Meyerovitch on multidimensional SFT, we give computability-theoretic characterizations of the real numbers that can appear as the topological entropies of one-dimensional and two-dimensional cellular automata.

  8. Probing Cellular Dynamics with Mesoscopic Simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Cellular processes span a huge range of length and time scales from the molecular to the near-macroscopic. Understanding how effects on one scale influence, and are themselves influenced by, those on lower and higher scales is a critical issue for the construction of models in Systems Biology....... Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...

  9. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular......; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates......, including the prototypic asymptomatic bacteriuria strain, 83972, formed highly elaborate cellular chains during biofilm growth in human urine. Combined, these results illustrate the diversity of biofilm architectures that can be observed even within a single microbial species....

  10. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies has developed, produced and tested, as part of the Phase-I SBIR, a new form of composite cellular core material, named Interply Core,...

  11. Mapping crime scenes and cellular telephone usage

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2000-12-01

    Full Text Available This paper describes a method that uses a desktop geographical information system (GIS) to plot cellular telephone conversations made when crimes are committed, such as hijackings, hostage taking, kidnapping, rape and murder. The maps produced...

  12. Cellular Defect May Be Linked to Parkinson's

    Science.gov (United States)

    ... 160862.html Cellular Defect May Be Linked to Parkinson's: Study Abnormality might apply to all forms of ... that may be common to all forms of Parkinson's disease. The defect plays a major role in ...

  13. Integration of Mobil Satellite and Cellular Systems

    Science.gov (United States)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  14. Cellular Automaton Modeling of Pattern Formation

    NARCIS (Netherlands)

    Boerlijst, M.C.

    2006-01-01

    Book review Andreas Deutsch and Sabine Dormann, Cellular Automaton Modeling of Biological Pattern Formation, Characterization, Applications, and Analysis, Birkhäuser (2005) ISBN 0-8176-4281-1 331pp..

  15. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase

    NARCIS (Netherlands)

    Buganim, Y.; Faddah, D.A.; Cheng, A.W.; Itskovich, E.; Markoulaki, S.; Ganz, K.; Klemm, S.L.; van Oudenaarden, A.; Jaenisch, R.

    2012-01-01

    During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene

  16. Identification of cellular targets for the human papillomavirus E6 and E7 oncogenes by RNA interference and transcriptome analyses.

    Science.gov (United States)

    Kuner, Ruprecht; Vogt, Markus; Sultmann, Holger; Buness, Andreas; Dymalla, Susanne; Bulkescher, Julia; Fellmann, Mark; Butz, Karin; Poustka, Annemarie; Hoppe-Seyler, Felix

    2007-11-01

    Specific types of human papillomaviruses (HPVs) cause cervical cancer, the second most common tumor in women worldwide. Both cellular transformation and the maintenance of the oncogenic phenotype of HPV-positive tumor cells are linked to the expression of the viral E6 and E7 oncogenes. To identify downstream cellular target genes for the viral oncogenes, we silenced endogenous E6 and E7 expression in HPV-positive HeLa cells by RNA interference (RNAi). Subsequently, we assessed changes of the cellular transcriptome by genome-wide microarray analysis. We identified 648 genes, which were either downregulated (360 genes) or upregulated (288 genes), upon inhibition of E6/E7 expression. A large fraction of these genes is involved in tumor-relevant processes, such as apoptosis control, cell cycle regulation, or spindle formation. Others may represent novel cellular targets for the HPV oncogenes, such as a large group of C-MYC-associated genes involved in RNA processing and splicing. Comparison with published microarray data revealed a substantial concordance between the genes repressed by RNAi-mediated E6/E7 silencing in HeLa cells and genes reported to be upregulated in HPV-positive cervical cancer biopsies.

  17. On the Behavior Characteristics of Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-cai; ZHANG Jiang-ling; FENG Dan

    2005-01-01

    In this paper, the inherent relationships between the running regulations and behavior characteristics of cellular automata are presented; an imprecise taxonomy of such systems is put forward; the three extreme cases of stable systems are discussed; and the illogicalness of evolutional strategies of cellular automata is analyzed. The result is suitable for the emulation and prediction of behavior of discrete dynamics systems; especially it can be taken as an important analysis means of dynamic performance of complex networks.

  18. A transcriptional program mediating entry into cellular quiescence.

    Directory of Open Access Journals (Sweden)

    Helen Liu

    2007-06-01

    Full Text Available The balance of quiescence and cell division is critical for tissue homeostasis and organismal health. Serum stimulation of fibroblasts is well studied as a classic model of entry into the cell division cycle, but the induction of cellular quiescence, such as by serum deprivation (SD, is much less understood. Here we show that SS and SD activate distinct early transcriptional responses genome-wide that converge on a late symmetric transcriptional program. Several serum deprivation early response genes (SDERGs, including the putative tumor suppressor genes SALL2 and MXI1, are required for cessation of DNA synthesis in response to SD and induction of additional SD genes. SDERGs are coordinately repressed in many types of human cancers compared to their normal counterparts, and repression of SDERGs predicts increased risk of cancer progression and death in human breast cancers. These results identify a gene expression program uniquely responsive to loss of growth factor signaling; members of SDERGs may constitute novel growth inhibitors that prevent cancer.

  19. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian;

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600...

  20. Polymersomes containing quantum dots for cellular imaging

    Directory of Open Access Journals (Sweden)

    Camblin M

    2014-05-01

    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  1. Effects of MicroRNA-153 on the Expression of Its Target Gene Downstream Signaling Molecule GSK-3β and on the Cellular Anti-Injury Ability%MicroRNA-153对靶基因下游信号分子GSK-3β表达水平及细胞抗损伤能力的影响

    Institute of Scientific and Technical Information of China (English)

    梁春联; 朱华; 黄澜; 许艳峰; 邓巍; 马春梅; 刘颖; 秦川

    2011-01-01

    Objective Mir-153 can negatively regulate the expression of APP and APLP2 protein, the crucial Alzheimer' s disease related genes, and consequently lower the level of their intracellular degradation fragment (intracellular domains, ICDs). Considering the transcriptional activity and pro-apoptotic role of ICDs, the aim of this study was to explore the effect of mir-153 on the expression of GSK-3β, the downstream signaling molecule of the two target genes, and on the ability of cells against damage stress to further identify the role of mir-153 in Alzheimer' s disease.Methods A stably transfected cell line over-expressing mir-153 was developed and mir-153 transgenic mice were generated. Western blot was used to detect the expression of phosphorylated GSK-3β, Tau and their total protein in the cells and mice. The mir-153 stably transfected cells were treated with Aβ42peptide and H202. respectively, to determine the changes of cell viability by MTS and analyze the cell apoptosis by flow cytometry. Results The expression of phosphorylated GSK-3β and it's total protein were decreased and the phosphorylation of Tau was reduced in the mir-153 stably transfected cells. The expression of phosphorylated GSK-3β and it' s total protein were down-regulated and the level of phosphorylated Tau and its total protein were not significantly changed in the brain of mir-153 transgenic mice. Under the treatment of Aβ42 peptide and H2O2, the viability of mir-153 stably transfected cells were clearly decreased and the apoptosis level of the cells was increased. Conclusion Mir-153 can negatively regulate the expression of GSK-3β, the downstream signaling molecule of its target genes. Over-expressed mir-153 lowers the cellular anti-injury ability.%目的 mir-153可负调控阿尔茨海默病(Alzheimer'S disease,AD)主要致病基因APP及APLP2的蛋白表达,降低其胞内降解片段(intracellular domains,ICDs)的生成.因ICDs具有转录活化及促凋亡

  2. A Computational model for compressed sensing RNAi cellular screening

    Science.gov (United States)

    2012-01-01

    Background RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. Results In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs a unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. Conclusions This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening experiments which

  3. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  4. Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Darla

    2014-01-01

    Full Text Available In the modern manufacturing environment, Cellular Manufacturing Systems (CMS have gained greater importance in job shop or batch-type production to gain economic advantage similar to those of mass production. Successful implementation of CMS highly depends on the determination of part families; machine cells and minimizing inter cellular movement. This study considers machine component grouping problems namely inter-cellular movement and cell load variation by developing a mathematical model and optimizing the solution using Genetic Algorithm to arrive at a cell formation to minimize the inter-cellular movement and cell load variation. The results are presented with a numerical example.

  5. Epigenetics: beyond genes

    CSIR Research Space (South Africa)

    Fossey, A

    2009-06-01

    Full Text Available to neighbouring euchromatic genes, known as position effect variegation and can be transmitted through mitosis, forming the basis of epigenetic inheritance from one cell generation to another; creating cellular memory (Brzeski and Jerzmanowski, 2004... life form, supports meiosis that produces haploid male and female spores and initiates the gametophytic generation. Gametogenesis and subsequent fertilisation take place when gametophytic and sporophytic structures interact. The product...

  6. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  7. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  8. A general strategy for cellular reprogramming: the importance of transcription factor cross-repression.

    Science.gov (United States)

    Crespo, Isaac; Del Sol, Antonio

    2013-10-01

    Transcription factor cross-repression is an important concept in cellular differentiation. A bistable toggle switch constitutes a molecular mechanism that determines cellular commitment and provides stability to transcriptional programs of binary cell fate choices. Experiments support that perturbations of these toggle switches can interconvert these binary cell fate choices, suggesting potential reprogramming strategies. However, more complex types of cellular transitions could involve perturbations of combinations of different types of multistable motifs. Here, we introduce a method that generalizes the concept of transcription factor cross-repression to systematically predict sets of genes, whose perturbations induce cellular transitions between any given pair of cell types. Furthermore, to our knowledge, this is the first method that systematically makes these predictions without prior knowledge of potential candidate genes and pathways involved, providing guidance on systems where little is known. Given the increasing interest of cellular reprogramming in medicine and basic research, our method represents a useful computational methodology to assist researchers in the field in designing experimental strategies.

  9. T cell immunity as a tool for studying epigenetic regulation of cellular differentiation

    Directory of Open Access Journals (Sweden)

    Brendan Edward Russ

    2013-11-01

    Full Text Available Cellular differentiation is regulated by the strict spatial and temporal control of gene expression. This is achieved, in part, by regulating changes in histone post-translational modifications (PTMs and DNA methylation that in-turn, impact transcriptional activity. Further, histone PTMs and DNA methylation are often propagated faithfully at cell division (termed epigenetic propagation, and thus contribute to maintaining cellular identity in the absence of signals driving differentiation. Cardinal features of adaptive T cell immunity include the ability to differentiate in response to infection, resulting in acquisition of immune functions required for pathogen clearance; and the ability to maintain this functional capacity in the long-term, allowing more rapid and effective pathogen elimination following re-infection. These characteristics underpin vaccination strategies by effectively establishing a long-lived T cell population that contributes to an immunologically protective state (termed immunological memory. As we discuss in this review, epigenetic mechanisms provide attractive and powerful explanations for key aspects of T cell-mediated immunity - most obviously and notably, immunological memory, because of the capacity of epigenetic circuits to perpetuate cellular identities in the absence of the initial signals that drive differentiation. Indeed, T cell responses to infection are an ideal model system for studying how epigenetic factors shape cellular differentiation and development generally. This review will examine how epigenetic mechanisms regulate T cell function and differentiation, and how these model systems are providing general insights into the epigenetic regulation of gene transcription during cellular differentiation.

  10. Interaction of cellular-localized signature modules in response to prostate cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rapid progress in high-throughput biotechnologies (e. g. microarrays) and exponential accumulation of gene functional knowledge makes it promising for systematic understanding of complex human diseases at the functional modules level. Current modular categorizations can be defined and selected more specifically and precisely in terms of both biological processes and cellular locations, aiming at uncovering the modular molecular networks highly relevant to cancers. Based on Gene Ontology, we identifed the functional modules enriched with differentially expressed genes and characterized by biological processes and specific cellular locations. Then, according to the ranking of the disease discriminating abilities of the pre-selected functional modules, we further defined and filtered signature modules which have higher relevance to the cancer under study. Applications of the proposed method to the analysis of a prostate cancer dataset revealed insightful biological modules.

  11. Targeting cellular mRNAs translation by CRISPR-Cas9.

    Science.gov (United States)

    Liu, Yuchen; Chen, Zhicong; He, Anbang; Zhan, Yonghao; Li, Jianfa; Liu, Li; Wu, Hanwei; Zhuang, Chengle; Lin, Junhao; Zhang, Qiaoxia; Huang, Weiren

    2016-07-13

    Recently CRISPR-Cas9 system has been reported to be capable of targeting a viral RNA, and this phenomenon thus raises an interesting question of whether Cas9 can also influence translation of cellular mRNAs. Here, we show that both natural and catalytically dead Cas9 can repress mRNA translation of cellular genes, and that only the first 14 nt in the 5' end of sgRNA is essential for this process. CRISPR-Cas9 can suppress the protein expression of an unintended target gene without affecting its DNA sequence and causes unexpected phenotypic changes. Using the designed RNA aptamer-ligand complexes which physically obstruct translation machinery, we indicate that roadblock mechanism is responsible for this phenomenon. Our work suggests that studies on Cas9 should avoid the potential off-target effects by detecting the alteration of genes at both the DNA and protein levels.

  12. Cellular Signaling in Health and Disease

    CERN Document Server

    Beckerman, Martin

    2009-01-01

    In today’s world, three great classes of non-infectious diseases – the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders – have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular sign...

  13. Infrared image enhancement using Cellular Automata

    Science.gov (United States)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  14. Spin Echo Studies on Cellular Water

    CERN Document Server

    Chang, D C; Nichols, B L; Rorschach, H E

    2014-01-01

    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  15. Cellular biosensing: chemical and genetic approaches.

    Science.gov (United States)

    Haruyama, Tetsuya

    2006-05-24

    Biosensors have been developed to determine the concentration of specific compounds in situ. They are already widely employed as a practical technology in the clinical and healthcare fields. Recently, another concept of biosensing has been receiving attention: biosensing for the evaluation of molecular potency. The development of this novel concept has been supported by the development of related technologies, as such as molecular design, molecular biology (genetic engineering) and cellular/tissular engineering. This review is addresses this new concept of biosensing and its application to the evaluation of the potency of chemicals in biological systems, in the field of cellular/tissular engineering. Cellular biosensing may provide information on both pharmaceutical and chemical safety, and on drug efficacy in vitro as a screening tool.

  16. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    Science.gov (United States)

    Habibi, Meisam K.; Lu, Yang

    2014-07-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  17. Comparative cellular biogerontology: primer and prospectus.

    Science.gov (United States)

    Miller, Richard A; Williams, Joseph B; Kiklevich, J Veronika; Austad, Steve; Harper, James M

    2011-04-01

    Most prior work on the biological basis of aging has focused on describing differences between young and old individuals but provided only limited insight into the mechanisms controlling the rate of aging. Natural selection has produced a goldmine of experimental material, in the form of species of differing aging rate, whose longevity can vary by 10-fold or more within mammalian orders, but these resources remain largely unexplored at the cellular level. In this review article we focus on one approach to comparative biogerontology: the strategy of evaluating the properties of cultured cells from organisms of varying lifespan and aging rate. In addition, we discuss problems associated with the analysis and interpretations of interspecific variation of cellular trait data among species with disparate longevity. Given the impressive array of 'natural experiments' in aging rate, overcoming the technical and conceptual obstacles confronting research in comparative cellular gerontology will be well worth the effort. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Mesoporous silica nanoparticles inhibit cellular respiration.

    Science.gov (United States)

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  19. Software-Defined Cellular Mobile Network Solutions

    Institute of Scientific and Technical Information of China (English)

    Jiandong Li; Peng Liu; Hongyan Li

    2014-01-01

    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  20. Online isolation of defects in cellular nanocomputers

    Institute of Scientific and Technical Information of China (English)

    Teijiro Isokawa; Shin'ya Kowada; Ferdinand Peper; Naotake Kamiura; Nobuyuki Matsui

    2007-01-01

    Unreliability will be a major issue for computers built from components at nanometer scales.Thus,it's to be expected that such computers will need a high degree of defect-tolerance to overcome components' defects which have arisen during the process of manufacturing.This paper presents a novel approach to defect-tolerance that is especially geared towards nanocomputers based on asynchronous cellular automata.According to this approach,defective cells are detected and isolated by small configurations that move around randomly in cellular space.These configurations,called random flies,will attach to configurations that are static,which is typical for configurations that contain defective cells.On the other hand,dynamic configurations,like those that conduct computations,will not be isolated from the rest of the cellular space by the random flies,and will be able to continue their operations unaffectedly.