WorldWideScience

Sample records for gene promoter methylation

  1. Methylation of Gene CHFR Promoter in Acute Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    GONG Hui; LIU Wengli; ZHOU Jianfeng; XU Huizhen

    2005-01-01

    Summary: In order to explore whether gene CHFR was inactivated by methylation in leukemia cells, the expression of CHFR was examined before and after treatment with demethylation agent in Molt-4, Jurkat and U937 leukemia cell lines by means of RT-PCR. The methylation of promoter in Molt-4, Jurkat and U937 cells as well as 41 acute leukemia patients was analyzed by MS-PCR. The results showed that methylation of CHFR promoter was inactivated and could be reversed by treatment with a demethylating agent in Molt-4, Jurkat and U937. CHFR promoter methylation was detected in 39 % of acute leukemia patients. There was no difference in incidence of CHFR promoter methylation between acute myelocytic leukemia and acute lymphocytic leukemia. In conclusion, CHFR is frequently inactivated in acute leukemia and is a good candidate for the leukemia supper gene. By affecting mitotic checkpoint function, CHFR inactivation likely plays a key role in tumorigenesis in acute leukemia. Moreover, the methylation of gene CHFR appears to be a good index with which to predict the sensitivity of acute leukemia to microtubule inhibitors.

  2. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  3. Promoter methylation analysis of IDH genes in human gliomas

    Directory of Open Access Journals (Sweden)

    Simon eFlanagan

    2012-12-01

    Full Text Available Mutations in isocitrate dehydrogenase (IDH -1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132 or IDH2 (R172. But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a ‘toxic gain of function’ to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumour suppressor gene. As most, if not all, tumour suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumours, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumour suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumours, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumours examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumours. These findings do not support a tumour suppressor role for IDH genes in human gliomas.

  4. Silencing of CHD5 gene by promoter methylation in leukemia.

    Directory of Open Access Journals (Sweden)

    Rui Zhao

    Full Text Available Chromodomain helicase DNA binding protein 5 (CHD5 was previously proposed to function as a potent tumor suppressor by acting as a master regulator of a tumor-suppressive network. CHD5 is down-regulated in several cancers, including leukemia and is responsible for tumor generation and progression. However, the mechanism of CHD5 down-regulation in leukemia is largely unknown. In this study, quantitative reverse-transcriptase polymerase chain reaction and western blotting analyses revealed that CHD5 was down-regulated in human leukemia cell lines and samples. Luciferase reporter assays showed that most of the baseline regulatory activity was localized from 500 to 200 bp upstream of the transcription start site. Bisulfite DNA sequencing of the identified regulatory element revealed that the CHD5 promoter was hypermethylated in human leukemia cells and samples. Thus, CHD5 expression was inversely correlated with promoter DNA methylation in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC activates CHD5 expression in human leukemia cell lines. In vitro luciferase reporter assays demonstrated that methylation of the CHD5 promoter repressed its promoter activity. Furthermore, a chromatin immunoprecipitation assay combined with qualitative PCR identified activating protein 2 (AP2 as a potential transcription factor involved in CHD5 expression and indicated that treatment with DAC increases the recruitment of AP2 to the CHD5 promoter. In vitro transcription-factor activity studies showed that AP2 over-expression was able to activate CHD5 promoter activity. Our findings indicate that repression of CHD5 gene expression in human leukemia is mediated in part by DNA methylation of its promoter.

  5. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    Science.gov (United States)

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  6. DNA methylation of PTEN gene promoter region is not correlated ...

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... Key words: PTEN, promoter methylation, bladder cancer. INTRODUCTION ... al., 2005), pancreatic cancer (Asano et al., 2004), thyroid cancer (Frisk et al., ..... papillary mucinous neoplasms of the pancreas. J. Hepatobiliary.

  7. Gene promoter methylation patterns throughout the process of cervical carcinogenesis

    NARCIS (Netherlands)

    Yang, Nan; Nijhuis, Esther R.; Volders, Haukeline H.; Eijsink, Jasper J. H.; Lendvai, Agnes; Zhang, Bo; Hollema, Harry; Schuuring, Ed; Wisman, G. Bea A.; van der Zee, Ate G. J.

    2010-01-01

    Objectives: To determine methylation status of nine genes, previously described to be frequently methylated in cervical cancer, in squamous intraepithelial lesions (SIL). Methods: QMSP was performed in normal cervix, low-grade ( L) SIL, high-grade (H) SIL, adenocarcinomas and squamous cell cervical

  8. Gene promoter methylation patterns throughout the process of cervical carcinogenesis

    NARCIS (Netherlands)

    Yang, Nan; Nijhuis, Esther R.; Volders, Haukeline H.; Eijsink, Jasper J. H.; Lendvai, Agnes; Zhang, Bo; Hollema, Harry; Schuuring, Ed; Wisman, G. Bea A.; van der Zee, Ate G. J.

    2010-01-01

    Objectives: To determine methylation status of nine genes, previously described to be frequently methylated in cervical cancer, in squamous intraepithelial lesions (SIL). Methods: QMSP was performed in normal cervix, low-grade ( L) SIL, high-grade (H) SIL, adenocarcinomas and squamous cell cervical

  9. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

    Science.gov (United States)

    Vrba, Lukas; Muñoz-Rodríguez, José L; Stampfer, Martha R; Futscher, Bernard W

    2013-01-01

    miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.

  10. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    Science.gov (United States)

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  11. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    Directory of Open Access Journals (Sweden)

    Miyuki Uno

    2011-01-01

    Full Text Available OBJECTIVES: 1 To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT promoter to its gene and protein expression levels in glioblastoma and 2 to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001. However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297. The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing, and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue.

  12. Aberrant gene promoter methylation in sputum from individuals exposed to smoky coal emissions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Lan, Q.; Shen, M.; Jin, J.; Mumford, J.; Ren, D.X.; Keohavong, P. [University of Pittsburgh, Pittsburgh, PA (United States). Dept. of Environment and Occupational Health

    2008-07-15

    Recent studies suggested the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. Here, the promoter methylation of p16, MGMT, RASSF1A and DAPK genes was investigated in sputum of individuals exposed to smoky coal emissions in Xuan Wei, China, where the lung cancer rate is more than 6 times the Chinese national average. Sputum DNA of 107 noncancer individuals and 58 lung cancer patients was screened for promoter methylation using methylation-specific PCR. Promoter methylation of the p16 gene was detected in about half (51.4% (551107)) of sputum DNA from noncancer individuals, a frequency higher than that observed for the RASSF1A (29.9%), MGMT (17.8%) and DAPK (15.9%) genes. Furthermore, the p16 gene was affected by promoter methylation at a frequency even higher among the lung cancer group, compared with the noncancer group (70.7% (41/58) versus 51.7% (55/107), p=0.017). Individuals exposed to smoky coal emissions in this region harbored frequent promoter methylation of these genes in their sputum and some of such alterations may be involved in lung tumor development.

  13. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA).

    Science.gov (United States)

    Zhan, Leyun; Zhang, Bingyi; Tan, Yaojun; Yang, Chengliang; Huang, Chenhong; Wu, Qiongya; Zhang, Yulin; Chen, Xiaobo; Zhou, Mi; Shu, Aihua

    2017-02-01

    Methylation of the Ras-association domain family 1 isoform A (RASSF1A) gene promoter region is thought to participate in the initiation and development of many different cancers. However, in bladder cancer the role of RASSF1A methylation was unclear. To evaluate the relationship between RASSF1A methylation and bladder cancer, a quantitative assessment of an independent meta-analysis was performed. In addition, a DNA methylation microarray database from the cancer genome atlas (TCGA) project was used to validate the results of the meta-analysis. We searched published articles from computerized databases, and DNA methylation data were extracted from TCGA project. All data were analyzed by R software. The results of the meta-analysis indicated that the frequency of RASSF1A gene methylation in bladder cancer patients is significantly higher than in healthy controls. The hazard ratio (HR) was 2.24 (95% CI = [1.45; 3.48], P = 0.0003) for overall survival (OS), and the RASSF1A gene promoter methylation status was strongly associated with the TNM stage and differentiation grade of the tumor. The similar results were also found by the data from TCGA project. There was a significant relationship between the methylation of the RASSF1A gene promoter and bladder cancer. Therefore, RASSF1A gene promoter methylation will be a potential biomarker for the clinical diagnosis of bladder cancer.

  14. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA)

    Science.gov (United States)

    Zhan, Leyun; Zhang, Bingyi; Tan, Yaojun; Yang, Chengliang; Huang, Chenhong; Wu, Qiongya; Zhang, Yulin; Chen, Xiaobo; Zhou, Mi; Shu, Aihua

    2017-01-01

    Abstract Background: Methylation of the Ras-association domain family 1 isoform A (RASSF1A) gene promoter region is thought to participate in the initiation and development of many different cancers. However, in bladder cancer the role of RASSF1A methylation was unclear. To evaluate the relationship between RASSF1A methylation and bladder cancer, a quantitative assessment of an independent meta-analysis was performed. In addition, a DNA methylation microarray database from the cancer genome atlas (TCGA) project was used to validate the results of the meta-analysis. Methods: We searched published articles from computerized databases, and DNA methylation data were extracted from TCGA project. All data were analyzed by R software. Results: The results of the meta-analysis indicated that the frequency of RASSF1A gene methylation in bladder cancer patients is significantly higher than in healthy controls. The hazard ratio (HR) was 2.24 (95% CI = [1.45; 3.48], P = 0.0003) for overall survival (OS), and the RASSF1A gene promoter methylation status was strongly associated with the TNM stage and differentiation grade of the tumor. The similar results were also found by the data from TCGA project. Conclusion: There was a significant relationship between the methylation of the RASSF1A gene promoter and bladder cancer. Therefore, RASSF1A gene promoter methylation will be a potential biomarker for the clinical diagnosis of bladder cancer. PMID:28207521

  15. Promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A genes in cervical carcinoma.

    Science.gov (United States)

    Banzai, Chiaki; Nishino, Koji; Quan, Jinhua; Yoshihara, Kosuke; Sekine, Masayuki; Yahata, Tetsuro; Tanaka, Kenichi

    2014-02-01

    Aberrant DNA methylation contributes to the malignant phenotype in virtually all types of human cancer. This study explored the relationship between promoter methylation and inactivation of the DAPK1, FHIT, MGMT, and CDKN2A genes in cervical cancer. The promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A was investigated by using a methylation-specific polymerase chain reaction in 53 specimens of cervical cancer (42 squamous cell carcinoma, 11 adenocarcinoma), 22 specimens of intraepithelial neoplasia tissues, and 24 control normal cervical tissue specimens. The correlation of promoter methylation with the clinicopathological features of cervical cancer was analyzed. The expressions of DAPK1, FHIT, MGMT, and CDKN2A were detected by measuring relative mRNA levels. The promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A in cervical cancer vs. intraepithelial neoplasia vs. normal cervical tissue was 75.5 vs. 31.8 vs. 4.2 % (p promoter region significantly decreased the expression of only DAPK1 (p = 0.03). The methylation rate of the DAPK1 gene promoter was significantly higher in cervical cancer tissues than in cervical intraepithelial neoplasia and normal cervical tissues. Promoter methylation may therefore lead to the inactivation of the DAPK1 gene, and may be related to the progression of cervical oncogenesis.

  16. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma.

    Science.gov (United States)

    Brigliadori, Giovanni; Foca, Flavia; Dall'Agata, Monia; Rengucci, Claudia; Melegari, Elisabetta; Cerasoli, Serenella; Amadori, Dino; Calistri, Daniele; Faedi, Marina

    2016-06-01

    Despite advances in the treatment of glioblastoma (GBM), median survival is 12-15 months. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status is acknowledged as a predictive marker for temozolomide (TMZ) treatment. When MGMT promoter values fall into a "methylated" range, a better response to chemotherapy is expected. However, a cutoff that discriminates between "methylated" and "unmethylated" status has yet to be defined. We aimed to identify the best cutoff value and to find out whether variability in methylation profiles influences the predictive capacity of MGMT promoter methylation. Data from 105 GBM patients treated between 2008 and 2013 were analyzed. MGMT promoter methylation status was determined by analyzing 10 CpG islands by pyrosequencing. Patients were treated with radiotherapy followed by TMZ. MGMT promoter methylation status was classified into unmethylated 0-9 %, methylated 10-29 % and methylated 30-100 %. Statistical analysis showed that an assumed methylation cutoff of 9 % led to an overestimation of responders. All patients in the 10-29 % methylation group relapsed before the 18-month evaluation. Patients with a methylation status ≥30 % showed a median overall survival of 25.2 months compared to 15.2 months in all other patients, confirming this value as the best methylation cutoff. Despite wide variability among individual profiles, single CpG island analysis did not reveal any correlation between single CpG island methylation values and relapse or death. Specific CpG island methylation status did not influence the predictive value of MGMT. The predictive role of MGMT promoter methylation was maintained only with a cutoff value ≥30 %.

  17. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    Directory of Open Access Journals (Sweden)

    Catia Pilon

    2015-01-01

    Full Text Available We previously showed a decreased expression of vitamin D receptor (VDR mRNA/protein in a small group of adrenocortical carcinoma (ACC tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis.

  18. Aberrant CBFA2T3B gene promoter methylation in breast tumors

    Directory of Open Access Journals (Sweden)

    Bais Anthony J

    2004-08-01

    Full Text Available Abstract Background The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. Results Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. Conclusion CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology.

  19. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation.

    Science.gov (United States)

    Kirov, Julia V; Adkisson, Michael; Nava, A J; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K; Lloyd, K C Kent; de Jong, Pieter; West, David B

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.

  20. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.

    Science.gov (United States)

    Han, Han; Cortez, Connie C; Yang, Xiaojing; Nichols, Peter W; Jones, Peter A; Liang, Gangning

    2011-11-15

    Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.

  1. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  2. Methylation of Promoter Regions of Genes of the Human Intrauterine Renin Angiotensin System and Their Expression

    Directory of Open Access Journals (Sweden)

    Shane D. Sykes

    2015-01-01

    Full Text Available The intrauterine renin angiotensin system (RAS is implicated in placentation and labour onset. Here we investigate whether promoter methylation of RAS genes changes with gestation or labour and if it affects gene expression. Early gestation amnion and placenta were studied, as were term amnion, decidua, and placenta collected before labour (at elective caesarean section or after spontaneous labour and delivery. The expression and degree of methylation of the prorenin receptor (ATP6AP2, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AGTR1, and two proteases that can activate prorenin (kallikrein, KLK1, and cathepsin D, CTSD were measured by qPCR and a DNA methylation array. There was no effect of gestation or labour on the methylation of RAS genes and CTSD. Amnion and decidua displayed strong correlations between the percent hypermethylation of RAS genes and CTSD, suggestive of global methylation. There were no correlations between the degree of methylation and mRNA abundance of any genes studied. KLK1 was the most methylated gene and the proportion of hypermethylated KLK1 alleles was lower in placenta than decidua. The presence of intermediate methylated alleles of KLK1 in early gestation placenta and in amnion after labour suggests that KLK1 methylation is uniquely dynamic in these tissues.

  3. Methylation of the SLC6a2 gene promoter in major depression and panic disorder.

    Directory of Open Access Journals (Sweden)

    Richard Bayles

    Full Text Available Reduced function of the noradrenaline transporter (NET has been demonstrated in patients with major depressive disorder (MDD and panic disorder. Attempts to explain NET dysfunction in MDD and panic disorder by genetic variation in the NET gene SLC6a2 have been inconclusive. Transcriptional silencing of the SLC6a2 gene may be an alternative mechanism which can lead to NET dysfunction independent of DNA sequence. The objective of this study was to characterise the DNA methylation state of the SLC6a2 gene promoter in patients with MDD and panic disorder. SLC6a2 promoter methylation was also analysed before and after antidepressant treatment. This study was performed with DNA from blood, using bisulphite sequencing and EpiTYPER methylation analyses. Patients with MDD or panic disorder were not found to differ significantly from healthy controls in the pattern of methylation of the SLC6a2 gene promotor. While significant correlations between methylation levels at some CpG sites and physiological measures were identified, overall the variation in DNA methylation between patients was small, and the significance of this variation remains equivocal. No significant changes in SLC6a2 promoter methylation were observed in response to antidepressant treatment. Further in-depth analysis of alternative mechanisms of transcriptional regulation of the SLC6a2 gene in human health and disease would be of value.

  4. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution.

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2009-03-01

    Full Text Available Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii methylation levels of individual cells in one tissue are very similar, and iii methylation patterns follow a relaxed site-specific distribution. Furthermore, iv we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene

  5. Analysis of APC and IGFBP7 promoter gene methylation in Swedish and Vietnamese colorectal cancer patients.

    Science.gov (United States)

    Dimberg, Jan; Hong, Thai Trinh; Skarstedt, Marita; Löfgren, Sture; Zar, Niklas; Matussek, Andreas

    2013-01-01

    The tumour suppressor gene adenomatous polyposis coli (APC) is a key component that drives colorectal carcinogenesis. The reported DNA methylation in the promoter of APC varies greatly among studies of colorectal cancer (CRC) in different populations. Insulin-like growth factor binding protein 7 (IGFBP7), also known as IGFBP-related protein 1 (IGFBP-rP1), is expressed in various tissue types, including the lung, brain, prostate and gastrointestinal tract, and has been suggested to play a tumour suppressor role against colorectal carcinogenesis. Studies have indicated that IGFBP7 is inactivated by DNA methylation in human colon, lung and breast cancer. In the present study, we used the methylation-specific polymerase chain reaction to study the methylation status of the APC and IGFBP7 gene promoters in cancerous and paired normal tissue to evaluate its impact on clinical factors and association with ethnicity, represented by Swedish and Vietnamese CRC patients. We also investigated the distribution of CpG islands and the CpG dinucleotide density of each CpG island in the regions which were the subject of our investigation. Overall, normal tissue from Swedish patients exhibited a significantly higher frequency of IGFBP7 gene methylation in comparison with that of Vietnamese patients. Moreover, a significantly higher number of cancer tissues from Vietnamese individuals showed higher levels of methylation versus the paired normal tissue compared with that of Swedish patients. When we studied the methylation in cancer compared with the matched normal tissue in individuals, we found that a significantly higher number of Vietnamese patients had a higher degree of IGFBP7 gene methylation in cancer versus matched normal tissue in comparison with Swedish patients. Taken together, our results suggest that the methylation of the APC and IGFBP7 gene promoter region in cancerous tissue, in combination with the predominance of methylation in normal tissue, may serve as a

  6. Study on the polymorphisms and promoter methylation and expression of the glutathione Stransferases P1 gene in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    张友才

    2006-01-01

    Objective To study the relationship between hepatocellular carcinoma (HCC) and the polymorphisms, promoter methylation, and expression of glutathione S-transferases P1 gene (GST)P1 gene. Methods Using methylation -special PCR (MSP), the methylated status of CpG islands of GSTP1 gene in tumor tissues of 53 HCC and its adjacent nontumor tissues were studied. The en-

  7. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    Science.gov (United States)

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (p<0.0003). There was a variable frequency and individual methylation quotient detected, depending on the TSG and the tumor type. When comparing normal, benign, and malignant SGTs, there was a statistically significant trend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  8. Association between promoter methylation of DAPK gene and HNSCC: A meta-analysis

    Science.gov (United States)

    Cai, Fucheng; Xiao, Xiyue; Niu, Xun; Zhong, Yi

    2017-01-01

    Background The death-associated protein kinase (DAPK) is a tumor suppressor gene, which is a mediator of cell death of INF-γ–induced apoptosis. Aberrant methylation of DAPK promoter has been reported in patients with head and neck squamous cell carcinoma (HNSCC). However, the results of these studies are inconsistent. Hence, the present study aimed to evaluate the association between the promoter methylation of DAPK gene and HNSCC. Methods Relevant studies were systematically searched in PubMed, Web of Science, Ovid, and Embase. The association between DAPK promoter methylation and HNSCC was assessed by odds ratio (ORs) and 95% confidence intervals (CI). To evaluate the potential sources of heterogeneity, we conducted the meta-regression analysis and subgroup analysis. Results Eighteen studies were finally included in the meta-analysis. The frequency of DAPK promoter methylation in patients with HNSCC was 4.09-fold higher than the non-cancerous controls (OR = 3.96, 95%CI = 2.26–6.95). A significant association between DAPK promoter methylation and HNSCC was found among the Asian region and the Non-Asia region (Asian region, OR = 4.43, 95% CI = 2.29–8.58; Non-Asia region, OR = 3.39, 95% CI = 1.18–9.78). In the control source, the significant association between DAPK promoter methylation and HNSCC was seen among the autologous group and the heterogeneous group (autologous group, OR = 2.71, 95% CI = 1.49–4.93; heterogeneous group, OR = 9.50, 95% CI = 2.98–30.27). DAPK promoter methylation was significantly correlated with alcohol status (OR = 1.85, 95% CI = 1.07–3.21). Conclusion The results of this meta-analysis suggested that aberrant methylation of DAPK promoter was associated with HNSCC. PMID:28249042

  9. Study on RIZ1 gene promoter methylation status in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shang-Wen Dong; Peng Zhang; Yi-Mei Liu; Yuan-Tao Cui; Shuo Wang; Shao-Jie Liang; Zhun He; Pei Sun; Yuan-Guo Wang

    2012-01-01

    AIM: To investigate the promoter region methylation status of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) in the human esophageal squamous cell carcinoma (ESCC) cell lines and tissues and verify the relationship between methylation of RIZ1 and oncogen-esis, tumor progression and metastasis etc of ESCC.METHODS: Methylation-specific polymerase chain reaction (MSP) was used to investigate the promoter region methylation status of RIZ1 in 6 ESCC cell lines. One cell line where RIZ1 promoter region methylation was detected was selected for the next study, where the cell line was treated with 5-aza-CdR. Real-time polymerase chain reaction was used to investigate its influence on the transcription of RIZ1. Experiments using frozen pathological specimens from 47 ESCC patients were performed using the same MSP methodology.RESULTS: Promoter methylation of RIZ1 gene was detected in TE13, CaEs17 and EC109 cell lines and the cell line TE13 was chosen for further study. The expression of RIZ1 mRNA in TE-13 was up-regulated after treatment with 5-aza-CdR. The rate of methylation in carcinomas tissues was significantly higher than those in matched neighboring normal and distal ending normal tissue, and the deviation of data was statistically significant (x2 = 24.136, P < 0.01). Analysis of the gender, age familial history, tumour deviation, tumour saturation, lymph gland displacement and clinical staging of 47 samples from ESCC patients showed that the fluctuation of data was not statistically significant.CONCLUSION: Promoter methylation may play an important role in the epigenetic silencing of RIZ1 gene expression in human ESCC. RIZ1 is considered to be a potential tumor suppressor gene and may be a biological parameter for testing early stage human ESCC.

  10. Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas

    Directory of Open Access Journals (Sweden)

    Kiss Nimrod B

    2012-09-01

    Full Text Available Abstract Background In this study we aimed to quantify tumor suppressor gene (TSG promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP in other tumor types. Methods The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels. Results Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2 was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region. Conclusions/significance The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment.

  11. Methylation status of the interferon-gamma gene promoter in chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To evaluate the methylation status at CpG site -55 in the interferon-gamma (IFN-γ) gene promoter and its effect on IFN-γ expression in chronic hepatitis B. Method The authors recruited 30 patients with HBeAg-positive chronic hepatitis B (CHB), 30 HBeAg-negative CHB patients, and 30 healthy blood donors. Pyrosequencing was used to determine the methylation status at CpG site -55 in the IFN-γ gene promoter following bisulfite treatment of DNA in peripheral blood mononuclear cells (PBMCs). The expres...

  12. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  13. Promoter methylation of p16, Runx3, DAPK and CHFR genes is frequent in gastric carcinoma.

    Science.gov (United States)

    Hu, Shi-Lian; Kong, Xiang-Yong; Cheng, Zhao-Dong; Sun, Yu-Bei; Shen, Gan; Xu, Wei-Ping; Wu, Lei; Xu, Xiu-Cai; Jiang, Xiao-Dong; Huang, Da-Bing

    2010-01-01

    Transcriptional silencing induced by hypermethylation of CpG islands in the promoter regions of genes is believed to be an important mechanism of carcinogenesis in human cancers including gastric cancer. A number of reports on methylation of various genes in gastric cancer have been published, but most of these studies focused on cancer tissues or only a single gene. In this study, we determined the promoter hypermethylation status and mRNA expression of 4 genes: p16, Runx3, DAPK and CHFR. Methylation-specific polymerase chain reaction (MSP) was used to determine the methylation status of p16, Runx3, DAPK and CHFR gene promoters in cancer and adjacent normal gastric mucosa specimens from 70 patients with gastric cancer, as well as normal gastric biopsy samples from 30 people without cancer serving as controls. In addition, the mRNA expression of p16, Runx3, DAPK and CHFR was investigated in 34 gastric cancer patients by RT-PCR. Bisulfite DNA sequence analysis was applied to check the positive samples detected by MSP. When carcinoma specimens were compared with adjacent normal gastric mucosa samples, a significant increase in promoter methylation of p16, Runx3, DAPK and CHFR was observed, while all 30 histologically normal gastric specimens were methylation free for all 4 genes. The methylation rate of the 4 genes increased from normal stomach tissue to tumor-adjacent gastric mucosa to gastric cancer tissue. Concurrent methylation in 2 or more genes was found in 22.9% of tumor-adjacent normal gastric mucosa and 75.7% of cancer tissues. No correlation was found between hypermethylation and other clinicopathological parameters such as sex, age, and tumor location. However, the frequency of DAPK and CHFR methylation in cancer tissues was significantly associated with the extent of differentiation and lymph node metastasis (P p16, Runx3, DAPK and CHFR is frequent in gastric cancer. DAPK and CHFR promoter hypermethylation may be an important help in evaluating the

  14. Association of CXCL12 gene promoter methylation with periodontitis in patients with diabetes mellitus type 2.

    Science.gov (United States)

    Grdović, Nevena; Rajić, Jovana; Petrović, Sanja Matić; Dinić, Svetlana; Uskoković, Aleksandra; Mihailović, Mirjana; Jovanović, Jelena Arambašić; Tolić, Anja; Pucar, Ana; Milašin, Jelena; Vidaković, Melita

    2016-12-01

    CXCL12 is widely expressed, constitutive chemokine involved in tissue repair and regeneration, while the extent of its expression is important in various chronic inflammatory conditions. Involvement of DNA methylation in CXCL12 gene suppression (CXCL12) has been shown in malignancy and some autoimmune diseases. The aim of this study was to investigate whether the alterations in DNA methylation of CXCL12 are also involved in progression of periodontitis in combination with diabetes, as these chronic inflammatory conditions are strongly interrelated. Study included 72 subjects divided in three groups: healthy control (C, n=21), periodontitis (P, n=29) and diabetes/periodontitis group (D/P, n=22). DNA extracted from epithelial cells obtained by sterile cotton swabs from buccal mucosa was subjected to methylation specific polymerase chain reaction (MSP) to obtain DNA methylation pattern of CXCL12 promoter. CXCL12 promoter was predominantly unmethylated in all groups. However, increase in the frequency of the methylated form and increase in percent of methylation of CXCL12 promoter in periodontitis and diabetes/periodontitis group compared to control group were found, although without statistical significance. However, statistically significant increase in Tm of MSP products in diabetes/periodontitis group was observed. Correlation analysis revealed statistically significant relationship between the extent of DNA methylation of the CXCL12 promoter and periodontal parameters, as well as between DNA methylation of CXCL12 and glycosylated hemoglobin. Presented results suggest that chronic inflammation contributes to the change of CXCL12 DNA methylation in buccal cells and that DNA methylation profile of CXCL12 promoter plays important role in development and progression of periodontal disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas.

    Science.gov (United States)

    Zhang, Jie; Yang, Jian-Hui; Quan, Jia; Kang, Xing; Wang, Hui-Juan; Dai, Peng-Gao

    2016-10-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation was reported to be an independent prognostic and predictive factor in glioma patients who received temozolomide treatment. However, the predictive value of MGMT methylation was recently questioned by several large clinical studies. The purpose of this study is to identify MGMT gene promoter CpG sites or region whose methylation were closely correlated with its gene expression to elucidate this contradictory clinical observations. The methylation status for all CpG dinucleotides in MGMT promoter and first exon region were determined in 42 Chinese glioma patients, which were then correlated with MGMT gene expression, IDH1 mutation, and tumor grade. In whole 87 CpG dinucleotides analyzed, three distinct CpG regions covering 28 CpG dinucleotides were significantly correlated with MGMT gene expression; 10 CpG dinucleotides were significantly correlated with glioma classification (p MGMT gene hypermethylation significantly co-existed, but not for MGMT gene expression. The validation cohort of gliomas treated with standard of care and comparison of the CpGs we identified with the current CpGs used in clinical setting will be very important for gliomas individual medicine in the future.

  16. Methylation status of the interferon-gamma gene promoter in chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To evaluate the methylation status at CpG site -55 in the interferon-gamma (IFN-7) gene promoter and its effect on IFN-7 expression in chronic hepatitis B. Method The authors recruited 30 patients with UBeAg-positive chronic hepatitis B (CHB), 30 HBeAg-negative CHB patients, and 30 healthy blood donors. Pyrosequeneing was used to determine the methylation status at CpG site -55 in the IFN-γ gene promoter following bisulfite treatment of DNA in peripheral blood mononuclear cells (PBMCs). The expression of IFN-γ was analyzed by real-time RT-PCR and ELISA. HBV DNA in PBMCs was detected by nested PCR. Results The methylation level at CpG site -55 in the IFN-γ gene promoter was significantly increased, resulting in subsequent down-regulation of the expression of this cytoldne in CHB. The methylation level at CpG site -55 was significantly higher in HBeAg-positive patients than in HBeAg-negative ones (P<0.01) and was also significantly higher in PBMCs from HBV DNA-positive patients than from HBV DNA-negative ones (P<0.01) ; the methylation level at CpG site -55 was positively correlated with the amount of HBV DNA in serum (P<0.01). Oonclusion IFN-γ gene expression appears to be regulated by methylation of the IFN-γ gene promoter in CHB; the methylation level at CpG site -55 is associated with HBV infection.

  17. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    Directory of Open Access Journals (Sweden)

    V Shilpa

    2014-01-01

    Full Text Available Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6 -methyguanine-DNA methyltransferase (MGMT is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC tissue samples, 14 low malignant potential (LMP tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression.

  18. Abnormal promoter methylation of multiple genes in the malignant transformed PEP2D cells induced by alpha particles exposure

    Institute of Scientific and Technical Information of China (English)

    LiP; SuiJL

    2002-01-01

    The 5' promoter regions of some genes contain CpG-rich areas,known as CpG islands,Methylation of the cytosine in these dinuleotides has important regulatory effects on gene expression.The functional significance of promoter hypermethylation would play the same roles in carcinogenesis as gene mutations.The promoter methylations p14ARF,p16INK4a,MGMT,GSTP1,BUB3 and DAPK genes were analyzed with methylation specific PCR(MSP) in the transformed human bronchial epithelial cells(BEP2D) induced by α-particles.The results indicated that p14ARF gene was not methylated in BEP2D cells,but was methylated in the malignant transformed BERP35T-1 cells,and the level of its transcription was depressed remarkable in the latter.However p16INK4a gene,which shares two exons with p14ARF gene,was not methylated.MGMT gene was methylated in both BEP2D and BERP35T-1.DAPK gene was partially methylated in BEP2D cells and methylated completely in BERP35T1.GSTP1 was not methylated in BEP2D cells and was methylated partly in BERP35T-1.BUB3 gene was not methylated in BEP2D as well as BERP35T1 cells and was further proved by sequencing analysis.

  19. [Analysis of the status of DACH1 gene promoter methylation in endometrial carcinoma and its clinical significance].

    Science.gov (United States)

    Deng, Xin-Chao; Li, Shao-Ru; Zhang, Qing; Zhou, Cheng-Jun; Yang, Qi-Feng; Jiang, Jie; Kong, Bei-Hua

    2012-04-01

    To analyze the status of DACH1 gene promoter methylation and explore its association with the expression of DACH1 gene promoter methylation and clinical significance of endometrium carcinoma (EC). From February 2004 to August 2008, a total of 80 EC tissue samples with comprehensive surgical pathology staging were collected and used for this study. Twenty normal endometrium tissues in 2008 were abstained from the fractional curettage because of dysfunctional uterine bleeding as control. All samples were confirmed pathologically. Methylation specific PCR (MSP) was performed to detect the promoter methylation of DACH1 gene, and analyze its influence on the expression of DACH1 and the relationship between DACH1 promoter methylation and clinicopathological factors in EC. DACH1 protein expression was detected by western blot. Chi-square test and Pearson test were used for statistical analysis. The rate of promoter methylation of DACH1 gene in the EC tissues was significantly higher than that in the normal endometrium issues (30% vs. 5%, P promoter methylation (r = -0.30, P 0.05). DACH1 gene promoter methylaion could lead to a decrease or absence in the DACH1 expression in EC. The promoter methylation of DACH1 gene may induce the inhibition of DACH1 expression, which might be one of the mechanisms of DACH1 gene inactivation in human EC.

  20. Construction and application of a promoter-trapping vector with methyl parathion hydrolase gene mpd as the reporter.

    Science.gov (United States)

    Cui, Zhong-Li; Zhang, Xiao-Zhou; Zhang, Zhong-Hui; Li, Shun-Peng

    2004-07-01

    A facilitative and efficient promoter-trapping vector, pUC-mpd, was constructed with the promoterless methyl parathion hydrolase gene as the reporter. This reporter gene is easily used to clone promoters with different promoting strength on selective plates. Promoter regions of the ytkA and ywoF genes with strong promoting and signal peptide functions were cloned from the Bacillus subtilis 168 genomic promoter library with this vector.

  1. Helicobacter pylori-induced modulation of the promoter methylation of Wnt antagonist genes in gastric carcinogenesis.

    Science.gov (United States)

    Yang, Hyo-Joon; Kim, Sang Gyun; Lim, Joo Hyun; Choi, Ji Min; Kim, Woo Ho; Jung, Hyun Chae

    2017-06-22

    This study aimed to investigate the changes in the promoter methylation and gene expression of multiple Wnt antagonists between the chronic infection and eradication of Helicobacter pylori (H. pylori) in gastric carcinogenesis. The levels of methylation and corresponding mRNA expression of seven Wnt antagonist genes (SFRP1, -2, -5, DKK1, -2, -3, WIF1) were compared among the patients with H. pylori-positive gastric cancers (GCs), and H. pylori-positive and H. pylori-negative controls, by quantitative MethyLight assay and real-time reverse transcription (RT)-polymerase chain reaction (PCR), respectively. The changes of the methylation and expression levels of the genes were also compared between the H. pylori eradication and H. pylori-persistent groups 1 year after endoscopic resection of GCs. The methylation levels of SFRP and DKK family genes were significantly increased in the patients with H. pylori-positive GCs and followed by H. pylori-positive controls compared with H. pylori-negative controls (P pylori-negative controls, H. pylori-positive controls, and to H. pylori-positive GCs (P pylori eradication (P pylori-associated gastric carcinogenesis. The epigenetic field may not be reversed even after H. pylori eradication except by DKK3 methylation.

  2. DNA methylation dynamics in the rat EGF gene promoter after partial hepatectomy

    Directory of Open Access Journals (Sweden)

    Deming Li

    2014-06-01

    Full Text Available Epidermal growth factor (EGF, a multifunctional growth factor, is a regulator in a wide variety of physiological processes. EGF plays an important role in the regulation of liver regeneration. This study was aimed at investigating the methylation level of EGF gene throughout liver regeneration. DNA of liver tissue from control rats and partial hepatectomy (PH rats at 10 time points was extracted and a 354 bp fragment including 10 CpG sites from the transcription start was amplified after DNA was modified by sodium bisulfate. The result of sequencing suggested that methylation ratio of four CpG sites was found to be significantly changed when PH group was compared to control group, in particular two of them were extremely striking. mRNA expression of EGF was down-regulated in total during liver regeneration. We think that the rat EGF promoter region is regulated by variation in DNA methylation during liver regeneration.

  3. Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis.

    Science.gov (United States)

    Koczor, Christopher A; Lee, Eva K; Torres, Rebecca A; Boyd, Amy; Vega, J David; Uppal, Karan; Yuan, Fan; Fields, Earl J; Samarel, Allen M; Lewis, William

    2013-07-15

    Human dilated cardiomyopathy (DCM) is characterized by congestive heart failure and altered myocardial gene expression. Epigenetic changes, including DNA methylation, are implicated in the development of DCM but have not been studied extensively. Clinical human DCM and nonfailing control left ventricle samples were individually analyzed for DNA methylation and expressional changes. Expression microarrays were used to identify 393 overexpressed and 349 underexpressed genes in DCM (GEO accession number: GSE43435). Gene promoter microarrays were utilized for DNA methylation analysis, and the resulting data were analyzed by two different computational methods. In the first method, we utilized subtractive analysis of DNA methylation peak data to identify 158 gene promoters exhibiting DNA methylation changes that correlated with expression changes. In the second method, a two-stage approach combined a particle swarm optimization feature selection algorithm and a discriminant analysis via mixed integer programming classifier to identify differentially methylated gene promoters. This analysis identified 51 hypermethylated promoters and six hypomethylated promoters in DCM with 100% cross-validation accuracy in the group assignment. Generation of a composite list of genes identified by subtractive analysis and two-stage computation analysis revealed four genes that exhibited differential DNA methylation by both methods in addition to altered gene expression. Computationally identified genes (AURKB, BTNL9, CLDN5, and TK1) define a central set of differentially methylated gene promoters that are important in classifying DCM. These genes have no previously reported role in DCM. This study documents that rigorous computational analysis applied to microarray analysis of healthy and diseased human heart samples helps to define clinically relevant DNA methylation and expressional changes in DCM.

  4. Relationship between promoter methylation of the Runx3 and Rassf1a genes and Dnmt1 expression in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    姜相君

    2013-01-01

    Objective To analyze the promoter methylation of the human runt-related transcription factor3(Runx3) and ras-association domain family1a(Rassf1a) genes and Dnmt1protein expression in gastric cancer and to

  5. Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study.

    Science.gov (United States)

    Zhao, J; Goldberg, J; Vaccarino, V

    2013-01-01

    Epigenetic mechanisms are increasingly being recognized as an important factor for obesity. The serotonin transporter gene (SLC6A4) has a critical role in regulating food intake, body weight and energy balance. This study examines the potential association between SLC6A4 promoter methylation and obesity measures in a monozygotic (MZ) twin sample. We studied 84 MZ twin pairs drawn from the Vietnam Era Twin Registry. Obesity measures include body mass index (BMI), body weight, waist circumference (WC) and waist-hip ratio (WHR). The SLC6A4 promoter methylation profile in peripheral blood leukocytes was quantified by bisulfite pyrosequencing. The association between methylation variation and obesity parameters was examined by mixed-model regression and matched pair analysis, adjusting for age, smoking, alcohol consumption, physical activity and total daily energy intake. Multiple testing was controlled using the adjusted false discovery rate (q-value). Mean methylation level was positively correlated with BMI (r=0.29; P=0.0002), body weight (r=0.31; Pobesity within a MZ twin study.

  6. A three-gene signature for prognosis in patients with MGMT promoter-methylated glioblastoma.

    Science.gov (United States)

    Wang, Wen; Zhang, Lu; Wang, Zheng; Yang, Fan; Wang, Haoyuan; Liang, Tingyu; Wu, Fan; Lan, Qing; Wang, Jiangfei; Zhao, Jizong

    2016-10-25

    Glioblastoma is the most malignant tumor and has high mortality rate. The methylated prompter of MGMT results in chemotherapy sensitivity for these patients. However, there are still other factors that affected the prognosis for the glioblastoma patients with similar MGMT methylation status. We developed a signature with three genes screened from the whole genome mRNA expression profile from Chinese Glioma Genome Atlas (CGGA) and RNAseq data from The Cancer Genome Atlas (TCGA). Patients with MGMT methylation in low risk group had longer survival than those in high risk group (median overall survival 1074 vs. 372 days; P = 0.0033). Moreover, the prognostic value of the signature was significant difference in cohorts stratified by MGMT methylation and chemotherapy (P=0.0473), while there is no significant difference between low and high risk group or unmethylated MGMT patients without chemotherapy. Multivariate analysis indicated that the risk score was an independent prognosis factor (P = 0.004). In conclusion, our results showed that the signature has prognostic value for patients with MGMT promoter-methylated glioblastomas based on bioinformatics analysis.

  7. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  8. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans.

    Science.gov (United States)

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S; Mittelman, David; Sharp, Andrew J

    2016-05-05

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects.

    Science.gov (United States)

    Lintas, Carla; Sacco, Roberto; Persico, Antonio M

    2016-01-01

    Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.

  10. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas.

    Science.gov (United States)

    Virmani, A K; Rathi, A; Sathyanarayana, U G; Padar, A; Huang, C X; Cunnigham, H T; Farinas, A J; Milchgrub, S; Euhus, D M; Gilcrease, M; Herman, J; Minna, J D; Gazdar, A F

    2001-07-01

    The adenomatous polyposis coli (APC) gene is a tumor suppressor gene associated with both familial and sporadic cancer. Despite high rates of allelic loss in lung and breast cancers, point mutations of the APC gene are infrequent in these cancer types. Aberrant methylation of the APC promoter 1A occurs in some colorectal and gastric malignancies, and we investigated whether the same mechanism occurs in lung and breast cancers. The methylation status of the APC gene promoter 1A was analyzed in 77 breast, 50 small cell (SCLC), and 106 non-small cell (NSCLC) lung cancer tumors and cell lines and in 68 nonmalignant tissues by methylation-specific PCR. Expression of the APC promoter 1A transcript was examined in a subset of cell lines by reverse transcription-PCR, and loss of heterozygosity at the gene locus was analyzed by the use of 12 microsatellite and polymorphic markers. Statistical tests were two-sided. Promoter 1A was methylated in 34 of 77 breast cancer tumors and cell lines (44%), in 56 of 106 NSCLC tumors and cell lines (53%), in 13 of 50 SCLC cell lines (26%), and in 3 of 68 nonmalignant samples (4%). Most cell lines tested contained the unmethylated or methylated form exclusively. In 27 cell lines tested, there was complete concordance between promoter methylation and silencing of its transcript. Demethylation with 5-aza-2'-deoxycytidine treatment restored transcript 1A expression in all eight methylated cell lines tested. Loss of heterozygosity at the APC locus was observed in 85% of SCLCs, 83% of NSCLCs, and 63% of breast cancer cell lines. The frequency of methylation in breast cancers increased with tumor stage and size. In summary, aberrant methylation of the 1A promoter of the APC gene and loss of its specific transcript is frequently present in breast and NSCLC cancers and cell lines and, to a lesser extent, in SCLC cell lines. Our findings may be of biological and clinical importance.

  11. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity

    OpenAIRE

    Maria Keller; Lydia Hopp; Xuanshi Liu; Tobias Wohland; Kerstin Rohde; Raffaella Cancello; Matthias Klös; Karl Bacos; Matthias Kern; Fabian Eichelmann; Arne Dietrich; Michael R Schön; Daniel Gärtner; Tobias Lohmann; Miriam Dreßler

    2017-01-01

    Objective/methods: DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. Results: We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two i...

  12. Methylated Host Cell Gene Promoters and Human Papillomavirus Type 16 and 18 Predicting Cervical Lesions and Cancer.

    Directory of Open Access Journals (Sweden)

    Nina Milutin Gašperov

    Full Text Available Change in the host and/or human papillomavirus (HPV DNA methylation profile is probably one of the main factors responsible for the malignant progression of cervical lesions to cancer. To investigate those changes we studied 173 cervical samples with different grades of cervical lesion, from normal to cervical cancer. The methylation status of nine cellular gene promoters, CCNA1, CDH1, C13ORF18, DAPK1, HIC1, RARβ2, hTERT1, hTERT2 and TWIST1, was investigated by Methylation Specific Polymerase Chain Reaction (MSP. The methylation of HPV18 L1-gene was also investigated by MSP, while the methylated cytosines within four regions, L1, 5'LCR, enhancer, and promoter of the HPV16 genome covering 19 CpG sites were evaluated by bisulfite sequencing. Statistically significant methylation biomarkers distinguishing between cervical precursor lesions from normal cervix were primarily C13ORF18 and secondly CCNA1, and those distinguishing cervical cancer from normal or cervical precursor lesions were CCNA1, C13ORF18, hTERT1, hTERT2 and TWIST1. In addition, the methylation analysis of individual CpG sites of the HPV16 genome in different sample groups, notably the 7455 and 7694 sites, proved to be more important than the overall methylation frequency. The majority of HPV18 positive samples contained both methylated and unmethylated L1 gene, and samples with L1-gene methylated forms alone had better prognosis when correlated with the host cell gene promoters' methylation profiles. In conclusion, both cellular and viral methylation biomarkers should be used for monitoring cervical lesion progression to prevent invasive cervical cancer.

  13. Status of p16(INK4a) and E-cadherin gene promoter methylation in Moroccan patients with cervical carcinoma.

    Science.gov (United States)

    Attaleb, Mohammed; El hamadani, Wail; Khyatti, Meriem; Benbacer, Laila; Benchekroun, Nadia; Benider, Abdellatif; Amrani, Mariam; El Mzibri, Mohammed

    2009-01-01

    Aberrant methylation of tumor suppressor gene promoters has been extensively investigated in cervical cancer. Transcriptional silencing, as a main consequence of hypermethylation of CpG islands, is the predominant mechanism of p16(INK4a) and E-cadherin gene inactivation in malignant epithelial tumors. This study was conducted to evaluate the promoter methylation status of p16(INK4a) and E-cadherin genes in 22 specimens of cervical carcinomas, four cervical cancer cell lines (HeLa, SiHa, Caski, C33A), and 20 human papillomavirus negative specimens, obtained from normal cervical swabs, using the methylation-specific PCR approach. Hypermethylation of the 5' CpG island of the p16(INK4a) and E-cadherin genes were found in 13 (59.1%) and 10 (45.5%) of 22 cervical cancer samples, respectively. Furthermore, our findings did not show any correlation between promoter methylation of p16(INK4a) and E-cadherin genes and clinicopathological parameters, including HPV infection, phenotypic distribution, and stage of the disease. However, hypermethylation of E-cadherin gene promoter appears to be age related in cervical cancer, whereas the frequency of aberrant methylation of p16(INK4a) gene promoter is unchanged according to the age of patients. Thus, caution must be made to use these markers in the diagnosis of cervical cancer. However, dietary or pharmaceutical agents that can inhibit these epigenetic events may prevent or delay the development of cervical cancer.

  14. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    Directory of Open Access Journals (Sweden)

    Recillas-Targa Félix

    2011-06-01

    Full Text Available Abstract Background Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb gene promoter in different tumoral cell lines. Methods To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. Results We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. Conclusions This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing.

  15. Construction and Analysis of an Adipose Tissue-Specific and Methylation-Sensitive Promoter of Leptin Gene.

    Science.gov (United States)

    Zhang, Qinkai; Xu, Denggao; Zhang, Min; Dong, Xiao; Dong, Huansheng; Pan, Qingjie

    2016-11-01

    DNA methylation plays a very important role in the regulation of gene expression. Under general situations, methylation in a gene promoter region is frequently accompanied by transcriptional suppression, and those genes that are highly methylated display the phenomenon of low expression. In contrast, those genes whose methylation level is low display the phenomenon of active expression. In this study, we conducted DNA methylation analysis on the CpG sites within the promoter regions of five adipose tissue-specific transcriptional factors-Adiponectin, Chemerin, Leptin, Smaf-1, and Vaspin-and examined their messenger RNA (mRNA) expression levels in different mouse tissues. We also performed analyses on the correlation between the DNA methylation levels of these genes and their mRNA expression levels in these tissues. The correlation coefficient for Leptin was the highest, and it displayed a high expression in an adipose tissue-specific manner. Thus, we cloned the regulatory region of Leptin gene and incorporated its promoter into the eukaryotic expression vector pEGFP-N1 and constructed a recombinant plasmid named pEGFP-N1-(p-Lep). This recombinant plasmid was first verified by DNA sequencing and then transfected into mouse pre-adipocytes via electroporation. Measurement of the activity of luciferase (reporter) indicated that p-Lep was capable of driving the expression of the reporter gene. This study has paved a solid basis for subsequent studies on generating transgenic animals.

  16. Methylation state of the EDA gene promoter in Chinese X-linked hypohidrotic ectodermal dysplasia carriers.

    Directory of Open Access Journals (Sweden)

    Wei Yin

    Full Text Available INTRODUCTION: Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED which is caused by genetic ectodysplasin A (EDA deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom. METHODS: A large Chinese XLHED family was reported and the entire coding region and exon-intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers' tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system. RESULTS: A known frameshift mutation (c.573-574 insT was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI, 18 (78.26% carriers were hypermethylated at these 4 sites. CONCLUSION: Chinese XLHED carriers often have a hypermethylated EDA promoter.

  17. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs.

    Science.gov (United States)

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8-14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue.

  18. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    Science.gov (United States)

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p smoking for more than 40 pack-years (OR = 4.21, p smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC.

  19. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis

    Directory of Open Access Journals (Sweden)

    Zhang Lisheng

    2002-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC presents one of the major health threats in China today. A better understanding of the molecular genetics underlying malignant transformation of hepatocytes is critical to success in the battle against this disease. The methylation state of C5 of the cytosine in the CpG di-nucleotide that is enriched within or near the promoter region of over 50 % of the polymerase II genes has a drastic effect on transcription of these genes. Changes in the methylation profile of the promoters represent an alternative to genetic lesions as causative factors for the tumor-specific aberrant expression of the genes. Methods We have used the methylation specific PCR method in conjunction with DNA sequencing to assess the methylation state of the promoter CpG islands of twenty genes. Aberrant expression of these genes have been attributed to the abnormal methylation profile of the corresponding promoter CpG islands in human tumors. Results While the following sixteen genes remained the unmethylated in all tumor and normal tissues: CDH1, APAF1, hMLH1, BRCA1, hTERC, VHL, RARβ, TIMP3, DAPK1, SURVIVIN, p14ARF, RB1, p15INK4b, APC, RASSF1c and PTEN, varying degrees of tumor specific hypermethylation were associated with the p16INK4a , RASSF1a, CASP8 and CDH13 genes. For instance, the p16INK4a was highly methylated in HCC (17/29, 58.6% and less significantly methylated in non-cancerous tissue (4/29. 13.79%. The RASSF1a was fully methylated in all tumor tissues (29/29, 100%, and less frequently methylated in corresponding non-cancerous tissue (24/29, 82.75%. Conclusions Furthermore, co-existence of methylated with unmethylated DNA in some cases suggested that both genetic and epigenetic (CpG methylation mechanisms may act in concert to inactivate the p16INK4a and RASSF1a in HCC. Finally, we found a significant association of cirrhosis with hypermethylation of the p16INK4a and hypomethylation of the CDH13 genes. For the

  20. [Methylation of FHIT gene promoter region in DNA from plasma of patients with myelodysplastic syndromes and demethylating effect of decitabine].

    Science.gov (United States)

    Deng, Yin-Fen; Zhang, Lei; Zhang, Xiu-Qun; Hu, Ming-Qiu; Dai, Dan; Zhang, Xue-Zhong; Xu, Yan-Li

    2012-10-01

    This study was aimed to detect the methylation status of FHIT gene promoter region in the DNA from plasma of patients with myelodysplastic syndrome (MDS), and to investigate the demethylating effect of decitabine. Methylation-specific PCR method was used to detect the methylation status of FHIT gene promoter region in the DNA from plasma of 4 patients with MDS before and after treatment with decitabine plus semis CAG therapy (among them, 1 case of newly diagnosed MDS, 3 cases progressed into acute leukemia). The results indicated that 3 cases were found to have an increased methylation in the promoter region. After treatment with decitabine plus semis CAG, increased methylation was reversed in 2 cases. In 4 cases, 2 cases displayed clinical response. It is concluded that FHIT gene hypermethylation is associated with MDS pathogenesis. Decitabine has demethylating effect on the FHIT gene hypermethylation of plasma from MDS patients. Detecting the methylation status of FHIT gene in DNA from plasma may play a role in MDS auxiliary diagnosis or prognosis.

  1. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    Science.gov (United States)

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells.

  2. The Relationship between FHIT Gene Promoter Methylation and Lung Cancer Risk: 
a Meta-analysis

    Directory of Open Access Journals (Sweden)

    Yichang SUN

    2014-03-01

    Full Text Available Background and objective Tumor-suppressor gene promoter DNA methylation in tumor cells is associated with its reduced expression. FHIT (fragile histindine triad was one of the important tumor suppressor genes which was found hypermethylated in the promoter region in most of tumors. The aim of this study is to evaluate the relationship between FIHT gene promother methylation and lung cancer risk by meta-analysis. Methods By searching Pubmed, CNKI and Wanfang, the open published articles related to FHIT gene promoter methylation and lung carcinoma risk were collected. The odds ratio (OR and range of FHIT gene of cancer tissue of lung cancer patients compared with normal lung tissue, plasma and the bronchial lavage fluid were pooled by statistical software Stata 11.0. Results Eleven studies were finally included in this meta-analysis. The median methylation rate were Pmedian=40.0% (0-68.3%, Pmedian=8.7% (0-35.0%, Pmedian=33.3% (17.1%-38.3% and Pmedian=35.9% (31.1%-50.8% in cancer tissue, NLT, BALF and plasm respectively. The pooled results showed the methylation rate in tumor tissue was much higer than that of NLT OR=5.82 (95%CI: 3.74-9.06, P0.05 and plasma OR=1.41 (95%CI: 0.90-2.20, P>0.05. Conclusion Hypermethylation of FHIT gene promoter region was found more frequent in cancer tissue than that of NLT which may demonstrated association between lung cancer risk and FHIT gene promoter methylation.

  3. Oxidative stress levels are correlated with P15 and P16 gene promoter methylation in myelodysplastic syndrome patients.

    Science.gov (United States)

    Gonçalves, Ana Cristina; Cortesão, Emília; Oliveiros, Barbara; Alves, Vera; Espadana, Ana Isabel; Rito, Luís; Magalhães, Emília; Pereira, Sónia; Pereira, Amélia; Costa, José Manuel Nascimento; Mota-Vieira, Luisa; Sarmento-Ribeiro, Ana Bela

    2016-08-01

    Oxidative stress and abnormal DNA methylation have been implicated in some types of cancer, namely in myelodysplastic syndromes (MDS). Since both mechanisms are observed in MDS patients, we analyzed the correlation of intracellular levels of peroxides, superoxide anion, and glutathione (GSH), as well as ratios of peroxides/GSH and superoxide/GSH, with the methylation status of P15 and P16 gene promoters in bone marrow leukocytes from MDS patients. Compared to controls, these patients had lower GSH content, higher peroxide levels, peroxides/GSH and superoxide/GSH ratios, as well as higher methylation frequency of P15 and P16 gene promoters. Moreover, patients with methylated P15 gene had higher oxidative stress levels than patients without methylation (peroxides: 460 ± 42 MIF vs 229 ± 25 MIF, p = 0.001; superoxide: 383 ± 48 MIF vs 243 ± 17 MIF, p = 0.022; peroxides/GSH: 2.50 ± 0.08 vs 1.04 ± 0.34, p levels as well as peroxides/GSH ratio than patients without methylation. Interestingly, oxidative stress levels allow the discrimination of patients without methylation from ones with methylated P15, methylated P16, or at least one methylated (P15 or P16) promoter. Taken together, these findings support the hypothesis that oxidative stress is correlated with P15 and P16 hypermethylation.

  4. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    Science.gov (United States)

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  5. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    Science.gov (United States)

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  6. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma

    Directory of Open Access Journals (Sweden)

    Halaban Ruth

    2010-02-01

    Full Text Available Abstract Background Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes. Methods It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing. Results We show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes. Conclusions Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier

  7. Promoter methylation of fas apoptotic inhibitory molecule 2 gene is associated with obesity and dyslipidaemia in Chinese children.

    Science.gov (United States)

    Wu, Lijun; Zhao, Xiaoyuan; Shen, Yue; Zhang, Mei-Xian; Yan, Yinkun; Hou, Dongqing; Meng, Linghui; Liu, Junting; Cheng, Hong; Mi, Jie

    2015-05-01

    Fas apoptotic inhibitory molecule 2 (FAIM2) is an obesity-related gene, but the mechanisms by which FAIM2 is involved in obesity are not understood. Epigenetic alterations are important factors in the development of obesity. The purpose of this study was to investigate the potential associations of FAIM2 promoter methylation with obesity and components of dyslipidaemia in Chinese children. We studied FAIM2 promoter methylation in 59 obese and 39 lean children using the Sequenom MassARRAY platform. The methylation levels at 8 CpG sites in the FAIM2 promoter were significantly different between the obese and lean subjects, especially the methylation level at CpG site 500 (p = 0.01). The methylation levels at several of the examined CpG sites were significantly associated with dyslipidaemia and its components after adjusting for age, gender and body mass index (BMI). The methylation levels at two CpG sites (sites -362 and -360 and site -164) were highly significantly associated with high level of triglycerides (p = 0.00002 and 0.0009, respectively). This study provides the first evidence that the methylation levels of the FAIM2 promoter are significantly associated with obesity and are independently associated with dyslipidaemia and its components in Chinese children.

  8. Promoter specific methylation of the dopamine transporter gene is altered in alcohol dependence and associated with craving.

    Science.gov (United States)

    Hillemacher, Thomas; Frieling, Helge; Hartl, Thomas; Wilhelm, Julia; Kornhuber, Johannes; Bleich, Stefan

    2009-01-01

    Dopaminergic neurotransmission plays a crucial role in the genesis and maintenance of alcohol dependence. Epigenetic regulation via promoter specific DNA methylation of the dopamine transporter gene (DAT) may influence altered dopaminergic neurotransmission in alcoholism. Aim of the present study was to investigate DNA promoter methylation of DAT in early alcohol withdrawal and in relation to alcohol craving. We analyzed blood samples of 76 patients admitted for detoxification treatment and compared them to 35 healthy controls. Methylation specific quantitative real-time PCR was used to measure the promoter specific DNA methylation of the dopamine transporter. We assessed the extent of alcohol craving using the obsessive compulsive drinking scale (OCDS). Compared to healthy controls we found a significant hypermethylation of the DAT-promoter (Mann-Whitney U-test: p=0.001). Ln-transformed methylation of the DAT-promoter was negatively associated with the OCDS (linear regression: Beta=-0.275, p=0.016), particularly with the obsessive subscale (Beta=-0.300, p=0.008). Findings of the present study show that the epigenetic regulation of the DAT-promoter is altered in patients undergoing alcohol withdrawal. Furthermore, hypermethylation of the DAT-promoter may play an important role in dopaminergic neurotransmission and is associated with decreased alcohol craving.

  9. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis.

    Science.gov (United States)

    Zhang, Zhen; Gao, Feng; Kang, Xiaokui; Li, Jia; Zhang, Litong; Dong, Wentao; Jin, Zhangning; Li, Fan; Gao, Nannan; Cai, Xinwang; Yang, Shuyuan; Zhang, Jianning; Ren, Xinliang; Yang, Xinyu

    2015-04-01

    The Notch pathway is a highly conserved pathway that regulates hippocampal neurogenesis during embryonic development and adulthood. It has become apparent that intracellular epigenetic modification including DNA methylation is deeply involved in fate specification of neural stem cells (NSCs). However, it is still unclear whether the Notch pathway regulates hippocampal neurogenesis by changing the Notch genes' DNA methylation status. Here, we present the evidence from DNA methylation profiling of Notch1, Hes1 and Ngn2 promoters during neurogenesis in the dentate gyrus (DG) of postnatal, adult and traumatic brains. We observed the expression of Notch1, Hes1 and Ngn2 in hippocampal DG with qPCR, Western blot and immunofluorescence staining. In addition, we investigated the methylation status of Notch pathway genes using the bisulfite sequencing PCR (BSP) method. The number of Notch1 or Hes1 (+) and BrdU (+) cells decreased in the subgranular zone (SGZ) of the DG in the hippocampus following TBI. Nevertheless, the number of Ngn2-positive cells in the DG of injured mice was markedly higher than in the DG of non-TBI mice. Accordingly, the DNA methylation level of the three gene promoters changed with their expression in the DG. These findings suggest that the strict spatio-temporal expression of Notch effector genes plays an important role during hippocampal neurogenesis and suggests the possibility that Notch1, Hes1 and Ngn2 were regulated by changing some specific CpG sites of their promoters to further orchestrate neurogenesis in vivo.

  10. Altered regulation of DNA ligase IV activity by aberrant promoter DNA methylation and gene amplification in colorectal cancer.

    Science.gov (United States)

    Kuhmann, Christine; Li, Carmen; Kloor, Matthias; Salou, Mariam; Weigel, Christoph; Schmidt, Christopher R; Ng, Linda W C; Tsui, Wendy W Y; Leung, Suet Y; Yuen, Siu T; Becker, Natalia; Weichenhan, Dieter; Plass, Christoph; Schmezer, Peter; Chan, Tsun L; Popanda, Odilia

    2014-04-15

    Colorectal cancer (CRC) presents as a very heterogeneous disease which cannot sufficiently be characterized with the currently known genetic and epigenetic markers. To identify new markers for CRC we scrutinized the methylation status of 231 DNA repair-related genes by methyl-CpG immunoprecipitation followed by global methylation profiling on a CpG island microarray, as altered expression of these genes could drive genomic and chromosomal instability observed in these tumors. We show for the first time hypermethylation of MMP9, DNMT3A and LIG4 in CRC which was confirmed in two CRC patient groups with different ethnicity. DNA ligase IV (LIG4) showed strong differential promoter methylation (up to 60%) which coincided with downregulation of mRNA in 51% of cases. This functional association of LIG4 methylation and gene expression was supported by LIG4 re-expression in 5-aza-2'-deoxycytidine-treated colon cancer cell lines, and reduced ligase IV amounts and end-joining activity in extracts of tumors with hypermethylation. Methylation of LIG4 was not associated with other genetic and epigenetic markers of CRC in our study. As LIG4 is located on chromosome 13 which is frequently amplified in CRC, two loci were tested for gene amplification in a subset of 47 cases. Comparison of amplification, methylation and expression data revealed that, in 30% of samples, the LIG4 gene was amplified and methylated, but expression was not changed. In conclusion, hypermethylation of the LIG4 promoter is a new mechanism to control ligase IV expression. It may represent a new epigenetic marker for CRC independent of known markers.

  11. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease.

    Science.gov (United States)

    Friso, Simonetta; Lotto, Valentina; Choi, Sang-Woon; Girelli, Domenico; Pinotti, Mirko; Guarini, Patrizia; Udali, Silvia; Pattini, Patrizia; Pizzolo, Francesca; Martinelli, Nicola; Corrocher, Roberto; Bernardi, Francesco; Olivieri, Oliviero

    2012-03-01

    Plasma factor VII concentrations (FVIIa), a marker of coronary artery disease (CAD) risk, are influenced by genetic markers at the promoter site: the A2 allele, due to a 10bp insertion at position -323, is a determinant of lower FVIIa concentrations and reduced CAD risk, while the -402A allele, due to a G>A substitution, confers increased transcriptional activity in vitro resulting in higher FVIIa. Transcriptional regulation of F7 by epigenetic features is, however, still unknown as is the inter-relationship of genetic and epigenetic modifications at the promoter site. To investigate a possible epigenetic regulation of the F7 gene at the promoter region and its link with functional F7 polymorphisms at the same site. F7 promoter methylation and its relation to F7 promoter polymorphisms in modulating FVIIa and CAD risk were evaluated by methyl-specific PCR and bisulfite sequencing techniques in 253 subjects, of whom 168 had CAD and 88 were CAD-free. Plasma FVIIa was inversely related to methylation in A1A1 and -402GG, that is in the absence of the rare A2 and -402A allele. The higher FVIIa paralleled the lower methylation in A1A1 compared to A2A2 (p=0.035), while no variation in methylation was associated with the different -402G>A genotypes. The modulation of methylation-induced FVIIa concentrations was observed only in A1A1 where the higher methylation resulting in lower FVIIa was prevalent within the CAD-free group compared to the CAD group (p=0.011). Epigenetic regulation through methylation of F7 promoter is associated with CAD by affecting plasma FVIIa concentrations in A1A1 genotypes.

  12. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    Science.gov (United States)

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue.

  13. Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes

    Science.gov (United States)

    Xu, Hongqin; Wang, Fan; Kranzler, Henry R.; Gelernter, Joel; Zhang, Huiping

    2017-01-01

    Altered DNA methylation in addiction-related genes may modify the susceptibility to alcohol or drug dependence (AD or ND). We profiled peripheral blood DNA methylation levels of 384 CpGs in promoter regions of 82 addiction-related genes in 256 African Americans (AAs) (117 cases with AD-ND codependence and 139 controls) and 196 European Americans (103 cases with AD-ND codependence and 93 controls) using Illumina’s GoldenGate DNA methylation array assays. AD-ND codependence-associated DNA methylation changes were analyzed using linear mixed-effects models with consideration of batch effects and covariates age, sex, and ancestry proportions. Seventy CpGs (in 41 genes) showed nominally significant associations (P genes (including HTR2B cg27531267) were hypermethylated in EA cases (5.6 × 10−9 ≤ P ≤ 9.5 × 10−5). Nevertheless, 13 single nucleotide polymorphisms (SNPs) nearby HTR2B cg27531267 and the interaction of these SNPs and cg27531267 did not show significant effects on AD-ND codependence in either AAs or EAs. Our study demonstrated that DNA methylation changes in addiction-related genes could be potential biomarkers for AD-ND co-dependence. Future studies need to explore whether DNA methylation alterations influence the risk of AD-ND codependence or the other way around. PMID:28165486

  14. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens

    Directory of Open Access Journals (Sweden)

    Nätt Daniel

    2012-02-01

    Full Text Available Abstract Background Variations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation. Results In Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences were tissue-specific, and the differential methylation at specific loci were little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication. Conclusions Our results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.

  15. A novel bisulfite-microfluidic temperature gradient capillary electrophoresis platform for highly sensitive detection of gene promoter methylation.

    Science.gov (United States)

    Zhang, Huidan; Shan, Lianfeng; Wang, Xiaonan; Ma, Qian; Fang, Jin

    2013-04-15

    The hypermethylated tumor suppressor gene promoters are widely recognized as promising markers for cancer screening and ideal targets for cancer therapy, however, a major obstacle in their clinical study is highly sensitive screening. To address this limitation, we developed a novel bisulfite-microfluidic temperature gradient capillary electrophoresis (bisulfite-μTGCE) platform for gene methylation analysis by combining bisulfite treatment and slantwise radiative heating system-based μTGCE. Bisulfite-treated genomic DNA (gDNA) was amplified with universal primers for both methylated and unmethylated sequences, and introduced into glass microfluidic chip to perform electrophorectic separation under a continuous temperature gradient based on the formation of heteroduplexes. Eight CDKN2A promoter model fragments with different number and location of methylation sites were prepared and successfully analyzed according to their electrophoretic peak patterns, with high stability, picoliter-scale sample consumption, and significantly increased detection speed. The bisulfite-μTGCE could detect methylated gDNA with a detection limit of 7.5pg, and could distinguish as low as 0.1% methylation level in CDKN2A in an unmethylated background. Detection of seven colorectal cancer (CRC) cell lines with known and unknown methylation statuses of CDKN2A promoter and 20 tumor tissues derived from CRC patients demonstrated the capability of detecting hypermethylation in real-world samples. The wider adaptation of this platform was further supported by the detection of the CDKN2A and MLH1 promoters' methylation statuses in combination. This highly sensitive, fast, and low-consumption platform for methylation detection shows great potential for future clinical applications.

  16. O 6 -methylguanine DNA methyltransferase gene promoter methylation in high-grade gliomas: A review of current status

    Directory of Open Access Journals (Sweden)

    Vaishali Suri

    2011-01-01

    Full Text Available Assessment of promoter methylation of the O 6 -methylguanine DNA methyltransferase (MGMT gene has recently gained importance in molecular profiling of high-grade gliomas. It has emerged not only as an important prognostic marker but also as a predictive marker for response to temozolomide in patients with newly diagnosed glioblastoma. Further, recent studies indicate that MGMT promoter methylation has strong prognostic relevance even in anaplastic (grade III gliomas, irrespective of therapy (chemotherapy or radiotherapy. This article provides an overview of its use as a predictive and prognostic biomarker, as well as the methods employed for its assessment and use in therapeutic decision making.

  17. CpG promoter methylation status is not a prognostic indicator of gene expression in beryllium challenge.

    Science.gov (United States)

    Tooker, Brian C; Ozawa, Katherine; Newman, Lee S

    2016-05-01

    Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the six CpG sites tested. H36.12J cell TNFα expression was shown to be metal-specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride, but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNγ promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p beryllium had no impact on promoter methylation status, despite its ability to induce pro

  18. Promoter Methylation and Relative mRNA Expression of the p16 Gene in Cervical Cancer in North Indians.

    Science.gov (United States)

    Gupta, Amita; Ahmad, Mohammad Kaleem; Mahndi, Abbas Ali; Singh, Renu; Pradeep, Yashodhara

    2016-01-01

    Cervical carcinoma is one of the main causes of mortality in women worldwide as well as in India. It occurs as a result of various molecular events that develop from the combined influences of an individual's genetic predisposition and external agents such as smoking and menstrual hygiene, for example. However, infection with human papillomavirus (HPV) is the established major risk factor. The aim of the current study was to investigate p16 CpG island methylation and establish any correlation with mRNA expression in a north Indian population. We analyzed 196 woman volunteers out of which 98 were cases and 98 healthy controls. For the analysis of methylation pattern, DNA extracted from blood samples was modified with a bisulfate kit and used as template for methylation specific PCR (MSP). Quantitative real-time PCR (QRT-PCR) was performed to check mRNA expression. Correlation between methylation status of p16 gene and poor menstrual hygiene was significant (p=0.006), high parity cases showed methylation of p16 gene (p=0.031) with increased risk up to 1.86 times for cervical cancer and smoking was a strong risk factor associated with cervical cancer. We analyzed methylation pattern and found 60.3% methylation in cases with low mRNA expression level (0.014) as compared to controls (1.24). It was also observed that promoter methylation of p16 gene was significantly greater in FIGO stage III. We conclude that p16 methylation plays an important role in cervical cancer in the north Indian population and its methylation decreases mRNA expression. It can be used as an important and consistent blood biomarker in cervical cancer patients.

  19. Aberrant promoter methylation and gene expression of H-cadherin gene is associated with tumor progression and recurrence in epithelial ovarian carcinoma

    Directory of Open Access Journals (Sweden)

    Rahul Bhagat

    2014-01-01

    Full Text Available Background: Loss of expression of cadherins by promoter hypermethylation has been described in many epithelial cancers, and it may play a role in tumor cell invasion and metastasis. Previously, we reported that E-cadherin gene is frequently methylated in epithelial ovarian cancer. Aim: The aim of this study was to compare the promoter hypermethylation of H-cadherin gene in ovarian epithelial neoplasms to better understand the role of epigenetic silencing in carcinogenesis. Materials and Methods: We examined the promoter methylation of the H-cadherin gene in 134 epithelial ovarian carcinomas (EOC, 23 low malignant potential (LMP tumors, 26 benign cystadenomas and 15 normal ovarian tissues. Methylation was investigated by methylation specific polymerase chain reaction (MSP and the results confirmed by bisulfite DNA sequencing. Relative gene expression of H-cadherin was done using quantitative reverse transcriptase PCR on 51 EOC cases, 9 LMP tumors, 7 benign cystadenomas with 5 normal ovarian tissues. Results: Aberrant methylation of H-cadherin was present in 20 of 134 (15% carcinoma cases, 2 of 23 (09% LMP tumors and 1 of 26 (4% benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of H-cadherin was significantly down-regulated in EOC and LMP tumors than the corresponding normal tissues, whereas the expression level was normal in benign cystadenomas. A significant correlation of H-cadherin promoter methylation was observed with reduced gene expression in EOC. The prevalence of H-cadherin methylation was associated significantly with stage, histopathological grade, and menopausal status of the patient. H-cadherin methylation also had significant association with recurrence and differentiation of tumor. Conclusion: Our findings suggest an association between H-cadherin methylation, tumor progression and recurrence in EOC.

  20. Multi-Vitamins, Folate, and Green Vegetables Protect Against Gene Promoter Methylation in the Aerodigestive Tract of Smokers

    OpenAIRE

    Stidley, Christine A.; Picchi, Maria A.; Leng, Shuguang; Willink, Randy; Crowell, Richard E.; Flores, Kristina G.; Kang, Huining; Byers, Tim; Gilliland, Frank D.; Belinsky, Steven A.

    2010-01-01

    The detection of gene promoter hypermethylation in sputum is a promising molecular marker for early lung cancer detection. Epidemiologic studies suggest that dietary fruits and vegetables and the micronutrients they contain may reduce risk of lung cancer. This investigation evaluated whether diet and multi-vitamin use influence the prevalence for gene methylation in the cells exfoliated from the aerodigestive tract of current and former smokers. Members (n = 1101) of the Lovelace Smokers Coho...

  1. Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Lv Shunli

    2010-03-01

    Full Text Available Abstract Background The secreted protein acidic and rich in cysteine (SPARC plays a pivotal role in regulating cell-matrix interactions and tumor angiogenesis, proliferation, and migration. Detection of SPARC gene methylation may be useful as a tumorigenesis marker for early detection of pancreatic cancer. Methods Methylation of the SPARC gene transcriptional regulation region (TRR was detected using bisulfite-specific (BSP PCR-based sequencing analysis in 40 cases of pancreatic cancer and the adjacent normal tissues, 6 chronic pancreatitis tissues, and 6 normal pancreatic tissues. BSP cloning-based sequencing analysis was also performed in selected cases. Clinicopathological data from the cancer patients were collected and analyzed. Results Analysis of SPARC gene TRR methylation showed two hypermethylation wave peak regions: CpG Region 1 (CpG site 1-7 and CpG Region 2 (CpG site 8-12. Pancreatic tissues have shown methylation in both regions with gradual increases from normal, chronic pancreatitis, and adjacent normal tissues to cancerous tissues. However, Methylation of CpG Region 2 was more sensitive than CpG Region 1 in pancreatic tumorigenesis. Furthermore, the methylation level of CpG Region 2 was associated with increased tumor size and exposure to the risk factors (tobacco smoke and alcohol consumption for developing pancreatic cancer. Conclusion Methylation of the SPARC gene, specifically CpG Region 2, may be an early event during pancreatic tumorigenesis and should be further evaluated as a tumorigenesis marker for early detection of pancreatic cancer.

  2. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    NARCIS (Netherlands)

    E.H.J. van Roon (Eddy); A. Boot (Arnoud); A.A. Dihal (Ashwin); R.F. Ernst (Robert); T. van Wezel (Tom); H. Morreau (Hans); J.M. Boer (Judith)

    2013-01-01

    textabstractBackground: Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have

  3. Both gene deletion and promoter hyper-methylation contribute to the down-regulation of ZAC/PLAGL1 gene in gastric adenocarcinomas: a case control study.

    Science.gov (United States)

    Li, Zhi; Ding, Yi; Zhu, Yunliang; Yin, Mingxing; Le, Xiaoping; Wang, Luo; Yang, Yang; Zhang, Qinxian

    2014-12-01

    Pleiomorphic adenoma gene-like 1 (PLAGL1, also known as LOT1 and ZAC) is a zinc-finger nuclear transcription factor, which possesses antiproliferative effects and is frequently epigenetically silenced during tumorigenesis. PLAGL1 gene is located on 6q24-25, a chromosomal region that is frequently deleted in various kinds of cancers. Both promoter hyper-methylation and loss of heterozygosity may lead to the down-regulation of PLAGL1 in human somatic cancers. Here we aimed to investigate the abnormalities of PLAGL1 in gastric cancers. We collected 153 case-matched gastric adenocarcinoma (GAC) cases. Quantitative real-time PCR method was applied to evaluate the expression levels as well as gene copy numbers of PLAGL1 in the collected samples. Methylation-specific PCR (MSP) assay was performed to analyze the methylation status of PLAGL1 P1 promoter. Decreased expression of PLAGL1 mRNA was observed in GAC tissues, especially in advanced GACs. Copy number decrease of PLAGL1 gene in GACs was observed in 9.15% (19 out of 153) of the GAC samples and was closely correlated with gene expression. Methylation status of PLAGL1 promoter in GAC tissues was higher than in normal controls, which was inversely correlated with the expression levels of PLAGL1 mRNA. DNA deletion and promoter hyper-methylation both contribute to the down-regulation of PLAGL1 in GACs. Copyright © 2013. Published by Elsevier Masson SAS.

  4. Frequent Promoter Methylation of CDH1, DAPK, RARB, and HIC1 Genes in Carcinoma of Cervix Uteri: Its Relationship to Clinical Outcome

    Directory of Open Access Journals (Sweden)

    Schneider Achim

    2003-05-01

    Full Text Available Abstract Background Cervical cancer (CC, a leading cause of cancer-related deaths in women worldwide, has been causally linked to genital human papillomavirus (HPV infection. Although a host of genetic alterations have been identified, molecular basis of CC development is still poorly understood. Results We examined the role of promoter hypermethylation, an epigenetic alteration that is associated with the silencing tumor suppressor genes in human cancer, by studying 16 gene promoters in 90 CC cases. We found a high frequency of promoter methylation in CDH1, DAPK, RARB, and HIC1 genes. Correlation of promoter methylation with clinical characteristics and other genetic changes revealed the following: a overall promoter methylation was higher in more advanced stage of the disease, b promoter methylation of RARB and BRCA1 predicted worse prognosis, and c the HIC1 promoter methylation was frequently seen in association with microsatellite instability. Promoter methylation was associated with gene silencing in CC cell lines. Treatment with methylation or histone deacetylation-inhibiting agents resulted in profound reactivation of gene expression. Conclusions These results may have implications in understanding the underlying epigenetic mechanisms in CC development, provide prognostic indicators, and identify important gene targets for treatment.

  5. Racial Differences in DNA-Methylation of CpG Sites Within Preterm-Promoting Genes and Gene Variants.

    Science.gov (United States)

    Salihu, H M; Das, R; Morton, L; Huang, H; Paothong, A; Wilson, R E; Aliyu, M H; Salemi, J L; Marty, P J

    2016-08-01

    Objective To evaluate the role DNA methylation may play in genes associated with preterm birth for higher rates of preterm births in African-American women. Methods Fetal cord blood samples from births collected at delivery and maternal demographic and medical information were used in a cross-sectional study to examine fetal DNA methylation of genes implicated in preterm birth among black and non-black infants. Allele-specific DNA methylation analysis was performed using a methylation bead array. Targeted maximum likelihood estimation was applied to examine the relationship between race and fetal DNA methylation of candidate preterm birth genes. Receiver-operating characteristic analyses were then conducted to validate the CpG site methylation marker within the two racial groups. Bootstrapping, a method of validation and replication, was employed. Results 42 CpG sites were screened within 20 candidate gene variants reported consistently in the literature as being associated with preterm birth. Of these, three CpG sites on TNFAIP8 and PON1 genes (corresponding to: cg23917399; cg07086380; and cg07404485, respectively) were significantly differentially methylated between black and non-black individuals. The three CpG sites showed lower methylation status among infants of black women. Bootstrapping validated and replicated results. Conclusion for Practice Our study identified significant differences in levels of methylation on specific genes between black and non-black individuals. Understanding the genetic/epigenetic mechanisms that lead to preterm birth may lead to enhanced prevention strategies to reduce morbidity and mortality by eventually providing a means to identify individuals with a genetic predisposition to preterm labor.

  6. Lower methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of veterans with posttraumatic stress disorder.

    Science.gov (United States)

    Yehuda, Rachel; Flory, Janine D; Bierer, Linda M; Henn-Haase, Clare; Lehrner, Amy; Desarnaud, Frank; Makotkine, Iouri; Daskalakis, Nikolaos P; Marmar, Charles R; Meaney, Michael J

    2015-02-15

    Enhanced glucocorticoid receptor (GR) sensitivity is present in people with posttraumatic stress disorder (PTSD), but the molecular mechanisms of GR sensitivity are not understood. Epigenetic factors have emerged as one potential mechanism that account for how trauma exposure leads to sustained PTSD symptoms given that PTSD develops in only a subset of trauma survivors. Cytosine methylation of a relevant promoter of the GR gene (NR3C1-1F promoter) and three functional neuroendocrine markers of hypothalamic-pituitary-adrenal axis function were examined in a sample of 122 combat veterans. Lower NR3C1-1F promoter methylation in peripheral blood mononuclear cells (PBMCs) was observed in combat veterans with PTSD compared with combat-exposed veterans who did not develop PTSD. NR3C1-1F promoter methylation was also associated with three functional measures of glucocorticoid activity that have been associated with PTSD in combat veterans: PBMCs' lysozyme inhibition on the lysozyme suppression test, plasma cortisol decline on the low-dose (.50 mg) dexamethasone suppression test, and 24-hour urinary cortisol excretion. Finally, NR3C1-1F promoter methylation was inversely correlated with clinical markers and symptoms associated with PTSD. Alterations in NR3C1-1F promoter methylation may reflect enduring changes resulting from combat exposure that lead to functional neuroendocrine alterations. Because epigenetic measures are thought to reflect enduring effects of environmental exposures, they may be useful in distinguishing combat-exposed veterans who do or do not develop PTSD. Published by Elsevier Inc.

  7. Correlation between ECT2 gene expression and methylation change of ECT2 promoter region in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Mang-Li Zhang; Sen Lu; Lin Zhou; Shu-Sen Zheng

    2008-01-01

    BACKGROUND: Pancreatic cancer is closely related to epigenetic abnormality. The epithelial cell transforming sequence 2 gene (ECT2) plays a critical role in Rho activation during cytokinesis, and thus may play a role in the pathogenesis of pancreatic cancer. In this study, we investigated the relationships between aberrant expression and epigenetic changes of the ECT2 gene in pancreatic cancer. METHODS: Four cell lines (PANC-1, Colo357, T3M-4 and PancTuⅠ) and pancreatic ductal adenocarcinoma (PDAC) tissues were used for mRNA detection. After restriction isoschizomer endonucleases (MspⅠ/HpaⅡ) were used to digest the DNA sequence (5'-CCGG-3'), PCR was made to amplify the product. And RT-PCR was applied to determine the expression of the gene. RESULTS: The mRNA expression of the ECT2 gene was higher in pancreatic tumor tissue than in normal tissue. The gene was also expressed in the 4 PDAC cell lines. The methylation states of the upstream regions of the ECT2 gene were almost identical in normal, tumor pancreatic tissues, and the 4 PDAC cell lines. Some of the 5'-CCGG-3' areas in the upstream region of ECT2 were methylated, while others were unmethylated. CONCLUSIONS: The oncogene ECT2 is overexpressed in pancreatic tumor tissues as veriifed by RT-PCR detection. The methylation status of DNA in promoter areas is involved in the gene expression, along with other factors, in pancreatic cancer.

  8. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma

    Directory of Open Access Journals (Sweden)

    Wang Yifei

    2004-09-01

    Full Text Available Abstract Background Astrocytoma is a common aggressive intracranial tumor and presents a formidable challenge in the clinic. Association of altered DNA methylation patterns of the promoter CpG islands with the expression profile of cancer-related genes, has been found in many human tumors. Therefore, DNA methylation status as such may serve as an epigenetic biomarker for both diagnosis and prognosis of human tumors, including astrocytoma. Methods We used the methylation specific PCR in conjunction with sequencing verification to establish the methylation profile of the promoter CpG island of thirty four genes in astrocytoma tissues from fifty three patients (The WHO grading:. I: 14, II: 15, III: 12 and IV: 12 cases, respectively. In addition, compatible tissues (normal tissues distant from lesion from three non-astrocytoma patients were included as the control. Results Seventeen genes (ABL, APC, APAF1, BRCA1, CSPG2, DAPK1, hMLH1, LKB1, PTEN, p14ARF, p15INK4b, p27KIP1, p57KIP2, RASSF1C, RB1, SURVIVIN, and VHL displayed a uniformly unmethylated pattern in all the astrocytoma and non-astrocytoma tissues examined. However, the MAGEA1 gene that was inactivated and hypermethylated in non-astrocytoma tissues, was partially demethylated in 24.5% of the astrocytoma tissues (co-existence of the hypermethylated and demethylated alleles. Of the astrocytoma associated hypermethylated genes, the methylation pattern of the CDH13, cyclin a1, DBCCR1, EPO, MYOD1, and p16INK4a genes changed in no more than 5.66% (3/53 of astrocytoma tissues compared to non-astrocytoma controls, while the RASSF1A, p73, AR, MGMT, CDH1, OCT6,, MT1A, WT1, and IRF7 genes were more frequently hypermethylated in 69.8%, 47.2%, 41.5%, 35.8%, 32%, 30.2%, 30.2%, 30.2% and 26.4% of astrocytoma tissues, respectively. Demethylation mediated inducible expression of the CDH13, MAGEA1, MGMT, p73 and RASSF1A genes was established in an astrocytoma cell line (U251, demonstrating that expression of

  9. Loss of heterozygosity of the Mutated in Colorectal Cancer gene is not associated with promoter methylation in non-small cell lung cancer.

    Science.gov (United States)

    Poursoltan, Pirooz; Currey, Nicola; Pangon, Laurent; van Kralingen, Christa; Selinger, Christina I; Mahar, Annabelle; Cooper, Wendy A; Kennedy, Catherine W; McCaughan, Brian C; Trent, Ronald; Kohonen-Corish, Maija R J

    2012-08-01

    'Mutated in Colorectal Cancer' (MCC) is emerging as a multifunctional protein that affects several cellular processes and pathways. Although the MCC gene is rarely mutated in colorectal cancer, it is frequently silenced through promoter methylation. Previous studies have reported loss of heterozygosity (LOH) of the closely linked MCC and APC loci in both colorectal and lung cancers. APC promoter methylation is a marker of poor survival in non-small cell lung cancer (NSCLC). However, MCC methylation has not been previously studied in lung cancer. Therefore, we wanted to determine if MCC is silenced through promoter methylation in lung cancer and whether this methylation is associated with LOH of the MCC locus or methylation of the APC gene. Three polymorphic markers for the APC/MCC locus were analysed for LOH in 64 NSCLC specimens and matching normal tissues. Promoter methylation of both genes was determined using methylation specific PCR in primary tumours. LOH of the three markers was found in 41-49% of the specimens. LOH within the MCC locus was less common in adenocarcinoma (ADC) (29%) than in squamous cell carcinoma (SCC) (72%; P=0.006) or large cell carcinoma (LCC) (75%; P=0.014). However, this LOH was not accompanied by MCC promoter methylation, which was found in only two cancers (3%). In contrast, 39% of the specimens showed APC methylation, which was more common in ADC (58%) than in SCC (13%). Western blotting revealed that MCC was expressed in a subset of lung tissue specimens but there was marked variation between patients rather than between cancer and matching non-cancer tissue specimens. In conclusion, we have shown that promoter methylation of the APC gene does not extend to the neighbouring MCC gene in lung cancer, but LOH is found at both loci. The variable levels of MCC expression were not associated with promoter methylation and may be regulated through other cellular mechanisms.

  10. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation.

    Directory of Open Access Journals (Sweden)

    Benoit Guillemette

    2011-03-01

    Full Text Available Methylation of histone H3 lysine 4 (H3K4me is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP, we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3, a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS, which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me.

  11. Protective vaccination and blood-stage malaria modify DNA methylation of gene promoters in the liver of Balb/c mice.

    Science.gov (United States)

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel-Azeem S; Ghanjati, Foued; Erichsen, Lars; Santourlidis, Simeon; Wunderlich, Frank; Araúzo-Bravo, Marcos J

    2017-05-01

    Epigenetic mechanisms such as DNA methylation are increasingly recognized to be critical for vaccination efficacy and outcome of different infectious diseases, but corresponding information is scarcely available for host defense against malaria. In the experimental blood-stage malaria Plasmodium chabaudi, we investigate the possible effects of a blood-stage vaccine on DNA methylation of gene promoters in the liver, known as effector against blood-stage malaria, using DNA methylation microarrays. Naturally susceptible Balb/c mice acquire, by protective vaccination, the potency to survive P. chabaudi malaria and, concomitantly, modifications of constitutive DNA methylation of promoters of numerous genes in the liver; specifically, promoters of 256 genes are hyper(=up)- and 345 genes are hypo(=down)-methylated (p malaria, as, e.g., recruitment of monocyte/macrophage to the liver accelerated liver regeneration and extramedullary hepatic erythropoiesis, thus leading to self-healing of otherwise lethal P. chabaudi blood-stage malaria.

  12. Methylenetetrahydrofolate reductase C677T genotype affects promoter methylation of tumor-specific genes in sporadic colorectal cancer through an interaction with folate/vitamin B12 status

    Institute of Scientific and Technical Information of China (English)

    Pooneh Mokarram; Fakhraddin Naghibalhossaini; Mehdi Saberi Firoozi; Seyed Vahid Hosseini; Ahmad Izadpanah; Heshmetalah Salahi; Seyed Ali Malek-Hosseini; Abdoulrasool Talei; Mehra Mojallal

    2008-01-01

    AIM: To evaluate joint effects of Methy/entetra-hydrofolate reductase (MTHFR) C677Tgenotypes, and serum folate/vitamin B12 concentrations on promoter methylation of tumor-associated genes among Iranian colorectal cancer patients.METHODS: We examined the associations between MTHFR C677T genotype, and promoter methylation of P16, Hmlh1, and Hmsh2 tumor-related genes amonq 151 sporadic colorectal cancer patients. The promoter methylation of tumor-related genes was determined by methylation-specific PCR. Eighty six patients from whom fresh tumor samples were obtained and 81 controls were also examined for serum folate and vitamin B12, concentrations by a commercia radioimmunoassay kit.RESULTS: We found 29.1% of cases had tumors with at least one methylated gene promoter. In case-case comparison, we did not find a significant association between methylation in tumors and any single genotype. However, in comparison to controls with the CC genotype, an increased risk of tumor methylation was associated with the CT genotype (OR=2.5;95% CI,1.1-5.6). In case-case comparisons, folate/vitamin B12 levels were positively associated with tumor methylation. Adjusted odds ratios for tumor methylation in cases with high (above median) versus low (below median) serum folate/vitamin B12 levels were 4.9 (95% CI,1.4-17.7), and 3.9 (95% CI,1.1-13.9), respectively. The frequency of methylated tumors was significantly higher in high methyl donor than low methyl donor group, especially in those with MTHFR CT (P=0.01), and CT/TT (P=0.002) genotypes, but not in those with the CC genotype (P=1.0).CONCLUSION: We conclude that high concentrations of serum folate/vitamin B12 levels are associated with the risk of promoter methylation in tumor-specific genes, and this relationship is modified by MTHFR C677T genotypes.

  13. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    Science.gov (United States)

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  14. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes.

    Science.gov (United States)

    Fradin, Delphine; Le Fur, Sophie; Mille, Clémence; Naoui, Nadia; Groves, Chris; Zelenika, Diana; McCarthy, Mark I; Lathrop, Mark; Bougnères, Pierre

    2012-01-01

    The insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10(-16)) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8-15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r = 0.77) and CpG -135 and -234 (r = 0.65). 70/485 (14%) of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D) who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p = 2.10(-6)) but increased CpG-234 methylation (p = 5.10(-8)), the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined.

  15. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Delphine Fradin

    Full Text Available The insulin (INS region is the second most important locus associated with Type 1 Diabetes (T1D. The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10(-16 and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8-15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r = 0.77 and CpG -135 and -234 (r = 0.65. 70/485 (14% of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p = 2.10(-6 but increased CpG-234 methylation (p = 5.10(-8, the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined.

  16. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

    Science.gov (United States)

    Miyata, Kohei; Miyata, Tomoko; Nakabayashi, Kazuhiko; Okamura, Kohji; Naito, Masashi; Kawai, Tomoko; Takada, Shuji; Kato, Kiyoko; Miyamoto, Shingo; Hata, Kenichiro; Asahara, Hiroshi

    2015-01-15

    Although DNA methylation is considered to play an important role during myogenic differentiation, chronological alterations in DNA methylation and gene expression patterns in this process have been poorly understood. Using the Infinium HumanMethylation450 BeadChip array, we obtained a chronological profile of the genome-wide DNA methylation status in a human myoblast differentiation model, where myoblasts were cultured in low-serum medium to stimulate myogenic differentiation. As the differentiation of the myoblasts proceeded, their global DNA methylation level increased and their methylation patterns became more distinct from those of mesenchymal stem cells. Gene ontology analysis revealed that genes whose promoter region was hypermethylated upon myoblast differentiation were highly significantly enriched with muscle-related terms such as 'muscle contraction' and 'muscle system process'. Sequence motif analysis identified 8-bp motifs somewhat similar to the binding motifs of ID4 and ZNF238 to be most significantly enriched in hypermethylated promoter regions. ID4 and ZNF238 have been shown to be critical transcriptional regulators of muscle-related genes during myogenic differentiation. An integrated analysis of DNA methylation and gene expression profiles revealed that de novo DNA methylation of non-CpG island (CGI) promoters was more often associated with transcriptional down-regulation than that of CGI promoters. These results strongly suggest the existence of an epigenetic mechanism in which DNA methylation modulates the functions of key transcriptional factors to coordinately regulate muscle-related genes during myogenic differentiation.

  17. Control of Glycosylation-Related Genes by DNA Methylation: the Intriguing Case of the B3GALT5 Gene and Its Distinct Promoters.

    Science.gov (United States)

    Trinchera, Marco; Zulueta, Aida; Caretti, Anna; Dall'Olio, Fabio

    2014-08-04

    Glycosylation is a metabolic pathway consisting of the enzymatic modification of proteins and lipids through the stepwise addition of sugars that gives rise to glycoconjugates. To determine the full complement of glycoconjugates that cells produce (the glycome), a variety of genes are involved, many of which are regulated by DNA methylation. The aim of the present review is to briefly describe some relevant examples of glycosylation-related genes whose DNA methylation has been implicated in their regulation and to focus on the intriguing case of a glycosyltransferase gene (B3GALT5). Aberrant promoter methylation is frequently at the basis of their modulation in cancer, but in the case of B3GALT5, at least two promoters are involved in regulation, and a complex interplay is reported to occur between transcription factors, chromatin remodelling and DNA methylation of typical CpG islands or even of other CpG dinucleotides. Transcription of the B3GALT5 gene underwent a particular evolutionary fate, so that promoter hypermethylation, acting on one transcript, and hypomethylation of other sequences, acting on the other, cooperate on one gene to obtain full cancer-associated silencing. The findings may also help in unravelling the complex origin of serum CA19.9 antigen circulating in some patients.

  18. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    Directory of Open Access Journals (Sweden)

    Tatsuya eKon

    2014-11-01

    Full Text Available Apple latent spherical virus (ALSV is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the CaMV 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation 0 plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.

  19. Dysfunction of endothelial NO system originated from homocysteine-induced aberrant methylation pattern in promoter region of DDAH2 gene

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-ge; LIU Jun-xu; LI Zhu-hua; WANG Li-zhen; JIANG Yi-deng; WANG Shu-ren

    2007-01-01

    Background Hyperhomocysteinemia (HHcy)-mediated dysfunction of endothelial NO system is an important mechanism for atherosclerotic pathogenesis.Dimethylarginine dimethylaminohydrolase (DDAH) is the key enzyme for degrading asymmetric dimethylarginine (ADMA),which is an endogenous inhibitor of endothelial nitric oxide (NO) synthase (eNOS).This study was designed to investigate whether the dysfunction of endothelial NO system originates from HHcy-mediated aberrant methylation modification in promotor region of DDAH2 gene.Methods Human umbilical vein endothelial cells (HUVECs) were cultured to the third generation and treated with homocysteine (Hcy) at different concentrations (0,10,30,100,and 300 μmol/L) for 72 hours.The methylation pattern in promoter region CpG island of DDAH2 gene was analyzed by nested methylation-specific PCR (nMSP).The mRNA expression of eNOS gene and DDAH2 gene was detected by semi-quantitative RT-PCR.The activity of DDAH2 and eNOS in cells,and the concentrations of ADMA and NO in culture medium were assayed respectively.Results Mild increased concentration of Hcy (10 and 30 μmol/L) induced hypomethylation,while high concentration of Hcy (100 and 300 μmol/L) induced hypermethylation in the promoter CpG island of DDAH2 gene.The mRNA expression of DDAH2 increased in mild enhanced concentration of Hcy,and decreased in high concentration of Hcy correspondingly.The inhibition of DDAH2 activity,the increase of ADMA concentration,the reduction of eNOS activity and the decrease of NO production were all consistently relevant to the alteration of Hcy concentration Conclusion The increased concentration of Hcy induced aberrant methylation pattern in promotor region of DDAH2 gene and the successive alterations in DDAH/ADMA/NOS/NO pathway,which showed highly relevant and dose-effect relationship.The results suggested that the dysfunction of endothelial NO system induced by HHcy could be partially originated from Hcy-mediated aberrant methylation in

  20. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway.

    Science.gov (United States)

    Ginis, Olivia; Courdavault, Vincent; Melin, Céline; Lanoue, Arnaud; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Courtois, Martine; Oudin, Audrey

    2012-05-01

    The Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C. roseus cell and tissue cultures. In previous studies, we demonstrated a coordinated regulation at the transcriptional and spatial levels of genes from both pathways. We report here on the isolation of the 5'-flanking region (1,049 bp) of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene from the MEP pathway. To investigate promoter transcriptional activities, the HDS promoter was fused to GUS reporter gene. Agrobacterium-mediated transformation of young tobacco leaves revealed that the cloned HDS promoter displays a tissue-specific GUS staining restricted to the vascular region of the leaves and limited to a part of the vein that encompasses the phloem in agreement with the previous localization of HDS transcripts in C. roseus aerial organs. Further functional characterizations in stably or transiently transformed C. roseus cells allowed us to identify the region that can be consider as the minimal promoter and to demonstrate the induction of HDS promoter by several hormonal signals (auxin, cytokinin, methyljasmonate and ethylene) leading to MIA production. These results, and the bioinformatic analysis of the HDS 5'-region, suggest that the HDS promoter harbours a number of cis-elements binding specific transcription factors that would regulate the flux of terpenoid precursors involved in MIA biosynthesis.

  1. HPV16 oncogenes E6 or/and E7 may influence the methylation status of RASSFIA gene promoter region in cervical cancer cell line HT-3.

    Science.gov (United States)

    Yin, Fufen; Wang, Ning; Wang, Shanshan; Yu, Fengsheng; Sun, Xin; Yu, Xiao; Luo, Bing; Zhao, Chengquan; Wang, Yankui

    2017-04-01

    Both human papillomavirus (HPV) infection and the aberrant Ras associated domain family gene 1A (RASSF1A) promoter methylation status participate in the pathogenesis of cervical cancer. Some studies suggest that E6, and E7 are involved in the pathogenetic mechanisms of RASSF1A. We mainly explored a possible involvement of HPV16 oncogenes E6 or/and E7 in RASSF1A promoter methylation status and possible roles of RASSF1A gene methylation in cervical cancer. Bisulfite genomic sequencing (BGS) PCR combined with TA clone, methylation-specific PCR (MSP) were used to analyze methylation status of the RASSF1A gene promoter in HPV16/18-positive and HPV-negative cervical cancer cell lines; ectopically expressed HPV16 E6, E7 and E6/E7 cervical cancer cell lines; normal cervical and cervical cancer tissues. The mRNA and protein expression of RASSF1A was detected by RT-PCR and western blotting. Re-expression and downregulated promoter methylation status were detected in the ectopically expressed HPV16 E6 and E7 cervical cancer cell line HT-3. The methylation status and expression of RASSF1A could be downregulated or reactivated by 5-Aza-dc in HT-3 and C33A cells. Additionally, statistics showed significant hypermethylation of RASSF1A in cervical cancer samples compared to that in normal cervical samples (PE6 and/or E7 may be involved in aberrant methylation and expression of the RASSF1A gene. RASSF1A gene expression could be regulated by its promoter methylation status. Additionally, the false negativity of the HPV detection may contribute to the uncertain relationship between HPV infection and aberrant RASSF1A promoter methylation.

  2. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls.

    Science.gov (United States)

    Guo, F; Yang, B; Ju, Z H; Wang, X G; Qi, C; Zhang, Y; Wang, C F; Liu, H D; Feng, M Y; Chen, Y; Xu, Y X; Zhong, J F; Huang, J M

    2014-02-01

    The sperm flagella 2 (SPEF2) gene is essential for development of normal sperm tail and male fertility. In this study, we characterized first the splice variants, promoter and its methylation, and functional single-nucleotide polymorphisms (SNPs) of the SPEF2 gene in newborn and adult Holstein bulls. Four splice variants were identified in the testes, epididymis, sperm, heart, spleen, lungs, kidneys, and liver tissues through RT-PCR, clone sequencing, and western blot analysis. Immunohistochemistry revealed that the SPEF2 was specifically expressed in the primary spermatocytes, elongated spermatids, and round spermatids in the testes and epididymis. SPEF2-SV1 was differentially expressed in the sperms of high-performance and low-performance adult bulls; SPEF2-SV2 presents the highest expression in testis and epididymis; SPEF2-SV3 was only detected in testis and epididymis. An SNP (c.2851G>T) in exon 20 of SPEF2, located within a putative exonic splice enhancer, potentially produced SPEF2-SV3 and was involved in semen deformity rate and post-thaw cryopreserved sperm motility. The luciferase reporter and bisulfite sequencing analysis suggested that the methylation pattern of the core promoter did not significantly differ between the full-sib bulls that presented hypomethylation in the ejaculated semen and testis. This finding indicates that sperm quality is unrelated to SPEF2 methylation pattern. Our data suggest that alternative splicing, rather than methylation, is involved in the regulation of SPEF2 expression in the testes and sperm and is one of the determinants of sperm motility during bull spermatogenesis. The exonic SNP (c.2851G>T) produces aberrant splice variants, which can be used as a candidate marker for semen traits selection breeding of Holstein bulls.

  3. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Xu; Jing-De Zhu; Jian Yu; Hong-Yu Zhang; Meng-Hong Sun; Jun Gu; Xiang Du; Da-Ren Shi; Peng Wang; Zhen-Hua Yang

    2004-01-01

    AIM: To establish the methylation profile of the promoter CpG islands of 31 genes that might play etiological roles in colon carcinogenesis.METHODS: The methylation specific PCR in conjunction of sequencing verification was used to establish the methylationprofile of the promoter CpG islands of 31 genes in colorectal cancer (n = 65), the neighboring non-cancerous tissues (n = 5), colorectal adenoma (n = 8), and normal mucosa (n = 1). Immunohistochemically, expression of 10 genes was assessed on the home-made tissue microarrays of tissues from 58 patients. The correlation of tumor specific changes with each of clinical-pathologic features was scrutinized with relevant statistic tools.RESULTS: In comparison with the normal mucosa of the non-cancer patients, the following 14 genes displayed no tumor associated changes: breast cancer 1, early onset (BRCA1), cadherin 1, type 1, E-cadherin (epithelial) (CDH1),death-associated protein kinase 1 (DAPK1), DNA (cytosine5-)-methyltransferase 1 (DNMT1), melanoma antigen, family A, 1 (directs expression of antigen MZ2-E) (MAGEA1), tumor suppressor candidate 3 (N33), cyclin-dependent kinase inhibitor 1A (p21, Cip1) (p21WAF1), cyclin-dependent kinase inhibitor 1B (p27, Kip1) (p27KIP1) , phosphatase and tensin homlog (mutated in multiple advanced cancers 1) (PTEN), retinoic acid receptor, beta (RAR-, Ras association (RalGDS/AF-6)domain family 1 C (RASSF1C), secreted frizzled-related protein 1 (SFRP1), tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoinfiammatory) (TIMP3),and von Hippel-Lindau syndrome (VHL). The rest 17 targets exhibited to various extents the tumor associated changes.As changes in methylation of the following genes occurred marginally, their impact on the formation of colorectal cancer were trivial: adenomatous polyposis coli (APC) (8%, 5/65),Ras association (RalGDS/AF-6) domain family 1A (RASSF1A) (3%, 2/65) and cyclin-dependent kinase inhibitor 2A,alternated reading frame (p14ARF) (6%, 4

  4. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism.

    Science.gov (United States)

    Coppedè, Fabio; Migheli, Francesca; Lopomo, Angela; Failli, Alessandra; Legitimo, Annalisa; Consolini, Rita; Fontanini, Gabriella; Sensi, Elisa; Servadio, Adele; Seccia, Massimo; Zocco, Giuseppe; Chiarugi, Massimo; Spisni, Roberto; Migliore, Lucia

    2014-04-01

    We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.

  5. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker.

    Science.gov (United States)

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-12-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects' positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals' FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = -0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment.

  6. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker

    Directory of Open Access Journals (Sweden)

    Gloria Ravegnini

    2015-12-01

    Full Text Available One challenge in colorectal cancer (CRC is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects’ positive fecal occult blood test (FOBT. In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals’ FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006. In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001. Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = −0.926, p = 0.0001. With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108 in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007. While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment.

  7. Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available DNA methylation disturbance is associated with defective human sperm. However, oligozoospermia (OZ and asthenozoospermia (AZ usually present together, and the relationship between the single-phenotype defects in human sperm and DNA methylation is poorly understood. In this study, 20 infertile OZ patients and 20 infertile AZ patients were compared with 20 fertile normozoospermic men. Bisulfate-specific PCR was used to analyze DNA methylation of the H19-DMR and the DAZL promoter in these subjects. A similar DNA methylation pattern of the H19-DMR was detected in AZ and NZ(control, with only complete methylation and mild hypomethylation(0.05. However, the methylation pattern of severe hypomethylation (>50% unmethylated CpGs and complete unmethylation was only detected in 5 OZ patients, and the occurrence of these two methylation patterns was 8.54±10.86% and 9±6.06%, respectively. Loss of DNA methylation of the H19-DMR in the OZ patients was found to mainly occur in CTCF-binding site 6, with occurrence of 18.15±14.71%, which was much higher than that in patients with NZ (0.84±2.05% and AZ (0.58±1.77% (P20% methylated clones in the DAZL promoter only in infertile patients, there was no significant difference between the AZ and OZ patients in the proportion of moderately-to-severely hypermethylated clones (p>0.05. In all cases, global sperm genome methylation analyses, using LINE1 transposon as the indicator, showed that dysregulation of DNA methylation is specifically associated with the H19-DMR and DAZL promoter. Therefore, abnormal DNA methylation status of H19-DMR, especially at the CTCF-binding site 6, is closely associated with OZ. Abnormal DNA methylation of the DAZL promoter might represent an epigenetic marker of male infertility.

  8. Methylation profile of the promoter CpG islands of 14"drug-resistance" genes in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Sheng Ding; Bang-Dong Gong; Jian Yu; Jun Gu; Hong-Yu Zhang; Zu-Bin Shang; Qi Fei; Peng Wang; Jing-De Zhu

    2004-01-01

    AIM: To establish the DNA methylation patterns of the promoter CpG islands of 14 "drug-resistance" genes in hepatocellular carcinoma (HCC).METHODS: The methylation specific polymerase chain reaction in conjunction with sequencing verification was used to establish the methylation patterns of the 14 genes in the liver tissues of four healthy liver donors, as well as tumor and the paired non-cancerous tissues of 30 HCC patients.RESULTS: While 11 genes (ATP-binding cassette, sub-family G (WHITE), member 2(ABCG2), activating transcription factor (ATF2), beta-2-microglobulin (B2M), deoxycytidine kinase (DCK), occludin (OCLN), v-raf-1 murine leukemia viral oncogene homolog (RAF1), ralA binding protein 1 (RALBP1),splicing factor (45 kD) (SPF45), S-phase kinase-associated protein 2 (p45) (SKP2), tumor protein p53 (Li-Fraumeni syndrome) (TP53) and topoisomerase (DNA) Ⅱ beta (TOP2B))maintained the unmethylated patterns, three genes displayed to various extents the hypermethylation state in tumor tissues in comparison with the normal counterparts. The catalase (CAT) was hypermethylated in tumor and the neighboring non-cancerous tissue of one case (3.3%). Both glutathione S-transferase pi (GSTpi) (80%, 24/30 in tumor and 56.7%,17/30 in the paired non-cancerous tissues) and cystic fibrosis transmembrane conductance regulator, ATP-binding cassette (sub-family C, member 7) (CFTR) (77%, 23/30 in tumor and 50%, 15/30 in the paired non-cancerous tissues) genes were prevalently hypermethylated in HCC as well as their neighboring non-cancerous tissues. No significant difference in the hypermethylation occurrence was observed between the HCC and its neighboring non-cancerous tissues.CONCLUSION: Hypermethylation of promoter CpG islands of both CFTR and GSTpi genes occurs prevalently in HCC,which may correlate with the low expression of these two genes at the mRNA level and has the profound etiological and clinical implications. It is likely to be specific to the early phase of HCC

  9. Screening of candidate tumor-suppressor genes in 3p21.3 and investigation of the methylation of gene promoters in oral squamous cell carcinoma.

    Science.gov (United States)

    Wang, Kai; Ling, Tianyou; Wu, Hanjiang; Zhang, Jie

    2013-03-01

    Oral squamous cell carcinoma (OSCC) is the most common type of head and neck malignant tumor. however, its pathological mechanisms have not yet been elucidated. In the present study, we screened for candidate tumor-suppressor genes (TSGs) related to OSCC among 10 candidate genes located in 3p21.3, a region abundant with TSGs based on previous studies, using semi-quantitative reverse transcription PCR (RT-PCR). Three genes, GNAT1, SEMA3B and AXUD1, with low or no expression in OSCC tissues and the cell line TCA8113 were selected, and the promoter methylation status was further analyzed by methylation-specific PCR (MS-PCR). Hypermethylation in the promoter regions of SEMA3B was found in OSCC tissues, and a significant difference in the frequency of methylation of SEMA3B was observed between OSCC and non-cancerous tissues. Furthermore, TCA8113 cells treated with 5-Aza-Cdc started to re-express SEMA3B at a concentration of 5 µM or higher. Our study confirmed that three candidate TSGs with low expression may be involved in OSCC and that hypermethylation in promoter regions may contribute to the low expression of SEMA3B. These findings offer novel insights for clarifying the molecular mechanisms of tumorigenesis of OSCC as well as for aiding in its clinical diagnosis and therapeutic strategy.

  10. Different Effects of Homocysteine and Oxidized Low Density Lipoprotein on Methylation Status in the Promoter Region of the Estrogen Receptor α Gene

    Institute of Scientific and Technical Information of China (English)

    Yushan HUANG; Kejun PENG; Juan SU; Yuping HUANG; Yizhou XU; Shuren WANG

    2007-01-01

    We investigated the effects of homocysteine (Hcy) and oxidized low density lipoprotein (oxLDL) on DNA methylation in the promoter region of the estrogen receptor α (ERα) gene, and its potential mechanism in the pathogenesis of atherosclerosis. Cultured smooth muscle cells (SMCs) of humans were treated by Hcy and ox-LDL with different concentrations for different periods of time. The DNA methylation status was assayed by nested methylation-specific polymerase chain reaction, the lipids that accumulated in the SMCs and foam cell formations were examined with Oil red O staining. The proliferation of SMCs was assayed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The results showed that ox-LDL in moderate concentrations (10-40 mg/L) induced de novo methylation in the promoter region of the ERα gene of SMCs. However, high concentrations (50 mg/L) of ox-LDL, resulted in demethylation of ERα. The Hcy treatment resulted in de novo methylation in the promoter region of the ERα gene with a concentration- and treating time-dependent manner, and a dose-dependent promoting effect on SMC proliferation. These data indicated that the two risk factors for atherosclerosis had the function of inducing de novo methylation in the promoter region of the ERα gene of SMCs. However, high concentrations (50mg/L) of ox-LDL induced demethylation, indicating that different risk factors of atherosclerosis with different potency might cause different aberrant methylation patterns in the promoter region of the ERα gene. The atherogenic mechanism of Hcy might involve the hypermethylation of the ERα gene, leading to the proliferation of SMCs in atherosclerotic lesions.

  11. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  12. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  13. Does promoter methylation of the SLC30A5 (ZnT5) zinc transporter gene contribute to the ageing-related decline in zinc status?

    Science.gov (United States)

    Coneyworth, L J; Mathers, J C; Ford, D

    2009-05-01

    A decline in Zn status with ageing may contribute to the development of frailty, including impaired immune function, and increased incidence of age-related degenerative diseases. This decline may be a result of reduced dietary Zn intake and/or impaired Zn absorption in the gut. The Zn transporter ZnT5 may play a key role in the absorption of dietary Zn. The corresponding gene (SLC30A5) has a CpG island in its promoter region, so could be regulated by epigenetic mechanisms. It is hypothesised that methylation of the SLC30A5 promoter region is increased with age and that a resulting reduction in ZnT5 expression contributes to the decline in Zn status observed with ageing. This hypothesis has been addressed through (1) studies of effects of SLC30A5 promoter methylation on gene expression in vitro and (2) in vivo measurements of the DNA methylation status of this gene domain. It has been established in vitro that methylation of the human SLC30A5 promoter region results in reduced expression of an associated reporter gene. Second, this gene region shows variable levels of methylation in vivo. Correlation between the level of methylation at this locus and age would support the hypothesis that age-related hypermethylation of this region has the potential to modulate dietary Zn absorption. This premise is being investigated by analysis of additional samples from a human adult cohort to test the hypothesis that methylation of the SLC30A5 promoter region contributes to the age-related decline in Zn status.

  14. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease.

    Directory of Open Access Journals (Sweden)

    Ping Peng

    Full Text Available AIMS: To investigate the association of ABCG1, GALNT2 and HMGCR genes promoter DNA methylation with coronary heart disease (CHD and explore the interaction between their methylation status and the CHD patients' clinical characteristics in Han Chinese population. METHODS AND RESULTS: Methylation-specific polymerase chain reaction (MSP technology was used to examine the role of the aberrant gene promoter methylation in CHD in Han Chinese population. A total of 85 CHD patients and 54 participants without CHD confirmed by angiography were recruited. 82.8% of the participants with ABCG1 gene promoter hypermethylation have CHD, while only 17.4% of the participants without hypermethylation have it. The average age of the participants with GALNT2 gene promoter hypermethylation is 62.10 ± 8.21, while that of the participants without hypermethylation is 57.28 ± 9.87; in the former group, 75.4% of the participants have CHD, compared to only 50% in the latter group. As for the HMGCR gene, the average age of the participants with promoter hypermethylation is 63.24 ± 8.10 and that of the participants without hypermethylation is 57.79 ± 9.55; its promoter hypermethylation is likely to be related to smoking. Our results indicated a significant statistical association of promoter methylation of the ABCG1 gene with increased risk of CHD (OR = 19.966; 95% CI, 7.319-54.468; P*<0.001; P*: adjusted for age, gender, smoking, lipid level, hypertension, and diabetes. Similar results were obtained for that of the GALNT2 gene (OR = 2.978; 95% CI, 1.335-6.646; P* = 0.008, but not of HMGCR gene (OR = 1.388; 95% CI, 0.572-3.371; P*  = 0.469. CONCLUSIONS: The present work provides evidence to support the association of promoter DNA methylation status with the risk profile of CHD. Our data indicates that promoter DNA hypermethylation of the ABCG1 and GALNT2 genes, but not the HMGCR gene, is associated with an increased risk of CHD. CHD, smoking and aging are likely to

  15. Investigation into the promoter DNA methylation of three genes (CAMK1D, CRY2 and CALM2) in the peripheral blood of patients with type 2 diabetes.

    Science.gov (United States)

    Cheng, Jia; Tang, Linlin; Hong, Qingxiao; Ye, Huadan; Xu, Xuting; Xu, Leiting; Bu, Shizhong; Wang, Qinwen; Dai, Dongjun; Jiang, Danjie; Duan, Shiwei

    2014-08-01

    Promoter DNA methylation may reflect the interaction between genetic backgrounds and environmental factors in the development of metabolic disorders, including type 2 diabetes (T2D). Calcium/calmodulin-dependent protein kinase 1D (CAMK1D), cryptochrome 2 (CRY2) and calmodulin 2 (CALM2) genes have been identified to be associated with a risk of T2D. Therefore, the aim of the present study was to investigate the contribution of promoter DNA methylation of these genes to the risk of T2D. Using bisulfite pyrosequencing technology, the DNA methylation levels of the CpG dinucleotides within the CAMK1D, CRY2 and CALM2 gene promoters were measured in 48 patients with T2D and 48 age- and gender-matched healthy controls. The results demonstrated that the promoters of these three genes were hypomethylated in the peripheral blood of all the subjects, and DNA methylation of these three genes did not contribute to the risk of T2D.

  16. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    Directory of Open Access Journals (Sweden)

    Dong Chan Moon

    Full Text Available Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs, (225RKRKRK(230. Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1 gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  17. DNA promoter methylation-dependent transcription of the double C2-like domain β (DOC2B) gene regulates tumor growth in human cervical cancer.

    Science.gov (United States)

    Kabekkodu, Shama Prasada; Bhat, Samatha; Radhakrishnan, Raghu; Aithal, Abhijit; Mascarenhas, Roshan; Pandey, Deeksha; Rai, Lavanya; Kushtagi, Pralhad; Mundyat, Gopinath Puthiya; Satyamoorthy, Kapaettu

    2014-04-11

    Double C2-like domain β (DOC2B) gene encodes for a calcium-binding protein, which is involved in neurotransmitter release, sorting, and exocytosis. We have identified the promoter region of the DOC2B gene as hypermethylated in pre-malignant, malignant cervical tissues, and cervical cancer cell lines by methylation-sensitive dimethyl sulfoxide-polymerase chain reaction and bisulfite genome sequencing; whereas, it was unmethylated in normal cervical tissues (p promoter hypermethylation was inversely associated with mRNA expression in SiHa, CaSki, and HeLa cells and treatment with demethylating agent 5-aza-2-deoxycytidine restored DOC2B expression. The region -630 to +25 bp of the DOC2B gene showed robust promoter activity by a luciferase reporter assay and was inhibited by in vitro artificial methylation with Sss1 methylase prior to transient transfections. Overexpression of the DOC2B gene in SiHa cells when compared with controls showed significantly reduced colony formation, cell proliferation, induced cell cycle arrest, and repressed cell migration and invasion (p promoter hypermethylation and silencing of the DOC2B gene is an early and frequent event during cervical carcinogenesis and whose reduced expression due to DNA promoter methylation may lead to selective cervical tumor growth.

  18. Ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changes in methylation of CpG promoter islands in the liver of mice.

    Science.gov (United States)

    Schmelzer, Constance; Kitano, Mitsuaki; Hosoe, Kazunori; Döring, Frank

    2012-03-01

    Coenzyme Q(10) is an essential cofactor in the respiratory chain and serves as a potent antioxidant in biological membranes. Recent studies in vitro and in vivo provide evidence that Coenzyme Q(10) is involved in inflammatory processes and lipid metabolism via gene expression. To study these effects at the epigenomic level, C57BL6J mice were supplemented for one week with reduced Coenzyme Q(10) (ubiquinol). Afterwards, gene expression signatures and DNA promoter methylation patterns of selected genes were analysed. Genome-wide transcript profiling in the liver identified 1112 up-regulated and 571 down-regulated transcripts as differentially regulated between ubiquinol-treated and control animals. Text mining and GeneOntology analysis revealed that the "top 20" ubiquinol-regulated genes play a role in lipid metabolism and are functionally connected by the PPARα signalling pathway. With regard to the ubiquinol-induced changes in gene expression of about +3.14-fold (p≤0.05), +2.18-fold (p≤0.01), and -2.13-fold (p≤0.05) for ABCA1, ACYP1, and ACSL1 genes, respectively, hepatic DNA methylation analysis of 282 (sense orientation) and 271 (antisense) CpG units in the respective promoter islands revealed no significant effect of ubiquinol. In conclusion, ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changing the promoter DNA methylation status in the liver of mice.

  19. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma.

    Science.gov (United States)

    Fabrizio, Federico Pio; Costantini, Manuela; Copetti, Massimiliano; la Torre, Annamaria; Sparaneo, Angelo; Fontana, Andrea; Poeta, Luana; Gallucci, Michele; Sentinelli, Steno; Graziano, Paolo; Parente, Paola; Pompeo, Vincenzo; De Salvo, Laura; Simone, Giuseppe; Papalia, Rocco; Picardo, Francesco; Balsamo, Teresa; Flammia, Gerardo Paolo; Trombetta, Domenico; Pantalone, Angela; Kok, Klaas; Paranita, Ferronika; Muscarella, Lucia Anna; Fazio, Vito Michele

    2017-01-04

    The Keap1/Nrf2 pathway is a master regulator of the cellular redox state through the induction of several antioxidant defence genes implicated in chemotherapeutic drugs resistance of tumor cells. An increasing body of evidence supports a key role for Keap1/Nrf2 pathway in kidney diseases and renal cell carcinoma (RCC), but data concerning the molecular basis and the clinical effect of its deregulation remain incomplete.Here we present a molecular profiling of the KEAP1 and NFE2L2 genes in five different Renal Cell Carcinoma histotypes by analysing 89 tumor/normal paired tissues (clear cell Renal Carcinoma, ccRCCs; Oncocytomas; Papillary Renal Cell Carcinoma Type 1, PRCC1; Papillary Renal Cell Carcinoma Type 2, PRCC2; and Chromophobe Cell Carcinoma).A tumor-specific DNA methylation of the KEAP1 gene promoter region was found as a specific feature of the ccRCC subtype (18/37, 48.6%) and a direct correlation with mRNA levels was confirmed by in vitro 5-azacytidine treatment. Analysis of an independent data set of 481 ccRCC and 265 PRCC tumors corroborates our results and multivariate analysis reveals a significant correlation among ccRCCs epigenetic KEAP1 silencing and staging, grading and overall survival.Our molecular results show for the the first time the epigenetic silencing of KEAP1 promoter as the leading mechanism for modulation of KEAP1 expression in ccRCCs and corroborate the driver role of Keap1/Nrf2 axis deregulation with potential new function as independent epigenetic prognostic marker in renal cell carcinoma.

  20. Down-regulation of promoter methylation level of CD4 gene after MDV infection in MD-susceptible chicken line

    Science.gov (United States)

    Marek’s disease virus (MDV) is an oncovirus that induces lymphoid tumors in susceptible chickens, and may affect the epigenetic stability of the CD4 gene. The purpose of this study was to find how the effect of MDV infection on DNA methylation status of the CD4 gene differed between MD-resistant (L6...

  1. Evaluation of methylation pattern in promoter region of E-cadherin ...

    African Journals Online (AJOL)

    user

    2011-03-07

    Mar 7, 2011 ... promoter methylation in CDH1 gene inactivation in breast cancer, the CpG methylation status of E- cadherin promoter ... The data indicate that CDH1 promoter methylation might be a potential ... Complex genetic and epigenetic alterations affect the ... DNA methylation is the covalent addition of a methyl.

  2. The relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma: A meta-analysis and bioinformatics

    Science.gov (United States)

    Li, Haili; Tang, Wenru; Jia, Shuting; Wu, Xiaoming; Luo, Ying

    2017-01-01

    Background The function of the tumor suppressor gene RASSF1A in cancer cells has been detailed in many studies. However, due to the methylation of its promoter, the expression of RASSF1A is missing in most cancers. In the literature, we found that the conclusion regarding the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma was not unified. This study adopts the use of a meta-analysis and bioinformatics to explore the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma. Methods Data on melanoma susceptibility were downloaded from the PubMed, Cochrane Library, Web of Science and Google Scholar databases, which were analyzed via a meta-analysis. The effect sizes were estimated by measuring an odds ratio (OR) with a 95% confidence interval (CI). We also used a chi-squared-based Q test to examine the between-study heterogeneity, and used funnel plots to evaluate publication bias. The data on melanoma prognosis, which were analyzed by bioinformatics methods, were downloaded from The Cancer Genome Atlas (TCGA) project. The effect sizes were estimated by measuring the hazard ratios (HRs) with a 95% confidence interval (CI). Results Our meta-analysis included 10 articles. We found that RASSF1A gene promoter methylation was closely related to melanoma susceptibility (OR = 12.67, 95% CI: 6.16 ∼ 26.05, z = 6.90, P<0.0001 according to a fixed effects model and OR = 9.25, 95% CI: 4.37 ∼ 19.54, z = 5.82, P<0.0001 according to a random effects model). The results of the meta-analysis did not reveal any heterogeneity (tau2 = 0.00; H = 1 [1; 1.55]; I2 = 0% [0%; 58.6%], P = 0.5158) or publication bias (t = 0.87, P = 0.4073 by Egger’s test; Z = 0.45, P = 0.6547 by Begg’s test); therefore, we believe that the results of our meta-analysis were more reliable. To explore the relationship between RASSF1A gene methylation, the prognosis of melanoma and the clinical features of

  3. Promoter methylation of PARG1, a novel candidate tumor suppressor gene in mantle-cell lymphomas.

    NARCIS (Netherlands)

    Ripperger, T.; Neuhoff, N. von; Kamphues, K.; Emura, M.; Lehmann, U.; Tauscher, M.; Schraders, M.; Groenen, P.; Skawran, B.; Rudolph, C.; Callet-Bauchu, E.; Krieken, J.H.J.M. van; Schlegelberger, B.; Steinemann, D.

    2007-01-01

    BACKGROUND AND OBJECTIVES: Mantle cell lymphoma (MCL), a mature B-cell neoplasm, is genetically characterized by the translocation t(11;14)(q13;q32). However, secondary alterations are required for malignant transformation. The identification of inactivated tumor suppressor genes contributing to the

  4. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein-Barr virus-associated gastric carcinomas.

    Science.gov (United States)

    He, Dan; Zhang, Yi-wang; Zhang, Na-na; Zhou, Lu; Chen, Jian-ning; Jiang, Ye; Shao, Chun-kui

    2015-04-01

    Alterations in global DNA methylation and specific regulatory gene methylation are frequently found in cancer, but the significance of these epigenetic changes in EBV-associated gastric carcinoma (EBVaGC) remains unclear. We evaluated global DNA methylation status in 49 EBVaGC and 45 EBV-negative gastric carcinoma (EBVnGC) tissue samples and cell lines by 5-methylcytosine immunohistochemical staining and methylation quantification. We determined promoter methylation status and protein expression for the p16, FHIT, CRBP1, WWOX, and DLC-1 genes in tissues and studied the correlation between CpG island methylator phenotype (CIMP) class and clinicopathological characteristics. Changes in gene methylation and mRNA expression in EBVaGC cell line SNU-719 and in EBVnGC cell lines SGC-7901, BGC-823, and AGS were assessed after treatment with 5-aza-2'-deoxycytidine (5-aza-dC), trichostatin A (TSA), or a combination of both, by methylation-specific PCR and quantitative real-time RT-PCR. Global genomic DNA hypomethylation was more pronounced in EBVnGC than in EBVaGC. Promoter methylation of all five genes was more frequent in EBVaGC than in EBVnGC (p < 0.05). p16 and FHIT methylation was reversely correlated with protein expression in EBVaGC. Most (41/49) EBVaGC exhibited CIMP-high (CIMP-H), and the prognosis of CIMP-H patients was significantly worse than that of CIMP-low (p = 0.027) and CIMP-none (p = 0.003) patients. Treatment with 5-aza-dC and/or TSA induced upregulation of RNA expression of all five genes in SNU-719; meanwhile, individual gene expression increased in EBVnGC cell lines. In summary, EBV-induced hypermethylation of p16, FHIT, CRBP1, WWOX, and DLC-1 may contribute to EBVaGC development. Demethylation therapy may represent a novel therapeutic strategy for EBVaGC.

  5. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    Science.gov (United States)

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis

    OpenAIRE

    Cui, Chenghua; Gan, Ying; Gu, Liankun; Wilson, James; Liu, Zhaojun; Zhang, Baozhen; Deng, Dajun

    2015-01-01

    Background P16 DNA methylation is well known to be the most frequent event in cancer development. It has been reported that genetic inactivation of P16 drives cancer growth and metastasis, however, whether P16 DNA methylation is truly a driver in cancer metastasis remains unknown. Results A P16-specific DNA methyltransferase (P16-dnmt) expression vector is designed using a P16 promoter-specific engineered zinc finger protein fused with the catalytic domain of dnmt3a. P16-dnmt transfection sig...

  7. Global methylation and promoter-specific methylation of the P16, SOCS-1, E-cadherin, P73 and SHP-1 genes and their expression in patients with multiple myeloma during active disease and remission.

    Science.gov (United States)

    Martínez-Baños, Déborah; Sánchez-Hernández, Beatríz; Jiménez, Guadalupe; Barrera-Lumbreras, Georgina; Barrales-Benítez, Olga

    2017-05-01

    Tumor suppressor gene promoter CpG island methylation is a well-recognized mechanism in cancer pathogenesis, but its role in multiple myeloma (MM) is controversial. The present study investigated the methylation status and expression of P16, suppressor of cytokine signaling 1 (SOCS-1), P73, E-cadherin and Src homology region 2 domain-containing phosphatase 1 (SHP-1), as well as global methylation in patients with MM during active disease and remission. Bone marrow samples were obtained from 43 patients at the Multiple Myeloma Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) during active disease and remission. Methylation-specific polymerase chain reaction and ELISA were performed on bisulfite-treated or untreated DNA to determine promoter-specific or genomic methylation, respectively. Gene expression was measured using reverse-transcription polymerase chain reaction. The results indicated that SOCS-1 methylation occurred more frequently during active disease than remission [29 vs. 3.2% (P=0.021)] and was associated with more advanced forms of the disease [international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% (P=0.037)]. SHP-1 methylation during active disease was associated with a lower probability of survival at 39-month follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage of methylation was associated with active disease at remission, but this was not significant. Global hypomethylation at remission was a negative predictor factor for overall survival (OS). The results indicated that methylated P16, SOCS-1 and SHP-1 were associated with clinical variables of poor prognosis in MM, likewise the persistence of global hypomethylation at remission. The negative impact on OS of global hypomethylation at remission must be confirmed in a larger sample. Future studies are necessary to investigate whether patients with global hypermethylation at remission should receive more aggressive treatments to

  8. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    Science.gov (United States)

    Scope: Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single...

  9. Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer.

    Science.gov (United States)

    de Vogel, Stefan; Wouters, Kim A D; Gottschalk, Ralph W H; van Schooten, Frederik J; de Goeij, Anton F P M; de Bruïne, Adriaan P; Goldbohm, R Alexandra; van den Brandt, Piet A; van Engeland, Manon; Weijenberg, Matty P

    2011-01-01

    Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). Among 609 CRC cases and 1,663 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852), we estimated CRC risk according to methyl donor intake across genotypes of folate metabolizing enzymes and methyltransferases.Although diet-gene interactions were not statistically significant, methionine intake was inversely associated with CRC among subjects having both common rs2424913 and rs406193 DNMT3B C > T genotypes (highest versus lowest tertile: RR = 0.44; p (trend) = 0.05). Likewise, vitamin B2 was modestly inversely associated among individuals with the MTHFR c.665CC (rs1801133) genotype (RR = 0.66; p (trend) = 0.08), but with a significant reduced risk when ≤ 1 rare allele occurred in the combination of folate metabolizing enzymes MTHFR, MTRR and MTR (RR = 0.30; p (trend) = 0.005). Folate or vitamin B6 were neither inversely associated with CRC nor was methyl donor intake associated with the CpG island methylator phenotype (CIMP).Despite the absence of heterogeneity across genotypes, might an effect of methyl donors on CRC be more pronounced among individuals carrying common variants of folate metabolizing enzymes or DNA methyltransferases. Combining genotypes may assist to reveal diet associations with CRC, possibly because rare variants of related genes may collectively affect specific metabolic pathways or enzymatic functions.

  10. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer.

    Science.gov (United States)

    Panagopoulou, Maria; Lambropoulou, Maria; Balgkouranidou, Ioanna; Nena, Evangelia; Karaglani, Makrina; Nicolaidou, Christina; Asimaki, Anthi; Konstantinidis, Theocharis; Constantinidis, Theodoros C; Kolios, George; Kakolyris, Stylianos; Agorastos, Theodoros; Chatzaki, Ekaterini

    2017-04-01

    Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.

  11. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    Science.gov (United States)

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  12. Folic acid supplementation prevents the changes in hepatic promoter methylation status and gene expression in intrauterine growth-retarded piglets during early weaning period.

    Science.gov (United States)

    Jing-Bo, L; Ying, Y; Bing, Y; Xiang-Bing, M; Zhi-Qing, H; Guo-Quan, H; Hong, C; Dai-Wen, C

    2013-10-01

    During intrauterine life, genome interacts with maternal signals to influence the mRNA expression levels of specific genes persistently by regulating DNA methylation status. The objective of this study was to examine the responses of glucocorticoid receptor (GR), peroxisome proliferator-activated receptor alpha and gamma (PPARα and PPARγ) promoter methylation, mRNA expression of genes involved in energy metabolism and metabolite concentrations of intrauterine growth-retarded (IUGR) piglets to dietary folic acid supplementation. According to a 2 × 2 factorial arrangement, 16 IUGR and 16 normal birth weight (NBW) piglets were fed a basal diet or a basal diet supplemented with 5 mg/kg of folic acid from weaning (day 14) to day 35 of age. Triglycerides in hepatic tissue and plasma were significantly elevated in control diets-fed IUGR piglets compared with NBW piglets but were decreased by dietary folic acid supplementation. Hepatic mRNA expression levels of GR, PPARα, PPARγ, fatty acid synthase and phosphoenolpyruvate carboxykinase (PEPCK) in IUGR piglets fed a control diet were significantly higher than that in NBW piglets, and promoter methylation status of GR, PPARα and PPARγ in IUGR piglets was reduced significantly compared with NBW piglets. However, the changes in gene expression and DNA methylation status of IUGR piglets were reversed by dietary folic acid supplementation. Hepatic DNA methyltransferase activity was greater with dietary folic acid supplementation regardless of birth weight. Taken together, these results demonstrated that folic acid supplementation during early period of life could prevent the changes of promoter methylation status and gene expressions in the liver of IUGR piglets.

  13. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: A novel epigenetic therapeutic approach

    Directory of Open Access Journals (Sweden)

    Athena Starlard-Davenport

    2013-01-01

    Full Text Available It is well established that transcriptional silencing of critical tumor-suppressor genes by DNA methylation is a fundamental component in the initiation of breast cancer. However, the involvement of microRNAs (miRNAs in restoring abnormal DNA methylation patterns in breast cancer is not well understood. Therefore, we investigated whether miRNA-29b, due to its complimentarity to the 3′- untranslated region of DNA methyltransferase 3A (DNMT3A and DNMT3B, could restore normal DNA methylation patterns in human breast cancers and breast cancer cell lines. We demonstrated that transfection of pre-miRNA-29b into less aggressive MCF-7 cells, but not MDA-MB-231 mesenchymal cells, inhibited cell proliferation, decreased DNMT3A and DNMT3B messenger RNA (mRNA, and decreased promoter methylation status of ADAM23 , CCNA1, CCND2, CDH1, CDKN1C, CDKN2A, HIC1, RASSF1, SLIT2, TNFRSF10D, and TP73 tumor-suppressor genes. Using methylation polymerase chain reaction (PCR arrays and real-time PCR, we also demonstrated that the methylation status of several critical tumor-suppressor genes increased as stage of breast disease increased, while miRNA-29b mRNA levels were significantly decreased in breast cancers versus normal breast. This increase in methylation status was accompanied by an increase in DNMT1 and DNMT3B mRNA in advanced stage of human breast cancers and in MCF-7, MDA-MB-361, HCC70, Hs-578T, and MDA-MB-231 breast cancer cells as compared to normal breast specimens and MCF-10-2A, a non-tumorigenic breast cell line, respectively. Our findings highlight the potential for a new epigenetic approach in improving breast cancer therapy by targeting DNMT3A and DNMT3B through miRNA-29b in non-invasive epithelial breast cancer cells.

  14. Detection of CpG methylations in human mismatch repair gene hMLH1 promoter by denaturing high-performance liquid chromatography (DHPLC)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives: To develop a novel method to detect CpG methylation by DHPLC. Methods: After DNA was treated with sodium bisulfite, mismatch repair gene hMLH1 promoter was amplified by polymerase chain reaction (PCR). DHPLC was used to separate the PCR products at their partially denaturing temperatures. BstUI digestion assay was also used for comparison study. Results: A 294bp band was obtained by PCR from each DNA samples of colon cancer cell line RKO and gastric cancer cell line PACM82. These two bands could be separated completely by DHPLC at 53° C (retention time 6.7 min for RKO vs. 6.2 min for PACM82). We concluded that the hMLH1 promoter in RKO cells is methylated, while PACM82 is not methylated, since methylation can protect the conversion of C to T and keep higher C/G content after bisulfite treatment, leading to the delayed time. These results consistent with those from BstUI digestion assay. Conclusion: Methylation in CpG islands of hMLH1 could be detected conveniently by DHPLC after bisulfite modification.

  15. Prognostic significance of promoter CpG island methylation of obesity-related genes in patients with nonmetastatic renal cell carcinoma.

    Science.gov (United States)

    Mendoza-Pérez, Julia; Gu, Jian; Herrera, Luis A; Tannir, Nizar M; Zhang, Shanyu; Matin, Surena; Karam, Jose A; Wood, Christopher G; Wu, Xifeng

    2017-09-15

    Greater than 40% of renal cell carcinoma (RCC) cases in the United States are attributed to excessive body weight. Moreover, obesity also may be linked to RCC prognosis. However, the molecular mechanisms underlying these associations are unclear. In the current study, the authors evaluated the role of promoter methylation in obesity-related genes in RCC tumorigenesis and disease recurrence. Paired tumors (TU) and normal adjacent (N-Adj) tissues from 240 newly diagnosed and previously untreated white patients with RCC were examined. For the discovery phase, 63 RCC pairs were analyzed. An additional 177 RCC pairs were evaluated for validation. Pyrosequencing was used to determine CpG methylation in 20 candidate obesity-related genes. An independent data set from The Cancer Genome Atlas also was analyzed for functional validation. The association between methylation and disease recurrence was analyzed using multivariate Cox proportional hazards models and Kaplan-Meier survival analysis. Methylation in neuropeptide Y (NPY), leptin (LEP), and leptin receptor (LEPR) was significantly higher in TU compared with N-Adj tissues (Pgenes are involved in RCC tumorigenesis. Furthermore, LEPR methylation appears to be associated with RCC recurrence. Future research to elucidate the biology underlying this association is warranted. Cancer 2017;123:3617-27. © 2017 American Cancer Society. © 2017 American Cancer Society.

  16. Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort.

    Directory of Open Access Journals (Sweden)

    Jukka S Alasaari

    Full Text Available BACKGROUND: Shift-working nurses are exposed to a stressful work environment, which puts them at an increased risk for burnout and depression. We explored the effect of environmental stress on serotonin transporter gene (SLC6A4 promoter methylation among nurses from high and low work stress environments. METHODOLOGY: Using bisulfite sequencing, we investigated the methylation status of five CpG residues of a CpG-rich region in the promoter of SLC6A4 by comparing female shift working nurses from a high work stress environment (n = 24 to low work stress environment (n = 25. We also analyzed the association of 5-HTTLPR polymorphism at 5' end of SLC6A4. Work stress was assessed by the Karasek's Model and possible signs of burnout or depression were measured by the Maslach Burnout Index General Survey and Beck Depression Index. Methylation levels were assessed by bisulfite sequencing of DNA extracted from peripheral blood leucocytes. Restriction enzyme treatment followed by standard PCR was used to identify 5-HTTLPR genotypes. PRINCIPAL FINDINGS: We found that nurses in the high stress environment had significantly lower promoter methylation levels at all five CpG residues compared to nurses in the low stress environment (p<0.01. There was no significant interaction of 5-HTTLPR genotype and work stress with methylation (p = 0.58. In unadjusted (bivariate analysis, burnout was not significantly associated to methylation levels. However, when mutually adjusted for both, burnout and work stress were significant contributors (p = 0.038 and p<0.0001 respectively to methylation levels. CONCLUSIONS: Our findings show that environmental stress is concurrent with decreased methylation of the SLC6A4 promoter. This may lead to increased transcriptional activity of the gene, increased reuptake of serotonin from synaptic clefts, and termination of the activity of serotonin. This could present a possible coping mechanism for environmental stress in humans that

  17. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island.

    Directory of Open Access Journals (Sweden)

    Heather M O'Hagan

    2008-08-01

    Full Text Available Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island-containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer.

  18. Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females.

    Directory of Open Access Journals (Sweden)

    Danjie Jiang

    Full Text Available PLA2G7 gene product is a secreted enzyme whose activity is associated with coronary heart disease (CHD. The goal of our study is to investigate the contribution of PLA2G7 promoter DNA methylation to the risk of CHD. Using the bisulphite pyrosequencing technology, PLA2G7 methylation was measured among 36 CHD cases and 36 well-matched controls. Our results indicated that there was a significant association between PLA2G7 methylation and CHD (adjusted P = 0.025. Significant gender-specific correlation was observed between age and PLA2G7 methylation (males: adjusted r = -0.365, adjusted P = 0.037; females: adjusted r = 0.373, adjusted P = 0.035. A breakdown analysis by gender showed that PLA2G7 methylation was significantly associated with CHD in females (adjusted P = 0.003 but not in males. A further two-way ANOVA analysis showed there was a significant interaction between gender and status of CHD for PLA2G7 methylation (gender*CHD: P = 6.04E-7. Moreover, PLA2G7 methylation is associated with the levels of total cholesterols (TC, r = 0.462, P = 0.009, triglyceride (TG, r = 0.414, P = 0.02 and Apolipoprotein B (ApoB, r = 0.396, P = 0.028 in females but not in males (adjusted P>0.4. Receiver operating characteristic (ROC curves showed that PLA2G7 methylation could predict the risk of CHD in females (area under curve (AUC = 0.912, P = 2.40E-5. Our results suggest that PLA2G7 methylation changes with aging in a gender-specific pattern. The correlation between PLA2G7 methylation and CHD risk in females is independent of other parameters including age, smoking, diabetes and hypertension. PLA2G7 methylation might exert its effects on the risk of CHD by regulating the levels of TC, TG, and ApoB in females. The gender disparities in the PLA2G7 methylation may play a role in the molecular mechanisms underlying the pathophysiology of CHD.

  19. DNA methylation in a sea lamprey vasotocin receptor gene promoter correlates with tissue- and life-stage-specific mRNA expression.

    Science.gov (United States)

    Mayasich, Sally A; Bemis, Lynne T; Clarke, Benjamin L

    2016-12-01

    The jawless vertebrate sea lamprey (Petromyzon marinus) genome has a different structure from both invertebrates and jawed vertebrates featuring high guanine-cytosine (GC) content. This raises the question of whether DNA methylation of cytosine-guanine (CpG) dinucleotides could function to regulate lamprey gene transcription. We previously characterized a lamprey arginine vasotocin (AVT) receptor gene (Pm807) possessing characteristics of both arginine vasopressin (AVP) V1A and oxytocin (OXT) receptor genes of jawed vertebrates. Lamprey Pm807 mRNA is highly expressed in adult heart and larval liver but not expressed in adult liver. Using high-resolution melt (HRM) PCR on bisulfite-converted DNA, we pinpointed a region with tissue-specific differences in DNA melt characteristics, indicating differences in methylation level. Sequencing revealed a pattern of methylation at specific CpGs at consistently higher levels in adult heart and larval liver than adult liver. These CpGs are associated with putative transcription factor binding sequences organized similarly to functional OXTR promoters in mammals, suggesting functional similarity in lamprey gene transcription regulation.

  20. MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR

    Directory of Open Access Journals (Sweden)

    Håvik Annette

    2012-03-01

    Full Text Available Abstract Background Methylation of the O6-methylguanine-DNA methyltransferase (MGMT gene promoter is a favorable prognostic factor in glioblastoma patients. However, reported methylation frequencies vary significantly partly due to lack of consensus in the choice of analytical method. Method We examined 35 low- and 99 high-grade gliomas using quantitative methylation specific PCR (qMSP and pyrosequencing. Gene expression level of MGMT was analyzed by RT-PCR. Results When examined by qMSP, 26% of low-grade and 37% of high-grade gliomas were found to be methylated, whereas 97% of low-grade and 55% of high-grade gliomas were found methylated by pyrosequencing. The average MGMT gene expression level was significantly lower in the group of patients with a methylated promoter independent of method used for methylation detection. Primary glioblastoma patients with a methylated MGMT promoter (as evaluated by both methylation detection methods had approximately 5 months longer median survival compared to patients with an unmethylated promoter (log-rank test; pyrosequencing P = .02, qMSP P = .06. One third of the analyzed samples had conflicting methylation results when comparing the data from the qMSP and pyrosequencing. The overall survival analysis shows that these patients have an intermediate prognosis between the groups with concordant MGMT promoter methylation results when comparing the two methods. Conclusion In our opinion, MGMT promoter methylation analysis gives sufficient prognostic information to merit its inclusion in the standard management of patients with high-grade gliomas, and in this study pyrosequencing came across as the better analytical method.

  1. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Chen, Man; Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Cheng, Huaiyan [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Yan, You-E [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Feng, Ying-Hong, E-mail: yhfeng@usuhs.edu [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  2. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.;

    2009-01-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  3. The bacterial cell cycle regulator GcrA is a σ70 cofactor that drives gene expression from a subset of methylated promoters.

    Science.gov (United States)

    Haakonsen, Diane L; Yuan, Andy H; Laub, Michael T

    2015-11-01

    Cell cycle progression in most organisms requires tightly regulated programs of gene expression. The transcription factors involved typically stimulate gene expression by binding specific DNA sequences in promoters and recruiting RNA polymerase. Here, we found that the essential cell cycle regulator GcrA in Caulobacter crescentus activates the transcription of target genes in a fundamentally different manner. GcrA forms a stable complex with RNA polymerase and localizes to almost all active σ(70)-dependent promoters in vivo but activates transcription primarily at promoters harboring certain DNA methylation sites. Whereas most transcription factors that contact σ(70) interact with domain 4, GcrA interfaces with domain 2, the region that binds the -10 element during strand separation. Using kinetic analyses and a reconstituted in vitro transcription assay, we demonstrated that GcrA can stabilize RNA polymerase binding and directly stimulate open complex formation to activate transcription. Guided by these studies, we identified a regulon of ∼ 200 genes, providing new insight into the essential functions of GcrA. Collectively, our work reveals a new mechanism for transcriptional regulation, and we discuss the potential benefits of activating transcription by promoting RNA polymerase isomerization rather than recruitment exclusively.

  4. Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: Diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer

    NARCIS (Netherlands)

    Vogel, S. de; Wouters, K.A.D.; Gottschalk, R.W.H.; Schooten, F.J. van; Goeij, A.F.P.M. de; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den; Engeland, M. van; Weijenberg, M.P.

    2011-01-01

    Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). Among 609 CRC cases and 1,663 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852), we estimated CRC risk according to methyl donor intake across genotypes of folate

  5. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells.

    Science.gov (United States)

    Chebbi, Mouadh; Ginis, Olivia; Courdavault, Vincent; Glévarec, Gaëlle; Lanoue, Arnaud; Clastre, Marc; Papon, Nicolas; Gaillard, Cécile; Atanassova, Rossitza; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie; Courtois, Martine; Oudin, Audrey

    2014-10-15

    In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production.

  6. Promoter methylation of survivin gene in infantile hemangiomas%婴幼儿血管瘤survivin基因启动子甲基化的研究

    Institute of Scientific and Technical Information of China (English)

    熊耕; 刘铭; 彭强; 植勇; 熊小明

    2016-01-01

    目的 采用亚硫酸氢盐修饰后测序法(BSP)检测不同病理阶段的婴幼儿血管瘤组织及正常皮肤组织中survivin基因启动子区域CpG岛的甲基化状态,探讨survivin基因启动子甲基化与婴幼儿血管瘤增生与退化的可能关系.方法 ①采用免疫组化S-P法检测增殖期婴幼儿血管瘤石蜡标本30例、消退期30例及正常包皮皮肤组织标本10例中survivin蛋白的表达;②提取石蜡包埋块组织基因组DNA并纯化后,采用亚硫酸氢盐修饰后测序法(BSP)分别检测增殖期血管瘤30例、消退期血管瘤30例及正常包皮组织10例中survivin基因启动子CpG岛甲基化情况.结果 ①survivin 蛋白在增殖期血管瘤、消退期血管瘤和正常包皮组织中阳性表达率分别为76.6% (23/30)、33.3%(10/30)和20.0%(2/10);②10例正常包皮皮肤组织中1例(10.0%)survivin基因启动子CpG岛非甲基化,9例(90.0%)甲基化;30例消退期血管瘤标本中8例(26.6%)survivin基因启动子CpG岛非甲基化,22例(73.3%)甲基化;30例增殖期血管瘤标本中24例(80.0%) survivin基因启动子CpG岛非甲基化,6例(20.0%)甲基化;增殖期血管瘤survivin基因启动子CpG岛甲基化率明显低于消退期和正常包皮组织;③survivin蛋白表达阳性的血管瘤33例中31例survivin基因启动子CpG岛为非甲基化,survivin蛋白表达阴性的27例中26例survivin基因启动子CpG岛为甲基化状态.结论 ①增殖期血管瘤survivin蛋白表达明显高于消退期血管瘤;②survivin基因启动子CpG岛甲基化状态在增殖期血管瘤、消退期血管瘤中存在明显差异;血管瘤组织中survivin基因启动子的甲基化状态与survivin蛋白的表达具有相关性;survivin基因启动子区CpG岛异常甲基化在血管瘤的增殖与消退调控中可能起到了一定作用.%Objective To explore the methylation status of CpG island in survivin gene promoter region in different pathological stages of

  7. Neocortical RELN promoter methylation increases significantly after puberty.

    Science.gov (United States)

    Lintas, Carla; Persico, Antonio M

    2010-01-27

    Reelin plays a pivotal role in neurodevelopment. Excessive RELN promoter methylation and/or decreased RELN gene expression have been described in schizophrenia and autism. We assessed RELN promoter methylation in post-mortem temporocortical tissue (Brodmann Area 41/42) of three prepuberal and six postpuberal normal individuals. The former display very little or no methylation, whereas most postpuberal individuals are heavily methylated, especially at CpG positions located between -131 and -98 bp (prepuberal vs. postpuberal, P<0.05). Sex hormones thus seemingly boost DNA methylation at the RELN promoter. This physiological change could significantly contribute to the onset of schizophrenia and the worsening of autistic behaviors, both typically occurring at puberty.

  8. Promoter Methylation Precedes Chromosomal Alterations in Colorectal Cancer Development

    Directory of Open Access Journals (Sweden)

    Sarah Derks

    2006-01-01

    Full Text Available Background: Colorectal cancers are characterized by genetic and epigenetic alterations. This study aimed to explore the timing of promoter methylation and relationship with mutations and chromosomal alterations in colorectal carcinogenesis. Methods: In a series of 47 nonprogressed adenomas, 41 progressed adenomas (malignant polyps, 38 colorectal carcinomas and 18 paired normal tissues, we evaluated promoter methylation status of hMLH1, O6MGMT, APC, p14ARF, p16INK4A, RASSF1A, GATA-4, GATA-5, and CHFR using methylation-specific PCR. Mutation status of TP53, APC and KRAS were studied by p53 immunohistochemistry and sequencing of the APC and KRAS mutation cluster regions. Chromosomal alterations were evaluated by comparative genomic hybridization. Results: Our data demonstrate that nonprogressed adenomas, progressed adenomas and carcinomas show similar frequencies of promoter methylation for the majority of the genes. Normal tissues showed significantly lower frequencies of promoter methylation of APC, p16INK4A, GATA-4, and GATA-5 (P-values: 0.02, 0.02, 1.1×10−5 and 0.008 respectively. P53 immunopositivity and chromosomal abnormalities occur predominantly in carcinomas (P values: 1.1×10−5 and 4.1×10−10. Conclusions: Since promoter methylation was already present in nonprogressed adenomas without chromosomal alterations, we conclude that promoter methylation can be regarded as an early event preceding TP53 mutation and chromosomal abnormalities in colorectal cancer development.

  9. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    Science.gov (United States)

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure.

  10. Promoter methylation of E-cadherin, p16, and RAR-beta(2) genes in breast tumors and dietary intake of nutrients important in one-carbon metabolism

    Science.gov (United States)

    Aberrant DNA methylation plays a critical role in carcinogenesis, and the availability of dietary factors involved in 1-carbon metabolism may contribute to aberrant DNA methylation. We investigated the association of intake of folate, vitamins B(2), B(6), B(12), and methionine with promoter methylat...

  11. GSTP1 expression and promoter methylation in epithelial ovarian carcinoma

    Directory of Open Access Journals (Sweden)

    V Shilpa

    2014-01-01

    Full Text Available Context: GSTP1 is a subgroup of glutathione-S-transferase family, which provides cellular protection against free radical and carcinogenic compounds due to its detoxifying function. Altered GSTP1 activity due to down regulation of enzyme activity and DNA methylation has been reported in many tumors, although data for ovarian cancer are few. In this study, we aimed at determining the expression of GSTP1 in relation to the methylation of the GSTP1 promoter in epithelial ovarian cancer (EOC. Materials and Methods: GSTP1 mRNA expression and GSTP1 enzyme concentration were assessed by quantitative reverse transcriptase polymerase chain reaction (PCR and enzyme-linked immunosorbent assay, respectively, in 88 EOCs, 14 low malignant potential (LMP tumors, and 20 benign tumors. The promoter methylation of GSTP1 gene was evaluated by methylation-specific PCR. Results: Reduced GSTP1 mRNA expression was observed in 49% EOCs, 21.4% LMP, and 45% benign tumors. Significantly lower levels of plasma GSTP1 were observed in all tumor samples compared to normal. GSTP1 promoter methylation was detected in 10 (11.4% EOCs and 1 (7.3% LMP tumors. No methylation was observed in benign tumors and normal ovaries. Conclusions: Our results show that there is a significant down regulation of GSTP1 expression while hypermethylation of the GSTP1 gene promoter is not very frequent in EOC. Further studies are needed to study underlying mechanisms leading to decreased expression.

  12. Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of Tlr1 and Tlr6 gene promoters in liver, but not spleen, of female C57BL/6 mice.

    Science.gov (United States)

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel Azeem S; Delic, Denis; Santourlidis, Simeon; Wunderlich, Frank

    2013-11-01

    Epigenetic reprogramming of host genes via DNA methylation is increasingly recognized as critical for the outcome of diverse infectious diseases, but information for malaria is not yet available. Here, we investigate the effect of blood-stage malaria of Plasmodium chabaudi on the DNA methylation status of host gene promoters on a genome-wide scale using methylated DNA immunoprecipitation and Nimblegen microarrays containing 2,000 bp oligonucleotide features that were split into -1,500 to -500 bp Ups promoters and -500 to +500 bp Cor promoters, relative to the transcription site, for evaluation of differential DNA methylation. Gene expression was analyzed by Agilent and Affymetrix microarray technology. Challenging of female C57BL/6 mice with 10(6) P. chabaudi-infected erythrocytes resulted in a self-healing outcome of infections with peak parasitemia on day 8 p.i. These infections induced organ-specific modifications of DNA methylation of gene promoters. Among the 17,354 features on Nimblegen arrays, only seven gene promoters were identified to be hypermethylated in the spleen, whereas the liver exhibited 109 hyper- and 67 hypomethylated promoters at peak parasitemia in comparison with non-infected mice. Among the identified genes with differentially methylated Cor-promoters, only the 7 genes Pigr, Ncf1, Klkb1, Emr1, Ndufb11, and Tlr6 in the liver and Apol6 in the spleen were detected to have significantly changed their expression. Remarkably, the Cor promoter of the toll-like receptor Tlr6 became hypomethylated and Tlr6 expression increased by 3.4-fold during infection. Concomitantly, the Ups promoter of the Tlr1 was hypermethylated, but Tlr1 expression also increased by 11.3-fold. TLR6 and TLR1 are known as auxillary receptors to form heterodimers with TLR2 in plasma membranes of macrophages, which recognize different pathogen-associated molecular patterns (PAMPs), as, e.g., intact 3-acyl and sn-2-lyso-acyl glycosylphosphatidylinositols of P. falciparum

  13. 精神分裂症与儿茶酚氧位甲基转移酶启动子甲基化状态%Promoter methylation of catechol-O-methyl transferase gene and schizophrenia

    Institute of Scientific and Technical Information of China (English)

    张璇; 刘铁榜; 吴怀安; 邓小敏; 闫小华; 杨孔军; 荣晗

    2011-01-01

    目的 探讨精神分裂症患者儿茶酚氧位甲基转移酶(COMT)基因启动子甲基化状态,并对基因多态性、启动子甲基化状态及基因表达水平与精神分裂症的关系进行探讨.方法 采用聚合酶链反应(PCR)和限制性片段长度多态性技术检测精神分裂症患者(患者组,110例)及正常对照组(对照组,100名)外周血基因组中COMT的基因型,采用甲基化特异性聚合酶链反应(MSP)技术检测COMT基因的甲基化状态,采用实时定量PCR法检测COMT基因mRNA的表达.结果 (1)患者组COMT基因Val/Val基因频率高于对照组(55.4%vs 40.0%,P=0.025),Met/Met基因频率低于对照组(9.1%vs 19.0%,P=0.038),差异有统计学意义;患者组COMT等位基因Val的频率高于对照组(73.2%vs 60.5%),等位基因Met的频率低于对照组(26.8%vs 39.5%),差异具有统计学意义(P=0.006,P=0.006).(2)患者组有46例甲基化阳性,甲基化率为41.8%,对照组有51名甲基化阳性,甲基化率为51.0%,2组比较差异无统计学意义(x2=1.777,P=0.183);患者组COMT基因甲基化与基因型之间无关联性(x2=0.139,P=0.933).(3)患者组中非甲基化表型联合Val/Val型患者mRNA表达水平显著高于其他各组(F=11.408,P=0.000).结论 COMT基因多态性与精神分裂症关联,COMT基因多态性可能与甲基化状态共同作用影响基因的表达,但并不能确定COMT基因启动子甲基化状态与精神分裂症的发病有关.%Objective To explore the promoter methylation of COMT gene in patients with schizophrenia,and analyze the relationships between schizophrenia and polymorphisms,promoter methylation,and expression of COMT gene.Methods One hundred and ten patients with schizophrenia and 100 healthy people were recruited.The genetic polymorphisms of COMT gene in schizophrenia and controls were measured by polymerase chain reaction and restriction fragment length polymorphism technique(PCRRFLP).The methylated status of CpG islands of COMT were tested by

  14. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  15. Absence of MGMT promoter methylation in endometrial cancer.

    Science.gov (United States)

    Rimel, B J; Huettner, Phyllis; Powell, Matthew A; Mutch, David G; Goodfellow, Paul J

    2009-01-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) acts to repair DNA damaged by alkylation of guanine residues. MGMT promoter methylation and gene silencing is seen in a variety of cancers and pre-cancerous changes [Ogino S, Meyerhardt JA, Kawasaki T, et al. CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch 2007;450:529-37; Rodriguez MJ, Acha A, Ruesga MT, Rodriguez C, Rivera JM, Aguirre JM. Loss of expression of DNA repair enzyme MGMT in oral leukoplakia and early oral squamous cell carcinoma. A prognostic tool? Cancer Lett 2007;245:263-8; Ishii T, Murakami J, Notohara K, et al. Oesophageal squamous cell carcinoma may develop within a background of accumulating DNA methylation in normal and dysplastic mucosa. Gut 2007;56:13-9]. The loss of MGMT activity and promoter methylation is associated with increased sensitivity to alkylating agents and is a favorable prognostic indicator in gliomas [Weaver KD, Grossman SA, Herman JG. Methylated tumor-specific DNA as a plasma biomarker in patients with glioma. Cancer Invest 2006;24:35-40; Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000;343:1350-4; Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997-1003]. We sought to determine if MGMT promoter methylation plays a role in endometrial cancer. One hundred and twenty primary endometrial cancers were analyzed for MGMT promoter methylation by combined bisulfite restriction analysis (COBRA). The cohort included 77 endometrioid endometrial cancers, 43 endometrial tumors of adverse histologic type, and 6 endometrial cancer cell lines. Twenty-one endometrioid and mixed endometrioid ovarian cancers were also analyzed. A subset of the primary tumors was analyzed for MGMT expression by

  16. METHYLATION PATTERN OF LRP15 GENE IN LEUKEMIA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the methylation status of LRP15 gene in acute leukemia (AL) patients and its role in the tumorigenesis.Methods The methylation of LRP15 promoter and first exon of bone marrow mononuclear cells in 73 patients with AL, 10 with chronic leukemia (CL), 9 with hematological benign diseases, and 20 healthy transplantation donors was analyzed by using methylation specific polymerase chain reaction. The methylation of LRP15 gene promoter and first exon in COS7, K562, and HL60 cell lines was also assayed.Results No LRP15 gene promoter methylation was detected in COS7 cell line. LRP15 gene promoter was methylated in K562 and HL60 cell lines. No deletion of LRP15 gene was detected in all samples. In nearly all French-American-British leukemia subtypes, we found that frequency of LRP15 methylation in adult patients with AL was 71.23%( 52/73 ). There was no detectable methylation in any of the 20 healthy donors and 8 chronic myeloid leukemia patients.The difference in frequency of LRP15 methylation between AL patients and healthy donors or CL patients ( 10. 00%,1/10) was significant (P < 0. 01 ). Hypermethylation of LRP15 gene was found in 57. 14% (16/28) of newly diagnosed AL patients, 83.33% of relapsed AL patients respectively, which was significantly different ( P < 0. 05). We also demonstrated LRP15 methylation in 55.56% (5/9) adults with benign hematological diseases.Conclusions LRP15 methylation changes are common abnormalities in leukemia. LRP15 is postulated to be a tumor suppressor gene.

  17. Evaluation of MYB Promoter Methylation in Salivary Adenoid Cystic Carcinoma

    Science.gov (United States)

    Shao, Chunbo; Bai, Weiliang; Junn, Jacqueline C.; Uemura, Mamoru; Hennessey, Patrick T.; Zaboli, David; Sidransky, David; Califano, Joseph A.; Ha, Patrick K.

    2011-01-01

    Summary The transcription factor MYB was recently proposed to be a promising oncogene candidate in salivary gland adenoid cystic carcinoma (ACC). However, the up-regulation of MYB in ACC could not be explained solely by deletion of its 3′ end. It is widely accepted that the promoter methylation status can regulate the transcription of genes, especially in human cancers. Therefore, it is important to know whether MYB promoter demethylation could explain the over-expression of MYB in ACC. By using the Methprimer program, we identified nine CpG islands in the promoter of MYB. All of these CpG islands were located within the −864 to +2,082 nt region relative to the transcription start site of MYB. We then used bisulfite genomic sequencing to evaluate the methylation levels of the CpG islands of MYB in 18 primary ACC tumors, 13 normal salivary gland tissues and nine cancer cell lines. Using cell lines, we also determined the relative MYB expression levels and correlated these with the methylation levels. With bisulfite genomic sequencing, we found no detectable methylation in the CpG islands of MYB in either ACC or normal salivary gland tissues. There was a variable degree of MYB expression in the cell lines tested, but none of these cell lines demonstrated promoter methylation. Promoter hypomethylation does not appear to explain the differential expression of MYB in ACC. An alternative mechanism needs to be proposed for the transcriptional control of MYB in ACC. PMID:21324728

  18. ANRIL Promoter DNA Methylation: A Perinatal Marker for Later Adiposity

    Directory of Open Access Journals (Sweden)

    Karen Lillycrop

    2017-05-01

    Full Text Available Experimental studies show a substantial contribution of early life environment to obesity risk through epigenetic processes. We examined inter-individual DNA methylation differences in human birth tissues associated with child's adiposity. We identified a novel association between the level of CpG methylation at birth within the promoter of the long non-coding RNA ANRIL (encoded at CDKN2A and childhood adiposity at age 6-years. An association between ANRIL methylation and adiposity was also observed in three additional populations; in birth tissues from ethnically diverse neonates, in peripheral blood from adolescents, and in adipose tissue from adults. Additionally, CpG methylation was associated with ANRIL expression in vivo, and CpG mutagenesis in vitro inhibited ANRIL promoter activity. Furthermore, CpG methylation enhanced binding to an Estrogen Response Element within the ANRIL promoter. Our findings demonstrate that perinatal methylation at loci relevant to gene function may be a robust marker of later adiposity, providing substantial support for epigenetic processes in mediating long-term consequences of early life environment on human health.

  19. MGMT Gene Promoter Methylation as a Potent Prognostic Factor in Glioblastoma Treated With Temozolomide-Based Chemoradiotherapy: A Single-Institution Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk [Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei University Health System, Seoul (Korea, Republic of); Kim, Se Hoon [Department of Pathology, Yonsei University College of Medicine, Yonsei University Health System, Seoul (Korea, Republic of); Cho, Jaeho; Kim, Jun Won [Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei University Health System, Seoul (Korea, Republic of); Chang, Jong Hee; Kim, Dong Suk; Lee, Kyu Sung [Department of Neurosurgery, Yonsei University College of Medicine, Yonsei University Health System, Seoul (Korea, Republic of); Suh, Chang-Ok, E-mail: cosuh317@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei University Health System, Seoul (Korea, Republic of)

    2012-11-01

    Purpose: Recently, cells deficient in O{sup 6}-methylguanine-DNA methyltransferase (MGMT) were found to show increased sensitivity to temozolomide (TMZ). We evaluated whether hypermethylation of MGMT was associated with survival in patients with glioblastoma multiforme (GBM). Methods and Materials: We retrospectively analyzed 93 patients with histologically confirmed GBM who received involved-field radiotherapy with TMZ from 2001 to 2008. The median age was 58 years (range, 24-78 years). Surgical resection was total in 39 patients (42%), subtotal in 30 patients (32%), and partial in 17 patients (18%); only a biopsy was performed in 7 patients (8%). Postoperative radiotherapy began within 3 weeks of surgery in 87% of the patients. Radiotherapy doses ranged from 50 to 74 Gy (median, 70 Gy). MGMT gene methylation was determined in 78 patients; MGMT was unmethylated in 43 patients (55%) and methylated in 35 patients (45%). The median follow-up period was 22 months (range, 3-88 months) for all patients. Results: The median overall survival (OS) was 22 months, and progression-free survival (PFS) was 11 months. MGMT gene methylation was an independently significant prognostic factor for both OS (p = 0.002) and PFS (p = 0.008) in multivariate analysis. The median OS was 29 months for the methylated group and 20 months for the unmethylated group. In 35 patients with methylated MGMT genes, the 2-year and 5-year OS rates were 54% and 31%, respectively. Six patients with combined prognostic factors of methylated MGMT genes, age {<=}50 years, and total/subtotal resections are all alive 38 to 77 months after operation, whereas the median OS in 8 patients with unmethylated MGMT genes, age >50 years, and less than subtotal resection was 13.2 months. Conclusion: We confirmed that MGMT gene methylation is a potent prognostic factor in patients with GBM. Our results suggest that early postoperative radiotherapy and a high total/subtotal resection rate might further improve the

  20. Correlation of chromosome damage and promoter methylation status of the DNA repair genes MGMT and hMLH1 in Chinese vinyl chloride monomer (VCM-exposed workers

    Directory of Open Access Journals (Sweden)

    Fen Wu

    2013-02-01

    Full Text Available Objective: To explore the association of the methylation status of MGMT and hMLH1 with chromosome damage induced by vinyl chloride monomer (VCM. Materials and Methods: Methylation of MGMT and hMLH1 was measured in 101 VCM-exposed workers by methylation-specifi c PCR. Chromosome damage in peripheral blood lymphocytes was measured by the cytokinesis-block micronucleus assay. The subjects were divided into chromosome damaged and non-damaged groups based on the normal reference value of micronuclei frequencies determined for two control groups. Results: MGMT promoter methylation was detectable in 5 out of 49 chromosome damaged subjects, but not in the chromosome non-damaged subjects; there was a signifi cant difference in MGMT methylation between the two groups (p < 0.05. Conclusions: We detected aberrant promoter methylation of MGMT in a small number of chromosome damaged VCM-exposed workers, but not in the chromosome non-damaged subjects. This preliminary observation warrants further investigation in a larger study.

  1. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Dang, Jun; Bian, Yong-qian; Sun, Jian-yong

    2013-01-01

    Oral lichen planus (OLP) is a common oral mucosal disease, which is generally considered a potentially malignant lesion. To identify efficiently prognostic biomarker, we investigated the microRNA-137 (miR-137) promoter methylation in OLP and compared with the samples from healthy volunteers...... and patients with oral squamous cell carcinoma (OSCC). A total of 20 OLP and 12 patients with OSCC as well as 10 healthy subjects were subjected to miR-137 promoter methylation analysis using methylation-specific PCR (MSP). To address the malignancy prediction potential from miR-137 promoter methylation status...... between miR-137 and p16 methylation levels were statistically significant between healthy controls and patients. Methylation levels of the two promoters were also influenced by age, gender, and lesion duration. Interestingly, aberrant promoter methylation of the p16 and miR-137 genes was only found...

  2. Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation

    OpenAIRE

    Leng, Shuguang; Stidley, Christine A.; Willink, Randy; Bernauer, Amanda; Do, Kieu; Picchi, Maria A.; Sheng, Xin; Frasco, Melissa, A.; Berg, David Van Den; Gilliland, Frank D.; Zima, Christopher; Crowell, Richard E.; Belinsky, Steven A.

    2008-01-01

    Gene promoter hypermethylation in sputum is a promising biomarker for predicting lung cancer. Identifying factors that predispose smokers to methylation of multiple gene promoters in the lung could impact strategies for early detection and chemoprevention. This study evaluated the hypothesis that double-strand break repair capacity and sequence variation in genes in this pathway are associated with a high methylation index in a cohort of current and former cancer-free smokers. A 50% reduction...

  3. 基因启动子甲基化对转录因子结合的抑制作用分析方法%Method to Analyze Gene Promoter Methylation Inhibition Effect on Binding of Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    冯伟兴; 王科俊; 贺波; 李霞

    2011-01-01

    DNA methylation is identified as an elaborate epigenetic element to regulate binding of transcription factor to gene promoter region. With latest highthroughput technology, it is convenient to accurately test methylation level in experiment, which opens a door to investigate how methylation affects transcription factor. A general model is presented to sense methylation effect on transcription factor in a specific cell. In the model, an inverse sigmoid function is adopted to depict effect of DNA methylation to binding ability of transcription factors with two parameters as center C and steepness S. For each transcription factor, the parameters of model can be fixed by analysis of relativity between transcription factor binding scores in promoter regions and gene expression levels. Here three relativity values should be computed while different formula is used to calculate transcription factor binding score. Relativity value A is obtained when transcription factor binding scores are calculated without considering methylation effect. Relativity value B is analyzed from transcription factor binding scores considering methylation effect with the proposed model. On the contrary, normal sigmoid function is used to depict effect of DNA methylation and relativity value C is just calculated with transcription factor binding scores considering methylation effect using such model. For a transcription factor, if relativity value B is found obviously larger than relativity value A and relativity value C is always less than relativity value A, the transcription factor can be figured out to be apparently affected by DNA methylation and the model with optimal fixed parameters can be used to depict the methylation effect. In neuroblastoma cell, with the proposed model, 10 transcriptional factors were found to be apparently affected by methylation of promoter regions which proves the effectiveness of the model.Based on the proposed model, TF binding status in genome promoter region

  4. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.

    NARCIS (Netherlands)

    Weber, M.; Hellmann, I.; Stadler, M.B.; Ramos, L.; Paabo, S.; Rebhan, M.; Schubeler, D.

    2007-01-01

    To gain insight into the function of DNA methylation at cis-regulatory regions and its impact on gene expression, we measured methylation, RNA polymerase occupancy and histone modifications at 16,000 promoters in primary human somatic and germline cells. We find CpG-poor promoters hypermethylated in

  5. Promoter Methylation Primarily Occurs in Tumor Cells of Patients with Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    De Jong, Wouter K.; Verpooten, Gonda F.; Kramer, Henk; Louwagie, Joost; Groen, Harry J. M.

    Background: The distribution of promoter methylation throughout the lungs of patients with non-small cell lung cancer (NSCLC) is unknown. In this explorative study, we assessed the methylation status of the promoter region of 11 genes in brush samples of 3 well-defined endobronchial locations in

  6. Identification of candidate methylation-responsive genes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dickerson Erin B

    2007-01-01

    Full Text Available Abstract Background Aberrant methylation of gene promoter regions has been linked to changes in gene expression in cancer development and progression. Genes associated with CpG islands (CGIs are especially prone to methylation, but not all CGI-associated genes display changes in methylation patterns in cancers. Results In order to identify genes subject to regulation by methylation, we conducted gene expression profile analyses of an ovarian cancer cell line (OVCAR-3 before and after treatment with the demethylating agent 5-aza-deoxycytidine (5-aza-dC. An overlapping subset of these genes was found to display significant differences in gene expression between normal ovarian surface epithelial cells and malignant cells isolated from ovarian carcinomas. While 40% of all human genes are associated with CGIs, > 94% of the overlapping subset of genes is associated with CGIs. The predicted change in methylation status of genes randomly selected from the overlapping subset was experimentally verified. Conclusion We conclude that correlating genes that are upregulated in response to 5-aza-dC treatment of cancer cell lines with genes that are down-regulated in cancer cells may be a useful method to identify genes experiencing epigenetic-mediated changes in expression over cancer development.

  7. Gene Expression Status and Methylation Pattern in Promoter of P15INK4b and P16INK4a in Cord Blood CD34+ Stem Cells

    Directory of Open Access Journals (Sweden)

    Mehdi Azad

    2013-07-01

    : Specific predifferentiation expression of P15INK4b and P16INK4a genes along with reduction in their expression after erythroid differentiation indicated animportant role for these two genes in biology of CD34+ cells in primary stages and before differentiation. In addition, both genes are capable of epigenetic modifications due to the structure of their promoters.

  8. Developmental- and differentiation-specific patterns of human gamma- and beta-globin promoter DNA methylation.

    Science.gov (United States)

    Mabaera, Rodwell; Richardson, Christine A; Johnson, Kristin; Hsu, Mei; Fiering, Steven; Lowrey, Christopher H

    2007-08-15

    The mechanisms underlying the human fetal-to-adult beta-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human gamma- and beta-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at -162 of the gamma promoter and -126 of the beta promoter are hypomethylated in ABM and FL, respectively. We also studied gamma-globin promoter methylation during in vitro differentiation of erythroid cells. The gamma promoters are initially hypermethylated in CD34(+) cells. The upstream gamma promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient gamma-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human gamma- and beta-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human beta-globin locus gene switching.

  9. Developmental- and differentiation-specific patterns of human γ- and β-globin promoter DNA methylation

    Science.gov (United States)

    Mabaera, Rodwell; Richardson, Christine A.; Johnson, Kristin; Hsu, Mei; Fiering, Steven

    2007-01-01

    The mechanisms underlying the human fetal-to-adult β-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human γ- and β-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at −162 of the γ promoter and −126 of the β promoter are hypomethylated in ABM and FL, respectively. We also studied γ-globin promoter methylation during in vitro differentiation of erythroid cells. The γ promoters are initially hypermethylated in CD34+ cells. The upstream γ promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient γ-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human γ- and β-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human β-globin locus gene switching. PMID:17456718

  10. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies.

    Directory of Open Access Journals (Sweden)

    David S Shames

    2006-12-01

    Full Text Available BACKGROUND: Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The "rules" governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets. METHODS AND FINDINGS: In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5' CpG islands, are induced from undetectable levels by 5-aza-2'-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132 of these promoter regions in primary lung cancer (n = 20 and adjacent nonmalignant tissue (n = 20 showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37, colon cancer (n = 24, and prostate cancer (n = 24 along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors. CONCLUSIONS: By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross

  11. Metastatic suppressor genes inactivated by aberrant methylation in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To screen out the differentially methylated DNA sequences between gastric primary tumor and metastatic lymph nodes, test the methylation difference of gene PTPRG between primary gastric tumor and metastatic lymph nodes, and test the regulatory function of 5-aza-2-deoxycytidine which is an agent with suppression on methylation and the level of methylation in gastric cancer cell line.METHODS: Methylated DNA sequences in genome were enriched with methylated CpG islands amplification (MCA)to undergo representational difference analysis (RDA),with MCA production of metastatic lymph nodes as tester and that of primary tumor as driver. The obtained differentially methylated fragments were cloned and sequenced to acquire the base sequence, which was analyzed with bioinformatics. With methylation-specific PCR (MSP) and RT-PCR, methylation difference of gene PTPRG was detected between primary tumor and metastatic lymph nodes in 36 cases of gastric cancer.Methylation of gene PTPRG and its regulated expression were observed in gastric cancer cell line before and after being treated with methylation-suppressive agent.RESULTS: Nineteen differentially methylated sequences were obtained and located at 5' end, exons, introns and 3' end, in which KL59 was observed to be located at 9p21 as the first exon of gene p16 and KL22 to be located at promoter region of PRPRG. KL22, aS the probes, was hybridized with driver, tester and 3-round RDA products respectively with all positive signals except with the driver. Significant difference was observed in both methylation rate of gene PTPRG and PTPRG mRNA expression rate between primary tumor and metastatic lymph nodes. Demethylation of gene PTPRG, with recovered expression of PTPRG mRNA, was observed after gastric cancer cell line being treated with methylation-suppressive agent.CONCLUSION: Difference exists in DNA methylation between primary tumor and metastatic lymph nodes of gastric cancer, with MCA-RDA as one of the good analytical

  12. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  13. 穿孔素基因启动子的克隆及体外区域性高甲基化%Construction of a reporter gene vector and methylation of perforin promoter in vitro

    Institute of Scientific and Technical Information of China (English)

    袁娟; 周英; 肖嵘; 陆前进; 李亚萍; 杨心洁; 汪峰; 湛意; 张桂英; 张静

    2009-01-01

    目的 克隆穿孔素基因启动子区域(PRF1),并对PRF1进行体外区域性高甲基化,为探讨穿孔素基因调控序列高甲基化能否引起穿孔素表达下调奠定基础.方法 PCR扩增穿孔素基因启动子区域(PRF1)后,先将PRF1克隆到T载体,再定向亚克隆至报告基因栽体;然后对PRF1片段进行体外区域性高甲基化.结果 (1)克隆PRF1到报告基因载体pGL3-Basic后双酶切及测序鉴定结果正确.(2)对PRF1片段进行体外区域性高甲基化后鉴定显示PRF1片段区域性高甲基化完全.结论 成功克隆PRF1至报告基因载体pGL3-Basic并对PRF1片段进行体外区域性高甲基化,为今后研究奠定了基础.%Objective To construct a luciferase reporter gene vector of perforin promoter and methylate it in vitro. Methods The promoter of the human peffofin was amplified by PCR, cloned into pMD18-T vector and subcloned into pGL3-Basie vector, and then con-finned by restriction mapping and DNA sequencing. The regions of interest were excised with the appropriate restriction endonucleases, then it were methylated with methylase Sss I(M. SssI)and S-adenosymethioine(SAM), and methylation was confirmed by digestion with appropri-ate methylation sensitive enzyme AciI and agrose gel electrophoresis, and then the fragment was relegated back into the promoter-reporter constructor pGL3-Basic. Results The result of DNA sequencing showed that the sequence of cloned promoter was right. The result of diges-tion methylation with appropriate methylation sensitive enzyme showed that perforin promoter was completely methylated. Conclusion The promoter of perforin was successfully cloned and completely methylated in vitro, which provided an important basis for the study of transfec-tion.

  14. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers

    Directory of Open Access Journals (Sweden)

    Guzmán Leda

    2012-07-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is a disorder associated to cigarette smoke and lung cancer (LC. Since epigenetic changes in oncogenes and tumor suppressor genes (TSGs are clearly important in the development of LC. In this study, we hypothesize that tobacco smokers are susceptible for methylation in the promoter region of TSGs in airway epithelial cells when compared with non-smoker subjects. The purpose of this study was to investigate the usefulness of detection of genes promoter methylation in sputum specimens, as a complementary tool to identify LC biomarkers among smokers with early COPD. Methods We determined the amount of DNA in induced sputum from patients with COPD (n = 23, LC (n = 26, as well as in healthy subjects (CTR (n = 33, using a commercial kit for DNA purification, followed by absorbance measurement at 260 nm. The frequency of CDKN2A, CDH1 and MGMT promoter methylation in the same groups was determined by methylation-specific polymerase chain reaction (MSP. The Fisher’s exact test was employed to compare frequency of results between different groups. Results DNA concentration was 7.4 and 5.8 times higher in LC and COPD compared to the (CTR (p  Conclusions We provide evidence that aberrant methylation of TSGs in samples of induced sputum is a useful tool for early diagnostic of lung diseases (LC and COPD in smoker subjects. Virtual slides The abstract MUST finish with the following text: Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1127865005664160

  15. Quantitative evaluation of DNMT3B promoter methylation in breast cancer patients using differential high resolution melting analysis.

    Science.gov (United States)

    Naghitorabi, M; Mohammadi Asl, J; Mir Mohammad Sadeghi, H; Rabbani, M; Jafarian-Dehkordi, A; Javanmard, Haghjooye S

    2013-07-01

    DNA methylation plays an important role in carcinogenesis through epigenetic silencing of tumor suppressor genes. Aberrant methylation usually results from changes in the activity of DNA methyltransferases (DNMTs). Some studies show that the overexpression of the DNMTs may lead to aberrant methylation of tumor suppressor genes. Also the overexpression of DNMTs may be related to methylation status of their genes. Due to limited number of studies on DNMT3B promoter methylation, this study was performed to quantitatively measure the methylation level of DNMT3B gene in archival formalin fixed paraffin embedded (FFPE) tissues from breast cancer patients. Using differential high resolution melting analysis (D-HRMA) technology, the methylation level of DNMT3B gene promoter was quantified in 98 breast cancer FFPE tissues and also 10 fresh frozen normal tissue samples. Statistical analyses used for analyzing the correlation between the methylation and clinical variables. All the normal samples were found to be methylated at the DNMT3B promoter (the average methylation level 3.34%). Patients were identified as hypo-methylated (mean methylation level 0.8%), methylated (mean methylation level 2.48%) and hyper-methylated (mean methylation level 10.5%). Statistical analysis showed a significant correlation between the methylation status and the sample type, cancer type and tumor size. Also the methylation level was significantly associated with histologic grade. It is concluded that quantification of DNMT3B promoter methylation might be used as a reliable and sensitive diagnostic and prognostic tool in breast cancer. Also D-HRMA is demonstrated as a rapid and cost effective method for quantitative evaluation of promoter methylation.

  16. Study of methylation of promoter of FGF3 gene in genetic microtia pedigree%遗传性小耳畸形家系FGF3基因启动子甲基化检测及意义

    Institute of Scientific and Technical Information of China (English)

    刘嘉锋; 孙家明; 李小丹

    2012-01-01

    Objective To explore the methylation in promoter of FGF3 gene in genetic microfia pedigree. Methods The methylation in FGF3 gene in 32 people of genetic microtia pedigree and 20 healthy controls were measured using Methylation-specific PCR (MSP). Results The methylation of FGF3 gene in microtia were significantly lower than those in control (P<0.01).ln the genetic microtia pedigree.the methylation of FGF3 gene in the patients were significantly lower than those in the healthy people(P<0.05). Conclusions Hypomethylation of FGF3 gene may related to the pathogenesis of genetic microtia.%目的:探讨遗传性小耳畸形家系FGF3基因启动子区域甲基化状态及意义.方法:应用甲基化特异性PCR(MSP)法检测遗传性小耳畸形患者及其直系亲属的FGF3基因启动子甲基化32例,同时以20例健康者为对照.结果:遗传性小耳畸形患者及直系亲属FGF3基因启动子甲基化状态明显低于对照组,且有显著性差异(P<0.01).遗传性小耳畸形家系组中,患病者的基因甲基化程度小于耳廓正常者(P<0.05).结论:FGF3基因启动子的甲基化状态可能与遗传性小耳畸形的发生有关.

  17. Glioblastoma and the significance of MGMT gene methylation

    Directory of Open Access Journals (Sweden)

    Payam Izadpanahi

    2014-08-01

    Full Text Available In this research Glioblastoma has been studied as one of the most common brain tumors and a short review of the available therapeutic methods have presented including surgery, radiotherapy, chemotherapy and particularly adjuvant chemotherapy with temozolomide, as the most effective developed treatment. Moreover, MGMT gene promoter methylation has been introduced as an important predictive factor of treatment response to temozolamide. The different mechanisms of methylation and the availableliterature on its association with patient survival and disease recurrence have been summarized. Taken together, Glioblastoma is a tumor in which the MGMT gene expression can potentially deliver the highest amount of data in comparison to other tumors; as almost every related study has emphasized on the direct association between MGMT methylation and patient survival. Regarding this debate, the pseudoprogression pattern in Glioblastoma patients and the laboratory methods studying MGMT gene methylation have been examined. At the end of this review, the obstacles to its development have been briefly mentioned.

  18. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain

    NARCIS (Netherlands)

    Doelen, R.H. van der; Arnoldussen, I.A.C.; Ghareh, H.; Och, L. van; Homberg, J.R.; Kozicz, L.T.

    2015-01-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene x Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid

  19. Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands.

    Science.gov (United States)

    Li, Chunping; Xu, Ming; Wang, Sumeng; Yang, Xiaolin; Zhou, Shourong; Zhang, Jingping; Liu, Qizhan; Sun, Yujie

    2011-05-30

    DNA methylation provides a plausible link between the environment and alterations in gene expression that may lead to disease phenotypes. Lead exposure can change DNA methylation status. Here, we hypothesized that the methylation of the ALAD gene promoter may play an important role in lead toxicity. To determine whether the methylation level of the ALAD promoter is associated with the risk of lead poisoning, we conducted a case-control study of 103 workers from a battery plant and 103 healthy volunteers with matching age and gender distribution. We employed real-time PCR and methylation-specific PCR (MSP) in cell models to determine the relationship between ALAD methylation level and transcription level. We found lead exposure to increase the ALAD gene methylation level and down-regulate ALAD transcription. The difference in methylation frequencies between exposures and controls was statistically significant (p=0.002), and individuals with methylated ALAD gene showed an increased risk of lead poisoning (adjusted OR=3.57, 95% CI, 1.55-8.18). This study suggests that the lead-exposure-induced increases in ALAD methylation may be involved in the mechanism of lead toxicity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Methylation of miRNA genes and oncogenesis.

    Science.gov (United States)

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  1. Quantitative DNA methylation analysis of selected genes in endometrial carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ying-Chieh Chen

    2015-10-01

    Conclusion: Promoter methylation of ZNF177, COL14A1, HOXA9, DPYSL4, and TMEFF2 genes is a frequent epigenetic event in EC. Furthermore, the epigenetic hypermethylation of TMEFF2 may be a valuable marker for identifying undetected EC within endometrial hyperplasia.

  2. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women

    OpenAIRE

    Wong, Chung M; Anderton, Douglas L.; Smith-Schneider, Sallie; Wing, Megan A; Greven, Melissa C; Arcaro, Kathleen F.

    2010-01-01

    Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle and reproductive history questionnaires were collected fro...

  3. Relationship of methylation status in promoter of APC gene and environmental factors with prostate cancer%APC基因启动子区甲基化及环境因素与前列腺癌的关系

    Institute of Scientific and Technical Information of China (English)

    邱镇; 张连升; 梁永; 崔飞伦

    2013-01-01

    目的 探讨腺瘤样结肠息肉易感基因(APC)启动子区CpG甲基化及环境危险因素及相互作用与中国人群中前列腺癌(PCa)发病之间的关系.方法 应用亚硫酸盐修饰后测序法检测60例PCa及40例良性前列腺增生(BPH)组织中APC基因启动子区CpG甲基化情况.分析APC基因甲基化及环境危险因素与PCa患病之间的关系.结果 APC基因在PCa和BPH组织中CG位点甲基化率分别为48.84%和1.19%;基因甲基化率与前列腺特异性抗原(PSA)、Gleason评分、病理分期和PCa危险分期之间关系密切;饮茶者患PCa的危险性是不饮茶者的0.29倍.结论 APC基因启动子区甲基化与PCa发生及发展有关;其甲基化率的变化与PCa的危险分期关系密切.检测前列腺组织中相关基因甲基化状态,有望成为诊断早期PCa的一种方法.%Objective To investigate the relationship of methylation status in promoter of adenomatosis polyposis coli(APC) gene and environmental factors with prostate cancer (PCa). Methods With bisulphite sequencing PCR,the methylation of APC gene was detected in PCa tissues of 60 PCa patients and hyperplastic tissues of 40 patients with benign prostate hyperplasia(BPH). The methylation status and environmental risk factors for PCa were analyzed. Results The methylation rates of CG sites in promoter of APC gene in PCa and BPH tissues were 48.84% and 1. 19%, respectively. The methylation rate of APC gene was closely associated with prostate specific antigen (PSA),Gleason score,pathologic stage and classification of the risks. A decreased risk for PCa was observed in Chinese population having a tea drinking habit. Conclusion The methylation of promoter in APC genes is associated with the occurrence and progress of PCa The change of methylation rate of APC genes is closely related to the classification of PCa risks. Detection of the methylation status of APC genes may hopefully become an indicator for early diagnosis of PCa.

  4. A differentially methylated region of the DAZ1 gene in spermatic and somatic cells

    Institute of Scientific and Technical Information of China (English)

    Zuo-Xiang Li; Xu Ma; Zhao-Hui Wang

    2006-01-01

    Aim: To investigate the methylation status of the deleted in azoospermia 1 (DAZ1) gene promoter region in different cell types. Methods: Using CpG island Searcher software, a CpG island was found in the promoter region of the DAZ1 gene. The methylation status of this region was analyzed in sperm and leukocytes by bisulfited sequencing.Results: The methylation status of the CpG island in the DAZ1 gene promoter region differed in leukocytes and sperm: it was methylated in leukocytes, but unmethylated in sperm. Conclusion: A differentially methylated region of the DAZ1 gene exists in spermatic and somatic cells, suggesting that methylation of this region may regulate DAZ1 gene expression in different tissues.

  5. Parkin基因甲基化对鼻咽癌早期诊断及预后判断的价值研究%Parkin gene promoter methylation in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    江波; 倪海峰; 周珍; 李勇; 黄光武

    2016-01-01

    目的:研究Parkin基因甲基化在鼻咽癌早期诊断及预后判断中的价值。方法运用甲基化特异性PCR检测54例鼻咽癌组织、16例慢性鼻咽炎症组织和16例正常鼻咽上皮组织中Parkin基因启动子区甲基化情况,并分析其与鼻咽癌临床生物学因素的关系。结果慢性鼻咽炎症组织和正常鼻咽上皮组织中均未检测到Parkin基因甲基化,而在鼻咽癌组织中甲基化率为62.96%(34/54),3种鼻咽组织Parkin基因甲基化情况比较有统计学差异(P<0.05)。进一步统计学分析发现鼻咽癌组织Parkin基因甲基化与其临床生物学因素均无关(均P>0.05)。结论 Parkin基因甲基化具有肿瘤特异性,与鼻咽癌发生、发展密切相关,有望成为早期分子生物学辅助诊断的标志物,但不能作为判断鼻咽癌预后的预测指标。%Objective To investigate Parkin gene promoter methylation in nasopharyngeal carcinoma (NPC). Methods The methylation- specific PCR (MSP) was used to detect methylation level of Parkin gene in 54 tissue specimens of NPC, 16 specimens of chronic nasopharyngitis and 16 specimens of normal nasopharyngeal epithelia tissues, and its relationship with the clinical and biological features of NPC was analyzed. Results Parkin gene promoter methylation was detected in 62.96%(34/54) of NPC specimens, not in any specimens of chronic nasopharyngitis and normal nasopharyngeal epithelia tissues(P0.05). Conclusion Parkin gene promoter methylation has high specificity in distinguishing NPC from normal nasopharyngeal tissues and inflammatory nasopharyngeal disease, suggesting that it may be used for early molecular diagnosis of NPC.

  6. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene ex...

  7. Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner.

    Science.gov (United States)

    Wang, Jie; Bhutani, Manisha; Pathak, Ashutosh K; Lang, Wenhua; Ren, Hening; Jelinek, Jaroslav; He, Rong; Shen, Lanlan; Issa, Jean-Pierre; Mao, Li

    2007-11-15

    DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, DeltaDNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DeltaDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DeltaDNMT3B4 in primary lung cancer, suggesting a role of DeltaDNMT3B in regulating promoter-specific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of DeltaDNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DeltaDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DeltaDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and DeltaDNMT3Bs are involved in regulation of such promoter-specific de novo DNA methylation.

  8. Epigenetic Methylation of Parathyroid CaR and VDR Promoters in Experimental Secondary Hyperparathyroidism

    DEFF Research Database (Denmark)

    Hofman-Bang, Jacob; Gravesen, Eva; Olgaard, Klaus

    2012-01-01

    R in parathyroid cultures decreases rapidly. Methylation of promoter regions is often detected during epigenetic downregulation of gene expression. Therefore, using an experimental rat model, we examined changes in methylation levels of parathyroid CaR and VDR promoters in vivo and in vitro. Methods. Uremia...... was induced by 5/6 nephrectomy. Melting temperature profiling of CaR and VDR PCR products after bisulfite treatment of genomic DNA from rat parathyroids was performed. Real-time PCR measured expression of PTH, CaR, VDR, and klotho genes in vitro. Results. Parathyroids from uremic rats had similar low levels...... of methylation in vivo and in vitro. In culture, a significant downregulation of CaR, VDR, and klotho within two hours of incubation was observed, while housekeeping genes remained stable for 24 hours. Conclusion. In uremic s-HPT and in vitro, no overall changes in methylation levels in the promoter regions...

  9. Exposures in early life: associations with DNA promoter methylation in breast tumors.

    Science.gov (United States)

    Tao, M-H; Marian, C; Shields, P G; Potischman, N; Nie, J; Krishnan, S S; Berry, D L; Kallakury, B V; Ambrosone, C; Edge, S B; Trevisan, M; Winston, J; Freudenheim, J L

    2013-04-01

    There is evidence that epigenetic changes occur early in breast carcinogenesis. We hypothesized that early-life exposures associated with breast cancer would be associated with epigenetic alterations in breast tumors. In particular, we examined DNA methylation patterns in breast tumors in association with several early-life exposures in a population-based case-control study. Promoter methylation of E-cadherin, p16 and RAR-β2 genes was assessed in archived tumor blocks from 803 cases with real-time methylation-specific PCR. Unconditional logistic regression was used for case-case comparisons of those with and without promoter methylation. We found no differences in the prevalence of DNA methylation of the individual genes by age at menarche, age at first live birth and weight at age 20. In case-case comparisons of premenopausal breast cancer, lower birth weight was associated with increased likelihood of E-cadherin promoter methylation (OR = 2.79, 95% CI, 1.15-6.82, for ⩽2.5 v. 2.6-2.9 kg); higher adult height with RAR-β2 methylation (OR = 3.34, 95% CI, 1.19-9.39, for ⩾1.65 v. <1.60 m); and not having been breastfed with p16 methylation (OR = 2.75, 95% CI, 1.14-6.62). Among postmenopausal breast cancers, birth order was associated with increased likelihood of p16 promoter methylation. Being other than first in the birth order was inversely associated with likelihood of ⩾1 of the three genes being methylated for premenopausal breast cancers, but positively associated with methylation in postmenopausal women. These results suggest that there may be alterations in methylation associated with early-life exposures that persist into adulthood and affect breast cancer risk.

  10. Identification of new differentially methylated genes that have potential functional consequences in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jin W Kim

    Full Text Available Many differentially methylated genes have been identified in prostate cancer (PCa, primarily using candidate gene-based assays. Recently, several global DNA methylation profiles have been reported in PCa, however, each of these has weaknesses in terms of ability to observe global DNA methylation alterations in PCa. We hypothesize that there remains unidentified aberrant DNA methylation in PCa, which may be identified using higher resolution assay methods. We used the newly developed Illumina HumanMethylation450 BeadChip in PCa (n = 19 and adjacent normal tissues (n = 4 and combined these with gene expression data for identifying new DNA methylation that may have functional consequences in PCa development and progression. We also confirmed our methylation results in an independent data set. Two aberrant DNA methylation genes were validated among an additional 56 PCa samples and 55 adjacent normal tissues. A total 28,735 CpG sites showed significant differences in DNA methylation (FDR adjusted P<0.05, defined as a mean methylation difference of at least 20% between PCa and normal samples. Furthermore, a total of 122 genes had more than one differentially methylated CpG site in their promoter region and a gene expression pattern that was inverse to the direction of change in DNA methylation (e.g. decreased expression with increased methylation, and vice-versa. Aberrant DNA methylation of two genes, AOX1 and SPON2, were confirmed via bisulfate sequencing, with most of the respective CpG sites showing significant differences between tumor samples and normal tissues. The AOX1 promoter region showed hypermethylation in 92.6% of 54 tested PCa samples in contrast to only three out of 53 tested normal tissues. This study used a new BeadChip combined with gene expression data in PCa to identify novel differentially methylated CpG sites located within genes. The newly identified differentially methylated genes may be used as biomarkers for PCa diagnosis.

  11. G-quadruplex structures and CpG methylation cause drop-out of the maternal allele in polymerase chain reaction amplification of the imprinted MEST gene promoter.

    Directory of Open Access Journals (Sweden)

    Aaron J Stevens

    Full Text Available We observed apparent non-Mendelian behaviour of alleles when genotyping a region in a CpG island at the 5' end of the maternally imprinted human MEST isoform. This region contains three single nucleotide polymorphisms (SNPs in total linkage disequilibrium, such that only two haplotypes occur in the human population. Only one haplotype was detectable in each subject, never both, despite the use of multiple primers and several genotyping methods. We observed that this region contains motifs capable of forming several G-quadruplex structures. Circular dichroism spectroscopy and native polyacrylamide gel electrophoresis confirmed that at least three G-quadruplexes form in vitro in the presence of potassium ions, and one of these structures has a Tm of greater than 99°C in polymerase chain reaction (PCR buffer. We demonstrate that it is the methylated maternal allele that is always lost during PCR amplification, and that formation of G-quadruplexes and presence of methylated cytosines both contributed to this phenomenon. This observed parent-of-origin specific allelic drop-out has important implications for analysis of imprinted genes in research and diagnostic settings.

  12. G-Quadruplex Structures and CpG Methylation Cause Drop-Out of the Maternal Allele in Polymerase Chain Reaction Amplification of the Imprinted MEST Gene Promoter

    Science.gov (United States)

    Cree, Simone L.; Gibb, Andrew; Miller, Allison L.; Doudney, Kit; Aitchison, Alan; Eccles, Michael R.; Joyce, Peter R.; Filichev, Vyacheslav V.; Kennedy, Martin A.

    2014-01-01

    We observed apparent non-Mendelian behaviour of alleles when genotyping a region in a CpG island at the 5′ end of the maternally imprinted human MEST isoform. This region contains three single nucleotide polymorphisms (SNPs) in total linkage disequilibrium, such that only two haplotypes occur in the human population. Only one haplotype was detectable in each subject, never both, despite the use of multiple primers and several genotyping methods. We observed that this region contains motifs capable of forming several G-quadruplex structures. Circular dichroism spectroscopy and native polyacrylamide gel electrophoresis confirmed that at least three G-quadruplexes form in vitro in the presence of potassium ions, and one of these structures has a Tm of greater than 99°C in polymerase chain reaction (PCR) buffer. We demonstrate that it is the methylated maternal allele that is always lost during PCR amplification, and that formation of G-quadruplexes and presence of methylated cytosines both contributed to this phenomenon. This observed parent-of-origin specific allelic drop-out has important implications for analysis of imprinted genes in research and diagnostic settings. PMID:25437198

  13. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    Directory of Open Access Journals (Sweden)

    Vining Kelly J

    2012-01-01

    Full Text Available Abstract Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem in the reference tree species black cottonwood (Populus trichocarpa. Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq, we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation" had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.

  14. Contribution of LATS1 and LATS2 promoter methylation in OSCC development.

    Science.gov (United States)

    Ladiz, Mohammad Ayoub Rigi; Najafi, Maryam; Kordi-Tamandani, Dor Mohammad

    2017-03-01

    The aberrant DNA methylation of the tumor suppressor genes involved in DNA Damage Response (DDR) signaling and cell cycle regulation may lead to the tumorigenesis. Our purpose here is to analyze the promoter methylation and mRNA expression levels of LATS1 and LATS2 (LATS1/2) genes in OSCC. Promoter methylation status of LATS1/2 genes was evaluated in 70 OSCC paraffin-embedded tissues and 70 normal oral samples, using Methylation Specific PCR (MSP). LATS1/2 mRNA expression profiles were also investigated in 14 OSCC patients and 14 normal samples, using real-time PCR. In both candidate genes, promoter methylation assessment revealed significant relationship between cases and controls (OR = 2.24, 95 % CI = 1.40-3.54, P = 0.001; LATS1 and OR = 15.5, 95%CI = 3.64-64.76, P promoter methylation in OSCC. It is suggested to explore the down-stream transcription factors of both genes for finding the molecular mechanism of this deregulation in OSCC.

  15. Relationship between methylation of MGMT gene promoter and cervical carcinoma%宫颈癌及宫颈上皮内瘤变MGMT基因甲基化及其相关性研究

    Institute of Scientific and Technical Information of China (English)

    陆欢; 陈莹蓉; 孙立奇; 陶志梅; 张甦; 邓再兴; 戴利成

    2014-01-01

    目的:探讨宫颈癌和宫颈上皮内瘤变(CIN)患者宫颈脱落细胞中O6-甲基鸟嘌呤- DNA甲基转移酶(MGMT)基因启动子区甲基化状态在宫颈癌临床早期诊断和筛查中的作用。方法选取对照组20例,CINI、CINII、CINIII期患者各50例和宫颈癌患者50例,采用甲基化特异性PCR检测宫颈脱落细胞中MGMT基因启动子区甲基化状态并进行比较。结果宫颈癌和CINI、II、III期患者MGMT基因启动子区甲基化阳性率分别为82.0%(41/50)、24.0%(12/50)、50.0%(25/50)和80.0%(40/50),而对照组未检测到MGMT基因启动子区甲基化。与对照组比,宫颈癌组和CINI、II、III期组MGMT基因启动子区甲基化阳性率的差异均有统计学意义(均P<0.05)。宫颈癌组中MGMT基因启动子甲基化与其临床分期及组织分化程度有显著相关性(均P<0.05)。结论 MGMT基因启动子区甲基化可能参与宫颈癌的发生、发展,有助于宫颈癌的早期辅助诊断和筛查。%Objective To investigate the methylation status of MGMT gene promoter in cervical carcinoma and cervical intraepithelial neoplasia (CIN). Methods Methylation status of MGMT gene promoter was detected with methylation specific PCR (MSP) in cervical exfoliated cel s from patients with CINI (n=50), CINII (n=50), CINIII (n=50), cervical carcinoma (n=50) and non- cancer controls(n=20). Results The promoter methylation rates of MGMT were 82.0%(41/50), 24.0%(12/50), 50.0%(25/50) and 80.0%(40/50) in cervical carcinoma, CIN I, CINII and CINIII, while no methylation was detected in control group (P<0.05). The methylation of MGMT gene was correlated with the clinicopathological characteristics and tissue differentiation of cervical carcinoma (P<0.05). Conclusion The methylation of MGMT gene promoter region is associated with cervical carcinoma, which may be used as potential marker for early diagnosis of cervical carcinoma.

  16. FCGR2A Promoter Methylation and Risks for Intravenous Immunoglobulin Treatment Responses in Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Ho-Chang Kuo

    2015-01-01

    Full Text Available Kawasaki disease (KD is characterized by pediatric systemic vasculitis of an unknown cause. The low affinity immunoglobulin gamma Fc region receptor II-a (FCGR2A gene was reported to be involved in the susceptibility of KD. DNA methylation is one of the epigenetic mechanisms that control gene expression; thus, we hypothesized that methylation status of CpG islands in FCGR2A promoter associates with the susceptibility and therapeutic outcomes of Kawasaki disease. In this study, 36 KD patients and 24 healthy subjects from out-patient clinic were recruited. Eleven potential methylation sites within the targeted promoter region of FCGR2A were selected for investigation. We marked the eleven methylation sites from A to K. Our results indicated that methylation at the CpG sites G, H, and J associated with the risk of KD. CpG sites B, C, E, F, H, J, and K were found to associate with the outcomes of IVIG treatment. In addition, CpG sites G, J, and K were predicted as transcription factors binding sites for NF-kB, Myc-Max, and SP2, respectively. Our study reported a significant association among the promoter methylation of FCGR2A, susceptibility of KD, and the therapeutic outcomes of IVIG treatment. The methylation levels of CpG sites of FCGR2A gene promoter should be an important marker for optimizing IVIG therapy.

  17. PROMOTER HYPERMETHYLATION OF p16 GENE AND DAPK GENE IN SERA FROM HEPATOCELLULAR CARCINOMA (HCC) PATIENTS

    Institute of Scientific and Technical Information of China (English)

    LIN Qing; CHEN Long-bang; TANG Yong-ming; WANG Jing

    2005-01-01

    Objective: To analyze the aberrant methylation of p16 gene and DAPK gene in sera from primary liver cancer patients ad to evaluate the clinical significance. Methods: A methylation-specific PCR was performed for the detection of promoter hypermethylation of p16 gene and DAPK gene in blood DNA from 64 cases of HCC patients, and to analyze the relation of the aberrant methylation of p16 gene and KAPK gene and the clinical pathological data. Results: 76.6%(49/64) of the sera from 64 cases of HCC patients showed hypermethylation for p16 promoter and 40.6% (26/64) for KAPK promoter, whereas no methylated p16 gene promoter and DAPK gene promoter were found in sera from benign liver diseases patients and normal control. Methylated p16 gene and KAPK gene promoters in sera did not strongly correlated with HBsAg, stage,metastasis and differentiation in HCC; but strongly correlated with AFP. Conclusion: Detection of the aberrant methylation of p16 gene and KAPK gene in blood DNA from HCC patients might offer an effective means for the earlier auxiliary diagnosis of the malignancy.

  18. CG Methylation Covaries with Differential Gene Expression between Leaf and Floral Bud Tissues of Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Kyria Roessler

    Full Text Available DNA methylation has the potential to influence plant growth and development through its influence on gene expression. To date, however, the evidence from plant systems is mixed as to whether patterns of DNA methylation vary significantly among tissues and, if so, whether these differences affect tissue-specific gene expression. To address these questions, we analyzed both bisulfite sequence (BSseq and transcriptomic sequence data from three biological replicates of two tissues (leaf and floral bud from the model grass species Brachypodium distachyon. Our first goal was to determine whether tissues were more differentiated in DNA methylation than explained by variation among biological replicates. Tissues were more differentiated than biological replicates, but the analysis of replicated data revealed high (>50% false positive rates for the inference of differentially methylated sites (DMSs and differentially methylated regions (DMRs. Comparing methylation to gene expression, we found that differential CG methylation consistently covaried negatively with gene expression, regardless as to whether methylation was within genes, within their promoters or even within their closest transposable element. The relationship between gene expression and either CHG or CHH methylation was less consistent. In total, CG methylation in promoters explained 9% of the variation in tissue-specific expression across genes, suggesting that CG methylation is a minor but appreciable factor in tissue differentiation.

  19. Promoter Methylation Analysis Reveals that KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation

    Science.gov (United States)

    Ryland, Katherine E; Hawkins, Allegra G.; Weisenberger, Daniel J.; Punj, Vasu; Borinstein, Scott C.; Laird, Peter W.; Martens, Jeffrey R.; Lawlor, Elizabeth R.

    2015-01-01

    Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via post-translational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft tissue tumor that is characterized by over-expression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared to non-malignant adult tissues. Ion channels regulate a variety of biological processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of Kv1.5 channel function. Implications This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dyregulation to tumorigenesis. PMID:26573141

  20. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates.

    Directory of Open Access Journals (Sweden)

    Guillaume eRiviere

    2014-04-01

    Full Text Available DNA methylation is evolutionarily conserved. Vertebrates exhibit high, widespread DNA methylation whereas invertebrate genomes are less methylated, predominantly within gene bodies. DNA methylation in invertebrates is associated with transcription level, alternative splicing and genome evolution, but functional outcomes of DNA methylation remain poorly described in lophotrochozoans. Recent genome-wide approaches improve understanding in distant taxa such as molluscs, where the phylogenetic position and life traits of Crassostrea gigas make this bivalve an ideal model to study the physiological and evolutionary implications of DNA methylation. We review the literature about DNA methylation in invertebrates and focus on DNA methylation features in the oyster. Indeed, though our MeDIP-seq results confirm predominant intragenic methylation, the profiles depend on the oyster’s developmental and reproductive stage. We discuss the perspective that oyster DNA methylation could be biased toward the 5’-end of some genes, depending on physiological status, suggesting important functional outcomes of putative promoter methylation from cell differentiation during early development to sustained adaptation of the species to the environment.

  1. Methylization analysis of the FMR1 gene in carrier females

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.; Cappon, S.; Khalifa, M.M. [Kingston General Hospital (Canada)] [and others

    1994-09-01

    The fragile X syndrome mutation is associated with an expansion of a CGG repeat sequence and methylation of the CpG island in the promoter of the FMR1 gene. Methylation of the CpG island silences the FMR1 gene, thereby generating the disease phenotypes. Previous studies suggest that the normal FMR1 gene has the properties of an X-linked housekeeping gene that is subject to X inactivation, i.e., its CpG island is unmethylated on the active X chromosome and methylated on the inactive X. Because methylation of the mutant FMR1 gene occurs in both males and females with the full mutation, inactivating the FMR1 gene in these females might be a localized event independent from X inactivation. To test this hypothesis we compared the methylation pattern of two housekeeping genes, PGK1 and androgen receptor (AR) with that of the FMR1 in 46 female carriers of the fragile X syndrome. Twenty eight females were in the premutation range (63-193 repeats) and 16 were carriers of the full mutation (263-996 repeats). The data revealed complete correlation between the methylation pattern of PGK1 and AR. There was also a close correlation between X inactivation pattern detected by PGK1 and/or AR and that detected by FMR1 in female carriers of the premutation. In all female carriers of the full mutation there was complete methylation of the BssHII site in the expanded FMR1 allele. The X chromosome inactivation pattern in these females as detected by PGK1 and/or AR was as follows: in 10 cases the X inactivation was skewed in favor of the mutant FMR1, i.e. the mutant allele was on the inactive X chromosome, in 3 the inactivation was random and in 3 the inactivation was skewed in favor of the normal allele. These data suggest that the methylation of the FMR1 gene in females with the full mutation is a localized event and methylation of the FMR1 gene in these females cannot be used as a predictor of X inactivation.

  2. Gene promoter hypermethylation in leukoplakia of the oral mucosa

    Directory of Open Access Journals (Sweden)

    Mingli Liu

    2010-07-01

    Full Text Available Mingli Liu1, Lei Feng2, Ximing Tang3, Shanchun Guo41Department of Physics, Tufts University School of Medicine, Boston, Massachussetts; 2Department of Thoracic/Head and Neck Medical Oncology, 3Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas; 4Sylvester Cancer Center, University of Miami School of Medicine, Florida, USAAbstract: To examine whether aberrant DNA methylation in the promoter region might occur earlier in tumorigenesis, particularly in premalignant lesions, we examined biopsies from 111 participants in a chemoprevention trial aimed at reversal of oral leukoplakia, using methylation-specific polymerase chain reaction for the promoter regions of the tumor suppressor gene CDKN2A (p16, the putative metastasis suppressor gene for death-associated protein kinase (DAP-K, the DNA repair gene O6-methyguanine-DNA-methyltransferase (MGMT, and the detoxification gene glutathione S-transferase p1(GSTP1. p16 promoter hypermethylation was detected in 21 of 82 (25.6%, DAP-K hypermethylation in 28 of 87 (32.2%, and MGMT hypermethylation in 32 of 106 (30.2% oral leukoplakia lesions analyzed. No aberrant methylation was found at the GSTP1 gene in 110 lesions examined. Among 68 biopsies analyzed for all three genes (p16, DAP-K, MGMT, 17 biopsies were detected with an abnormal methylation pattern at only one gene, 15 at two genes, and 8 at all three genes. Among clinical characteristics and their correlation with methylation, only alcohol consumption was correlated with DAP-K methylation (P = 0.027, while MGMT methylation was more frequent in females (P = 0.003 and nonsmokers (P = 0.0005. A significant correlation was found between p16 and DAP-K hypermethylation; p16 promoter was methylated in 14 (56% of 25 lesions with DAP-K methylation, and only 5 (11.1% of 45 DAP-K methylation-negative lesions (P = 0.0001. DAP-K aberrant methylation was also significantly correlated with MGMT methylation (16 of 31 in MGMT methylation

  3. APC gene methylation is inversely correlated with features of the CpG island methylator phenotype in colorectal cancer.

    Science.gov (United States)

    Iacopetta, Barry; Grieu, Fabienne; Li, Wei; Ruszkiewicz, Andrew; Caruso, Maria; Moore, James; Watanabe, Goh; Kawakami, Kazuyuki

    2006-11-15

    The notion of a CpG island methylator phenotype (CIMP) was proposed to describe a subset of colorectal cancers (CRC) displaying frequent and concordant methylation of CpG islands located within gene promoter regions. Some workers have failed to observe associations between CIMP and specific clinicopathological features of CRC, possibly because of the choice of genes used to define this phenotype. The aim of the current study was to determine whether the aberrant methylation of 6 genes implicated in CRC development was associated with the same phenotypic features of this tumour type. The MethyLight assay was used to provide quantitative estimates of MLH1, P16, TIMP3, P14, DAPK and APC methylation levels in 199 unselected colorectal tumours. The methylation of MLH1, P16, TIMP3 and P14 was highly concordant (p APC was not. An inverse association was observed between the methylation of APC and TIMP3 (p = 0.004). Methylation of the MLH1, P16, TIMP3 and P14 genes was associated with tumour infiltrating lymphocytes (p APC methylation was associated with wildtype BRAF (p = 0.003) and with lower concentrations of methyl group carriers (p gene selection in studies that aim to characterize the biological features and clinical behaviour of CIMP+ tumours.

  4. Increased methylation of lung cancer-associated genes in sputum DNA of former smokers with chronic mucous hypersecretion

    OpenAIRE

    Bruse, Shannon; Petersen, Hans; Weissfeld, Joel; Picchi, Maria; Willink, Randall; Do, Kieu; Siegfried, Jill; Belinsky, Steven A.; Tesfaigzi, Yohannes

    2014-01-01

    Background Chronic mucous hypersecretion (CMH) contributes to COPD exacerbations and increased risk for lung cancer. Because methylation of gene promoters in sputum has been shown to be associated with lung cancer risk, we tested whether such methylation was more common in persons with CMH. Methods Eleven genes commonly silenced by promoter methylation in lung cancer and associated with cancer risk were selected. Methylation specific PCR (MSP) was used to profile the sputum of 900 individuals...

  5. Outcome in unresectable glioblastoma: MGMT promoter methylation makes the difference.

    Science.gov (United States)

    Thon, Niklas; Thorsteinsdottir, Jun; Eigenbrod, Sabina; Schüller, Ulrich; Lutz, Jürgen; Kreth, Simone; Belka, Claus; Tonn, Jörg-Christian; Niyazi, Maximilian; Kreth, Friedrich Wilhelm

    2017-02-01

    In 2011, we reported a predominant prognostic/predictive role of MGMT promoter methylation status on progression-free survival (PFS) in unresectable glioblastoma patients undergoing upfront radiotherapy plus concomitant and maintenance temozolomide (RTX/TMZ → TMZ). We, here, present the final results of this prospective study focussing on the prognostic/predictive value of MGMT promoter methylation status for death risk stratification. Overall, 56 adult patients with unresectable, biopsy proven glioblastoma were prospectively assigned to upfront RTX/TMZ → TMZ treatment between March 2006 and August 2008. Last follow-up was performed in June 2016. MGMT promoter methylation was determined using methylation-specific PCR (MSP) and sodium bisulfite sequencing. Analyses were done by intention to treat. Prognostic factors were obtained from proportional hazard models. At the time of the final analysis 55 patients showed progressive disease and 53 patients had died. MGMT promoter was methylated (unmethylated) in 30 (26) patients. Methylation of the MGMT promoter was the strongest favorable predictor for overall survival (OS, median: 20.3 vs. 7.3 months, p MGMT promoter methylation status is essential for patients' counseling, prognostic evaluation, and for the design of future trials dealing with unresectable glioblastomas.

  6. Identification of methylated genes associated with aggressive bladder cancer.

    Directory of Open Access Journals (Sweden)

    Carmen J Marsit

    Full Text Available Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively. We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245 through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.

  7. Epigenetic Methylation of Parathyroid CaR and VDR Promoters in Experimental Secondary Hyperparathyroidism.

    Science.gov (United States)

    Hofman-Bang, Jacob; Gravesen, Eva; Olgaard, Klaus; Lewin, Ewa

    2012-01-01

    Secondary hyperparathyroidism (s-HPT) in uremia is characterized by decreased expression in the parathyroids of calcium sensing (CaR) and vitamin D receptors (VDR). Parathyroid hormone (PTH) is normalized despite low levels of CaR and VDR after experimental reversal of uremia. The expression of CaR in parathyroid cultures decreases rapidly. Methylation of promoter regions is often detected during epigenetic downregulation of gene expression. Therefore, using an experimental rat model, we examined changes in methylation levels of parathyroid CaR and VDR promoters in vivo and in vitro. Methods. Uremia was induced by 5/6 nephrectomy. Melting temperature profiling of CaR and VDR PCR products after bisulfite treatment of genomic DNA from rat parathyroids was performed. Real-time PCR measured expression of PTH, CaR, VDR, and klotho genes in vitro. Results. Parathyroids from uremic rats had similar low levels of methylation in vivo and in vitro. In culture, a significant downregulation of CaR, VDR, and klotho within two hours of incubation was observed, while housekeeping genes remained stable for 24 hours. Conclusion. In uremic s-HPT and in vitro, no overall changes in methylation levels in the promoter regions of parathyroid CaR and VDR genes were found. Thus, epigenetic methylation of these promoters does not explain decreased parathyroid expression of CaR and VDR genes in uremic s-HPT.

  8. Epigenetic Methylation of Parathyroid CaR and VDR Promoters in Experimental Secondary Hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    Jacob Hofman-Bang

    2012-01-01

    Full Text Available Secondary hyperparathyroidism (s-HPT in uremia is characterized by decreased expression in the parathyroids of calcium sensing (CaR and vitamin D receptors (VDR. Parathyroid hormone (PTH is normalized despite low levels of CaR and VDR after experimental reversal of uremia. The expression of CaR in parathyroid cultures decreases rapidly. Methylation of promoter regions is often detected during epigenetic downregulation of gene expression. Therefore, using an experimental rat model, we examined changes in methylation levels of parathyroid CaR and VDR promoters in vivo and in vitro. Methods. Uremia was induced by 5/6 nephrectomy. Melting temperature profiling of CaR and VDR PCR products after bisulfite treatment of genomic DNA from rat parathyroids was performed. Real-time PCR measured expression of PTH, CaR, VDR, and klotho genes in vitro. Results. Parathyroids from uremic rats had similar low levels of methylation in vivo and in vitro. In culture, a significant downregulation of CaR, VDR, and klotho within two hours of incubation was observed, while housekeeping genes remained stable for 24 hours. Conclusion. In uremic s-HPT and in vitro, no overall changes in methylation levels in the promoter regions of parathyroid CaR and VDR genes were found. Thus, epigenetic methylation of these promoters does not explain decreased parathyroid expression of CaR and VDR genes in uremic s-HPT.

  9. Comparison of Different Promoter Methylation Assays in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Karijn P. M. Suijkerbuijk

    2010-01-01

    Full Text Available Background: Promoter hypermethylation has emerged as a promising cancer biomarker. Currently, a large variety of quantitative and non-quantitative techniques is used to measure methylation in clinical specimens. Here we directly compared three commonly used methylation assays and assessed the influence of tissue fixation, target sequence location and the amount of DNA on their performance.

  10. Polyunsaturated fatty acids reduce Fatty Acid Synthase and Hydroxy-Methyl-Glutaryl CoA-Reductase gene expression and promote apoptosis in HepG2 cell line

    Directory of Open Access Journals (Sweden)

    Miccolis Angelica

    2011-01-01

    Full Text Available Abstract Background n-3 and n-6 polyunsaturated fatty acids (PUFAs are the two major classes of PUFAs encountered in the diet, and both classes of fatty acids are required for normal human health. Moreover, PUFAs have effects on diverse pathological processes impacting chronic disease, such as cardiovascular and immune disease, neurological disease, and cancer. Aim To investigate the effects of eicosapentaenoic acid (EPA and arachidonic acid (ARA on the proliferation and apoptosis of human hepatoma cell line HepG2 after exposure to increasing concentrations of EPA or ARA for 48 h. Moreover, in the same cells the gene expression of Fatty Acid Synthase (FAS and 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase (HMG-CoAR was also investigated. Method Cell growth and apoptosis were assayed by MTT and ELISA test, respectively after cell exposure to increasing concentrations of EPA and ARA. Reverse-transcription and real-time PCR was used to detect FAS and HMG-CoAR mRNA levels in treated cells. Results Our findings show that EPA inhibits HepG2 cell growth in a dose-dependent manner, starting from 25 μM (P Conclusion Our results demonstrate that EPA and ARA inhibit HepG2 cell proliferation and induce apoptosis. The down-regulation of FAS and HMG-CoAR gene expression by EPA and ARA might be one of the mechanisms for the anti-proliferative properties of PUFAs in an in vitro model of hepatocellular carcinoma.

  11. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  12. 人脑胶质瘤细胞中GDNF基因启动子1区甲基化状态的研究%Study of the Methylation Status of Promoter 1 Region of GDNF Gene in Human Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    任庆先; 王建村; 王莉; 高殿帅; 虞正权

    2012-01-01

    Objective: To observe the methylation status of GDNF promoter 1 region in human glioma, in order to explore the effect of methylation on the expression of GDNF in glioma. Methods: Genesequencing detected the GDNF gene order in 10 cases of glioma and 5 normal brain tissues, to compare whether their genetic mutations have occurred; the methylation modified status of GDNF promoter 1 region in 20 cases of glioma (10 cases of low-level and 10 cases of high-level) and 5 cases of normal brain tissues were detected through genesequencing after bisulfite modification. Results: The mutations of GDNF gene in promoter 1 region were not observed in glioma; the methylation of GDNF gene in promoter 1 region in normal brain tissues, low-level and high-level glioma were 72.25%, 86.25%, 86.75% respectively. The methylation level in glioma was significantly higher when compared to normal brain tissues (P<0.05); while there was no significant differences in high-and low-level tissues. Conclusions: Hypermethylation occuerred in GDNF promoter 1 region might influence the expression of GDNF in glioma cell.%目的:观察GDNF启动子1区在人脑胶质瘤细胞中的甲基化修饰状态,以期探讨其对于GDNF在胶质瘤中高表达的影响.方法:基因测序检测10例胶质瘤与5例正常脑组织中GDNF基因序列,比较其基因是否有突变发生;重亚硫酸盐修饰后基因测序检测20例胶质瘤(10例低级别和10例高级别)与5例正常脑组织中GDNF启动子1区甲基化修饰状态.结果:GDNF启动子1区基因在胶质瘤中没有发生突变;GDNF启动子1区甲基化修饰在正常脑组织、低级别、高级别中发生率分别为72.25%、86.25%、86.75%.在胶质瘤中的甲基化修饰水平比正常脑组织明显增高(P<0.05),而高低级别之间无显著性差异.结论:在胶质瘤细胞中,GDNF启动子1区发生了高甲基化修饰,这种修饰很可能会影响GDNF基因的表达.

  13. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation

    DEFF Research Database (Denmark)

    Barres, Romain; Kirchner, Henriette; Rasmussen, Morten

    2013-01-01

    observed in the normal-weight, healthy subjects. Using bisulfite sequencing, we show that promoter methylation of PGC-1a and PDK4 is altered with obesity and restored to nonobese levels after RYGB-induced weight loss. A genome-wide DNA methylation analysis of skeletal muscle revealed that obesity...... is associated with hypermethylation at CpG shores and exonic regions close to transcription start sites. Our results provide evidence that obesity and RYGB-induced weight loss have a dynamic effect on the epigenome....... of genes enriched in metabolic process and mitochondrial function. After weight loss, the expression of the majority of the identified genes was normalized to levels observed in normal-weight, healthy controls. Among the 14 metabolic genes analyzed, promoter methylation of 11 genes was normalized to levels...

  14. Significance of ANXA7 gene promoter methylation detection in glioblastoma%ANXA7基因异常甲基化与神经胶质瘤发生相关性的研究

    Institute of Scientific and Technical Information of China (English)

    蔡晓平; 高丽; 朱文佳

    2013-01-01

    Objective The aim of this study was to evaluate the significance of ANXA7 gene promoter hypermethylation in Glioblastoma. Methods Sixty patients with Glioblastoma and 24 healthy donors were adopted in this study. DNA was isolated from cerebra tissue, and BS-PCR and MS-PCR methods were used to detect the status of ANXA7 gene methylation in health donors and newly diagnosed Glioblastoma patients in using PCR amplication and sequencing. Results The results indicated that the methylated rate of the ANXA7 gene in 5 healthy donors were 1.5%, 1%, 1%,1.5%,1% by BS-PCR and sequencing analysis, however, the methylated rate of the ANXA7 gene in 5 Glioblastoma patients were 92% ,78. 5% ,86% ,56% ,90%. MS-PCR analysis showed the ANXA7 gene was unmethylated in cerebra tissue samples from health donors. Among 60 newly diagnosed Glioblastoma patients, 25 patients were found in ANXA7 gene methylation by MS-PCR, the positive rate was 41.67% (p =0.000). Furthermore, the positive rate of ANXA7 methylation in the group of high stage disease was higher than in the group of low stage. Conclusions The aberrant methylation of the ANXA7 gene was perhaps involved in the occurrence of glioblastoma.%目的 研究ANXA7基因异常甲基化与神经胶质瘤发生的相关性.方法 采用硫化测序PCR(BS-PCR)引物以及DNA甲基化特异性PCR(MS-PCR)引物检测ANXA7基因在人脑神经胶质组织及正常脑组织中的表达差异,随后经PCR扩增进行电泳以及测序分析.结果 5例健康标本及5例神经胶质瘤患者标本DNA经硫化且BS-PCR测序分析,其健康标本甲基化率分别为1.5%、1%、1%、1.5%、1%,神经胶质瘤患者甲基化率分别为92%、78.5%、86%、56%、90%;MS-PCR分析结果显示:ANXA7基因在24例正常脑组织中呈完全非甲基化状态,在60例神经胶质瘤患者中其甲基化阳性率为46.67%(p=0.000);高级别神经胶质瘤患者甲基化阳性率(56.67%)高于低级别组(26.67%)(P=0.018).

  15. Deoxyribonucleic acid (DNA) methyltransferase contributes to p16 promoter CpG island methylation in lung adenocarcinoma with smoking.

    Science.gov (United States)

    Sun, Rongju; Liu, Jiahong; Wang, Bo; Ma, Lingyun; Quan, Xiaojiao; Chu, Zhixiang; Li, Tanshi

    2015-01-01

    In this study, the relationship between CpG island methylation and smoking and DNA methyltransferase in the occurrence and development of lung adenocarcinoma was explored by detecting p16 promoter methylation status. Protein and mRNA levels of p16 were detected by immunohistochemistry and in situ hybridization assays. p16 gene promoter and exon 1 CpG island locus Hap II sites methylation status was analyzed with the methylation-specific PCR. Only 4 of 40 p16-positive cases were detected to methylate on CpG islands with 10% methylating rate whereas 18 of p16-negative cases were methylated up to 36.73% of methylating rate. The methylating rates of both p16-positive and p16-negative groups were significantly different. 17 of 50 cases with smoking from total 89 lung adenocarcinoma cases were detected to methylate on CpG islands while only 5 of the remaining 39 non-smokers to methylate. The difference of the methylating rates in both smokers and non-smokers was significant to suggest the closely association of CpG island methylation of p16 with smoking. Furthermore, p16 promoter CpG islands were detected to methylate in 15 of 35 cases with higher DNA methyltransferase activity whereas only 7 detected to methylate in the remaining 54 cases with lower DNA methyltransferase activity. p16 promoter CpG island methylation likely made p16 expressing silence thus contributed to the tumorigenesis of lung adenocarcinoma. Smoking is likely to promote p16 CpG island methylation or by its effect of the activity and metabolism of DNA methyltransferase 1 (DNMT) on CpG island methylation status.

  16. Prognostic significance of DLC-1 gene promoter methylation in B-ALL%DLC-1基因启动子甲基化对于B-ALL的预后价值

    Institute of Scientific and Technical Information of China (English)

    徐翀; 关明; 张健; 肖艳群; 陈慧英; 蒋黎敏

    2011-01-01

    目的 观察儿童急性淋巴细胞白血病中肝癌缺失-1(DLC-1)抑癌基因启动子甲基化状态,评估该基因甲基化对于急性B淋巴细胞白血病(B-ALL)的预后价值.方法 对40例B-ALL患儿DLC-1启动子甲基化状态与白血病敏感预后指标白血病微小残留病灶(MRD),以及其他对B-ALL预后可能有影响的指标作一比较,评价DLC-1对于B-ALL的预后判断价值,以及是否可以作为B-ALL的独立预后危险因素.结果 DLC-1甲基化阳性的B-ALL患儿的复发率和5年无事件生存率均与DLC-1甲基化阴性患儿差异有统计学意义(P0.05).但两者同为阳性结果 的5例患儿在5年内全都复发,复发率为100%;而两者同为阴性结果 的11例患儿,仅1例在5年内复发,复发率为9%.多因素分析显示仅MRD可作为独立的预后危险因素(P=0.017),DLC-1基因甲基化阳性患儿复发风险是甲基化阴性患儿的8.5倍.结论 DLC-1甲基化和MRD都是B-ALL有意义的预后指标,两者结合可为临床提供覆盖面更广的预后信息.DLC-1甲基化也显示了该指标有成为独立预后危险因素的趋势.%Objective To observe the status of the deleted in liver cancer-1 ( DLC-1 ) gene promoter methylation and estimate the prognostic value in patients with childhood B-cell acute lymphoblastic leukemia (B-ALL). Methods The prognostic significance of DLC-1 methylation status in B-ALL was determined by analyzing the associations among DLC-1 methylation status and the sensitive prognostic factor minimal residual disease (MRD) as well as other potential prognostic factors from 40 patients with childhood B-ALL for evaluating whether it could be an independent risk factor.Results The B-ALL patients with DLC-1 gene methylation had significant different relapse rate and event-free survival rate from those without DLC-1 gene methylation( P <0.05 ). The distribution of the results from DLC-1 methylation status and MRD was significantly different(P >0.05). However, all

  17. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing.

    Science.gov (United States)

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient's response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation.

  18. TNF-alpha promoter methylation as a predictive biomarker for weight-loss response.

    Science.gov (United States)

    Campión, Javier; Milagro, Fermin I; Goyenechea, Estibaliz; Martínez, J Alfredo

    2009-06-01

    Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine which is commonly elevated in obese subjects and whose promoter is susceptible to be regulated by cytosine methylation. The aim of this research was to analyze whether epigenetic regulation of human TNF-alpha promoter by cytosine methylation could be involved in the predisposition to lose body weight after following a balanced hypocaloric diet. Twenty-four patients (12 women/12 men) with excessive body weight-for-height (BMI: 30.5+/-0.32 kg/m2; age: 34+/-4 years old) followed an 8-week energy-restricted diet. Blood mononuclear cell DNA, isolated before the nutritional intervention, was treated with bisulfite and a region of TNF-alpha gene promoter (from -360 to +50 bp) was sequenced. Obese men with successful weight loss (>or=5% of initial body weight) showed lower levels of total TNF-alpha promoter methylation (r=0.74; P=0.021), especially in the positions -170 bp (r=0.75, P=0.005) and -120 bp (r=0.70, P=0.011). Baseline TNF-alpha circulating levels were positively associated with total promoter methylation (r=0.84, P=0.005) and methylation at position -245 bp (r=0.75, P=0.020). TNF-alpha promoter methylation could be a good inflammation marker predicting the hypocaloric diet-induced weight-loss, and constitutes a first step toward personalized nutrition based on epigenetic criteria.

  19. Correlation of CCNA1 Promoter Methylation with Malignant Tumors: A Meta-Analysis Introduction

    OpenAIRE

    Bin Yang; Shuai Miao; Le-Ning Zhang; Hong-Bin Sun; Zhe-Nan Xu; Chun-Shan Han

    2015-01-01

    Epigenetic silencing of tumor suppressor genes by promoter methylation plays vital roles in the process of carcinogenesis. The purpose of this meta-analysis was to determine whether the aberrant methylation of cyclin A1 (CCNA1) may be of great significance to human malignant tumors. By searching both English and Chinese language-based electronic databases carefully, we tabulated and analyzed parameters from each study. All human-associated case-control studies were included providing availabl...

  20. DNA methylation profiling of the fibrinogen gene landscape in human cells and during mouse and zebrafish development.

    Science.gov (United States)

    Vorjohann, Silja; Pitetti, Jean-Luc; Nef, Serge; Gonelle-Gispert, Carmen; Buhler, Leo; Fish, Richard J; Neerman-Arbez, Marguerite

    2013-01-01

    The fibrinogen genes FGA, FGB and FGG show coordinated expression in hepatocytes. Understanding the underlying transcriptional regulation may elucidate how their tissue-specific expression is maintained and explain the high variability in fibrinogen blood levels. DNA methylation of CpG-poor gene promoters is dynamic with low methylation correlating with tissue-specific gene expression but its direct effect on gene regulation as well as implications of non-promoter CpG methylation are not clear. Here we compared methylation of CpG sites throughout the fibrinogen gene cluster in human cells and mouse and zebrafish tissues. We observed low DNA methylation of the CpG-poor fibrinogen promoters and of additional regulatory elements (the liver enhancers CNC12 and PFE2) in fibrinogen-expressing samples. In a gene reporter assay, CpG-methylation in the FGA promoter reduced promoter activity, suggesting a repressive function for DNA methylation in the fibrinogen locus. In mouse and zebrafish livers we measured reductions in DNA methylation around fibrinogen genes during development that were preceded by increased fibrinogen expression and tri-methylation of Histone3 lysine4 (H3K4me3) in fibrinogen promoters. Our data support a model where changes in hepatic transcription factor expression and histone modification provide the switch for increased fibrinogen gene expression in the developing liver which is followed by reduction of CpG methylation.

  1. DNA methylation profiling of the fibrinogen gene landscape in human cells and during mouse and zebrafish development.

    Directory of Open Access Journals (Sweden)

    Silja Vorjohann

    Full Text Available The fibrinogen genes FGA, FGB and FGG show coordinated expression in hepatocytes. Understanding the underlying transcriptional regulation may elucidate how their tissue-specific expression is maintained and explain the high variability in fibrinogen blood levels. DNA methylation of CpG-poor gene promoters is dynamic with low methylation correlating with tissue-specific gene expression but its direct effect on gene regulation as well as implications of non-promoter CpG methylation are not clear. Here we compared methylation of CpG sites throughout the fibrinogen gene cluster in human cells and mouse and zebrafish tissues. We observed low DNA methylation of the CpG-poor fibrinogen promoters and of additional regulatory elements (the liver enhancers CNC12 and PFE2 in fibrinogen-expressing samples. In a gene reporter assay, CpG-methylation in the FGA promoter reduced promoter activity, suggesting a repressive function for DNA methylation in the fibrinogen locus. In mouse and zebrafish livers we measured reductions in DNA methylation around fibrinogen genes during development that were preceded by increased fibrinogen expression and tri-methylation of Histone3 lysine4 (H3K4me3 in fibrinogen promoters. Our data support a model where changes in hepatic transcription factor expression and histone modification provide the switch for increased fibrinogen gene expression in the developing liver which is followed by reduction of CpG methylation.

  2. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters.

    Science.gov (United States)

    Estécio, Marcos R H; Gallegos, Juan; Dekmezian, Mhair; Lu, Yue; Liang, Shoudan; Issa, Jean-Pierre J

    2012-10-01

    Almost half of the human genome and as much as 40% of the mouse genome is composed of repetitive DNA sequences. The majority of these repeats are retrotransposons of the SINE and LINE families, and such repeats are generally repressed by epigenetic mechanisms. It has been proposed that these elements can act as methylation centers from which DNA methylation spreads into gene promoters in cancer. Contradictory to a methylation center function, we have found that retrotransposons are enriched near promoter CpG islands that stay methylation-free in cancer. Clearly, it is important to determine which influence, if any, these repetitive elements have on nearby gene promoters. Using an in vitro system, we confirm here that SINE B1 elements can influence the activity of downstream gene promoters, with acquisition of DNA methylation and loss of activating histone marks, thus resulting in a repressed state. SINE sequences themselves did not immediately acquire DNA methylation but were marked by H3K9me2 and H3K27me3. Moreover, our bisulfite sequencing data did not support that gain of DNA methylation in gene promoters occurred by methylation spreading from SINE B1 repeats. Genome-wide analysis of SINE repeats distribution showed that their enrichment is directly correlated with the presence of USF1, USF2, and CTCF binding, proteins with insulator function. In summary, our work supports the concept that SINE repeats interfere negatively with gene expression and that their presence near gene promoters is counter-selected, except when the promoter is protected by an insulator element.

  3. Meta-analysis of the association between APC promoter methylation and colorectal cancer.

    Science.gov (United States)

    Ding, Zhenyu; Jiang, Tong; Piao, Ying; Han, Tao; Han, Yaling; Xie, Xiaodong

    2015-01-01

    Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50-8.76; PAPC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44-1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67-5.10; P=0.23). No significant correlation between APC promoter methylation and patients' Dukes' stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC.

  4. LINE-1 and inflammatory gene methylation levels are early biomarkers of metabolic changes: association with adiposity.

    Science.gov (United States)

    Carraro, Júlia Cristina Cardoso; Mansego, Maria Luisa; Milagro, Fermin Ignacio; Chaves, Larissa Oliveira; Vidigal, Fernanda Carvalho; Bressan, Josefina; Martínez, J Alfredo

    2016-11-01

    We analyzed whether global and inflammatory genes methylation can be early predictors of metabolic changes and their associations with the diet, in a cross-sectional study (n = 40). Higher global methylation was associated to adiposity, insulin resistance, and lower quality of the diet. Methylation of IL-6, SERPINE1 and CRP genes was related to adiposity traits and macronutrients intake. SERPINE1 hypermethylation was also related to some metabolic alterations. CRP methylation was a better predictor of insulin resistance than CRP plasma concentrations. Global and inflammatory gene promoter hypermethylation can be good early biomarkers of adiposity and metabolic changes and are associated to the quality of the diet.

  5. Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP.

    Science.gov (United States)

    Bian, Y S; Yan, P; Osterheld, M C; Fontolliet, C; Benhattar, J

    2001-01-01

    Methylation-sensitive single-strand conformation analysis (MS-SSCA) is a new method of screening for DNA methylation changes. The combination of bisulfite modification and PCR results in the conversion of unmethylated cytosines to thymines, whereas methylated cytosines remain unchanged. This sequence conversion can lead to methylation-dependent alterations of single-strand conformation, which can be detected by SSCA. An analysis of mixtures of methylated and unmethylated DNA at known ratios revealed that the relative intensities of the corresponding bands following MS-SSCA were maintained. MS-SSCA was applied for methylation analysis of human p16 promoter region using genomic DNA obtained from either frozen, fixed, or microdissected fixed tissue sections. MS-SSCA is a rapid, specific, and semiquantitative approach that allows the detection of methylation of the p16 gene promoter. In reconstruction experiments, the method permits the detection of 10% or less of cells harboring a methylated p16 promoter. We have been successful in analyzing by MS-SSCA almost all (96%) tumor samples microdissected from archival paraffin-embedded fixed tissue sections and obtaining reproducible results. In addition, when microdissection was performed, the clonality of this genetic alteration could be identified.

  6. The Correlation of MGMT Promoter Methylation and Clinicopathological Features in Gastric Cancer: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Ding, Yong; Yang, Qihua; Wang, Bojun; Ye, Guoliang; Tong, Xiaoqiong

    2016-01-01

    The silencing of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) by promoter methylation commonly occurs in human cancers. The relationship between MGMT promoter methylation and gastric cancer (GC) remains inconsistent. This study aimed to evaluate the potential value of MGMT promoter methylation in GC patients. Electronic databases were searched to identify eligible studies. The pooled odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were used to evaluate the effects of MGMT methylation on GC risk and clinicopathological characteristics. In total, 31 eligible studies including 2988 GC patients and 2189 nonmalignant controls were involved in meta-analysis. In the pooled analysis, MGMT promoter methylation was significantly associated with GC risk (OR = 3.34, P MGMT methylation showed a trend associated with gender, and methylation is lower in males compared with females (OR = 0.76, 95% CI = 0.56-1.03). We did not find a significant association in relation to tumor types, clinical stage, age status or H. pylori status in cancer (all P > 0.1). MGMT promoter methylation may be correlated with the prognosis of GCs in disease free survival (DFS) or overall survival (OS) for univariate analysis. MGMT promoter methylation may play a crucial role in the carcinogenesis and prognosis of GC. MGMT methylation was not correlated with tumor types, clinical stage, age status, H. pylori status. However, the result of the association of MGMT methylation and gender should be considered with caution.

  7. Increased promoter methylation in exfoliated breast epithelial cells in women with a previous breast biopsy.

    Science.gov (United States)

    Browne, Eva P; Punska, Elizabeth C; Lenington, Sarah; Otis, Christopher N; Anderton, Douglas L; Arcaro, Kathleen F

    2011-12-01

    Accurately identifying women at increased risk of developing breast cancer will provide greater opportunity for early detection and prevention. DNA promoter methylation is a promising biomarker for assessing breast cancer risk. Breast milk contains large numbers of exfoliated epithelial cells that are ideal for methylation analyses. Exfoliated epithelial cells were isolated from the milk obtained from each breast of 134 women with a history of a non-proliferative benign breast biopsy (Biopsy Group). Promoter methylation of three tumor suppressor genes, RASSF1, SFRP1 and GSTP1, was assessed by pyrosequencing of bisulfite-modified DNA. Methylation scores from the milk of the 134 women in the Biopsy Group were compared to scores from 102 women for whom a breast biopsy was not a recruitment requirement (Reference Group). Mean methylation scores for RASSF1 and GSTP1 were significantly higher in the Biopsy than in the Reference Group. For all three genes the percentage of outlier scores was greater in the Biopsy than in the Reference Group but reached statistical significance only for GSTP1. A comparison between the biopsied and non-biopsied breasts of the Biopsy Group revealed higher mean methylation and a greater number of outlier scores in the biopsied breast for both SFRP1 and RASSF1, but not for GSTP1. This is the first evidence of CpG island methylation in tumor suppressor genes of women who may be at increased risk of developing breast cancer based on having had a prior breast biopsy.

  8. 肝细胞癌多基因启动子甲基化与预后关系的研究%THE RELATIONSHIP BETWEEN ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES AND PROGNOSIS IN HEPATOCELLULAR CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    彭晓春; 耿小平; 朱立新; 孙昀; 李晓明

    2011-01-01

    To study the relationship between the gene promoter methylation state of DAPK, FHIT and SLIT2 genes and the clinical pronosis of patient in hepatocellular carcinoma ( HCC). Methods The technique of methylation-specific PCR ( MSP) was adopted to investigate the promoter hypermethylalion of DAPK,FHIT 及 SLIT2 genes in 50 HCCs after a curative resection. The relationship between the frequency of hypermethylation of the genes and tumor recrudescence data was analyzed. Results In all patients with HCC, the frequency of hypermethylation in DAPK ,FHIT and SLIT2 were 82. 0% , 68. 0% and 54. 0% , respectively. We divided all those cases into two groups according to the follow-up neoplasm recurrence results( group I ; the group of one year without tumor recrudescence, group Ⅱ : the group of less than one year with tumor recrudescence) . In group I , the frequency of hypermethyla tion in DAPK,FHIT and SLIT2 were 76. 9% , 53. 8% , 50. 0% , respectively; in group II they were 87. 5% , 83. 3% , 58. 3% , re spectively. Those three genes have higer frequency among group D , The frequency hypermethylation of FHIT gene is especially higher in group II (P = 0. 036). In group Ⅱ , there is twenty-two cases which have two or three genes hypermethylation; and in group Ⅰ, the cases are fifteen. There is a statistical prognosis difference between them ( P = 0. 006 ) . Conclusions Hypermethylation of multiple gene promotors are common events in HCC. In patients with HCC, aberrant DNA methylation is significantly associated with poor prog nosis. FHIT maybe can serve as a biomarker for the prognosis, after a curative resection.%目的 了解肝细胞癌(hepatucellular carcinoma,HCC)中,DAPK、FHIT及SLIT2基因的甲基化状况与病人生存预后的关系.方法 应用甲基化特异性PCR(methylation- specific PCR,MSP)技术,检测50例HCC组织中上述基因启动子区域的甲基化状况,并分析每种基因甲基化情况和肿瘤复发之间相关性.结果 50

  9. Correlation between methylation of the p16 promoter and cervical cancer incidence.

    Science.gov (United States)

    Wang, F-L; Yang, Y; Liu, Z-Y; Qin, Y; Jin, T

    2017-05-01

    To study the methylation of the promoter of the p16 gene in cervical cancer patients and explore the correlation between methylation and the incidence of cervical cancer. We recruited 78 patients with cervical cancer and 48 healthy individuals. The methylation-specific PCR was used to detect the methylation status in the promoter of the p16 gene. The mRNA expression of p16 was studied by quantitative fluorescence PCR. The protein expression of p16 was monitored by Enzyme-linked immunosorbent assay (ELISA) and Western blot. Immunohistochemistry was applied to detect the expression and distribution of p16 in cervical tissues. The methylation sequencing results showed that samples from cervical cancer patients had a methylation rate of 78.52% in the p16 gene promoter region compared with a much lower rate of 9.8% in the control group (9.8%). Quantitative fluorescence PCR indicated that the p16 mRNA expression was significantly reduced in cervical cancer patients compared with controls. ELISA and Western blot results showed that expression of the p16 protein in cancer tissue was 0.81 ± 0.12 µg/l, whereas in the healthy controls it was 3.21 ± 0.24 µg/l. Immunohistochemical results showed that the p16 protein was mainly present in the cytoplasm. The rate of p16 positive cells in the healthy cervical tissue 83.29% was higher than in cervical cancer 10.18%. The methylation of the p16 gene promoter could significantly reduce p16 expression, losing its tumor suppressor activity and promoting the development of cervical cancer.

  10. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Andrew D. King

    2016-09-01

    Full Text Available DNA methylation is one of a number of modes of epigenetic gene regulation. Here, we profile the DNA methylome, transcriptome, and global occupancy of histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac in a series of mouse embryonic stem cells (mESCs with varying DNA methylation levels to study the effects of DNA methylation on deposition of histone modifications. We find that genome-wide DNA demethylation alters occupancy of histone modifications at both promoters and enhancers. This is reversed upon remethylation by Dnmt expression. DNA methylation promotes H3K27me3 deposition at bivalent promoters, while opposing H3K27me3 at silent promoters. DNA methylation also reversibly regulates H3K27ac and H3K27me3 at previously identified tissue-specific enhancers. These effects require DNMT catalytic activity. Collectively, our data show that DNA methylation is essential and instructive for deposition of specific histone modifications across regulatory regions, which together influences gene expression patterns in mESCs.

  11. Aberrant promoter CpG methylation and its translational applications in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Ting-Xiu Xiang; Ying Yuan; Li-Li Li; Zhao-Hui Wang; Liang-Ying Dan; Yan Chen; Guo-Sheng Ren; Qian Tao

    2013-01-01

    Breast cancer is a complex disease driven by multiple factors including both genetic and epigenetic alterations.Recent studies revealed that abnormal gene expression induced by epigenetic changes,including aberrant promoter methylation and histone modification,plays a critical role in human breast carcinogenesis.Silencing of tumor suppressor genes (TSGs) by promoter CpG methylation facilitates cells growth and survival advantages and further results in tumor initiation and progression,thus directly contributing to breast tumorigenesis.Usually,aberrant promoter methylation of TSGs,which can be reversed by pharmacological reagents,occurs at the early stage of tumorigenesis and therefore may serve as a potential tumor marker for early diagnosis and therapeutic targeting of breast cancer.In this review,we summarize the epigenetic changes of multiple TSGs involved in breast pathogenesis and their potential clinical applications as tumor markers for early detection and treatment of breast cancer.

  12. Locus- and Site-Specific DNA Methylation of 19 kDa Zein Genes in Maize.

    Directory of Open Access Journals (Sweden)

    Jian-Hong Xu

    Full Text Available An interesting question in maize development is why only a single zein gene is highly expressed in each of the 19-kDa zein gene clusters (A and B types, z1A2-1 and z1B4, in the immature endosperm. For instance, epigenetic marks could provide a structural difference. Therefore, we investigated the DNA methylation of the arrays of gene copies in both promoter and gene body regions of leaf (non-expressing tissue as a control, normal endosperm, and cultured endosperm. Although we could show that expressed genes have much lower methylation levels in promoter regions than silent ones in both leaf and normal endosperm, there was surprisingly also a difference in the pattern of the z1A and z1B gene clusters. The expression of z1B gene is suppressed by increased DNA methylation and activated with reduced DNA methylation, whereas z1A gene expression is not. DNA methylation in gene coding regions is higher in leaf than in endosperm, whereas no significant difference is observed in gene bodies between expressed and non-expressed gene copies. A median CHG methylation (25-30% appears to be optimal for gene expression. Moreover, tissue-cultured endosperm can reset the DNA methylation pattern and tissue-specific gene expression. These results reveal that DNA methylation changes of the 19-kDa zein genes is subject to plant development and tissue culture treatment, but varies in different chromosomal locations, indicating that DNA methylation changes do not apply to gene expression in a uniform fashion. Because tissue culture is used to produce transgenic plants, these studies provide new insights into variation of gene expression of integrated sequences.

  13. Comprehensive analysis of MGMT promoter methylation: correlation with MGMT expression and clinical response in GBM.

    Directory of Open Access Journals (Sweden)

    Nameeta Shah

    Full Text Available O⁶-methylguanine DNA-methyltransferase (MGMT promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR  = 5.23, 95% CI [2.089-13.097], p<0.0001. To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR  = 3.076, 95% CI [1.301-7.27], p = 0.007. We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical

  14. A significant association between BDNF promoter methylation and the risk of drug addiction.

    Science.gov (United States)

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. Copyright © 2016. Published by Elsevier B.V.

  15. Methylation mediated silencing of TMS1/ASC gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gopisetty Gopal

    2006-07-01

    Full Text Available Abstract Background Transcriptional silencing associated with aberrant promoter methylation has been established as an alternate pathway for the development of cancer by inactivating tumor suppressor genes. TMS1 (Target of Methylation induced Silencing, also known as ASC (Apoptosis Speck like protein containing a CARD is a tumor suppressor gene which encodes for a CARD (caspase recruitment domain containing regulatory protein and has been shown to promote apoptosis directly and by activation of downstream caspases. This study describes the methylation induced silencing of TMS1/ASC gene in prostate cancer cell lines. We also examined the prevalence of TMS1/ASC gene methylation in prostate cancer tissue samples in an effort to correlate race and clinico-pathological features with TMS1/ASC gene methylation. Results Loss of TMS1/ASC gene expression associated with complete methylation of the promoter region was observed in LNCaP cells. Gene expression was restored by a demethylating agent, 5-aza-2'deoxycytidine, but not by a histone deacetylase inhibitor, Trichostatin A. Chromatin Immunoprecipitation (ChIP assay showed enrichment of MBD3 (methyl binding domain protein 3 to a higher degree than commonly associated MBDs and MeCP2. We evaluated the methylation pattern in 66 prostate cancer and 34 benign prostatic hyperplasia tissue samples. TMS1/ASC gene methylation was more prevalent in prostate cancer cases than controls in White patients (OR 7.6, p 0.002 while no difference between the cases and controls was seen in Black patients (OR 1.1, p 0.91. Conclusion Our study demonstrates that methylation-mediated silencing of TMS1/ASC is a frequent event in prostate cancer, thus identifying a new potential diagnostic and prognostic marker for the treatment of the disease. Racial differences in TMS1/ASC methylation patterns implicate the probable role of molecular markers in determining in susceptibility to prostate cancer in different ethnic groups.

  16. PTSD and DNA Methylation in Select Immune Function Gene Promoter Regions: A Repeated Measures Case-control Study of U.S. Military Service Members

    Science.gov (United States)

    2013-06-24

    other relevant exposures which may influ- ence DNA methylation, such as dietary factors (folate, vitamin B12 intake) (Fenech, 2001; Piyathilake and...of folic acid and Vitamin B12 in genomic stability of human cells. Mutat. Res. 475, 57–67. doi:10.1016/S0027- 5107(01)00069-0 Feng, J., and Fan, G...42, 746–753. Oliveira, N. F., Damm, G. R., Andia, D. C., Salmon , C., Nociti, F. H. Jr., Line, S. R., et al. (2009). DNA methylation status of the

  17. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa;

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral....... Interestingly, HIF3A expression in SAT, but not in muscle, associated negatively with BMI and whole-body insulin resistance. We found a significant effect of familiality on HIF3A methylation levels in the blood and HIF3A expression levels in skeletal muscle. CONCLUSIONS: Our findings are in line...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...

  18. Disordered beta-catenin expression and E-cadherin/CDH1 promoter methylation in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Fan Zhang; Ping-Ping Wu; Xu-Cheng Jiang; Lin Zheng; Ying-Yan Yu

    2006-01-01

    AIM: To investigate the distribution of beta-catenin in nuclei or membrane/cytoplasm of gastric carcinoma cells,the relationship between E-cadherin gene methylation and its expression, and the role of beta-catenin and E-cadherin as potential molecular markers in predicting tumor infiltration.METHODS: Twenty-nine cases of gastric carcinoma,classified as diffuse and intestinal variants, were selected for study. Nuclear and cytoplasmic proteins were purified and beta-catenin content was detected by ELISA. DNA methylation of E-cadherin/CDH1 gene promoter was studied by methylation-specific PCR and compaired with E-cadherin expression detected by immunohistochemistry.RESULTS: In 27 cases of gastric carcinoma, the ratio of beta-catenin content between nuclei and membrane/cytoplasm was correlated with the T-classification (r =0.392, P = 0.043). The significance was present between T2 and T3 groups. No correlation was detected between diffuse and intestinal variants in terms of their betacatenin distribution. In 21 cases of diffuse variants of gastric carcinoma, there was a difference in E-cadherin expression between CDH1 gene-methylated group and non-methylated group (29 % vs 71%, P = 0.027).No correlation between CDH1 gene methylation and T-classification was found, neither was the significance between E-cadherin expression and tumor infiltration grade.CONCLJSION: Comparative analysis of nuclear and membrane/cytoplasmic beta-catenin can predict local tumor infiltration. E-cadherin/CDH1 gene methylation is an important cause for its gene silence in diffuse variant gastric carcinoma. Methylation of CDH1 gene in the absence of E-cadherin is an early event in gastric carcinogenesis.

  19. 胶质母细胞瘤MGMT基因启动子甲基化与蛋白表达%Heterogeneity of O6-methylguanine-DNA methyltransferase protein expression and gene promoter methylation in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    潘强; 杨学军; 纪延伟; 孙健; 韩建国; 高松; 李罡; 张文高

    2010-01-01

    Objective To study the correlation of MGMT gene promoter methylation and protein expression and their regional variation in different specimens obtained from different regions within the tumor in patients with newly diagnosed glioblastoma. Methods Two to four samples in the same tumor were collected from different regions in 30 patients with newly diagnosed glioblastoma patients. In five patients among them,mutispecimens were obtained under assistance of neuronavigation system during the operation. In all samples,MGMT promoter profile were analyzed by Methylation - specific polymerase - Chain - reaction analysis, MSP ,while MGMT protein expression was detected in tissue sections by immunohistochemistry,IHC. Results MGMT promoter methylation was detected in 43. 56% (44/101) specimens. MGMT protein expression in tissue sections was assessed and scored:(1 :no or positive tumor cells 50%) ,The rate of MGMT staining with a score 1,2,3 in all of tumor sections was 32. 67% ,43.56% ,23. 76% respectively. No significant correlation between MGMT protein expression and promoter methylation(x2 =2. 905, P =0.088) was found. The regional heterogeneity of MGMT protein expression within the same tumor was in 57% (17/30) patients ;and the regional heterogeneity of gene promoter methylation was in37%(11/30)patients. Conclusions MGMT promoter methylation is probably not the only modulating element in MGMT protein expression. The heterogeneity of MGMT protein expression and its promoter methylation in the same tumor questions their guiding significance in making therapeutic scheme for individual patients with malignant glioma in clinical practice.%目的 研究新发胶质母细胞瘤中肿瘤不同部位MGMT基因启动子甲基化及其蛋白表达关系及区域差异性.方法 在30例新发胶质母细胞瘤肿瘤不同部位采取2~4块标本,其中5例在术中神经导航引导下采取.甲基化特异性PCR(MSP)法检测标本中MGMT基因启动子甲基化状况,免疫组

  20. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women.

    Science.gov (United States)

    Wong, Chung M; Anderton, Douglas L; Smith-Schneider, Sallie; Wing, Megan A; Greven, Melissa C; Arcaro, Kathleen F

    2010-10-01

    Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle, and reproductive history questionnaires were collected from 111 women. Pyrosequencing analysis was conducted on DNA isolated from the exfoliated epithelial cells immunomagnetically separated from the total cell population in the breast milk of 102 women. A total of 65 CpG sites were examined in six tumor suppressor genes: PYCARD (also known as ASC or TMS1), CDH1, GSTP1, RBP1 (also known as CRBP1), SFRP1, and RASSF1. A sufficient quantity of DNA was obtained for meaningful analysis of promoter methylation; women donated an average of 86 ml of milk with a mean yield of 32,700 epithelial cells per ml. Methylation scores were in general low as expected of benign tissue, but analysis of outlier methylation scores revealed a significant relationship between breast cancer risk, as indicated by previous biopsy, and methylation score for several CpG sites in CDH1, GSTP1, SFRP1, and RBP1. Methylation of RASSF1 was positively correlated with women's age irrespective of her reproductive history. Promoter methylation patterns in DNA from breast milk epithelial cells can likely be used to assess breast cancer risk. Additional studies of women at high breast cancer risk are warranted.

  1. TET2 promoter DNA methylation and expression analysis in pediatric B-cell acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Ewa Musialik

    2014-03-01

    Full Text Available TET2 is a novel tumor suppressor gene involved in several hematological malignancies of myeloid and lymphoid origin. Besides loss-of-function mutations and deletions, hypermethylation of the CpG island at the TET2 promoter was found in human cancer. Previous analysis revealed no TET2 mutations in acute lymphoblastic leukemia (ALL. Since the TET2 promoter methylation status in pediatric ALL has not been reported, the aim of the present study was to determine if promoter hypermethylation may be a mechanism of TET2 inactivation in a group of pediatric ALL cases. Methylation of TET2 promoter region in one (1/45 ALL B-common patient was detected by methylation specific polymerase chain reaction (PCR and subsequently analyzed by bisulfite sequencing. We found no correlation between promoter methylation and gene expression, measured by quantitative reverse transcriptase-PCR, however the level of TET2 expression in ALL group was significantly decreased compared to children’s normal peripheral blood mononuclear cells and isolated B-cells. TET2 promoter hypermethylation seems to have limited clinical relevance in childhood B-cell ALL due to its low frequency.

  2. Detection of methylation in promoter sequences by melting curve analysis-based semiquantitative real time PCR

    Directory of Open Access Journals (Sweden)

    Lázcoz Paula

    2008-02-01

    Full Text Available Abstract Background We present two melting curve analysis (MCA-based semiquantitative real time PCR techniques to detect the promoter methylation status of genes. The first, MCA-MSP, follows the same principle as standard MSP but it is performed in a real time thermalcycler with results being visualized in a melting curve. The second, MCA-Meth, uses a single pair of primers designed with no CpGs in its sequence. These primers amplify both unmethylated and methylated sequences. In clinical applications the MSP technique has revolutionized methylation detection by simplifying the analysis to a PCR-based protocol. MCA-analysis based techniques may be able to further improve and simplify methylation analyses by reducing starting DNA amounts, by introducing an all-in-one tube reaction and by eliminating a final gel stage for visualization of the result. The current study aimed at investigating the feasibility of both MCA-MSP and MCA-Meth in the analysis of promoter methylation, and at defining potential advantages and shortcomings in comparison to currently implemented techniques, i.e. bisulfite sequencing and standard MSP. Methods The promoters of the RASSF1A (3p21.3, BLU (3p21.3 and MGMT (10q26 genes were analyzed by MCA-MSP and MCA-Meth in 13 astrocytoma samples, 6 high grade glioma cell lines and 4 neuroblastoma cell lines. The data were compared with standard MSP and validated by bisulfite sequencing. Results Both, MCA-MSP and MCA-Meth, successfully determined promoter methylation. MCA-MSP provided information similar to standard MSP analyses. However the analysis was possible in a single tube and avoided the gel stage. MCA-Meth proved to be useful in samples with intermediate methylation status, reflected by a melting curve position shift in dependence on methylation extent. Conclusion We propose MCA-MSP and MCA-Meth as alternative or supplementary techniques to MSP or bisulfite sequencing.

  3. Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells.

    Science.gov (United States)

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2009-11-01

    In the course of gastric cancer development, gene silencing by DNA hypermethylation is an important mechanism. While DNA methylation often co-exists with histone modifications to regulate gene expression, the function of histone modifications in gene silencing in gastric cancer has not been evaluated in detail. p16, a well-known tumor suppressor gene, is frequently silenced in DNA hypermethylation manner in gastric cancer. Accordingly, we chose p16 to clarify whether there is a correlation among histone H3 lysine 9 (H3-K9) di-methylation, H3-K9 acetylation, DNA methylation and p16 expression in human gastric cancer. Three gastric cancer cells, MKN-45, SGC-7901 and BGC-823, were treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and/or trichostatin A (TSA). We investigated p16 promoter DNA methylation status, p16 mRNA levels, regional and global levels of di-methyl-H3-K9 and acetyl-H3-K9 in four groups: i) 5-Aza-dC, ii) TSA, iii) the combination of 5-Aza-dC and TSA and iv) control group with no treatments. p16 silencing is characterized by DNA hypermethylation, H3-K9 hypoacetylation and H3-K9 hypermethylation at the promoter region. Treatment with TSA, increased H3-K9 acetylation at the hypermethylated promoter, but did not affect H3-K9 di-methylation or p16 expression. By contrast, treatment with 5-Aza-dC, reduced H3-K9 di-methylation, increased H3-K9 acetylation at the hypermethylated promoter and reactivated the expression of p16. Combined treatment restored the expression of p16 synergistically. In addition, 5-Aza-dC and the combined treatment did not result in global alteration of H3-K9 di-methylation. These results suggest that H3-K9 di-methylation, H3-K9 acetylation and DNA methylation work in combination to silence p16 in gastric cancer. The decreased H3-K9 di-methylation correlates with DNA demethylation and reactivation of p16. H3-K9 di-methylation as well as DNA methylation related to p16 silencing is limited to the promoter region. In addition to its effect

  4. Relationships between MGMT promoter methylation and gastric cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Yu D

    2016-10-01

    Full Text Available Dan Yu, Tao Cao, Ya-Di Han, Fu-Sheng Huang Department of Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China Abstract: A DNA repair enzyme, O6-methylguanine-DNA methyltransferase (MGMT, plays an important role in the development of gastric cancers. However, the role of MGMT promoter methylation in the occurrence of gastric cancer and its relationships with clinicopathologic characteristics has not been fully clarified. Thus, we performed a meta-analysis to evaluate the associations between MGMT promoter methylation and gastric cancer. Electronic databases, including PubMed and Web of Science, were used to systematically search related clinical studies published in English until April 1, 2016. Odds ratios (ORs and 95% confidence intervals (95% CIs were calculated to evaluate the associations between MGMT promoter methylation and gastric cancer risk or clinicopathologic characteristics. A total of 16 studies including 1,935 patients and 1,948 control persons were included in the analysis. Our study suggested that MGMT promoter methylation frequency was associated with gastric cancer (OR=3.46, 95% CI: 2.13–5.61, P<0.001. Moreover, the frequency of MGMT promoter methylation in the no lymph node metastasis group was lower than that in lymph node metastasis group, with marginal significance (OR=0.65, 95% CI: 0.42–1.01, P=0.05. Additionally, the methylation rate of the MGMT promoter was much lower in patients without distant metastases than in those with metastases (OR=0.27, 95% CI: 0.18–0.40, P<0.001. No significant association of MGMT promoter methylation with Lauren classification, tumor location, tumor invasion, or Helicobacter pylori infection was found. In conclusion, the methylation status of the MGMT promoter was related to gastric cancer risk, distant metastasis, and lymph node metastasis, which indicates that MGMT promoter methylation may play an important role in

  5. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  6. Differential methylation of the TRPA1 promoter in pain sensitivity.

    Science.gov (United States)

    Bell, J T; Loomis, A K; Butcher, L M; Gao, F; Zhang, B; Hyde, C L; Sun, J; Wu, H; Ward, K; Harris, J; Scollen, S; Davies, M N; Schalkwyk, L C; Mill, J; Williams, F M K; Li, N; Deloukas, P; Beck, S; McMahon, S B; Wang, J; John, S L; Spector, T D

    2014-01-01

    Chronic pain is a global public health problem, but the underlying molecular mechanisms are not fully understood. Here we examine genome-wide DNA methylation, first in 50 identical twins discordant for heat pain sensitivity and then in 50 further unrelated individuals. Whole-blood DNA methylation was characterized at 5.2 million loci by MeDIP sequencing and assessed longitudinally to identify differentially methylated regions associated with high or low pain sensitivity (pain DMRs). Nine meta-analysis pain DMRs show robust evidence for association (false discovery rate 5%) with the strongest signal in the pain gene TRPA1 (P=1.2 × 10(-13)). Several pain DMRs show longitudinal stability consistent with susceptibility effects, have similar methylation levels in the brain and altered expression in the skin. Our approach identifies epigenetic changes in both novel and established candidate genes that provide molecular insights into pain and may generalize to other complex traits.

  7. Clinical significance of aberrant Wnt7a promoter methylation in human non-small cell lung cancer in Koreans.

    Science.gov (United States)

    Kim, Tae-Hyung; Moon, Ji-Yong; Kim, Sang-Heon; Paik, Seung Sam; Yoon, Ho Joo; Shin, Dong Ho; Park, Sung Soo; Sohn, Jang Won

    2015-02-01

    The Wnt signaling pathway has regulatory roles in cell proliferation, differentiation, and polarity. Aberrant Wnt pathway regulation can lead to abnormal cell proliferation and cancer, and loss of Wnt7a expression has been demonstrated in lung cancer cell lines. E-cadherin keeps intercellular integrity and prevents metastasis. Therefore, E-cadherin has been known as a prognostic factor in cancer. In the present study, we investigated the E-cadherin expression status by immunohistochemical stain and the Wnt7a promoter methylation status in human non-small cell lung carcinoma (NSCLC) by methylation-specific PCR. We also analyzed their correlations with clinicopathological factors. Methylation of the Wnt7a gene promoter was detected in the lung tissues of 32 of 121 (26.4%) patients with NSCLC. Wnt7a promoter methylation was correlated with advanced tumor stage (P = 0.036) and distant metastasis (P = 0.037). In addition, Wnt7a promoter methylation showed correlation with loss of E-cadherin expression (P promoter methylation was not closely related with gender, age, histological type, or smoking habit. Even though Wnt7a methylation could not show significant correlation with the long term survival of the patients with limited follow up data, these findings suggest that loss of the Wnt7a gene induced by promoter methylation might be another prognostic factor for NSCLC and that restoration of Wnt7a may be a promising treatment for NSCLC.

  8. Relationship between The Kiss-1 Gene Promoter Methylation and Kiss-1 Gene Expression of Colorectal Carcinoma%结直肠癌中Kiss-1基因启动子甲基化与Kiss-1基因表达的关系

    Institute of Scientific and Technical Information of China (English)

    林素勇; 陈志华; 陈绍勤; 戴起宝

    2013-01-01

    目的:研究结直肠癌中Kiss-1基因启动子甲基化状态对Kiss-1基因表达的影响。方法:应用甲基化特异性PCR (MSP)方法检测73例结直肠癌、正常结直肠组织和人结直肠癌细胞HCT116、SW480、W1116、LoVo中Kiss-1基因启动子甲基化状态,应用realtime-PCR、Western-blot技术检测相应组织和细胞中Kiss-1基因mRNA和蛋白质(Metastine)的表达量。结果:结直肠癌中Kiss-1基因甲基化阳性率(82.19%)高于正常组织(6.31%)(PSW480>SW1116>HCT116,差异有统计学意义(p<0.05)。结论:结直肠癌中Kiss-1基因启动子甲基化可能引起Kiss-1基因表达下调。%Objective:To research the effect of the Kiss-1 gene promoter methylation on Kiss-1 gene expression in colorectal carci-noma. Methods:Kiss-1 gene promotor methylation and its expression were detected respectively by methylation-specific PCR, real-time PCR and western-blot in 73 cases of colorectal carcinoma and each normal tissue. Results:The positive expression rate of Kiss-1 gene methylation in the carcinoma tissue was higher than the rate in normal tissue (82.19%vs 6.31%, P <0.05). In the cancer tissue, the Kiss-1 gene mRNA and metastine expression of Kiss-1 methylation-positive group was significant lower than that in negative group (P<0.05). Conclusions:Kiss-1 gene promoter hyper-methylation may induce to the Kiss-1 gene expression decreased in colorectal carci-noma.

  9. Germline promoter hypermethylation of tumor suppressor genes in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Pu-Yuan Wu; Zheng Zhang; Jing-Mei Wang; Wen-Wen Guo; Nong Xiao; Qiong He; Ya-Ping Wang; Yi-Mei Fan

    2012-01-01

    AIM: To explore germline hypermethylation of the tumor suppressor genes MLH1 , CDH1 and P16INK4a in suspected cases of hereditary gastric cancer (GC). METHODS: A group of 140 Chinese GC patients in whom the primary cancer had developed before the age of 60 or who had a familial history of cancer were screened for germline hypermethylation of the MLH1 , CDH1 and P16INK4a tumor suppressor genes. Genomic DNA was extracted from peripheral blood leukocytes and modified by sodium bisulfite. The treated DNA was then subjected to bisulfite DNA sequencing for a specific region of the MLH1 promoter. The methylation status of CDH1 or P16INK4a was assayed using methylation- specific PCR. Clonal bisulfite allelic sequencing in positive samples was performed to obtain a comprehensive analysis of the CpG island methylation status of these promoter regions. RESULTS: Methylation of the MLH1 gene promoter was detected in the peripheral blood DNA of only 1/140 (0.7%) of the GC patient group. However, this methylation pattern was mosaic rather than the allelic pattern which has previously been reported for MLH1 in hereditary non-polyposis colorectal cancer (HNPCC) patients. We found that 10% of the MLH1 alleles in the peripheral blood DNA of this patient were methylated, consistent with 20% of cells having one methylated allele. No germline promoter methylation of the CDH1 or P16INK4a genes was detected. CONCLUSION: Mosaic germline epimutation of the MLH1 gene is present in suspected hereditary GC patients in China but at a very low level. Germline epimutation of the CDH1 or P16INK4a gene is not a frequent event.

  10. Quantitative assessment of the diagnostic role of FHIT promoter methylation in non-small cell lung cancer

    Science.gov (United States)

    Tan, Yulong; Lu, Zhouyi; Wang, An; Tan, Lixing; Chen, Sidi; Guo, Shicheng; Wang, Jiucun; Chen, Xiaofeng

    2017-01-01

    Aberrant methylation of CpG islands acquired in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates FHIT gene promoter hyper-methylation is involved in non-small cell lung cancer (NSCLC). To test the diagnostic ability of FHIT methylation status on NSCLC, thirteen studies, including 2,119 samples were included in our meta-analysis. Simultaneously, four independent DNA methylation datasets from TCGA and GEO database were analyzed for validation. The pooled odds ratio of FHIT promoter methylation in cancer samples was 3.43 (95% CI: 1.85 to 6.36) compared with that in controls. In subgroup analysis, significant difference of FHIT gene promoter methylation status in NSCLC and controls was found in Asians but not in Caucasian population. In validation stage, 950 Caucasian samples, including 126 paired samples from TCGA, 568 cancer tissues and 256 normal controls from GEO database were analyzed, and all 8 CpG sites near the promoter region of FHIT gene were not significantly differentially methylated. Thus the diagnostic role of FHIT gene in the lung cancer may be relatively limited in the Caucasian population but useful in the Asians. PMID:28036263

  11. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats.

    Science.gov (United States)

    Milagro, F I; Campión, J; García-Díaz, D F; Goyenechea, E; Paternain, L; Martínez, J A

    2009-03-01

    Leptin is an adipokine involved in body weight and food intake regulation whose promoter region presents CpG islands that could be subject to dynamic methylation. This methylation process could be affected by environmental (e.g. diet) or endogenous (e.g., adipocyte differentiation, inflammation, hypoxia) factors, and could influence adipocyte leptin gene expression. The aim of this article was to study whether a high-energy diet may affect leptin gene promoter methylation in rats. A group of eleven male Wistar rats were assigned into two dietary groups, one fed on a control diet for 11 weeks and the other on a high-fat cafeteria diet. Rats fed a high-energy diet become overweight and hyperleptinemic as compared to the controls. DNA isolated from retroperitoneal adipocytes was treated with bisulfite and a distal portion of leptin promoter (from -694 to -372 bp) including 13 CpG sites was amplified by PCR and sequenced. The studied promoter portion was slightly more methylated in the cafeteria-fed animals, which was statistically significant (p < 0.05) for one of the CpG sites (located at the position -443). In obese rats, such methylation was associated to lower circulating leptin levels, suggesting that this position could be important in the regulation of leptin gene expression, probably by being a target sequence of different transcription factors. Our findings reveal, for the first time, that leptin methylation pattern can be influenced by diet-induced obesity, and suggest that epigenetic mechanisms could be involved in obesity by regulating the expression of important epiobesigenic genes.

  12. Meta-analysis of the association between APC promoter methylation and colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ding ZY

    2015-01-01

    Full Text Available Zhenyu Ding,1,* Tong Jiang,2,* Ying Piao,1 Tao Han,1 Yaling Han,3 Xiaodong Xie1 1Department of Oncology, General Hospital of Shenyang Military Region, Shenyang City, Liaoning Province, 2Laboratory of Military Health in Cold Region, Center for Disease Control and Prevention of Shenyang Military Region, Shenyang City, Liaoning Province, 3Institute of Cardiovascular Disease, General Hospital of Shenyang Military Region, Shenyang City, Liaoning Province, People’s Republic of China *These authors contributed equally to this work Abstract: Previous studies investigating the association between adenomatous polyposis coli (APC gene promoter methylation and colorectal cancer (CRC have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014 were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR, which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50–8.76; P<0.01. Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44–1.46; P=0.47. A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67–5.10; P=0.23. No significant

  13. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter.

    Science.gov (United States)

    Lovinsky-Desir, Stephanie; Jung, Kyung Hwa; Jezioro, Jacqueline R; Torrone, David Z; de Planell-Saguer, Mariangels; Yan, Beizhan; Perera, Frederica P; Rundle, Andrew G; Perzanowski, Matthew S; Chillrud, Steven N; Miller, Rachel L

    2017-01-01

    Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). We performed a cross-sectional study of 135 children ages 9-14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m(3)), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs -77, -65, and -58) (βestimate = -2.37%, p  0.05). Differences across strata were statistically significant (pinteraction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (βestimate = -0.40%, p promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These

  14. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  15. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  16. MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma.

    Science.gov (United States)

    Toffolatti, L; Scquizzato, E; Cavallin, S; Canal, F; Scarpa, M; Stefani, P M; Gherlinzoni, F; Dei Tos, A P

    2014-11-01

    The O (6)-methylguanine-DNA-methyltransferase (MGMT) gene encodes for a DNA repairing enzyme of which silencing by promoter methylation is involved in brain tumorigenesis. MGMT promoter methylation represents a favorable prognostic factor and has been associated with a better response to alkylating agents in glioma and systemic lymphoma. Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal malignant lymphoma. The current standard of care, based on high-dose methotrexate chemotherapy, has improved prognosis but outcome remains poor for a majority of patients. Therapeutic progress in this field is conditioned by limited biological and molecular knowledge about the disease. Temozolomide has recently emerged as an alternative option for PCNSL treatment. We aimed to analyze the MGMT gene methylation status in a series of 24 PCNSLs, to investigate the relationship between methylation status of the gene and immunohistochemical expression of MGMT protein and to evaluate the possible prognostic significance of these biomarkers. Our results confirm that methylation of the MGMT gene and loss of MGMT protein are frequent events in these lymphomas (54 % of our cases) and suggest that they are gender and age related. MGMT methylation showed high correlation with loss of protein expression (concordance correlation coefficient = -0.49; Fisher exact test: p MGMT promoter (n = 4), seems to be associated with a prolonged overall survival (>60 months in three of four patients). The prognostic significance of these molecular markers in PCNSL needs to be further studied in groups of patients treated in a homogeneous way.

  17. Vitamin and antioxidant rich diet increases MLH1 promoter DNA methylation in DMT2 subjects

    Directory of Open Access Journals (Sweden)

    Switzeny Olivier J

    2012-10-01

    Full Text Available Abstract Background Oxidative stress may lead to an increased level of unrepaired cellular DNA damage, which is discussed as one risk for tumor initiation. Mismatch repair (MMR enzymes act as proofreading complexes that maintain the genomic integrity and MMR-deficient cells show an increased mutation rate. One important gene in the MMR complex is the MutL homolog 1 (MLH1 gene. Since a diet rich in antioxidants has the potential to counteract harmful effects by reactive oxygen species (ROS, we investigated the impact of an antioxidant, folate, and vitamin rich diet on the epigenetic pattern of MLH1. These effects were analyzed in individuals with non-insulin depended diabetes mellitus type 2 (NIDDM2 and impaired fasting glucose (IFG. Methods In this post-hoc analysis of a randomized trial we analyzed DNA methylation of MLH1, MSH2, and MGMT at baseline and after 8 weeks of intervention, consisting of 300 g vegetables and 25 ml plant oil rich in polyunsaturated fatty acids per day. DNA methylation was quantified using combined bisulfite restriction enzyme analysis (COBRA and pyrosequencing. MLH1 and DNMT1 mRNA expression were investigated by qRT-PCR. DNA damage was assessed by COMET assay. Student’s two-tailed paired t test and one-way ANOVA with Scheffé corrected Post hoc test was used to determine significant methylation and expression differences. Two-tailed Pearson test was used to determine correlations between methylation level, gene expression, and DNA strand break amount. Results The intervention resulted in significantly higher CpG methylation in two particular MLH1 promoter regions and the MGMT promoter. DNA strand breaks and methylation levels correlated significantly. The expression of MLH1, DNMT1, and the promoter methylation of MSH2 remained stable. CpG methylation levels and gene expression did not correlate. Conclusion This vitamin and antioxidant rich diet affected the CpG methylation of MLH1. The higher methylation might be a

  18. Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm†

    Science.gov (United States)

    Navarro-Costa, Paulo; Nogueira, Paulo; Carvalho, Marta; Leal, Fernanda; Cordeiro, Isabel; Calhaz-Jorge, Carlos; Gonçalves, João; Plancha, Carlos E.

    2010-01-01

    BACKGROUND Successful gametogenesis requires the establishment of an appropriate epigenetic state in developing germ cells. Nevertheless, an association between abnormal spermatogenesis and epigenetic disturbances in germline-specific genes remains to be demonstrated. METHODS In this study, the DNA methylation pattern of the promoter CpG island (CGI) of two germline regulator genes—DAZL and DAZ, was characterized by bisulphite genomic sequencing in quality-fractioned ejaculated sperm populations from normozoospermic (NZ) and oligoasthenoteratozoospermic (OAT) men. RESULTS OAT patients display increased methylation defects in the DAZL promoter CGI when compared with NZ controls. Such differences are recorded when analyzing sperm fractions enriched either in normal or defective germ cells (P< 0.001 in both cases). Significant differences in DNA methylation profiles are also observable when comparing the qualitatively distinct germ cell fractions inside the NZ and OAT groups (P= 0.003 and P= 0.007, respectively). Contrastingly, the unmethylation pattern of the DAZ promoter CGI remains correctly established in all experimental groups. CONCLUSIONS An association between disrupted DNA methylation of a key spermatogenesis gene and abnormal human sperm is described here for the first time. These results suggest that incorrect epigenetic marks in germline genes may be correlated with male gametogenic defects. PMID:20685756

  19. 全氟辛烷磺酸促大鼠肝脏 NQO1 甲基化作用%Prenatal exposure to PFOS alters individual genes NQO1 promoter methylation levels of liver in postnatal SD rats

    Institute of Scientific and Technical Information of China (English)

    沈杰; 夏玮; 万延建; 许冰; 李媛媛; 徐顺清

    2012-01-01

    目的 探讨基因启动子甲基化水平与全氟辛烷磺酸(PFOS)诱导的肝毒性早期过程相关性.方法 在雌性SD大鼠受孕后2~21 d采用PFOS (0.1、0.6、2.0 mg/kg)灌胃染毒;在子鼠出生后21 d收集肝脏组织样本,用亚硫酸氢钠测序聚合酶链式反应法(BSP)结合质粒克隆后测序,检测烟酰胺腺嘌呤二核苷酸:醌氧化还原酶1(NQO1)和肉毒碱棕榈酰转移酶1A(CPT1A)基因启动子区域甲基化状态.结果 与对照组(0%)比较,高剂量PFOS组子鼠肝脏NQO1基因甲基化状态有所上升,-573、-523、-507 3个位点分别升高了10%,而中低剂量组无变化(均为0%);CPT1A基因启动子区域甲基化状态无明显变化.结论 出生前暴露于PFOS的子鼠肝脏中NQO1基因启动子甲基化水平升高.%Objective To examine the possibility of early epigenetic alteration in perfluorooctane sulphonate (PFOS) -exposed rat liver. Methods Pregnant Sprague-Dawley(SD) rats were exposed to PFOS at doses of 0.1,0. 6, and 2. 0 mg/kg/d and 0. 05% Tween 80 as control by gavage from gestation day 2 to 21. The dams were allowed to give birth and liver samples from weaned (postnatal day 21) offspring rats were analyzed for individual genes such as NAD(P)H:quinone oxidoreductase(NQO1) and carnitine palmitoyltransferase 1A(CPT1A) promoter methylation level. Results In PFOS exposed weaned rats, compared to the control, methylation of critical CpG sites in NQO1 promoter was found up to 10% methylated in the livers of treated rats. Conclusion Early induced hypermethylation in critical cytosines within the NQO1 gene promoter region may be a significant biomarker of hepatic PFOS burden, though their direct role in PFOS induced-hepatotoxicity,including its potential carcinogenic action,needs further research.

  20. Gene methylation profile of gastric cancerous tissue according to tumor site in the stomach.

    Science.gov (United States)

    Kupcinskaite-Noreikiene, Rita; Ugenskiene, Rasa; Noreika, Alius; Rudzianskas, Viktoras; Gedminaite, Jurgita; Skieceviciene, Jurgita; Juozaityte, Elona

    2016-01-26

    There is considerable information on the methylation of the promoter regions of different genes involved in gastric carcinogenesis. However, there is a lack of information on how this epigenetic process differs in tumors originating at different sites in the stomach. The aim of this study is to assess the methylation profiles of the MLH1, MGMT, and DAPK-1 genes in cancerous tissues from different stomach sites. Samples were acquired from 81 patients suffering stomach adenocarcinoma who underwent surgery for gastric cancer in the Lithuanian University of Health Sciences Hospital Kaunas Clinics in 2009-2012. Gene methylation was investigated with methylation-specific PCR. The study was approved by the Lithuanian Biomedical Research Ethics Committee. The frequencies of methylation in cancerous tissues from the upper, middle, and lower thirds of the stomach were 11.1, 23.1, and 45.4%, respectively, for MLH1; 22.2, 30.8, and 57.6%, respectively, for MGMT; and 44.4, 48.7, and 51.5%, respectively, for DAPK-1. MLH1 and MGMT methylation was observed more often in the lower third of the stomach than in the upper third (p stomach (coefficient, -0.48; p = 0.01). DAPK-1 and MLH1 methylation correlated inversely in tumors in the middle-third of the stomach (coefficient, -0.41; p = 0.01). Gene promoter methylation depends on the gastric tumor location.

  1. 先天性小耳畸形EYA1基因启动子区域甲基化初步研究%Study of methylation of promoter of EYA1 gene in microtia

    Institute of Scientific and Technical Information of China (English)

    林琳; 潘博; 蒋海越; 庄洪兴; 赵延勇; 杨庆华; 何乐人; 韩娟; 王淑杰

    2009-01-01

    Objective To explore the methylatian of CpG islands in promoter of eye absent gene 1 (EYA1)in microtia. Methods The methylation of CpG islands in EYA1 gene in 64 microtias and 36 healthy controls were measured using the technique of matrix-assisted laser desorption/ionization-time of flight. Results The methylation of CpG_Unit3 and CpG_Unit5 of EYA1 gene in microtia were 0.09258±0.033846 and 0.0922 ±0.02379, respectively, which were significantly lower than those in control. Conclusions Hypomethylation in microtia may be related to the pathogenesis of the disease.%目的 探讨先天性小耳畸形EYA1基因启动子区域CpG岛甲基化状态.方法 应用基质辅助激光解吸附电离飞行时间质谱分析技术,检测了64例先天性小耳畸形患者和36例健康对照的EYA1基因启动子区域CpG岛甲基化情况.结果 先天性小耳畸形患者EYA1基因的CpG_Unit3和CpG_Unit5甲基化程度分别为0.092 58±0.033 846和0.092 2±0.023 79,与健康对照相比明显降低,其差异具有统计学意义(P=0.001和0.019).结论 先天性小耳畸形存在EYA1基因低甲基化情况,可能与该病的发生发展相关.

  2. Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shui Wang; Yong-Bin Ding; Guo-Yu Chen; Jian-Guo Xia; Zhen-Yan Wu

    2004-01-01

    AIM: To investigate the rrelationship between methylation of Syk (spleen tyrosine kinase) gene in promoter region and oncogenesis, metastasis of gastric carcinoma. The relation between silencing of the Syk gene and methylation of Syk promoter region was also studied.METHODS: By using methylation-specific PCR (MSP)technique, the methylation of Syk promoter region in specimens from 61 gastric cancer patients (tumor tissues and adjacent normal tissues) was detected. Meanwhile, RTPCR was used to analyse syk expression exclusively.RESULTS: The expression of the Syk gene was detected in all normal gastric tissues. Syk expression in gastric carcinoma was lower in 14 out of 61 gastric cancer samples than in adjacent normal tissues (x2=72.3, P<0.05). No methylation of Syk promoter was found in adjacent normal tissues, hypermethylation of Syk gene in promoter was detected 21 cases in 61 gastric carcinoma patients. The rate of methylation of Syk promoter in gastric carcinoma was higher than that in adjacent normal tissues (x2=25.1,P<0.05). In 31 patients with lymph node metastasis, 17 were found with Syk promoter methylation. A significant difference was noted between two groups (x2=11.4, P<0.05).CONCLUSION: Hypermethylation leads to silencing of the Syk gene in human gastric carcinoma. Methylation of Syk promoter is correlated to oncogenesis and metastasis of gastric carcinoma. Syk is considered to be a potential tumor suppressor and anti-metastasis gene in human gastric cancer.

  3. DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues.

    Science.gov (United States)

    Kont, Vivian; Murumägi, Astrid; Tykocinski, Lars-Oliver; Kinkel, Sarah A; Webster, Kylie E; Kisand, Kai; Tserel, Liina; Pihlap, Maire; Ströbel, Philipp; Scott, Hamish S; Marx, Alexander; Kyewski, Bruno; Peterson, Pärt

    2011-12-01

    Mutations in the AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which is associated with autoimmunity towards several peripheral organs. The AIRE protein is almost exclusively expressed in medullary thymic epithelial cells (mTEC) and CpG methylation in the promoter of the AIRE gene has been suggested to control its tissue-specific expression pattern. We found that in human AIRE-positive medullary and AIRE-negative cortical epithelium, the AIRE promoter is hypomethylated, whereas in thymocytes, the promoter had high level of CpG methylation. Likewise, in mouse mTECs the AIRE promoter was uniformly hypomethylated. In the same vein, the AIRE promoter was hypomethylated in AIRE-negative thymic epithelial tumors (thymomas) and in several peripheral tissues. Our data are compatible with the notion that promoter hypomethylation is necessary but not sufficient for tissue-specific regulation of the AIRE gene. In contrast, a positive correlation between AIRE expression and histone H3 lysine 4 trimethylation, an active chromatin mark, was found in the AIRE promoter in human and mouse TECs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation

    OpenAIRE

    Chalertpet, Kanwalat; Pakdeechaidan, Watcharapong; Patel, Vyomesh; Mutirangura, Apiwat; Yanatatsaneejit, Pattamawadee

    2015-01-01

    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithe...

  5. Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences

    Science.gov (United States)

    2011-01-01

    Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD) followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes) and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes) hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease. PMID:21669002

  6. Methylation of the BRCA1 promoter in peripheral blood DNA is associated with triple-negative and medullary breast cancer.

    Science.gov (United States)

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Narod, Steven A; Lubinski, Jan; Wojdacz, Tomasz K; Jakubowska, Anna

    2014-12-01

    It has been proposed that methylation signatures in blood-derived DNA may correlate with cancer risk. In this study, we evaluated whether methylation of the promoter region of the BRCA1 gene detectable in DNA from peripheral blood cells is a risk factor for breast cancer, in particular for tumors with pathologic features characteristic for cancers with BRCA1 gene mutations. We conducted a case-control study of 66 breast cancer cases and 36 unaffected controls. Cases were triple-negative or of medullary histology, or both; 30 carried a constitutional BRCA1 mutation and 36 did not carry a mutation. Blood for DNA methylation analysis was taken within three months of diagnosis. Methylation of the promoter of the BRCA1 gene was measured in cases and controls using methylation-sensitive high-resolution melting (MS-HRM). A sample with any detectable level of methylation was considered to be positive. Methylation of the BRCA1 promoter was detected in 15 of 66 cases and in 2 of 36 controls (OR 5.0, p = 0.03). Methylation was present in 15 of 36 women with breast cancer and without germline BRCA1 mutation, but in none of 30 women with breast cancer and a germline mutation (p blood DNA may be a marker of increased susceptibility to triple-negative or medullary breast cancer.

  7. Global and gene specific DNA methylation changes during zebrafish development

    Science.gov (United States)

    DNA methylation is dynamic through the life of an organism. In this study, we measured the global and gene specific DNA methylation changes in zebrafish at different developmental stages. We found that the methylation percentage of cytosines was 11.75 ± 0.96% in 3.3 hour post fertilization (hpf) zeb...

  8. Genetic Determinants for Promoter Hypermethylation in the Lungs of Smokers: A Candidate Gene-Based Study

    OpenAIRE

    Leng, Shuguang; Stidley, Christine A.; Liu, Yushi; Edlund, Christopher K.; Willink, Randall P.; Han, Younghun; Landi, Maria Teresa; Thun, Michael; Picchi, Maria A.; Bruse, Shannon E.; Crowell, Richard E.; Van Den Berg, David; Neil E Caporaso; Amos, Christopher I.; Siegfried, Jill M.

    2011-01-01

    The detection of tumor suppressor gene promoter methylation in sputum-derived exfoliated cells predicts early lung cancer. Here we identified genetic determinants for this epigenetic process and examined their biological effects on gene regulation. A two-stage approach involving discovery and replication was employed to assess the association between promoter hypermethylation of a 12-gene panel and common variation in 40 genes involved in carcinogen metabolism, regulation of methylation, and ...

  9. Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Francescopaolo Di Cello

    Full Text Available Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA. Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+ breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.

  10. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation.

    Directory of Open Access Journals (Sweden)

    Andrew D Beggs

    2013-05-01

    Full Text Available Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.

  11. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation.

    Science.gov (United States)

    Beggs, Andrew D; Jones, Angela; Shepherd, Neil; Arnaout, Abed; Finlayson, Caroline; Abulafi, A Muti; Morton, Dion G; Matthews, Glenn M; Hodgson, Shirley V; Tomlinson, Ian P M

    2013-05-01

    Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA) and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing) and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.

  12. DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy.

    Science.gov (United States)

    Wang, Liang; Fu, Xinwei; Peng, Xi; Xiao, Zheng; Li, Zhonggui; Chen, Guojun; Wang, Xuefeng

    2016-05-01

    DNA methylation plays important roles in regulating gene expression and has been reported to be related with epilepsy. This study aimed to define differential DNA methylation patterns in drug-refractory epilepsy patients and to investigate the role of DNA methylation in human epilepsy. We performed DNA methylation profiling in brain tissues from epileptic and control patients via methylated-cytosine DNA immunoprecipitation microarray chip. Differentially methylated loci were validated by bisulfite sequencing PCR, and the messenger RNA (mRNA) levels of candidate genes were evaluated by reverse transcriptase PCR. We found 224 genes that showed differential DNA methylation between epileptic patients and controls. Among the seven candidate genes, three genes (TUBB2B, ATPGD1, and HTR6) showed relative transcriptional regulation by DNA methylation. TUBB2B and ATPGD1 exhibited hypermethylation and decreased mRNA levels, whereas HTR6 displayed hypomethylation and increased mRNA levels in the epileptic samples. Our findings suggest that certain genes become differentially regulated by DNA methylation in human epilepsy.

  13. Elevated OPRD1 promoter methylation in Alzheimer’s disease patients

    Science.gov (United States)

    Chen, Zhongming; Zhou, Dongsheng; Xu, Xuting; Cui, Wei; Hong, Qingxiao; Jiang, Liting; Li, Jinfeng; Zhou, Xiaohui; Li, Ying; Guo, Zhiping; Zha, Qin; Niu, Yanfang; Weng, Qiuyan; Duan, Shiwei; Wang, Qinwen

    2017-01-01

    Aberrant DNA methylation has been observed in the patients with Alzheimer’s disease (AD), a common neurodegenerative disorder in the elderly. OPRD1 encodes the delta opioid receptor, a member of the opioid family of G-protein-coupled receptors. In the current study, we compare the DNA methylation levels of OPRD1 promoter CpG sites (CpG1, CpG2, and CpG3) between 51 AD cases and 63 controls using the bisulfite pyrosequencing technology. Our results show that significantly higher CpG3 methylation is found in AD cases than controls. Significant associations are found between several biochemical parameters (including HDL-C and ALP) and CpG3 methylation. Subsequent luciferase reporter gene assay shows that DNA fragment containing the three OPRD1 promoter CpGs is able to regulate gene expression. In summary, our results suggest that OPRD1 promoter hypermethylation is associated with the risk of AD. PMID:28253273

  14. MLH1 promoter germline-methylation in selected probands of Chinese hereditary non-polyposis colorectal cancer families

    Institute of Scientific and Technical Information of China (English)

    Heng-Hua Zhou; Shi-Yan Yan; Xiao-Yan Zhou; Xiang Du; Tai-Ming Zhang; Xu Cai; Yong-Ming Lu; San-Jun Cai; Da-Ren Shi

    2008-01-01

    AIM:To detect the MLH1 gene promoter germlinemethylation in probands of Chinese hereditary nonpolyposis colorectal cancer (HNPCC),and to evaluate the role of methylation in MLH1 gene promoter and molecular genetics in screening for HNPCC.METHODS:The promoter germline methylation of MLH1 gene was detected by methylation-specific PCR (MSP) in 18 probands from unrelated HNPCC families with high microsatellite-instability (MSI-H) phenotype but without germline mutations in MSH2,MLH1 and MSH6 genes.At the same time,6 kindreds were collected with microsatellite-stability (MSS) phenotype but without germline mutations in MSH2,MLH1 and MSH6 genes as controls.The results of MSP were confirmed by clone sequencing.To ensure the reliability of the results,family H65 with nonsense germline mutation at c.2228C>A in MSH2 gene was used as the negative control and the cell line sw48 was used as the known positive control along with water as the blank control.Immunochemical staining of MLH1 protein was performed with Envision two-step method in those patients with aberrant methylation to judge whether the status of MLH1 gene methylation affects the expression of MLH1 protein.RESULTS:Five probands with MLH1 gene promoter methylation were detected in 18 Chinese HNPCC families with MSI-H phenotype but without germline mutations in MSH2,MLH1 and MSH6 genes.Two of the five probands from families H10 and H29 displayed exhaustive-methylation,fulfilling the Japanese criteria (JC) and the Amsterdam criteria (AC),respectively.The other 3 probands presented part-methylation fulfilling the AC.Of the 13 probands with unmethylation phenotype,8 fulfilled the JC and the Bethesda guidelines (BG),5 fulfilled the AC.The rate of aberrant methylation in MLH1 gene in the AC group (22.2%,4/18) was higher than that in the JC/BG groups (5.6%,1/18) in all HNPCC families with MSI-H phenotype but without germline mutations in MSH2,MLH1 and MSH6 genes.However,no proband with methylation in MLH1 gene was found

  15. Association between P(16INK4a promoter methylation and non-small cell lung cancer: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jundong Gu

    Full Text Available BACKGROUND: Aberrant methylation of CpG islands acquired in tumor cells in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates P(16INK4a gene promoter hypermethylation is involved in non-small cell lung carcinoma (NSCLC, indicating it may be a potential biomarker for this disease. The aim of this study is to evaluate the frequency of P(16INK4a gene promoter methylation between cancer tissue and autologous controls by summarizing published studies. METHODS: By searching Medline, EMBSE and CNKI databases, the open published studies about P(16INK4a gene promoter methylation and NSCLC were identified using a systematic search strategy. The pooled odds of P(16INK4A promoter methylation in lung cancer tissue versus autologous controls were calculated by meta-analysis method. RESULTS: Thirty-four studies, including 2 652 NSCLC patients with 5 175 samples were included in this meta-analysis. Generally, the frequency of P(16INK4A promoter methylation ranged from 17% to 80% (median 44% in the lung cancer tissue and 0 to 80% (median 15% in the autologous controls, which indicated the methylation frequency in cancer tissue was much higher than that in autologous samples. We also find a strong and significant correlation between tumor tissue and autologous controls of P(16INK4A promoter methylation frequency across studies (Correlation coefficient 0.71, 95% CI:0.51-0.83, P<0.0001. And the pooled odds ratio of P(16INK4A promoter methylation in cancer tissue was 3.45 (95% CI: 2.63-4.54 compared to controls under random-effect model. CONCLUSION: Frequency of P(16INK4a promoter methylation in cancer tissue was much higher than that in autologous controls, indicating promoter methylation plays an important role in carcinogenesis of the NSCLC. Strong and significant correlation between tumor tissue and autologous samples of P(16INK4A promoter methylation demonstrated a promising biomarker for NSCLC.

  16. Increased methylation of interleukin 6 gene is associated with obesity in Korean women.

    Science.gov (United States)

    Na, Yeon Kyung; Hong, Hae Sook; Lee, Won Kee; Kim, Young Hun; Kim, Dong Sun

    2015-05-01

    Obesity is the fifth leading risk for death globally, and a significant challenge to global health. It is a common, complex, non-malignant disease and develops due to interactions between the genes and the environment. DNA methylation can act as a downstream effector of environmental signals; analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. To assess the effects of excessive weight and obesity on gene-specific methylation levels of promoter regions, we determined the methylation status of four genes involved in inflammation and oxidative stress [interleukin 6 (IL6), tumor necrosis factor α (TNFα), mitochondrial transcription factor A (TFAM), and glucose transport 4 (GLUT4)] in blood cell-derived DNA from healthy women volunteers with a range of body mass indices (BMIs) by methylation-specific PCR. Interestingly, the samples from obese individuals (BMI ≥ 30 kg/m(2)) showed significantly increased hypermethylation for IL6 gene compared to normal weight (BMI genes between each group. These findings suggest that aberrant DNA methylation of IL6 gene promoter may play an important role in the etiology and pathogenesis of obesity and IL6 methylation could be used as molecular biomarker for obesity risk assessment. Further studies are required to elucidate the potential mechanisms underlying this relationship.

  17. Gene promoters dictate histone occupancy within genes.

    Science.gov (United States)

    Perales, Roberto; Erickson, Benjamin; Zhang, Lian; Kim, Hyunmin; Valiquett, Elan; Bentley, David

    2013-10-01

    Spt6 is a transcriptional elongation factor and histone chaperone that reassembles transcribed chromatin. Genome-wide H3 mapping showed that Spt6 preferentially maintains nucleosomes within the first 500 bases of genes and helps define nucleosome-depleted regions in 5' and 3' flanking sequences. In Spt6-depleted cells, H3 loss at 5' ends correlates with reduced pol II density suggesting enhanced transcription elongation. Consistent with its 'Suppressor of Ty' (Spt) phenotype, Spt6 inactivation caused localized H3 eviction over 1-2 nucleosomes at 5' ends of Ty elements. H3 displacement differed between genes driven by promoters with 'open'/DPN and 'closed'/OPN chromatin conformations with similar pol II densities. More eviction occurred on genes with 'closed' promoters, associated with 'noisy' transcription. Moreover, swapping of 'open' and 'closed' promoters showed that they can specify distinct downstream patterns of histone eviction/deposition. These observations suggest a novel function for promoters in dictating histone dynamics within genes possibly through effects on transcriptional bursting or elongation rate.

  18. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    Science.gov (United States)

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  19. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    Science.gov (United States)

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  20. A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer.

    Science.gov (United States)

    Huidobro, Covadonga; Urdinguio, Rocío G; Rodríguez, Ramón María; Mangas, Cristina; Calvanese, Vincenzo; Martínez-Camblor, Pablo; Ferrero, Cecilia; Parra-Blanco, Adolfo; Rodrigo, Luis; Obaya, Alvaro J; Suárez-Fernández, Laura; Astudillo, Aurora; Hernando, Henar; Ballestar, Esteban; Fernández, Agustín F; Fraga, Mario F

    2012-09-01

    Altered promoter DNA methylation, one of the most important molecular alterations in cancer, is proposed to correlate with deregulation of DNA methyltransferases, although the molecular mechanisms implicated are still poorly understood. Here we show that the de novo DNA methyltransferase DNMT3B is frequently repressed in human colorectal cancer cell lines (CCL) and primary tumours by aberrant DNA hypermethylation of its distal promoter. At the epigenome level, DNMT3B promoter hypermethylation was associated with the hypomethylation of gene promoters usually hypermethylated in the healthy colon. Forced DNMT3B overexpression in cancer cells restored the methylation levels of these promoters in the healthy colon. Our results show a new molecular mechanism of aberrant DNMT3B regulation in colon cancer and suggest that its expression is associated with the methylation of constitutively hypermethylated promoters in the healthy colon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The Study of CpG Island Methylation of BRCA1 Gene Promoter in a Taxol Induced Drug-resistant Human Lung Aadenocarcinoma Cell Line A549%耐紫杉醇人肺腺癌A549细胞株中BRCA1基因启动子CpG岛甲基化的研究

    Institute of Scientific and Technical Information of China (English)

    尹红英; 王红兵

    2012-01-01

    目的 检测耐紫杉醇人肺腺癌A549细胞株(A549/Taxol)中BRCA1基因启动子CpG岛甲基化状态,探讨A549/Taxol细胞对紫杉醇的耐药机制.方法 应用甲基化特异性聚合酶链反应(MSP)技术,检测耐紫杉醇人肺腺癌A549细胞株BRCA1基因启动子CpG岛甲基化状态.结果 A549/Taxol细胞存在BRCA1基因异常甲基化,呈部分甲基化.结论 A549/Taxol细胞存在BRCA1基因异常甲基化,可能是A549/Taxol细胞对紫杉醇耐药的机制之一.%Objective To detect the CpG island methylation status of BRCA1 gene promoter in the Taxol induced drug-resistant human lung adenocarcinoma cell line A549 ( A549/Taxol ), and to explore the resistance mechanisms of A549/Taxol. Methods A549/Taxol were examined CpG island methylation of BRCA1 gene promoter by methylation specific PCR ( MSP ). Results IBRCA1 gene aberrant methylation of A549/Taxol cells is part of methylation. Conclusion BRCA1 gene aberrant methylation of A549/Taxol may be one of the resistance mechanisms of taxol in A549/Taxol.

  2. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines1*

    Science.gov (United States)

    Wang, Yipeng; Yu, Qiuju; Cho, Ann H; Rondeau, Gaelle; Welsh, John; Adamson, Eileen; Mercola, Dan; McClelland, Michael

    2005-01-01

    Abstract DNA methylation and copy number in the genomes of three immortalized prostate epithelial and five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, and PC3M-LN4) were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme HpaII, followed by linker ligation, polymerase chain reaction (PCR) amplification, labeling, and hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5%) showed differential hybridization between immortalized prostate epithelial and cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, and TSPY) previously observed in prostate cancer and 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, and WIT-1). The majority of genes that appear to be both differentially methylated and differentially regulated between prostate epithelial and cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, and GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors. PMID:16207477

  3. Chromatin inactivation precedes de novo dna methylation during the progressive epigenetic silencing of the rassf1a promoter

    Energy Technology Data Exchange (ETDEWEB)

    Strunnikova Maria; Schagdarsurengin, Undraga; Kehlen, Astrid; Garbe, James C.; Stampfer, Martha R.; Dammann, Reinhard

    2005-02-23

    Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1 A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.

  4. DAPK1 Promoter Methylation and Cervical Cancer Risk: A Systematic Review and a Meta-Analysis

    Science.gov (United States)

    Agodi, Antonella; Barchitta, Martina; Quattrocchi, Annalisa; Maugeri, Andrea; Vinciguerra, Manlio

    2015-01-01

    Objective The Death-Associated Protein Kinase 1 (DAPK1) gene has been frequently investigated in cervical cancer (CC). The aim of the present study was to carry out a systematic review and a meta-analysis in order to evaluate DAPK1 promoter methylation as an epigenetic marker for CC risk. Methods A systematic literature search was carried out. The Cochrane software package Review Manager 5.2 was used. The fixed-effects or random-effects models, according to heterogeneity across studies, were used to calculate odds ratios (ORs) and 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by histological type, assays used to evaluate DAPK1 promoter methylation, and control sample source. Results A total of 20 papers, published between 2001 and 2014, on 1929 samples, were included in the meta-analysis. DAPK1 promoter methylation was associated with an increased CC risk based on the random effects model (OR: 21.20; 95%CI = 11.14–40.35). Omitting the most heterogeneous study, the between study heterogeneity decreased and the association increased (OR: 24.13; 95% CI = 15.83–36.78). The association was also confirmed in all the subgroups analyses. Conclusions A significant strong association between DAPK1 promoter methylation and CC was shown and confirmed independently by histological tumor type, method used to evaluate methylation and source of control samples. Methylation markers may have value in early detection of CC precursor lesions, provide added reassurances of safety for women who are candidates for less frequent screens, and predict outcomes of women infected with human papilloma virus. PMID:26267895

  5. DAPK1 Promoter Methylation and Cervical Cancer Risk: A Systematic Review and a Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Antonella Agodi

    Full Text Available The Death-Associated Protein Kinase 1 (DAPK1 gene has been frequently investigated in cervical cancer (CC. The aim of the present study was to carry out a systematic review and a meta-analysis in order to evaluate DAPK1 promoter methylation as an epigenetic marker for CC risk.A systematic literature search was carried out. The Cochrane software package Review Manager 5.2 was used. The fixed-effects or random-effects models, according to heterogeneity across studies, were used to calculate odds ratios (ORs and 95% Confidence Intervals (CIs. Furthermore, subgroup analyses were conducted by histological type, assays used to evaluate DAPK1 promoter methylation, and control sample source.A total of 20 papers, published between 2001 and 2014, on 1929 samples, were included in the meta-analysis. DAPK1 promoter methylation was associated with an increased CC risk based on the random effects model (OR: 21.20; 95%CI = 11.14-40.35. Omitting the most heterogeneous study, the between study heterogeneity decreased and the association increased (OR: 24.13; 95% CI = 15.83-36.78. The association was also confirmed in all the subgroups analyses.A significant strong association between DAPK1 promoter methylation and CC was shown and confirmed independently by histological tumor type, method used to evaluate methylation and source of control samples. Methylation markers may have value in early detection of CC precursor lesions, provide added reassurances of safety for women who are candidates for less frequent screens, and predict outcomes of women infected with human papilloma virus.

  6. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  7. Association of methylation of COL1 A2 gene promoter with gene expression and mastitis in dairy cow%奶牛 COL1 A2基因启动子区甲基化与其基因表达及乳腺炎的相关性分析

    Institute of Scientific and Technical Information of China (English)

    罗国静; 郭芳; 鞠志花; 王长法; 黄金明; 徐银学

    2014-01-01

    This study was to investigate the methylation pattern of COL1A2 gene promoter and its effect on gene ex-pression between the healthy cow’ s mammary tissues ( n=3) and mastitic cow’s tissues (n=3) to provide clues for disease-resistant breeding and prevention of mastitis in dairy cows. The CpG islands and its transcription factors were analyzed by bioinformatics. The degree of methylation of a CpG island in COL1A2 gene core promoter region and the expression of COL1A2 mRNA were detected by the bi-sulfite sequencing PCR and RT-PCR. No obvious differ-ence (P>0. 05) was detected in the degree of methylation of the CpG island in healthy cows and mastitic cows which both showed hypomethylation (0.05),均呈低甲基化状态(<50%),但位于转录因子SP1结合区域内的第4和第5 CpG位点,健康组甲基化程度(30%和60%)显著高于患乳房炎组(0和10%);健康组基因表达水平显著低于患乳房炎组(P<0.05)。说明, COL1A2基因在不同乳腺组织中的差异表达可能与其启动子区CpG岛转录因子SP1结合区域内的第4和第5 CpG位点甲基化程度差异相关。

  8. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression.

    Science.gov (United States)

    Sonne, Si Brask; Yadav, Rachita; Yin, Guangliang; Dalgaard, Marlene Danner; Myrmel, Lene Secher; Gupta, Ramneek; Wang, Jun; Madsen, Lise; Kajimura, Shingo; Kristiansen, Karsten

    2017-04-03

    The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated that hypomethylation did not reflect methyl donor deficiency. In both DIO and ob/ob mice, we observed more obesity-associated methylation changes in epididymal than in inguinal adipocytes. Assignment of DMRs to promoter, exon, intron and intergenic regions demonstrated that DIO-induced changes in DNA methylation in C57BL/6J mice occurred primarily in exons, whereas inguinal adipocytes of ob/ob mice exhibited a higher enrichment of DMRs in promoter regions than in other regions of the genome, suggesting an influence of leptin on DNA methylation in inguinal adipocytes. We observed altered methylation and expression of 9 genes in epididymal adipocytes, including the known obesity-associated genes, Ehd2 and Kctd15, and a novel candidate gene, Irf8, possibly involved in immune type 1/type2 balance. The use of 2 obesity models enabled us to dissociate changes associated with high fat feeding from those associated with obesity per se. This information will be of value in future studies on the mechanisms governing the development of obesity and changes in adipocyte function associated with obesity.

  9. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: preliminary report.

    Science.gov (United States)

    Powrózek, Tomasz; Krawczyk, Paweł; Kucharczyk, Tomasz; Milanowski, Janusz

    2014-04-01

    Currently, there are no sensitive diagnostic tests that could allow early detection of lung cancer. Among some cancer patients, epigenetic changes in the nature of methylation of different gene promoter regions are observed, which affect expression of suppressor genes such as septin 9 (SEPT9). Due to the ability of detecting these changes in free circulating DNA in peripheral blood, such genes may become ideal markers in early and noninvasive diagnostics of cancer. Methylation of SEPT9 promoter region in plasma DNA is observed frequently in colorectal cancer patients. The aim of the study was to define the frequency of SEPT9 promoter methylation in lung cancer patients and evaluation of usefulness of this marker in early diagnostic of lung cancer. Plasma samples were obtained from 70 untreated patients with different lung cancer pathological diagnosis and disease stage and from 100 healthy individuals. DNA was isolated from peripheral blood plasma and was then subjected to bisulfitation, purification and elution using Abbott mSEPT9 Detection Kit. Methylation level was assessed by real-time PCR with the use of specific SEPT9 promoter methylation probe. Each sample was assayed in the presence of positive and negative control. SEPT9 promoter methylation was detected in 31 (44.3% of the whole studied group) of lung cancer patients finding the result positive when methylation was detected in 1 out of 3 repetitions of each test sample determinations. The marker was present in patients with different pathological diagnosis and disease stage. Analysis of SEPT9 promoter region methylation may be useful in early diagnosis of lung cancer.

  10. Role of E-cadherin gene promoter methylation in bladder carcinogenesis:a Meta-analysis%E-钙黏蛋白基因启动子区甲基化与膀胱癌关联性的Meta分析

    Institute of Scientific and Technical Information of China (English)

    张书卿; 张绪亮; 张博; 洪亮

    2015-01-01

    Objective To assess the role of E-cadherin (CDH1) promoter methylation in bladder carcinogenesis by meta-analysis. Methods The relevant database were searched by the retrieval strategy of Cochrane network. All included studies were collected following data:the first author’s surname, publication year of article, country, language of publication, design of study, sample size, ethnicity, histological subtypes, methylation detection method and genotype frequencies etc. This meta-analysis was performed using the STATA 12.0 software. The crude odds ratio (OR) with 95%confidence interval (CI) was calculated. Results Ten case-control studies were included in this meta-analysis. The methylation frequency of CDH1 was detected in 620 bladder cancer tissues and 341 normal or cancerous tissues. Results showed that the methylation frequency of CDH1 was significantly higher in bladder cancer tissue than that of normal or cancerous tissue (OR=3.09, 95%CI:1.13~8.50, P=0.029). Furthermore, the ethnicity-stratified analysis revealed that the methylation frequency of CDH1 was significantly higher in bladder cancer tissue of Asian populations than that of normal or cancerous tissue (OR=3.85, 95%CI:1.46~10.14, P=0.006), but no such association was found in Caucasian populations(OR=2.22, 95%CI:0.38-12.91, P=0.375). The subgroup analysis based on the detection methods revealed that there was a statistically significant difference in the methylation frequency of CDH1 between bladder cancer tissue and adjacent tissues and normal tissues under the MSP subgroup (P<0.001), while such association was not observed under the Q-MSP subgroup (P=0.818). Conclusion Pro⁃moter methylation of CDH1 gene may be involved in the occurrence and development of bladder cancer, which may serve as a biomarker for diagnosis and prognosis of bladder cancer.%目的:将既往有关E-钙黏蛋白(CDH1)基因启动子区甲基化与膀胱癌关系的研究进行Meta分析,评估CDH1基因启动子区甲

  11. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    Energy Technology Data Exchange (ETDEWEB)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Resch, Eduard [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Peil, Johannes [Sports Clinic, Bad Nauheim, MCI GmbH, In der Aue 30-32, 61231, Bad Nauheim (Germany); Geisslinger, Gerd [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany)

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  12. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice.

    Science.gov (United States)

    Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-15

    The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P 5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.

  13. Long-term survival in glioblastoma: methyl guanine methyl transferase (MGMT) promoter methylation as independent favourable prognostic factor

    Science.gov (United States)

    Smrdel, Uros; Zwitter, Matjaz; Bostjancic, Emanuela; Zupan, Andrej; Kovac, Viljem; Glavac, Damjan; Bokal, Drago; Jerebic, Janja

    2016-01-01

    Abstract Background In spite of significant improvement after multi-modality treatment, prognosis of most patients with glioblastoma remains poor. Standard clinical prognostic factors (age, gender, extent of surgery and performance status) do not clearly predict long-term survival. The aim of this case-control study was to evaluate immuno-histochemical and genetic characteristics of the tumour as additional prognostic factors in glioblastoma. Patients and methods Long-term survivor group were 40 patients with glioblastoma with survival longer than 30 months. Control group were 40 patients with shorter survival and matched to the long-term survivor group according to the clinical prognostic factors. All patients underwent multimodality treatment with surgery, postoperative conformal radiotherapy and temozolomide during and after radiotherapy. Biopsy samples were tested for the methylation of MGMT promoter (with methylation specific polymerase chain reaction), IDH1 (with immunohistochemistry), IDH2, CDKN2A and CDKN2B (with multiplex ligation-dependent probe amplification), and 1p and 19q mutations (with fluorescent in situ hybridization). Results Methylation of MGMT promoter was found in 95% and in 36% in the long-term survivor and control groups, respectively (p < 0.001). IDH1 R132H mutated patients had a non-significant lower risk of dying from glioblastoma (p = 0.437), in comparison to patients without this mutation. Other mutations were rare, with no significant difference between the two groups. Conclusions Molecular and genetic testing offers additional prognostic and predictive information for patients with glioblastoma. The most important finding of our analysis is that in the absence of MGMT promoter methylation, longterm survival is very rare. For patients without this mutation, alternative treatments should be explored. PMID:27904447

  14. Detection and Clinical Significance of DLC1 Gene Methylation in Serum DNA from Colorectal Cancer Patients

    Institute of Scientific and Technical Information of China (English)

    Ping-ping Wu; Ji-hong Zou; Ri-ning Tang; Yao Yao; Cheng-zhong You

    2011-01-01

    Objective:Deleted in liver cancer 1 (DLC1) is a new candidate tumor suppressor gene,whose down-regulation or even silence will result from promoter hypermethylation in various human cancers including colorectal cancer (CRC).The aim of this study is to evaluate the diagnostic role of DLC1 gene methylation in the serum DNA from CRC patients.Methods:This study enrolled 85 CRC patients and 45 patients with benign colorectal diseases.Methylation-specific polymerase chain reaction (MSP) was used to determine the promoter methylation status of DLC1 gene in serum DNA.The combination of DLC1 methylation and conventional tumor markers was further analyzed.Results:Hypermethylation of DLC1 was detected in 42.4% (36/85) of CRC serums,while seldom in the benign controls (8.9%,4/45) (P<0.001).The aberrant DLC1 methylation in serum DNA was not associated with patients' clinicopathological features and elevated CEA/CA19-9 levels.Furthermore,the combinational analysis of CEA,CA19-9 and DLC1 methylation showed a higher sensitivity and no reduced diagnostic specificity than CEA and CA19-9 combination for CRC diagnosis.Conclusion:The serum DLC1 methylation may be a promising biomarker for the early detection of CRC,which will further increase the diagnostic efficiency in combination with CEA and CA19-9.

  15. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity.

    Science.gov (United States)

    Dewi, Firli Rahmah Primula; Fatchiyah, Fatchiyah

    2013-01-01

    Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver. Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16 kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of promoter and enhancer region of Epo gene leads to silencing.

  16. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma.

    Directory of Open Access Journals (Sweden)

    Antonia Navarro

    Full Text Available BACKGROUND: Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. PRINCIPAL FINDINGS: We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62% displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. CONCLUSIONS: These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women.

  17. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats

    Science.gov (United States)

    López-Álvarez, Guadalupe S.; Wojdacz, Tomasz K.; García-Cuellar, Claudia M.; Monroy-Ramírez, Hugo C.; Rodríguez-Segura, Miguel A.; Pacheco-Rivera, Ruth A.; Valencia-Antúnez, Carlos A.; Cervantes-Anaya, Nancy; Soto-Reyes, Ernesto; Vásquez-Garzón, Verónica R.; Sánchez-Pérez, Yesennia; Villa-Treviño, Saúl

    2017-01-01

    ABSTRACT The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4) using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively) after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats. PMID:27895046

  18. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats

    Directory of Open Access Journals (Sweden)

    Guadalupe S. López-Álvarez

    2017-01-01

    Full Text Available The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4 using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats.

  19. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy.

    Science.gov (United States)

    Miller-Delaney, Suzanne F C; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C; Bray, Isabella M; Reynolds, James P; Gwinn, Ryder; Stallings, Raymond L; Henshall, David C

    2015-03-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain.

  20. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    Science.gov (United States)

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  1. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  2. Prognostic Relevance of Tumor Purity and TERT Promoter Mutations on MGMT Promoter Methylation in Glioblastoma.

    Science.gov (United States)

    Schulze Heuling, Eva; Knab, Felix; Radke, Josefine; Eskilsson, Eskil; Martinez-Ledesma, Emmanuel; Koch, Arend; Czabanka, Marcus; Dieterich, Christoph; Verhaak, Roel G; Harms, Christoph; Euskirchen, Philipp

    2017-02-01

    Promoter methylation status of O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, is a critical biomarker in glioblastoma multiforme (GBM) as treatment decisions and clinical trial inclusion rely on its accurate assessment. However, interpretation of results is complicated by poor inter-assay reproducibility as well as weak a correlation between methylation status and expression levels of MGMT. The present study systematically investigates the influence of tumor purity on tissue subjected to MGMT analysis. A quantitative, allele-specific real-time PCR (qAS-PCR) assay was developed to determine genotype and mutant allele frequency of telomerase promoter (pTERT) mutations as a direct measure of tumor purity. We studied tumor purity, pTERT mutation by Sanger sequencing, MGMT methylation by pyrosequencing, IDH1 mutation status, and clinical parameters in a cohort of high-grade gliomas (n=97). The qAS-PCR reliably predicted pTERT genotype and tumor purity compared with independent methods. Tumor purity positively and significantly correlated with the extent of methylation in MGMT methylated GBMs. Extent of MGMT methylation differed significantly with respect to pTERT mutation hotspot (C228T vs. C250T). Interestingly, frontal lobe tumors showed greater tumor purity than those in other locations. Above all, tumor purity was identified as an independent prognostic factor in GBM. In conclusion, we determined mutual associations of tumor purity with MGMT methylation and pTERT mutations and found that the extent of MGMT methylation reflects tumor purity. In turn, tumor purity is prognostic in IDH1 wildtype GBM.

  3. Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation

    Directory of Open Access Journals (Sweden)

    Koeffler Phillip

    2010-02-01

    Full Text Available Abstract Background Epigenetic changes associated with promoter DNA methylation results in silencing of several tumor suppressor genes that lead to increased risk for tumor formation and for progression of the cancer. Methods Methylation specific PCR (MSP and bisulfite sequencing were used for determination of proapoptotic gene Caspase 8 (CASP8 and the tumor suppressor gene maspin promoter methylation in four breast cancer and two non-tumorigenic breast cell lines. Involvement of histone H3 methylation in those cell lines were examined by CHIP assay. Results The CpG sites in the promoter region of CASP8 and maspin were methylated in all four breast cancer cell lines but not in two non-tumorigenic breast cell lines. Demethylation agent 5-aza-2'-deoxycytidine (5-aza-dc selectively inhibits DNA methyltransferases, DNMT3a and DNMT3b, and restored CASP8 and maspin gene expression in breast cancer cells. 5-aza-dc also reduced histone H3k9me2 occupancy on CASP8 promoter in SKBR3cells, but not in MCF-7 cells. Combination of histone deacetylase inhibitor Trichostatin A (TSA and 5-aza-dc significant decrease in nuclear expression of Di-methyl histone H3-Lys27 and slight increase in acetyl histone H3-Lys9 in MCF-7 cells. CASP8 mRNA and protein level in MCF-7 cells were increased by the 5-aza-dc in combination with TSA. Data from our study also demonstrated that treatment with 5-FU caused a significant increase in unmethylated CASP8 and in CASP8 mRNA in all 3 cancer lines. Conclusions CASP8 and maspin expression were reduced in breast cancer cells due to promoter methylation. Selective application of demethylating agents could offer novel therapeutic opportunities in breast cancer.

  4. 地西他滨对骨髓增生异常综合征患者血浆中P15基因启动子区域甲基化的影响%Changes of P15 gene promoter region methylation following decitabine treatment in the plasma of patients with myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    邓银芬; 张秀群; 张磊; 苏爱玲; 张学忠; 徐燕丽

    2013-01-01

    Objective:To detect the methylation status of P15 gene promoter region in the plasma of patients with myelodysplastic syndrome (MDS) ,and to investigate the demethylating effects of dicitabine. Method: Methyl-ation-specific PCR (MSP) was used to detect the methylation status of P15 gene promoter region in the plasma of 4 patients,among them.one newly diagnosed MDS,three progressed into acute leukemia, with myelodysplastic syndrome before and after treated with decitabine plus semis CAG therapy. Result; Four cases were found to have an increased methylation in the promoter region,after treated with decitabine plus semis CAG,3 cases were not found increased methylation. In 4 cases.2 cases gain clinical response.and the other 2 cases were useless. Conclusion:P15 gene hypermethylation is associated with MDS pathogenesis. Decitabine has demethylating effect on the plasma from MDS patients The methylation status of P15 gene may serve as an important molecular marker to provide evidence for MDS diagnosis and predict the prognosis.%目的:检测骨髓增生异常综合征(MDS)患者血浆中P15基因启动子区域甲基化状况及地西他滨对其甲基化的影响.方法:采用甲基化特异性聚合酶链反应(methylation-specific PCR,MSP)法检测1例初治的MDS患者、3例MDS转化而来的AML患者使用地西他滨序贯半量CA(方案治疗前后血浆中P15基因启动子区域CPG岛甲基化情况,并分析其临床疗效.结果:4例患者治疗前均有P15基因甲基化,治疗1疗程后有3例患者P15基因甲基化得到逆转,4例患者中有2例获得临床缓解,2例无效.结论:MDS的发生与P15基因甲基化相关,地西他滨对MDS患者血浆P15基因高甲基化具有明显的去甲基化作用.P15基因甲基化检测可能成为MDS辅助诊断和预后判断的分子标记.

  5. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  6. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation

    Science.gov (United States)

    Nguyen, Carvell T.; Gonzales, Felicidad A.; Jones, Peter A.

    2001-01-01

    Silencing of tumor-suppressor genes by hypermethylation of promoter CpG islands is well documented in human cancer and may be mediated by methyl-CpG-binding proteins, like MeCP2, that are associated in vivo with chromatin modifiers and transcriptional repressors. However, the exact dynamic between methylation and chromatin structure in the regulation of gene expression is not well understood. In this study, we have analyzed the methylation status and chromatin structure of three CpG islands in the p14(ARF)/p16(INK4A) locus in a series of normal and cancer cell lines using methylation-sensitive digestion, MspI accessibility in intact nuclei and chromatin immunoprecipitation (ChIP) assays. We demonstrate the existence of an altered chromatin structure associated with the silencing of tumor-suppressor genes in human cancer cell lines involving CpG island methylation, chromatin condensation, histone deacetylation and MeCP2 binding. The data showed that MeCP2 could bind to methylated CpG islands in both promoters and exons; MeCP2 does not interfere with transcription when bound at an exon, suggesting a more generalized role for the protein beyond transcriptional repression. In the absence of methylation, it is demonstrated that CpG islands located in promoters versus exons display marked differences in the levels of acetylation of associated histone H3, suggesting that chromatin remodeling can be achieved by methylation-independent processes and perhaps explaining why non-promoter CpG islands are more susceptible to de novo methylation than promoter islands. PMID:11713309

  7. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    Science.gov (United States)

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and tumor grade (p = 0.01). Given the important role of cell cycle checkpoint

  8. Epigenetic approach to early-onset Parkinson's disease: low methylation status of SNCA and PARK2 promoter regions.

    Science.gov (United States)

    Eryilmaz, Isil Ezgi; Cecener, Gulsah; Erer, Sevda; Egeli, Unal; Tunca, Berrin; Zarifoglu, Mehmet; Elibol, Bulent; Bora Tokcaer, Ayse; Saka, Esen; Demirkiran, Meltem; Akbostanci, Cenk; Dogu, Okan; Colakoglu, Beril; Kenangil, Gulay; Kaleagasi, Hakan

    2017-08-22

    Background and aim The effect of epigenetic modifications in the genes related to Parkinson's disease (PD) is still unclear. In the present study, we investigated methylation status of SNCA and PARK2 genes in patients with early-onset Parkinson's disease (EOPD). Materials and methods The promoter region methylation status of SNCA and PARK2 genes was evaluated by methylation specific-PCR (MSP) in 91 patients with EOPD and 52 healthy individuals. Results The methylation of SNCA and PARK2 promoter regions were significantly lower in EOPD patients compared to the control group (P = 0.013 and P = 0.03, respectively). We also found that the methylation status of the SNCA might be associated with positive family history of PD (P = 0.042). Conclusion Although it should be supported by further analysis, based on the results of the present study, the methylation status of SNCA and PARK2 genes might contribute to EOPD pathogenesis.

  9. Gene-Specific Methylation Analysis in Thymomas of Patients with Myasthenia Gravis

    Science.gov (United States)

    Lopomo, Angela; Ricciardi, Roberta; Maestri, Michelangelo; De Rosa, Anna; Melfi, Franca; Lucchi, Marco; Mussi, Alfredo; Coppedè, Fabio; Migliore, Lucia

    2016-01-01

    Thymomas are uncommon neoplasms that arise from epithelial cells of the thymus and are often associated with myasthenia gravis (MG), an autoimmune disease characterized by autoantibodies directed to different targets at the neuromuscular junction. Little is known, however, concerning epigenetic changes occurring in thymomas from MG individuals. To further address this issue, we analyzed DNA methylation levels of genes involved in one-carbon metabolism (MTHFR) and DNA methylation (DNMT1, DNMT3A, and DNMT3B) in blood, tumor tissue, and healthy thymic epithelial cells from MG patients that underwent a surgical resection of a thymic neoplasm. For the analyses we applied the methylation-sensitive high-resolution melting technique. Both MTHFR and DNMT3A promoters showed significantly higher methylation in tumor tissue with respect to blood, and MTHFR also showed significantly higher methylation levels in tumor tissue respect to healthy adjacent thymic epithelial cells. Both DNMT1 and DNMT3B promoter regions were mostly hypomethylated in all the investigated tissues. The present study suggests that MTHFR methylation is increased in thymomas obtained from MG patients; furthermore, some degrees of methylation of the DNMT3A gene were observed in thymic tissue with respect to blood. PMID:27999265

  10. Gene-Specific Methylation Analysis in Thymomas of Patients with Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Angela Lopomo

    2016-12-01

    Full Text Available Thymomas are uncommon neoplasms that arise from epithelial cells of the thymus and are often associated with myasthenia gravis (MG, an autoimmune disease characterized by autoantibodies directed to different targets at the neuromuscular junction. Little is known, however, concerning epigenetic changes occurring in thymomas from MG individuals. To further address this issue, we analyzed DNA methylation levels of genes involved in one-carbon metabolism (MTHFR and DNA methylation (DNMT1, DNMT3A, and DNMT3B in blood, tumor tissue, and healthy thymic epithelial cells from MG patients that underwent a surgical resection of a thymic neoplasm. For the analyses we applied the methylation-sensitive high-resolution melting technique. Both MTHFR and DNMT3A promoters showed significantly higher methylation in tumor tissue with respect to blood, and MTHFR also showed significantly higher methylation levels in tumor tissue respect to healthy adjacent thymic epithelial cells. Both DNMT1 and DNMT3B promoter regions were mostly hypomethylated in all the investigated tissues. The present study suggests that MTHFR methylation is increased in thymomas obtained from MG patients; furthermore, some degrees of methylation of the DNMT3A gene were observed in thymic tissue with respect to blood.

  11. Methylation of BRCA1 promoter region is associated with unfavorable prognosis in women with early-stage breast cancer.

    Science.gov (United States)

    Hsu, Nicholas C; Huang, Ya-Fang; Yokoyama, Kazunari K; Chu, Pei-Yi; Chen, Fang-Ming; Hou, Ming-Feng

    2013-01-01

    BRCA1-associated breast cancers are associated with particular features such as early onset, poor histological differentiation, and hormone receptor negativity. Previous studies conducted in Taiwanese population showed that the mutation of BRCA1 gene does not play a significant role in the occurrence of breast cancer. The present study explored methylation of BRCA1 promoter and its relationship to clinical features and outcome in Taiwanese breast cancer patients. Tumor specimens from a cohort of 139 early-stage breast cancer patients were obtained during surgery before adjuvant treatment for DNA extraction. Methylation of BRCA1 promoter region was determined by methylation-specific PCR and the results were related to clinical features and outcome of patients using statistical analysis. Methylation of the BRCA1 promoter was detected in 78 (56%) of the 139 tumors. Chi-square analysis indicated that BRCA1 promoter methylation correlated significantly with triple-negative (ER-/PR-/HER2-) status of breast cancer patients (p = 0.041). The Kaplan-Meier method showed that BRCA1 promoter methylation was significantly associated with poor overall survival (p = 0.026) and disease-free survival (p = 0.001). Multivariate analysis which incorporated variables of patients' age, tumor size, grade, and lymph node metastasis revealed that BRCA1 promoter methylation was associated with overall survival (p = 0.027; hazard ratio, 16.38) and disease-free survival (p = 0.003; hazard ratio, 12.19) [corrected].Our findings underscore the clinical relevance of the methylation of BRCA1 promoter in Taiwanese patients with early-stage breast cancer.

  12. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... methylation might be a potential regulation mechanism for transcription ... of Cox4 gene provide possible DNA methylation sites. Up till now .... Effects of hypothyroidism on expressions of Cox4, Dnmt1 and. Dnmt3a in the ...

  13. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis].

    Science.gov (United States)

    Yang, X J; Yuan, Y Z; Niu, Q

    2016-04-20

    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP gene may be associated with increased serum aluminium level, and downregulated methylation of the promoter region of APP gene may accelerate APP gene transcription.

  14. Methods for Analyzing the Role of DNA Methylation and Chromatin Structure in Regulating T Lymphocyte Gene Expression

    Directory of Open Access Journals (Sweden)

    Lu Qianjin

    2004-01-01

    Full Text Available Chromatin structure, determined in part by DNA methylation, is established during differentiation and prevents expression of genes unnecessary for the function of a given cell type. We reported that DNA methylation and chromatin structure contributes to lymphoid-specific ITGAL (CD11a and PRF1 (perforin expression. We used bisulfite sequencing to compare methylation patterns in the ITGAL promoter and 5' flanking region of T cells and fibroblasts, and in the PRF1 promoter and upstream enhancer of CD4+ and CD8+ T cells with fibroblasts. The effects of methylation on promoter function were tested using regional methylation of reporter constructs, and confirmed by DNA methyltransferase inhibition. The relationship between DNA methylation and chromatin structure was analyzed by DNaseI hypersensitivity. Herein we described the methods and results in greater detail.

  15. Methylation of FHIT Gene Promoter Region in DNA from Plasma of Patients with Myelodysplastic Syndomes and Demethylating Effect of Decitabine%骨髓增生异常综合征患者血浆DNA中FHIT基因启动子区甲基化状态及地西他滨的去甲基化作用

    Institute of Scientific and Technical Information of China (English)

    邓银芬; 张磊; 张秀群; 胡明秋; 戴丹; 张学忠; 徐燕丽

    2012-01-01

    This study was aimed to detect the methylation status of FHIT gene promoter region in the DNA from plasma of patients with myelodysplastic syndrome ( MDS) , and to investigate the demethylating effect of decitabine. Methylation-specific PCR method was used to detect the methylation status of FHIT gene promoter region in the DNA from plasma of 4 patients with MDS before and after treatment with decitabine plus semis CAG therapy(among them, 1 case of newly diagnosed MDS, 3 cases progressed into acute leukemia). The results indicated that 3 cases were found to have an increased methylation in the promoter region. After treatment with decitabine plus semis CAG, increased methylation was reversed in 2 cases. In 4 cases, 2 cases displayed clinical response. It is concluded that FHIT gene hypermethylation is associated with MDS pathogenesis. Decitabine has demethylating effect on the FHIT gene hypermethylation of plasma from MDS patients. Detecting the methylation status of FHIT gene in DNA from plasma may play a role in MDS auxiliary diagnosis or prognosis.%本研究旨在检测骨髓增生异常综合征( MDS)患者血浆DNA中FHIT基因启动子区域甲基化状况及地西他滨对其甲基化的影响.采用甲基化特异性聚合酶链反应法检测1例初治的MDS患者、3例MDS转化而来的AML患者在地西他滨序贯半量CAG方案化疗前后血浆DNA中FHIT基因启动子区域CPG岛甲基化情况,并分析其临床疗效.结果表明,3例患者治疗前有FHIT基因甲基化.治疗1个疗程后其中2例患者FHIT基因甲基化得到逆转,4例患者中有2例获得临床缓解,2例无效.结论:MDS的发生可能与FHIT基因甲基化相关,地西他滨对MDS患者血浆DNA中FHIT基因高甲基化具有明显的去甲基化作用.血浆DNA的FHIT基因甲基化检测可能成为MDS辅助诊断和预后判断的分子标记.

  16. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    Science.gov (United States)

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  17. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns.

    Science.gov (United States)

    Li, Yuan-Yuan; Chen, Tian; Wan, Yanjian; Xu, Shun-qing

    2012-08-01

    It has been suggested that lead (Pb) exposure in early life may increase amyloid precursor protein (APP) expression and promote the pathogenesis of Alzheimer's disease in old age. The current study examined whether the DNA methylation patterns of APP gene in rat pheochromocytoma (PC12) cells changed after Pb acetate exposure. Undifferentiated PC12 cells were exposed to three doses of Pb acetate (50, 250, and 500 nM) and one control for 2 days or 1 week. The methylation patterns of APP promoter and global DNA methylation were analyzed. The DNA methyltransferase 1 (DNMT1) expression and the level of amyloid β peptide (Aβ) were also investigated. The results showed that the exposure of the three concentrations of Pb acetate could make the APP promoter hypomethylated. The global DNA methylation level and the expression of DNMT1 were changed in the 500 nM group after 2 days exposure and in the 250 and 500 nM group after 7 days exposure. Thus, Pb may exert neurotoxic effects through mechanisms that alter the global and promoter methylation patterns of APP gene. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012. Copyright © 2010 Wiley Periodicals, Inc.

  18. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring.

    Science.gov (United States)

    Li, Hong; Liu, Jin; Sun, Yan; Wang, Wenxiang; Weng, Shaozheng; Xiao, Shihua; Huang, Huiling; Zhang, Wenchang

    2014-08-01

    The N-hexane-induced impact on the reproductive system of the offspring of animals exposed to n-hexane has caused great concern. Pregnant Wistar rats inhaled 500, 2 500 or 12 500 ppm n-hexane during gestational days 1-20. Clinical characteristics and developmental indices were observed. Ovarian granulosa cells were extracted from F1 rats, the number of follicles was determined in ovarian slices and promoter methylation was assessed using MeDIP-Chip. Several methods were used to analyze the scanned genes, including the Gene Ontology Consortium tools, the DAVID Functional Annotation Clustering Tool, hierarchical clustering and KEGG pathway analysis. The results indicated that the live pups/litter ratio was significantly lowest in the 12 500 ppm group. A significant decrease in secondary follicles and an increase in atresic follicles were observed in the 12 500 ppm group. The number of shared demethylated genes was higher than that of the methylated genes, and the differentially methylated genes were enriched in cell death and apoptosis, cell growth and hormone regulation. The methylation profiles of the offspring from the 500 ppm and control groups were different from those of the 2500 and 12 500 ppm groups. Furthermore, the methylation status of genes in the PI3K-Akt and NF-kappa B signaling pathways was changed after n-hexane exposure. The Cyp11a1, Cyp17a1, Hsd3b1, Cyp1a1 and Srd5a1 promoters were hypermethylated in the n-hexane-exposed groups. These results indicate that the developmental toxicity of n-hexane in F1 ovaries is accompanied by the altered methylation of promoters of genes associated with apoptotic processes and steroid hormone biosynthesis.

  19. Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity

    Science.gov (United States)

    GUERRERO-PRESTON, RAFAEL; HADAR, TAL; OSTROW, KIMBERLY LASKIE; SOUDRY, ETHAN; ECHENIQUE, MIGUEL; ILI-GANGAS, CARMEN; PÉREZ, GABRIELA; PEREZ, JIMENA; BREBI-MIEVILLE, PRISCILLA; DESCHAMPS, JOSÉ; MORALES, LUISA; BAYONA, MANUEL; SIDRANSKY, DAVID; MATTA, JAIME

    2014-01-01

    Methylation alterations of CpG islands, CpG island shores and first exons are key events in the formation and progression of human cancer, and an increasing number of differentially methylated regions and genes have been identified in breast cancer. Recent studies of the breast cancer methylome using deep sequencing and microarray platforms are providing a novel insight on the different roles aberrant methylation plays in molecular subtypes of breast cancer. Accumulating evidence from a subset of studies suggests that promoter methylation of tumor-suppressor genes associated with breast cancer can be quantified in circulating DNA. However, there is a paucity of studies that examine the combined presence of genetic and epigenetic alterations associated with breast cancer using blood-based assays. Dysregulation of DNA repair capacity (DRC) is a genetic risk factor for breast cancer that has been measured in lymphocytes. We isolated plasma DNA from 340 participants in a breast cancer case control project to study promoter methylation levels of five genes previously shown to be associated with breast cancer in frozen tissue and in cell line DNA: MAL, KIF1A, FKBP4, VGF and OGDHL. Methylation of at least one gene was found in 49% of the cases compared to 20% of the controls. Three of the four genes had receiver characteristic operator curve values of ≥0.50: MAL (0.64), KIF1A (0.51) and OGDHL (0.53). KIF1A promoter methylation was associated with breast cancer and inversely associated with DRC. This is the first evidence of a significant association between genetic and epigenetic alterations in breast cancer using blood-based tests. The potential diagnostic utility of these biomarkers and their relevance for breast cancer risk prediction should be examined in larger cohorts. PMID:24927296

  20. An NF-Y-dependent switch of positive and negative histone methyl marks on CCAAT promoters.

    Directory of Open Access Journals (Sweden)

    Giacomo Donati

    Full Text Available BACKGROUND: Histone tails have a plethora of different post-translational modifications, which are located differently in "open" and "closed" parts of genomes. H3K4me3/H3K79me2 and H4K20me3 are among the histone marks associated with the early establishment of active and inactive chromatin, respectively. One of the most widespread promoter elements is the CCAAT box, bound by the NF-Y trimer. Two of NF-Y subunits have an H2A-H2B-like structure. PRINCIPAL FINDINGS: We established the causal relationship between NF-Y binding and positioning of methyl marks, by ChIP analysis of mouse and human cells infected with a dominant negative NF-YA: a parallel decrease in NF-Y binding, H3K4me3, H3K79me2 and transcription was observed in promoters that are dependent upon NF-Y. On the contrary, changes in the levels of H3K9-14ac were more subtle. Components of the H3K4 methylating MLL complex are not recruited in the absence of NF-Y. As for repressed promoters, NF-Y removal leads to a decrease in the H4K20me3 mark and deposition of H3K4me3. CONCLUSIONS: Two relevant findings are reported: (i NF-Y gains access to its genomic locations independently from the presence of methyl histone marks, either positive or negative; (ii NF-Y binding has profound positive or negative consequences on the deposition of histone methyl marks. Therefore NF-Y is a fundamental switch at the heart of decision between gene activation and repression in CCAAT regulated genes.

  1. TET2 and MEG3 promoter methylation is associated with acute myeloid leukemia in a Hainan population.

    Science.gov (United States)

    Yao, Hongxia; Duan, Mengling; Lin, Lie; Wu, Congming; Fu, Xiangjun; Wang, Hua; Guo, Li; Chen, Wenting; Huang, Li; Liu, Dan; Rao, Ruo; Wang, Shuwen; Ding, Yipeng

    2017-03-14

    The promoter of MEG3, which encodes the long non-coding RNA (lncRNA) MEG3, is often hypermethylated in acute myeloid leukemia (AML). Additionally, the Tet methylcytosine dioxygenase 2 gene (TET2) is frequently inactivated, which can lead to impaired DNA methylation and promote AML development. We examined the association between TET2 and MEG3 promoter hypermethylation in Hainan patients with AML. The expression of MEG3, TET2, miR-22-3p, and miR-22-5p was assessed in bone marrow samples from AML patients and healthy controls using real-time quantitative PCR. Using Sequenom MassARRAY technology, we compared MEG3 promoter methylation in AML patients and healthy controls. MEG3 expression was lower in AML patients than in the controls (P = 0.136). Moreover, there was greater methylation of MEG3 promoter in the AML patients than the controls (P promoter correlated negatively with TET2 expression (P promoter methylation (P promoter in AML may result from decreased TET2 activity. These data provide insight into the molecular mechanisms underlying AML development and progression.

  2. Divergence of gene body DNA methylation and evolution of plant duplicate genes.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes.

  3. Multiplexed Methylation Profiles of Tumor Suppressor Genes in Bladder Cancer

    Science.gov (United States)

    Cabello, Maria José; Grau, Laura; Franco, Noreli; Orenes, Esteban; Alvarez, Miguel; Blanca, Ana; Heredero, Oscar; Palacios, Alberto; Urrutia, Manuel; Fernández, Jesus María; López-Beltrán, Antonio; Sánchez-Carbayo, Marta

    2011-01-01

    Changes in DNA methylation of tumor suppressors can occur early in carcinogenesis and are potentially important early indicators of cancer. The objective of this study was to assess the methylation of 25 tumor suppressor genes in bladder cancer using a methylation-specific (MS) multiplex ligation-dependent probe amplification assay (MLPA). Initial analyses in bladder cancer cell lines (n = 14) and fresh-frozen primary bladder tumor specimens (n = 31) supported the panel of genes selected being altered in bladder cancer. The process of MS-MLPA was optimized for its application in body fluids using two independent training and validation sets of urinary specimens (n = 146), including patients with bladder cancer (n = 96) and controls (n = 50). BRCA1 (71.0%), WT1 (38.7%), and RARB (38.7%) were the most frequently methylated genes in bladder tumors, with WT1 methylation being significantly associated with tumor stage (P = 0.011). WT1 and PAX5A were identified as methylated tumor suppressors. In addition, BRCA1, WT1, and RARB were the most frequently methylated genes in urinary specimens. Receiver operating characteristic curve analyses revealed significant diagnostic accuracies in both urinary sets for BRCA1, RARB, and WT1. The novelty of this report relates to applying MS-MLPA, a multiplexed methylation technique, for tumor suppressors in bladder cancer and body fluids. Methylation profiles of tumor suppressor genes were clinically relevant for histopathological stratification of bladder tumors and offered a noninvasive diagnostic strategy for the clinical management of patients affected with uroepithelial neoplasias. PMID:21227392

  4. IDH1/2 Mutation and MGMT Promoter Methylation - the Relevant Survival Predictors in Czech Patients with Brain Gliomas.

    Science.gov (United States)

    Kramář, F; Minárik, M; Benešová, L; Halková, T; Netuka, D; Bradáč, O; Beneš, V

    2016-01-01

    Gliomas are a heterogeneous group of tumours varying in prognosis, treatment approach, and overall survival. Recently, novel markers have been identified which are linked to patient prognosis and therapeutic response. Especially the mutation of the enzyme isocitrate dehydrogenase 1 or 2 (IDH1/2) gene and the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status seem to be the most important predictors of survival. From 2012 to 2015, 94 Czech patients with primary brain tumours were enrolled into the study. The IDH1/2 mutation was detected by denaturing capillary electrophores.The methylation status of the MGMT gene and other 46 genes was revealed by MS-MLPA. In all 94 patients, the clinical data were correlated with molecular markers by Kaplan-Meier analyses and Cox regression model. The MGMT promoter methylation status was established and compared to clinical data. In our study eight different probes were used to elucidate the MGMT methylation status; hypermethylation was proclaimed if four and more probes were positive. This 3 : 5 ratio was tested and confirmed by Kaplan-Meier and Cox analyses. The study confirmed the importance of the IDH1/2 mutation and hypermethylation of the MGMT gene promoter being present in tumour tissue. Both markers are independent positive survival predictors; in the Cox model the IDH hazard ratio was 0.10 and in the case of MGMT methylation it reached 0.32. The methylation analysis of the panel of additional 46 genes did not reveal any other significant epigenetic markers; none of the candidate genes have been confirmed in the Cox regression analyses as an independent prognostic factor.

  5. Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis.

    Science.gov (United States)

    Huang, Y Q; Guan, H; Liu, C H; Liu, D C; Xu, B; Jiang, L; Lin, Z X; Chen, M

    2016-04-25

    Epigenetic inactivation of Ras-associated domain family 1A (RASSF1A) by hyper-methylation of its promoter region has been identified in various cancers. However, the role of RASSF1A in renal cancer has neither been thoroughly investigated nor reviewed. In this study, we reviewed and performed a meta-analysis of 13 published studies reporting correlations between methylation frequency of the RASSF1A promoter region and renal cancer risk. The odds ratios (ORs) of eligible studies and their corresponding 95% confidence intervals (95%CIs) were used to correlate RASSF1A promoter methylation with renal cell cancer risk and clinical or pathological variables, respectively. RASSF1A promoter methylation was significantly associated with the risk of renal cell cancer (OR = 19.35, 95%CI = 9.57-39.13). RASSF1A promoter methylation was significantly associated with pathological tumor grade (OR = 3.32, 95%CI = 1.55-7.12), and a possible positive correlation between RASSF1A promoter methylation status and tumor stage was noted (OR = 1.89, 95%CI = 1.00-3.56, P = 0.051). Overall, this meta-analysis demonstrated that RASSF1A promoter methylation is significantly associated with increased risk of renal cell cancer. RASSF1A promoter methylation frequency was positively correlated with pathological tumor grade, but not the clinical stage. This study showed that RASSF1A promoter methylation could be utilized to predict renal cell cancer prognosis.

  6. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  7. Differential methylation of genes and repeats in land plants.

    Science.gov (United States)

    Rabinowicz, Pablo D; Citek, Robert; Budiman, Muhammad A; Nunberg, Andrew; Bedell, Joseph A; Lakey, Nathan; O'Shaughnessy, Andrew L; Nascimento, Lidia U; McCombie, W Richard; Martienssen, Robert A

    2005-10-01

    The hypomethylated fraction of plant genomes is usually enriched in genes and can be selectively cloned using methylation filtration (MF). Therefore, MF has been used as a gene enrichment technology in sorghum and maize, where gene enrichment was proportional to genome size. Here we apply MF to a broad variety of plant species spanning a wide range of genome sizes. Differential methylation of genic and non-genic sequences was observed in all species tested, from non-vascular to vascular plants, but in some cases, such as wheat and pine, a lower than expected level of enrichment was observed. Remarkably, hexaploid wheat and pine show a dramatically large number of gene-like sequences relative to other plants. In hexaploid wheat, this apparent excess of genes may reflect an abundance of methylated pseudogenes, which may thus be more prevalent in recent polyploids.

  8. Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: The role of OXTR rs53576 genotype.

    Science.gov (United States)

    Reiner, I; Van IJzendoorn, M H; Bakermans-Kranenburg, M J; Bleich, S; Beutel, M; Frieling, H

    2015-06-01

    The emerging field of epigenetics provides a biological basis for gene-environment interactions relevant to depression. We focus on DNA methylation of exon 1 and 2 of the oxytocin receptor gene (OXTR) promoter. The research aims of the current study were to compare OXTR DNA methylation of depressed patients with healthy control subjects and to investigate possible influences of the OXTR rs53576 genotype. The sample of the present study consisted of 43 clinically depressed women recruited from a psychosomatic inpatient unit and 42 healthy, female control subjects - mean age 30 years (SD = 9). DNA methylation profiles of the OXTR gene were assessed from leukocyte DNA by means of bisulfite sequencing. Depressed female patients had decreased OXTR exon 1 DNA methylation compared to non-depressed women. The association between depression and methylation level was moderated by OXTR rs53576 genotype. Exon 2 methylation was associated with OXTR rs53576 genotype but not with depression. Our findings suggest exon-specific methylation mechanisms. Exon 1 methylation appears to be associated with depressive phenotypes whereas exon 2 methylation is influenced by genotype. Previously reported divergent associations between OXTR genotype and depression might be explained by varying exon 1 methylation. In order to further understand the etiology of depression, research on the interplay between genotype, environmental influences and exon-specific methylation patterns is needed.

  9. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers

    Directory of Open Access Journals (Sweden)

    Vatn Morten

    2008-12-01

    Full Text Available Abstract Background Multiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential. The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1 was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI, BRAF-, KRAS-, and TP53 mutation status. Results The mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes. Conclusion Methylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.

  10. Epigenetic silencing of BTB and CNC homology 2 and concerted promoter CpG methylation in gastric cancer.

    Science.gov (United States)

    Haam, Keeok; Kim, Hee-Jin; Lee, Kyung-Tae; Kim, Jeong-Hwan; Kim, Mirang; Kim, Seon-Young; Noh, Seung-Moo; Song, Kyu-Sang; Kim, Yong Sung

    2014-09-01

    BTB and CNC homology 2 (BACH2) is a lymphoid-specific transcription factor with a prominent role in B-cell development. Genetic polymorphisms within a single locus encoding BACH2 are associated with various autoimmune diseases and allergies. In this study, restriction landmark genomic scanning revealed methylation at a NotI site in a CpG island covering the BACH2 promoter in gastric cancer cell lines and primary gastric tumors. Increased methylation of the BACH2 promoter was observed in 52% (43/83) of primary gastric tumors, and BACH2 hypermethylation was significantly associated with decreased gene expression. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin. A restored BACH2 expression in BACH2-silenced gastric cancer cell lines, and knockdown of BACH2 using short hairpin RNA (i.e. RNA interference) increased cell proliferation in gastric cancer cells. Clinicopathologic data showed that decreased BACH2 expression occurred significantly more frequently in intestinal-type (27/44, 61%) compared with diffuse-type (13/50, 26%) gastric cancers (P<0.001). Furthermore, BACH2 promoter methylation paralleled that of previously identified targets, such as LRRC3B, LIMS2, PRKD1 and POPDC3, in a given set of gastric tumors. We propose that concerted methylation in many promoters plays a role in accelerating gastric tumor formation and that methylated promoter loci may be targets for therapeutic treatment, such as the recently introduced technique of epigenetic editing.

  11. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype.

    Directory of Open Access Journals (Sweden)

    Romina Cabrerizo

    Full Text Available The intrahepatic cholestasis of pregnancy (ICP is a multifactorial liver disorder which pathogenesis involves the interplay among abnormal bile acid (BA levels, sex hormones, environmental factors, and genetic susceptibility. The dynamic nature of ICP that usually resolves soon after delivery suggests the possibility that its pathobiology is under epigenetic modulation. We explored the status of white blood peripheral cells-DNA methylation of CpG-enriched sites at the promoter of targeted genes (FXR/NR1H4, PXR/NR1I2, NR1I3, ESR1, and ABCC2 in a sample of 88 ICP patients and 173 healthy pregnant women in the third trimester of their pregnancies. CpG dinucleotides at the gene promoter of nuclear receptors subfamily 1 members and ABCC2 transporter were highly methylated during healthy pregnancy. We observed significant differences at the distal (-1890 and proximal promoter (-358 CpG sites of the FXR/NR1H4 and at the distal PXR/NR1I2 (-1224 promoter, which were consistently less methylated in ICP cases when compared with controls. In addition, we observed that methylation at FXR/NR1H4-1890 and PXR/NR1I2-1224 promoter sites was highly and positively correlated with BA profiling, particularly, conjugated BAs. Conversely, methylation level at the proximal FXR/NR1H4-358 CpG site was significantly and negatively correlated with the primary cholic and secondary deoxycholic acid. In vitro exploration showed that epiallopregnanolone sulfate, a reported FXR inhibitor, regulates the transcriptional activity of FXR/NR1H4 but seems to be not involved in the methylation changes. In conclusion, the identification of epigenetic marks in target genes provides a basis for the understanding of adverse liver-related pregnancy outcomes, including ICP.

  12. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype.

    Science.gov (United States)

    Cabrerizo, Romina; Castaño, Gustavo O; Burgueño, Adriana L; Fernández Gianotti, Tomas; Gonzalez Lopez Ledesma, María Mora; Flichman, Diego; Pirola, Carlos J; Sookoian, Silvia

    2014-01-01

    The intrahepatic cholestasis of pregnancy (ICP) is a multifactorial liver disorder which pathogenesis involves the interplay among abnormal bile acid (BA) levels, sex hormones, environmental factors, and genetic susceptibility. The dynamic nature of ICP that usually resolves soon after delivery suggests the possibility that its pathobiology is under epigenetic modulation. We explored the status of white blood peripheral cells-DNA methylation of CpG-enriched sites at the promoter of targeted genes (FXR/NR1H4, PXR/NR1I2, NR1I3, ESR1, and ABCC2) in a sample of 88 ICP patients and 173 healthy pregnant women in the third trimester of their pregnancies. CpG dinucleotides at the gene promoter of nuclear receptors subfamily 1 members and ABCC2 transporter were highly methylated during healthy pregnancy. We observed significant differences at the distal (-1890) and proximal promoter (-358) CpG sites of the FXR/NR1H4 and at the distal PXR/NR1I2 (-1224) promoter, which were consistently less methylated in ICP cases when compared with controls. In addition, we observed that methylation at FXR/NR1H4-1890 and PXR/NR1I2-1224 promoter sites was highly and positively correlated with BA profiling, particularly, conjugated BAs. Conversely, methylation level at the proximal FXR/NR1H4-358 CpG site was significantly and negatively correlated with the primary cholic and secondary deoxycholic acid. In vitro exploration showed that epiallopregnanolone sulfate, a reported FXR inhibitor, regulates the transcriptional activity of FXR/NR1H4 but seems to be not involved in the methylation changes. In conclusion, the identification of epigenetic marks in target genes provides a basis for the understanding of adverse liver-related pregnancy outcomes, including ICP.

  13. Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas.

    Directory of Open Access Journals (Sweden)

    Árpád V Patai

    Full Text Available Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD and 6 high-grade dysplasia (HGD, and 8 ulcerative colitis (UC patients (4 active and 4 inactive. CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC, 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5 and 10 cm (n = 5 from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1, whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.

  14. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    Science.gov (United States)

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. © 2014 Scandinavian Plant Physiology Society.

  15. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    Science.gov (United States)

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  16. Epigenetics of human myometrium: DNA methylation of genes encoding contraction-associated proteins in term and preterm labor.

    Science.gov (United States)

    Mitsuya, Kohzoh; Singh, Natasha; Sooranna, Suren R; Johnson, Mark R; Myatt, Leslie

    2014-05-01

    Preterm birth involves the interaction of societal and environmental factors potentially modulating the length of gestation via the epigenome. An established form of epigenetic regulation is DNA methylation where promoter hypermethylation is associated with gene repression. We hypothesized we would find differences in DNA methylation in the myometrium of women with preterm labor of different phenotypes versus normal term labor. Myometrial tissue was obtained at cesarean section at term with or without labor, preterm without labor, idiopathic preterm labor, and twin gestations with labor. Genomic DNA was isolated, and samples in each group were combined and analyzed on a NimbleGen 2.1M human DNA methylation array. Differences in methylation from -8 to +3 kb of transcription start sites of 22 contraction-associated genes were determined. Cytosine methylation was not present in CpG islands of any gene but was present outside of CpG islands in shores and shelves in 19 genes. No differential methylation was found across the tissue groups for six genes (PTGES3L, PTGER2, PTGER4, PTGFRN, ESR2, and GJA1). For 13 genes, differential methylation occurred in several patterns between tissue groups. We find a correlation between hypomethylation and increased mRNA expression of PTGES/mPGES-1, indicating potential functional relevance of methylation, but no such correlation for PTGS2/COX-2, suggesting other regulatory mechanisms for PTGS2 at labor. The majority of differential DNA methylation of myometrial contraction-associated genes with different labor phenotypes occurs outside of CpG islands in gene promoters, suggesting that the entirety of DNA methylation across the genome should be considered.

  17. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.

  18. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    Directory of Open Access Journals (Sweden)

    Menschikowski Mario

    2012-12-01

    Full Text Available Abstract Background The M-type phospholipase A2 receptor (PLA2R1 plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS or acute leukemia. Methods Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM analysis was then carried out to quantify PLA2R1 methylation at 5`-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Results Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. Conclusions The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis.

  19. Methylation of miR-145a-5p promoter mediates adipocytes differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jingjing; Cheng, Xiao; Shen, Linyuan; Tan, Zhendong; Luo, Jia; Wu, Xiaoqian; Liu, Chendong [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China); Yang, Qiong [Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611100, Sichuan (China); Jiang, Yanzhi [College of Life and Science, Sichuan Agricultural University, Chengdu 611130 (China); Tang, Guoqing; Li, Xuewei [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China); Zhang, Shunhua, E-mail: zhangsh1919@163.com [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China); Zhu, Li, E-mail: zhuli7508@163.com [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China)

    2016-06-17

    MicroRNAs (miRNAs, miR) play important roles in adipocyte development. Recent studies showed that the expression of several miRNAs is closely related with promoter methylation. However, it is not known whether miRNA mediates adipocytes differentiation by means of DNA methylation. Here, we showed that miR-145a-5p was poorly expressed in adipose tissue from mice fed a high fat diet (HFD). Overexpression or inhibition of miR-145a-5p was unfavorable or beneficial, respectively, for adipogenesis, and these effects were achieved by regulating adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis, and fatty acid transportation. Particularly, we first suggested that miR-145a-5p mimics or inhibitors promoted or repressed adipocytes proliferation by regulating p53 and p21, which act as cell cycle regulating factors. Surprisingly, the miR-145a-5p-repressed adipocyte differentiation was enhanced or rescued when cells treated with 5-Aza-dC were transfected with miR-145a-5p mimics or inhibitors, respectively. These data indicated that, as a new mean to positively regulate adipocyte proliferation, the process of miR-145a-5p-inhibited adipogenesis may be regulated by DNA methylation. -- Highlights: •MiR-145a-5p promotes adipocytes proliferation. •MiR-145a-5p is negatively correlated with obesity. •MiR-145a-5p mediates adipocytes differentiation via regulating pathway related adipocytes differentiation. MiR-145a-5p mediating adipocytes differentiation was regulated by DNA methylation.

  20. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression

    Directory of Open Access Journals (Sweden)

    Li Xin

    2012-07-01

    Full Text Available Abstract Background DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara. Results The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice. Conclusions The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.

  1. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1 promoter in relation to asthma and environmental factors.

    Directory of Open Access Journals (Sweden)

    Lovisa E Reinius

    Full Text Available Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1 has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001 and childhood allergic asthma (p = 0.01. Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04, parental smoking during infancy in the children (p = 0.02 and in which month the sample was taken (p = 0.01. In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy.

  2. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors.

    Science.gov (United States)

    Reinius, Lovisa E; Gref, Anna; Sääf, Annika; Acevedo, Nathalie; Joerink, Maaike; Kupczyk, Maciej; D'Amato, Mauro; Bergström, Anna; Melén, Erik; Scheynius, Annika; Dahlén, Sven-Erik; Pershagen, Göran; Söderhäll, Cilla; Kere, Juha

    2013-01-01

    Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy.

  3. Relationship between MGMT gene expression and promoter methylation and the clinical prognosis of patients with glioma%脑胶质瘤 MGMT 基因表达及启动子甲基化与患者临床预后关系的观察

    Institute of Scientific and Technical Information of China (English)

    袁强; 步星耀; 闫兆月; 周志龙; 孙彦熙; 周伟; 马春晓; 屈鸣麒

    2014-01-01

    Objective To investigate the influence of O 6-methylguanine-DNA methyltransferase ( MGMT) gene promoter methylation and expression in malignant glioma tissues and the clinical prognosis observation of malignant glioma patients .Methods A total of 78 postoperative patients who agreed to glioma individualized comprehensive treatment with complete clinical data were collected ,admitted to Department of Neurosurgery ,People′s Hospital of Zhengzhou University from April 2007 to April 2009 , all patients were grouped by detecting the glioma MGMT gene promoter methylation and protein expression .All patients received radiotherapy combined with chemotherapy treatment postoperation .The efficacy of two groups by observing short-term curative efficacy , survival time and the safety through the long-term follow-up were compared.The two groups of mean differences were compared by independent t-test, chi-square test was applied to count data R ×C table,and Kaplan-Meier method was used to draw survival curves ,survival curve was analyzed by Log-rank test .Results The status of MGMT gene promoter methylation demonstrate a negative correlation with MGMT protein expression ( r=-0.514 ,P<0.05 ) .The short-term curative efficacy in MGMT gene promoter methylation group was significantly superior to MGMT gene promoter unmethylation group(χ2 =47.890 ,P=0.000 ) ,and the short-term curative efficacy of low MGMT protein expression group was significantly superior to the high expression group (χ2 =30.032 ,P=0.000 ) .The survival time in MGMT gene promoter methylation group was significantly superior to the MGMT gene promoter unmethylation group (χ2 =21.405 , P <0.05 ) .And the survival efficacy time of low MGMT protein expression group was significantly superior to the high expression group (χ2 =18.643 , P<0.05 ) .The objective curative rate in MGMT gene promoter methylation group 81.0%( 34/42 ) was superior to the low MGMT protein expression group 74.4%( 29/39 ) .No adverse reaction

  4. In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer.

    LENUS (Irish Health Repository)

    Murphy, Therese M

    2011-01-01

    Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).

  5. p16 promoter methylation in Pb2+ -exposed individuals.

    Science.gov (United States)

    Kovatsi, Leda; Leda, Kovatsi; Georgiou, Elisavet; Elisavet, Georgiou; Ioannou, Antrea; Antrea, Ioannou; Haitoglou, Costas; Costas, Haitoglou; Tzimagiorgis, George; George, Tzimagiorgis; Tsoukali, Helen; Helen, Tsoukali; Kouidou, Sofia; Sofia, Kouidou

    2010-02-01

    One of the principle symptoms of lead poisoning is the development of neurological disorders. Neuronal response is closely related to DNA methylation changes. Aim. In this study, we estimated p16 methylation in nine individuals exposed to lead using methylation-specific polymerase chain reaction followed by analysis of the methylated cytosine content of the product by thermal denaturation. We found that, based on lead blood concentration, lead-exposed individuals were divided into two groups. Among highly exposed individuals (blood Pb(2+) concentration = 51-100 microg/dL), we observed complete CpG methylation, whereas for low Pb(2+) concentrations (blood Pb(2+) concentration = 6-11 microg/dL), we observed partial methylation. Our results show that among lead-overexposed individuals, p16 methylation is frequent and extensive, and suggest that DNA methylation could be involved in the mechanism by which lead induces neurotoxicity.

  6. 5-羟色胺转运体基因启动子区CpG岛甲基化状态与精神分裂症Ⅰ型和Ⅱ型的关联%Relationship Between Methylation Status of CpG Islands within the Promoter Region of Serotonin Transporter Gene and Type Ⅰ or Type Ⅱ Schizophrenia

    Institute of Scientific and Technical Information of China (English)

    张海生; 王伟; 余道军; 张顺泉; 谢健

    2011-01-01

    目的:探讨5-羟色胺转运体(5-HTT)基因启动子区CpG岛甲基化状态与精神分裂症Ⅰ型和Ⅱ型的关联.方法:运用特异性甲基检测PCR和直接测序法对62例精神分裂症Ⅰ型患者、38例Ⅱ型患者和50例健康被试5-HTT 基因启动子区CpG岛甲基化状态进行检测.结果:三组5-HTT基因启动子区CpC岛甲基化阳性率无显著性差异;精神分裂症Ⅰ型患者5-HTT基因启动子区CpC岛内位点甲基化率显著高于精神分裂症Ⅱ型患者和健康被试组.结论:5-HTT基因启动子区CpG岛内位点高甲基化可能是精神分裂症Ⅰ型的发病机制之一.%Objective: To explore the relationship between methylation status of CpG islands in the promoter region of serotonin transporter gene (5-HTT) and type Ⅰ or Ⅱ schizophrenia. Methods: Methylation Specific PCR and DNA sequencing were used to detect the methylation status of CpG islands in 62 type Ⅰ schizophrenia patients, 38 type Ⅱ schizophrenia patients and 50 health subjects. Results: The methylation rates of CpG islands within the promoter region of 5-HTT of the three groups are 52% (32/62), 47% (18/38) and 50% (25/50), respectively. The methylation rates of loci in CpG islands within the promoter region of 5-HTT in type Ⅰ schizophrenia group is significantly higher than those in type Ⅱ schizophrenia group and health subjects. Conclusion: The high methylation rate of loci in CpG islands within the promoter region of 5-HTT should be a possible factor to influence the nosogenesis of type Ⅰ schizophrenia.

  7. DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus.

    Science.gov (United States)

    Gonzalez, Diego; Collier, Justine

    2013-04-01

    DNA methylation regulates many processes, including gene expression, by superimposing secondary information on DNA sequences. The conserved CcrM enzyme, which methylates adenines in GANTC sequences, is essential to the viability of several Alphaproteobacteria. In this study, we find that Caulobacter crescentus cells lacking the CcrM enzyme accumulate low levels of the two conserved FtsZ and MipZ proteins, leading to a severe defect in cell division. This defect can be compensated by the expression of the ftsZ gene from an inducible promoter or by spontaneous suppressor mutations that promote FtsZ accumulation. We show that CcrM promotes the transcription of the ftsZ and mipZ genes and that the ftsZ and mipZ promoter regions contain a conserved CGACTC motif that is critical to their activities and to their regulation by CcrM. In addition, our results suggest that the ftsZ promoter has the lowest activity when the CGACTC motif is non-methylated, an intermediate activity when it is hemi-methylated and the highest activity when it is fully methylated. The regulation of ftsZ expression by DNA methylation may explain why CcrM is essential in a subset of Alphaproteobacteria.

  8. Expression of the p16(INK4a) gene product, methylation of the p16(INK4a) promoter region and expression of the polycomb-group gene BMI-1 in squamous cell lung carcinoma and premalignant endobronchial lesions.

    NARCIS (Netherlands)

    Breuer, R.H.J.; Snijders, P.J.F.; Sutedja, T.G.; Sewalt, R.G.A.B.; Otte, A.P.; Postmus, P.E.; Meijer, C.J.L.M.; Raaphorst, F.M.; Smit, E.F.

    2005-01-01

    It is generally assumed that squamous cell carcinoma develops in a stepwise manner from normal bronchial epithelium towards cancer by the accumulation of (epi)genetic alterations. Several mechanisms including mutations and homozygous deletions or hypermethylation of the p16(INK4a) promoter region ca

  9. IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, p53

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-12-01

    Full Text Available Insulin-like growth factor binding protein 3 (IGFBP3, which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP, which is associated with microsatellite instability (MSI and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight, we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41 than in MSI-high CIMPhigh (49% = 44/90, P < .0001, MSI-high non-CIMP-high (17% = 6/36, P < .0001, non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001. Among CIMPhigh tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001, but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02. In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/ CIMP, single molecular events (e.g., IGFBP3 methylation, TP53 mutation, TGFBR2 mutation, the related pathways.

  10. Epigenetic editing using programmable zinc ginger proteins : inherited silencing of endogenous gene expression by targeted DNA methylation

    NARCIS (Netherlands)

    Stolzenburg, Sabine

    2014-01-01

    Cancer development is not only the result of genetic mutations but also stems from modifications in the epigenetic code leading to an aberrant expression of genes relevant for cancer. The most studied epigenetic mark is DNA methylation of cytosines in the promoters of genes, which is associated with

  11. Epigenetic editing using programmable zinc ginger proteins : inherited silencing of endogenous gene expression by targeted DNA methylation

    NARCIS (Netherlands)

    Stolzenburg, Sabine

    2014-01-01

    Cancer development is not only the result of genetic mutations but also stems from modifications in the epigenetic code leading to an aberrant expression of genes relevant for cancer. The most studied epigenetic mark is DNA methylation of cytosines in the promoters of genes, which is associated with

  12. Placental leptin gene methylation and macrosomia during normal pregnancy.

    Science.gov (United States)

    Xu, Xinyun; Yang, Xinjun; Liu, Ziwei; Wu, Kele; Liu, Zheng; Lin, Chong; Wang, Yuhuan; Yan, Hongtao

    2014-03-01

    The present study examined the placental leptin (LEP) DNA methylation and mRNA levels in macrosomic infants from normal pregnancies. In total, 49 neonates with macrosomia, i.e., high birth weights of ≥ 4,000 g, and 52 neonates with normal birth weights between 2,500 g and 4,000 g were recruited from The Second Affiliated Hospital of Wenzhou Medical University (Wenzhou, Zhejiang) in China. Placental LEP promoter methylation and LEP transcript levels were determined by Sequenom MassARRAY and quantitative PCR, respectively. LEP promoter methylation and mRNA levels were not significantly different between the individuals with macrosomia and the controls. However, stratification revealed that individual CpG dinucleotides were hypermethylated in macrosomia (Pmacrosomia following a normal pregnancy and under certain conditions. However, placental LEP expression was not affected.

  13. Quantitative correlation between promoter methylation and messenger RNA levels of the reduced folate carrier

    Directory of Open Access Journals (Sweden)

    Kheradpour Albert

    2008-05-01

    Full Text Available Abstract Background Methotrexate (MTX uptake is mediated by the reduced folate carrier (RFC. Defective drug uptake in association with decreased RFC expression is a common mechanism of MTX resistance in many tumor types. Heavy promoter methylation was previously identified as a basis for the complete silencing of RFC in MDA-MB-231 breast cancer cells, its role and prevalence in RFC transcription regulation are, however, not widely studied. Methods In the current study, RFC promoter methylation was assessed using methylation specific PCR in a panel of malignant cell lines (n = 8, including MDA-MB-231, and M805, a MTX resistant cell line directly established from the specimen of a patient with malignant fibrohistocytoma, whom received multiple doses of MTX. A quantitative approach of real-time PCR for measuring the extent of RFC promoter methylation was developed, and was validated by direct bisulfite genomic sequencing. RFC mRNA levels were determined by quantitative real-time RT-PCR and were related to the extent of promoter methylation in these cell lines. Results A partial promoter methylation and RFC mRNA down-regulation were observed in M805. Using the quantitative approach, a reverse correlation (correlation coefficient = -0.59, p Conclusion This study further suggests that promoter methylation is a potential basis for MTX resistance. The quantitative correlation identified in this study implies that promoter methylation is possibly a mechanism involved in the fine regulation of RFC transcription.

  14. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera

    Science.gov (United States)

    Bräutigam, Katharina; Soolanayakanahally, Raju; Champigny, Marc; Mansfield, Shawn; Douglas, Carl; Campbell, Malcolm M.; Cronk, Quentin

    2017-01-01

    Methylation has frequently been implicated in gender determination in plants. The recent discovery of the sex determining region (SDR) of balsam poplar, Populus balsamifera, pinpointed 13 genes with differentiated X and Y copies. We tested these genes for differential methylation using whole methylome sequencing of xylem tissue of multiple individuals grown under field conditions in two common gardens. The only SDR gene to show a marked pattern of gender-specific methylation is PbRR9, a member of the two component response regulator (type-A) gene family, involved in cytokinin signalling. It is an ortholog of Arabidopsis genes ARR16 and ARR17. The strongest patterns of differential methylation (mostly male-biased) are found in the putative promoter and the first intron. The 4th intron is strongly methylated in both sexes and the 5th intron is unmethylated in both sexes. Using a statistical learning algorithm we find that it is possible accurately to assign trees to gender using genome-wide methylation patterns alone. The strongest predictor is the region coincident with PbRR9, showing that this gene stands out against all genes in the genome in having the strongest sex-specific methylation pattern. We propose the hypothesis that PbRR9 has a direct, epigenetically mediated, role in poplar sex determination. PMID:28345647

  15. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer

    Science.gov (United States)

    Liu, Yanqun; Chew, Min Hoe; Tham, Chee Kian; Tang, Choong Leong; Ong, Simon YK; Zhao, Yi

    2016-01-01

    There is an increasing demand for accurate prognostication for colorectal cancer (CRC). This study sought to assess prognostic potentials of methylation targets in the serum of CRC patients. A total of 165 CRC patients were enrolled in this prospective study. Promoter methylation levels of seven genes in pre-operative sera and matched tumor tissues were evaluated by quantitative methylation-specific PCR. Kaplan-Meier test, and univariate and multivariate Cox proportional hazards regression models were used for survival analyses. After a median follow-up of 56 months, 43 patients (28.7%) experienced tumor recurrence. In univariate survival analyses, serum methylation levels of SST and MAL were significantly predictive of cancer-specific death (Pcancer death and recurrence, respectively). When focusing on stage II and III patients, prognostication with serum methylated SST remained significant. Methylated SST detected in all serum samples can be traced back to the matched primary tumor tissues. We believe that methylated SST detected in the pre-operative sera of CRC patients appear to be a novel promising prognostic marker and probably can be auxiliary to tumor staging system and serum carcinoembryonic antigen towards better risk stratification.

  16. Roles of Cell Division and Gene Transcription in the Methylation of CpG Islands

    Science.gov (United States)

    Bender, Christina M.; Gonzalgo, Mark L.; Gonzales, Felicidad A.; Nguyen, Carvell T.; Robertson, Keith D.; Jones, Peter A.

    1999-01-01

    De novo methylation of CpG islands within the promoters of eukaryotic genes is often associated with their transcriptional repression, yet the methylation of CpG islands located downstream of promoters does not block transcription. We investigated the kinetics of mRNA induction, demethylation, and remethylation of the p16 promoter and second-exon CpG islands in T24 cells after 5-aza-2′-deoxycytidine (5-Aza-CdR) treatment to explore the relationship between CpG island methylation and gene transcription. The rates of remethylation of both CpG islands were associated with time but not with the rate of cell division, and remethylation of the p16 exon 2 CpG island occurred at a higher rate than that of the p16 promoter. We also examined the relationship between the remethylation of coding sequence CpG islands and gene transcription. The kinetics of remethylation of the p16 exon 2, PAX-6 exon 5, c-ABL exon 11, and MYF-3 exon 3 loci were examined following 5-Aza-CdR treatment because these genes contain exonic CpG islands which are hypermethylated in T24 cells. Remethylation occurred most rapidly in the p16, PAX-6, and c-ABL genes, shown to be transcribed prior to drug treatment. These regions also exhibited higher levels of remethylation in single-cell clones and subclones derived from 5-Aza-CdR-treated T24 cells. Our data suggest that de novo methylation is not restricted to the S phase of the cell cycle and that transcription through CpG islands does not inhibit their remethylation. PMID:10490608

  17. DNA methylation analysis of the angiotensin converting enzyme (ACE gene in major depression.

    Directory of Open Access Journals (Sweden)

    Peter Zill

    Full Text Available BACKGROUND: The angiotensin converting enzyme (ACE has been repeatedly discussed as susceptibility factor for major depression (MD and the bi-directional relation between MD and cardiovascular disorders (CVD. In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ~40%-50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. MATERIALS AND METHODS: The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. RESULTS: We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008 and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02. Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04. CONCLUSION: The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders.

  18. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer.

    Science.gov (United States)

    Matthaios, Dimitrios; Balgkouranidou, Ioanna; Karayiannakis, Anastasios; Bolanaki, Helen; Xenidis, Nikolaos; Amarantidis, Kyriakos; Chelis, Leonidas; Romanidis, Konstantinos; Chatzaki, Aikaterini; Lianidou, Evi; Trypsianis, Grigorios; Kakolyris, Stylianos

    2016-07-01

    DNA methylation is the most frequent epigenetic alteration. Using methylation-specific polymerase chain reaction (MSP), the methylation status of the adenomatous polyposis coli (APC) and Ras association domain family 1 isoform A (RASSF1A) genes was examined in cell-free circulating DNA from 155 plasma samples obtained from patients with early and advanced colorectal cancer (CRC). APC and RASSF1A hypermethylation was frequently observed in both early and advanced disease, and was significantly associated with a poorer disease outcome. The methylation status of the APC and RASSF1A promoters was investigated in cell-free DNA of patients with CRC. Using MSP, the promoter methylation status of APC and RASSF1A was examined in 155 blood samples obtained from patients with CRC, 88 of whom had operable CRC (oCRC) and 67 had metastatic CRC (mCRC). The frequency of APC methylation in patients with oCRC was 33%. Methylated APC promoter was significantly associated with older age (P=0.012), higher stage (P=0.014) and methylated RASSF1A status (P=0.050). The frequency of APC methylation in patients with mCRC was 53.7%. In these patients, APC methylation was significantly associated with methylated RASSF1A status (P=0.016). The frequency of RASSF1A methylation in patients with oCRC was 25%. Methylated RASSF1A in oCRC was significantly associated with higher stage (P=0.021). The frequency of RASSF1A methylation in mCRC was 44.8%. Methylated RASSF1A in mCRC was associated with moderate differentiation (P=0.012), high levels of carcinoembryonic antigen (P=0.023) and methylated APC status (P=0.016). Patients with an unmethylated APC gene had better survival in both early (81±5 vs. 27±4 months, PAPC. Patients with an unmethylated RASSF1A gene had better survival in both early (71±6 vs. 46±8 months, PAPC and RASSF1A promoter methylation status and survival may be indicative of a prognostic role for these genes in CRC, which requires additional testing in larger studies.

  19. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    OpenAIRE

    Melquist, S.; Luff, B; Bender, J.

    1999-01-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no...

  20. Association between DNA Methylation of the BDNF Promoter Region and Clinical Presentation in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nagata

    2015-03-01

    Full Text Available Background/Aims: In the present study, we examined whether DNA methylation of the brain-derived neurotrophic factor (BDNF promoter is associated with the manifestation and clinical presentation of Alzheimer's disease (AD. Methods: Of 20 patients with AD and 20 age-matched normal controls (NCs, the DNA methylation of the BDNF promoter (measured using peripheral blood samples was completely analyzed in 12 patients with AD and 6 NCs. The resulting methylation levels were compared statistically. Next, we investigated the correlation between the DNA methylation levels and the clinical presentation of AD. Results: The total methylation ratio (in % of the 20 CpG sites was significantly higher in the AD patients (5.08 ± 5.52% than in the NCs (2.09 ± 0.81%; p Conclusion: These results suggest that the DNA methylation of the BDNF promoter may significantly influence the manifestation of AD and might be associated with its neurocognitive presentation.

  1. Association between the methylation status of the MGMT promoter in bone marrow specimens and chemotherapy outcomes of patients with acute myeloid leukemia.

    Science.gov (United States)

    Hong, Qingxiao; Chen, Xiaoying; Ye, Huadan; Zhou, Annan; Gao, Yuting; Jiang, Danjie; Wu, Xiaodong; Tian, Bingru; Chen, Youfen; Wang, Ming; Xie, Jiping; Xia, Yongming; Duan, Shiwei

    2016-04-01

    The O(6)-methylguanine-DNA methyltransferase (MGMT) gene is a tumor suppressor gene that is associated with the risk of developing acute myeloid leukemia (AML). However, the association between the methylation status of the MGMT promoter and the chemotherapeutic outcomes of patients with AML remains unknown. In the present study, 30 bone marrow samples derived from patients with AML were collected prior and subsequent to chemotherapy. The methylation status of the MGMT promoter in the bone marrow specimens was determined by methylation-specific polymerase chain reaction. The results indicated that the methylation status of the MGMT promoter was influenced by different chemotherapeutic regimens. The MGMT methylation status of M4 patients (3 out of 6) were more chemosensitive, compared with that of patients with other AML subtypes (M1, 1 out of 3; M2, 0 out of 8; M3, 3 out of 7; M5, 0 out of 3; and M6, 1 out of 3). Age-based analysis revealed that the group aged ≤60 years (7 out of 24 patients) exhibited more methylation changes than patients aged >60 years (1 out of 6). Male patients (4 out of 13) were more susceptible to chemotherapy-induced methylation changes than female patients (4 out of 17). Thus, the methylation status of the MGMT promoter may serve as a potential biomarker to predict the therapeutic outcomes in male AML patients. However, further studies in larger sample sets are required to confirm the present findings.

  2. Targeting of de novo DNA methylation throughout the Oct-4 gene regulatory region in differentiating embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Rodoniki Athanasiadou

    Full Text Available Differentiation of embryonic stem (ES cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the approximately 2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.

  3. Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast.

    Directory of Open Access Journals (Sweden)

    Mohammad Bani Ismail

    Full Text Available Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation.

  4. Cell-specific DNA methylation patterns of retina-specific genes.

    Directory of Open Access Journals (Sweden)

    Shannath L Merbs

    Full Text Available Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO, retinal binding protein 3 (RBP3, IRBP cone opsin, short-wave-sensitive (OPN1SW, cone opsin, middle-wave-sensitive (OPN1MW, and cone opsin, long-wave-sensitive (OPN1LW was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods. These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA

  5. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells.

    Science.gov (United States)

    Zhang, Yuxia; Maksimovic, Jovana; Naselli, Gaetano; Qian, Junyan; Chopin, Michael; Blewitt, Marnie E; Oshlack, Alicia; Harrison, Leonard C

    2013-10-17

    Regulatory T cells (Treg) prevent the emergence of autoimmune disease. Prototypic natural Treg (nTreg) can be reliably identified by demethylation at the Forkhead-box P3 (FOXP3) locus. To explore the methylation landscape of nTreg, we analyzed genome-wide methylation in human naive nTreg (rTreg) and conventional naive CD4(+) T cells (Naive). We detected 2315 differentially methylated cytosine-guanosine dinucleotides (CpGs) between these 2 cell types, many of which clustered into 127 regions of differential methylation (RDMs). Activation changed the methylation status of 466 CpGs and 18 RDMs in Naive but did not alter DNA methylation in rTreg. Gene-set testing of the 127 RDMs showed that promoter methylation and gene expression were reciprocally related. RDMs were enriched for putative FOXP3-binding motifs. Moreover, CpGs within known FOXP3-binding regions in the genome were hypomethylated. In support of the view that methylation limits access of FOXP3 to its DNA targets, we showed that increased expression of the immune suppressive receptor T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), which delineated Treg from activated effector T cells, was associated with hypomethylation and FOXP3 binding at the TIGIT locus. Differential methylation analysis provides insight into previously undefined human Treg signature genes and their mode of regulation.

  6. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  7. 上皮性卵巢癌组织中WWOX基因启动子区域CpG岛的甲基化状态及临床意义%Methylation State of WWOX Gene Promoter CpG Islands in Epithelial Ovarian Cancer and Its Clinical Significance

    Institute of Scientific and Technical Information of China (English)

    闫洪超; 孙洁芸; 陆晓媛; 韩秋峪; 魏敏

    2012-01-01

    目的 研究上皮性卵巢癌组织中WWOX基因启动子区CpG岛的甲基化状态,并分析WWOX基因的甲基化与上皮性卵巢癌的临床病理指标之间的关系.方法 采用甲基化特异性PCR(methylation specific polymerase chain reaction,MSP)方法检测48例上皮性卵巢癌、18例卵巢交界性上皮性肿瘤、26例卵巢良性上皮性肿瘤及33例正常卵巢组织中WWOX基因CpG岛甲基化状态.结果 上皮性卵巢癌、卵巢交界性上皮性肿瘤、卵巢良性上皮性肿瘤组织中WWOX基因启动子区CpG岛甲基化率分别为43.75%、26.32%、3.84%,正常卵巢组织中未检测到WWOX基因CpG岛甲基化.上皮性卵巢癌组织中WWOX基因CpG岛的甲基化率明显高于其他卵巢组织,差异有统计学意义(P<0.01).晚期(Ⅲ期、Ⅳ期)上皮性卵巢癌组织中WWOX基因CpG岛的甲基化率高于早期(Ⅰ期、Ⅱ期)上皮性卵巢癌组织,差异有统计学意义(P<0.05).结论 上皮性卵巢癌组织中广泛存在着WWOX基因启动子区CpG岛甲基化,可能是导致WWOX基因失活的重要机制.WWOX基因的异常甲基化可能与上皮性卵巢癌的发生发展密切相关,其可能成为上皮性卵巢癌的早期诊断和评估预后的重要指标.%Objective To evaluate the methylation status of CpG islands in WWOX gene promoter region of epithelial ovarian cancer, and to explore the relationship between methylation state of WWOX gene CpG island and clinicopathological indexes in epithelial ovarian cancer. Methods The methylation state of WWOX gene CpG island was evaluated by methylation specific polymerase chain reaction(MSP) in 48 patients with epithelial ovarian cancer, 18 patients with borderline epithelial ovarian tumors,26 patients with epithelial benign tumors,and 33 patients with normal ovarian tissues. Results The rates of CpG island methylation in WWOX gene promoter region in epithelial ovarian cancer tissues,borderline ovarian tumor tissues and benign ovarian tumor

  8. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis.

    Science.gov (United States)

    Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao

    2015-01-01

    The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients.

  9. DNA methylation patterns of protein coding genes and long noncoding RNAs in female schizophrenic patients.

    Science.gov (United States)

    Liao, Qi; Wang, Yunliang; Cheng, Jia; Dai, Dongjun; Zhou, Xingyu; Zhang, Yuzheng; Gao, Shugui; Duan, Shiwei

    2015-02-01

    Schizophrenia (SCZ) is a complex mental disorder contributed by both genetic and epigenetic factors. Long noncoding RNAs (lncRNAs) was recently found playing an important regulatory role in mental disorders. However, little was known about the DNA methylation of lncRNAs, although numerous SCZ studies have been performed on genetic polymorphisms or epigenetic marks in protein coding genes. We presented a comprehensive genome wide DNA methylation study of both protein coding genes and lncRNAs in female patients with paranoid and undifferentiated SCZ. Using the methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), 8,163 and 764 peaks were identified in paranoid and undifferentiated SCZ, respectively (p Gene ontology analysis showed that the hypermethylated regions were enriched in the genes related to neuron system and brain for both paranoid and undifferentiated SCZ (p gene promoter regions that might affect gene expression and influence the SCZ related pathways. Interestingly, DNA methylation of 136 and 23 known lncRNAs in Refseq database were identified in paranoid and undifferentiated SCZ, respectively. In addition, ∼20% of intergenic peaks annotated based on Refseq genes were overlapped with lncRNAs in UCSC and gencode databases. In order to show the results well for most biological researchers, we created an online database to display and visualize the information of DNA methyation peaks in both types of SCZ (http://www.bioinfo.org/scz/scz.htm). Our results showed that the aberrant DNA methylation of lncRNAs might be another important epigenetic factor for SCZ.

  10. Aberrant DNA methylation of cancer-related genes in giant breast fibroadenoma: a case report

    Directory of Open Access Journals (Sweden)

    Orozco Javier I

    2011-10-01

    Full Text Available Abstract Introduction Giant fibroadenoma is an uncommon variant of benign breast lesions. Aberrant methylation of CpG islands in promoter regions is known to be involved in the silencing of genes (for example, tumor-suppressor genes and appears to be an early event in the etiology of breast carcinogenesis. Only hypermethylation of p16INK4a has been reported in non-giant breast fibroadenoma. In this particular case, there are no previously published data on epigenetic alterations in giant fibroadenomas. Our previous results, based on the analysis of 49 cancer-related CpG islands have confirmed that the aberrant methylation is specific to malignant breast tumors and that it is completely absent in normal breast tissue and breast fibroadenomas. Case presentation A 13-year-old Hispanic girl was referred after she had noted a progressive development of a mass in her left breast. On physical examination, a 10 × 10 cm lump was detected and axillary lymph nodes were not enlarged. After surgical removal the lump was diagnosed as a giant fibroadenoma. Because of the high growth rate of this benign tumor, we decided to analyze the methylation status of 49 CpG islands related to cell growth control. We have identified the methylation of five cancer-related CpG islands in the giant fibroadenoma tissue: ESR1, MGMT, WT-1, BRCA2 and CD44. Conclusion In this case report we show for the first time the methylation analysis of a giant fibroadenoma. The detection of methylation of these five cancer-related regions indicates substantial epigenomic differences with non-giant fibroadenomas. Epigenetic alterations could explain the higher growth rate of this tumor. Our data contribute to the growing knowledge of aberrant methylation in breast diseases. In this particular case, there exist no previous data regarding the role of methylation in giant fibroadenomas, considered by definition as a benign breast lesion.

  11. Relationships between MGMT promoter methylation and gastric cancer: a meta-analysis.

    Science.gov (United States)

    Yu, Dan; Cao, Tao; Han, Ya-Di; Huang, Fu-Sheng

    2016-01-01

    A DNA repair enzyme, O6-methylguanine-DNA methyltransferase (MGMT), plays an important role in the development of gastric cancers. However, the role of MGMT promoter methylation in the occurrence of gastric cancer and its relationships with clinicopathologic characteristics has not been fully clarified. Thus, we performed a meta-analysis to evaluate the associations between MGMT promoter methylation and gastric cancer. Electronic databases, including PubMed and Web of Science, were used to systematically search related clinical studies published in English until April 1, 2016. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to evaluate the associations between MGMT promoter methylation and gastric cancer risk or clinicopathologic characteristics. A total of 16 studies including 1,935 patients and 1,948 control persons were included in the analysis. Our study suggested that MGMT promoter methylation frequency was associated with gastric cancer (OR=3.46, 95% CI: 2.13-5.61, PMGMT promoter methylation in the no lymph node metastasis group was lower than that in lymph node metastasis group, with marginal significance (OR=0.65, 95% CI: 0.42-1.01, P=0.05). Additionally, the methylation rate of the MGMT promoter was much lower in patients without distant metastases than in those with metastases (OR=0.27, 95% CI: 0.18-0.40, PMGMT promoter methylation with Lauren classification, tumor location, tumor invasion, or Helicobacter pylori infection was found. In conclusion, the methylation status of the MGMT promoter was related to gastric cancer risk, distant metastasis, and lymph node metastasis, which indicates that MGMT promoter methylation may play an important role in gastric cancer development.

  12. MGMT promoter methylation status and MGMT and CD133 immunohistochemical expression as prognostic markers in glioblastoma patients treated with temozolomide plus radiotherapy

    Directory of Open Access Journals (Sweden)

    Melguizo Consolación

    2012-12-01

    Full Text Available Abstract Background The CD133 antigen is a marker of radio- and chemo-resistant stem cell populations in glioblastoma (GBM. The O6-methylguanine DNA methyltransferase (MGMT enzyme is related with temozolomide (TMZ resistance. Our propose is to analyze the prognostic significance of the CD133 antigen and promoter methylation and protein expression of MGMT in a homogenous group of GBM patients uniformly treated with radiotherapy and TMZ. The possible connection between these GBM markers was also investigated. Methods Seventy-eight patients with GBM treated with radiotherapy combined with concomitant and adjuvant TMZ were analyzed for MGMT and CD133. MGMT gene promoter methylation was determined by methylation-specific polymerase chain reaction after bisulfite treatment. MGMT and CD133 expression was assessed immunohistochemically using an automatic quantification system. Overall and progression-free survival was calculated according to the Kaplan–Meier method. Results The MGMT gene promoter was found to be methylated in 34 patients (44.7% and unmethylated in 42 patients (55.3%. A significant correlation was observed between MGMT promoter methylation and patients’ survival. Among the unmethylated tumors, 52.4% showed low expression of MGMT and 47.6% showed high-expression. Among methylated tumors, 58.8% showed low-expression of MGMT and 41.2% showed high-expression. No correlation was found between MGMT promoter methylation and MGMT expression, or MGMT expression and survival. In contrast with recent results, CD133 expression was not a predictive marker in GBM patients. Analyses of possible correlation between CD133 expression and MGMT protein expression or MGMT promoter methylation were negative. Conclusions Our results support the hypothesis that MGMT promoter methylation status but not MGMT expression may be a predictive biomarker in the treatment of patients with GBM. In addition, CD133 should not be used for prognostic evaluation of these

  13. DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma.

    Science.gov (United States)

    Khor, Goot Heah; Froemming, Gabriele Ruth Anisah; Zain, Rosnah Binti; Abraham, Mannil Thomas; Omar, Effat; Tan, Su Keng; Tan, Aik Choon; Vincent-Chong, Vui King; Thong, Kwai Lin

    2013-01-01

    Hypermethylation in promoter regions of genes might lead to altered gene functions and result in malignant cellular transformation. Thus, biomarker identification for hypermethylated genes would be very useful for early diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). The objectives of this study were to screen and validate differentially hypermethylated genes in OSCC and correlate the hypermethylation-induced genes with demographic, clinocopathological characteristics and survival rate of OSCC. DNA methylation profiling was utilized to screen the differentially hypermethylated genes in OSCC. Three selected differentially-hypermethylated genes of p16, DDAH2 and DUSP1 were further validated for methylation status and protein expression. The correlation between demographic, clinicopathological characteristics, and survival rate of OSCC patients with hypermethylation of p16, DDAH2 and DUSP1 genes were analysed in the study. Methylation profiling demonstrated 33 promoter hypermethylated genes in OSCC. The differentially-hypermethylated genes of p16, DDAH2 and DUSP1 revealed positivity of 78%, 80% and 88% in methylation-specific polymerase chain reaction and 24% and 22% of immunoreactivity in DDAH2 and DUSP1 genes, respectively. Promoter hypermethylation of p16 gene was found significantly associated with tumour site of buccal, gum, tongue and lip (P=0.001). In addition, DDAH2 methylation level was correlated significantly with patients' age (P=0.050). In this study, overall five-year survival rate was 38.1% for OSCC patients and was influenced by sex difference. The study has identified 33 promoter hypermethylated genes that were significantly silenced in OSCC, which might be involved in an important mechanism in oral carcinogenesis. Our approaches revealed signature candidates of differentially hypermethylated genes of DDAH2 and DUSP1 which can be further developed as potential biomarkers for OSCC as diagnostic, prognostic and

  14. Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology

    Directory of Open Access Journals (Sweden)

    Prakash Neeraj

    2010-11-01

    Full Text Available Abstract Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR, apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001, DCR1 (P = 0.00001, DCR2 (P = 0.0000000005 and BRCA2 (P = 0.007 and hypomethylation of DR4 (P = 0.011 in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047 and DNA damage repair potential (P = 0.004 in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing

  15. Downregulated ECRG4 is associated with poor prognosis in renal cell cancer and is regulated by promoter DNA methylation.

    Science.gov (United States)

    Luo, Liya; Wu, Jianting; Xie, Jun; Xia, Lingling; Qian, Xuemin; Cai, Zhiming; Li, Zesong

    2016-01-01

    Esophageal cancer-related gene 4 (ECRG4) has been proposed as a putative tumor suppressor gene in several tumors. However, the role and regulation of ECRG4 in the pathogenesis of human renal cancer remain largely unknown. Our current study revealed that expression of ECRG4 is downregulated in renal cell lines and renal cancer tissues. ECRG4 expression was significantly associated with histological grade of tumors (p renal cancer patients. Silencing of ECRG4 expression in renal cell lines was associated with its promoter methylation. Moreover, ectopic expression of ECRG4 markedly inhibited cell proliferation and invasion in renal cancer cell lines. These results indicated that ECRG4 is frequently silenced by the methylation of promoter in renal cell cancers. ECRG4 may be a tumor suppressor in renal cancer and serve as a prognostic marker.

  16. The Effects of Lycopene on the Methylation of the GSTP1 Promoter and Global Methylation in Prostatic Cancer Cell Lines PC3 and LNCaP

    Directory of Open Access Journals (Sweden)

    Li-Juan Fu

    2014-01-01

    Full Text Available DNA (cytosine-5- methylation silencing of GSTP1 function occurs in prostate adenocarcinoma (PCa. Previous studies have shown that there is an inverse relationship between dietary lycopene intake and the risk of PCa. However, it is unknown whether lycopene reactivates the tumor suppressor gene glutathioneS-transferase-π (GSTP1 by demethylation of the hypermethylated CpGs that act to silence the GSTP1 promoter. Here, we demonstrated that lycopene treatment significantly decreased the methylation levels of the GSTP1 promoter and increased the mRNA and protein levels of GSTP1 in an androgen-independent PC-3 cell line. In contrast, lycopene treatment did not demethylate the GSTP1 promoter or increase GSTP1 expression in the androgen-dependent LNCaP cell line. DNA methyltransferase (DNMT 3A protein levels were downregulated in PC-3 cells following lycopene treatment; however, DNMT1 and DNMT3B levels were unchanged. Furthermore, the long interspersed element (LINE-1 and short interspersed element ALU were not demethylated when treated by lycopene. In LNCaP cells, lycopene treatment did not affect any detected DNMT protein expression, and the methylation levels of LINE-1 and ALU were decreased. These results indicated that the protective effect of lycopene on the prostate is different between androgen-dependent and androgen-independent derived PCa cells. Further, in vivo studies should be conducted to confirm these promising results and to evaluate the potential role of lycopene in the protection of the prostate.

  17. MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells

    Directory of Open Access Journals (Sweden)

    Kanako Kojima-Kita

    2016-09-01

    Full Text Available During the development of mammalian embryonic germ cells, global demethylation and de novo DNA methylation take place. In mouse embryonic germ cells, two PIWI family proteins, MILI and MIWI2, are essential for the de novo DNA methylation of retrotransposons, presumably through PIWI-interacting RNAs (piRNAs. Although piRNA-associated MIWI2 has been reported to play critical roles in the process, its molecular mechanisms have remained unclear. To identify the mechanism, transgenic mice were produced; they contained a fusion protein of MIWI2 and a zinc finger (ZF that recognized the promoter region of a type A LINE-1 gene. The ZF-MIWI2 fusion protein brought about DNA methylation, suppression of the type A LINE-1 gene, and a partial rescue of the impaired spermatogenesis of MILI-null mice. In addition, ZF-MIWI2 was associated with the proteins involved in DNA methylation. These data indicate that MIWI2 functions as an effector of de novo DNA methylation of the retrotransposon.

  18. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    Directory of Open Access Journals (Sweden)

    Robert Illingworth

    2008-01-01

    Full Text Available CpG islands (CGIs are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  19. MGMT promoter methylation in serum and cerebrospinal fluid as a tumor-specific biomarker of glioma.

    Science.gov (United States)

    Wang, Zheng; Jiang, Wei; Wang, Yahong; Guo, Yang; Cong, Zheng; DU, Fangfang; Song, Bin

    2015-07-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a conventional technique to predict the prognosis or individualized treatment of glioma in tumor tissue following surgery or biopsy. However, the technique cannot be applied in those glioma patients with concomitant neurological dysfunctions or advanced age. The present study aimed to find a new minimally invasive and efficient alternative method for the detection of MGMT promoter methylation. The expression of MGMT promoter methylation was assessed in peripheral blood and cerebrospinal fluid (CSF), and compared to the corresponding tumor tissue from glioma patients. The 89 patients in the study [32 World Health Organization (WHO) grade II, 19 WHO grade III and 38 WHO grade IV) were pathologically-diagnosed glioma and received radiation therapy following sample collection. The resected glioma tumor tissue (89), corresponding serum (89) and CSF (78) samples were collected for the detection of MGMT promoter methylation using methylation-specific polymerase chain reaction. The sensitivity and specificity of detecting MGMT promoter methylation in CSF and serum were compared. Among the tumor tissue samples, 51/89 (57.3%) showed MGMT promoter methylation. The specificity of the detection in the CSF and serum samples reached 100%. The sensitivity of MGMT promoter methylation detection in CSF and serum were 26/40 (65.0%) and 19/51 (37.3%), respectively (PMGMT promoter methylation detection using CSF were 8/12 (66.7%), 11/18 (61.1%) and 7/10 (70.0%), respectively, which were significantly higher than the sensitivities using serum (7/21, 33.3%; 7/19, 36.8%; and 5/11, 45.5%, respectively PMGMT promoter methylation using CSF and serum were 18/25 (72.0%) and 10/24 (41.7%), respectively, both of which were significantly higher than the corresponding values for patients without residual tumors (8/15, 53.3% and 6/19, 31.6%, respectively; PMGMT promoter methylation in CSF specimens shows higher sensitivity

  20. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers

    Directory of Open Access Journals (Sweden)

    Weissfeld Joel L

    2007-05-01

    Full Text Available Abstract Background Epidemiological studies indicate that some characteristics of lung cancer among never-smokers significantly differ from those of smokers. Aberrant promoter methylation and mutations in some oncogenes and tumor suppressor genes are frequent in lung tumors from smokers but rare in those from never-smokers. In this study, we analyzed promoter methylation in the ras-association domain isoform A (RASSF1A and the death-associated protein kinase (DAPK genes in lung tumors from patients with primarily non-small cell lung cancer (NSCLC from the Western Pennsylvania region. We compare the results with the smoking status of the patients and the mutation status of the K-ras, p53, and EGFR genes determined previously on these same lung tumors. Methods Promoter methylation of the RASSF1A and DAPK genes was analyzed by using a modified two-stage methylation-specific PCR. Data on mutations of K-ras, p53, and EGFR were obtained from our previous studies. Results The RASSF1A gene promoter methylation was found in tumors from 46.7% (57/122 of the patients and was not significantly different between smokers and never-smokers, but was associated significantly in multiple variable analysis with tumor histology (p = 0.031 and marginally with tumor stage (p = 0.063. The DAPK gene promoter methylation frequency in these tumors was 32.8% (40/122 and did not differ according to the patients' smoking status, tumor histology, or tumor stage. Multivariate analysis adjusted for age, gender, smoking status, tumor histology and stage showed that the frequency of promoter methylation of the RASSF1A or DAPK genes did not correlate with the frequency of mutations of the K-ras, p53, and EGFR gene. Conclusion Our results showed that RASSF1A and DAPK genes' promoter methylation occurred frequently in lung tumors, although the prevalence of this alteration in these genes was not associated with the smoking status of the patients or the occurrence of mutations in

  1. Methamphetamine and HIV-Tat Alter Murine Cardiac DNA Methylation and Gene Expression

    Science.gov (United States)

    Koczor, Christopher A.; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-01-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10d, 3mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change>1.5, p<0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. PMID:26307267

  2. [Relationship between EGFR Promoter Region Methylation and Secondary Resistance Which may be Induced by Gefitinib].

    Science.gov (United States)

    Wang, Qilong; Li, Min; Hu, Chengping

    2015-04-01

    Nowadays the secondary resistance of gefitinib in the treatment of lung adenocarcinoma is an outstanding problem. This research is to explore whether the gefitinib secondary resistance can be induced by gefitinib, to explore whether epidermal growth factor receptor (EGFR) promotor methylation correlate with the gefitinib-resistance in PC9/GR cell lines and to find a new therapeutic target to overcome the gefitinib secondary resistance in lung adenocarcinoma. In vitro cultivation of lung adenocarcinoma PC9 cell lines, apply gefitinib on lung adenocarcinoma PC9 cell lines, and improve drug concentration. MTT for test of gefitinib resistance index in PC9 cell and PC9/GR cell. Bisulfite sequencing polymerase chain reaction (BSP) and Reverse transcription-polymerase chain reaction (RT-PCR) for detection of EGFR promoter methylation status and mRNA expression. In vitro cultivation of lung adenocarcinoma PC9 cell lines, apply 1 μmol/L 5-Aza-dc on lung adenocarcinoma PC9/GR cell lines for 72 h. MTT method for test of gefitinib resistance index in PC9/GR cell. After improving the gefitinib concentration, MTT results showed that half maximal inhibitory concentration (IC50) of PC9 cell lines increase from (0.01 ± 0.002) μmol/L to (3.95 ± 0.23) μmol/L (Pchange: PC9: 59%; PC9/GR: 74% (Presistant to gefitinib, and the gefitinib-resistant cell line PC9/GR could be built. EGFR gene promoter methylation may be one of the mechanisms for the secondary resistance to gefitinib.

  3. Relationship between EGFR Promoter Region Methylation and Secondary Resistance Which may be Induced by Gefitinib

    Directory of Open Access Journals (Sweden)

    Qilong WANG

    2015-04-01

    Full Text Available Background and objective Nowadays the secondary resistance of gefitinib in the treatment of lung adenocarcinoma is an outstanding problem. This research is to explore whether the gefitinib secondary resistance can be induced by gefitinib, to explore whether epidermal growth factor receptor (EGFR promotor methylation correlate with the gefitinib-resistance in PC9/GR cell lines and to find a new therapeutic target to overcome the gefitinib secondary resistance in lung adenocarcinoma. Methods In vitro cultivation of lung adenocarcinoma PC9 cell lines, apply gefitinib on lung adenocarcinoma PC9 cell lines, and improve drug concentration. MTT for test of gefitinib resistance index in PC9 cell and PC9/GR cell. Bisulfite sequencing polymerase chain reaction (BSP and Reverse transcription-polymerase chain reaction (RT-PCR for detection of EGFR promoter methylation status and mRNA expression. In vitro cultivation of lung adenocarcinoma PC9 cell lines, apply 1 μmol/L 5-Aza-dc on lung adenocarcinoma PC9/GR cell lines for 72 h. MTT method for test of gefitinib resistance index in PC9/GR cell. Results After improving the gefitinib concentration, MTT results showed that half maximal inhibitory concentration (IC50 of PC9 cell lines increase from (0.01±0.002 μmol/L to (3.95±0.23 μmol/L (P<0.05. BSP results showed that abnormal methylation sites compared the degree of methylation change: PC9: 59%; PC9/GR: 74% (P<0.05. RT-PCR results showed in PC9/GR cell lines, EGFR mRNA expression quantity increased (P<0.05. After applying 5-Aza-dc on PC9 cell lines, IC50 of PC9/GR decrease from (3.87±0.034 μmol/L to (2.55±0.14 μmol/L. Conclusion The PC9 cell line which is induced by improving gefitinib concentration will be resistant to gefitinib, and the gefitinib-resistant cell line PC9/GR could be built. EGFR gene promoter methylation may be one of the mechanisms for the secondary resistance to gefitinib.

  4. The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression.

    Directory of Open Access Journals (Sweden)

    Andriy Bilichak

    Full Text Available Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5' and 3' ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants.

  5. Effects of CDH1 gene promoter methylation on expression of E-cadherin and beta-catenin and its clinicopathological significance in colon carcinoma%上皮钙黏素1基因启动子甲基化对结肠癌上皮钙黏素和β-连接素表达的影响

    Institute of Scientific and Technical Information of China (English)

    李臣; 杨静; 董坚; 陈明清; 李文亮; 任俊宇; 陈圣雄; 李秋恬; 耿计伟; 缪延栋

    2011-01-01

    目的 探讨上皮钙黏素基因(CDH1)启动子甲基化与结肠癌上皮钙黏素(E-cadherin)及β-连接素(β-catenin)的表达及临床病理特征的关系.方法 采用甲基化特异性PCR技术检测68例结肠腺癌组织、癌旁组织及正常黏膜组织中CDH1基因启动子甲基化的状况.采用免疫组织化学法检测E-cadherin及β-catenin蛋白的表达.结果 癌旁组织及癌组织中CDH1启动子甲基化的阳性表达分别为32.4%(22/68)、57.4%(39/68),正常组织均为阴性表达(P<0.05).E-cadherin在正常组织、癌旁组织及腺癌组织中阳性表达率分别为92.6%、66.2%和44.1%.正常组织中β-catenin均表达于细胞膜上,无胞质和(或)胞核表达,而β-catenin在癌旁组织及癌组织中胞质和(或)胞核表达分别为29.4%和50.0%.CDH1基因启动子甲基化阳性率与E-cadherin表达则呈负相关(r=-0.312,P=0.01),与β-catenin胞质和(或)胞核表达呈正相关(r=0.309,P=0.018).CDH1基因启动子甲基化及E-cadherin、β-catenin的异常表达均与结肠癌分化程度及转移密切相关(P<0.05).结论 CDH1基因启动子甲基化可能是导致结肠癌E-cadherin与β-catenin异常表达及肿瘤侵袭性增强的重要原因.%Objective To investigate the relationship between methylation of the CDH1 gene promoter on the expression of E-cadherin and β-catenin, and to evaluate the correlation with clinicopathological characteristics of the colonic carcinoma. Methods Methylation specific PCR (MSP) was used to detect CDH1 gene promoter methylation in the cancer tissue, adjacent tissues and normal tissues in 68 patients. The expression of E-cadherin and β-catenin was determined by immunohistochemistry staining. Results The positive rate of CDH1 gene promoter methylation was 32.4% in adjacent tissues and 57.4% in cancer tissue, while no detectable methylation was found in all the normal tissues. The difference was statistically significant. The positive rate of E-cadherin was 92.6% in the

  6. Elevated Klotho promoter methylation is associated with severity of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Klotho (KL expression is down-regulated in the renal tissues of chronic kidney disease (CKD animal models and patients with end-stage renal disease. The putative role of KL promoter hypermethylation in the progression of CKD remains unclear. The present study aimed to determine renal and peripheral blood mononuclear cells (PBMC levels of KL promoter methylation and analyze their relationship with clinical and histological severity in patients with CKD. Using bisulfite pyrosequencing, renal and PBMC levels of KL promoter methylation were quantified in 47 patients with CKD. 47 nephrectomy specimens of patients with renal cell carcinoma and 48 PBMC specimens of healthy volunteers were used as renal tissue and PBMC controls, respectively. Renal expression of KL protein was assayed by immunohistochemistry staining. Receiver operating characteristic (ROC curve was used to identify the optimal cut-off value of PBMC KL promoter methylation level for renal KL promoter hypermethylation. Higher levels of KL promoter methylation were observed in renal tissue and PBMC in patients with CKD compared with controls (8.79±3.24 vs. 5.17±1.11%, P<0.001; 7.20±2.79 vs. 3.27±0.79%, P<0.001. In these patients, renal KL methylation level correlated inversely with renal KL immunostaining intensity (ρ=-0.794, P<0.001. Estimated glomerular filtration rate correlated inversely with renal and PBMC levels of KL promoter methylation (r=-0.829, P<0.001; r=-0.645, P<0.001, while tubulointerstistial fibrosis score correlated positively (ρ=0.826, P<0.001; ρ=0.755, P<0.001. PBMC KL promoter methylation level correlated positively with renal KL promoter methylation level in patients with CKD (r=0.787, P<0.001. In ROC curve, the area under curve was 0.964 (P<0.001 and the optimal cut-off value was 5.83% with a sensitivity of 93.8% and specificity of 86.7% to predict renal KL promoter hypermethylation. The degree of KL promoter methylation is associated with clinical and

  7. Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review.

    Science.gov (United States)

    Turecki, Gustavo; Meaney, Michael J

    2016-01-15

    The early-life social environment can induce stable changes that influence neurodevelopment and mental health. Research focused on early-life adversity revealed that early-life experiences have a persistent impact on gene expression and behavior through epigenetic mechanisms. The hypothalamus-pituitary-adrenal axis is sensitive to changes in the early-life environment that associate with DNA methylation of a neuron-specific exon 17 promoter of the glucocorticoid receptor (GR) (Nr3c1). Since initial findings were published in 2004, numerous reports have investigated GR gene methylation in relationship to early-life experience, parental stress, and psychopathology. We conducted a systematic review of this growing literature, which identified 40 articles (13 animal and 27 human studies) published since 2004. The majority of these examined the GR exon variant 1F in humans or the GR17 in rats, and 89% of human studies and 70% of animal studies of early-life adversity reported increased methylation at this exon variant. All the studies investigating exon 1F/17 methylation in conditions of parental stress (one animal study and seven human studies) also reported increased methylation. Studies examining psychosocial stress and psychopathology had less consistent results, with 67% of animal studies reporting increased exon 17 methylation and 17% of human studies reporting increased exon 1F methylation. We found great consistency among studies investigating early-life adversity and the effect of parental stress, even if the precise phenotype and measures of social environment adversity varied among studies. These results are encouraging and warrant further investigation to better understand correlates and characteristics of these associations.

  8. The prima donna of epigenetics: the regulation of gene expression by DNA methylation

    Directory of Open Access Journals (Sweden)

    K.F. Santos

    2005-10-01

    Full Text Available This review focuses on the mechanisms of DNA methylation, DNA methylation pattern formation and their involvement in gene regulation. Association of DNA methylation with imprinting, embryonic development and human diseases is discussed. Furthermore, besides considering changes in DNA methylation as mechanisms of disease, the role of epigenetics in general and DNA methylation in particular in transgenerational carcinogenesis, in memory formation and behavior establishment are brought about as mechanisms based on the cellular memory of gene expression patterns.

  9. Identifying differentially methylated genes using mixed effect and generalized least square models

    OpenAIRE

    2009-01-01

    Abstract Background DNA methylation plays an important role in the process of tumorigenesis. Identifying differentially methylated genes or CpG islands (CGIs) associated with genes between two tumor subtypes is thus an important biological question. The methylation status of all CGIs in the whole genome can be assayed with differential methylation hybridization (DMH) microarrays. However, patient samples or cell lines are heterogeneous, so their methylation pattern may be very different. In a...

  10. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression, and DNA methylation of the Bdnf gene

    Directory of Open Access Journals (Sweden)

    Rachel L. Miller

    2016-03-01

    Full Text Available Prenatal exposure to polycyclic aromatic hydrocarbons (PAH has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b, and greater DNA methylation of Bdnf. Our results indicated that during open-field testing, prenatal PAH–exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.

  11. Prognostic significance of stem cell marker CD133 determined by promoter methylation but not by immunohistochemical expression in malignant gliomas.

    Science.gov (United States)

    Wu, Xing; Wu, Fenlang; Xu, Dongwen; Zhang, Tao

    2016-04-01

    CD133 has played a pivotal role in the identification and isolation of brain tumor stem cells. The correlation between CD133 expression in tumor tissues with patients survival is still controversial. CD133 expression is determinated by methylation status of the promoter region 1-3. Aberrant methylation of CD133 was observed in glioblastoma. To date, a direct link between CD133 methylation and patient outcome has not been established.To address this question, we studied CD133 expression and promoter methylation in a series of 170 gliomas of various grade and histology, and investigated the correlation of CD133 expression and promoter methylation with patient outcome.We detected five CD133 promoter methylation patterns in 170 glioma samples: methylation only (M+, U-), unmethylation only (M-, U+), both methylation and unmethylation equally (M+, U+), high methylation and low unmethylation (M+, Ul), and low methylation and high unmethylation (Ml, U+). By multivariate survival analysis, we found CD133 promoter methylation status was significant (P promoter methylation status was observed (Kw = -0.165).CD133 promoter methylation status in glioma is closely correlated with patient survival, which suggest CD133 promoter methylaiton pattern is a promising tool for diagnostic purposes.

  12. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  13. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Science.gov (United States)

    Cornen, Stéphanie; Guille, Arnaud; Adélaïde, José; Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Raynaud, Stéphane; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 los