WorldWideScience

Sample records for gene promoter affects

  1. Genetic variation of the IL-28B promoter affecting gene expression.

    Directory of Open Access Journals (Sweden)

    Masaya Sugiyama

    Full Text Available The current standard of care for the treatment of chronic hepatitis C is pegylated interferon-α (PEG-IFNα and ribavirin (RBV. The treatment achieves a sustained viral clearance in only approximately 50% of patients. Recent whole genome association studies revealed that single nucleotide polymorphisms (SNPs around IL-28B have been associated with response to the standard therapy and could predict treatment responses at approximately 80%. However, it is not clear which SNP is most informative because the genomic region containing significant SNPs shows strong linkage disequilibrium. We focused on SNPs in close proximity to the IL-28B gene to evaluate the function of each and identify the SNP affecting the IL-28B expression level most. The structures of IL-28A/B from 5' to 3'-UTR were determined by complete cDNA cloning. Both IL-28A and 28B genes consisted of 6 exons, differing from the CCDS data of NCBI. Two intron SNPs and a nonsynonymous SNP did not affect IL-28B gene function and expression levels but a SNP located in the proximal promoter region influenced gene expression. A (TA dinucleotide repeat, rs72258881, located in the promoter region was discovered by our functional studies of the proximal SNPs upstream of IL-28B; the transcriptional activity of the promoter increased gradually in a (TA(n length-dependent manner following IFN-α and lipopolysaccharide stimulation. Healthy Japanese donors exhibited a broad range of (TA dinucleotide repeat numbers from 10 to 18 and the most prevalent genotype was 12/12 (75%, differing from the database (13/13. However, genetic variation of IL-28A corresponding to that of IL-28B was not detected in these Japanese donors. These findings suggest that the dinucleotide repeat could be associated with the transcriptional activity of IL-28B as well as being a marker to improve the prediction of the response to interferon-based hepatitis C virus treatment.

  2. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni

    Science.gov (United States)

    Anderson, Letícia; Gomes, Monete Rajão; daSilva, Lucas Ferreira; Pereira, Adriana da Silva Andrade; Mourão, Marina M.; Romier, Christophe; Pierce, Raymond

    2017-01-01

    Background Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. Methodology/Principal findings TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. Conclusions/Significance Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression

  3. A new PKLR gene mutation in the R-type promoter region affects the gene transcription causing pyruvate kinase deficiency.

    Science.gov (United States)

    Manco, L; Ribeiro, M L; Máximo, V; Almeida, H; Costa, A; Freitas, O; Barbot, J; Abade, A; Tamagnini, G

    2000-09-01

    Mutations in the PKLR gene responsible for pyruvate kinase (PK)-deficient anaemia are mainly located in the coding regions: 11 are in the splicing sites and, recently, three mutations have been described in the promoter region. We now report a novel point mutation A-->G on nucleotide 72, upstream from the initiation codon of the PKLR gene, in four Portuguese PK-deficient patients. This new regulatory mutation occurs within the most proximal of the four GATA motifs (GATA-A element) in the R-type promoter region. In two patients who were homozygous for this mutation, a semiquantitative reverse transcription polymerase chain reaction (PCR) procedure was used to evaluate the amount of R-PK mRNA transcript in the reticulocytes. The mRNA level was about five times lower than in normal controls, demonstrating that the PKLR gene transcription is severely affected, most probably because the -72A-->G point mutation disables the binding of the erythroid transcription factor GATA-1 to the GATA-A element. Supporting these data, the two patients homozygous for the -72A-->G mutation had severe haemolytic anaemia and were transfusion dependent until splenectomy. Two other patients who were compound heterozygous for this mutation and the previously described missense mutation 1456C-->T had a mild condition.

  4. Promoter strength of folic acid synthesis genes affects sulfa drug resistance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Iliades, Peter; Berglez, Janette; Meshnick, Steven; Macreadie, Ian

    2003-01-01

    The enzyme dihydropteroate synthase (DHPS) is an important target for sulfa drugs in both prokaryotic and eukaryotic microbes. However, the understanding of DHPS function and the action of antifolates in eukaryotes has been limited due to technical difficulties and the complexity of DHPS being a part of a bifunctional or trifunctional protein that comprises the upstream enzymes involved in folic acid synthesis (FAS). Here, yeast strains have been constructed to study the effects of FOL1 expression on growth and sulfa drug resistance. A DHPS knockout yeast strain was complemented by yeast vectors expressing the FOL1 gene under the control of promoters of different strengths. An inverse relationship was observed between the growth rate of the strains and FOL1 expression levels. The use of stronger promoters to drive FOL1 expression led to increased sulfamethoxazole resistance when para-aminobenzoic acid (pABA) levels were elevated. However, high FOL1 expression levels resulted in increased susceptibility to sulfamethoxazole in pABA free media. These data suggest that up-regulation of FOL1 expression can lead to sulfa drug resistance in Saccharomyces cerevisiae.

  5. The C-174G promoter polymorphism of the IL-6 gene affects energy expenditure and insulin sensitivity.

    Science.gov (United States)

    Kubaszek, Agata; Pihlajamäki, Jussi; Punnonen, Kari; Karhapää, Pauli; Vauhkonen, Ilkka; Laakso, Markku

    2003-02-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine expressed in many tissues. IL-6 null mice show low energy expenditure, but the effect of the variants of the IL-6 gene on energy expenditure has not been previously studied in humans. Therefore, we investigated the effect of the C-174G promoter polymorphism of the IL-6 gene on energy expenditure, measured by indirect calorimetry in healthy Finnish subjects (n = 124). We also measured insulin sensitivity by the hyperinsulinemic-euglycemic clamp. Subjects with the C-174C genotype of the IL-6 gene had significantly lower energy expenditure than subjects with the G-174C or G-174G genotypes both in fasting (CC 13.68 +/- 1.98, CG 14.73 +/- 1.57, GG 14.81 +/- 2.01 kcal x kg(-1) x min(-1); P = 0.012) and during the euglycemic-hyperinsulinemic clamp (CC 15.24 +/- 2.05, CG 16.62 +/- 2.06, GG 16.66 +/- 2.50 kcal x kg(-1) x min(-1); P = 0.007). Moreover, subjects homozygous for the C allele had lower rates of whole-body glucose uptake than carriers of the G allele (CC 50.95 +/- 13.91, CG 59.40 +/- 14.17, GG 59.21 +/- 15.93 micro mol x kg(-1) x min(-1); P = 0.016). The rates of both oxidative (P = 0.013) and nonoxidative (P = 0.016) glucose disposal were significantly affected by the IL-6 promoter polymorphism. In conclusion, the C-174C promoter polymorphism of the IL-6 gene influences energy expenditure and insulin sensitivity in healthy normoglycemic subjects. Whether this polymorphism is a risk factor for obesity or type 2 diabetes can be estimated only in prospective population-based studies.

  6. Mosaics of gene variations in the Interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used.

    NARCIS (Netherlands)

    Mormann, M.; Rieth, H.; Hua, T.D.; Assohou-Luty, C.A.; Roupelieva, M.; Hu, S.L.; Kremsner, P.G.; Luty, J.F.; Kube, D.

    2004-01-01

    Interleukin-10 (IL-10), a cytokine involved in many aspects of the immune response shows interindividual variations in their expression. However, genetic variations of the 5'-flanking region of the IL-10 gene (PIL-10) are poorly characterised with respect to different stimuli. New extended haplo-

  7. Mosaics of gene variations in the Interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used.

    NARCIS (Netherlands)

    Mormann, M.; Rieth, H.; Hua, T.D.; Assohou-Luty, C.A.; Roupelieva, M.; Hu, S.L.; Kremsner, P.G.; Luty, J.F.; Kube, D.

    2004-01-01

    Interleukin-10 (IL-10), a cytokine involved in many aspects of the immune response shows interindividual variations in their expression. However, genetic variations of the 5'-flanking region of the IL-10 gene (PIL-10) are poorly characterised with respect to different stimuli. New extended haplo- an

  8. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma

    Directory of Open Access Journals (Sweden)

    Halaban Ruth

    2010-02-01

    Full Text Available Abstract Background Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes. Methods It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing. Results We show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes. Conclusions Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier

  9. Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation.

    Directory of Open Access Journals (Sweden)

    David M Holloway

    Full Text Available Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb gene in early fruit fly (Drosophila segmentation by the maternally-derived gradient of the Bicoid (Bcd protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F, and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e.g. multiple regulatory sites, cooperativity, self-feedback, the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.

  10. Ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changes in methylation of CpG promoter islands in the liver of mice.

    Science.gov (United States)

    Schmelzer, Constance; Kitano, Mitsuaki; Hosoe, Kazunori; Döring, Frank

    2012-03-01

    Coenzyme Q(10) is an essential cofactor in the respiratory chain and serves as a potent antioxidant in biological membranes. Recent studies in vitro and in vivo provide evidence that Coenzyme Q(10) is involved in inflammatory processes and lipid metabolism via gene expression. To study these effects at the epigenomic level, C57BL6J mice were supplemented for one week with reduced Coenzyme Q(10) (ubiquinol). Afterwards, gene expression signatures and DNA promoter methylation patterns of selected genes were analysed. Genome-wide transcript profiling in the liver identified 1112 up-regulated and 571 down-regulated transcripts as differentially regulated between ubiquinol-treated and control animals. Text mining and GeneOntology analysis revealed that the "top 20" ubiquinol-regulated genes play a role in lipid metabolism and are functionally connected by the PPARα signalling pathway. With regard to the ubiquinol-induced changes in gene expression of about +3.14-fold (p≤0.05), +2.18-fold (p≤0.01), and -2.13-fold (p≤0.05) for ABCA1, ACYP1, and ACSL1 genes, respectively, hepatic DNA methylation analysis of 282 (sense orientation) and 271 (antisense) CpG units in the respective promoter islands revealed no significant effect of ubiquinol. In conclusion, ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changing the promoter DNA methylation status in the liver of mice.

  11. A promoter polymorphism rs2075824 within IMPA2 gene affecting the transcription activity: possible relationship with schizophrenia.

    Science.gov (United States)

    Li, Jia; Huang, Sheng; Dai, Hui-Rong; Wang, Juan; Lin, Li-Hui; Xiao, Hui; Peng, Xia; Li, Fei; Wang, Yu-Ping; Yuan, Jian-Min; Li, Li

    2017-04-01

    Previous studies with biological and genetic evidence indicate that the myo-inositol monophosphatase 2 (IMPA2) gene may influence schizophrenia. We performed a genetic association study in Han Chinese cohorts. Five single nucleotide polymorphisms within IMPA2 promoter region (rs971363, rs971362, rs2075824, rs111410794 and rs111610121), as well as one (rs45442994, in intron 1) that was positively associated in another study, were selected for genotyping in 1397 patients with schizophrenia and 1285 mentally healthy controls. Genotype and allele frequencies were assessed by gender stratification. Interestingly, rs2075824 showed a strong association with schizophrenia (P = 4.1 × 10(-4) ), and the T allele was more frequent in cases than controls [P = 5.6 × 10(-5) , OR (95% CI) = 1.26 (1.13-1.41)]. In vitro promoter assay showed that the transcription activity of the T allele promoter was higher than that of the C allele promoter and the T allele of rs2075824 contributed to risk for schizophrenia. By stratifying males and females, we found a gender-specific association for IMPA2 and schizophrenia: the T allele of rs2075824 was more frequent in male cases compared with male controls [P = 1.4 × 10(-4) , OR (95% CI) = 1.33 (1.15-1.55)]. Our data suggest that a promoter polymorphism of IMPA2 possibly contributed to risk for schizophrenia by elevating transcription activity in Han Chinese individuals. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. A Single Nucleotide Polymorphism in the Bax Gene Promoter Affects Transcription and Influences Retinal Ganglion Cell Death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J Bax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax −/− mice, but 129B6 Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  13. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain

    NARCIS (Netherlands)

    Doelen, R.H. van der; Arnoldussen, I.A.C.; Ghareh, H.; Och, L. van; Homberg, J.R.; Kozicz, L.T.

    2015-01-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene x Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid

  14. Methylenetetrahydrofolate reductase C677T genotype affects promoter methylation of tumor-specific genes in sporadic colorectal cancer through an interaction with folate/vitamin B12 status

    Institute of Scientific and Technical Information of China (English)

    Pooneh Mokarram; Fakhraddin Naghibalhossaini; Mehdi Saberi Firoozi; Seyed Vahid Hosseini; Ahmad Izadpanah; Heshmetalah Salahi; Seyed Ali Malek-Hosseini; Abdoulrasool Talei; Mehra Mojallal

    2008-01-01

    AIM: To evaluate joint effects of Methy/entetra-hydrofolate reductase (MTHFR) C677Tgenotypes, and serum folate/vitamin B12 concentrations on promoter methylation of tumor-associated genes among Iranian colorectal cancer patients.METHODS: We examined the associations between MTHFR C677T genotype, and promoter methylation of P16, Hmlh1, and Hmsh2 tumor-related genes amonq 151 sporadic colorectal cancer patients. The promoter methylation of tumor-related genes was determined by methylation-specific PCR. Eighty six patients from whom fresh tumor samples were obtained and 81 controls were also examined for serum folate and vitamin B12, concentrations by a commercia radioimmunoassay kit.RESULTS: We found 29.1% of cases had tumors with at least one methylated gene promoter. In case-case comparison, we did not find a significant association between methylation in tumors and any single genotype. However, in comparison to controls with the CC genotype, an increased risk of tumor methylation was associated with the CT genotype (OR=2.5;95% CI,1.1-5.6). In case-case comparisons, folate/vitamin B12 levels were positively associated with tumor methylation. Adjusted odds ratios for tumor methylation in cases with high (above median) versus low (below median) serum folate/vitamin B12 levels were 4.9 (95% CI,1.4-17.7), and 3.9 (95% CI,1.1-13.9), respectively. The frequency of methylated tumors was significantly higher in high methyl donor than low methyl donor group, especially in those with MTHFR CT (P=0.01), and CT/TT (P=0.002) genotypes, but not in those with the CC genotype (P=1.0).CONCLUSION: We conclude that high concentrations of serum folate/vitamin B12 levels are associated with the risk of promoter methylation in tumor-specific genes, and this relationship is modified by MTHFR C677T genotypes.

  15. Gene promoters dictate histone occupancy within genes.

    Science.gov (United States)

    Perales, Roberto; Erickson, Benjamin; Zhang, Lian; Kim, Hyunmin; Valiquett, Elan; Bentley, David

    2013-10-01

    Spt6 is a transcriptional elongation factor and histone chaperone that reassembles transcribed chromatin. Genome-wide H3 mapping showed that Spt6 preferentially maintains nucleosomes within the first 500 bases of genes and helps define nucleosome-depleted regions in 5' and 3' flanking sequences. In Spt6-depleted cells, H3 loss at 5' ends correlates with reduced pol II density suggesting enhanced transcription elongation. Consistent with its 'Suppressor of Ty' (Spt) phenotype, Spt6 inactivation caused localized H3 eviction over 1-2 nucleosomes at 5' ends of Ty elements. H3 displacement differed between genes driven by promoters with 'open'/DPN and 'closed'/OPN chromatin conformations with similar pol II densities. More eviction occurred on genes with 'closed' promoters, associated with 'noisy' transcription. Moreover, swapping of 'open' and 'closed' promoters showed that they can specify distinct downstream patterns of histone eviction/deposition. These observations suggest a novel function for promoters in dictating histone dynamics within genes possibly through effects on transcriptional bursting or elongation rate.

  16. Tn5 insertion in the tonB gene promoter affects iron-related phenotypes and increases extracellular siderophore levels in Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    de Paula Soares, Cleiton; Rodrigues, Elisete Pains; de Paula Ferreira, Jéssica; Simões Araújo, Jean Luiz; Rouws, Luc Felicianus Marie; Baldani, José Ivo; Vidal, Marcia Soares

    2015-03-01

    TonB-dependent receptors in concert with the TonB-ExbB-ExbD protein complex are responsible for the uptake of iron and substances such as vitamin B12 in several bacterial species. In this study, Tn5 mutagenesis of the sugarcane endophytic bacterium Gluconacetobacter diazotrophicus led to the isolation of a mutant with a single Tn5-insertion in the promoter region of a tonB gene ortholog. This mutant, named Gdiaa31, displayed a reduced growth rate and a lack of response to iron availability when compared to the wild-type strain PAL5(T). Several efforts to generate null-mutants for the tonB gene by insertional mutagenesis were without success. RT-qPCR analysis demonstrated reduced transcription of tonB in Gdiaa31 when compared to PAL5(T). tonB transcription was inhibited in the presence of Fe(3+) ions both in PAL5(T) and in Gdiaa31. In comparison with PAL5(T), Gdiaa31 also demonstrated decreased nitrogenase activity and biofilm formation capability, two iron-requiring physiological characteristics of G. diazotrophicus. Additionally, Gdiaa31 accumulated higher siderophore levels in culture supernatant. The genetic complementation of the Gdiaa31 strain with a plasmid that carried the tonB gene including its putative promoter region (pP(tonB)) restored nitrogenase activity and siderophore accumulation phenotypes. These results indicate that the TonB complex has a role in iron/siderophore transport and may be essential in the physiology of G. diazotrophicus.

  17. Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort.

    Directory of Open Access Journals (Sweden)

    Jukka S Alasaari

    Full Text Available BACKGROUND: Shift-working nurses are exposed to a stressful work environment, which puts them at an increased risk for burnout and depression. We explored the effect of environmental stress on serotonin transporter gene (SLC6A4 promoter methylation among nurses from high and low work stress environments. METHODOLOGY: Using bisulfite sequencing, we investigated the methylation status of five CpG residues of a CpG-rich region in the promoter of SLC6A4 by comparing female shift working nurses from a high work stress environment (n = 24 to low work stress environment (n = 25. We also analyzed the association of 5-HTTLPR polymorphism at 5' end of SLC6A4. Work stress was assessed by the Karasek's Model and possible signs of burnout or depression were measured by the Maslach Burnout Index General Survey and Beck Depression Index. Methylation levels were assessed by bisulfite sequencing of DNA extracted from peripheral blood leucocytes. Restriction enzyme treatment followed by standard PCR was used to identify 5-HTTLPR genotypes. PRINCIPAL FINDINGS: We found that nurses in the high stress environment had significantly lower promoter methylation levels at all five CpG residues compared to nurses in the low stress environment (p<0.01. There was no significant interaction of 5-HTTLPR genotype and work stress with methylation (p = 0.58. In unadjusted (bivariate analysis, burnout was not significantly associated to methylation levels. However, when mutually adjusted for both, burnout and work stress were significant contributors (p = 0.038 and p<0.0001 respectively to methylation levels. CONCLUSIONS: Our findings show that environmental stress is concurrent with decreased methylation of the SLC6A4 promoter. This may lead to increased transcriptional activity of the gene, increased reuptake of serotonin from synaptic clefts, and termination of the activity of serotonin. This could present a possible coping mechanism for environmental stress in humans that

  18. Polymorphisms in the promoter region of the human class II alcohol dehydrogenase (ADH4) gene affect both transcriptional activity and ethanol metabolism in Japanese subjects.

    Science.gov (United States)

    Kimura, Yukiko; Nishimura, Fusae T; Abe, Shuntaro; Fukunaga, Tatsushige; Tanii, Hideji; Saijoh, Kiyofumi

    2009-02-01

    Class II alcohol dehydrogenase (pi-ADH), encoded by alcohol dehydrogenase (ADH4), is considered to contribute to ethanol (EtOH) oxidation in the liver at high concentration. Four single nucleotide polymorphisms (SNPs) were found in the promoter region of this gene. Analysis of genotype distribution in 102 unrelated Japanese subjects revealed that four loci were in strong linkage disequilibrium and could be classified into three haplotypes. The effects of these polymorphisms on transcriptional activity were investigated in HepG2 cells. Transcriptional activity was significantly higher in cells with the -136A allele than in those with the -136C allele. To investigate whether this difference in transcriptional activity caused a difference in EtOH elimination, previous data on blood EtOH changes after 0.4 g/kg body weight alcohol ingestion were analyzed. When analyzed based on aldehyde dehydrogenase-2 gene (ALDH2) (487)Glu/Lys genotype, the significantly lower level of EtOH at peak in subjects with -136C/A and -136A/A genotype compared with subjects with -136C/C genotype indicated that -136 bp was a suggestive locus for differences in EtOH oxidation. This effect was observed only in subjects with ALDH2 (487)Glu/Glu. These results suggested that the SNP at -136bp in the ADH4 promoter had an effect on transcriptional regulation, and that the higher activity of the -136A allele compared with the -136C allele caused a lower level of blood EtOH after alcohol ingestion; that is, individuals with the -136A allele may consume more EtOH and might have a higher risk for development of alcohol dependence than those without the -136A allele.

  19. Knockdown of menin affects pre-mRNA processing and promoter fidelity at the interferon-gamma inducible IRF1 gene

    Directory of Open Access Journals (Sweden)

    Auriemma Lauren B

    2012-01-01

    Full Text Available Abstract Background The tumor suppressor menin (MEN1 is mutated in the inherited disease multiple endocrine neoplasia type I, and has several documented cellular roles, including the activation and repression of transcription effected by several transcription factors. As an activator, MEN1 is a component of the Set1-like mixed lineage leukemia (MLL MLL1/MLL2 methyltransferase complex that methylates histone H3 lysine 4 (H3K4. MEN1 is localized to the signal transducer and activator of transcription 1 (STAT1-dependent gene, interferon regulatory factor 1 (IRF1, and is further recruited when IRF1 transcription is triggered by interferon-γ signaling. Results RNAi-mediated knockdown of MEN1 alters the H3K4 dimethylation and H3 acetylation profiles, and the localization of histone deacetylase 3, at IRF1. While MEN1 knockdown does not impact the rate of transcription, IRF1 heteronuclear transcripts become enriched in MEN1-depleted cells. The processed mRNA and translated protein product are concomitantly reduced, and the antiviral state is attenuated. Additionally, the transcription start site at the IRF1 promoter is disrupted in the MEN1-depleted cells. The H3K4 demethylase, lysine specific demethylase 1, is also associated with IRF1, and its inhibition alters H3K4 methylation and disrupts the transcription start site as well. Conclusions Taken together, the data indicate that MEN1 contributes to STAT1-activated gene expression in a novel manner that includes defining the transcription start site and RNA processing.

  20. Factors affecting gene transformation in mangosteen

    Directory of Open Access Journals (Sweden)

    Sompong Te-chato

    2003-05-01

    Full Text Available Factors affecting gene transformation in mangosteen (Garcinia mangostana L. were investigated. Types of explants, strains and densities of Agrobacterium tumefaciens, and co-culture methods were examined to optimize gene transformation. The results showed that among strains of Agrobacterium tumefaciens tested, LBA 4404 containing pBI 121 gave the calli with the highest resistance to kanamycin. Kanamycin at the concentration of 50-100 mg/l was the best range for selection of transformants. Higher density of agrobacteria tended to promote higher frequency of transformation. The best co-culture method was dipping the explant in a solution of agrobacteria for 10 minutes, followed by culturing onto co-culture medium without antibiotic for 48 hours. Among the explants used to co- culture with bacteria, half leaf treatment gave the best result for transformation; however, callus proliferation and plantlet regeneration were inferior to whole leaf treatment. Activity of β-Glucuronidase (GUS could not be detected, thus resistance to kanamycin was used for detecting transformability. Shoot primordia could be induced from kanamycin-resistant calli grown in regeneration medium. After maintenance by subculturing to the same medium 2 to 3 times in 2-3 months, the developed shoots turned brown and finally died. Hence, the transformed plant of mangosteen was not obtained from this experiment.

  1. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia A.

    2016-04-23

    Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  2. Supplementary Material for: Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia

    2016-01-01

    Abstract Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  3. CYP7A1基因-204位点A/C变异对启动子活性的影响%The A-204C Polymorphism in CYP7A1 Gene Affects Its Promoter Activity

    Institute of Scientific and Technical Information of China (English)

    陈玉娟; 张思仲; 肖翠英; 陶大昌; 何国平; 王英成; 刘运强; 马用信

    2006-01-01

    CYP7A1(cholesterol 7α-hydroxylase)在胆固醇向胆汁酸代谢途径中起着至关重要的作用.为研究该基因启动子区-204位点A/C多态性是否影响基因表达,利用荧光素酶作为报告基因,将含有A或C等位基因的启动子区片段分别正向和反向插入不合启动子的pGL3-basic质粒载体中,再以重组体转染4种细胞株,采用双荧光素酶报告基因检测系统测定酶活性并进行比较.实验结果表明,2种基因型的正向序列启动子活性均高于相应的反向序列,含有A等位基因的启动子片段活性比含有C等位基因的片段低约1/3.TRANSFAC数据库分析显示,当-204位点等位基因为C时,可能存在1个Zic3结合位点.研究结果提示,CYP7A1基因启动子区-204位点A/C变异可减少启动子活性从而影响基因表达,其原因可能为1个潜在的Zic3结合位点的丧失.%cholesterol 7α-hydroxylase gene ( CYP7A 1 ) plays a key role in the catabolism of cholesterol into bile acids. To investigate whether the A-204C polymorphism in CYP7A1 gene affects the gene expression,using luciferase as the reporter gene, four recombinants were constructed by inserting forward or reverse sequence with A or C allele at the polymorphism site into the promoter-less vector pGL3-basic. The constructs were then transfected into four cell lines and the luciferase activity of each expression vector was examined by dual luciferase reporter gene assay system. The results showed that activities of the forward sequence of both genotypes were higher than that of reverse sequence. Promoter activity of the recombinants with A allele was about one third lower than that with C allele. According to the analysis with TRANSFAC database, there may exist a Zic3 binding site when there is the C allele at -204. Our study indicates that the A-204 C polymorphism in CYP7A1 promoter region decreases its promoter activity and thus represses the gene expression, possibly due to the lack of a potential Zic3

  4. Promoting Positive Affect through Smartphone Photography.

    Science.gov (United States)

    Chen, Yu; Mark, Gloria; Ali, Sanna

    With the increasing quality of smartphone cameras, taking photos has become ubiquitous. This paper investigates how smartphone photography can be leveraged to help individuals increase their positive affect. Applying findings from positive psychology, we designed and conducted a 4-week study with 41 participants. Participants were instructed to take one photo every day in one of the following three conditions: a selfie photo with a smiling expression, a photo of something that would make oneself happy and a photo of something that would make another person happy. After 3 weeks, participants' positive affect in all conditions increased. Those who took photos to make others happy became much less aroused. Qualitative results showed that those in the selfie group observed changes in their smile over time; the group taking photos to improve their own affect became more reflective and those taking photos for others found that connecting with family members and friends helped to relieve stress. The findings can offer insights for designers to create systems that enhance emotional well-being.

  5. Differences in the Ovine HSP90AA1 Gene Expression Rates Caused by Two Linked Polymorphisms at Its Promoter Affect Rams Sperm DNA Fragmentation under Environmental Heat Stress Conditions

    Science.gov (United States)

    González, Carmen; Pérez-Guzmán, M. Dolores; Garde, J. Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H.; Serrano, M. Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram’s fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  6. Differences in the ovine HSP90AA1 gene expression rates caused by two linked polymorphisms at its promoter affect rams sperm DNA fragmentation under environmental heat stress conditions.

    Science.gov (United States)

    Salces-Ortiz, Judit; Ramón, Manuel; González, Carmen; Pérez-Guzmán, M Dolores; Garde, J Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H; Serrano, M Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram's fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  7. The investigation of Leptin gene Promoter in the Najdi Cows

    Directory of Open Access Journals (Sweden)

    fatemeh amraei

    2014-08-01

    Full Text Available Identification of associated genes with energy balance, yield and feed intake are recent interests of the animal breeding researchers. Najdi breed is the famous cattle breed in the Khuzestan province. In this research for The investigation of Leptin gene Promoter ,from 15 Najdi cows in the Shushtar cattle center station was taken. DNA from whole blood was Extracted and 544bp and 566 bp two pieces of was used for amplification. After ensuring the correctness PCR products on agarose gel 1% sequences gene was performed and component promoter leptin was found in Najdi cow. In the first fragment(566bp of the study was recognized, 6 Mutation, two point mutations one of the transition and the other was transversion and four frameshift mutations that mutations of another typ of, deletion and insertion. In the second segment(544bp( was observed in the leptin gene promoter region two point mutations one of the transition and the other was transversion and deletion of a frameshift Mutation The results of this study showed that reports Mutations on boxes and component promoter did not affect leptin gene.In this study was compared the sequence corresponding to a single on sample in terms of both pieces were registered on sequence similarity with other region that blast results showed a high percentage of similarity.

  8. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  9. Molecular cloning and analysis of the Catsper1 gene promoter.

    Science.gov (United States)

    Mata-Rocha, Minerva; Alvarado-Cuevas, Edith; Hernández-Sánchez, Javier; Cerecedo, Doris; Felix, Ricardo; Hernández-Reyes, Adriana; Tesoro-Cruz, Emiliano; Oviedo, Norma

    2013-05-01

    CatSper channels are essential for hyperactivity of sperm flagellum, progesterone-mediated chemotaxis and oocyte fertilization. Catsper genes are exclusively expressed in the testis during spermatogenesis, but the function and regulation of the corresponding promoter regions are unknown. Here, we report the cloning and characterization of the promoter regions in the human and murine Catsper1 genes. These promoter regions were identified and isolated from genomic DNA, and transcriptional activities were tested in vitro after transfection into human embryonic kidney 293, mouse Sertoli cells 1 and GC-1spg cell lines as well as by injecting plasmids directly into mouse testes. Although the human and murine Catsper1 promoters lacked a TATA box, a well-conserved CRE site was identified. Both sequences may be considered as TATAless promoters because their transcriptional activity was not affected after deletion of TATA box-like sites. Several transcription initiation sites were revealed by RNA ligase-mediated rapid amplification of the cDNA 5'-ends. We also found that the immediate upstream region and the first exon in the human CATSPER1 gene negatively regulate transcriptional activity. In the murine Catsper1 promoter, binding sites for transcription factors SRY, SOX9 and CREB were protected by the presence of nuclear testis proteins in DNAse degradation assays. Likewise, the mouse Catsper1 promoter exhibited transcriptional activity in both orientations and displayed significant expression levels in mouse testis in vivo, whereas the suppression of transcription signals in the promoter resulted in low expression levels. This study, thus, represents the first identification of the transcriptional control regions in the genes encoding the human and murine CatSper channels.

  10. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  11. Methylation of Gene CHFR Promoter in Acute Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    GONG Hui; LIU Wengli; ZHOU Jianfeng; XU Huizhen

    2005-01-01

    Summary: In order to explore whether gene CHFR was inactivated by methylation in leukemia cells, the expression of CHFR was examined before and after treatment with demethylation agent in Molt-4, Jurkat and U937 leukemia cell lines by means of RT-PCR. The methylation of promoter in Molt-4, Jurkat and U937 cells as well as 41 acute leukemia patients was analyzed by MS-PCR. The results showed that methylation of CHFR promoter was inactivated and could be reversed by treatment with a demethylating agent in Molt-4, Jurkat and U937. CHFR promoter methylation was detected in 39 % of acute leukemia patients. There was no difference in incidence of CHFR promoter methylation between acute myelocytic leukemia and acute lymphocytic leukemia. In conclusion, CHFR is frequently inactivated in acute leukemia and is a good candidate for the leukemia supper gene. By affecting mitotic checkpoint function, CHFR inactivation likely plays a key role in tumorigenesis in acute leukemia. Moreover, the methylation of gene CHFR appears to be a good index with which to predict the sensitivity of acute leukemia to microtubule inhibitors.

  12. [Functional interactions between promoters of neighboring yellow and CG3777 genes in Drosophila melanogaster].

    Science.gov (United States)

    Leman, D V; Parshikov, A F; Georgiev, P G; Maksimenko, O G

    2012-12-01

    It was shown by us previously that the transcription of the yellow gene can be affected by the promoter of the neighboring gene CG3777, which has a similar expression profile. In the present work, we continued studying the functional interactions between the promoters of the yellow and CG3777 genes in transgenic Drosophila strains. In this work, we used the failure of the yeast activator GAL4 to stimulate transcription from the promoter of the yellow gene for the case when GAL4-binding sites are localized at the 3'-end of the gene. It has been found that, if the 983-bp CG3777 gene promoter is inserted in transgenic strains in the same orientation with the yellow gene promoter, downstream from the sites of the GAL4 activator, the CG3777 promoter provides a strong stimulation of the yellow gene by the GAL4 activator. When the promoters of the yellow and CG3777 genes are inserted in opposite orientations relative to one another, no stimulation of the yellow gene by GAL4 is observed. Additional results obtained in the work demonstrate that the functional interacton between the CG3777 and yellow promoters depends on their mutual orientation and position relative to the GAL4-binding sites.

  13. Health Promotion Behaviors of Women and Affecting Factors

    Directory of Open Access Journals (Sweden)

    Naile Bilgili

    2009-12-01

    Full Text Available AIM: Women should be healthy and have health promotion behaviors, so they can accomplish both their maternal and social tasks. This descriptive study was conducted to determine the healthy life-style behaviors of married women and the factors which could affect those behaviors. METHOD: The population comprised all married women older than 15 years and who live in Ankara Kale region. Three hundred-sixty five married women were included in the study. The questionnaire form and the healthy life-style behaviors scale was used for data collection. RESULTS: The mean score taken from scale was 112.2±19.4. The scores of the women who graduated from middle school / high school, who have sufficient income and good socio-economic status, who have a perception of physical health fairly good and who have any chronic disease in their families, have significantly higher mean scores from healthy life-style behaviors scale and subgroups (p<0.05 CONCLUSION: Health promotion behaviors of the women was low and some factors like education level, income, socioeconomic status, perception of health, having any chronic illness and using regular medicine affected healthy life-style behaviors. It is recommended that nurses, who have education and consultation roles, should inform the women about health promotion behaviors and encourage them to use that information in their lives. [TAF Prev Med Bull 2009; 8(6.000: 497-502

  14. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  15. Promoter methylation analysis of IDH genes in human gliomas

    Directory of Open Access Journals (Sweden)

    Simon eFlanagan

    2012-12-01

    Full Text Available Mutations in isocitrate dehydrogenase (IDH -1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132 or IDH2 (R172. But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a ‘toxic gain of function’ to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumour suppressor gene. As most, if not all, tumour suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumours, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumour suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumours, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumours examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumours. These findings do not support a tumour suppressor role for IDH genes in human gliomas.

  16. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Klein, U; De Camp, J D; Bogorad, L

    1992-04-15

    Structures of the promoters of Chlamydomonas reinhardtii plastid atpB and 16S rRNA-encoding genes were analyzed in vivo. Chimeric constructs, containing the Chlamydomonas chloroplast atpB or 16S rRNA-encoding gene promoter coupled to the Escherichia coli uidA (beta-glucuronidase, GUS) reporter gene and bordered by C. reinhardtii chloroplast sequences, were stably introduced into the chloroplast of Chlamydomonas by microprojectile bombardment. Activity of the promoters in the chloroplast of GUS gene-positive transformants was assayed by measuring the abundance of GUS transcripts and determining the relative rates of GUS transcription in vivo. Deletion analyses of the 16S rRNA gene and atpB promoter fragments showed that the two promoters differ structurally. The 16S rRNA gene promoter resembles the bacterial sigma 70 type with typical -10 and -35 elements. The atpB promoter, on the other hand, lacks a conserved motif in the -35 region but contains, in the -10 region, a characteristic octameric palindrome (TATAATAT) that is conserved in the promoter sequences of some other C. reinhardtii chloroplast genes. For maximum activity, the atpB promoter requires sequences of approximately 22 base pairs upstream and approximately 60 base pairs downstream of the transcription start site.

  17. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  18. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  19. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene ...

  20. Identifying promoters for gene expression in Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Daniel G. Olson

    2015-12-01

    Full Text Available A key tool for metabolic engineering is the ability to express heterologous genes. One obstacle to gene expression in non-model organisms, and especially in relatively uncharacterized bacteria, is the lack of well-characterized promoters. Here we test 17 promoter regions for their ability to drive expression of the reporter genes β-galactosidase (lacZ and NADPH-alcohol dehydrogenase (adhB in Clostridium thermocellum, an important bacterium for the production of cellulosic biofuels. Only three promoters have been commonly used for gene expression in C. thermocellum, gapDH, cbp and eno. Of the new promoters tested, 2638, 2926, 966 and 815 showed reliable expression. The 2638 promoter showed relatively higher activity when driving adhB (compared to lacZ, and the 815 promoter showed relatively higher activity when driving lacZ (compared to adhB.

  1. The core promoter: At the heart of gene expression.

    Science.gov (United States)

    Danino, Yehuda M; Even, Dan; Ideses, Diana; Juven-Gershon, Tamar

    2015-08-01

    The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.

  2. MAX2 Affects Multiple Hormones to Promote Photornorphogenesis

    Institute of Scientific and Technical Information of China (English)

    Hui Shen; Ling Zhu; Qing-Yun Bu; Enamul Huq

    2012-01-01

    Ubiquitin-26S proteasome system (UPS) has been shown to play central roles in light and hormone-regulated plant growth and development.Previously,we have shown that MAX2,an F-box protein,positively regulates facets of photomorphogenic development in response to light.However,how MAX2 controls these responses is still unknown.Here,we show that MAX2 oppositely regulates GA and ABA biosynthesis to optimize seed germination in response to light.Dose-response curves showed that max2 seeds are hyposensitive to GA and hypersensitive to ABA in seed germination responses.RT-PCR assays demonstrated that the expression of GA biosynthetic genes is down-regulated,while the expression of GA catabolic genes is up-regulated in the max2 seeds compared to wild-type.Interestingly,expression of both ABA biosynthetic and catabolic genes is up-regulated in the max2 seeds compared to wild-type.Treatment with an auxin transport inhibitor,NPA,showed that increased auxin transport in max2 seedlings contributes to the long hypocotyl phenotype under light.Moreover,light-signaling phenotypes are restricted to max2,as the biosynthetic mutants in the strigolactone pathway,max1,max3,and max4,did not display any defects in seed germination and seedling de-etiolation compared to wild-type.Taken together,these data suggest that MAX2 modulates multiple hormone pathways to affect photomorphogenesis.

  3. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  4. Archaeal promoter architecture and mechanism of gene activation

    DEFF Research Database (Denmark)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang;

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory...... element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked...

  5. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Science.gov (United States)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  6. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  7. Gene transfer to promote cardiac regeneration.

    Science.gov (United States)

    Collesi, Chiara; Giacca, Mauro

    2016-12-01

    There is an impelling need to develop new therapeutic strategies for patients with myocardial infarction and heart failure. Leading from the large quantity of new information gathered over the last few years on the mechanisms controlling cardiomyocyte proliferation during embryonic and fetal life, it is now possible to devise innovative therapies based on cardiac gene transfer. Different protein-coding genes controlling cell cycle progression or cardiomyocyte specification and differentiation, along with microRNA mimics and inhibitors regulating pre-natal and early post-natal cell proliferation, are amenable to transformation in potential therapeutics for cardiac regeneration. These gene therapy approaches are conceptually revolutionary, since they are aimed at stimulating the intrinsic potential of differentiated cardiac cells to proliferate, rather than relying on the implantation of exogenously expanded cells to achieve tissue regeneration. For efficient and prolonged cardiac gene transfer, vectors based on the Adeno-Associated Virus stand as safe, efficient and reliable tools for cardiac gene therapy applications.

  8. Optimization of reporter gene assay: several factors influencing detection of promoter activity

    Institute of Scientific and Technical Information of China (English)

    XUE Li-xiang; WENG Mo; ZHANG Zong-yu; TONG Tan-jun

    2007-01-01

    Background Promoter analysis is currently applied to detect the expression of the targeted gene in studies of signal transduction and transcriptional regulation. As a reporter gene, luciferase plays an important role and has been used widely in the promoter assay.Methods Human embryonic lung fibroblast cells (2BS), HeLa cells and MCF-7 cells were transfected with various genes embedded by lipofectamine. This study determined various factors that affect promoter activity determination,such as the selection of the reporter genes and internal references, the dose and the type of the vectors carrying the transcription factors, the host cells and the instruments.Results The sensitivity of the luciferase assay was much higher than that of enhanced green fluorescence protein (EGFP). Moreover, promoter activity is increased in a dose-related manner only in certain ranges outside of which the results may be reversed and the promoter activity is related to the expression vector which is carrying the cDNA.Otherwise, the length of the promoter, internal references and the host cell can also influence the promoter activity.Conclusions To detect the promoter activity accurately, a few factors including dose, vector, length and host cell which influence reporter gene assay aforementioned should be considered.

  9. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  10. Differential regulation of genes by retrotransposons in rice promoters.

    Science.gov (United States)

    Dhadi, Surendar Reddy; Xu, Zijun; Shaik, Rafi; Driscoll, Kyle; Ramakrishna, Wusirika

    2015-04-01

    Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.

  11. Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization

    Institute of Scientific and Technical Information of China (English)

    Ti Liu; Tianhong Wang; Xian Li; Xuan Liu

    2008-01-01

    To improve heterologous gene expression in Trichoderma reesei, a set of optimal artificial cellobiohydrolase I gene (cbh1) promoters was obtained. The region from-677 to -724 with three potential glucose repressor binding sites was deleted. Then the region from-620 to-820 of the modified cbh1 promoter, including the CCAAT box and the Ace2 binding site, was repeatedly inserted into the modified cbh1 promoter, obtaining promoters with copy numbers 2, 4,and 6. The results showed that the glucose repression effects were abolished and the expression level of the glucuronidase (gus) reporter gene regulated by these multi-copy promoters was markedly enhanced as the copy number increased simultaneously. The data showed the great promise of using the promoter artificial modification strategy to increase heterologous gene expression in filamentous fungi and provided a set of optional high-expression vectors for gene function investigation and strain modification.

  12. Aberrant gene promoter methylation in sputum from individuals exposed to smoky coal emissions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Lan, Q.; Shen, M.; Jin, J.; Mumford, J.; Ren, D.X.; Keohavong, P. [University of Pittsburgh, Pittsburgh, PA (United States). Dept. of Environment and Occupational Health

    2008-07-15

    Recent studies suggested the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. Here, the promoter methylation of p16, MGMT, RASSF1A and DAPK genes was investigated in sputum of individuals exposed to smoky coal emissions in Xuan Wei, China, where the lung cancer rate is more than 6 times the Chinese national average. Sputum DNA of 107 noncancer individuals and 58 lung cancer patients was screened for promoter methylation using methylation-specific PCR. Promoter methylation of the p16 gene was detected in about half (51.4% (551107)) of sputum DNA from noncancer individuals, a frequency higher than that observed for the RASSF1A (29.9%), MGMT (17.8%) and DAPK (15.9%) genes. Furthermore, the p16 gene was affected by promoter methylation at a frequency even higher among the lung cancer group, compared with the noncancer group (70.7% (41/58) versus 51.7% (55/107), p=0.017). Individuals exposed to smoky coal emissions in this region harbored frequent promoter methylation of these genes in their sputum and some of such alterations may be involved in lung tumor development.

  13. PROMOTER HYPERMETHYLATION OF p16 GENE AND DAPK GENE IN SERA FROM HEPATOCELLULAR CARCINOMA (HCC) PATIENTS

    Institute of Scientific and Technical Information of China (English)

    LIN Qing; CHEN Long-bang; TANG Yong-ming; WANG Jing

    2005-01-01

    Objective: To analyze the aberrant methylation of p16 gene and DAPK gene in sera from primary liver cancer patients ad to evaluate the clinical significance. Methods: A methylation-specific PCR was performed for the detection of promoter hypermethylation of p16 gene and DAPK gene in blood DNA from 64 cases of HCC patients, and to analyze the relation of the aberrant methylation of p16 gene and KAPK gene and the clinical pathological data. Results: 76.6%(49/64) of the sera from 64 cases of HCC patients showed hypermethylation for p16 promoter and 40.6% (26/64) for KAPK promoter, whereas no methylated p16 gene promoter and DAPK gene promoter were found in sera from benign liver diseases patients and normal control. Methylated p16 gene and KAPK gene promoters in sera did not strongly correlated with HBsAg, stage,metastasis and differentiation in HCC; but strongly correlated with AFP. Conclusion: Detection of the aberrant methylation of p16 gene and KAPK gene in blood DNA from HCC patients might offer an effective means for the earlier auxiliary diagnosis of the malignancy.

  14. Mechanosensitive promoter region in the human HB-GAM gene

    DEFF Research Database (Denmark)

    Liedert, Astrid; Kassem, Moustapha; Claes, Lutz;

    2009-01-01

    expression through specific transcription factor binding sites in the promoter region of mechanosensitive genes. In the present study, we demonstrate that the expression of HB-GAM, which is known to have stimulating effects on osteogenic differentiation, is rapidly induced by mechanical loading in hMSC-TERT4...... cells. Analysis of the human HB-GAM gene upstream regulatory region with luciferase reporter gene assays revealed that the upregulation of HB-GAM expression occurred at the transcriptional level and was mainly dependent on the HB-GAM promoter region most upstream containing three potential AP-1 binding...

  15. Functional analysis of the Myostatin gene promoter in sheep

    Institute of Scientific and Technical Information of China (English)

    DU; Rong; AN; XiaoRong; CHEN; YongFu; QIN; Jian

    2007-01-01

    Compared with the understanding for the functional mechanism of the myostatin gene, little is known about the regulatory mechanism of the myostatin gene transcription and expression. To better understand the function of the myostatin gene promoter (MSTNpro) in the transcriptional regulation of the myostatin gene and to further investigate the transcriptional regulation mechanism of the myostatin gene, the promoter region of the myostatin gene in sheep has been cloned in our recent study (AY918121). In this study, the wild (W) type MSTNProW-EGFP vectors and E-box (E) (CANNTG) mutant (M) type MSTNProE(3+5+7)M-EGFP vectors were constructed and the transcriptional regulation activities were compared by detecting the fluorescent strength of EGFP (enhanced green fluorescent protein) in C2C12 myoblasts (or myotubes) and sheep fibroblasts transfected with the vectors. Results showed that the 0.3―1.2 kb sheep myostatin promoter could activate the transcription and expression of EGFP gene in C2C12 myoblasts to different extent and the 1.2 kb promoter was the strongest. However, fluorescence was not observed in the sheep fibroblasts transfected with the 1.2 kb sheep myostatin promoter. These results suggested that the specific nature of the myostatin gene expression in skeletal muscle was attributed to the specific nature of the myostatin promoter activity. The increasing growth density of C2C12 myoblasts inhibited the transcriptional regulation activity of the wild type sheep myostatin promoter by a mechanism of feedback. The transcriptional regulation activity of the 1.2 kb wild type sheep myostatin promoter increased significantly after C2C12 myoblasts were differentiated, while the activity of 1.2 kb E(3+5+7)-mutant type myostatin promoter had no obvious change. This result suggested that MyoD may be responsible for the difference of the myostatin gene transcription and expression between growing and differentiating conditions by binding to E-box of the myostatin

  16. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters.

    Science.gov (United States)

    Estécio, Marcos R H; Gallegos, Juan; Dekmezian, Mhair; Lu, Yue; Liang, Shoudan; Issa, Jean-Pierre J

    2012-10-01

    Almost half of the human genome and as much as 40% of the mouse genome is composed of repetitive DNA sequences. The majority of these repeats are retrotransposons of the SINE and LINE families, and such repeats are generally repressed by epigenetic mechanisms. It has been proposed that these elements can act as methylation centers from which DNA methylation spreads into gene promoters in cancer. Contradictory to a methylation center function, we have found that retrotransposons are enriched near promoter CpG islands that stay methylation-free in cancer. Clearly, it is important to determine which influence, if any, these repetitive elements have on nearby gene promoters. Using an in vitro system, we confirm here that SINE B1 elements can influence the activity of downstream gene promoters, with acquisition of DNA methylation and loss of activating histone marks, thus resulting in a repressed state. SINE sequences themselves did not immediately acquire DNA methylation but were marked by H3K9me2 and H3K27me3. Moreover, our bisulfite sequencing data did not support that gain of DNA methylation in gene promoters occurred by methylation spreading from SINE B1 repeats. Genome-wide analysis of SINE repeats distribution showed that their enrichment is directly correlated with the presence of USF1, USF2, and CTCF binding, proteins with insulator function. In summary, our work supports the concept that SINE repeats interfere negatively with gene expression and that their presence near gene promoters is counter-selected, except when the promoter is protected by an insulator element.

  17. Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1

    DEFF Research Database (Denmark)

    Philips, Mari-Anne; Kingo, Külli; Karelson, Maire;

    2010-01-01

    MYG1 (Melanocyte proliferating gene 1, also C12orf10 in human) is a ubiquitous nucleo-mitochondrial protein, involved in early developmental processes and in adult stress/illness conditions. We recently showed that MYG1 mRNA expression is elevated in the skin of vitiligo patients. Our aim was to ...

  18. Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1

    DEFF Research Database (Denmark)

    Philips, Mari-Anne; Kingo, Külli; Karelson, Maire

    2010-01-01

    MYG1 (Melanocyte proliferating gene 1, also C12orf10 in human) is a ubiquitous nucleo-mitochondrial protein, involved in early developmental processes and in adult stress/illness conditions. We recently showed that MYG1 mRNA expression is elevated in the skin of vitiligo patients. Our aim...

  19. Epigenetic and Genetic Alterations Affect the WWOX Gene in Head and Neck Squamous Cell Carcinoma

    Science.gov (United States)

    Ekizoglu, Seda; Bulut, Pelin; Karaman, Emin; Kilic, Erkan; Buyru, Nur

    2015-01-01

    Different types of genetic and epigenetic changes are associated with HNSCC. The molecular mechanisms of HNSCC carcinogenesis are still undergoing intensive investigation. WWOX gene expression is altered in many cancers and in a recent work reduced WWOX expression has been associated with miR-134 expression in HNSCC. In this study we investigated the WWOX messenger RNA expression levels in association with the promoter methylation of the WWOX gene and miR-134 expression levels in 80 HNSCC tumor and non-cancerous tissue samples. Our results show that WWOX expression is down-regulated especially in advanced-stage tumor samples or in tumors with SCC. This down-regulation was associated with methylation of the WWOX promoter region but not with miR-134 expression. There was an inverse correlation between the expression level and promoter methylation. We also analyzed whole exons and exon/intron boundries of the WWOX gene by direct sequencing. In our study group we observed 10 different alterations in the coding sequences and 18 different alterations in the non-coding sequences of the WWOX gene in HNSCC tumor samples. These results indicate that the WWOX gene can be functionally inactivated by promoter methylation, epigenetically or by mutations affecting the sequences coding for the enzymatic domain of the gene, functionally. We conclude that inactivation of WWOX gene contributes to the progression of HNSCC. PMID:25612104

  20. Conditional gene expression and promoter replacement in Zymoseptoria tritici using fungal nitrate reductase promoters.

    Science.gov (United States)

    Marchegiani, Elisabetta; Sidhu, Yaadwinder; Haynes, Ken; Lebrun, Marc-Henri

    2015-06-01

    Studying essential genes in haploid fungi requires specific tools. Conditional promoter replacement (CPR) is an efficient method for testing gene essentiality. However, this tool requires promoters that can be strongly down-regulated. To this end, we tested the nitrate reductase promoters of Magnaporthe oryzae (pMoNIA1) and Zymoseptoria tritici (pZtNIA1) for their conditional expression in Z. tritici. Expression of EGFP driven by pMoNIA1 or pZtNIA1 was induced on nitrate and down-regulated on glutamate (10-fold less than nitrate). Levels of differential expression were similar for both promoters, demonstrating that the Z. tritici nitrogen regulatory network functions with a heterologous promoter similarly to a native promoter. To establish CPR, the promoter of Z. tritici BGS1, encoding a β-1,3-glucan synthase, was replaced by pZtNIA1 using targeted sequence replacement. Growth of pZtNIA1::BGS1 CPR transformants was strongly reduced in conditions repressing pZtNIA1, while their growth was similar to wild type in conditions inducing pZtNIA1. This differential phenotype demonstrates that BGS1 is important for growth in Z. tritici. In addition, in inducing conditions, pZtNIA1::BGS1 CPR transformants were hyper-sensitive to Calcofluor white, a cell wall disorganizing agent. Nitrate reductase promoters are therefore suitable for conditional promoter replacement in Z. tritici. This tool is a major step toward identifying novel fungicide targets.

  1. Evolution of Drosophila ribosomal protein gene core promoters.

    Science.gov (United States)

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  2. A novel PTEN gene promoter mutation and untypical Cowden syndrome

    Institute of Scientific and Technical Information of China (English)

    Chen Liu; Guangbing Li; Rongrong Chen; Xiaobo Yang; Xue Zhao; Haitao Zhao

    2013-01-01

    Cowden syndrome (CS),an autosomal dominant disorder,is one of a spectrum of clinical disorders that have been linked to germline mutations in the phosphatase and tensin homolog (PTEN) gene.Although 70-80% of patients with CS have an identifiable germline PTEN mutation,the clinical diagnosis presents many challenges because of the phenotypic and genotypic variations.In the present study,we sequenced the exons and the promoter of PTEN gene,mutations and variations in the promoter and exons were identified,and a PTEN protein expression negative region was determined by immunohistochemistry (IHC).In conclusion,a novel promoter mutation we found in PTEN gene may turn off PTEN protein expression occasionally,leading to the disorder of PTEN and untypical CS manifestations.

  3. Cloning and Characterization of Gene Promoters from Bacillus pumilus

    Institute of Scientific and Technical Information of China (English)

    Pan Jiao(潘皎); Zhang Yizheng

    2004-01-01

    DNA fragments obtained from Sau3AI partially digested total DNA of Bacillus pumilus UN31-C-42 are first inserted into BamHI site of pSUPV4, a promoter-probe vector. The recombinant DNA molecules are transformed into Escherichia coli cells and eight-three Kanr clones (named pSUBp1- pSUBp83) are obtained. The inserted fragments in pSUBp53, pSUBp57, pSUBp21, which showed high level of kanamycin - resistance, are sequenced and analyzed, respectively. These fragments contain some conserved sequences of prokaryotic gene promoters, such as TATAAT and TTGACA box. The promoter fragment Bp53 could efficiently promote the alkaline protease gene of B.pumilus expression not only in E.coli but also in B.subtilis cells.

  4. Mutations in many genes affect aggressive behavior in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Zwarts Liesbeth

    2009-06-01

    Full Text Available Abstract Background Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line. Results We identified 59 mutations in 57 genes that affect aggressive behavior, none of which had been previously implicated to affect aggression. Thirty-two of these mutants exhibited increased aggression, while 27 lines were less aggressive than the control. Many of the genes affect the development and function of the nervous system, and are thus plausibly relevant to the execution of complex behaviors. Others affect basic cellular and metabolic processes, or are mutations in computationally predicted genes for which aggressive behavior is the first biological annotation. Most of the mutations had pleiotropic effects on other complex traits. We characterized nine of these mutations in greater detail by assessing transcript levels throughout development, morphological changes in the mushroom bodies, and restoration of control levels of aggression in revertant alleles. All of the P-element insertions affected the tagged genes, and had pleiotropic effects on brain morphology. Conclusion This study reveals that many more

  5. A novel BDNF gene promoter directs expression to skeletal muscle

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2003-06-01

    Full Text Available Abstract Background Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood. Results The cloning and analysis of three additional zebrafish (Danio rerio BDNF gene exons and two associated promoters, is reported. Among them are two exons that generate a novel tripartite mature transcript. The exons were located on the transcription unit, whose overall organization was determined by cloning, Southern blot hybridization and sequence analysis, and compared with the pufferfish (Fugu rubripes and mammalian BDNF loci, revealing a conserved but more compact organization. Structural and functional analysis of the exons, their adjacent promoters and 5' flanks, showed that they are expressed cell-specifically. The promoter associated with the 5' exon of the tripartite transcript is GC-rich, TATA-less and the 5' flank adjacent to it contains multiple Sp1, Mef2, and AP1 elements. A fusion gene containing the promoter and 1.5 KB of 5' flank is directed exclusively to skeletal muscle of transiently transfected embryos. The second promoter, whose associated 5' exon contains a 25-nucleotide segment of identity with a mammalian BDNF gene exon, was transiently expressed in yolk of the early embryo. RT-PCR analysis of total RNA from whole juvenile fish and adult female skeletal muscle revealed tissue-specific expression of the 5' exons but the novel exon could not be detected even after two rounds of nested PCR. Conclusion The zebrafish BDNF gene is as complex as the mammalian gene yet much more compact. Its exons are

  6. Genetic variants in ABCA1 promoter affect transcription activity and plasma HDL level in pigs.

    Science.gov (United States)

    Dang, Xiao-yong; Chu, Wei-wei; Shi, Heng-chuan; Yu, Shi-gang; Han, Hai-yin; Gu, Shu-Hua; Chen, Jie

    2015-01-25

    Excess accumulation of cholesterol in plasma may result in coronary artery disease. Numerous studies have demonstrated that ATP-binding cassette protein A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to apolipoproteins, a process necessary for plasma high density lipoprotein (HDL) formation. Higher plasma levels of HDL are associated with lower risk for cardiovascular disease. Studies of human disease and animal models had shown that an increased hepatic ABCA1 activity relates to an enhanced plasma HDL level. In this study, we hypothesized that functional mutations in the ABCA1 promoter in pigs may affect gene transcription activity, and consequently the HDL level in plasma. The promoter region of ABCA1 was comparatively scanned by direct sequencing with pool DNA of high- and low-HDL groups (n=30 for each group). Two polymorphisms, c. - 608A>G and c. - 418T>A, were revealed with reverse allele distribution in the two groups. The two polymorphisms were completely linked and formed only G-A or A-T haplotypes when genotyped in a larger population (n=526). Furthermore, we found that the G-A/G-A genotype was associated with higher HDL and ABCA1 mRNA level than A-T/A-T genotype. Luciferase assay also revealed that G-A haplotype promoter had higher activity than A-T haplotype. Single-nucleotide mutant assay showed that c.-418T>A was the causal mutation for ABCA1 transcription activity alteration. Conclusively, we identified two completely linked SNPs in porcine ABCA1 promoter region which have influence on the plasma HDL level by altering ABCA1 gene transcriptional activity.

  7. Regulation of a Mammalian Gene Bearing a CpG Island Promoter and a Distal Enhancer

    Directory of Open Access Journals (Sweden)

    Georgina Berrozpe

    2013-08-01

    Full Text Available A quantitative nucleosome occupancy assay revealed rules for nucleosome disposition in yeast and showed how disposition affects regulation of the GAL genes. Here, we show how those findings apply to the control of Kit, a mammalian gene. The Kit promoter lies in a CpG island, and its enhancer (active in mast cells lies some 150 kb upstream. Nucleosomes form with especially high avidities at the Kit promoter, a reaction that, we surmise, ensures extremely low basal expression. In mast cells, transcriptional activators displace nucleosomes that are less tightly formed at the Kit enhancer. In turn, the active enhancer replaces a single Kit promoter nucleosome with the transcriptional machinery, thereby inducing transcription over 1,000-fold. As at the yeast GAL genes, the inhibitory effects of nucleosomes facilitate high factors of induction by mammalian activators working in the absence of specific repressors.

  8. Effect of promoter architecture on the cell-to-cell variability in gene expression.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    2011-03-01

    Full Text Available According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous and how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic cells as well.

  9. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD, a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.

  10. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Brandi L Gancarz

    Full Text Available Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol levels were significantly increased in strains depleted for a heat shock protein (HSF1 or proteasome components (PRE1 and RPT6, suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  11. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Science.gov (United States)

    Gancarz, Brandi L; Hao, Linhui; He, Qiuling; Newton, Michael A; Ahlquist, Paul

    2011-01-01

    Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol) levels were significantly increased in strains depleted for a heat shock protein (HSF1) or proteasome components (PRE1 and RPT6), suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol) localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  12. Stimulation of the mouse rRNA gene promoter by a distal spacer promoter.

    OpenAIRE

    Paalman, M H; Henderson, S L; Sollner-Webb, B

    1995-01-01

    We show that the mouse ribosomal DNA (rDNA) spacer promoter acts in vivo to stimulate transcription from a downstream rRNA gene promoter. This augmentation of mammalian RNA polymerase I transcription is observed in transient-transfection experiments with three different rodent cell lines, under noncompetitive as well as competitive transcription conditions, over a wide range of template concentrations, whether or not the enhancer repeats alone stimulate or repress expression from the downstre...

  13. Identification of learning and memory genes in canine; promoter investigation and determining the selective pressure.

    Science.gov (United States)

    Seifi Moroudi, Reihane; Masoudi, Ali Akbar; Vaez Torshizi, Rasoul; Zandi, Mohammad

    2014-12-01

    One of the important behaviors of dogs is trainability which is affected by learning and memory genes. These kinds of the genes have not yet been identified in dogs. In the current research, these genes were found in animal models by mining the biological data and scientific literatures. The proteins of these genes were obtained from the UniProt database in dogs and humans. Not all homologous proteins perform similar functions, thus comparison of these proteins was studied in terms of protein families, domains, biological processes, molecular functions, and cellular location of metabolic pathways in Interpro, KEGG, Quick Go and Psort databases. The results showed that some of these proteins have the same performance in the rat or mouse, dog, and human. It is anticipated that the protein of these genes may be effective in learning and memory in dogs. Then, the expression pattern of the recognized genes was investigated in the dog hippocampus using the existing information in the GEO profile. The results showed that BDNF, TAC1 and CCK genes are expressed in the dog hippocampus, therefore, these genes could be strong candidates associated with learning and memory in dogs. Subsequently, due to the importance of the promoter regions in gene function, this region was investigated in the above genes. Analysis of the promoter indicated that the HNF-4 site of BDNF gene and the transcription start site of CCK gene is exposed to methylation. Phylogenetic analysis of protein sequences of these genes showed high similarity in each of these three genes among the studied species. The dN/dS ratio for BDNF, TAC1 and CCK genes indicates a purifying selection during the evolution of the genes.

  14. Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1.

    Science.gov (United States)

    Albiñana, Virginia; Zafra, Ma Paz; Colau, Jorge; Zarrabeitia, Roberto; Recio-Poveda, Lucia; Olavarrieta, Leticia; Pérez-Pérez, Julián; Botella, Luisa M

    2017-02-23

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular multi-organ system disorder. Its diagnostic criteria include epistaxis, telangiectases in mucocutaneous sites, arteriovenous malformations (AVMs), and familial inheritance. HHT is transmitted as an autosomal dominant condition, caused in 85% of cases by mutations in either Endoglin (ENG) or Activin receptor-like kinase (ACVRL1/ACVRL1/ALK1) genes. Pathogenic mutations have been described in exons, splice junctions and, in a few cases with ENG mutations, in the proximal promoter, which creates a new ATG start site. However, no mutations affecting transcription regulation have been described to date in HHT, and this type of mutation is rarely identified in the literature on rare diseases. Sequencing data from a family with HHT lead to single nucleotide change, c.-58G > A. The functionality and pathogenicity of this change was analyzed by in vitro mutagenesis, quantitative PCR and Gel shift assay. Student t test was used for statistical significance. A single nucleotide change, c.-58G > A, in the proximal ENG promoter co-segregated with HHT clinical features in an HHT family. This mutation was present in the proband and in 2 other symptomatic members, whereas 2 asymptomatic relatives did not harbor the mutation. Analysis of RNA from activated monocytes from the probands and the healthy brother revealed reduced ENG mRNA expression in the HHT patient (p = 0.005). Site-directed mutagenesis of the ENG promoter resulted in a three-fold decrease in luciferase activity of the mutant c.-58A allele compared to wild type (p = 0.005). Finally, gel shift assay identified a DNA-protein specific complex. The novel ENG c.-58G > A substitution in the ENG promoter co-segregates with HHT symptoms in a family and appears to affect the transcriptional regulation of the gene, resulting in reduced ENG expression. ENG c.-58G > A may therefore be a pathogenic HHT mutation leading to haploinsufficiency of

  15. Aberrant CBFA2T3B gene promoter methylation in breast tumors

    Directory of Open Access Journals (Sweden)

    Bais Anthony J

    2004-08-01

    Full Text Available Abstract Background The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. Results Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. Conclusion CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology.

  16. Characterization of the promoter region of the mouse Xist gene.

    Science.gov (United States)

    Pillet, N; Bonny, C; Schorderet, D F

    1995-01-01

    The mouse Xist gene is expressed exclusively from the inactive X chromosome and may be implicated in initiating X inactivation. To better understand the mechanisms underlying the control of Xist expression, we investigated the upstream regulatory region of the mouse Xist promoter. A 1.2-kb upstream region of the Xist gene was sequenced and promoter activity was studied by chloramphenicol acetyltransferase (CAT) assays after transfection in murine XX and XY cell lines. The region analyzed (-1157 to +917 showed no in vitro sex-specific promoter activity. However, a minimal constitutional promoter was assigned to a region from -81 to +1, and a cis element from -41 to -15 regulates promoter activity. We showed that a nuclear factor binds to an element located at -30 to -25 (TTAAAG). A second sequence at -41 to -15 does not act as an enhancer and is unable to confer transcriptional activity to the Xist gene on its own. A third region from -82 to -41 is needed for correct expression. Deletion of the segment -441 to -231 is associated with an increase in CAT activity and may represent a silencer element. Images Fig. 3 PMID:8618932

  17. Characterization of seven genes affecting Caenorhabditis elegans hindgut development.

    Science.gov (United States)

    Chamberlin, H M; Brown, K B; Sternberg, P W; Thomas, J H

    1999-01-01

    We have identified and characterized 12 mutations in seven genes that affect the development of the Caenorhabditis elegans hindgut. We find that the mutations can disrupt the postembryonic development of the male-specific blast cells within the hindgut, the hindgut morphology in both males and hermaphrodites, and in some cases, the expression of a hindgut marker in hermaphrodite animals. Mutations in several of the genes also affect viability. On the basis of their mutant phenotypes, we propose that the genes fall into four distinct classes: (1) egl-5 is required for regional identity of the tail; (2) sem-4 is required for a variety of ectodermal and mesodermal cell types, including cells in the hindgut; (3) two genes, lin-49 and lin-59, affect development of many cells, including hindgut; and (4) three genes, mab-9, egl-38, and lin-48, are required for patterning fates within the hindgut, making certain hindgut cells different from others. We also describe a new allele of the Pax gene egl-38 that is temperature sensitive and affects the conserved beta-hairpin of the EGL-38 paired domain. Our results suggest that a combination of different factors contribute to normal C. elegans hindgut development. PMID:10511553

  18. In vitro mapping of Myotonic Dystrophy (DM) gene promoter

    Energy Technology Data Exchange (ETDEWEB)

    Storbeck, C.J.; Sabourin, L. [Univ. of Ottawa (Canada); Baird, S. [Children`s Hospital of Eastern Ontario, Ottawa (Canada)] [and others

    1994-09-01

    The Myotonic Dystrophy Kinase (DMK) gene has been cloned and shared homology to serine/threonine protein kinases. Overexpression of this gene in stably transfected mouse myoblasts has been shown to inhibit fusion into myotubes while myoblasts stably transfected with an antisense construct show increased fusion potential. These experiments, along with data showing that the DM gene is highly expressed in muscle have highlighted the possibility of DMK being involved in myogenesis. The promoter region of the DM gene lacks a consensus TATA box and CAAT box, but harbours numerous transcription binding sites. Clones containing extended 5{prime} upstream sequences (UPS) of DMK only weakly drive the reporter gene chloramphenicol acetyl transferase (CAT) when transfected into C2C12 mouse myoblasts. However, four E-boxes are present in the first intron of the DM gene and transient assays show increased expression of the CAT gene when the first intron is present downstream of these 5{prime} UPS in an orientation dependent manner. Comparison between mouse and human sequence reveals that the regions in the first intron where the E-boxes are located are highly conserved. The mapping of the promoter and the importance of the first intron in the control of DMK expression will be presented.

  19. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    , dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment......BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... for bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. CONCLUSIONS: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism...

  20. Comparative analysis of ADS gene promoter in seven Artemisia species

    Indian Academy of Sciences (India)

    Mojtaba Ranjbar; Mohammad Reza Naghavi; Hoshang Alizadeh

    2014-12-01

    Artemisinin is the most effective antimalarial drug that is derived from Artemisia annua. Amorpha-4,11-diene synthase (ADS) controls the first committed step in artemisinin biosynthesis. The ADS gene expression is regulated by transcription factors which bind to the cis-acting elements on the ADS promoter and are probably responsible for the ADS gene expression difference in the Artemisia species. To identify the elements that are significantly involved in ADS gene expression, the ADS gene promoter of the seven Artemisia species was isolated and comparative analysis was performed on the ADS promoter sequences of these species. Results revealed that some of the cis-elements were unique or in terms of number were more in the high artemisinin producer species, A. annua, than the other species. We have reported that the light-responsive elements, W-box, CAAT-box, 5′-UTR py-rich stretch, TATA-box sequence and tandem repeat sequences have been identified as important factors in the increased expression of ADS gene.

  1. Conditional promoters for analysis of essential genes in Zymoseptoria tritici.

    Science.gov (United States)

    Kilaru, S; Ma, W; Schuster, M; Courbot, M; Steinberg, G

    2015-06-01

    Development of new fungicides, needed for sustainable control of fungal plant pathogens, requires identification of novel anti-fungal targets. Essential fungal-specific proteins are good candidates, but due to their importance, gene deletion mutants are not viable. Consequently, their cellular role often remains elusive. This hindrance can be overcome by the use of conditional mutants, where expression is controlled by an inducible/repressible promoter. Here, we introduce 5 inducible/repressible promoter systems to study essential genes in the wheat pathogen Zymoseptoria tritici. We fused the gene for enhanced green-fluorescent protein (egfp) to the promoter region of Z. tritici nitrate reductase (Pnar1; induced by nitrogen and repressed by ammonium), 1,4-β-endoxylanase A (Pex1A; induced by xylose and repressed by maltodextrin), l-arabinofuranosidase B (PlaraB; induced by arabinose and repressed by glucose), galactose-1-phosphate uridylyltransferase 7 (Pgal7; induced by galactose and repressed by glucose) and isocitrate lyase (Picl1; induced by sodium acetate and repressed by glucose). This was followed by quantitative analysis of cytoplasmic reporter fluorescence under induced and repressed conditions. We show that Pnar1, PlaraB and Pex1A drive very little or no egfp expression when repressed, but induce moderate protein production when induced. In contrast, Pgal7 and Picl1 show considerable egfp expression when repressed, and were strongly induced in the presence of their inducers. Normalising the expression levels of all promoters to that of the α-tubulin promoter Ptub2 revealed that PlaraB was the weakest promoter (∼20% of Ptub2), whereas Picl1 strongly expressed the reporter (∼250% of Ptub2). The use of these tools promises a better understanding of essential genes, which will help developing novel control strategies that protect wheat from Z. tritici.

  2. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes.

  3. Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes.

    Science.gov (United States)

    Dozmorov, Mikhail G; Wren, Jonathan D; Alarcón-Riquelme, Marta E

    2014-02-01

    Genome-wide association studies have identified a number of autoimmune disease-susceptibility genes. Whether or not these loci share any regulatory or functional elements, however, is an open question. Finding such common regulators is of considerable research interest in order to define systemic therapeutic targets. The growing amount of experimental genomic annotations, particularly those from the ENCODE project, provide a wealth of opportunities to search for such commonalities. We hypothesized that regulatory commonalities might not only delineate a regulatory landscape predisposing to autoimmune diseases, but also define functional elements distinguishing specific diseases. We further investigated if, and how, disease-specific epigenomic elements can identify novel genes yet to be associated with the diseases. We evaluated transcription factors, histone modifications, and chromatin state data obtained from the ENCODE project for statistically significant over- or under-representation in the promoters of genes associated with Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), and Systemic Sclerosis (SSc). We identified BATF, BCL11A, IRF4, NFkB, PAX5, and PU.1 as transcription factors over-represented in SLE- and RA-susceptibility gene promoters. H3K4me1 and H3K4me2 epigenomic marks were associated with SLE susceptibility genes, and H3K9me3 was common to both SLE and RA. In contrast to a transcriptionally active signature in SLE and RA, SSc-susceptibility genes were depleted in activating epigenomic elements. Using epigenomic elements enriched in SLE and RA, we identified additional immune and B cell signaling-related genes with the same elements in their promoters. Our analysis suggests common and disease-specific epigenomic elements that may define novel therapeutic targets for controlling aberrant activation of autoimmune susceptibility genes.

  4. Gene promoter hypermethylation in leukoplakia of the oral mucosa

    Directory of Open Access Journals (Sweden)

    Mingli Liu

    2010-07-01

    Full Text Available Mingli Liu1, Lei Feng2, Ximing Tang3, Shanchun Guo41Department of Physics, Tufts University School of Medicine, Boston, Massachussetts; 2Department of Thoracic/Head and Neck Medical Oncology, 3Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas; 4Sylvester Cancer Center, University of Miami School of Medicine, Florida, USAAbstract: To examine whether aberrant DNA methylation in the promoter region might occur earlier in tumorigenesis, particularly in premalignant lesions, we examined biopsies from 111 participants in a chemoprevention trial aimed at reversal of oral leukoplakia, using methylation-specific polymerase chain reaction for the promoter regions of the tumor suppressor gene CDKN2A (p16, the putative metastasis suppressor gene for death-associated protein kinase (DAP-K, the DNA repair gene O6-methyguanine-DNA-methyltransferase (MGMT, and the detoxification gene glutathione S-transferase p1(GSTP1. p16 promoter hypermethylation was detected in 21 of 82 (25.6%, DAP-K hypermethylation in 28 of 87 (32.2%, and MGMT hypermethylation in 32 of 106 (30.2% oral leukoplakia lesions analyzed. No aberrant methylation was found at the GSTP1 gene in 110 lesions examined. Among 68 biopsies analyzed for all three genes (p16, DAP-K, MGMT, 17 biopsies were detected with an abnormal methylation pattern at only one gene, 15 at two genes, and 8 at all three genes. Among clinical characteristics and their correlation with methylation, only alcohol consumption was correlated with DAP-K methylation (P = 0.027, while MGMT methylation was more frequent in females (P = 0.003 and nonsmokers (P = 0.0005. A significant correlation was found between p16 and DAP-K hypermethylation; p16 promoter was methylated in 14 (56% of 25 lesions with DAP-K methylation, and only 5 (11.1% of 45 DAP-K methylation-negative lesions (P = 0.0001. DAP-K aberrant methylation was also significantly correlated with MGMT methylation (16 of 31 in MGMT methylation

  5. Germline promoter hypermethylation of tumor suppressor genes in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Pu-Yuan Wu; Zheng Zhang; Jing-Mei Wang; Wen-Wen Guo; Nong Xiao; Qiong He; Ya-Ping Wang; Yi-Mei Fan

    2012-01-01

    AIM: To explore germline hypermethylation of the tumor suppressor genes MLH1 , CDH1 and P16INK4a in suspected cases of hereditary gastric cancer (GC). METHODS: A group of 140 Chinese GC patients in whom the primary cancer had developed before the age of 60 or who had a familial history of cancer were screened for germline hypermethylation of the MLH1 , CDH1 and P16INK4a tumor suppressor genes. Genomic DNA was extracted from peripheral blood leukocytes and modified by sodium bisulfite. The treated DNA was then subjected to bisulfite DNA sequencing for a specific region of the MLH1 promoter. The methylation status of CDH1 or P16INK4a was assayed using methylation- specific PCR. Clonal bisulfite allelic sequencing in positive samples was performed to obtain a comprehensive analysis of the CpG island methylation status of these promoter regions. RESULTS: Methylation of the MLH1 gene promoter was detected in the peripheral blood DNA of only 1/140 (0.7%) of the GC patient group. However, this methylation pattern was mosaic rather than the allelic pattern which has previously been reported for MLH1 in hereditary non-polyposis colorectal cancer (HNPCC) patients. We found that 10% of the MLH1 alleles in the peripheral blood DNA of this patient were methylated, consistent with 20% of cells having one methylated allele. No germline promoter methylation of the CDH1 or P16INK4a genes was detected. CONCLUSION: Mosaic germline epimutation of the MLH1 gene is present in suspected hereditary GC patients in China but at a very low level. Germline epimutation of the CDH1 or P16INK4a gene is not a frequent event.

  6. Isolation and characterization of the murine Nanog gene promoter

    Institute of Scientific and Technical Information of China (English)

    Da Yong WU; Zhen YAO

    2005-01-01

    Nanog protein is expressed in the interior cells of compacted morulae and maintained till epiblasts but downregulated by implantation stage. It is also expressed in embryonic stem cells, embryonic carcinoma cells and embryonic germ cells but disappeared in differentiated ES cells. In this study, we have isolated, sequenced, and performed the first characterization of the Nanog promoter. The transcription start sites were mapped by primer extension analysis. Two promoter regions were found upstream the transcription start sites and the expression of major Nanog promoter/reporter gene construct is abolished in differentiated F9 EC cells as compared to the undifferentiated counterpart. We also showed that a putative octamer motif (ATGCAAAA) is necessary for the major promoter activity. Gel shift and supershift assays showed that Oct-1, Oct-4 and Oct-6 protein selectively bind to the octamer motif.

  7. Gardening promotes neuroendocrine and affective restoration from stress.

    Science.gov (United States)

    Van Den Berg, Agnes E; Custers, Mariëtte H G

    2011-01-01

    Stress-relieving effects of gardening were hypothesized and tested in a field experiment. Thirty allotment gardeners performed a stressful Stroop task and were then randomly assigned to 30 minutes of outdoor gardening or indoor reading on their own allotment plot. Salivary cortisol levels and self-reported mood were repeatedly measured. Gardening and reading each led to decreases in cortisol during the recovery period, but decreases were significantly stronger in the gardening group. Positive mood was fully restored after gardening, but further deteriorated during reading. These findings provide the first experimental evidence that gardening can promote relief from acute stress.

  8. Probing the effect of promoters on noise in gene expression using thousands of designed sequences.

    Science.gov (United States)

    Sharon, Eilon; van Dijk, David; Kalma, Yael; Keren, Leeat; Manor, Ohad; Yakhini, Zohar; Segal, Eran

    2014-10-01

    Genetically identical cells exhibit large variability (noise) in gene expression, with important consequences for cellular function. Although the amount of noise decreases with and is thus partly determined by the mean expression level, the extent to which different promoter sequences can deviate away from this trend is not fully known. Here, we present a high-throughput method for measuring promoter-driven noise for thousands of designed synthetic promoters in parallel. We use it to investigate how promoters encode different noise levels and find that the noise levels of promoters with similar mean expression levels can vary more than one order of magnitude, with nucleosome-disfavoring sequences resulting in lower noise and more transcription factor binding sites resulting in higher noise. We propose a kinetic model of gene expression that takes into account the nonspecific DNA binding and one-dimensional sliding along the DNA, which occurs when transcription factors search for their target sites. We show that this assumption can improve the prediction of the mean-independent component of expression noise for our designed promoter sequences, suggesting that a transcription factor target search may affect gene expression noise. Consistent with our findings in designed promoters, we find that binding-site multiplicity in native promoters is associated with higher expression noise. Overall, our results demonstrate that small changes in promoter DNA sequence can tune noise levels in a manner that is predictable and partly decoupled from effects on the mean expression levels. These insights may assist in designing promoters with desired noise levels.

  9. Genetic Variants in the STMN1 Transcriptional Regulatory Region Affect Promoter Activity and Fear Behavior in English Springer Spaniels.

    Directory of Open Access Journals (Sweden)

    Xiaolin Ding

    Full Text Available Stathmin 1 (STMN1 is a neuronal growth-associated protein that is involved in microtubule dynamics and plays an important role in synaptic outgrowth and plasticity. Given that STMN1 affects fear behavior, we hypothesized that genetic variations in the STMN1 transcriptional regulatory region affect gene transcription activity and control fear behavior. In this study, two single nucleotide polymorphisms (SNPs, g. -327 A>G and g. -125 C>T, were identified in 317 English Springer Spaniels. A bioinformatics analysis revealed that both were loci located in the canine STMN1 putative promoter region and affected transcription factor binding. A statistical analysis revealed that the TT genotype at g.-125 C>T produced a significantly greater fear level than that of the CC genotype (P < 0.05. Furthermore, the H4H4 (GTGT haplotype combination was significantly associated with canine fear behavior (P < 0.01. Using serially truncated constructs of the STMN1 promoters and the luciferase reporter, we found that a 395 bp (-312 nt to +83 nt fragment constituted the core promoter region. The luciferase assay also revealed that the H4 (GT haplotype promoter had higher activity than that of other haplotypes. Overall, our results suggest that the two SNPs in the canine STMN1 promoter region could affect canine fear behavior by altering STMN1 transcriptional activity.

  10. The combination of a synthetic promoter and a CMV promoter improves foreign gene expression efficiency in myocytes.

    Science.gov (United States)

    Jianwei, Dai; Qianqian, Zhang; Songcai, Liu; Mingjun, Zhang; Xiaohui, Ren; Linlin, Hao; Qingyan, Jiang; Yongliang, Zhang

    2012-04-15

    Skeletal muscle is becoming an attractive target tissue for gene therapy. Nevertheless, the low level of gene therapeutic expression in this tissue is the major limitation to it becoming an ideal target for gene transfer. The promoter is important element for gene transcription; however, the gene expression efficiencies and specificities of viral promoters and skeletal muscle-specific promotors are in themselves limiting factors. In this study, we established a dual-promoters system in skeletal muscle using a cytomegalovirus (CMV) promoter and a skeletal muscle-specific synthetic promoter. Mouse myoblast cell line C2C12 cells were transfected with the system. We demonstrated that the dual-promoters system could significantly improve exogenous gene expression rate in vitro when compared with a single CMV promoter system and a skeletal muscle-specific synthetic promoter system in C2C12 cell line, by 69.48% and 41.93%, respectively. Next, we evaluated the system efficiency in vivo, the results showed that the dual-promoters system increased gene expression in mice 1.23-fold and 1.60-fold, respectively compared with expression controlled by the two single promoter vectors. Finally, we tested the dual-promoters system in growth hormone-releasing hormone (GHRH) gene therapy, and revealed that when these two promoters co-drove the GHRH gene expression in vivo animal growth was enhanced significantly. All these results indicate that use of the dual-promoter vector was more efficient for gene expression in skeletal muscle tissue than use of the single promoter vectors. These finding could, hopefully, lead to the development of a high efficiency expression system in myocytes and form an ideal approach for gene therapy. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Gene promoter analysis and molecular diagnostics – Application to erythroid-specific gene expression

    NARCIS (Netherlands)

    de Vooght, K.M.K.

    2008-01-01

    Gene expression is regulated at many levels. Most regulation, however, is believed to occur at the level of transcription initiation. Transcription factors, chromatin-modifying enzymes, and basal transcription factors unite to activate genes and are recruited in a precise order to promoters. This th

  12. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation.

    Directory of Open Access Journals (Sweden)

    Kevin Pruitt

    2006-03-01

    Full Text Available The class III histone deactylase (HDAC, SIRT1, has cancer relevance because it regulates lifespan in multiple organisms, down-regulates p53 function through deacetylation, and is linked to polycomb gene silencing in Drosophila. However, it has not been reported to mediate heterochromatin formation or heritable silencing for endogenous mammalian genes. Herein, we show that SIRT1 localizes to promoters of several aberrantly silenced tumor suppressor genes (TSGs in which 5' CpG islands are densely hypermethylated, but not to these same promoters in cell lines in which the promoters are not hypermethylated and the genes are expressed. Heretofore, only type I and II HDACs, through deactylation of lysines 9 and 14 of histone H3 (H3-K9 and H3-K14, respectively, had been tied to the above TSG silencing. However, inhibition of these enzymes alone fails to re-activate the genes unless DNA methylation is first inhibited. In contrast, inhibition of SIRT1 by pharmacologic, dominant negative, and siRNA (small interfering RNA-mediated inhibition in breast and colon cancer cells causes increased H4-K16 and H3-K9 acetylation at endogenous promoters and gene re-expression despite full retention of promoter DNA hypermethylation. Furthermore, SIRT1 inhibition affects key phenotypic aspects of cancer cells. We thus have identified a new component of epigenetic TSG silencing that may potentially link some epigenetic changes associated with aging with those found in cancer, and provide new directions for therapeutically targeting these important genes for re-expression.

  13. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination.

    Science.gov (United States)

    Reynolds, David L; Hofmeister, Brigitte T; Cliffe, Laura; Siegel, T Nicolai; Anderson, Britta A; Beverley, Stephen M; Schmitz, Robert J; Sabatini, Robert

    2016-08-01

    The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription.

  14. RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes.

    Science.gov (United States)

    Zheng, Qi; Rowley, M Jordan; Böhmdorfer, Gudrun; Sandhu, Davinder; Gregory, Brian D; Wierzbicki, Andrzej T

    2013-01-01

    Transcriptional gene silencing controls transposons and other repetitive elements through RNA-directed DNA methylation (RdDM) and heterochromatin formation. A key component of the Arabidopsis RdDM pathway is ARGONAUTE4 (AGO4), which associates with siRNAs to mediate DNA methylation. Here, we show that AGO4 preferentially targets transposable elements embedded within promoters of protein-coding genes. This pattern of AGO4 binding cannot be simply explained by the sequences of AGO4-bound siRNAs; instead, AGO4 binding to specific gene promoters is also mediated by long non-coding RNAs (lncRNAs) produced by RNA polymerase V. lncRNA-mediated AGO4 binding to gene promoters directs asymmetric DNA methylation to these genomic regions and is involved in regulating the expression of targeted genes. Finally, AGO4 binding overlaps sites of DNA methylation affected by the biotic stress response. Based on these findings, we propose that the targets of AGO4-directed RdDM are regulatory units responsible for controlling gene expression under specific environmental conditions.

  15. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune

    NARCIS (Netherlands)

    van Wetter, MA; Wosten, HAB; Sietsma, JH; Wessels, JGH

    2000-01-01

    Disruption of the SC3 hydrophobin gene of Schizophyllum commune (Delta SC3 strain) affected the composition of the cell wall. Compared to a wild-type strain the amount of mucilage (i.e., water-soluble (1-3)beta -glucan with single glucose residues attached by (I-G)P-linkages) increased considerably,

  16. Genetic background affects human glial fibrillary acidic protein promoter activity.

    Directory of Open Access Journals (Sweden)

    Xianshu Bai

    Full Text Available The human glial fibrillary acidic protein (hGFAP promoter has been used to generate numerous transgenic mouse lines, which has facilitated the analysis of astrocyte function in health and disease. Here, we evaluated the expression levels of various hGFAP transgenes at different ages in the two most commonly used inbred mouse strains, FVB/N (FVB and C57BL/6N (B6N. In general, transgenic mice maintained on the B6N background displayed weaker transgene expression compared with transgenic FVB mice. Higher level of transgene expression in B6N mice could be regained by crossbreeding to FVB wild type mice. However, the endogenous murine GFAP expression was equivalent in both strains. In addition, we found that endogenous GFAP expression was increased in transgenic mice in comparison to wild type mice. The activities of the hGFAP transgenes were not age-dependently regulated. Our data highlight the importance of proper expression analysis when non-homologous recombination transgenesis is used.

  17. Gene activation regresses atherosclerosis, promotes health, and enhances longevity

    Directory of Open Access Journals (Sweden)

    Luoma Pauli V

    2010-07-01

    Full Text Available Abstract Background Lifestyle factors and pharmacological compounds activate genetic mechanisms that influence the development of atherosclerotic and other diseases. This article reviews studies on natural and pharmacological gene activation that promotes health and enhances longevity. Results Living habits including healthy diet and regular physical activity, and pharmacotherapy, upregulate genes encoding enzymes and apolipoprotein and ATP-binding cassette transporters, acting in metabolic processes that promote health and increase survival. Cytochrome P450-enzymes, physiological factors in maintaining cholesterol homeostasis, generate oxysterols for the elimination of surplus cholesterol. Hepatic CTP:phosphocholine cytidylyltransferase-α is an important regulator of plasma HDL-C level. Gene-activators produce plasma lipoprotein profile, high HDL-C, HDL2-C and HDL-C/cholesterol ratio, which is typical of low risk of atherosclerotic disease, and also of exceptional longevity together with reduced prevalence of cardiovascular, metabolic and other diseases. High HDL contributes to protection against inflammation, oxidation and thrombosis, and associates with good cognitive function in very old people. Avoiding unhealthy stress and managing it properly promotes health and increases life expectancy. Conclusions Healthy living habits and gene-activating xenobiotics upregulate mechanisms that produce lipoprotein pattern typical of very old people and enhance longevity. Lipoprotein metabolism and large HDL2 associate with the process of living a very long life. Major future goals for health promotion are the improving of commitment to both wise lifestyle choices and drug therapy, and further the developing of new and more effective and well tolerated drugs and treatments.

  18. The expression of tga1a gene from tobacco affects the expression of exogenous gene in transgenic plant

    Institute of Scientific and Technical Information of China (English)

    路子显; 常团结; 李旭刚; 徐军望; 李慧芬; 陈宛新; 冯德江; 肖桂芳; 朱祯

    2003-01-01

    The DNA-binding protein TGA1a of tobacco can specially interact with the enhancer sequence as-1 (-83 to -63) of CaMV35S promoter and show the function of transcriptional activation. In order to study the expression of exogenous gene affected by TGA1a, a trans-actingregulation system was formed by tandem connecting tga1a under the control of the phloem-specific promoter rolC with reporter gene under the control of CaMV35S. Then, the system abovewas utilized to construct a plant expression vector. Moreover, two plant expression vectors wereconstructed with the report gene controlled by CaMV35S and rolC promoter respectively as positive controls. Tobacco leaf disc transformed by Agrobacterium-mediated method and transgenic plants were regenerated. It was proved that the reporter gene existed in the genome of transgenic plants by Southern hybridization. The results of GUS activity indicated that the expression of tga1a controlled by rolC remarkably increased the expression of the reporter gene controlled by CaMV35S. GUS activity of transgenic plants containing trans-acting regulation system was higher than that of transgenic plants containing the reporter gene under the control of CaMV35S and rolC respectively, with the highest GUS activity of about tenfolds of two positive controls. Histochemical method demonstrated that GUS staining amassed mainly in phloem tissue of transgenic plantscontaining the trans-acting regulation system. A new model for arising the expression level and tissue-specific expression of exogenous gene in transgenic plant was established in this study.

  19. Polymorphisms in the leptin gene promoter in Brazilian beef herds.

    Science.gov (United States)

    Guimarães, R C; Azevedo, J S N; Corrêa, S C; Campelo, J E G; Barbosa, E M; Gonçalves, E C; Silva Filho, E

    2016-12-02

    Brazil is the world's largest producer of beef cattle; however, the quality of its herds needs to be improved. The use of molecular markers as auxiliary tools in selecting animals for reproduction with high pattern for beef production would significantly improve the quality of the final beef product in Brazil. The leptin gene has been demonstrated to be an excellent candidate gene for bovine breeding. The objective of this study was to sequence and compare the leptin gene promoter of Brazil's important cattle breeds in order to identify polymorphisms in it. Blood samples of the Nellore, Guzerat, Tabapuã, and Senepol breeds were collected for genomic DNA extraction. The genomic DNA was used as a template for polymerase chain reaction (PCR) to amplify a 1575-bp fragment, which in turn was sequenced, aligned, and compared between animals of different breeds. Twenty-three single nucleotide polymorphic sites, including transitions and transversions, were detected at positions -1457, -1452, -1446, -1397, -1392, -1361, -1238, -963,-901, -578, -516, -483, -478, -470, -432, -430, -292, -282, -272, -211, -202, -170, and -147. Additionally, two insertion sites at positions -680 and -416 and two deletion sites at positions -1255 and -1059 were detected. As the promoter region of the leptin gene has been demonstrated to vary among breeds, these variations must be tested for their use as potential molecular markers for artificial selection of animals for enhanced beef production in different systems of bovine production in Brazil.

  20. The Affect Of Sales Promotion On Consumer Interest To Purchase In IKCO Automotive Company

    Directory of Open Access Journals (Sweden)

    Jamia Hamdard

    2011-06-01

    Full Text Available Sales promotion has become a vital tool for marketing and its importance has been increasing significantly over the years. One of the purposes of a sales promotion is to elicit a direct impact on the purchase behavior of the firm’s consumers. Firms have to rethink the relationship between attitude and behavior of their consumers.Sales promotions are highly affective in exposing consumers to products for the first time and can serve as key promotional components in the early stages of new product presentation. The purpose of this paper is to study of the affect of sales promotion on consumer interest to purchase products of IKCO automotive company as well as Performance of sales promotion in introducing of new product to consumer is studied.

  1. A database of annotated promoters of genes associated with common respiratory and related diseases

    KAUST Repository

    Chowdhary, Rajesh

    2012-07-01

    Many genes have been implicated in the pathogenesis of common respiratory and related diseases (RRDs), yet the underlying mechanisms are largely unknown. Differential gene expression patterns in diseased and healthy individuals suggest that RRDs affect or are affected by modified transcription regulation programs. It is thus crucial to characterize implicated genes in terms of transcriptional regulation. For this purpose, we conducted a promoter analysis of genes associated with 11 common RRDs including allergic rhinitis, asthma, bronchiectasis, bronchiolitis, bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, eczema, psoriasis, and urticaria, many of which are thought to be genetically related. The objective of the present study was to obtain deeper insight into the transcriptional regulation of these disease-associated genes by annotating their promoter regions with transcription factors (TFs) and TF binding sites (TFBSs). We discovered many TFs that are significantly enriched in the target disease groups including associations that have been documented in the literature. We also identified a number of putative TFs/TFBSs that appear to be novel. The results of our analysis are provided in an online database that is freely accessible to researchers at http://www.respiratorygenomics.com. Promoter-associated TFBS information and related genomic features, such as histone modification sites, microsatellites, CpG islands, and SNPs, are graphically summarized in the database. Users can compare and contrast underlying mechanisms of specific RRDs relative to candidate genes, TFs, gene ontology terms, micro-RNAs, and biological pathways for the conduct of metaanalyses. This database represents a novel, useful resource for RRD researchers. Copyright © 2012 by the American Thoracic Society.

  2. Silencing of CHD5 gene by promoter methylation in leukemia.

    Directory of Open Access Journals (Sweden)

    Rui Zhao

    Full Text Available Chromodomain helicase DNA binding protein 5 (CHD5 was previously proposed to function as a potent tumor suppressor by acting as a master regulator of a tumor-suppressive network. CHD5 is down-regulated in several cancers, including leukemia and is responsible for tumor generation and progression. However, the mechanism of CHD5 down-regulation in leukemia is largely unknown. In this study, quantitative reverse-transcriptase polymerase chain reaction and western blotting analyses revealed that CHD5 was down-regulated in human leukemia cell lines and samples. Luciferase reporter assays showed that most of the baseline regulatory activity was localized from 500 to 200 bp upstream of the transcription start site. Bisulfite DNA sequencing of the identified regulatory element revealed that the CHD5 promoter was hypermethylated in human leukemia cells and samples. Thus, CHD5 expression was inversely correlated with promoter DNA methylation in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC activates CHD5 expression in human leukemia cell lines. In vitro luciferase reporter assays demonstrated that methylation of the CHD5 promoter repressed its promoter activity. Furthermore, a chromatin immunoprecipitation assay combined with qualitative PCR identified activating protein 2 (AP2 as a potential transcription factor involved in CHD5 expression and indicated that treatment with DAC increases the recruitment of AP2 to the CHD5 promoter. In vitro transcription-factor activity studies showed that AP2 over-expression was able to activate CHD5 promoter activity. Our findings indicate that repression of CHD5 gene expression in human leukemia is mediated in part by DNA methylation of its promoter.

  3. Analysis of promoter activity in transgenic plants by normalizing expression with a reference gene: anomalies due to the influence of the test promoter on the reference promoter

    Indian Academy of Sciences (India)

    Simran Bhullar; Suma Chakravarthy; Deepak Pental; Pradeep Kumar Burma

    2009-12-01

    Variations in transgene expression due to position effect and copy number are normalized when analysing and comparing the strengths of different promoters. In such experiments, the promoter to be tested is placed upstream to a reporter gene and a second expression cassette is introduced in a linked fashion in the same transfer DNA (T-DNA). Normalization in the activity of the test promoter is carried out by calculating the ratio of activities of the test and reference promoters. When an appropriate number of independent transgenic events are analysed, normalization facilitates assessment of the relative strengths of the test promoters being compared. In this study, using different modified versions of the Cauliflower Mosaic Virus (CaMV) 35S promoter expressing the reporter gene -glucuronidase (gus) (test cassette) linked to a chloramphenicol acetyl transferase (cat) gene under the wild-type 35S promoter (reference cassette) in transgenic tobacco lines, we observed that cat gene expression varied depending upon the strength of the modified 35S promoter expressing the gus gene. The 35S promoter in the reference cassette was found to have been upregulated in cases where the modified 35S promoter was weaker than the wild-type 35S promoter. Many studies have been carried out in different organisms to study the phenomenon of transcriptional interference, which refers to the reduced expression of the downstream promoter by a closely linked upstream promoter. However, we observed a positive interaction wherein the weakened activity of a promoter led to upregulation of a contiguous promoter. These observations suggest that, in situations where the promoters of the test and reference gene share the same transcription factors, the activity of the test promoter can influence the activity of the reference promoter in a way that the test promoter’s strength is underestimated when normalized by the reference promoter.

  4. Identifying sexual differentiation genes that affect Drosophila life span

    Directory of Open Access Journals (Sweden)

    Tower John

    2009-12-01

    Full Text Available Abstract Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF during development was lethal to males, and produced a limited

  5. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  6. Isolation and functional characterization of a lycopene β-cyclase gene promoter from citrus

    Directory of Open Access Journals (Sweden)

    Suwen Lu

    2016-09-01

    Full Text Available Lycopene β-cyclases are key enzymes located at the branch point of the carotenoid biosynthesis pathway. However, the transcriptional regulatory mechanisms of LCYb1 in citrus with abundant carotenoid accumulation are still unclear. To understand the molecular basis of CsLCYb1 expression, we isolated and functionally characterized the 5’ upstream sequences of CsLCYb1 from citrus. The full-length CsLCYb1 promoter and a series of its 5’ deletions were fused to the β-glucuronidase (GUS reporter gene and transferred into different plants (tomato, Arabidopsis and citrus callus to test the promoter activities. The results of all transgenic species showed that the 1584 bp upstream region from the translational start site displayed maximal promoter activity, and the minimal promoter containing 746 bp upstream sequences was sufficient for strong basal promoter activity. Furthermore, the CsLCYb1 promoter activity was developmentally and tissue-specially regulated in transgenic Arabidopsis, and it was affected by multiple hormones and environmental cues in transgenic citrus callus under various treatments. Finer deletion analysis identified an enhancer element existing as a tandem repeat in the promoter region between -574 to -513 bp and conferring strong promoter activity. The copy numbers of the enhancer element differed among various citrus species, leading to the development of a derived simple sequence repeat (SSR marker to distinguish different species. In conclusion, this study elucidates the expression characteristics of the LCYb1 promoter from citrus and further identifies a novel enhancer element required for the promoter activity. The characterized promoter fragment would be an ideal candidate for genetic engineering and seeking of upstream trans-acting elements.

  7. Isolation and Functional Characterization of a Lycopene β-cyclase Gene Promoter from Citrus.

    Science.gov (United States)

    Lu, Suwen; Zhang, Yin; Zheng, Xiongjie; Zhu, Kaijie; Xu, Qiang; Deng, Xiuxin

    2016-01-01

    Lycopene β-cyclases are key enzymes located at the branch point of the carotenoid biosynthesis pathway. However, the transcriptional regulatory mechanisms of LCYb1 in citrus with abundant carotenoid accumulation are still unclear. To understand the molecular basis of CsLCYb1 expression, we isolated and functionally characterized the 5' upstream sequences of CsLCYb1 from citrus. The full-length CsLCYb1 promoter and a series of its 5' deletions were fused to the β-glucuronidase (GUS) reporter gene and transferred into different plants (tomato, Arabidopsis and citrus callus) to test the promoter activities. The results of all transgenic species showed that the 1584 bp upstream region from the translational start site displayed maximal promoter activity, and the minimal promoter containing 746 bp upstream sequences was sufficient for strong basal promoter activity. Furthermore, the CsLCYb1 promoter activity was developmentally and tissue-specially regulated in transgenic Arabidopsis, and it was affected by multiple hormones and environmental cues in transgenic citrus callus under various treatments. Finer deletion analysis identified an enhancer element existing as a tandem repeat in the promoter region between -574 to -513 bp and conferring strong promoter activity. The copy numbers of the enhancer element differed among various citrus species, leading to the development of a derived simple sequence repeat marker to distinguish different species. In conclusion, this study elucidates the expression characteristics of the LCYb1 promoter from citrus and further identifies a novel enhancer element required for the promoter activity. The characterized promoter fragment would be an ideal candidate for genetic engineering and seeking of upstream trans-acting elements.

  8. Computational promoter analysis of mouse, rat and human antimicrobial peptide-coding genes

    Directory of Open Access Journals (Sweden)

    Kai Chikatoshi

    2006-12-01

    Full Text Available Abstract Background Mammalian antimicrobial peptides (AMPs are effectors of the innate immune response. A multitude of signals coming from pathways of mammalian pathogen/pattern recognition receptors and other proteins affect the expression of AMP-coding genes (AMPcgs. For many AMPcgs the promoter elements and transcription factors that control their tissue cell-specific expression have yet to be fully identified and characterized. Results Based upon the RIKEN full-length cDNA and public sequence data derived from human, mouse and rat, we identified 178 candidate AMP transcripts derived from 61 genes belonging to 29 AMP families. However, only for 31 mouse genes belonging to 22 AMP families we were able to determine true orthologous relationships with 30 human and 15 rat sequences. We screened the promoter regions of AMPcgs in the three species for motifs by an ab initio motif finding method and analyzed the derived promoter characteristics. Promoter models were developed for alpha-defensins, penk and zap AMP families. The results suggest a core set of transcription factors (TFs that regulate the transcription of AMPcg families in mouse, rat and human. The three most frequent core TFs groups include liver-, nervous system-specific and nuclear hormone receptors (NHRs. Out of 440 motifs analyzed, we found that three represent potentially novel TF-binding motifs enriched in promoters of AMPcgs, while the other four motifs appear to be species-specific. Conclusion Our large-scale computational analysis of promoters of 22 families of AMPcgs across three mammalian species suggests that their key transcriptional regulators are likely to be TFs of the liver-, nervous system-specific and NHR groups. The computationally inferred promoter elements and potential TF binding motifs provide a rich resource for targeted experimental validation of TF binding and signaling studies that aim at the regulation of mouse, rat or human AMPcgs.

  9. The Affect Of Sales Promotion On Consumer Interest To Purchase In IKCO Automotive Company

    OpenAIRE

    Shahriar Ansari CHAHARSOUGHI

    2011-01-01

    Sales promotion has become a vital tool for marketing and its importance has been increasing significantly over the years. One of the purposes of a sales promotion is to elicit a direct impact on the purchase behavior of the firm’s consumers. Firms have to rethink the relationship between attitude and behavior of their consumers. Sales promotions are highly affective in exposing consumers to products for the first time and can serve as key promotional components in the early stages of new pro...

  10. Cis-regulatory Mutations in the Caenorhabditis elegans Homeobox Gene Locus cog-1 Affect Neuronal Development

    Science.gov (United States)

    O'Meara, M. Maggie; Bigelow, Henry; Flibotte, Stephane; Etchberger, John F.; Moerman, Donald G.; Hobert, Oliver

    2009-01-01

    We apply here comparative genome hybridization as a novel tool to identify the molecular lesion in two Caenorhabditis elegans mutant strains that affect a neuronal cell fate decision. The phenotype of the mutant strains resembles those of the loss-of-function alleles of the cog-1 homeobox gene, an inducer of the fate of the gustatory neuron ASER. We find that both lesions map to the cis-regulatory control region of cog-1 and affect a phylogenetically conserved binding site for the C2H2 zinc-finger transcription factor CHE-1, a previously known regulator of cog-1 expression in ASER. Identification of this CHE-1-binding site as a critical regulator of cog-1 expression in the ASER in vivo represents one of the rare demonstrations of the in vivo relevance of an experimentally determined or predicted transcription-factor-binding site. Aside from the mutationally defined CHE-1-binding site, cog-1 contains a second, functional CHE-1-binding site, which in isolation is sufficient to drive reporter gene expression in the ASER but in an in vivo context is apparently insufficient for promoting appropriate ASER expression. The cis-regulatory control regions of other ASE-expressed genes also contain ASE motifs that can promote ASE neuron expression when isolated from their genomic context, but appear to depend on multiple ASE motifs in their normal genomic context. The multiplicity of cis-regulatory elements may ensure the robustness of gene expression. PMID:19189954

  11. Construction of chimeric antibodies: cloning of immunoglobulin genes including their promoter regions by PCR.

    Science.gov (United States)

    Mocikat, R; Kütemeier, G; Harloff, C

    1992-03-01

    In the production of recombinant antibodies, it is necessary to have an immunoglobulin gene promoter for driving the expression of the antibody genes. Here we describe a simple PCR method that allows cloning of the immunoglobulin genes together with their own promoters despite the fact that the sequence of the upstream part of the gene is unknown.

  12. Effects of gene orientation and use of multiple promoters on the expression of XYL1 and XYL2 in Saccharomyces cerevisiae

    Science.gov (United States)

    Ju Yun Bae; Jose Laplaza; Thomas W. Jeffries

    2008-01-01

    Orientation of adjacent genes has been reported to affect their expression in eukaryotic systems, and metabolic engineering also often makes repeated use of a few promoters to obtain high expression. To improve transcriptional control in heterologous expression, we examined how these factors affect gene expression and enzymatic activity in Saccharomyces cerevisiae. We...

  13. Poly purine.pyrimidine sequences upstream of the beta-galactosidase gene affect gene expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brahmachari Samir K

    2001-10-01

    Full Text Available Abstract Background Poly purine.pyrimidine sequences have the potential to adopt intramolecular triplex structures and are overrepresented upstream of genes in eukaryotes. These sequences may regulate gene expression by modulating the interaction of transcription factors with DNA sequences upstream of genes. Results A poly purine.pyrimidine sequence with the potential to adopt an intramolecular triplex DNA structure was designed. The sequence was inserted within a nucleosome positioned upstream of the β-galactosidase gene in yeast, Saccharomyces cerevisiae, between the cycl promoter and gal 10Upstream Activating Sequences (UASg. Upon derepression with galactose, β-galactosidase gene expression is reduced 12-fold in cells carrying single copy poly purine.pyrimidine sequences. This reduction in expression is correlated with reduced transcription. Furthermore, we show that plasmids carrying a poly purine.pyrimidine sequence are not specifically lost from yeast cells. Conclusion We propose that a poly purine.pyrimidine sequence upstream of a gene affects transcription. Plasmids carrying this sequence are not specifically lost from cells and thus no additional effort is needed for the replication of these sequences in eukaryotic cells.

  14. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli.

    Science.gov (United States)

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-06-20

    The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  15. COX-2 gene promoter haplotypes and prostate cancer risk.

    Science.gov (United States)

    Panguluri, Ramesh C K; Long, Layron O; Chen, Weidong; Wang, Songping; Coulibaly, Aoua; Ukoli, Flora; Jackson, Aaron; Weinrich, Sally; Ahaghotu, Chiledum; Isaacs, William; Kittles, Rick A

    2004-06-01

    Cyclooxygenase-2 (COX-2) is a key rate-limiting enzyme that converts arachidonic acid into pro-inflammatory prostaglandins. COX-2 expression is strongly correlated with increased tumor microvasculature density and plays an important role in inhibiting apoptosis, stimulating angiogenesis and promoting tumor cell metastasis and invasion. However, little is known about the role that sequence variation of the COX-2 gene contributes to prostate cancer. Thus, we searched for polymorphisms in the promoter region of the COX-2 gene using denaturing high-performance liquid chromatography. Four single nucleotide polymorphisms (SNPs), -1285A/G, -1265G/A, -899G/C and -297C/G, were detected and confirmed by direct sequencing. Three of the SNPs in the promoter region of COX-2 gene create at least three putative transcription factor binding sites and eliminate CCAAT/enhancer binding protein alpha (C/EBP alpha) and NF-kappa B binding sites. A case-control study of the four SNPs in African American (n = 288), Bini Nigerian (n = 264) and European American (n = 184) prostate cancer cases and age-matched controls revealed that SNP -297G was associated with a decreased risk for prostate cancer [odds ratio (OR) = 0.49; CI = 0.2-0.9; P = 0.01]. The effect on risk was observed in both African Americans (OR = 0.51; CI = 0.2-0.9; P = 0.01) and European Americans (OR = 0.33; CI = 0.1-0.9; P = 0.02). In addition, SNPs -1265A and -899C were associated with increased prostate cancer risk in African Americans (OR = 2.72; CI = 1.3-5.8; P = 0.007 and OR = 3.67; CI = 1.4-9.9; P = 0.007, respectively). Haplotype analyses revealed modest effects on susceptibility to prostate cancer across populations. Haplotype GGCC conferred increased risk in the African American and Nigerian populations. Conversely, haplotype AGGG exhibited a negative association with prostate cancer risk in African Americans (OR = 0.4; CI = 0.1-0.9; P = 0.02) and European Americans (OR = 0.2; CI = 0.1-0.9; P = 0.03). These data

  16. Common risk genes for affective and schizophrenic psychoses.

    Science.gov (United States)

    Maier, Wolfgang

    2008-06-01

    The familial-genetic relationship between affective and schizophrenic disorders is receiving a re-emergence of interest. The reasons are a series of cross-diagnostic molecular-genetic discoveries: specific alleles in the genes for dysbindin (DTNBP1), neuregulin (NRG1) and DAOA (G72/G30) reveal associations for each of both groups of disorders in the same direction in some but not all reported studies. These findings cannot just be false positives because of confirming metaanalyses. Furthermore there is some pathophysiological support: the mentioned genes are involved in biochemical pathways, which are contributing to both disorders partly in a similar and partly in a different manner. The new levels of evidence enrich the classical continuity/discontinuity debate on the relationship between both groups of disorders.

  17. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    Science.gov (United States)

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

  18. Deletion of PLCB1 gene in schizophrenia-affected patients.

    Science.gov (United States)

    Lo Vasco, Vincenza Rita; Cardinale, Giuseppina; Polonia, Patrizia

    2012-04-01

    A prevalence of 1% in the general population and approximately 50% concordance rate in monozygotic twins was reported for schizophrenia, suggesting that genetic predisposition affecting neurodevelopmental processes might combine with environmental risk factors. A multitude of pathways seems to be involved in the aetiology and/or pathogenesis of schizophrenia, including dopaminergic, serotoninergic, muscarinic and glutamatergic signalling. The phosphoinositide signal transduction system and related phosphoinositide-specific phospholipase C (PI-PLC) enzymes seem to represent a point of convergence in these networking pathways during the development of selected brain regions. The existence of a susceptibility locus on the short arm of chromosome 20 moved us to analyse PLCB1, the gene codifying for PI-PLC β1 enzyme, which maps on 20p12. By using interphase fluorescent in situ hybridization methodology, we found deletions of PLCB1 in orbito-frontal cortex samples of schizophrenia-affected patients.

  19. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  20. Negative affect promotes encoding of and memory for details at the expense of the gist: affect, encoding, and false memories.

    Science.gov (United States)

    Storbeck, Justin

    2013-01-01

    I investigated whether negative affective states enhance encoding of and memory for item-specific information reducing false memories. Positive, negative, and neutral moods were induced, and participants then completed a Deese-Roediger-McDermott (DRM) false-memory task. List items were presented in unique spatial locations or unique fonts to serve as measures for item-specific encoding. The negative mood conditions had more accurate memories for item-specific information, and they also had fewer false memories. The final experiment used a manipulation that drew attention to distinctive information, which aided learning for DRM words, but also promoted item-specific encoding. For the condition that promoted item-specific encoding, false memories were reduced for positive and neutral mood conditions to a rate similar to that of the negative mood condition. These experiments demonstrated that negative affective cues promote item-specific processing reducing false memories. People in positive and negative moods encode events differently creating different memories for the same event.

  1. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    Science.gov (United States)

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  2. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    Science.gov (United States)

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L

    2017-01-17

    Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological

  3. Identification of Genes Affecting Vacuole Membrane Fragmentation in Saccharomyces cerevisiae

    Science.gov (United States)

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property. PMID:23383298

  4. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    Science.gov (United States)

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-12-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance.

  5. IL6 gene promoter polymorphisms and type 2 diabetes

    DEFF Research Database (Denmark)

    Huth, Cornelia; Heid, Iris M; Vollmert, Caren;

    2006-01-01

    Several lines of evidence indicate a causal role of the cytokine interleukin (IL)-6 in the development of type 2 diabetes in humans. Two common polymorphisms in the promoter of the IL-6 encoding gene IL6, -174G>C (rs1800795) and -573G>C (rs1800796), have been investigated for association with type...... 2 diabetes in numerous studies but with results that have been largely equivocal. To clarify the relationship between the two IL6 variants and type 2 diabetes, we analyzed individual data on >20,000 participants from 21 published and unpublished studies. Collected data represent eight different...... countries, making this the largest association analysis for type 2 diabetes reported to date. The GC and CC genotypes of IL6 -174G>C were associated with a decreased risk of type 2 diabetes (odds ratio 0.91, P = 0.037), corresponding to a risk modification of nearly 9%. No evidence for association was found...

  6. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    Science.gov (United States)

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], pgenes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters.

    Science.gov (United States)

    Thomson, Joshua J; Withey, Jeffrey H

    2014-11-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription.

  8. Functional Analysis of Promoters in the Nisin Gene Cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Ruyter, Pascalle G.G.A. de; Kuipers, Oscar P.; Beerthuyzen, Marke M.; Alen-Boerrigter, Ingrid van; Vos, Willem M. de

    1996-01-01

    The promoters in the nisin gene cluster nisABTCIPRKFEG of Lactococcus lactis were characterized by primer extension and transcriptional fusions to the Escherichia coli promoterless β-glucuronidase gene (gusA). Three promoters preceding the nisA, nisR, and nisF genes, which all give rise to gusA expr

  9. Methylation of Promoter Regions of Genes of the Human Intrauterine Renin Angiotensin System and Their Expression

    Directory of Open Access Journals (Sweden)

    Shane D. Sykes

    2015-01-01

    Full Text Available The intrauterine renin angiotensin system (RAS is implicated in placentation and labour onset. Here we investigate whether promoter methylation of RAS genes changes with gestation or labour and if it affects gene expression. Early gestation amnion and placenta were studied, as were term amnion, decidua, and placenta collected before labour (at elective caesarean section or after spontaneous labour and delivery. The expression and degree of methylation of the prorenin receptor (ATP6AP2, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AGTR1, and two proteases that can activate prorenin (kallikrein, KLK1, and cathepsin D, CTSD were measured by qPCR and a DNA methylation array. There was no effect of gestation or labour on the methylation of RAS genes and CTSD. Amnion and decidua displayed strong correlations between the percent hypermethylation of RAS genes and CTSD, suggestive of global methylation. There were no correlations between the degree of methylation and mRNA abundance of any genes studied. KLK1 was the most methylated gene and the proportion of hypermethylated KLK1 alleles was lower in placenta than decidua. The presence of intermediate methylated alleles of KLK1 in early gestation placenta and in amnion after labour suggests that KLK1 methylation is uniquely dynamic in these tissues.

  10. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  11. 'Obesity Gene' Doesn't Affect Ability to Lose Weight: Report

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161090.html 'Obesity Gene' Doesn't Affect Ability to Lose Weight: ... 21, 2016 (HealthDay News) -- Having the so-called "obesity gene" doesn't affect people's ability to shed ...

  12. Microarray analysis of genes affected by salt stress in tomato | Zhou ...

    African Journals Online (AJOL)

    Microarray analysis of genes affected by salt stress in tomato. ... African Journal of Environmental Science and Technology ... key enzyme genes in the metabolic pathways of carbohydrates, amino acids, and fatty acids, were also affected by ...

  13. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  14. Evaluation of different promoters driving the GFP reporter gene in seaweed Kappaphycus alvarezii

    OpenAIRE

    Muh. Alias L. Rajamuddin; Alimuddin A; Utut Widyastuti; Irvan Faizal

    2016-01-01

    Promoter regulates expression level of foreign gene in transgenic organism. This study was performed to select asuitable promoter as the fi rst step towards production of valuable trait-enhanced seaweed by transgenic technology. Greenfl uorescent protein (GFP) gene was used as a reporter to determine the activity of promoter in seaweed Kappaphycusalvarezii. GFP gene constructs driven by cytomegalovirus (pCMV-GFP), caulifl ower mosaic virus (pCaMV-GFP),medaka β-actin (pmBA-GFP) and Japanese fl...

  15. Productive Love Promotion Via Affective Technology: An Approach Based On Social Psychology And Philosophy

    Directory of Open Access Journals (Sweden)

    Ramon Solves Pujol

    2010-01-01

    Full Text Available This paper proposes the use of social psychological and philosophical foundations for designing affective technology that promotes the experience of love. The adopted theoretical basis is the concept of productive love, which is heavily based on Enrich Fromm but also includes theories and scientific findings of numerous psychoanalysts, social psychologists, and philosophers. We conducted a review of the theory about the nature of love and found that social psychological and philosophical approaches differ regarding peoples' understandings. The findings were used to elaborate eight principles of productive love. Based on these principles, we derived criteria for designing affective technology when the objective is to promote productive love. We reviewed the existent studies on affective technologies and implemented the criteria into a system design, the Pictures' Call. A prototype of the system was pretested to illustrate how productive love technology could be based on established criteria.

  16. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation.

    Science.gov (United States)

    Clowney, E Josephine; Magklara, Angeliki; Colquitt, Bradley M; Pathak, Nidhi; Lane, Robert P; Lomvardas, Stavros

    2011-08-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of "genomic contrast" in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell.

  17. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available Antisense and RNA interference (RNAi-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  18. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Science.gov (United States)

    Li, Jing; Jiang, Dagang; Zhou, Hai; Li, Feng; Yang, Jiawei; Hong, Laifa; Fu, Xiao; Li, Zhibin; Liu, Zhenlan; Li, Jianming; Zhuang, Chuxiong

    2011-03-03

    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  19. Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder.

    Science.gov (United States)

    Benedetti, Francesco; Poletti, Sara; Radaelli, Daniele; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Vai, Benedetta; Bollettini, Irene; Falini, Andrea; Smeraldi, Enrico; Colombo, Cristina

    2015-04-01

    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase-3β (GSK-3β). The less active GSK-3β promoter gene variants have been associated with less detrimental clinical features of BD. GSK-3β gene variants and lithium can influence brain gray and white matter structure in psychiatric conditions, so we studied their combined effect in BD. The aim of this study is to investigate the effects of ongoing long-term lithium treatment and GSK-3β promoter rs334558 polymorphism on regional gray matter (GM) volumes of patients with BD. GM volumes were estimated with 3.0 Tesla MRI in 150 patients affected by a major depressive episode in course of BD. Duration of lifetime lithium treatment was retrospectively assessed. Analyses were performed by searching for significant effects of lithium and rs334558 in the whole brain. The less active GSK-3β rs334558*G gene promoter variant and the long-term administration of lithium were synergistically associated with increased GM volumes in the right frontal lobe, in a large cluster encompassing the boundaries of subgenual and orbitofrontal cortex (including Brodmann areas 25, 11, and 47). Effects of lithium on GM revealed in rs334558*G carriers only, consistent with previously reported clinical effects in these genotype groups, and were proportional to the duration of treatment. Lithium and rs334558 influenced GM volumes in areas critical for the generation and control of affect, which have been widely implicated in the process of BD pathophysiology. In the light of the protective effects of lithium on white matter integrity, our results suggest that the clinical effects of lithium associate with a neurotrophic effect on the whole brain, probably mediated by GSK-3β inhibition.

  20. Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes.

    Directory of Open Access Journals (Sweden)

    Mary Q Yang

    2007-04-01

    Full Text Available A "bidirectional gene pair" comprises two adjacent genes whose transcription start sites are neighboring and directed away from each other. The intervening regulatory region is called a "bidirectional promoter." These promoters are often associated with genes that function in DNA repair, with the potential to participate in the development of cancer. No connection between these gene pairs and cancer has been previously investigated. Using the database of spliced-expressed sequence tags (ESTs, we identified the most complete collection of human transcripts under the control of bidirectional promoters. A rigorous screen of the spliced EST data identified new bidirectional promoters, many of which functioned as alternative promoters or regulated novel transcripts. Additionally, we show a highly significant enrichment of bidirectional promoters in genes implicated in somatic cancer, including a substantial number of genes implicated in breast and ovarian cancers. The repeated use of this promoter structure in the human genome suggests it could regulate co-expression patterns among groups of genes. Using microarray expression data from 79 human tissues, we verify regulatory networks among genes controlled by bidirectional promoters. Subsets of these promoters contain similar combinations of transcription factor binding sites, including evolutionarily conserved ETS factor binding sites in ERBB2, FANCD2, and BRCA2. Interpreting the regulation of genes involved in co-expression networks, especially those involved in cancer, will be an important step toward defining molecular events that may contribute to disease.

  1. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  2. MBD3 localizes at promoters, gene bodies and enhancers of active genes.

    Science.gov (United States)

    Shimbo, Takashi; Du, Ying; Grimm, Sara A; Dhasarathy, Archana; Mav, Deepak; Shah, Ruchir R; Shi, Huidong; Wade, Paul A

    2013-01-01

    The Mi-2/nucleosome remodeling and histone deacetylase (NuRD) complex is a multiprotein machine proposed to regulate chromatin structure by nucleosome remodeling and histone deacetylation activities. Recent reports describing localization of NuRD provide new insights that question previous models on NuRD action, but are not in complete agreement. Here, we provide location analysis of endogenous MBD3, a component of NuRD complex, in two human breast cancer cell lines (MCF-7 and MDA-MB-231) using two independent genomic techniques: DNA adenine methyltransferase identification (DamID) and ChIP-seq. We observed concordance of the resulting genomic localization, suggesting that these studies are converging on a robust map for NuRD in the cancer cell genome. MBD3 preferentially associated with CpG rich promoters marked by H3K4me3 and showed cell-type specific localization across gene bodies, peaking around the transcription start site. A subset of sites bound by MBD3 was enriched in H3K27ac and was in physical proximity to promoters in three-dimensional space, suggesting function as enhancers. MBD3 enrichment was also noted at promoters modified by H3K27me3. Functional analysis of chromatin indicated that MBD3 regulates nucleosome occupancy near promoters and in gene bodies. These data suggest that MBD3, and by extension the NuRD complex, may have multiple roles in fine tuning expression for both active and silent genes, representing an important step in defining regulatory mechanisms by which NuRD complex controls chromatin structure and modification status.

  3. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data

    Directory of Open Access Journals (Sweden)

    Kim Seon-Young

    2006-07-01

    Full Text Available Abstract Background A complete understanding of the regulatory mechanisms of gene expression is the next important issue of genomics. Many bioinformaticians have developed methods and algorithms for predicting transcriptional regulatory mechanisms from sequence, gene expression, and binding data. However, most of these studies involved the use of yeast which has much simpler regulatory networks than human and has many genome wide binding data and gene expression data under diverse conditions. Studies of genome wide transcriptional networks of human genomes currently lag behind those of yeast. Results We report herein a new method that combines gene expression data analysis with promoter analysis to infer transcriptional regulatory elements of human genes. The Z scores from the application of gene set analysis with gene sets of transcription factor binding sites (TFBSs were successfully used to represent the activity of TFBSs in a given microarray data set. A significant correlation between the Z scores of gene sets of TFBSs and individual genes across multiple conditions permitted successful identification of many known human transcriptional regulatory elements of genes as well as the prediction of numerous putative TFBSs of many genes which will constitute a good starting point for further experiments. Using Z scores of gene sets of TFBSs produced better predictions than the use of mRNA levels of a transcription factor itself, suggesting that the Z scores of gene sets of TFBSs better represent diverse mechanisms for changing the activity of transcription factors in the cell. In addition, cis-regulatory modules, combinations of co-acting TFBSs, were readily identified by our analysis. Conclusion By a strategic combination of gene set level analysis of gene expression data sets and promoter analysis, we were able to identify and predict many transcriptional regulatory elements of human genes. We conclude that this approach will aid in decoding

  4. Functional analysis of the genetic variability in the F7 gene promoter.

    Science.gov (United States)

    Sabater-Lleal, Maria; Chillón, Miguel; Howard, Tom E; Gil, Estel; Almasy, Laura; Blangero, John; Fontcuberta, Jordi; Soria, José Manuel

    2007-12-01

    The FVII level is considered a risk factor for cardiovascular disease. Some of the polymorphic differences in the promoter of the F7 gene have been associated with variations in FVII levels. However, linkage disequilibrium among those polymorphisms has made it difficult to pinpoint the true functional variants, so contradictory results have often appeared among various studies. We provide new findings of the effect of the polymorphisms in the promoter region of F7. In vitro transfection of 15 plasmids containing different combinations of F7 promoter polymorphisms was performed in HepG2 cells. We found that allelic variants -323ins10 and -122C strongly reduced promoter activity and that allelic variant -402A significantly increased promoter activity. We report the effect of a novel variant (-2989A) that significantly increases F7 expression levels. However, this novel allelic variant is in strong linkage disequilibrium with the -323ins10 variant in our Spanish population, which has a clear dominant effect over the -2989A variant and completely masks its effect. Our results have important implications for mapping genes affecting complex diseases using association studies. That is, they imply that true functional variants should be chosen to confirm the analyses and to ensure that the results can be reproduced in other populations. In addition, our results suggest that it would be informative to screen for the -2989A variant in other populations, since it may well be a risk factor for cardiovascular disease in populations where it does not appear with the decanucleotide insertion.

  5. Genomic structure, organisation, and promoter analysis of the bovine (Bos taurus) Mx1 gene.

    Science.gov (United States)

    Gérardin, Joël A; Baise, Etienne A; Pire, Grégory A; Leroy, Michaël P-P; Desmecht, Daniel J-M

    2004-02-04

    Some MX proteins are known to confer a specific resistance against a panel of single-stranded RNA viruses. Many diseases due to such viruses are known to affect cattle worldwide, raising the possibility that the identification of an antiviral isoform of a bovine MX protein would allow the implementation of genetic selection programs aimed at improving innate resistance of cattle. With this potential application in mind, the present study was designed to isolate the bovine Mx1 gene including its promoter region and to investigate its genomic organisation and promoter reactivity. The bovine Mx1 gene is made up of 15 exons. All exon-intron boundaries conformed to the consensus sequences. A PCR product that contained a approximately 1-kb, 5'-flanking region upstream from the putative transcription start site was sequenced. Unexpectedly, this DNA region did not contain TATA or CCAAT motifs. A computer scan of the region disclosed a series of putative binding sites for known cytokines and transcription factors. There was a GAAAN(1-2)GAAA(C/G) motif, typical of an interferon-sensitive responsive element, between -118 and -107 from the putative transcription start site. There were also a NF-kappaB, two interleukin-6 binding sites, two Sp1 sites and five GC-rich boxes. The region also contained 12 stretches of the GAAA type, as described in all IFN-inducible genes. Bovine Mx1 expression was assessed by Northern blotting and immunofluorescence in the Madin Darby bovine kidney cells (MDBK) cell line treated with several stimuli. In conclusion, the bovine Mx1 gene and promoter region share the major structural and functional characteristics displayed by their homologs described in the rainbow trout, chicken, mouse and man.

  6. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.

    Science.gov (United States)

    Han, Han; Cortez, Connie C; Yang, Xiaojing; Nichols, Peter W; Jones, Peter A; Liang, Gangning

    2011-11-15

    Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.

  7. Genetic Determinants for Promoter Hypermethylation in the Lungs of Smokers: A Candidate Gene-Based Study

    OpenAIRE

    Leng, Shuguang; Stidley, Christine A.; Liu, Yushi; Edlund, Christopher K.; Willink, Randall P.; Han, Younghun; Landi, Maria Teresa; Thun, Michael; Picchi, Maria A.; Bruse, Shannon E.; Crowell, Richard E.; Van Den Berg, David; Neil E Caporaso; Amos, Christopher I.; Siegfried, Jill M.

    2011-01-01

    The detection of tumor suppressor gene promoter methylation in sputum-derived exfoliated cells predicts early lung cancer. Here we identified genetic determinants for this epigenetic process and examined their biological effects on gene regulation. A two-stage approach involving discovery and replication was employed to assess the association between promoter hypermethylation of a 12-gene panel and common variation in 40 genes involved in carcinogen metabolism, regulation of methylation, and ...

  8. Effects of Gene Orientation and Use of Multiple Promoters on the Expression of XYL1 and XYL2 in Saccharomyces cerevisiae

    Science.gov (United States)

    Bae, Ju Yun; Laplaza, José; Jeffries, Thomas W.

    Orientation of adjacent genes has been reported to affect their expression in eukaryotic systems, and metabolic engineering also often makes repeated use of a few promoters to obtain high expression. To improve transcriptional control in heterologous expression, we examined how these factors affect gene expression and enzymatic activity in Saccharomyces cerevisiae. We assembled d-xylose reductase (XYL1) and d-xylitol dehydrogenase (XYL2) in four ways. Each pair of genes was placed in two different tandem (l→2→ or √1√2), convergent (1→√2), and divergent (√1 2→) orientations in autonomous plasmids. The TEF1 promoter was used to drive XYL1 and the TDH3 promoter to drive XYL2 in each of the constructs. The effects of gene orientation on growth, transcription, and enzyme activity were analyzed. The transcription level as measured by quantitative PCR (q-PCR) correlated with enzyme activities, but our data did not show a significant effect of gene orientation. To test the possible dilution of promoter strength due to multiple use of the same promoter, we examined the level of expression of XYL1 driven by either the TEF1 or TDH3 promoter when carried on a single copy plasmid. We then coexpressed XYL2 from either a single or multicopy plasmid, which was also driven by the same promoter. XYL2 transcript and enzyme expression increased with plasmid copy number, while the expression of XYLl was constant regardless of the number of other TEF1 or TDH3 promoters present in the cell. According to our data, there is no significant effect of gene orientation or multiple promoter use on gene transcription and translation when genes are expressed from plasmids; however, other factors could affect expression of adjacent genes in chromosomes.

  9. Identification of the core promoter of STK11 gene and its transcriptional regulation by p53

    Institute of Scientific and Technical Information of China (English)

    Maojin Yao; Chenjie Li; Yi Chu; Fei Wang; Xiaoliu Shi; Yongjun Wang; Hongwei Shen; Wenfeng Ning; Jianguang Tang; Xiangping Wang; Jie Li; Shiquang Zhou; Xin Yi

    2008-01-01

    Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. Most cases of PJS involve the inactivation of germline mutations in the serine/threonine kinase gene STK11 which is also known as LKB1. The function of STK11 was previously linked to the tumor suppressor p53 and was shown to activate the p53 target p21/ WAF1. Recently, STK11 was reported to be interacting with p53 physically in the nucleus and it can directly or indirectly phosphorylate p53. Here we characterized the 5'-flanking region of human STK11 gene and identified a 161-bp fragment with promoter activity. Sequence analysis, mutagenesis and gel shift studies revealed a binding site of Spl and p53, which affects the promoter activity. Mutation analyses showed that this fragment was required for p53-mediated transcriptional activation. This transcriptional activation was further confirmed by real-time quantitative RT-PCR and Western blot analysis. Transient transfection of p53 expression plasmid into fetal liver cell lines increased STK11 mRNA and protein levels. In conclusion, our results reveal a new role for p53 in elevating STK11 gene expression via a positive feedback pattern.

  10. Genomic structure, promoter analysis, and expression of the porcine (Sus scrofa) Mx1 gene.

    Science.gov (United States)

    Thomas, Anne V; Palm, Melanie; Broers, Aurore D; Zezafoun, Hussein; Desmecht, Daniel J-M

    2006-06-01

    Allelic polymorphisms at the mouse Mx1 locus affect the probability of survival after experimental influenzal disease, raising the possibility that marker-assisted selection using the homologous locus could improve the innate resistance of pigs to natural influenza infections. Several issues need to be resolved before efficient large scale screening of the allelic polymorphism at the porcine (Sus scrofa) Mx1 locus can be implemented. First, the Mx1 genomic structure has to be established and sufficient flanking intronic sequences have to be gathered to enable simple PCR amplification of the coding portions of the gene. Then, a basic knowledge of the promoter region needs to be obtained as an allelic variation there can significantly alter absolute levels and/or tissue-specificity of MX protein expression. The results gathered here show that the porcine Mx1 gene and promoter share the major structural and functional characteristics displayed by their homologs described in cattle, mouse, chicken, and man. The crucial function of the proximal interferon-sensitive response elements motif for gene expression is also demonstrated. The sequence data compiled here will allow an extensive analysis of the polymorphisms present among the widest spectrum possible of porcine breeds with the aim to identify an Mx1 allele providing antiviral resistance.

  11. Identification of the transcriptional promoters in the proximal regions of human microRNA genes.

    Science.gov (United States)

    Long, Yue-Sheng; Deng, Guang-Fei; Sun, Xun-Sha; Yi, Yong-Hong; Su, Tao; Zhao, Qi-Hua; Liao, Wei-Ping

    2011-08-01

    To identify the transcriptional promoters in the proximal regions of human microRNA (miRNA) genes, we analyzed the 5' flanking regions of intergenic miRNAs and intronic miRNAs. With the TSSG program prediction, we found that the ratio of intronic-s miRNA genes with a least one promoter was significantly lower than those of intergenic miRNA genes and intronic-a miRNA genes. More than half of the miRNA genes have only one promoter and less than 20% of the miRNA genes have more than three promoters in the 5-kb upstream regions. All potential promoters are randomly distributed within these regions. Approximately 60% of the miRNA promoters have a TATA-like box, being significantly higher than that of all human promoters. Luciferase reporter assays showed that 22 of the 30 promoters drove gene expression in HEK-293 cells, indicating a high accuracy of the promoter prediction. This study lays a foundation for future investigation into the transcriptional regulatory mechanisms of human miRNA genes.

  12. Cancer specificity of promoters of the genes involved in cell proliferation control.

    Science.gov (United States)

    Kashkin, K N; Chernov, I P; Stukacheva, E A; Kopantzev, E P; Monastyrskaya, G S; Uspenskaya, N Ya; Sverdlov, E D

    2013-07-01

    Core promoters with adjacent regions of the human genes CDC6, POLD1, CKS1B, MCM2, and PLK1 were cloned into a pGL3 vector in front of the Photinus pyrails gene Luc in order to study the tumor specificity of the promoters. The cloned promoters were compared in their ability to direct luciferase expression in different human cancer cells and in normal fibroblasts. The cancer-specific promoter BIRC5 and non-specific CMV immediately early gene promoter were used for comparison. All cloned promoters were shown to be substantially more active in cancer cells than in fibroblasts, while the PLK1 promoter was the most cancer-specific and promising one. The specificity of the promoters to cancer cells descended in the series PLK1, CKS1B, POLD1, MCM2, and CDC6. The bidirectional activity of the cloned CKS1B promoter was demonstrated. It apparently directs the expression of the SHC1 gene, which is located in a "head-to-head" position to the CKS1B gene in the human genome. This feature should be taken into account in future use of the CKS1B promoter. The cloned promoters may be used in artificial genetic constructions for cancer gene therapy.

  13. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob Daniela

    2005-06-01

    Full Text Available Abstract Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  14. The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Goulart Luiz R

    2008-09-01

    Full Text Available Abstract Background There is no biological or epidemiological data on the association between NOS3 promoter polymorphisms and prostate cancer. The polymorphisms in the promoter region of NOS3 gene may be responsible for variations in the plasma NO, which may promote cancer progression by providing a selective growth advantage to tumor cells by angiogenic stimulus and by direct DNA damage. Methods This study aimed evaluating the NOS3 promoter polymorphisms by PCR-SSCP and sequencing, associating genotypes and haplotypes with NOS3 expression levels through semi-quantitative RT-PCR, and with PCA3 mRNA detection, a specific tumor biomarker, in the peripheral blood of pre-surgical samples from 177 patients; 83 PCa and 94 BPH. Results Three novel SNPs were identified -764A>G, -714G>T and -649G>A in the NOS3 gene promoter region, which together with the -786T>C generated four haplotypes (N, T, C, A. NOS3 gene expression levels were affected by the -786T>C polymorphism, and there was a 2-fold increase in NOS3 levels favored by the incorporation of each C allele. NOS3 levels higher than 80% of the constitutive gene expression level (B2M presented a 4-fold increase in PCa occurrence. Conclusion The -786T>C polymorphism was the most important promoter alteration of the NOS3 gene that may affect the PCa progression, but not its occurrence, and the incorporation of the C allele is associated with increased levels of NOS3 transcripts. The NOS3 transcript levels presented a bimodal behavior in tumor development and may be used as a biomarker together with the PCA3 marker for molecular staging of the prostate cancer.

  15. The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression.

    Science.gov (United States)

    Marangoni, Karina; Araújo, Thaíse G; Neves, Adriana F; Goulart, Luiz R

    2008-09-29

    There is no biological or epidemiological data on the association between NOS3 promoter polymorphisms and prostate cancer. The polymorphisms in the promoter region of NOS3 gene may be responsible for variations in the plasma NO, which may promote cancer progression by providing a selective growth advantage to tumor cells by angiogenic stimulus and by direct DNA damage. This study aimed evaluating the NOS3 promoter polymorphisms by PCR-SSCP and sequencing, associating genotypes and haplotypes with NOS3 expression levels through semi-quantitative RT-PCR, and with PCA3 mRNA detection, a specific tumor biomarker, in the peripheral blood of pre-surgical samples from 177 patients; 83 PCa and 94 BPH. Three novel SNPs were identified -764A>G, -714G>T and -649G>A in the NOS3 gene promoter region, which together with the -786T>C generated four haplotypes (N, T, C, A). NOS3 gene expression levels were affected by the -786T>C polymorphism, and there was a 2-fold increase in NOS3 levels favored by the incorporation of each C allele. NOS3 levels higher than 80% of the constitutive gene expression level (B2M) presented a 4-fold increase in PCa occurrence. The -786T>C polymorphism was the most important promoter alteration of the NOS3 gene that may affect the PCa progression, but not its occurrence, and the incorporation of the C allele is associated with increased levels of NOS3 transcripts. The NOS3 transcript levels presented a bimodal behavior in tumor development and may be used as a biomarker together with the PCA3 marker for molecular staging of the prostate cancer.

  16. Promoter and transcription of type X collagen gene in broiler chickens with tibial dyschondroplasia.

    Science.gov (United States)

    Zhang, X; McDaniel, G R; Giambrone, J J; Smith, E

    1996-06-01

    Type X collagen is produced exclusively in hypertrophic chondrocytes of the growth plate of the proximal tibiotarsus and is believed to play an important role during normal development from chondrogenesis to osteogenesis. Chondrocytes of chickens with tibial dyschondroplasia (TD) fail to attain full hypertrophy and the amount of type X collagen, being a marker of hypertrophy, is likely to be reduced. It is not clear whether transcriptional regulation is functional for expression of the type X collagen gene in TD birds. Nucleotide sequence of the type X collagen gene promoter was determined by sequencing PCR-based DNA clones. Nucleotide identity of this fragment between the normal and TD carriers was 97.6%. Both normal and TD birds were similar in a putative transcription start site, the site of TATAA box, and neither had a CCAAT box. However, there were two gaps in TD carriers, four gaps in normals, and five nucleotide substitution sites. By rapid amplification of cDNA ends by PCR (RACE-PCR), transcription of the gene was assessed using total RNA and mRNA from both normal chondrocytes and TD lesions at 3 and 4 wk of age. The RACE-PCR product for type X collagen mRNA was detectable in both normal and TD birds at two stages. No difference was found between them. This result does not support the hypothesis that transcriptional regulation of type X collagen gene is important in TD development of chickens. Variations in the promoter region did not affect transcription of type X collagen gene in TD carrier chickens.

  17. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Institute of Scientific and Technical Information of China (English)

    CHAI Yurong; LU Yumin; WANG Tianyun; HOU Weihong; XUE Lexun

    2006-01-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficientpromoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase (CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics.Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  18. mRNA Noise Reveals that Activators Induce a Biphasic Response in the Promoter Kinetics of Highly Regulated Genes

    Science.gov (United States)

    Quinn, Katie; To, Tsz-Leung; Maheshri, Narendra

    2012-02-01

    A dominant source of fluctuations in gene expression is thought to be the process of transcription. The statistics of these fluctuations arise from the kinetics of transcription. Multiple studies suggest the bulk of fluctuations can be understood by a simple process where genes are inactive for exponentially distributed times punctuated by geometric bursts of mRNA. Yet it's largely unknown how cis and trans factors affect the two lumped kinetic parameters, burst size and burst frequency, that describe this process. Importantly, how these parameters are regulated in a single gene can qualitatively affect the dynamical behavior of the network it is embedded within. Here, we ask whether transcriptional activators increase gene expression by increasing the burst size or burst frequency. We do so by deducing these parameters from steady-state mRNA distributions measured in individual yeast cells using single molecule mRNA FISH. We find that for both a synthetic and natural promoter, activators appear to first increase burst size, then burst frequency. We suggest this biphasic response may be common to all highly regulated genes and was previously unappreciated because of measurement techniques. Furthermore, its origins appear to relate to cis events at the promoter, and may arise from combinations of basal and activator-dependent bursts. Our measurements shed new light on transcriptional mechanisms and should assist in building synthetic promoters with tunable statistics.

  19. The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The flagella master regulatory gene flhDC of Yersinia pseudotuberculosis serotype Ⅲ (YPⅢ) was mutated by deleting the middle region and replaced by a tetracycline resistant gene, and the subsequent mutant strain named YPⅢ△flhDC was obtained. Swimming assay showed that the swimming motility of the mutant strain was completely abolished. The promoter region of the flagella second-class regulatory gene fliA was fused with the lux box, and was conjugated with the mutant and the parent strains respectively for the first cross. LUCY assay result demonstrated that flhDC regulated the expression of fliA in YPⅢ as reported in E. Coli. Biofilm formation of the mutant strain on abiotic and biotic surfaces was observed and quantified. The results showed that mutation of flhDC decreased biofilm formation on both abiotic and biotic surfaces, and abated the infection on Caenorhabdtis elegans. Our results suggest that mutation of the flagella master regulatory gene flhDC not only abolished the swimming motility, but also affected biofilm formation of YPⅢ on different surfaces. The new function of flhDC identified in this study provides a novel viewpoint for the control of bacterial biofilm formation.

  20. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    Science.gov (United States)

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  1. Gene duplication and divergence affecting drug content in Cannabis sativa.

    Science.gov (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.

  2. Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells.

    Science.gov (United States)

    Sakla, Mary S; Shenouda, Nader S; Ansell, Pete J; Macdonald, Ruth S; Lubahn, Dennis B

    2007-08-01

    The HER2 proto-oncogene, a member of the epidermal growth factor receptor family, is overexpressed in 20-30% of breast cancers. Genistein, the main soy isoflavone, interacts with estrogen receptors (ER) and it is also a potent tyrosine kinase inhibitor. Previously, our laboratory found that genistein delayed mammary tumor onset in transgenic mice that overexpress HER2 gene. Our goal was to define the mechanism through which genistein affects mammary tumorigenesis in HER2 overexpressing mice. We hypothesized that genistein inhibits HER2 activation and expression through ER-dependent and ER-independent mechanisms. Genistein inhibited total HER2 protein expression and tyrosine phosphorylation in BT-474, an ERalpha (-) and ERbeta (+) human breast cancer cell line, however, E2 had no effect. Taken together, these data suggest that genistein has an ER-independent inhibitory effect, presumably, through tyrosine kinase inhibition activity. Genistein at 1.0 microM mimicked E2 and down-regulated HER2 protein phosphorylation when BT-474 was co-transfected with ERalpha, but not ERbeta. Although E2 and overexpression of HER2 can promote mammary tumorigenesis, an inverse relationship between ER expression and HER2 overexpression has been found in human breast cancer. We cloned a 500-bp promoter region upstream of the HER2 transcription initiation site. Co-transfection with ERalpha, but not with ERbeta, down-regulated HER2 promoter reporter in BT-474. At concentrations > or =1 microM, genistein inhibited HER2 promoter reporter in the absence of ERalpha. In conclusion, genistein at > or =1 microM inhibited HER2 protein expression, phosphorylation, and promoter activity through an ER-independent mechanism. In the presence of ERalpha, genistein mimicked E2 and inhibited HER2 protein phosphorylation. These data support genistein's chemo-prevention and potential chemo-therapeutic roles in breast cancer.

  3. Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters

    Directory of Open Access Journals (Sweden)

    Gagniuc Paul

    2012-09-01

    Full Text Available Abstract Background The main function of gene promoters appears to be the integration of different gene products in their biological pathways in order to maintain homeostasis. Generally, promoters have been classified in two major classes, namely TATA and CpG. Nevertheless, many genes using the same combinatorial formation of transcription factors have different gene expression patterns. Accordingly, we tried to ask ourselves some fundamental questions: Why certain genes have an overall predisposition for higher gene expression levels than others? What causes such a predisposition? Is there a structural relationship of these sequences in different tissues? Is there a strong phylogenetic relationship between promoters of closely related species? Results In order to gain valuable insights into different promoter regions, we obtained a series of image-based patterns which allowed us to identify 10 generic classes of promoters. A comprehensive analysis was undertaken for promoter sequences from Arabidopsis thaliana, Drosophila melanogaster, Homo sapiens and Oryza sativa, and a more extensive analysis of tissue-specific promoters in humans. We observed a clear preference for these species to use certain classes of promoters for specific biological processes. Moreover, in humans, we found that different tissues use distinct classes of promoters, reflecting an emerging promoter network. Depending on the tissue type, comparisons made between these classes of promoters reveal a complementarity between their patterns whereas some other classes of promoters have been observed to occur in competition. Furthermore, we also noticed the existence of some transitional states between these classes of promoters that may explain certain evolutionary mechanisms, which suggest a possible predisposition for specific levels of gene expression and perhaps for a different number of factors responsible for triggering gene expression. Our conclusions are based on

  4. NFAT targets signaling molecules to gene promoters in pancreatic β-cells.

    Science.gov (United States)

    Lawrence, Michael C; Borenstein-Auerbach, Nofit; McGlynn, Kathleen; Kunnathodi, Faisal; Shahbazov, Rauf; Syed, Ilham; Kanak, Mazhar; Takita, Morihito; Levy, Marlon F; Naziruddin, Bashoo

    2015-02-01

    Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1β. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic β-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation.

  5. Relationship between polymorphism of class Ⅱ transactivator gene promoters and chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Ying-Ren Zhao; Ling Gong; Ying-Li He; Fang Liu; Chang Lu

    2005-01-01

    AIM: To investigate the relationship between the polymorphism of class Ⅱ transactivator (CⅡTA) gene promoters and chronic hepatitis B (CHB).METHODS: Genomic DNA was prepared from peripheral blood leukocytes. Promoters Ⅰ, Ⅲ and Ⅳ of gene were analyzed respectively with polymerase chain reaction single strand conformation polymorphism (PCR-SSCP) in 65 patients with CHB, 26 patients with acute hepatitis B (AHB) and 85 normal controls.RESULTS: No abnormal migration was found in PCR-SSCP analysis of the three promoters in the three groups. Also,no sequential difference was observed at the three promoters among the CHB patients, AHB patients and normal controls.CONCLUSION: No polymorphism in promoters Ⅰ, Ⅲ and Ⅳ of CⅡTA gene exists in CHB patients, ABH patients and normal controls, suggesting that the promoter of CⅡTA gene might be a conserved domain.

  6. Genetic variants in SIRT3 transcriptional regulatory region affect promoter activity and fat deposition in three cattle breeds.

    Science.gov (United States)

    Gui, Linsheng; Hong, Jieyun; Raza, Sayed Haidar Abbas; Zan, Linsen

    2016-12-12

    Sirtuin 3 (SIRT3) is a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. It has crucial roles in regulating the respiratory chain, in adenosine triphosphate (ATP) production, and in both the citric acid and urea cycles. The aim of this study was to investigate whether SIRT3 could be used as a candidate gene in the breeding of cattle. Expression analysis by quantitative real-time polymerase chain reactions (qPCR) indicated that expression levels of SIRT3 were highest in the kidney, rumen, liver, omasum and muscle. Using sequencing technology on a total of 913 cattle representing three indigenous Chinese beef cattle breeds, three single nucleotide polymorphisms (SNPs) were identified in the promoter region of SIRT3, and five haplotypes representing five potential transcription factor compositions of polymorphic potential cis-acting elements. Association analysis indicated that the Hap3/8 diplotype performed better than other combinations in intramuscular fat content. In addition, the promoter activity with Hap1 haplotype was higher than the Hap8 haplotype, consistent with the association analysis. The results indicate that the polymorphisms in transcription factor binding sites of SIRT3 promoter may affect the transcriptional activity of SIRT3, and thus alter intramuscular fat content in beef cattle.

  7. Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder.

    Science.gov (United States)

    Benedetti, Francesco; Bollettini, Irene; Barberi, Ignazio; Radaelli, Daniele; Poletti, Sara; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Falini, Andrea; Colombo, Cristina; Smeraldi, Enrico

    2013-01-01

    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections.

  8. Construction and application of a promoter-trapping vector with methyl parathion hydrolase gene mpd as the reporter.

    Science.gov (United States)

    Cui, Zhong-Li; Zhang, Xiao-Zhou; Zhang, Zhong-Hui; Li, Shun-Peng

    2004-07-01

    A facilitative and efficient promoter-trapping vector, pUC-mpd, was constructed with the promoterless methyl parathion hydrolase gene as the reporter. This reporter gene is easily used to clone promoters with different promoting strength on selective plates. Promoter regions of the ytkA and ywoF genes with strong promoting and signal peptide functions were cloned from the Bacillus subtilis 168 genomic promoter library with this vector.

  9. Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library.

    Science.gov (United States)

    Ertesvåg, Helga; Sletta, Håvard; Senneset, Mona; Sun, Yi-Qian; Klinkenberg, Geir; Konradsen, Therese Aursand; Ellingsen, Trond E; Valla, Svein

    2017-01-03

    Polysaccharides often are necessary components of bacterial biofilms and capsules. Production of these biopolymers constitutes a drain on key components in the central carbon metabolism, but so far little is known concerning if and how the cells divide their resources between cell growth and production of exopolysaccharides. Alginate is an industrially important linear polysaccharide synthesized from fructose 6-phosphate by several bacterial species. The aim of this study was to identify genes that are necessary for obtaining a normal level of alginate production in alginate-producing Pseudomonas fluorescens. Polysaccharide biosynthesis is costly, since it utilizes nucleotide sugars and sequesters carbon. Consequently, transcription of the genes necessary for polysaccharide biosynthesis is usually tightly regulated. In this study we used an engineered P. fluorescens SBW25 derivative where all genes encoding the proteins needed for biosynthesis of alginate from fructose 6-phosphate and export of the polymer are expressed from inducible Pm promoters. In this way we would avoid identification of genes merely involved in regulating the expression of the alginate biosynthetic genes. The engineered strain was subjected to random transposon mutagenesis and a library of about 11500 mutants was screened for strains with altered alginate production. Identified inactivated genes were mainly found to encode proteins involved in metabolic pathways related to uptake and utilization of carbon, nitrogen and phosphor sources, biosynthesis of purine and tryptophan and peptidoglycan recycling. The majority of the identified mutants resulted in diminished alginate biosynthesis while cell yield in most cases were less affected. In some cases, however, a higher final cell yield were measured. The data indicate that when the supplies of fructose 6-phosphate or GTP are diminished, less alginate is produced. This should be taken into account when bacterial strains are designed for

  10. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  11. HOX Gene Promoter Prediction and Inter-genomic Comparison: An Evo-Devo Study

    Directory of Open Access Journals (Sweden)

    Marla A. Endriga

    2010-10-01

    Full Text Available Homeobox genes direct the anterior-posterior axis of the body plan in eukaryotic organisms. Promoter regions upstream of the Hox genes jumpstart the transcription process. CpG islands found within the promoter regions can cause silencing of these promoters. The locations of the promoter regions and the CpG islands of Homeo sapiens sapiens (human, Pan troglodytes (chimpanzee, Mus musculus (mouse, and Rattus norvegicus (brown rat are compared and related to the possible influence on the specification of the mammalian body plan. The sequence of each gene in Hox clusters A-D of the mammals considered were retrieved from Ensembl and locations of promoter regions and CpG islands predicted using Exon Finder. The predicted promoter sequences were confirmed via BLAST and verified against the Eukaryotic Promoter Database. The significance of the locations was determined using the Kruskal-Wallis test. Among the four clusters, only promoter locations in cluster B showed significant difference. HOX B genes have been linked with the control of genes that direct the development of axial morphology, particularly of the vertebral column bones. The magnitude of variation among the body plans of closely-related species can thus be partially attributed to the promoter kind, location and number, and gene inactivation via CpG methylation.

  12. Salivary alpha-amylase changes promoted by sustained exposure to affective pictures.

    Science.gov (United States)

    Sánchez-Navarro, Juan P; Maldonado, Enrique F; Martínez-Selva, José M; Enguix, Alfredo; Ortiz, Carmen

    2012-12-01

    We studied the changes in salivary alpha-amylase (sAA) and other psychophysiological indices (heart rate, skin conductance, and corrugator supercilii activity) elicited by sustained exposure to affective pictures. Thirty-nine subjects viewed five blocks of pictures depicting mutilations, human attack, neutral scenes, sport/adventure, and erotica. Each block comprised 12 pictures of the same content. Saliva samples were collected before and after each block of pictures. The results showed that mutilation pictures promoted the greatest increase in sAA activity and output, as well as greater corrugator supercilii activity than pleasant pictures. Skin conductance response did not differ among high arousal picture contents. Changes in sAA varied with the affective valence but not with the arousal ratings of the pictures. Our results point to sAA as an index directly related to the unpleasantness elicited by sustained exposure to affective stimuli. Copyright © 2012 Society for Psychophysiological Research.

  13. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

    Science.gov (United States)

    Vrba, Lukas; Muñoz-Rodríguez, José L; Stampfer, Martha R; Futscher, Bernard W

    2013-01-01

    miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.

  14. Bidirectional promoters of insects: genome-wide comparison, evolutionary implication and influence on gene expression.

    Science.gov (United States)

    Behura, Susanta K; Severson, David W

    2015-01-30

    Bidirectional promoters are widespread in insect genomes. By analyzing 23 insect genomes we show that the frequency of bidirectional gene pairs varies according to genome compactness and density of genes among the species. The density of bidirectional genes expected based on number of genes per megabase of genome explains the observed density suggesting that bidirectional pairing of genes may be due to random event. We identified specific transcription factor binding motifs that are enriched in bidirectional promoters across insect species. Furthermore, we observed that bidirectional promoters may act as transcriptional hotspots in insect genomes where protein coding genes tend to aggregate in significantly biased (p promoters. Natural selection seems to have an association with the extent of bidirectionality of genes among the species. The rate of non-synonymous-to-synonymous changes (dN/dS) shows a second-order polynomial distribution with bidirectionality between species indicating that bidirectionality is dependent upon evolutionary pressure acting on the genomes. Analysis of genome-wide microarray expression data of multiple insect species suggested that bidirectionality has a similar association with transcriptome variation across species. Furthermore, bidirectional promoters show significant association with correlated expression of the divergent gene pairs depending upon their motif composition. Analysis of gene ontology showed that bidirectional genes tend to have a common association with functions related to "binding" (including ion binding, nucleotide binding and protein binding) across genomes. Such functional constraint of bidirectional genes may explain their widespread persistence in genome of diverse insect species.

  15. Engineering of Promoter Replacement Cassettes for Fine-Tuning of Gene Expression in Saccharomyces cerevisiae

    OpenAIRE

    2006-01-01

    The strong overexpression or complete deletion of a gene gives only limited information about its control over a certain phenotype or pathway. Gene function studies based on these methods are therefore incomplete. To effect facile manipulation of gene expression across a full continuum of possible expression levels, we recently created a library of mutant promoters. Here, we provide the detailed characterization of our yeast promoter collection comprising 11 mutants of the strong constitutive...

  16. Caenorhabditis elegans Genes Affecting Interindividual Variation in Life-span Biomarker Gene Expression.

    Science.gov (United States)

    Mendenhall, Alexander; Crane, Matthew M; Tedesco, Patricia M; Johnson, Thomas E; Brent, Roger

    2017-10-01

    Genetically identical organisms grown in homogenous environments differ in quantitative phenotypes. Differences in one such trait, expression of a single biomarker gene, can identify isogenic cells or organisms that later manifest different fates. For example, in isogenic populations of young adult Caenorhabditis elegans, differences in Green Fluorescent Protein (GFP) expressed from the hsp-16.2 promoter predict differences in life span. Thus, it is of interest to determine how interindividual differences in biomarker gene expression arise. Prior reports showed that the thermosensory neurons and insulin signaling systems controlled the magnitude of the heat shock response, including absolute expression of hsp-16.2. Here, we tested whether these regulatory signals might also influence variation in hsp-16.2 reporter expression. Genetic experiments showed that the action of AFD thermosensory neurons increases interindividual variation in biomarker expression. Further genetic experimentation showed the insulin signaling system acts to decrease interindividual variation in life-span biomarker expression; in other words, insulin signaling canalizes expression of the hsp-16.2-driven life-span biomarker. Our results show that specific signaling systems regulate not only expression level, but also the amount of interindividual expression variation for a life-span biomarker gene. They raise the possibility that manipulation of these systems might offer means to reduce heterogeneity in the aging process. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Children affected by HIV/AIDS: SAFE, a model for promoting their security, health, and development.

    Science.gov (United States)

    Betancourt, Theresa S; Fawzi, Mary K S; Bruderlein, Claude; Desmond, Chris; Kim, Jim Y

    2010-05-01

    A human security framework posits that individuals are the focus of strategies that protect the safety and integrity of people by proactively promoting children's well being, placing particular emphasis on prevention efforts and health promotion. This article applies this framework to a rights-based approach in order to examine the health and human rights of children affected by HIV/AIDS. The SAFE model describes sources of insecurity faced by children across four fundamental dimensions of child well-being and the survival strategies that children and families may employ in response. The SAFE model includes: Safety/protection; Access to health care and basic physiological needs; Family/connection to others; and Education/livelihoods. We argue that it is critical to examine the situation of children through an integrated lens that effectively looks at human security and children's rights through a holistic approach to treatment and care rather than artificially limiting our scope of work to survival-oriented interventions for children affected by HIV/AIDS. Interventions targeted narrowly at children, in isolation of their social and communal environment as outlined in the SAFE model, may in fact undermine protective resources in operation in families and communities and present additional threats to children's basic security. An integrated approach to the basic security and care of children has implications for the prospects of millions of children directly infected or indirectly affected by HIV/AIDS around the world. The survival strategies that young people and their families engage in must be recognized as a roadmap for improving their protection and promoting healthy development. Although applied to children affected by HIV/AIDS in the present analysis, the SAFE model has implications for guiding the care and protection of children and families facing adversity due to an array of circumstances from armed conflict and displacement to situations of extreme poverty.

  18. Factors Affecting Health-Promoting Behaviors in Nursing Students at a University in Turkey.

    Science.gov (United States)

    Polat, Ülkü; Özen, Şükrü; Kahraman, Burcu Bayrak; Bostanoğlu, Hatice

    2016-07-01

    This descriptive study was carried out to determine factors affecting health-promoting behaviors in nursing students. The sample consisted of 245 students. A questionnaire about factors affecting lifestyle behavior and the Health Promotion Lifestyle Profile Scale-II were used to collect data from 245 nursing students during the spring semester of the 2012-2013 academic year. A significant difference was found between students with and without diagnosed health problems in terms of their mean scores on the Health Promotion Lifestyle Profile Scale-II subscales of health responsibility, spiritual growth, and interpersonal relations, as well as their total mean scores (p nutrition, spiritual growth, and stress management subscale scores of those students regularly going for health checks were determined to be significantly higher than those of the students who did not obtain regular health checks. Students' healthy lifestyle behaviors were generally found to be at the medium level. This study provides evidence of the need for interventions to help nurses in Turkey.

  19. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters.

    Science.gov (United States)

    Zhang, Ning; McHale, Leah K; Finer, John J

    2016-01-01

    Introns, especially the first intron in the 5' untranslated region (5'UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement.

  20. Transcription without XPB Establishes a Unified Helicase-Independent Mechanism of Promoter Opening in Eukaryotic Gene Expression.

    Science.gov (United States)

    Alekseev, Sergey; Nagy, Zita; Sandoz, Jérémy; Weiss, Amélie; Egly, Jean-Marc; Le May, Nicolas; Coin, Frederic

    2017-02-02

    Transcription starts with the assembly of pre-initiation complexes on promoters followed by their opening. Current models suggest that class II gene transcription requires ATP and the TFIIH XPB subunit to open a promoter. Here, we observe that XPB depletion surprisingly leaves transcription virtually intact. In contrast, inhibition of XPB ATPase activity affects transcription, revealing that mRNA expression paradoxically accommodates the absence of XPB while being sensitive to the inhibition of its ATPase activity. The XPB-depleted TFIIH complex is recruited to active promoters and contributes to transcription. We finally demonstrate that the XPB ATPase activity is only used to relieve a transcription initiation block imposed by XPB itself. In the absence of this block, transcription initiation can take place without XPB ATPase activity. These results suggest that a helicase is dispensable for mRNA transcription, thereby unifying the mechanism of promoter DNA opening for the three eukaryotic RNA polymerases.

  1. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  2. Polymorphism of the prion protein gene (PRNP) in Polish cattle affected by classical bovine spongiform encephalopathy.

    Science.gov (United States)

    Gurgul, Artur; Czarnik, Urszula; Urszula, Czarnik; Larska, Magdalena; Polak, Mirosław P; Strychalski, Janusz; Słota, Ewa

    2012-05-01

    Recent attempts to discover genetic factors affecting cattle resistance/susceptibility to bovine spongiform encephalopathy (BSE) have led to the identification of two insertion/deletion (indel) polymorphisms, located within the promoter and intron 1 of the prion protein gene PRNP, showing a significant association with the occurrence of classical form of the disease. Because the effect of the polymorphisms was studied only in few populations, in this study we investigated whether previously described association of PRNP indel polymorphisms with BSE susceptibility in cattle is also present in Polish cattle population. We found a significant relation between the investigated PRNP indel polymorphisms (23 and 12 bp indels), and susceptibility of Polish Holstein-Friesian cattle to classical BSE (P < 0.05). The deletion variants of both polymorphisms were related to increased susceptibility, whereas insertion variants were protective against BSE.

  3. Nonviral gene transfer strategies to promote bone regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2013-10-01

    Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.

  4. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  5. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  6. The human desmin promoter drives robust gene expression for skeletal muscle stem cell-mediated gene therapy.

    Science.gov (United States)

    Jonuschies, Jacqueline; Antoniou, Michael; Waddington, Simon; Boldrin, Luisa; Muntoni, Francesco; Thrasher, Adrian; Morgan, Jennifer

    2014-01-01

    Lentiviral vectors (LVs) represent suitable candidates to mediate gene therapy for muscular dystrophies as they infect dividing and non-dividing cells and integrate their genetic material into the host genome, thereby theoretically mediating longterm expression. We evaluated the ability of LVs where a GFP reporter gene was under the control of five different promoters, to transduce and mediate expression in myogenic and non-myogenic cells in vitro and in skeletal muscle fibres and stem (satellite) cells in vivo. We further analysed lentivirally-transduced satellite cell-derived myoblasts following their transplantation into dystrophic, immunodeficient mouse muscles. The spleen focus-forming virus promoter mediated the highest gene expression in all cell types; the CBX3-HNRPA2B1 ubiquitously-acting chromatin opening element (UCOE) promoter was also active in all cells, whereas the human desmin promoter in isolation or fused with UCOE had lower activity in non-muscle cells. Surprisingly, the human skeletal muscle actin promoter was also active in immune cells. The human desmin promoter mediated robust, persistent reporter gene expression in myogenic cells in vitro, and satellite cells and muscle fibres in vivo. The human desmin promoter combined with UCOE did not significantly increase transgene expression. Therefore, our data indicate that the desmin promoter is suitable for the development of therapeutic purposes.

  7. Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shui Wang; Yong-Bin Ding; Guo-Yu Chen; Jian-Guo Xia; Zhen-Yan Wu

    2004-01-01

    AIM: To investigate the rrelationship between methylation of Syk (spleen tyrosine kinase) gene in promoter region and oncogenesis, metastasis of gastric carcinoma. The relation between silencing of the Syk gene and methylation of Syk promoter region was also studied.METHODS: By using methylation-specific PCR (MSP)technique, the methylation of Syk promoter region in specimens from 61 gastric cancer patients (tumor tissues and adjacent normal tissues) was detected. Meanwhile, RTPCR was used to analyse syk expression exclusively.RESULTS: The expression of the Syk gene was detected in all normal gastric tissues. Syk expression in gastric carcinoma was lower in 14 out of 61 gastric cancer samples than in adjacent normal tissues (x2=72.3, P<0.05). No methylation of Syk promoter was found in adjacent normal tissues, hypermethylation of Syk gene in promoter was detected 21 cases in 61 gastric carcinoma patients. The rate of methylation of Syk promoter in gastric carcinoma was higher than that in adjacent normal tissues (x2=25.1,P<0.05). In 31 patients with lymph node metastasis, 17 were found with Syk promoter methylation. A significant difference was noted between two groups (x2=11.4, P<0.05).CONCLUSION: Hypermethylation leads to silencing of the Syk gene in human gastric carcinoma. Methylation of Syk promoter is correlated to oncogenesis and metastasis of gastric carcinoma. Syk is considered to be a potential tumor suppressor and anti-metastasis gene in human gastric cancer.

  8. A novel method for the determination of basal gene expression of tissue-specific promoters: an analysis of prostate-specific promoters.

    NARCIS (Netherlands)

    Poel, H.G. van der; McCadden, J.; Verhaegh, G.W.C.T.; Kruszewski, M.; Ferrer, F.; Schalken, J.A.; Carducci, M.; Rodriguez, R.

    2001-01-01

    Because the toxicity of suicide gene therapeutics is directly related to basal promoter activity, we developed an assay to test for promoter "leakiness" using a diphtheria toxin mutant. Sequences of 15 prostate-specific gene promoter constructs were cloned in an expression plasmid (pBK; Stratagene,

  9. [Comparative analysis of activity of different promoters for NIS gene expression in melanoma cells].

    Science.gov (United States)

    Kuz'mich, A I; Kopantsev, E P; Vinogradova, T V; Sverdlov, E D

    2014-01-01

    Development of targeted drug delivery system is key problem of cancer gene therapy. To ensure specific delivery of these therapeutic compounds to the tumor it is preferable for therapeutic gene expression to occur predominantly in cancer cells. Therefore, when testing drug in vivo, it is necessary to study distribution of therapeutic gene expression products in different tissues of the organism. Sodium iodide symporter (NIS) is attractive reporter because its tissue level is easily quantitatively detected by noninvasive imaging methods. Different promoters are used to direct expression of therapeutic genes in tumor cells: strong nonspecific, moderate tissue-specific and tumor-specific. Tumor-specific promoters function in wide range of tumor cells, however they are relatively weak. Relationship between promoter and sodium iodide symporter activity is unclear to date. In this report we examined activity of different promoters in two melanoma cell lines, functional activity of NIS driven by these promoters, also we compared promoter strength and NIS activity. We demonstrated that in spite of strong differences in promoter activity functional activity of NIS directed by these promoters varies weakly. Relatively weak melanoma-specific promoter directs high NIS activity in melanoma cell, however weaker cancer-specific promoters drive high NIS activity only in certain melanoma cell line.

  10. Genes affecting heading date in cocksfoot (Dactylis glomerata)

    Science.gov (United States)

    Several genes cause well known effects on heading date in cool-season forages: Vrn1, Constans, and FloweringTime. Vrn1 is a MADs box transcription factor that is induced upon vernalization and necessary for flowering. Constans genes are induced upon long days in cool-season grasses and induce exp...

  11. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Garí, E; Piedrafita, L; Aldea, M; Herrero, E

    1997-07-01

    A set of Saccharomyces cerevisiae expression vectors has been developed in which transcription is driven by a hybrid tetO-CYC1 promoter through the action of a tetR-VP16 (tTA) activator. Expression from the promoter is regulated by tetracycline or derivatives. Various modalities of promoter and activator are used in order to achieve different levels of maximal expression. In the presence of antibiotic in the growth medium at concentrations that do not affect cell growth, expression from the tetO promoter is negligible, and upon antibiotic removal induction ratios of up to 1000-fold are observed with a lacZ reporter system. With the strongest system, overexpression levels comparable with those observed with GAL1-driven promoters are reached. For each particular promoter/tTA combination, expression can be modulated by changing the tetracycline concentration in the growth medium. These vectors may be useful for the study of the function of essential genes in yeast, as well as for phenotypic analysis of genes in overexpression conditions, without restrictions imposed by growth medium composition.

  12. Multiobjective H2/H∞ synthetic gene network design based on promoter libraries.

    Science.gov (United States)

    Wu, Chih-Hung; Zhang, Weihei; Chen, Bor-Sen

    2011-10-01

    Some current promoter libraries have been developed for synthetic gene networks. But an efficient method to engineer a synthetic gene network with some desired behaviors by selecting adequate promoters from these promoter libraries has not been presented. Thus developing a systematic method to efficiently employ promoter libraries to improve the engineering of synthetic gene networks with desired behaviors is appealing for synthetic biologists. In this study, a synthetic gene network with intrinsic parameter fluctuations and environmental disturbances in vivo is modeled by a nonlinear stochastic system. In order to engineer a synthetic gene network with a desired behavior despite intrinsic parameter fluctuations and environmental disturbances in vivo, a multiobjective H(2)/H(∞) reference tracking (H(2) optimal tracking and H(∞) noise filtering) design is introduced. The H(2) optimal tracking can make the tracking errors between the behaviors of a synthetic gene network and the desired behaviors as small as possible from the minimum mean square error point of view, and the H(∞) noise filtering can attenuate all possible noises, from the worst-case noise effect point of view, to achieve a desired noise filtering ability. If the multiobjective H(2)/H(∞) reference tracking design is satisfied, the synthetic gene network can robustly and optimally track the desired behaviors, simultaneously. First, based on the dynamic gene regulation, the existing promoter libraries are redefined by their promoter activities so that they can be efficiently selected in the design procedure. Then a systematic method is developed to select an adequate promoter set from the redefined promoter libraries to synthesize a gene network satisfying these two design objectives. But the multiobjective H(2)/H(∞) reference tracking design problem needs to solve a difficult Hamilton-Jacobi Inequality (HJI)-constrained optimization problem. Therefore, the fuzzy approximation method is

  13. Effect of glucocorticoid on promoter of 11β-hydroxysteroid dehydrogenase I gene

    Institute of Scientific and Technical Information of China (English)

    何平; 孙刚

    2003-01-01

    Objective: To study the effect of glucocorticoid on the promoter of the pre-receptor glucocorticoid metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) gene. Methods: The 1.2 kb length sequence upstream to the transcription start site of the 11β-HSD1 gene was amplified with polymerase chain reaction (PCR) and then was cloned into pBLCAT6 plasmid carrying chloramphenicol acetyltransferase (CAT) reporter gene. The plasmid pBLCAT6 carrying the promoter and reporter gene was used to transfect HeLa cells to study the regulation of 11β-HSD1 gene expression by glucocorticoids in terms of reporter gene expression. Results: PCR showed that there was a complete alignment of the amplified sequence with the sequence 1.2 kb upstream to the transcription start site of 11β-HSD1 gene. When cloned into pBLCAT6 plasmid carrying the reporter gene, this part of the promoter is functional in terms of regulation of reporter gene expression upon transfection into HeLa cells. The synthetic glucocorticoid-dexamethasone induced the reporter gene expression in the system described above, which was blocked by glucocorticoid receptor antagonist RU486. Conclusion: Glucocorticoids can modulate the expression of 11β-HSD1 through a mechanism involving activation of GR and interaction of the promoter of 11β-HSD1 gene.

  14. Caenorhabditis elegans lin-35/Rb, efl-1/E2F and other synthetic multivulva genes negatively regulate the anaphase-promoting complex gene mat-3/APC8.

    Science.gov (United States)

    Garbe, David; Doto, Jeffrey B; Sundaram, Meera V

    2004-06-01

    Retinoblastoma (Rb)/E2F complexes repress expression of many genes important for G(1)-to-S transition, but also appear to regulate gene expression at other stages of the cell cycle. In C. elegans, lin-35/Rb and other synthetic Multivulva (SynMuv) group B genes function redundantly with other sets of genes to regulate G(1)/S progression, vulval and pharyngeal differentiation, and other unknown processes required for viability. Here we show that lin-35/Rb, efl-1/E2F, and other SynMuv B genes negatively regulate a component of the anaphase-promoting complex or cyclosome (APC/C). The APC/C is a multisubunit complex that promotes metaphase-to-anaphase progression and G(1) arrest by targeting different substrates for ubiquitination and proteasome-mediated destruction. The C. elegans APC/C gene mat-3/APC8 has been defined by temperature-sensitive embryonic lethal alleles that strongly affect germline meiosis and mitosis but only weakly affect somatic development. We describe severe nonconditional mat-3 alleles and a hypomorphic viable allele (ku233), all of which affect postembryonic cell divisions including those of the vulval lineage. The ku233 lesion is located outside of the mat-3 coding region and reduces mat-3 mRNA expression. Loss-of-function alleles of lin-35/Rb and other SynMuv B genes suppress mat-3(ku233) defects by restoring mat-3 mRNA to wild-type levels. Therefore, Rb/E2F complexes appear to repress mat-3 expression.

  15. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Pinas, J.E.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1999-01-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the β-glucuronidase (gusA) reporter gene. Subsequently, seeds were tr

  16. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions.

    Science.gov (United States)

    Watanabe, Daisuke; Kaneko, Akie; Sugimoto, Yukiko; Ohnuki, Shinsuke; Takagi, Hiroshi; Ohya, Yoshikazu

    2017-02-01

    A loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-like protein kinase, is one of the major causes of the high alcoholic fermentation rates in Saccharomyces cerevisiae sake strains closely related to Kyokai no. 7 (K7). However, impairment of Rim15p may not be beneficial under more severe fermentation conditions, such as in the late fermentation stage, as it negatively affects stress responses. To balance stress tolerance and fermentation performance, we inserted the promoter of a gluconeogenic gene, PCK1, into the 5'-untranslated region (5'-UTR) of the RIM15 gene in a laboratory strain to achieve repression of RIM15 gene expression in the glucose-rich early stage with its induction in the stressful late stage of alcoholic fermentation. The promoter-engineered strain exhibited a fermentation rate comparable to that of the RIM15-deleted strain with no decrease in cell viability. The engineered strain achieved better alcoholic fermentation performance than the RIM15-deleted strain under repetitive and high-glucose fermentation conditions. These data demonstrated the validity of promoter engineering of the RIM15 gene that governs inhibitory control of alcoholic fermentation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Specific Colon Cancer Cell Cytotoxicity Induced by Bacteriophage E Gene Expression under Transcriptional Control of Carcinoembryonic Antigen Promoter

    Directory of Open Access Journals (Sweden)

    Ana R. Rama

    2015-06-01

    Full Text Available Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA to direct E gene expression (pCEA-E towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.

  18. Identification and refinement of two strong constitutive promoters for gene expression system of Schizosaccharomyces pombe.

    Science.gov (United States)

    Wang, Hongcheng; Wang, Haiyang; Wang, Meng; Zhang, Lei; Wang, Ren; Mei, Yanzhen; Shao, Weilan

    2014-06-01

    Fission yeast Schizosaccharomyces pombe shares various important properties with higher eukaryotes and is now considered a useful host for elevated production of mammalian proteins for medicinal applications. The full-length nmt1 promoter has been widely used as a strong promoter in S. pombe expression system. In the present study, the promoters of the eno101 and gpd3 genes in S. pombe were identified as strong constitutive promoters. For convenient applications in the plasmids of S. pombe, these promoters were refined to 276-bp eno and 273-bp gpd promoters by deleting undesired sequences and examining the expression of reporter genes including lacZ and xynA. Both the refined eno and gpd promoters provided approximately 1.5-fold higher expression of LacZ than nmt1 promoter. Furthermore, gene expression under the control of the eno or gpd promoter was not repressed by the components of YES medium while nmt1 promoter was inhibited by thiamine in yeast extract. Therefore, both eno and gpd promoters offer opportunities for efficient production of recombinant proteins by S. pombe in high cell-density fermentation.

  19. Activity of heat shock genes' promoters in thermally contrasting animal species.

    Science.gov (United States)

    Astakhova, Lyubov N; Zatsepina, Olga G; Funikov, Sergei Yu; Zelentsova, Elena S; Schostak, Natalia G; Orishchenko, Konstantin E; Evgen'ev, Michael B; Garbuz, David G

    2015-01-01

    Heat shock gene promoters represent a highly conserved and universal system for the rapid induction of transcription after various stressful stimuli. We chose pairs of mammalian and insect species that significantly differ in their thermoresistance and constitutive levels of Hsp70 to compare hsp promoter strength under normal conditions and after heat shock (HS). The first pair includes the HSPA1 gene promoter of camel (Camelus dromedarius) and humans. It was demonstrated that the camel HSPA1A and HSPA1L promoters function normally in vitro in human cell cultures and exceed the strength of orthologous human promoters under basal conditions. We used the same in vitro assay for Drosophila melanogaster Schneider-2 (S2) cells to compare the activity of the hsp70 and hsp83 promoters of the second species pair represented by Diptera, i.e., Stratiomys singularior and D. melanogaster, which dramatically differ in thermoresistance and the pattern of Hsp70 accumulation. Promoter strength was also monitored in vivo in D. melanogaster strains transformed with constructs containing the S. singularior hsp70 ORF driven either by its own promoter or an orthologous promoter from the D. melanogaster hsp70Aa gene. Analysis revealed low S. singularior hsp70 promoter activity in vitro and in vivo under basal conditions and after HS in comparison with the endogenous promoter in D. melanogaster cells, which correlates with the absence of canonical GAGA elements in the promoters of the former species. Indeed, the insertion of GAGA elements into the S. singularior hsp70 regulatory region resulted in a dramatic increase in promoter activity in vitro but only modestly enhanced the promoter strength in the larvae of the transformed strains. In contrast with hsp70 promoters, hsp83 promoters from both of the studied Diptera species demonstrated high conservation and universality.

  20. Endogenous retroviral LTRs as promoters for human genes: a critical assessment.

    Science.gov (United States)

    Cohen, Carla J; Lock, Wynne M; Mager, Dixie L

    2009-12-15

    Gene regulatory changes are thought to be major factors driving species evolution, with creation of new regulatory regions likely being instrumental in contributing to diversity among vertebrates. There is growing appreciation for the role of transposable elements (TEs) in gene regulation and, indeed, laboratory investigations have confirmed many specific examples of mammalian genes regulated by promoters donated by endogenous retroviruses (ERVs) or other TEs. Bioinformatics studies have revealed hundreds of additional instances where this is likely to be the case. Since the long terminal repeats (LTRs) of retroviruses naturally contain abundant transcriptional regulatory signals, roles for ERV LTRs in regulating mammalian genes are eminently plausible. Moreover, it seems reasonable that exaptation of an LTR regulatory module provides opportunities for evolution of new gene regulatory patterns. In this Review we summarize known examples of LTRs that function as human gene alternative promoters, as well as the evidence that LTR exaptation has resulted in a pattern of novel gene expression significantly different from the pattern before LTR insertion or from that of gene orthologs lacking the LTR. Available data suggest that, while new expression patterns can arise as a result of LTR usage, this situation is relatively rare and is largely restricted to the placenta. In many cases, the LTR appears to be a minor, alternative promoter with an expression pattern similar to that of the native promoter(s) and hence likely exerts a subtle overall effect on gene expression. We discuss these findings and offer evolutionary models to explain these trends.

  1. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    Science.gov (United States)

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  2. Znf202 affects high density lipoprotein cholesterol levels and promotes hepatosteatosis in hyperlipidemic mice.

    Directory of Open Access Journals (Sweden)

    Carlos L J Vrins

    Full Text Available BACKGROUND: The zinc finger protein Znf202 is a transcriptional suppressor of lipid related genes and has been linked to hypoalphalipoproteinemia. A functional role of Znf202 in lipid metabolism in vivo still remains to be established. METHODOLOGY AND PRINCIPAL FINDINGS: We generated mouse Znf202 expression vectors, the functionality of which was established in several in vitro systems. Next, effects of adenoviral znf202 overexpression in vivo were determined in normo- as well as hyperlipidemic mouse models. Znf202 overexpression in mouse hepatoma cells mhAT3F2 resulted in downregulation of members of the Apoe/c1/c2 and Apoa1/c3/a4 gene cluster. The repressive activity of Znf202 was firmly confirmed in an apoE reporter assay and Znf202 responsive elements within the ApoE promoter were identified. Adenoviral Znf202 transfer to Ldlr-/- mice resulted in downregulation of apoe, apoc1, apoa1, and apoc3 within 24 h after gene transfer. Interestingly, key genes in bile flux (abcg5/8 and bsep and in bile acid synthesis (cyp7a1 were also downregulated. At 5 days post-infection, the expression of the aforementioned genes was normalized, but mice had developed severe hepatosteatosis accompanied by hypercholesterolemia and hypoalphalipoproteinemia. A much milder phenotype was observed in wildtype mice after 5 days of hepatic Znf202 overexpression. Interestingly and similar to Ldl-/- mice, HDL-cholesterol levels in wildtype mice were lowered after hepatic Znf202 overexpression. CONCLUSION/SIGNIFICANCE: Znf202 overexpression in vivo reveals an important role of this transcriptional regulator in liver lipid homeostasis, while firmly establishing the proposed key role in the control of HDL levels.

  3. DNA methylation of PTEN gene promoter region is not correlated ...

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... Key words: PTEN, promoter methylation, bladder cancer. INTRODUCTION ... al., 2005), pancreatic cancer (Asano et al., 2004), thyroid cancer (Frisk et al., ..... papillary mucinous neoplasms of the pancreas. J. Hepatobiliary.

  4. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb.

    Science.gov (United States)

    Guo, Lei; Wu, Wen-juan; Liu, Long-ding; Wang, Li-chun; Zhang, Ying; Wu, Lian-qiu; Guan, Ying; Li, Qi-han

    2012-01-01

    ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) immediate early protein that functions as a general repressor of a subset of cellular and viral promoters in transient expression systems. Although the exact mechanism of repression remains unclear, this protein induces a decrease in RNA polymerase II Serine 2 (RNAPII Ser-2) phosphorylation, which is critical for transcription elongation. To characterize the mechanism of transcriptional repression by ICP22, we established an in vivo transient expression reporter system. We found that ICP22 inhibits transcription of the HSV-1 α, β and γ gene promoters. The viral tegument protein VP16, which plays vital roles in initiation of viral gene expression and viral proliferation, can overcome the inhibitory effect of ICP22 on α-gene transcription. Further immunoprecipitation studies indicated that both ICP22 and VP16 bind to positive transcription elongation factor b (P-TEFb) and form a complex with it in vivo. We extended this to show that P-TEFb regulates transcription of the viral α-gene promoters and affects transcriptional regulation of ICP22 and VP16 on the α-genes. Additionally, ChIP assays demonstrated that ICP22 blocks the recruitment of P-TEFb to the viral promoters, while VP16 reverses this blocking effect by recruiting P-TEFb to the viral α-gene promoters through recognition of the TAATGARAT motif. Taken together, our results suggest that ICP22 interacts with and blocks the recruitment of P-TEFb to viral promoter regions, which inhibits transcription of the viral gene promoters. The transactivator VP16 binds to and induces the recruitment of P-TEFb to viral α-gene promoters, which counteracts the transcriptional repression of ICP22 on α-genes by recruiting p-TEFb to the promoter region.

  5. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  6. Cloning and characterization of the human USP22 gene promoter.

    Directory of Open Access Journals (Sweden)

    Jianjun Xiong

    Full Text Available Ubiquitin-specific processing enzyme 22 (USP22 plays a direct role in regulating cell cycle, and its overexpression has been reported to be involved in tumor progression. However, little is known about the regulation of USP22 transcription. In this study, we cloned and characterized the human USP22 promoter. Using 5' RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis showed that the sequence between -210 and -7 contains the basal promoter for USP22 in human fibroblast and tumor cells. Surprisingly, mutations in a putative Sp1 binding site immediately upstream of the USP22 transcriptional start site (-13 to -7 resulted in a significant induction of promoter activity. Further study revealed that Sp1 binds to this site in human normal fibroblast cells, and treatment with the Sp1 inhibitor mithramycin A led to a marked increase in USP22 transcript levels. Forced expression of exogenous Sp1 repressed the USP22 promoter activity in HeLa cells. In contrast, knockdown of Sp1 enhanced USP22 promoter activity and mRNA levels. These data suggest that Sp1 is a crucial regulator of USP22 transcription.

  7. Heterologous expression of the Pleurotus ostreatus MnP3 gene by the laccase gene promoter in Lentinula edodes.

    Science.gov (United States)

    Sato, Toshitsugu; Irie, Toshikazu; Yoshino, Fumihiko

    2017-08-01

    Lentinula edodes (shiitake), which have a powerful ligninolytic system, is one of the most important edible mushrooms in Asia. In this study, we introduced the manganese peroxidase (MnP, EC 1.11.1.13) gene from Pleurotus ostreatus driven by L. edodes laccase 1 gene promoter into L. edodes for expression. The resulting transformant expressed the recombinant gene and showed a higher level of MnP activity than that of the wild-type strain.

  8. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation.

    Science.gov (United States)

    Kirov, Julia V; Adkisson, Michael; Nava, A J; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K; Lloyd, K C Kent; de Jong, Pieter; West, David B

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.

  9. CYP7A1 promoter polymorphism -203A>C affects bile salt synthesis rate in patients after ileal resection.

    Science.gov (United States)

    Lenícek, Martin; Komárek, Viktor; Zimolová, Miluse; Kovár, Jan; Jirsa, Milan; Lukás, Milan; Vítek, Libor

    2008-12-01

    Cholesterol 7alpha-hydroxylase (CYP7A1) plays a crucial role in cholesterol metabolism and has been implicated in genetic susceptibility to atherosclerosis. Thus, an understanding of its transcriptional regulation is of considerable importance. We evaluated the effect of a common -203A>C polymorphism in the CYP7A1 promoter region on the activity of CYP7A1, estimated as the ratios of serum 7alpha-hydroxycholest-4-en-3-one (C4) to either total or non-HDL-cholesterol. The study was performed on patients after resection of the distal ileum, leading to upregulation of CYP7A1 activity (n = 65). Healthy volunteers served as the control group (n = 66). Whereas higher CYP7A1 activity was associated with the -203A allele in the patient group (C4/cholesterol ratio, 29.0 vs. 14.8 microg/mmol, P = 0.032; C4/non-HDL-cholesterol ratio, 53.3 vs. 21.3 microg/mmol in -203AA and -203CC, P = 0.017, respectively), no differences were observed in the healthy controls. We conclude that under physiological conditions, the -203A>C polymorphism in the CYP7A1 gene promoter region does not seem to have any clinically relevant effect. However, in patients with severe bile salt malabsorption, this polymorphism markedly affects CYP7A1 activity.

  10. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene.

    Science.gov (United States)

    Rodriguez-Centeno, Javier; Sastre, Leandro

    2016-01-01

    Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation.

  11. How the Neanderthal in Your Genes Affects Your Health

    Science.gov (United States)

    ... however, how that modified protein is connected to schizophrenia or height, the researchers said. The study also found that, overall, Neanderthal genes are least active in the brain and testes. ...

  12. Structure, variation and expression analysis of glutenin gene promoters from Triticum aestivum cultivar Chinese Spring shows the distal region of promoter 1Bx7 is key regulatory sequence.

    Science.gov (United States)

    Wang, Kai; Zhang, Xue; Zhao, Ying; Chen, Fanguo; Xia, Guangmin

    2013-09-25

    In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2,554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> -700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5'-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.

  13. Y-chromosomal genes affecting male fertility: A review

    Directory of Open Access Journals (Sweden)

    Jasdeep Kaur Dhanoa

    2016-07-01

    Full Text Available The mammalian sex-chromosomes (X and Y have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility.

  14. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    Science.gov (United States)

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  15. Minimal enhancer elements of the leghemoglobin lba and lbc3 gene promoters from Glycine max L. have different properties

    DEFF Research Database (Denmark)

    She, Q; Lauridsen, P; Stougaard, J

    1993-01-01

    The characteristics of the soybean leghemoglobin lba gene promoter were analyzed and important promoter elements from the lba and lbc3 promoters were compared using transgenic Lotus corniculatus plants. A 5' deletion analysis of the lba promoter delimited two cis-acting elements controlling expre...... function. This may reflect the differential expression of the two lb genes of Glycine max L....

  16. A novel binary T-vector with the GFP reporter gene for promoter characterization.

    Directory of Open Access Journals (Sweden)

    Shu-Ye Jiang

    Full Text Available Several strategies have been developed to clone PCR fragments into desired vectors. However, most of commercially available T-vectors are not binary vectors and cannot be directly used for Agrobacterium-mediated plant genetic transformation. In this study, a novel binary T-vector was constructed by integrating two AhdI restriction sites into the backbone vector pCAMBIA 1300. The T-vector also contains a GFP reporter gene and thus, can be used to analyze promoter activity by monitoring the reporter gene. On the other hand, identification and characterization of various promoters not only benefit the functional annotation of their genes but also provide alternative candidates to be used to drive interesting genes for plant genetic improvement by transgenesis. More than 1,000 putative pollen-specific rice genes have been identified in a genome-wide level. Among them, 67 highly expressed genes were further characterized. One of the pollen-specific genes LOC_Os10g35930 was further surveyed in its expression patterns with more details by quantitative real-time reverse-transcription PCR (qRT-PCR analysis. Finally, its promoter activity was further investigated by analyzing transgenic rice plants carrying the promoter::GFP cassette, which was constructed from the newly developed T-vector. The reporter GFP gene expression in these transgenic plants showed that the promoter was active only in mature but not in germinated pollens.

  17. Evaluation of a novel promoter from Populus trichocarpa for mature xylem tissue specific gene delivery.

    Science.gov (United States)

    Nguyen, Van Phap; Cho, Jin-Seong; Choi, Young-Im; Lee, Sang-Won; Han, Kyung-Hwan; Ko, Jae-Heung

    2016-07-01

    Wood (i.e., secondary xylem) is an important raw material for many industrial applications. Mature xylem (MX) tissue-specific genetic modification offers an effective means to improve the chemical and physical properties of the wood. Here, we describe a promoter that drives strong gene expression in a MX tissue-specific manner. Using whole-transcriptome genechip analyses of different tissue types of poplar, we identified five candidate genes that had strong expression in the MX tissue. The putative promoter sequences of the five MX-specific genes were evaluated for their promoter activity in both transgenic Arabidopsis and poplar. Among them, we found the promoter of Potri.013G007900.1 (called the PtrMX3 promoter) had the strongest activity in MX and thus was further characterized. In the stem and root tissues of transgenic Arabidopsis plants, the PtrMX3 promoter activity was found exclusively in MX tissue. MX-specific activity of the promoter was reproduced in the stem tissue of transgenic poplar plants. The PtrMX3 promoter activity was not influenced by abiotic stresses or exogenously applied growth regulators, indicating the PtrMX3 promoter is bona fide MX tissue-specific. Our study provides a strong MX-specific promoter for MX-specific modifications of woody biomass.

  18. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  19. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  20. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D. [Univ. of Bonn (Germany)] [and others

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  1. Interfering with TGFβ-induced Smad3 nuclear accumulation differentially affects TGFβ-dependent gene expression

    Directory of Open Access Journals (Sweden)

    Dittmer Jürgen

    2003-03-01

    Full Text Available Abstract Background Transforming growth factor-β (TGFβ plays an important role in late-stage carcinogenesis by stimulating invasive behavior of cancer cells, promoting neo-angiogenesis and by helping cancer cells to escape surveillance by the immune system. It also supports colonization of the bone by metastatic breast cancer cells by increasing expression of osteolytic parathyroid hormone-related protein (PTHrP. Interfering with TGFβ signalling may thus weaken the malignant properties of cancer cells. We investigated to what extent two inhibitors, SB-202190 and SB-203580, interfere with TGFβ-signalling in invasive MDA-MB-231 breast cancer cells. These compounds, formerly used as p38-MAPK-specific inhibitors, were recently also demonstrated to inhibit TGFβ type I receptor kinase. Results Our results show that these inhibitors delay the onset of TGFβ-induced nuclear accumulation of Smad3 and reduces its amplitude. This effect was accompanied by a strong reduction in TGFβ-responsivess of the slow-responder genes pthrp, pai-1 and upa, while the reactivity of the fast-responder gene smad7 to TGFβ remained almost unchanged. Neither was the TGFβ response of the fast-responder ese-1/esx gene, whose expression we found to be strongly downregulated by TGFβ, affected by the inhibitors. Conclusion The data show that SB-202190 and SB-203580 suppress TGFβ-dependent activation of genes that are important for the acquisition of invasive behavior, while having no effect on the expression of the natural TGFβ inhibitor Smad7. This suggests that these compounds are potent inhibitors of malignant behavior of cancer cells.

  2. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  3. Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco.

    Science.gov (United States)

    Li, Meng; Wang, Xiaohuan; Cao, Yang; Liu, Xun; Lin, Yuan; Ou, Yongbin; Zhang, Huiling; Liu, Jun

    2013-10-01

    The cold-inducible promoter is ideal for regulating ectopic gene expression in plants to cope with the cold stress. The promoters of two cold-regulated genes, cor15a and cor15b, were cloned from Arabidopsis thaliana and their strengths were assayed in potato and tobacco. Although the cis-element composition and cold-inducible property were similar between the two promoters, the cor15b promoter showed significantly higher activity than the cor15a promoter in both potato and tobacco. In order to elucidate the factors determining this discrepancy, cor15a and cor15b promoters were separately truncated from 5'-end to construct short promoters with similar size containing a single C-repeat/dehydration-responsive element (CRT/DRE). Subsequently, two synthetic promoters were constructed by swapping the flanking sequences of CRT/DRE in the truncated promoters. The promoter strength comparison demonstrated that the flanking sequence could affect the promoter strength. These findings provide a potential regulatory mechanism to control the promoter strength without impact on other properties.

  4. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.I.; Schoener-Scott, R.; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Mutations affecting the peripheral myelin protein-22 (PMP22) gene have been shown to be associated with inherited peripheral neuropathies. We have cloned and characterized the human PMP22 gene which spans approximately 40 kilobases and contains four coding exons. Towards developing gene therapy regimens for the associated peripheral neuropathies, we have initiated detailed analysis of the 5{prime} flanking region of the PMP22 gene and identified two alternatively transcribed, but untranslated exons. Mapping of separate PMP22 mRNA transcription initiation sites to each of these exons indicates that PMP22 expression is regulated by two alternatively used promoters. Both putative promoter sequences demonstrated the ability to drive expression of reporter genes in transfection experiments. Furthermore, the structure of the 5{prime} portion of the PMP22 gene appears to be identical in rat and human, supporting the biological significance of the observed arrangement of regulatory regions. The relative expression of the alternative PMP22 transcripts is tissue-specific and high levels of the exon 1A-containing transcript are tightly coupled to myelin formation. In contrast, exon 1B-containing transcripts are predominant in non-neural tissues and in growth-arrested primary fibroblasts. The observed regulation of the PMP22 by a complex molecular mechanism is consistent with the proposed dual role of PMP22 in neural and non-neural tissue.

  5. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  6. Structural Properties of Gene Promoters Highlight More than Two Phenotypes of Diabetes.

    Science.gov (United States)

    Ionescu-Tîrgovişte, Constantin; Gagniuc, Paul Aurelian; Guja, Cristian

    2015-01-01

    Genome-wide association studies (GWAS) published in the last decade raised the number of loci associated with type 1 (T1D) and type 2 diabetes (T2D) to more than 50 for each of these diabetes phenotypes. The environmental factors seem to play an important role in the expression of these genes, acting through transcription factors that bind to promoters. Using the available databases we examined the promoters of various genes classically associated with the two main diabetes phenotypes. Our comparative analyses have revealed significant architectural differences between promoters of genes classically associated with T1D and T2D. Nevertheless, five gene promoters (about 16%) belonging to T1D and six gene promoters (over 19%) belonging to T2D have shown some intermediary structural properties, suggesting a direct relationship to either LADA (Latent Autoimmune Diabetes in Adults) phenotype or to non-autoimmune type 1 phenotype. The distribution of these promoters in at least three separate classes seems to indicate specific pathogenic pathways. The image-based patterns (DNA patterns) generated by promoters of genes associated with these three phenotypes support the clinical observation of a smooth link between specific cases of typical T1D and T2D. In addition, a global distribution of these DNA patterns suggests that promoters of genes associated with T1D appear to be evolutionary more conserved than those associated with T2D. Though, the image based patterns obtained by our method might be a new useful parameter for understanding the pathogenetic mechanism and the diabetogenic gene networks.

  7. Establishment of a cell-based assay to screen regulators for Klotho gene promoter

    Institute of Scientific and Technical Information of China (English)

    Zhi-liang XU; Hong GAO; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU

    2004-01-01

    AIM: To discover compounds which can regulate Klotho promoter activity. Klotho is an aging suppressor gene. A defect in Klotho gene expression in the mouse results in the phenotype similar to human aging. Recombinant Klotho protein improves age-associated diseases in animal models. It has been proposed that up-regulation of Klotho gene expression may have anti-aging effects. METHODS: Klotho promoter was cloned into a vector containing luciferase gene, and the reporter gene vector was transfected into HEK293 cells to make a stable cell line (HEK293/KL). A model for cellular aging was established by treating HEK293/KL cells with H2O2. These cells were treated with extracts from Traditional Chinese Medicines (TCMs). The luciferase activity was detected to identify compounds that can regulate Klotho promoter. RESULTS:The expression of luciferase in these cells was under control of Klotho promoter and down-regulated after H2O2 treatment The down-regulation of luciferase expression was H2O2 concentration-dependent with an IC50 at approximately 0.006 %. This result demonstrated that the Klotho gene promoter was regulated by oxidative stress. Using the cell-based reporter gene assay, we screened natural product extracts for regulation of Klotho gene promoter. Several extracts were identified that could rescue the H2O2effects and up-regulated Klotho promoter activity. CONCLUSION: A cell -based assay for high-throughput drug screening was established to identify compounds that regulate Klotho promoter activity, and several hits were discovered from natural products. Further characterization of these active extracts could help to investigate Klotho function and aging mechanisms.

  8. Mutation of the cytosolic ribosomal protein-encoding RPS10B gene affects shoot meristematic function in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Stirnberg Petra

    2012-09-01

    Full Text Available Abstract Background Plant cytosolic ribosomal proteins are encoded by small gene families. Mutants affecting these genes are often viable, but show growth and developmental defects, suggesting incomplete functional redundancy within the families. Dormancy to growth transitions, such as the activation of axillary buds in the shoot, are characterised by co-ordinated upregulation of ribosomal protein genes. Results A recessive mutation in RPS10B, one of three Arabidopsis genes encoding the eukaryote-specific cytoplasmic ribosomal protein S10e, was found to suppress the excessive shoot branching mutant max2-1. rps10b-1 mildly affects the formation and separation of shoot lateral organs, including the shoot axillary meristems. Axillary meristem defects are enhanced when rps10b-1 is combined with mutations in REVOLUTA, AUXIN-RESISTANT1, PINOID or another suppressor of max2-1, FAR-RED ELONGATED HYPOCOTYL3. In some of these double mutants, the maintenance of the primary shoot meristem is also affected. In contrast, mutation of ALTERED MERISTEM PROGRAMME1 suppresses the rps10b-1axillary shoot defect. Defects in both axillary shoot formation and organ separation were enhanced by combining rps10b-1 with cuc3, a mutation affecting one of three Arabidopsis NAC transcription factor genes with partially redundant roles in these processes. To assess the effect of rps10b-1 on bud activation independently from bud formation, axillary bud outgrowth on excised cauline nodes was analysed. The outgrowth rate of untreated buds was reduced only slightly by rps10b-1 in both wild-type and max2-1 backgrounds. However, rps10b-1 strongly suppressed the auxin resistant outgrowth of max2-1 buds. A developmental phenotype of rps10b-1, reduced stamen number, was complemented by the cDNA of another family member, RPS10C, under the RPS10B promoter. Conclusions RPS10B promotes shoot branching mainly by promoting axillary shoot development. It contributes to organ boundary

  9. Anthracyclines induce double-strand DNA breaks at active gene promoters.

    Science.gov (United States)

    Yang, Fan; Kemp, Christopher J; Henikoff, Steven

    2015-03-01

    Doxorubicin is a widely used chemotherapeutic drug that intercalates between DNA base-pairs and poisons Topoisomerase II, although the mechanistic basis for cell killing remains speculative. Doxorubicin and related anthracycline compounds have been shown to increase nucleosome turnover and/or eviction around promoters, which suggests that the resulting enhanced exposure of DNA might underlie cell killing. Previously, we showed that low doses of anthracyclines increase nucleosome turnover around active gene promoters, which suggests that loss of nucleosomes might contribute to cancer cell killing. Here we apply a genome-wide method to precisely map DNA double-strand breaks (DSBs) in cancer cells. We find that spontaneous DSBs occur preferentially around promoters of active genes, and that both anthracyclines and etoposide, a Topoisomerase II poison, increase DSBs around promoters, although CpG islands are conspicuously protected from DSBs. We propose that torsion-based enhancement of nucleosome turnover by anthracyclines exposes promoter DNA, ultimately causing DSBs around promoters.

  10. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    Science.gov (United States)

    2015-08-01

    dependent compound screen, aided by the University of Michigan Center for Chemical Genomics . Differential AR activation in transfected cells was assessed...WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D, Carver BS, Chen Y, Watson PA, Shah NP, Fujisawa S, Goglia...for known genes and genome -wide by ChIP-seq. Results will strengthen our overall hypothesis that genes with similar function (i.e

  11. Structure of the BoLA-DRB3 gene and promoter.

    Science.gov (United States)

    Russell, G C; Smith, J A; Oliver, R A

    2004-06-01

    The cattle major histocompatibility complex (MHC) class II DR gene product is a heterodimer encoded by the BoLA-DRA and -DRB3 genes. Several groups have isolated cDNA and genomic clones for these genes, but their full genomic organization has not been described. We used a combination of long-range polymerase chain reaction (PCR), cloning and sequencing to define the organization of the DRB3 gene on existing genomic clones and in genomic DNA. We estimate the size of the coding region to be 11.4 kbp. Sequencing of full-length PCR clones from two different haplotypes confirmed that they carried complete DRB3 genes and allowed the design of probes and primers to isolate and characterize the DRB3 promoter and 3' end. Fragments carrying the 5' end of the DRB3 gene and its promoter were identified on bacterial artificial chromosome (BAC) clones carrying the BoLA-DR genes. A 10-kbp promoter fragment was subcloned from one clone and a 1.7-kbp region including exon 1 and the promoter was sequenced. A 3-kbp fragment encoding exons 4-6 and the entire 3' untranslated region of the DRB3 gene was isolated from lambda clone A1 and sequenced. This provides us with improved characterization of the DRB3*0101 and DRB3*2002 alleles, and also subcloned 5' and 3' flanking regions of the polymorphic DRB3 gene for use in functional studies.

  12. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  13. Rational promoter selection for gene transfer into cardiac cells

    NARCIS (Netherlands)

    Maass, A; Langer, SJ; Oberdorf-Maass, S; Bauer, S; Neyses, L; Leinwand, LA

    2003-01-01

    Cardiomyocytes (CMCs) are extremely difficult to transfect with non-viral techniques, but they are efficiently infected by adenoviruses. The most commonly used promoters to drive protein expression in cardiac myocytes are of viral origin, since they are believed to be constitutively active and minim

  14. Live-cell Imaging of Pol II Promoter Activity to Monitor Gene expression with RNA IMAGEtag reporters

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilchung [Ames Laboratory; Ray, Judhajeet [Ames Laboratory; Gupta, Vinayak [Iowa State University; Ilgu, Muslum [Ames Laboratory; Beasley, Jonathan [Iowa State University; Bendickson, Lee [Ames Laboratory; Mehanovic, Samir [Molecular Express; Kraus, George A. [Iowa State University; Nilsen-Hamilton, Marit [Ames Laboratory

    2014-04-20

    We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from the GAL1, ADH1 or ACT1 promoters. Transcription from all three promoters was imaged in live cells and transcriptional increases from the GAL1 promoter were observed with time after adding galactose. Expression of the IMAGEtags did not affect cell proliferation or endogenous gene expression. Advantages of this method are that no foreign proteins are produced in the cells that could be toxic or otherwise influence the cellular response as they accumulate, the IMAGEtags are short lived and oxygen is not required to generate their signals. The IMAGEtag RNA reporter system provides a means of tracking changes in transcriptional activity in live cells and in real time.

  15. Overexpression of a glutamine synthetase gene affects growth and development in sorghum.

    Science.gov (United States)

    Urriola, Jazmina; Rathore, Keerti S

    2015-06-01

    Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.

  16. Niemann-Pick C1 affects the gene delivery efficacy of degradable polymeric nanoparticles.

    Science.gov (United States)

    Eltoukhy, Ahmed A; Sahay, Gaurav; Cunningham, James M; Anderson, Daniel G

    2014-08-26

    Despite intensive research effort, the rational design of improved nanoparticulate drug carriers remains challenging, in part due to a limited understanding of the determinants of nanoparticle entry and transport in target cells. Recent studies have shown that Niemann-Pick C1 (NPC1), the lysosome membrane protein that mediates trafficking of cholesterol in cells, is involved in the endosomal escape and subsequent infection caused by filoviruses, and that its absence promotes the retention and efficacy of lipid nanoparticles encapsulating siRNA. Here, we report that NPC1 deficiency results in dramatic reduction in internalization and transfection efficiency mediated by degradable cationic gene delivery polymers, poly(β-amino ester)s (PBAEs). PBAEs utilized cholesterol and dynamin-dependent endocytosis pathways, and these were found to be heavily compromised in NPC1-deficient cells. In contrast, the absence of NPC1 had minor effects on DNA uptake mediated by polyethylenimine or Lipofectamine 2000. Strikingly, stable overexpression of human NPC1 in chinese hamster ovary cells was associated with enhanced gene uptake (3-fold) and transfection (10-fold) by PBAEs. These findings reveal a role of NPC1 in the regulation of endocytic mechanisms affecting nanoparticle trafficking. We hypothesize that in-depth understanding sites of entry and endosomal escape may lead to highly efficient nanotechnologies for drug delivery.

  17. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.

    Science.gov (United States)

    Azanza, F; Kim, D; Tanksley, S D; Juvik, J A

    1995-08-01

    Three chromosomal segments from the wild tomato, L. chmielewskii, introgressed into the L. esculentum genome have been previously mapped to the middle and terminal regions of chromosome 7 (7M, 7T respectively), and to the terminal region of chromosome 10 (10T). The present study was designed to investigate the physiological mechanisms controlled by the 7M and 7T segments on tomato soluble solids (SS) and pH, and their genetic regulation during fruit development. The effects of 7M and 7T were studied in 64 BC2F5 backcross inbred lines (BILs) developed from a cross between LA 1501 (an L. esculentum line containing the 7M and 7T fragments from L. chmielewskii), and VF145B-7879 (a processing cultivar). BILs were classified into four homozygous genotypes with respect to the introgressed segments based on RFLP analysis, and evaluated for fruit chemical characteristics at different harvest stages. Gene(s) in the 7M fragment reduce fruit water uptake during ripening increasing pH, sugars, and SS concentration. Gene(s) in the 7T fragment were found to be associated with higher mature green fruit starch concentration and red ripe fruit weight. Comparisons between tomatoes ripened on or off the vine suggest that the physiological mechanisms influenced by the L. chmielewskii alleles are dependent on the translocation of photosynthates and water during fruit ripening.

  18. Genetic variation in genes affecting milk composition and quality

    DEFF Research Database (Denmark)

    Bertelsen, Henriette Pasgaard

    In the past decade major advances in next generation sequencing technologies have provided new opportuneties for the detection of genetic variation. Combining the knowlegde of genetic variation with phenotypic distributions provides considerable possibilites for detection of candidate genes....... In addition, exploring genetic variation related to the major milk proteins of bovine milk indntified genetic variations with possitive effects on milk coagulation...

  19. ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions.

    Science.gov (United States)

    Levy, Michael A; Kernohan, Kristin D; Jiang, Yan; Bérubé, Nathalie G

    2015-04-01

    ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism susceptibility gene Neuroligin 4 (Nlgn4), that exhibit decreased expression in ATRX-null cells to investigate the mechanisms used by ATRX to promote gene transcription. Overall TERRA levels, as well as DNA methylation and histone modifications at ATRX target genes are not altered and thus cannot explain transcriptional dysregulation. We found that ATRX does not associate with the promoter of these genes, but rather binds within regions of the gene body corresponding to high H3.3 occupancy. These intragenic regions consist of guanine-rich DNA sequences predicted to form non-B DNA structures called G-quadruplexes during transcriptional elongation. We demonstrate that ATRX deficiency corresponds to reduced H3.3 incorporation and stalling of RNA polymerase II at these G-rich intragenic sites. These findings suggest that ATRX promotes the incorporation of histone H3.3 at particular transcribed genes and facilitates transcriptional elongation through G-rich sequences. The inability to transcribe genes such as Nlgn4 could cause deficits in neuronal connectivity and cognition associated with ATRX mutations in humans.

  20. Promoters of the murine embryonic beta-like globin genes Ey and betah1 do not compete for interaction with the beta-globin locus control region.

    Science.gov (United States)

    Hu, Xiao; Bulger, Michael; Roach, Julia N; Eszterhas, Susan K; Olivier, Emmanuel; Bouhassira, Eric E; Groudine, Mark T; Fiering, Steven

    2003-02-04

    Mammalian beta-globin loci contain multiple beta-like genes that are expressed at different times during development. The murine beta-globin locus contains two genes expressed during the embryo stage, Ey and betah1, and two genes expressed at both the fetal and postnatal stages, beta-major and beta-minor. Studies of transgenic human beta-like globin loci in mice have suggested that expression of one gene at the locus will suppress expression of other genes at the locus. To test this hypothesis we produced mouse lines with deletions of either the Ey or betah1 promoter in the endogenous murine beta-globin locus. Promoter deletion eliminated expression of the mutant gene but did not affect expression of the remaining embryonic gene or the fetal-adult beta-globin genes on the mutant allele. These results demonstrate a lack of competitive effects between individual mouse embryonic beta-globin gene promoters and other genes in the locus. The implication of these findings for models of beta-globin gene expression are discussed.

  1. CMP Promoters Database: A systematic study on site-specific transcription factors in CMP genes

    Directory of Open Access Journals (Sweden)

    Meera A

    2009-04-01

    motifs as NKX and AP2 making up the structural feature of the non coding genes are absent from few genes. Keywords: Non-coding sequence, Phylogeny, TCA, Glycolysis, TRANSFAC, Promoter, Database, Central Metabolic Pathway. Received: 17 March 2008 / Received in revised form: 5 February 2009, Accepted: 31 April 2009 Published online: 14 May 2009

  2. Spermatogenesis-related ring finger gene ZNF230 promoter: identification and functional analysis

    DEFF Research Database (Denmark)

    Xu, Wenming; Zhang, Sizhong; Qiu, Weimin

    2009-01-01

    The ZNF230 gene is a recently cloned gene which is transcribed only in fertile male testes and may be related to human spermatogenesis. To characterize the multiple stage-specific transcription elements necessary for ZNF230 expression, we cloned ZNF230 promoter and constructed chimeric luciferase...

  3. Interleukin 10 gene promoter polymorphism and risk of diffuse large B cell lymphoma (DLBCL

    Directory of Open Access Journals (Sweden)

    Roba M. Talaat

    2014-01-01

    Conclusions: Taken together, our findings demonstrated that IL-10 promoter gene polymorphism (−1082 and −819 may not have an influence on the clinical outcome of DLBCL, especially in terms of overall secretion level. Further investigations of other cytokine gene polymorphisms will lead to a better understanding of the disease’s biological background.

  4. GUS Gene Expression Driven by A Citrus Promoter in Transgenic Tobacco and 'Valencia' Sweet Orange

    Science.gov (United States)

    The objective of this work was the transformation of tobacco and ‘Valencia’ sweet orange with the GUS gene driven by the citrus phenylalanine ammonia-lyase (PAL) gene promoter (CsPP). Transformation was accomplished by co-cultivation of tobacco and ‘Valencia’ sweet orange explants with Agrobacteriu...

  5. FACTORS AFFECTING LEARNER AUTONOMY IN ELT: A STARTING POINT FOR ITS PROMOTION

    Institute of Scientific and Technical Information of China (English)

    WeiWangdong

    2004-01-01

    After giving a brief account of the importance of learner autonomy and its definition the writer suggests that the development of learner autonomy in ELT should be started by identifying and considering factors that may influence it. After reviewing the relevant literature both'in China and in the world the writer found out the cluster of factors affecting the development of EFL learner autonomy, including the learning environment, learners' metacognitive knowledge, motivation, social and ideological culture and miscellaneous factors, such as learners' ages, learning experiences and confidence and learners' interests, etc. Some strategies that are more or less based on the various factors are also recommended for the promotion of EFL learner autonomy in this paper.

  6. A cII-dependent promoter is located within the Q gene of bacteriophage lambda.

    OpenAIRE

    Hoopes, B C; McClure, W R

    1985-01-01

    We have found a cII-dependent promoter, PaQ, within the Q gene of bacteriophage lambda. Transcription experiments and abortive initiation assays performed in vitro showed that the promoter strength and the cII affinity of PaQ were comparable to the other cII-dependent lambda promoters, PE and PI. The location and leftward direction of PaQ suggests a possible role in the delay of lambda late-gene expression by cII protein, a phenomenon that has been called cII-dependent inhibition. We have con...

  7. Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and pgk promoter: an in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Li Wei

    2012-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (AFP promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the AFP promoter. It has been shown that linking the AFP enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (pgk gene can generate a strong and HCC-selective promoter. Methods We constructed a HCC-specific gene therapy system to target PP2A using the AFP enhancer/pgk promoter, and evaluated the efficiency and specificity of this system both in vitro and in vivo. Results AFP enhancer/pgk promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B, but did not affect AFP-negative human hepatoma cells (SK-HEP-1 or normal human liver cells (L-02. Moreover, AFP enhancer/pgk promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors. Conclusions The novel approach of AFP enhancer/pgk promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC.

  8. Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato.

    Science.gov (United States)

    Yi, Jung Yoon; Seo, Hyo Won; Yang, Moon Sik; Robb, E Jane; Nazar, Ross N; Lee, Shin Woo

    2004-11-01

    PAL5, a tomato (Lycopersicon esculentum Mill.) plant defense gene that encodes phenylalanine ammonia-lyase, is known to respond to a variety of environmental stresses including pathogen infection and wounding. A shiva-1 gene recombinant that encodes a small synthetic antibacterial peptide under the PAL5 gene promoter was transformed into potato (Solanum tuberosum L.) and its ability to induce resistance to Erwinia carotovora was compared with a construct under the control of the constitutive and widely used cauliflower mosaic virus (CaMV) 35S promoter. The shiva-1 peptide, an analog of natural cecropin B, was shown previously to have high bactericidal activity in vitro, but when expressed in vivo under the control of the CaMV 35S promoter, the effects were very inconsistent. As observed previously, in the present studies a few transformants with the CaMV 35S promoter were highly resistant when assayed for susceptibility to soft rot disease. In marked contrast the majority of transformants with the PAL5 gene promoter were highly resistant. More-detailed analyses of the incorporated DNA indicated that most of the transformants with the CaMV 35S promoter contained multiple copies of the transforming DNA while all of the PAL5 recombinants contained single copies. The highly resistant CaMV 35S recombinant also was present as a single copy. The results indicate that, at least in this instance, a constitutive promoter may not be ideal for the effective expression of a foreign gene and suggest that multiple insertions may have negative consequences.

  9. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice.

    Directory of Open Access Journals (Sweden)

    Andrea Degl'Innocenti

    Full Text Available In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice.Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice.Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J, and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections.In the mouse genome there are eight intact solitary genes: Olfr19 (M12, Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings

  10. Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.

    Science.gov (United States)

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D

    2016-01-01

    Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.

  11. Isolating Barley (Hordeum vulgare L.) B1 Hordein Gene Promoter ...

    African Journals Online (AJOL)

    Yomi

    2012-04-10

    Apr 10, 2012 ... region of B1 hordein gene was isolated from the genomic DNA of Walfajre and Alger barley by ... plasmid DNA extraction kits were provided from Bioneer ... The E. coli competent cells were used for transformation by 5 µL of.

  12. Gene promoter methylation patterns throughout the process of cervical carcinogenesis

    NARCIS (Netherlands)

    Yang, Nan; Nijhuis, Esther R.; Volders, Haukeline H.; Eijsink, Jasper J. H.; Lendvai, Agnes; Zhang, Bo; Hollema, Harry; Schuuring, Ed; Wisman, G. Bea A.; van der Zee, Ate G. J.

    2010-01-01

    Objectives: To determine methylation status of nine genes, previously described to be frequently methylated in cervical cancer, in squamous intraepithelial lesions (SIL). Methods: QMSP was performed in normal cervix, low-grade ( L) SIL, high-grade (H) SIL, adenocarcinomas and squamous cell cervical

  13. Gene promoter methylation patterns throughout the process of cervical carcinogenesis

    NARCIS (Netherlands)

    Yang, Nan; Nijhuis, Esther R.; Volders, Haukeline H.; Eijsink, Jasper J. H.; Lendvai, Agnes; Zhang, Bo; Hollema, Harry; Schuuring, Ed; Wisman, G. Bea A.; van der Zee, Ate G. J.

    2010-01-01

    Objectives: To determine methylation status of nine genes, previously described to be frequently methylated in cervical cancer, in squamous intraepithelial lesions (SIL). Methods: QMSP was performed in normal cervix, low-grade ( L) SIL, high-grade (H) SIL, adenocarcinomas and squamous cell cervical

  14. Assessment of gene promoter hypermethylation for detection of cervical neoplasia

    NARCIS (Netherlands)

    Wisman, G. Bea A.; Nijhuis, Esther R.; Hoque, Mohammad O.; Reesink-Peters, Nathalie; Koning, Alice J.; Volders, Haukeline H.; Buikema, Henk J.; Boezen, H. Marike; Hollema, Harry; Schuuring, Ed; Sidransky, David; van der Zee, Ate G. J.

    2006-01-01

    Current cervical cancer screening is based on morphological assessment of Pap smears and associated with significant false negative and false positive results. Previously, we have shown that detection of hypermethylated genes in cervical scrapings using quantitative methylation-specific PCR (QMSP) i

  15. Association, haplotype, and gene-gene interactions of the HPA axis genes with suicidal behaviour in affective disorders.

    Science.gov (United States)

    Leszczyńska-Rodziewicz, Anna; Szczepankiewicz, Aleksandra; Pawlak, Joanna; Dmitrzak-Weglarz, Monika; Hauser, Joanna

    2013-01-01

    Family twin and adoption studies have noted the heritability of specific biological factors that influence suicidal behaviour. Exposure to stress is one of the factors that strongly contribute to suicide attempts. The biological response to stress involves the hypothalamic-pituitary-adrenal axis (HPA). Therefore, we found it interesting to study polymorphisms of genes involved in the HPA axis (CRHR1, NR3C1, and AVPBR1). The study was performed on 597 patients, 225 of whom had a history of suicide attempts. We did not observe any significant differences in the studied polymorphisms between the group of patients with a history of suicide attempts and the control subjects. Our haplotype analysis of the AVPR1b gene revealed an association between the GCA haplotype and suicide attempts; however, this association was not significant after correcting for multiple testing. We did not observe any other association in haplotype and MDR analysis. We report here a comprehensive analysis of the HPA axis genes and a lack of association for genetic variations regarding the risk of suicide attempts in affective disorder patients. Nonetheless, the inconsistencies with the previously published results indicate the importance of the further investigation of these polymorphisms with respect to the risk of suicide attempts.

  16. Association, Haplotype, and Gene-Gene Interactions of the HPA Axis Genes with Suicidal Behaviour in Affective Disorders

    Directory of Open Access Journals (Sweden)

    Anna Leszczyńska-Rodziewicz

    2013-01-01

    Full Text Available Family twin and adoption studies have noted the heritability of specific biological factors that influence suicidal behaviour. Exposure to stress is one of the factors that strongly contribute to suicide attempts. The biological response to stress involves the hypothalamic-pituitary-adrenal axis (HPA. Therefore, we found it interesting to study polymorphisms of genes involved in the HPA axis (CRHR1, NR3C1, and AVPBR1. The study was performed on 597 patients, 225 of whom had a history of suicide attempts. We did not observe any significant differences in the studied polymorphisms between the group of patients with a history of suicide attempts and the control subjects. Our haplotype analysis of the AVPR1b gene revealed an association between the GCA haplotype and suicide attempts; however, this association was not significant after correcting for multiple testing. We did not observe any other association in haplotype and MDR analysis. We report here a comprehensive analysis of the HPA axis genes and a lack of association for genetic variations regarding the risk of suicide attempts in affective disorder patients. Nonetheless, the inconsistencies with the previously published results indicate the importance of the further investigation of these polymorphisms with respect to the risk of suicide attempts.

  17. Rice Mitochondrial Genes Are Transcribed by Multiple Promoters That Are Highly Diverged

    Institute of Scientific and Technical Information of China (English)

    Qun-Yu Zhang; Yao-Guang Liu

    2006-01-01

    Plant mitochondrial genes are often transcribed into complex sets of mRNA. To characterize the transcription initiation and promoter structure, the transcript termini of four mitochondrial genes, atp1, atp6, cob,rps7, in rice (Oryza sativa L.), were determined by using a modified circularized RNA reverse transcriptionpolymerase chain reaction method. The results revealed that three genes (atp1, atp6, rps7) were transcribed from multiple initiation sites, indicating the presence of multiple promoters. Two transcription termination sites were detected in three genes (atp6, cob, rps7), respectively. Analysis on the promoter architecture showed that the YRTA (Y=T or C, R=A or G) motifs that are widely present in the mitochondrial promoters of other monocot and dicot plant species were detected only in two of the 12 analyzed promoters.Our data suggest that the promoter sequences in the rice mitochondrial genome are highly diverged in comparison to those in other plants, and the YRTA motif is not an essential element for the promoter activity.

  18. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    Science.gov (United States)

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  19. Developmental and cytokine-mediated regulation of MHC class II gene promoter occupancy in vivo.

    Science.gov (United States)

    Kara, C J; Glimcher, L H

    1993-06-01

    The class II genes of the major histocompatibility complex are a family of genes whose expression is regulated developmentally in cells of the B lineage and by IFN-gamma in many other cell types. Using the approach of in vivo footprinting, which allows for the examination of protein-promoter interactions within intact cells, we demonstrated a transition from unoccupied to occupied to once again unoccupied class II promoters in cell lines representing the developmental pathway of B cells. IFN-gamma treatment of HeLa cells led to increased promoter occupancy of the DR alpha and DR beta promoters at the same sites that are constitutively bound in mature B cells. No IFN-gamma-specific binding site was induced. Additionally, an octamer element in the DR alpha gene displayed preferential binding in B cells. These results demonstrate that changes in the transcription of the class II genes are associated with changes in factor binding at the promoter in vivo. Moreover, given the ubiquity of class II promoter binding proteins, these results suggest that throughout B cell development and upon IFN-gamma stimulation, the accessibility of class II promoter DNA is subject to regulation.

  20. Cloning and functional analysis of SEL1L promoter region, a pancreas-specific gene.

    Science.gov (United States)

    Cattaneo, M; Sorio, C; Malferrari, G; Rogozin, I B; Bernard, L; Scarpa, A; Zollo, M; Biunno, I

    2001-01-01

    We examined the promoter activity of SEL1L, the human ortholog of the C. elegans gene sel-1, a negative regulator of LIN-12/NOTCH receptor proteins. To understand the relation in SEL1L transcription pattern observed in different epithelial cells, we determined the transcription start site and sequenced the 5' flanking region. Sequence analysis revealed the presence of consensus promoter elements--GC boxes and a CAAT box--but the absence of a TATA motif. Potential binding sites for transcription factors that are involved in tissue-specific gene expression were identified, including: activator protein-2 (AP-2), hepatocyte nuclear factor-3 (HNF3 beta), homeobox Nkx2-5 and GATA-1. Transcription activity of the TATA-less SEL1L promoter was analyzed by transient transfection using luciferase reporter gene constructs. A core basal promoter of 302 bp was sufficient for constitutive promoter activity in all the cell types studied. This genomic fragment contains a CAAT and several GC boxes. The activity of the SEL1L promoter was considerably higher in mouse pancreatic beta cells (beta TC3) than in several human pancreatic neoplastic cell lines; an even greater reduction of its activity was observed in cells of nonpancreatic origin. These results suggest that SEL1L promoter may be a useful tool in gene therapy applications for pancreatic pathologies.

  1. Characteristic differences between the promoters of intron-containing and intronless ribosomal protein genes in yeast

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2008-10-01

    Full Text Available Abstract Background More than two thirds of the highly expressed ribosomal protein (RP genes in Saccharomyces cerevisiae contain introns, which is in sharp contrast to the genome-wide five percent intron-containing genes. It is well established that introns carry regulatory sequences and that the transcription of RP genes is extensively and coordinately regulated. Here we test the hypotheses that introns are innately associated with heavily transcribed genes and that introns of RP genes contribute regulatory TF binding sequences. Moreover, we investigate whether promoter features are significantly different between intron-containing and intronless RP genes. Results We find that directly measured transcription rates tend to be lower for intron-containing compared to intronless RP genes. We do not observe any specifically enriched sequence motifs in the introns of RP genes other than those of the branch point and the two splice sites. Comparing the promoters of intron-containing and intronless RP genes, we detect differences in number and position of Rap1-binding and IFHL motifs. Moreover, the analysis of the length distribution and the folding free energies suggest that, at least in a sub-population of RP genes, the 5' untranslated sequences are optimized for regulatory function. Conclusion Our results argue against the direct involvement of introns in the regulation of transcription of highly expressed genes. Moreover, systematic differences in motif distributions suggest that RP transcription factors may act differently on intron-containing and intronless gene promoters. Thus, our findings contribute to the decoding of the RP promoter architecture and may fuel the discussion on the evolution of introns.

  2. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet.

    Science.gov (United States)

    Oltmanns, Heiko; Kloos, Dorothee U; Briess, Waltraud; Pflugmacher, Maike; Stahl, Dietmar J; Hehl, Reinhard

    2006-08-01

    The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.

  3. Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression

    Directory of Open Access Journals (Sweden)

    Mansukhani Mahesh

    2006-05-01

    Full Text Available Abstract Background Cervical Cancer (CC exhibits highly complex genomic alterations. These include hemizygous deletions at 4p15.3, 10q24, 5q35, 3p12.3, and 11q24, the chromosomal sites of Slit-Robo pathway genes. However, no candidate tumor suppressor genes at these regions have been identified so far. Slit family of secreted proteins modulates chemokine-induced cell migration of distinct somatic cell types. Slit genes mediate their effect by binding to its receptor Roundabout (Robo. These genes have shown to be inactivated by promoter hypermethylation in a number of human cancers. Results To test whether Slit-Robo pathway genes are targets of inactivation at these sites of deletion, we examined promoter hypermethylation of SLIT1, SLIT2, SLIT3, ROBO1, and ROBO3 genes in invasive CC and its precursor lesions. We identified a high frequency of promoter hypermethylation in all the Slit-Robo genes resulting in down regulated gene expression in invasive CC, but the inhibitors of DNA methylation and histone deacetylases (HDACs in CC cell lines failed to effectively reactivate the down-regulated expression. These results suggest a complex mechanism of inactivation in the Slit-Robo pathway in CC. By analysis of cervical precancerous lesions, we further show that promoter hypermethylation of Slit-Robo pathway occurs early in tumor progression. Conclusion Taken together, these findings suggest that epigenetic alterations of Slit-Robo pathway genes (i play a role in CC development, (ii further delineation of molecular basis of promoter methylation-mediated gene regulation provides a potential basis for epigenetic-based therapy in advanced stage CC, and (iii form epigenetic signatures to identify precancerous lesions at risk to progression.

  4. Predicting Polymerase Ⅱ Core Promoters by Cooperating Transcription Factor Binding Sites in Eukaryotic Genes

    Institute of Scientific and Technical Information of China (English)

    Xiao-Tu MA; Min-Ping QIAN; Hai-Xu TANG

    2004-01-01

    Several discriminate functions for predicting core promoters that based on the potential cooperation between transcription factor binding sites (TFBSs) are discussed. It is demonstrated that the promoter predicting accuracy is improved when the cooperation among TFBSs is taken into consideration.The core promoter region of a newly discovered gene CKLFSF1 is predicted to locate more than 1.5 kb far away from the 5′ end of the transcript and in the last intron of its upstream gene, which is experimentally confirmed later. The core promoters of 3402 human RefSeq sequences, obtained by extending the mRNAs in human genome sequences, are predicted by our algorithm, and there are about 60% of the predicted core promoters locating within the ± 500 bp region relative to the annotated transcription start site.

  5. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters.

    Science.gov (United States)

    Kovalchuk, Nataliya; Jia, Wei; Eini, Omid; Morran, Sarah; Pyvovarenko, Tatiana; Fletcher, Stephen; Bazanova, Natalia; Harris, John; Beck-Oldach, Kontanze; Shavrukov, Yuri; Langridge, Peter; Lopato, Sergiy

    2013-08-01

    Constitutive over-expression of the TaDREB3 gene in barley improved frost tolerance of transgenic plants at the vegetative stage of plant development, but leads to stunted phenotypes and 3- to 6-week delays in flowering compared to control plants. In this work, two cold-inducible promoters with contrasting properties, the WRKY71 gene promoter from rice and the Cor39 gene promoter from durum wheat, were applied to optimize expression of TaDREB3. The aim of the work was to increase plant frost tolerance and to decrease or prevent negative developmental phenotypes observed during constitutive expression of TaDREB3. The OsWRKY71 and TdCor39 promoters had low-to-moderate basal activity and were activated by cold treatment in leaves, stems and developing spikes of transgenic barley and rice. Expression of the TaDREB3 gene, driven by either of the tested promoters, led to a significant improvement in frost tolerance. The presence of the functional TaDREB3 protein in transgenic plants was confirmed by the detection of strong up-regulation of cold-responsive target genes. The OsWRKY71 promoter-driven TaDREB3 provides stronger activation of the same target genes than the TdCor39 promoter. Analysis of the development of transgenic plants in the absence of stress revealed small or no differences in plant characteristics and grain yield compared with wild-type plants. The WRKY71-TaDREB3 promoter-transgene combination appears to be a promising tool for the enhancement of cold and frost tolerance in crop plants but field evaluation will be needed to confirm that negative development phenotypes have been controlled.

  6. Inhibition of nodule development by multicopy promoters of Rhizobium meliloti nif/fix genes

    Institute of Scientific and Technical Information of China (English)

    吴桐; 朱家璧; 俞冠翘; 沈善炯

    1995-01-01

    Using luc gene as a reporter to study the activation of Rhizobium meliloti nif/fix genes in thedevelopment of symbiosis,the authors observed that nodule development and nitrogen fixation were inhibitedby both multicopy promoters of nifHDK and fixABCX.The phenotype of R.meliloti containing multicopynif/fix promoters appeared exactly like that of nifA mutant.Using lacZ as a reporter,the authors got the same re-sults.By contrast,the rhizobia containing low-copy promoters of nif/fix genes were normal fornodule development and nitrogen fixation.These results substantiate the evidence that the product of nifAgene not only acts as a transcriptional activator of nif/fix genes,but also plays an important role in thedevelopment of root nodules.

  7. Promoter polymorphism of transforming growth factor-β1 gene and ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    B Tamizifar; KB Lankarani; S Naeimi; M Rismankar Zadeh; A Taghavi; A Ghaderi

    2008-01-01

    AIM: To elucidate the possible difference in two promoter polymorphisms of the transforming growth factor-β1 (TGF-β1) gene (-800G > A, -509C > T)between ulcerative colitis (UC) patients and normal subjects.METHODS: A total of 155 patients with established ulcerative colitis and 139 normal subjects were selected as controls. Two single nucleotide polymorphisms within the promoter region of TGF-β1 gene (-509C > T and -800G > A) were genotyped using PCR-RFLP.RESULTS: There was a statistically significant difference in genotype and allele frequency distributions between UC patients and controls for the -800G > A polymorphism of the TGF-β1 gene (P A of TGF-β1 gene promoter between Iranian patients with UC and normal subjects.

  8. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    Directory of Open Access Journals (Sweden)

    Miyuki Uno

    2011-01-01

    Full Text Available OBJECTIVES: 1 To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT promoter to its gene and protein expression levels in glioblastoma and 2 to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001. However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297. The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing, and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue.

  9. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Li Mingji

    2012-02-01

    Full Text Available Abstract Background For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs in tandem. Results Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. Conclusions The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.

  10. Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Mathieu Gissot

    2007-06-01

    Full Text Available Mechanisms of gene regulation are poorly understood in Apicomplexa, a phylum that encompasses deadly human pathogens like Plasmodium and Toxoplasma. Initial studies suggest that epigenetic phenomena, including histone modifications and chromatin remodeling, have a profound effect upon gene expression and expression of virulence traits. Using the model organism Toxoplasma gondii, we characterized the epigenetic organization and transcription patterns of a contiguous 1% of the T. gondii genome using custom oligonucleotide microarrays. We show that methylation and acetylation of histones H3 and H4 are landmarks of active promoters in T. gondii that allow us to deduce the position and directionality of gene promoters with >95% accuracy. These histone methylation and acetylation "activation" marks are strongly associated with gene expression. We also demonstrate that the pattern of histone H3 arginine methylation distinguishes certain promoters, illustrating the complexity of the histone modification machinery in Toxoplasma. By integrating epigenetic data, gene prediction analysis, and gene expression data from the tachyzoite stage, we illustrate feasibility of creating an epigenomic map of T. gondii tachyzoite gene expression. Further, we illustrate the utility of the epigenomic map to empirically and biologically annotate the genome and show that this approach enables identification of previously unknown genes. Thus, our epigenomics approach provides novel insights into regulation of gene expression in the Apicomplexa. In addition, with its compact genome, genetic tractability, and discrete life cycle stages, T. gondii provides an important new model to study the evolutionarily conserved components of the histone code.

  11. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    Directory of Open Access Journals (Sweden)

    Catia Pilon

    2015-01-01

    Full Text Available We previously showed a decreased expression of vitamin D receptor (VDR mRNA/protein in a small group of adrenocortical carcinoma (ACC tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis.

  12. Epigenetic regulation of human nicotinic acetylcholine receptor gene promoter

    DEFF Research Database (Denmark)

    Lichota, Jacek; Dyrvig, Mads; Mikkelsen, J. D.

    2016-01-01

    The occurrence of close proximity infection for many respiratory diseases is often cited as evidence of large droplet and/or close contact transmission. We explored interpersonal exposure of exhaled droplets and droplet nuclei of two standing thermal manikins as affected by distance, humidity, ve...

  13. Evidence that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of gene expression from human cytomegalovirus promoter in CHO cells

    OpenAIRE

    Zhang, Yingpei; Katakura, Yoshinori; Seto, Perry; Shirahata, Sanetaka

    1997-01-01

    The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinas...

  14. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  15. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells.

    Science.gov (United States)

    Blais, M; Pouliot, Y; Gauthier, S; Boutin, Y; Lessard, M

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liquid, rich in bioactive compounds, was evaluated for its capacity to modulate cellular processes in porcine intestinal epithelial cell line IPEC-J2 and human colon adenocarcinoma cell line Caco-2/15. First, we verified the effect of colostrum whey and cheese whey on processes involved in intestinal wound healing, including cell proliferation, attachment, morphology and migration. Our results showed that colostrum whey promoted proliferation and migration, and decreased specifically the attachment of Caco-2/15 cells on the culture dish. On the other hand, cheese whey induced proliferation and morphological changes in IPEC-J2 cells, but failed to induce migration. The gene expression profile of IPEC-J2 cells following colostrum whey treatment was evaluated by microarray analysis. Results revealed that the expression of a significant number of genes involved in cell migration, adhesion and proliferation was indeed affected in colostrum whey-treated cells. In conclusion, colostrum specific bioactive content could be beneficial for intestinal epithelial cell homoeostasis by controlling biological processes implicated in wound healing through a precise gene expression programme.

  16. Cell-to-cell diversity in protein levels of a gene driven by a tetracycline inducible promoter

    Directory of Open Access Journals (Sweden)

    Yli-Harja Olli

    2011-05-01

    Full Text Available Abstract Background Gene expression in Escherichia coli is regulated by several mechanisms. We measured in single cells the expression level of a single copy gene coding for green fluorescent protein (GFP, integrated into the genome and driven by a tetracycline inducible promoter, for varying induction strengths. Also, we measured the transcriptional activity of a tetracycline inducible promoter controlling the transcription of a RNA with 96 binding sites for MS2-GFP. Results The distribution of GFP levels in single cells is found to change significantly as induction reaches high levels, causing the Fano factor of the cells' protein levels to increase with mean level, beyond what would be expected from a Poisson-like process of RNA transcription. In agreement, the Fano factor of the cells' number of RNA molecules target for MS2-GFP follows a similar trend. The results provide evidence that the dynamics of the promoter complex formation, namely, the variability in its duration from one transcription event to the next, explains the change in the distribution of expression levels in the cell population with induction strength. Conclusions The results suggest that the open complex formation of the tetracycline inducible promoter, in the regime of strong induction, affects significantly the dynamics of RNA production due to the variability of its duration from one event to the next.

  17. Functional characterization of genetic polymorphisms identified in the promoter region of the bovine PEPS gene.

    Science.gov (United States)

    Ju, Zhihua; Zheng, Xue; Huang, Jinming; Qi, Chao; Zhang, Yan; Li, Jianbin; Zhong, Jifeng; Wang, Changfa

    2012-06-01

    Peptidase S (PEPS) is a metallopeptidase that cleaves N-terminal residues from proteins and peptides. PEPS is used as a cell maintenance enzyme with critical roles in peptide turnover. The promoter region located upstream of the initiation site plays an important role in regulating gene expression. Polymorphism in the promoter region can alter gene expression and lead to biological changes. In the current study, polymorphisms in the promoter region of the PEPS gene were investigated. Polymerase chain reaction (PCR)-restriction fragment length polymorphism and DNA sequencing methods were used to screen sequence variations in the promoter region of DNA samples from 743 Chinese Holstein cattle. Two polymorphisms (g. -534 T>C and g. -2545 G>A) were identified and eight haplotypes were classified by haplotype analysis. The two genetic polymorphisms and haplotypes were associated with fat percentage and somatic cell score in Chinese Holstein cattle. The results of real-time PCR showed that cow kidneys exhibit the highest PEPS expression level. Moreover, bioinformatics analysis predicted that the single-nucleotide polymorphism g. -534 T>C is located in the core promoter region and in the transcription factor binding sites. The promoter activities of the polymorphism of -543 T>C were measured by luciferase assay in the human kidney epithelial cell line 293T. Transcriptional activity is significantly lower in cell lines transfected with the reporter construct containing 2.5 kb upstream fragments with -543 C than in those with wild-type -543 T. The results indicated that genetic variation at locus -543 influences PEPS promoter activity. The genetic variation in the promoter region of PEPS gene may regulate PEPS gene transcription and might have consequences at a regulatory level.

  18. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  19. Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice.

    Science.gov (United States)

    Jiang, Bao-Chun; He, Li-Na; Wu, Xiao-Bo; Shi, Hui; Zhang, Wen-Wen; Zhang, Zhi-Jun; Cao, De-Li; Li, Chun-Hua; Gu, Jun; Gao, Yong-Jing

    2017-01-18

    DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under neuropathic pain condition remain largely unknown. Here we investigated how chemokine receptor CXCR3 is regulated by DNA methylation and how it contributes to neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased Cxcr3 mRNA and protein expression in the neurons of the spinal cord. Meanwhile, the CpG (5'-cytosine-phosphate-guanine-3') island in the Cxcr3 gene promoter region was demethylated, and the expression of DNA methyltransferase 3b (DNMT3b) was decreased. SNL also increased the binding of CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer binding protein α (C/EBPα) with Cxcr3 promoter and decreased the binding of DNMT3b with Cxcr3 promoter in the spinal cord. C/EBPα expression was increased in spinal neurons after SNL, and inhibition of C/EBPα by intrathecal small interfering RNA attenuated SNL-induced pain hypersensitivity and reduced Cxcr3 expression. Furthermore, SNL-induced mechanical allodynia and heat hyperalgesia were markedly reduced in Cxcr3(-/-) mice. Spinal inhibition of Cxcr3 by shRNA or CXCR3 antagonist also attenuated established neuropathic pain. Moreover, CXCL10, the ligand of CXCR3, was increased in spinal neurons and astrocytes after SNL. Superfusing spinal cord slices with CXCL10 enhanced spontaneous EPSCs and potentiated NMDA-induced and AMPA-induced currents of lamina II neurons. Finally, intrathecal injection of CXCL10 induced CXCR3-dependent pain hypersensitivity in naive mice. Collectively, our results demonstrated that CXCR3, increased by DNA demethylation and the enhanced interaction with C/EBPα, can be activated by CXCL10 to facilitate excitatory synaptic transmission and contribute to the maintenance of neuropathic pain. Peripheral nerve injury induces changes of gene expression in the spinal cord that may contribute to the pathogenesis of neuropathic

  20. Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast.

    Science.gov (United States)

    Kubik, Slawomir; Bruzzone, Maria Jessica; Jacquet, Philippe; Falcone, Jean-Luc; Rougemont, Jacques; Shore, David

    2015-11-01

    Previous studies indicate that eukaryotic promoters display a stereotypical chromatin landscape characterized by a well-positioned +1 nucleosome near the transcription start site and an upstream -1 nucleosome that together demarcate a nucleosome-free (or -depleted) region. Here we present evidence that there are two distinct types of promoters distinguished by the resistance of the -1 nucleosome to micrococcal nuclease digestion. These different architectures are characterized by two sequence motifs that are broadly deployed at one set of promoters where a nuclease-sensitive ("fragile") nucleosome forms, but concentrated in a narrower, nucleosome-free region at all other promoters. The RSC nucleosome remodeler acts through the motifs to establish stable +1 and -1 nucleosome positions, while binding of a small set of general regulatory (pioneer) factors at fragile nucleosome promoters plays a key role in their destabilization. We propose that the fragile nucleosome promoter architecture is adapted for regulation of highly expressed, growth-related genes.

  1. Culex tarsalis vitellogenin gene promoters investigated in silico and in vivo using transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available INTRODUCTION: Genetic modification, or transgenesis, is a powerful technique to investigate the molecular interactions between vector-borne pathogens and their arthropod hosts, as well as a potential novel approach for vector-borne disease control. Transgenesis requires the use of specific regulatory regions, or promoters, to drive expression of genes of interest in desired target tissues. In mosquitoes, the vast majority of described promoters are from Anopheles and Aedes mosquitoes. RESULTS: Culex tarsalis is one of the most important vectors of arboviruses (including West Nile virus in North America, yet it has not been the subject of molecular genetic study. In order to facilitate molecular genetic work in this important vector species, we isolated four fat body-specific promoter sequences located upstream of the Cx. tarsalis vitellogenin genes (Vg1a, Vg1b, Vg2a and Vg2b. Sequences were analyzed in silico to identify requisite cis-acting elements. The ability for promoter sequences to drive expression of green fluorescent protein (GFP in vivo was investigated using transgenic Drosophila melanogaster. All four promoters were able to drive GFP expression but there was dramatic variation between promoters and between individual Drosophila lines, indicating significant position effects. The highest expression was observed in line Vg2bL3, which was >300-fold higher than the lowest line Vg1aL2. CONCLUSIONS: These new promoters will be useful for driving expression of genes of interest in transgenic Cx. tarsalis and perhaps other insects.

  2. Characterization of promoter sequence of toll-like receptor genes in Vechur cattle

    Directory of Open Access Journals (Sweden)

    R. Lakshmi

    2016-06-01

    Full Text Available Aim: To analyze the promoter sequence of toll-like receptor (TLR genes in Vechur cattle, an indigenous breed of Kerala with the sequence of Bos taurus and access the differences that could be attributed to innate immune responses against bovine mastitis. Materials and Methods: Blood samples were collected from Jugular vein of Vechur cattle, maintained at Vechur cattle conservation center of Kerala Veterinary and Animal Sciences University, using an acid-citrate-dextrose anticoagulant. The genomic DNA was extracted, and polymerase chain reaction was carried out to amplify the promoter region of TLRs. The amplified product of TLR2, 4, and 9 promoter regions was sequenced by Sanger enzymatic DNA sequencing technique. Results: The sequence of promoter region of TLR2 of Vechur cattle with the B. taurus sequence present in GenBank showed 98% similarity and revealed variants for four sequence motifs. The sequence of the promoter region of TLR4 of Vechur cattle revealed 99% similarity with that of B. taurus sequence but not reveals significant variant in motifregions. However, two heterozygous loci were observed from the chromatogram. Promoter sequence of TLR9 gene also showed 99% similarity to B. taurus sequence and revealed variants for four sequence motifs. Conclusion: The results of this study indicate that significant variation in the promoter of TLR2 and 9 genes in Vechur cattle breed and may potentially link the influence the innate immunity response against mastitis diseases.

  3. Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis.

    Science.gov (United States)

    Agarwal, Priyanka; Kumar, Rahul; Pareek, Amit; Sharma, Arun K

    2017-02-01

    Isolation and functional characterization of tissue- and stage-specific gene promoters is beneficial for genetic improvement of economically important crops. Here, we have characterized a putative promoter of a ripening-induced gene RIP1 (Ripening induced protein 1) in tomato. Quantification of the transcript level of RIP1 showed that its expression is fruit preferential, with maximum accumulation in red ripe fruits. To test the promoter activity, we made a reporter construct by cloning 1450 bp putative RIP1 promoter driving the GUS (ß-glucuronidase) gene expression and generated stable transgenic lines in tomato and Arabidopsis. Histochemical and fluorometric assays validated the fruit-specific expression of RIP1 as the highest GUS activity was found in red ripe tomatoes. Similarly, we detected high levels of GUS activity in the siliques of Arabidopsis. On the contrary, weak GUS activity was found in the flower buds in both tomato and Arabidopsis. To characterize the specific regions of the RIP1 promoter that might be essential for its maximum activity and specificity in fruits, we made stable transgenic lines of tomato and Arabidopsis with 5'-deletion constructs. Characterization of these transgenic plants showed that the full length promoter is essential for its function. Overall, we report the identification and characterization of a ripening-induced promoter of tomato, which would be useful for the controlled manipulation of the ripening-related agronomic traits in genetic manipulation studies in future.

  4. Enhancer activity of Helitron in sericin-1 gene promoter from Bombyx mori.

    Science.gov (United States)

    Huang, Ke; Li, Chun-Feng; Wu, Jie; Wei, Jun-Hong; Zou, Yong; Han, Min-Jin; Zhou, Ze-Yang

    2016-06-01

    Sericin is a kind of water-soluble protein expressed specifically in the middle silk gland of Bombyx mori. When the sericin-1 gene promoter was cloned and a transgenic vector was constructed to express a foreign protein, a specific Helitron, Bmhel-8, was identified in the sericin-1 gene promoter sequence in some genotypes of Bombyx mori and Bombyx mandarina. Given that the Bmhel-8 Helitron transposon was present only in some genotypes, it could be the source of allelic variation in the sericin-1 promoter. The length of the sericin-1 promoter sequence is approximately 1063 or 643 bp. The larger size of the sequence or allele is ascribed to the presence of Bmhel-8. Silkworm genotypes can be homozygous for either the shorter or larger promoter sequence or heterozygous, containing both alleles. Bmhel-8 in the sericin-1 promoter exhibits enhancer activity, as demonstrated by a dual-luciferase reporter system in BmE cell lines. Furthermore, Bmhel-8 displays enhancer activity in a sericin-1 promoter-driven gene expression system but does not regulate the tissue-specific expression of sericin-1.

  5. Cloning and characterizing of the murine IRF-3 gene promoter region.

    Science.gov (United States)

    Xu, Hua-Guo; Liu, Lifei; Gao, Shan; Jin, Rui; Ren, Wei; Zhou, Guo-Ping

    2016-08-01

    The interferon regulatory factor 3 (IRF-3) plays essential roles in inflammation and immune response. Here, we cloned the nucleotide sequence of the 5'-flanking region of the murine IRF-3 gene (mIRF-3) and characterized the molecular mechanisms controlling the mIRF-3 transcriptional activity in NIH3T3 cells. Analyses of a series of 5' deletion constructs demonstrated that a 301 bp region (-255/+46) of the mIRF-3 gene is sufficient for full promoter activity. This region contains IK1, Egr2, Cmyb, E2F1 and YY1 putative transcription factor binding sites. Mutation of Egr2 or YY1 site led to 52-68 % decrease of the mIRF-3 promoter activity, and double Egr2 and YY1 mutation reduced the promoter activity to 20 % of the wild-type promoter activity. Furthermore, knockingdown of endogenous Egr2 or YY1 by a siRNA strategy markedly inhibited the mIRF-3 promoter activity. Chromatin immunoprecipitation assays showed that Egr2 and YY1 interact with the mIRF-3 promoter in vivo. These results suggested that the basal promoter activity of the mIRF-3 gene is regulated by transcription factors Egr2 and YY1 in NIH3T3 cells.

  6. Promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A genes in cervical carcinoma.

    Science.gov (United States)

    Banzai, Chiaki; Nishino, Koji; Quan, Jinhua; Yoshihara, Kosuke; Sekine, Masayuki; Yahata, Tetsuro; Tanaka, Kenichi

    2014-02-01

    Aberrant DNA methylation contributes to the malignant phenotype in virtually all types of human cancer. This study explored the relationship between promoter methylation and inactivation of the DAPK1, FHIT, MGMT, and CDKN2A genes in cervical cancer. The promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A was investigated by using a methylation-specific polymerase chain reaction in 53 specimens of cervical cancer (42 squamous cell carcinoma, 11 adenocarcinoma), 22 specimens of intraepithelial neoplasia tissues, and 24 control normal cervical tissue specimens. The correlation of promoter methylation with the clinicopathological features of cervical cancer was analyzed. The expressions of DAPK1, FHIT, MGMT, and CDKN2A were detected by measuring relative mRNA levels. The promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A in cervical cancer vs. intraepithelial neoplasia vs. normal cervical tissue was 75.5 vs. 31.8 vs. 4.2 % (p promoter region significantly decreased the expression of only DAPK1 (p = 0.03). The methylation rate of the DAPK1 gene promoter was significantly higher in cervical cancer tissues than in cervical intraepithelial neoplasia and normal cervical tissues. Promoter methylation may therefore lead to the inactivation of the DAPK1 gene, and may be related to the progression of cervical oncogenesis.

  7. Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-10-15

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  8. Promoter sequence of 3-phosphoglycerate kinase gene 2 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2003-03-04

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 2 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  9. A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes

    Science.gov (United States)

    Sazegari, Sima; Niazi, Ali; Ahmadi, Farajolah Shahriary

    2015-01-01

    Dehydration response element binding factors (DREBs) are one of the principal plant transcription factor subfamilies that regulate the expression of many abiotic stress-inducible genes. This sub-family belongs to AP2 transcription factor family and plays a considerable role in improving abiotic stresses tolerance in plants. Therefore, it is of interest to identify critical cis-acting elements involved in abiotic stress responses. In this study, we survey promoter cis-elements for ATDREBs genes (Arabidopsis thaliana DREBs). Regulatory networks based on ATDREB candidate genes were also generated to find other genes that are functionally similar to DREBs. The study was conducted on all 20 Arabidopsis thaliana non redundant DREB genes stored in RefSeq database. Promoter analysis and regulatory network prediction was accomplished by use of Plant CARE program and GeneMANIA web tool, respectively. The results indicated that among all genes, DREB1A, DREB1C, DREB2C, DREB2G and DEAR3 have the most type of diverse motifs involved in abiotic stress responses. It is implied that co-operation of abscisic acid, ethylene, salicylic acid and methyl jasmonate signaling is crucial for the regulation of the expression of drought and cold responses through DREB transcription factors. Gene network analysis showed different co-expressed but functionally similar genes that had physical and functional interactions with candidate DREB genes. PMID:25848171

  10. Changes in aromatase (CYP19) gene promoter usage in non-small cell lung cancer.

    Science.gov (United States)

    Demura, Masashi; Demura, Yoshiki; Ameshima, Shingo; Ishizaki, Takeshi; Sasaki, Masato; Miyamori, Isamu; Yamagishi, Masakazu; Takeda, Yoshiyu; Bulun, Serdar E

    2011-09-01

    In humans, aromatase (CYP19) gene expression is regulated via alternative promoters. Activation of each promoter gives rise to a CYP19 mRNA species with a unique 5'-untranslated region. Inhibition of aromatase has been reported to downregulate lung tumor growth. The genetic basis for CYP19 gene expression and aromatase activity in lung cancer remains poorly understood. We analyzed tissues from 15 patients with non-small cell lung cancer (NSCLC) to evaluate CYP19 promoter usage and promoter-specific aromatase mRNA levels in NSCLC tumor tissues and adjacent non-malignant tissues. CYP19 promoter usage was determined by multiplex RT-PCR and aromatase mRNA levels were measured with real-time RT-PCR. In non-malignant tissues, aromatase mRNA was primarily derived from activation of CYP19 promoter I.4. Although promoter I.4 usage was also dominant in tumor tissues, I.4 activation was significantly lower compared with adjacent non-malignant tissues. Activity of promoters I.3, I.1 and I.7 was significantly higher in tumor tissues compared with non-malignant tissues. In 4 of 15 cases of non-small cell lung cancer, switching from CYP19 promoter I.4 to the alternative promoters II, I.1 or I.7 was observed. In 9 cases, there were significantly higher levels of aromatase mRNA in lung tumor tissues compared with adjacent non-malignant tissues. These findings suggest aberrant activation of alternative CYP19 promoters that may lead to upregulation of local aromatase expression in some cases of NSCLC. Further studies are needed to examine the impact of alternative CYP19 promoter usage on local estrogen levels and lung tumor growth. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. The expression of foreign gene under the control of cauliflower mosaic virus 35s RNA promoter

    Institute of Scientific and Technical Information of China (English)

    WangHao; BaiYongyan

    1990-01-01

    The promoter region of cauliflower mosaic virus (CaMV) 35s RNA was employed to construct an intermediate expression vector which can be used in Ti plasmid system of Agrobacterium iumefaciens.The original plasmid,which contains a polylinker between CaMV 35s RNA and its 3' termination signal in pUC18 was modified to have another antibiotic resistance marker (kanamycin resistance gene Kmr) to facilitate the selection of recombinant with Ti plasmid.Octopine synthase (ocs) structural gene was inserted into this vector downstream of CaMV 35s RNA promoter.This chimaeric gene was introduced into integrative Ti plasmid vector pGV 3850,and then transformed into Nicotiana tobaccum the chimaeric gene into tobacco cells.In both cases,the expression of ocs gene was demonstrated.The amount of octopine was much more than the nopaline synthesized by nopaline synthase (nos) gene transferred at the same time with Ti plasmid vector.This demonstrated that CaMV 35s RNA promoter is stronger in transcriptional function than the promoter of nos in tobacco cells.

  12. Functional conservation of a glucose-repressible amylase gene promoter from Drosophila virilis in Drosophila melanogaster.

    Science.gov (United States)

    Magoulas, C; Loverre-Chyurlia, A; Abukashawa, S; Bally-Cuif, L; Hickey, D A

    1993-03-01

    Previous studies have demonstrated that the expression of the alpha-amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the alpha-amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.

  13. Cloning and Analysis of the Promoter Region of Rat uPA Gene

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Jin-wen XIONG; Li-gang CHEN; Yong-hong TIAN; Cheng-liang XIONG

    2007-01-01

    Objective To clone and analyze the promoter sequence of rat urokinase plasminogen activator protein gene.Methods The genomic DNA was extracted from rat testicular tissue. According to urokinase plasminogen activator, the gene sense primer and antisense primer of uPA gene were designed and synthesized, then Touch-Down PCR were performed. After proper purification, the PCR product was sequenced, analyzed with the promoter prediction software and compared with the DNA sequence of rattuas urokinase plasminogen activator.Results The cloned uPA gene was about 1 572 bp in length, which contained a full open-reading frame with 21 bp in length exons, and the upper region of transcriptional start was 1 551 bp in length which was eucaryon transcriptional control area.The 5' UTR had a promoter region including a non-responsive TATA-box. Not only the GC-box binding region was found in this gene, but also active protein 1 (AP1) and SP1 were seen in other regions.Conclusion A 1 572 bp uPA gene fragment (GenBank accession No. X65651) was obtained from rat genomic DNA library, containing eucaryon transcriptional control area with a promoter region, non-conspicuous TATA-box, GC-box and an extron. A non-responsive TATA-box is located at the upper -30 region.

  14. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  15. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes.

    Science.gov (United States)

    Marui, Junichiro; Yoshimi, Akira; Hagiwara, Daisuke; Fujii-Watanabe, Yoshimi; Oda, Ken; Koike, Hideaki; Tamano, Koichi; Ishii, Tomoko; Sano, Motoaki; Machida, Masayuki; Abe, Keietsu

    2010-08-01

    Demand for novel antifungal drugs for medical and agricultural uses has been increasing because of the diversity of pathogenic fungi and the emergence of drug-resistant strains. Genomic resources for various living species, including pathogenic fungi, can be utilized to develop novel and effective antifungal compounds. We used Aspergillus oryzae as a model to construct a reporter system for exploring novel antifungal compounds and their target genes. The comprehensive gene expression analysis showed that the actin-encoding actB gene was transcriptionally highly induced by benomyl treatment. We therefore used the actB gene to construct a novel reporter system for monitoring responses to cytoskeletal stress in A. oryzae by introducing the actB promoter::EGFP fusion gene. Distinct fluorescence was observed in the reporter strain with minimum background noise in response to not only benomyl but also compounds inhibiting lipid metabolism that is closely related to cell membrane integrity. The fluorescent responses indicated that the reporter strain can be used to screen for lead compounds affecting fungal microtubule and cell membrane integrity, both of which are attractive antifungal targets. Furthermore, the reporter strain was shown to be technically applicable for identifying novel target genes of antifungal drugs triggering perturbation of fungal microtubules or membrane integrity.

  16. Gene controlled by promoter--PTH4 depending on whiG of Streptomyces coelicolor

    Institute of Scientific and Technical Information of China (English)

    谭华荣; 杨海花; 田宇清; 吴畏; 董可宁; K.F.Chater

    1996-01-01

    The downstream gene controlled by promoter--PTH4 which is related to Streptomycesdifferentiation was cloned, and its sequence was determined by the dideoxy chain termination method. The results indicated that the 1597 bp of DNA fragment conferred a complete open reading frame (ORF). In searches of databases, the deduced product of the ORF was not homologous with any known proteins; it may be a new protein. The function of the gene was studied using the strategy of gene disruption; the actinorhodin could not be produced when this gene was disrupted. Therefore, this gene may be related to actinorhodin biosynthesis in Streptomyces coelicolor, and the result also shows that this gene may play a role in multiple level regulation of differentiation genes in Streptomyces.

  17. Functional analysis of the human somatic angiotensin I-converting enzyme gene promoter.

    Science.gov (United States)

    Testut, P; Soubrier, F; Corvol, P; Hubert, C

    1993-08-01

    Angiotensin I-converting enzyme (ACE) is a key enzyme in the regulation of systemic blood pressure and plays a major role in the renin-angiotensin and bradykinin-kinin systems, at the luminal surface of the vascular endothelia. To identify the promoter region, the transcription regulatory elements and the cell specificity of the ACE gene, five successive DNA deletions of the 5' upstream region (-1214, -754, -472, -343, -132 bp relative to the start site of transcription) were isolated and fused in sense and antisense orientations to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene in the promoterless plasmid pBLCAT3. Promoter activities were measured in transient transfection assays using three different cell lines from rabbit endothelium (RE), human embryocarcinoma (Tera-1) and hepatocarcinoma cells (HepG2). All five fragments of the ACE promoter region directed expression of the CAT gene when transfected into the endothelial and the embryocarcinoma cells, which contain endogenous ACE mRNA and express ACE activity. In contrast only minimal levels of promoter activity were obtained on transfection into hepatocarcinoma cells in which endogenous ACE mRNA and ACE activity were not detected. Transfection of RE and Tera-1 cells demonstrated that promoter activity was defined by the length of the ACE promoter sequence inserted into the construct. The 132 bases located upstream from the transcription start site were sufficient to confer ACE promoter activity, whereas the sequences upstream from -472 bp and between -343 bp and -132 bp were responsible for a decrease of promoter activity. Furthermore, the minimal 132 bp of the ACE promoter contains elements which direct cell-specific CAT expression. In addition, the DNA transfection study in the presence of dexamethasone suggested that the potential glucocorticoid regulatory elements, located in the sequence of the ACE promoter, are not functional.

  18. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    Science.gov (United States)

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests.

  19. Genomic organisation of the channel catfish Mx1 gene and characterisation of multiple channel catfish Mx gene promoters.

    Science.gov (United States)

    Plant, Karen P; Thune, Ronald L

    2008-05-01

    In order to further characterise channel catfish (Ictalurus punctatus) Mx1, studies were initiated to amplify and clone the Mx1 promoter into a reporter vector, pGL3basic. Initially the Mx1 gene was amplified from genomic DNA and was found to have 12 exons and 11 introns, spanning a region over 6 kilobases (kb) in length. The Mx1 promoter was amplified using genome walking and during this process four additional Mx promoters were identified, suggesting the presence of five Mx genes in the channel catfish. All five promoters possess an interferon stimulated response element (ISRE) and the Mx1 promoter possessed two potential NF-kappabeta transcription sites. Following cloning each construct was transiently transfected into COS-7 and EPC cells for 24h and treated with 5 microg/ml poly I:C for 24h. An increase in expression of the reporter gene in response to poly I:C was noted in both cell lines in the pGL3Mx1 construct only. However, the reporter gene was also constitutively expressed in these cells. Constitutive expression was also observed in channel catfish ovary cells transiently transfected with pGL3Mx1 only. Treatment with 5 microg/ml poly I:C did not increase this expression, which may be due to high levels of cell death in this difficult to transfect cell line. The constitutive expression observed implies that a repressor element is missing in the 390 base pair sequence of the Mx1 promoter used in this study. These results suggest that only channel catfish Mx1 is involved in the type I interferon pathway and that the presence of an ISRE in a regulatory region is not necessarily indicative of a role in the type I interferon response.

  20. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.

    Science.gov (United States)

    Ahn, Jungoh; Park, Kyung-Min; Lee, Hongweon; Son, Yeo-Jin; Choi, Eui-Sung

    2013-02-01

    The removal of Gal80 protein by gene disruption turned into efficient GAL promoter-driven heterologous gene expression under anaerobic alcoholic fermentation of Saccharomyces cerevisiae. Using lipase B from Candida antarctica as a reporter, the relative strength of GAL10 promoter (P(GAL10) ) in Δgal80 mutant that does not require galactose as an inducer was compared to those of ADH1, PDC1, and PGK promoters, which have been known to work well anaerobically in actively fermenting yeast cells under high glucose concentration. P(GAL10) in the Δgal80 mutant showed 0.8-fold (ADH1), fourfold (PDC1), and 50-fold (PGK) in promoter strength.

  1. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  2. Gene Polymorphisms Affect the Effectiveness of Atorvastatin in Treating Ischemic Stroke Patients

    Directory of Open Access Journals (Sweden)

    Yun-Hua Yue

    2016-07-01

    Full Text Available Background/Aims: The aim of the present study is to investigate whether the single nucleotide polymorphism (SNP in lipid metabolism related genes would affect the effectiveness of atorvastatin in both Han and Uighur populations. Methods: 200 ischemic stroke patients were treated with atorvastatin. The differences of blood lipid level and their ratios were measured. Six lipid related genes, HMGCR, APOA5, LPL, CETP, LDLR and PCSK9 were selected as candidate genes. And nine SNP loci in these six genes were genotyped by SNaPshot technique. Results: In all patients treated with atorvastatin, the SNP rs662799 significantly affected the ratio of ΔLDL and ΔLDL/LDL (p < 0.05; the SNP rs320 significantly affected the ratio of ΔLDL/LDL and Δ(LDL/HDL/(LDL/HDL (p < 0.01 and the SNP rs708272 significantly affected the ratio of ΔLDL (p < 0.05. In Han population treated with atorvastatin, the SNP rs662799 significantly affected the ratio of ΔTG (p < 0.05; the SNP rs320 significantly affected the ratio of ΔLDL/LDL and Δ(LDL/HDL/(LDL/HDL (p < 0.01. In Uighur population treated with atorvastatin, the SNP rs2266788 significantly affected the ratio of ΔHDL (p < 0.05; the SNP rs662799 significantly affected the ratio of ΔLDL/LDL (p < 0.05 and the SNP rs708272 significantly affected the ratio of ΔLDL (p < 0.05. Conclusion: Polymorphisms of rs662799 and rs2266788 in APOA5 gene, rs320 in LPL gene and rs708272 in CETP gene had significant association with the effect of the lipid-lowering therapy via atorvastatin calcium on ischemic stroke patients.

  3. Factors affecting the concordance between orthologous gene trees and species tree in bacteria

    Directory of Open Access Journals (Sweden)

    González Víctor

    2008-10-01

    Full Text Available Abstract Background As originally defined, orthologous genes implied a reflection of the history of the species. In recent years, many studies have examined the concordance between orthologous gene trees and species trees in bacteria. These studies have produced contradictory results that may have been influenced by orthologous gene misidentification and artefactual phylogenetic reconstructions. Here, using a method that allows the detection and exclusion of false positives during identification of orthologous genes, we address the question of whether putative orthologous genes within bacteria really reflect the history of the species. Results We identified a set of 370 orthologous genes from the bacterial order Rhizobiales. Although manifesting strong vertical signal, almost every orthologous gene had a distinct phylogeny, and the most common topology among the orthologous gene trees did not correspond with the best estimate of the species tree. However, each orthologous gene tree shared an average of 70% of its bipartitions with the best estimate of the species tree. Stochastic error related to gene size affected the concordance between the best estimated of the species tree and the orthologous gene trees, although this effect was weak and distributed unevenly among the functional categories. The nodes showing the greatest discordance were those defined by the shortest internal branches in the best estimated of the species tree. Moreover, a clear bias was evident with respect to the function of the orthologous genes, and the degree of divergence among the orthologous genes appeared to be related to their functional classification. Conclusion Orthologous genes do not reflect the history of the species when taken as individual markers, but they do when taken as a whole. Stochastic error affected the concordance of orthologous genes with the species tree, albeit weakly. We conclude that two important biological causes of discordance among

  4. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti.

    Science.gov (United States)

    Peck, Melicent C; Fisher, Robert F; Long, Sharon R

    2006-08-01

    NodD1 is a member of the NodD family of LysR-type transcriptional regulators that mediates the expression of nodulation (nod) genes in the soil bacterium Sinorhizobium meliloti. Each species of rhizobia establishes a symbiosis with a limited set of leguminous plants. This host specificity results in part from a NodD-dependent upregulation of nod genes in response to a cocktail of flavonoids in the host plant's root exudates. To demonstrate that NodD is a key determinant of host specificity, we expressed nodD genes from different species of rhizobia in a strain of S. meliloti lacking endogenous NodD activity. We observed that nod gene expression was initiated in response to distinct sets of flavonoid inducers depending on the source of NodD. To better understand the effects of flavonoids on NodD, we assayed the DNA binding activity of S. meliloti NodD1 treated with the flavonoid inducer luteolin. In the presence of luteolin, NodD1 exhibited increased binding to nod gene promoters compared to binding in the absence of luteolin. Surprisingly, although they do not stimulate nod gene expression in S. meliloti, the flavonoids naringenin, eriodictyol, and daidzein also stimulated an increase in the DNA binding affinity of NodD1 to nod gene promoters. In vivo competition assays demonstrate that noninducing flavonoids act as competitive inhibitors of luteolin, suggesting that both inducing and noninducing flavonoids are able to directly bind to NodD1 and mediate conformational changes at nod gene promoters but that only luteolin is capable of promoting the downstream changes necessary for nod gene induction.

  5. Structural analysis and promoter characterization of the human collagenase-3 gene (MMP13)

    Energy Technology Data Exchange (ETDEWEB)

    Pendas, A.M.; Balbin, M.; Llano, E. [Universidad de Oviedo (Spain)] [and others

    1997-03-01

    Human collagenase-3 (MMP13) is a recently identified member of the matrix metalloproteinase (MMP) family that is expressed in breast carcinomas and in articular cartilage from arthritic patients. In this work we have isolated and characterized genomic clones coding for human collagenase-3. This gene is composed of 10 exons and 9 introns and spans over 12.5 kb. The overall organization of the collagenase-3 gene is similar to that of other MMP genes clustered at chromosome 11q22, including fibroblast collagenase (MMP-1), matrilysin (MMP-7), and macrophage metalloelastase (MMP-12), but is more distantly related to genes coding for stromelysin-3 (MMP-11), gelatinase-A (MMP-2), and gelatinase-B (MMP-9), which map outside of this gene cluster. Nucleotide sequence analysis of about 1 kb of the 5{prime}-flanking region of the collagenase-3 gene revealed the presence of a TATA box, an AP-1 motif, a PEA-3 consensus sequence, an osteoblast specific element (OSE-2), and a TGF-{beta} inhibitory element. Transient transfection experiments in HeLa and COS-1 cells with chloramphenicol acetyltransferase (CAT)-containing constructs showed that the AP-1 site is functional and responsible for the observed inducibility of the reporter gene by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). However, and in contrast to other MMP genes, no significative synergistic effect on CAT activity between the AP-1 and PEA-3 elements found in the collagenase-3 gene promoter was found. DNA binding analysis with nuclear extracts from HeLa cells revealed the formation of specific complexes between collagenase-3 promoter sequences containing the AP-1 site and nuclear proteins. The presence of this AP-1 functional site, which is able to confer responsiveness to a variety of tumor promoters and oncogene products, may contribute to explaining the high-level expression of collagenase-3 in breast carcinomas and degenerative joint diseases. 48 refs., 5 figs., 2 tabs.

  6. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas.

    Science.gov (United States)

    Zhang, Jie; Yang, Jian-Hui; Quan, Jia; Kang, Xing; Wang, Hui-Juan; Dai, Peng-Gao

    2016-10-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation was reported to be an independent prognostic and predictive factor in glioma patients who received temozolomide treatment. However, the predictive value of MGMT methylation was recently questioned by several large clinical studies. The purpose of this study is to identify MGMT gene promoter CpG sites or region whose methylation were closely correlated with its gene expression to elucidate this contradictory clinical observations. The methylation status for all CpG dinucleotides in MGMT promoter and first exon region were determined in 42 Chinese glioma patients, which were then correlated with MGMT gene expression, IDH1 mutation, and tumor grade. In whole 87 CpG dinucleotides analyzed, three distinct CpG regions covering 28 CpG dinucleotides were significantly correlated with MGMT gene expression; 10 CpG dinucleotides were significantly correlated with glioma classification (p MGMT gene hypermethylation significantly co-existed, but not for MGMT gene expression. The validation cohort of gliomas treated with standard of care and comparison of the CpGs we identified with the current CpGs used in clinical setting will be very important for gliomas individual medicine in the future.

  7. Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene.

    Science.gov (United States)

    Xia, Mengna; Malkaram, Sridhar A; Zempleni, Janos

    2013-11-01

    Holocarboxylase synthetase (HLCS) is the only protein biotin ligase in the human proteome. HLCS-dependent biotinylation of carboxylases plays crucial roles in macronutrient metabolism. HLCS appears to be an essential part of multiprotein complexes in the chromatin that cause gene repression and contribute toward genome stability. Consistent with these essential functions, HLCS knockdown causes strong phenotypes including shortened life span and low stress resistance in Drosophila melanogaster, and de-repression of long-terminal repeats in humans, other mammalian cell lines and Drosophila. Despite previous observations that the expression of HLCS depends on biotin status in rats and in human cell lines, little is known about the regulation of HLCS expression. The goal of this study was to identify promoters that regulate the expression of the human HLCS gene. Initially, the human HLCS locus was interrogated in silico using predictors of promoters including sequences of HLCS mRNA and expressed sequence tags, CpG islands, histone marks denoting transcriptionally poised chromatin, transcription factor binding sites and DNaseI hypersensitive regions. Our predictions revealed three putative HLCS promoters, denoted P1, P2 and P3. Promoters lacked a TATA box, which is typical for housekeeping genes. When the three promoters were cloned into a luciferase reporter plasmid, reporter gene activity was at least three times background noise in human breast, colon and kidney cell lines; activities consistently followed the pattern P1>P3>P2. Promoter activity depended on the concentration of biotin in culture media, but the effect was moderate. We conclude that we have identified promoters in the human HLCS gene.

  8. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    and affect the ability of the bacteria to sustain oxacillin treatment. Furthermore, we found that thioridazine itself reduces the expression level of selected virulence genes and that selected toxin genes are not induced by thioridazine. In the present study, we find indications that the mechanism underlying...

  9. Effect of the Antisense BcMF12 Driven by the BcA9 Promoter on Gene Silencing in Brassica campestris L. ssp. chinensis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The study analyzed the silencing of BcMF12 gene regulated by BcA9 promoter in the transgenic pakchoi and confirmed the effect of antisense BcMF12 gene on the pollen development. A conserved BcMF12 gene fragment was amplified from the cDNA of flower buds in pakchoi (Brassica campestris L. ssp. chinensis, syn. B. rapa L. ssp. chinensis) and was fused to the anther specific BcA9 promoter. The plant antisense expression vector was constructed and then introduced into pakchoi via Agrobacterium-mediated transformation. The transgenic plants were screened by antibiotics and molecular analysis. PCR and Southern blot revealed that the antisense BcMF12-GUS fusion gene regulated by BcA9 promoter was integrated into transgenic plants. Northern blot suggested that the expression of BcMF12 gene was down-regulated significantly. The pollen germination rate of transgenic plants with antisense BcMF12 gene decreased as compared with that of the control plants. The expression of the gene BcMF12 related to the pollen development was inhibited by the antisense BcMF12 driven by BcA9 promoter, which consequently affected the pollen development in pakchoi.

  10. Embedded Promotions in Online Services: How Goal-Relevance Ambiguity Shapes Response and Affect

    Science.gov (United States)

    Brasel, S. Adam

    2010-01-01

    Adding promotions to online services is increasingly commonplace, yet consumers may have difficulty determining whether service-embedded promotions are goal-relevant, due to the linear and transactional nature of online services. This contextual effect of goal-relevance ambiguity on promotions is explored across three studies. An exploratory study…

  11. Characterization of the Promoter of a Homolog of Maize MADS-Box Gene m18

    Institute of Scientific and Technical Information of China (English)

    QIN Hui-juan; PAN Hong; FAN Xian-wei; WU Qiao; LI You-zhi

    2014-01-01

    Maize (Zea mays L.) is one of the world’s major food crops, and often suffers from tremendous yield loss caused by abiotic stresses. The MADS-box genes are known to play versatile roles in plants, controlling plant responses to multiple abiotic stresses. However, understanding of regulation of their expressions by the conventional loss-of-function approach is very dififcult. So far, regulation of MADS-box gene expression is little known. The best approach to retrieve expression regulation of this category of genes is to characterize expression of their promoters. In this study, the promoter of a homolog (GenBank accession no. EC864166) of maize MADS-box gene m18 was cloned by way of genome-walking PCR, named Pro66. Predicative analysis indicated that Pro66 contains more than one TATA box and multiple cis-acting environmental conditions-responsive elements (ECREs). Pro66 could drive expression of theβ-glucuronidase (GUS)-encoding gene in maize, and heterologous expression of GUS in red pepper stressed by water deifcit, salt, copper, iron deifciency, heat, cold, and grown under short and long photoperiods, echoing predicative ECREs. Conclusively, maize MADS-box gene m18 likely plays versatile functions in maize response to multiple abiotic stresses due to the promoter with multiple cis-acting elements. The complex arrangement of multiple cis-acting elements in the promoter features meticulously regulated expression of m18. The results give informative clues for heterologous utilisation of the promoters in monocot and dicot species. The copy of the ECREs and heterologous expression of the promoter in dicot species are also discussed.

  12. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    Directory of Open Access Journals (Sweden)

    V Shilpa

    2014-01-01

    Full Text Available Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6 -methyguanine-DNA methyltransferase (MGMT is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC tissue samples, 14 low malignant potential (LMP tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression.

  13. Promoter Architecture and Sex-Specific Gene Expression in Daphnia pulex.

    Science.gov (United States)

    Raborn, R Taylor; Spitze, Ken; Brendel, Volker P; Lynch, Michael

    2016-10-01

    Large-scale transcription start site (TSS) profiling produces a high-resolution, quantitative picture of transcription initiation and core promoter locations within a genome. However, application of TSS profiling to date has largely been restricted to a small set of prominent model systems. We sought to characterize the cis-regulatory landscape of the water flea Daphnia pulex, an emerging model arthropod that reproduces both asexually (via parthenogenesis) and sexually (via meiosis). We performed Cap Analysis of Gene Expression (CAGE) with RNA isolated from D. pulex within three developmental states: sexual females, asexual females, and males. Identified TSSs were utilized to generate a "Daphnia Promoter Atlas," i.e., a catalog of active promoters across the surveyed states. Analysis of the distribution of promoters revealed evidence for widespread alternative promoter usage in D. pulex, in addition to a prominent fraction of compactly-arranged promoters in divergent orientations. We carried out de novo motif discovery using CAGE-defined TSSs and identified eight candidate core promoter motifs; this collection includes canonical promoter elements (e.g., TATA and Initiator) in addition to others lacking obvious orthologs. A comparison of promoter activities found evidence for considerable state-specific differential gene expression between states. Our work represents the first global definition of transcription initiation and promoter architecture in crustaceans. The Daphnia Promoter Atlas presented here provides a valuable resource for comparative study of cis-regulatory regions in metazoans, as well as for investigations into the circuitries that underpin meiosis and parthenogenesis. Copyright © 2016 by the Genetics Society of America.

  14. Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia.

    LENUS (Irish Health Repository)

    Jablensky, A

    2011-10-04

    In a previous study, we detected a 6p25-p24 region linked to schizophrenia in families with high composite cognitive deficit (CD) scores, a quantitative trait integrating multiple cognitive measures. Association mapping of a 10 Mb interval identified a 260 kb region with a cluster of single-nucleotide polymorphisms (SNPs) significantly associated with CD scores and memory performance. The region contains two colocalising genes, LYRM4 and FARS2, both encoding mitochondrial proteins. The two tagging SNPs with strongest evidence of association were located around the overlapping putative promoters, with rs2224391 predicted to alter a transcription factor binding site (TFBS). Sequencing the promoter region identified 22 SNPs, many predicted to affect TFBSs, in a tight linkage disequilibrium block. Luciferase reporter assays confirmed promoter activity in the predicted promoter region, and demonstrated marked downregulation of expression in the LYRM4 direction under the haplotype comprising the minor alleles of promoter SNPs, which however is not driven by rs2224391. Experimental evidence from LYRM4 expression in lymphoblasts, gel-shift assays and modelling of DNA breathing dynamics pointed to two adjacent promoter SNPs, rs7752203-rs4141761, as the functional variants affecting expression. Their C-G alleles were associated with higher transcriptional activity and preferential binding of nuclear proteins, whereas the G-A combination had opposite effects and was associated with poor memory and high CD scores. LYRM4 is a eukaryote-specific component of the mitochondrial biogenesis of Fe-S clusters, essential cofactors in multiple processes, including oxidative phosphorylation. LYRM4 downregulation may be one of the mechanisms involved in inefficient oxidative phosphorylation and oxidative stress, increasingly recognised as contributors to schizophrenia pathogenesis.Molecular Psychiatry advance online publication, 4 October 2011; doi:10.1038\\/mp.2011.129.

  15. Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle.

    Science.gov (United States)

    He, Y L; Wu, Y H; Quan, F S; Liu, Y G; Zhang, Y

    2013-09-04

    To better understand the function of the myostatin gene and its promoter region in bovine, we amplified and sequenced the myostatin gene and promoter from the blood of Qinchuan and Red Angus cattle by using polymerase chain reaction. The sequences of Qinchuan and Red Angus cattle were compared with those of other cattle breeds available in GenBank. Exon splice sites were confirmed by mRNA sequencing. Compared to the published sequence (GenBank accession No. AF320998), 69 single nucleotide polymorphisms (SNPs) were identified in the Qinchuan myostatin gene, only one of which was an insertion mutation in Qinchuan cattle. There was a 16-bp insertion in the first 705-bp intron in 3 Qinchuan cattle. A total of 7 SNPs were identified in exon 3, in which the mutation occurred in the third base of the codon and was synonymous. On comparing the Qinchuan myostatin gene sequence to that of Red Angus cattle, a total of 50 SNPs were identified in the first and third exons. In addition, there were 18 SNPs identified in the Qinchuan cattle promoter region compared with those of other cattle compared to the Red Angus cattle myostatin promoter region. breeds (GenBank accession No. AF348479), but only 14 SNPs when compared to the Red Angus cattle myostatin promoter region.

  16. Comparative transcriptional activity of five promoters in BAC-cloned MDV for the expression of the hemagglutinin gene of H9N2 avian influenza virus.

    Science.gov (United States)

    Ma, Chengtai; Zhang, Zhenjie; Zhao, Peng; Duan, Luntao; Zhang, Yaoyao; Zhang, Fushou; Chen, Wenqing; Cui, Zhizhong

    2014-09-01

    On the basis of recent studies, much attention has been given to recombinant MDV (rMDV)-based vaccines. During the construction of rMDV, the activity of promoters to transcribe foreign genes is one of the major factors that can affect protective efficacy. To investigate the transcription activity and efficacy of five different promoters, the advantage of an existing rMDV BAC infectious clone that had been previously constructed was used to construct rMDVs. The expression cassette of the hemagglutinin gene (HA) from a low pathogenic avian influenza virus (LPAIV) H9N2 strain was inserted into the US2 region under five selected promoters. These five promoters included three MDV endogenous promoters (the promoter for the gB gene and a bi-directional promoter in both directions for pp38 (ppp38) and 1.8 kb RNA transcripts (p1.8 kb)), and two exogenous promoters (CMV and SV40). Among these five promoters, the CMV promoter demonstrated the highest activity, followed by p1.8 kb and SV40, which had a similar transcriptional activity level. Two of the MDV endogenous promoters showed much lower transcriptional activities, particularly the promoter ppp38, which had the lowest activity. The results of the in vivo experiment proved that none of the three recombinant viruses of rGX-CMV-HA, rGX-SV40-HA and rGX-p1.8kb-HA provided protection in SPF chickens. Chickens vaccinated with rGX-pPP38-HA induced 50% and rGX-gB-HA induced 25% protection against the challenge with H9N2, respectively.

  17. Methylation status of the interferon-gamma gene promoter in chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To evaluate the methylation status at CpG site -55 in the interferon-gamma (IFN-γ) gene promoter and its effect on IFN-γ expression in chronic hepatitis B. Method The authors recruited 30 patients with HBeAg-positive chronic hepatitis B (CHB), 30 HBeAg-negative CHB patients, and 30 healthy blood donors. Pyrosequencing was used to determine the methylation status at CpG site -55 in the IFN-γ gene promoter following bisulfite treatment of DNA in peripheral blood mononuclear cells (PBMCs). The expres...

  18. A cII-dependent promoter is located within the Q gene of bacteriophage lambda.

    Science.gov (United States)

    Hoopes, B C; McClure, W R

    1985-05-01

    We have found a cII-dependent promoter, PaQ, within the Q gene of bacteriophage lambda. Transcription experiments and abortive initiation assays performed in vitro showed that the promoter strength and the cII affinity of PaQ were comparable to the other cII-dependent lambda promoters, PE and PI. The location and leftward direction of PaQ suggests a possible role in the delay of lambda late-gene expression by cII protein, a phenomenon that has been called cII-dependent inhibition. We have constructed a promoter down mutation, paq-1, by changing a single base pair in the putative cII binding site of the promoter by oligonucleotide site-directed mutagenesis. The paq-1 mutant promoter required about 4-fold higher cII concentrations for maximal activation compared to the wild-type PaQ. We tested the hypothesis that PaQ is responsible in part for the delay of lambda late-gene expression by recombining the paq-1 mutation into a phage showing severe cII-dependent inhibition. We found that the paq-1 mutation relieved the cII-dependent growth defect of this phage. The paq-1 mutation (in combination with lambda cI857) resulted in a clear-plaque phenotype at the permissive temperature of 32 degrees C. The role of the PaQ-initiated antisense transcript in the control of lambda development is discussed.

  19. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y

    2016-05-20

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.

  20. Association of polymorphisms of interleukin-18 gene promoter region with polycystic ovary syndrome in chinese population

    Directory of Open Access Journals (Sweden)

    Li Mei-zhi

    2010-10-01

    Full Text Available Abstract Background Recent research shows that polycystic ovary syndrome (PCOS may have an association with low-grade chronic inflammation, and that PCOS may induce an increase in serum interleukin-18 (IL-18 levels. Methods To investigate the polymorphisms of the IL-18 gene promoters with PCOS, two single nucleotide polymorphisms (SNPs in the promoter of the IL-18 gene (at positions -607C/A and -137G/C in 118 Chinese women with PCOS and 79 controls were evaluated using polymerase chain reaction (PCR. Results No significant differences were found in the genotype distribution, allele frequency and haplotype frequency between the PCOS and control groups. Further analysis demonstrated a relationship between IL-18 gene promoter polymorphisms and PCOS insulin resistance (IR. Regarding the -137 allele frequency, G and C allele frequencies were 93.5% and 6.5%, respectively, in the PCOS with IR patients; G and C allele frequencies were 85.4% and 14.6%, respectively, in PCOS patients without IR (chi2 = 3.601, P = 0.048. Conclusions The presence of a polymorphism in the IL-18 gene was found to have no correlation with the occurrence of PCOS. Carriage of the C allele at position -137 in the promoter of the IL-18 gene may play a protective role from the development of PCOS IR.

  1. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA).

    Science.gov (United States)

    Zhan, Leyun; Zhang, Bingyi; Tan, Yaojun; Yang, Chengliang; Huang, Chenhong; Wu, Qiongya; Zhang, Yulin; Chen, Xiaobo; Zhou, Mi; Shu, Aihua

    2017-02-01

    Methylation of the Ras-association domain family 1 isoform A (RASSF1A) gene promoter region is thought to participate in the initiation and development of many different cancers. However, in bladder cancer the role of RASSF1A methylation was unclear. To evaluate the relationship between RASSF1A methylation and bladder cancer, a quantitative assessment of an independent meta-analysis was performed. In addition, a DNA methylation microarray database from the cancer genome atlas (TCGA) project was used to validate the results of the meta-analysis. We searched published articles from computerized databases, and DNA methylation data were extracted from TCGA project. All data were analyzed by R software. The results of the meta-analysis indicated that the frequency of RASSF1A gene methylation in bladder cancer patients is significantly higher than in healthy controls. The hazard ratio (HR) was 2.24 (95% CI = [1.45; 3.48], P = 0.0003) for overall survival (OS), and the RASSF1A gene promoter methylation status was strongly associated with the TNM stage and differentiation grade of the tumor. The similar results were also found by the data from TCGA project. There was a significant relationship between the methylation of the RASSF1A gene promoter and bladder cancer. Therefore, RASSF1A gene promoter methylation will be a potential biomarker for the clinical diagnosis of bladder cancer.

  2. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA)

    Science.gov (United States)

    Zhan, Leyun; Zhang, Bingyi; Tan, Yaojun; Yang, Chengliang; Huang, Chenhong; Wu, Qiongya; Zhang, Yulin; Chen, Xiaobo; Zhou, Mi; Shu, Aihua

    2017-01-01

    Abstract Background: Methylation of the Ras-association domain family 1 isoform A (RASSF1A) gene promoter region is thought to participate in the initiation and development of many different cancers. However, in bladder cancer the role of RASSF1A methylation was unclear. To evaluate the relationship between RASSF1A methylation and bladder cancer, a quantitative assessment of an independent meta-analysis was performed. In addition, a DNA methylation microarray database from the cancer genome atlas (TCGA) project was used to validate the results of the meta-analysis. Methods: We searched published articles from computerized databases, and DNA methylation data were extracted from TCGA project. All data were analyzed by R software. Results: The results of the meta-analysis indicated that the frequency of RASSF1A gene methylation in bladder cancer patients is significantly higher than in healthy controls. The hazard ratio (HR) was 2.24 (95% CI = [1.45; 3.48], P = 0.0003) for overall survival (OS), and the RASSF1A gene promoter methylation status was strongly associated with the TNM stage and differentiation grade of the tumor. The similar results were also found by the data from TCGA project. Conclusion: There was a significant relationship between the methylation of the RASSF1A gene promoter and bladder cancer. Therefore, RASSF1A gene promoter methylation will be a potential biomarker for the clinical diagnosis of bladder cancer. PMID:28207521

  3. Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16.

    Science.gov (United States)

    Fukui, Toshiaki; Ohsawa, Kei; Mifune, Jun; Orita, Izumi; Nakamura, Satoshi

    2011-03-01

    Five kinds of promoters were evaluated as tools for regulated gene expression in the PHA-producing bacterium Cupriavidus necator. Several broad-host-range expression vectors were constructed by which expression of a reporter gene gfp was controlled by P(lac), P(tac), or P(BAD) derived from Escherichia coli, or promoter regions of phaC1 (P(phaC)) or phaP1 (P(phaP)) derived from C. necator. Then, the gfp-expression profiles were determined in C. necator strains harboring the constructed vectors when the cells were grown on fructose or soybean oil. P(lac), P(tac), P(phaC), and P(phaP ) mediated constitutive gene expression, among which P(tac) was the strongest promoter. lacI-P(tac) was not thoroughly functional even after addition of isopropyl-β-D-thiogalactopyranoside (IPTG), probably due to inability of C. necator to uptake IPTG. Gene expression by araC-P(BAD) could be regulated by varying L-arabinose concentration in the medium, although P(3HB) production rate was slightly decreased in the recombinant. phaR-P(phaP) exhibited an expression profile tightly coupled with P(3HB) accumulation, suggesting application of the vector harboring phaR-P(phaP ) for gene expression specific at the PHA-biosynthesis phase. The properties of these promoters were expected to be useful for effective engineering of PHA biosynthesis in C. necator.

  4. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes.

    Science.gov (United States)

    Rosario, Christopher J; Tan, Ming

    2012-06-01

    The obligate intracellular bacterium Chlamydia has an unusual developmental cycle in which there is conversion between two forms that are specialized for either intracellular replication or propagation of the infection to a new host cell. Expression of late chlamydial genes is upregulated during conversion from the replicating to the infectious form, but the mechanism for this temporal regulation is unknown. We found that EUO, which is expressed from an early gene, binds to two sites upstream of the late operon omcAB, but only the downstream site was necessary for transcriptional repression. Using gel shift and in vitro transcription assays we showed that EUO specifically bound and repressed promoters of Chlamydia trachomatis late genes, but not early or mid genes. These findings support a role for EUO as a temporal repressor that negatively regulates late chlamydial genes and prevents their premature expression. The basis of this specificity is the ability of EUO to selectively bind promoter regions of late genes, which would prevent their transcription by RNA polymerase. Thus, we propose that EUO is a master regulator that prevents the terminal differentiation of the replicating form of chlamydiae into the infectious form until sufficient rounds of replication have occurred.

  5. Rice bZIP protein, REB, interacts with GCN4 motif in promoter of Waxy gene

    Institute of Scientific and Technical Information of China (English)

    程世军; 王宗阳; 洪孟民

    2002-01-01

    A bifactorial endosperm box (EB), which contains an endosperm motif (EM) and a GCN4 motif, was found in rice Wx promoter. EB was found in 5′ upstream region of many seed storage protein genes accounting for these genes expression exclusive in endosperm among various cereals. Many reports demonstrated that the bZIP transcription activators isolated from wheat, barley and maize, etc. regulate the gene expression through binding to the GCN4 motif. In this research, we showed that GCN4 sequence could be recognized by nuclear proteins extracted from immature rice seeds. Furthermore, a rice bZIP protein, REB was isolated by using PCR method and REB fusion protein was expressed in E. coli. The results of gel shift analysis showed that REB could recognize and bind to the GCN4 motif in the Wx gene in addition to binding to the target sequence in the promoter of α-globulin.

  6. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    Science.gov (United States)

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding.

  7. A three-gene signature for prognosis in patients with MGMT promoter-methylated glioblastoma.

    Science.gov (United States)

    Wang, Wen; Zhang, Lu; Wang, Zheng; Yang, Fan; Wang, Haoyuan; Liang, Tingyu; Wu, Fan; Lan, Qing; Wang, Jiangfei; Zhao, Jizong

    2016-10-25

    Glioblastoma is the most malignant tumor and has high mortality rate. The methylated prompter of MGMT results in chemotherapy sensitivity for these patients. However, there are still other factors that affected the prognosis for the glioblastoma patients with similar MGMT methylation status. We developed a signature with three genes screened from the whole genome mRNA expression profile from Chinese Glioma Genome Atlas (CGGA) and RNAseq data from The Cancer Genome Atlas (TCGA). Patients with MGMT methylation in low risk group had longer survival than those in high risk group (median overall survival 1074 vs. 372 days; P = 0.0033). Moreover, the prognostic value of the signature was significant difference in cohorts stratified by MGMT methylation and chemotherapy (P=0.0473), while there is no significant difference between low and high risk group or unmethylated MGMT patients without chemotherapy. Multivariate analysis indicated that the risk score was an independent prognosis factor (P = 0.004). In conclusion, our results showed that the signature has prognostic value for patients with MGMT promoter-methylated glioblastomas based on bioinformatics analysis.

  8. DISC1 gene and affective psychopathology : A combined structural and functional MRI study

    NARCIS (Netherlands)

    Opmeer, Esther M.; van Tol, Marie-Jose; Kortekaas, Rudie; van der Wee, Nic J. A.; Woudstra, Saskia; van Buchem, Mark A.; Penninx, Brenda W.; Veltman, Dick J.; Aleman, Andre

    The gene Disrupted-In-Schizophrenia-1 (DISCI) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISCI

  9. c-Jun transactivates Puma gene expression to promote osteoarthritis.

    Science.gov (United States)

    Lu, Huading; Hou, Gang; Zhang, Yongkai; Dai, Yuhu; Zhao, Huiqing

    2014-05-01

    Osteoarthritis (OA) is a chronic degenerative joint disorder in which genetic, hormonal, mechanical and ageing factors affect its progression. Current studies are focusing on chondrocytes as a key mediator of OA at a cellular level. however, the mechanism underlying chondrocyte apoptosis remains unclear. PUMA is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family and is involved in a large number of physiological and pathological processes. In the present study, we examined whether PUMA has a role in IL-1β-induced apoptosis and whether the c-Jun N-terminal kinase (JNK)/c-Jun pathway mediates the induction of PUMA, thus contributing to chondrocyte apoptosis. The results demonstrated an increase in PUMA protein and mRNA levels in cultured mouse chondrocytes following 4 h of IL-1β treatment. Furthermore, this upregulation of PUMA was critical for chondrocyte apoptosis as knockdown of PUMA using PUMA-specific siRNA significantly reduced apoptosis in cultured cells. Upon pharmacological inhibition of the JNK/c-Jun pathway with CE11004 or SP600125, the expression of PUMA was notably suppressed with a concomitant decrease in apoptosis observed in IL-1β-treated chondrocytes. Also, immunohistochemical studies revealed that the PUMA and c-Jun proteins were upregulated in chondrocytes from the articular cartilage of OA patients. Together, these data suggest a role for PUMA and the JNK/c-Jun pathway in the regulation of chondrocyte apoptosis during OA.

  10. Promoter hypermethylation and loss of CD133 gene expression in colorectal cancers

    Institute of Scientific and Technical Information of China (English)

    You-Kyung; Jeon; Sung-Hee; Kim; Seung-Ho; Choi; Kyung-Hee; Kim; Byong-Chul; Yoo; Ja-Lok; Ku; Jae-Gahb; Park

    2010-01-01

    AIM: To understand CD133 promoter hypermethyl-ation and expression in 32 colorectal cancer cell lines. METHODS: Nucleic acid was isolated from 32 colorectal cancer cell lines and CD133 expression levels were measured by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Promoter methylation status of the CD133 gene was analyzed with a methylation-specific PCR after sodium-bisulfi te modification and by clonal sequencing analysis. The correlation between expression and promoter methy...

  11. Single nucleotide polymorphism in the tumor necrosis factor-alpha gene affects inflammatory bowel diseases risk

    Institute of Scientific and Technical Information of China (English)

    Lynnette R Ferguson; Claudia Huebner; Ivonne Petermann; Richard B Gearry; Murray L Barclay; Pieter Demmers; Alan McCulloch; Dug Yeo Han

    2008-01-01

    AIM: To investigate the role that single nucleotide polymorphisms (SNPs) in the promoter of the tumour necrosis factor-alpha (TNF-α) gene play in the risk of inflammatory bowel diseases (IBDs) in a New Zealand population, in the context of international studies.METHODS: DNA samples from 388 patients with Crohn's disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis (IC) and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common polymorphisms in the TNF-α receptor:-238 G→A, -308 G→A and -857C→T, using a TaqmanRassay. A meta-analysis was performed on the data obtained on these polymorphisms combined with that from other published studies.RESULTS: Individuals carrying the -308 G/A allele had a significantly (OR = 1.91, x2 = 17.36, P < 0.0001)increased risk of pancolitis, and a 1.57-fold increased risk (OR = 1.57, x2 = 4.34, P = 0.037) of requiring a bowel resection in UC. Carrying the -857 C/T variantdecreased the risk of ileocolonic CD (OR = 0.56, x2 =4.32, P = 0.037), and the need for a bowel resection(OR = 0.59, x2 = 4.85, P = 0.028). The risk of UC was reduced in individuals who were smokers at diagnosis,(OR = 0.48, x2 = 4.86, P = 0.028).CONCLUSION: TNF-α is a key cytokine known to play a role in inflammatory response, and the locus for the gene is found in the IBD3 region on chromosome 6p21, known to be associated with an increased risk for IBD. The -308 G/A SNP in the TNF-α promoter is functional, and may account in part for the increased UC risk associated with the IBD3 genomic region. The-857 C/T SNP may decrease IBD risk in certain groups.Pharmaco- or nutrigenomic approaches may be desir-able for individuals with such affected genotypes.

  12. Cloning and characterizing of the ovine MX1 gene promoter/enhancer region.

    Science.gov (United States)

    Assiri, A M; Ott, T L

    2007-01-01

    Ovine MX1 (MX1) is expressed in the uterus during the estrous cycle and is strongly up-regulated during early pregnancy in the uterus and peripheral blood leukocytes. In this study we cloned the MX1 gene promoter/enhancer, and tested its response to interferon tau (IFN-tau). To address the role of IFN tau in regulating MX1 expression, serial deletion mutants were prepared along with a clone that contained a full-length promoter including the two proximal ISREs but lacking an intronic ISRE site. Promoter deletions showed the two proximal ISRE sites, but not the intronic ISRE site, were required for maximal response to IFN tau. Interestingly, MX1 promoter deletion mutants revealed the presence of distal positive (-920 to -715) and negative (-715 to -437) regulatory regions. Identifying positive and negative regulatory regions in MX1 promoter will help define the complex regulation of MX1 during early pregnancy in ruminants.

  13. Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation

    OpenAIRE

    Mathieu, Véronique; Pirker, Christine; Schmidt, Wolfgang M.; Spiegl-Kreinecker, Sabine; Lötsch, Daniela; Heffeter, Petra; Hegedus, Balazs; Grusch, Michael; Kiss, Robert; Berger, Walter

    2012-01-01

    Melanoma is a devastating skin cancer characterized by distinct biological subtypes. Besides frequent mutations in growth- and survival-promoting genes like BRAF and NRAS, melanomas additionally harbor complex non-random genomic alterations. Using an integrative approach, we have analysed genomic and gene expression changes in human melanoma cell lines (N=32) derived from primary tumors and various metastatic sites and investigated the relation to local growth aggressiveness as xenografts in ...

  14. Promoter methylation of p16, Runx3, DAPK and CHFR genes is frequent in gastric carcinoma.

    Science.gov (United States)

    Hu, Shi-Lian; Kong, Xiang-Yong; Cheng, Zhao-Dong; Sun, Yu-Bei; Shen, Gan; Xu, Wei-Ping; Wu, Lei; Xu, Xiu-Cai; Jiang, Xiao-Dong; Huang, Da-Bing

    2010-01-01

    Transcriptional silencing induced by hypermethylation of CpG islands in the promoter regions of genes is believed to be an important mechanism of carcinogenesis in human cancers including gastric cancer. A number of reports on methylation of various genes in gastric cancer have been published, but most of these studies focused on cancer tissues or only a single gene. In this study, we determined the promoter hypermethylation status and mRNA expression of 4 genes: p16, Runx3, DAPK and CHFR. Methylation-specific polymerase chain reaction (MSP) was used to determine the methylation status of p16, Runx3, DAPK and CHFR gene promoters in cancer and adjacent normal gastric mucosa specimens from 70 patients with gastric cancer, as well as normal gastric biopsy samples from 30 people without cancer serving as controls. In addition, the mRNA expression of p16, Runx3, DAPK and CHFR was investigated in 34 gastric cancer patients by RT-PCR. Bisulfite DNA sequence analysis was applied to check the positive samples detected by MSP. When carcinoma specimens were compared with adjacent normal gastric mucosa samples, a significant increase in promoter methylation of p16, Runx3, DAPK and CHFR was observed, while all 30 histologically normal gastric specimens were methylation free for all 4 genes. The methylation rate of the 4 genes increased from normal stomach tissue to tumor-adjacent gastric mucosa to gastric cancer tissue. Concurrent methylation in 2 or more genes was found in 22.9% of tumor-adjacent normal gastric mucosa and 75.7% of cancer tissues. No correlation was found between hypermethylation and other clinicopathological parameters such as sex, age, and tumor location. However, the frequency of DAPK and CHFR methylation in cancer tissues was significantly associated with the extent of differentiation and lymph node metastasis (P p16, Runx3, DAPK and CHFR is frequent in gastric cancer. DAPK and CHFR promoter hypermethylation may be an important help in evaluating the

  15. Gene targeting in melanoma therapy: exploiting of surface markers and specific promoters

    Directory of Open Access Journals (Sweden)

    Sverdlov E. D.

    2012-01-01

    Full Text Available One of the problems of gene therapy of melanoma is effective expression of therapeutic gene in tumor cells and their metastases but not in normal cells. In this review, we will consider a two-step approach to a highly specific gene therapy. At the first step, therapeutic genes are delivered specifically to tumor cells using cell surface markers of melanoma cells as targets. At the second step, a specific expression of the therapeutic genes in tumor cells is ensured. Surface markers of melanoma cells were analyzed as potential targets for therapeutic treatment. Criteria for choosing the most promising targets are proposed. The use of specific melanoma promoters allows to further increase the specificity of treatment via transcriptional control of therapeutic gene expression in melanoma cells.

  16. The Anaphase-Promoting Complex (APC ubiquitin ligase affects chemosensory behavior in C. elegans

    Directory of Open Access Journals (Sweden)

    Julia Wang

    2016-05-01

    Full Text Available The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS, which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143 of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and

  17. Mechanism for transcriptional synergy between interferon regulatory factor (IRF)-3 and IRF-7 in activation of the interferon-beta gene promoter.

    Science.gov (United States)

    Yang, Hongmei; Ma, Gang; Lin, Charles H; Orr, Melissa; Wathelet, Marc G

    2004-09-01

    The interferon-beta promoter has been studied extensively as a model system for combinatorial transcriptional regulation. In virus-infected cells the transcription factors ATF-2, c-Jun, interferon regulatory factor (IRF)-3, IRF-7 and NF-kappaB, and the coactivators p300/CBP play critical roles in the activation of this and other promoters. It remains unclear, however, why most other combinations of AP-1, IRF and Rel proteins fail to activate the interferon-beta gene. Here we have explored how different IRFs may cooperate with other factors to activate transcription. First we showed in undifferentiated embryonic carcinoma cells that ectopic expression of either IRF-3 or IRF-7, but not IRF-1, was sufficient to allow virus-dependent activation of the interferon-beta promoter. Moreover, the activity of IRF-3 and IRF-7 was strongly affected by promoter context, with IRF-7 preferentially being recruited to the natural interferon-beta promoter. We fully reconstituted activation of this promoter in insect cells. Maximal synergy required IRF-3 and IRF-7 but not IRF-1, and was strongly dependent on the presence of p300/CBP, even when these coactivators only modestly affected the activity of each factor by itself. These results suggest that specificity in activation of the interferon-beta gene depends on a unique promoter context and on the role played by coactivators as architectural factors. Copyright 2004 FEBS

  18. Promoter Hypermethylation of DNA Repair Gene MGMT in Laryngeal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between hypermethylation of CpG islands in the promoter regions of O6methylguanine DNA methyltransferase (MGMT)genes and laryngeal squamous cell carcinoma was explored. Methylation-specific PCR and semi-quantitative RT-PCR were used to study the promoter methylation and mRNA expression of the MGMT gene in laryngeal carcinoma tissues, t issues adjacent to the tumor and normal laryngeal tissues. Hypermethylation of MGMT gene was detected in 16 samples of 46 (34.8 %) laryngeal squamous cell carcinoma samples. However, the MGMT hypermethylation was not detected in all tissues adjacent to the tumors and normal tissues. No significant difference in MGMT gene hypermethylation was found in samples with different histological grades (x2= 3. 130, P=0. 077) or in samples from patients with different TNM status (x2=3. 957, P=0. 138). No expression of MGMT mRNA was detected in all hypermethylated laryngeal carcinoma tissues. The expression of MGMT mRNA was detected in all unmethylated laryngeal carcinoma tissues, tissues adjacent to the tumors and normal tissues. It suggests that MGMT gene promoter hypermethylation is associated with MGMT gene transcription loss in laryngeal carcinoma tissues and possibly plays an important role in carcinogenesis of laryngeal tissues.

  19. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    Directory of Open Access Journals (Sweden)

    Tianqiao Song

    2015-12-01

    Full Text Available Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  20. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    Science.gov (United States)

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-12-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  1. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression

    Directory of Open Access Journals (Sweden)

    Adam Rodney D

    2007-04-01

    Full Text Available Abstract Background Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. Results We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. Conclusion In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome.

  2. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  3. Evaluation of different promoters driving the GFP reporter gene in seaweed Kappaphycus alvarezii

    Directory of Open Access Journals (Sweden)

    Muh. Alias L. Rajamuddin

    2016-02-01

    Full Text Available Promoter regulates expression level of foreign gene in transgenic organism. This study was performed to select asuitable promoter as the fi rst step towards production of valuable trait-enhanced seaweed by transgenic technology. Greenfl uorescent protein (GFP gene was used as a reporter to determine the activity of promoter in seaweed Kappaphycusalvarezii. GFP gene constructs driven by cytomegalovirus (pCMV-GFP, caulifl ower mosaic virus (pCaMV-GFP,medaka β-actin (pmBA-GFP and Japanese fl ounder keratin (pJfKer-GFP promoters were introduced by electroporationmethod. Electroporation was performed using a gene pulser (BIORAD with voltage of 300 V, pulse length of 0.5 ms,pulse numbers of 4, and pulse interval of 0.1 s. Promoter activity was determined by analyzing GFP gene expressionlevel using a fl uorescent microscope. The results showed that CMV regulated highest number of fi lament callus(34.10%±1.49 expressing GFP at medium to strong fl uorescence levels. CaMV promoter had relatively similar activitywith CMV, but lower number of fi lament callus expressing GFP (10.48%±0.25. mBA promoter drove GFP expressionat medium level and similar number of fi lament callus (8.85%±2.31 expressing GFP with CaMV, while JfKer promoterhad lowest activity by means in number of fi lament callus expressing GFP (4.79%±0.26 and GFP expression level. PCRanalysis for transgenic confi rmation showed a DNA band of PCR product from pCMV-GFP and pCaMV-GFP expressingfi lament callus in the same size (about 0.6 kb with positive control of plasmid. Thus, CMV and CaMV promoters wasan appropriate promoter and foreign gene could be transferred to fi lament callus by electroporation method. Combiningthis achievement with developing a culture method of fi lament callus to be thallus, stable transgenic breeding in K.alvarezii can be feasible.

  4. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica

    Directory of Open Access Journals (Sweden)

    Yasuyuki Yamada

    2016-09-01

    Full Text Available The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs, a plant-specific WRKY-type transcription factor, CjWRKY1, and a basic helix-loop-helix (bHLH transcription factor, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4’OMT and CYP719A1 were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay (EMSA and by a chromatin immunoprecipitation (ChIP assay. In addition, CjbHLH1 also activated transcription from truncated 4’OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed.

  5. High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Evert van den Broek

    Full Text Available Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA and structural variants (SVs. Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC and to determine the clinical relevance of recurrent breakpoint genes.Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases.In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR 3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis.We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC.

  6. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene.

    Science.gov (United States)

    van der Kop, D A; Schuyer, M; Pinas, J E; van der Zaal, B J; Hooykaas, P J

    1999-03-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the beta-glucuronidase (gusA) reporter gene. Subsequently, seeds were treated with EMS to obtain mutants in which both reporter gene fusions were up-regulated. Northern analysis showed that the mRNA level of a related, endogenous auxin-inducible GST gene of Arabidopsis was increased in some of these mutants as well. Two of the gup (GST up-regulated) mutants were characterized in more detail and roughly mapped. Both had epinastic cotyledons and leaves, a phenotype that turned out to be linked to the gup mutation.

  7. Potential transcriptional regulatory regions exist upstream of the human ezrin gene promoter in esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Shuying Gao; Yanpeng Dai; Meijun Yin; Jing Ye; Gang Li; Jie Yu

    2011-01-01

    We previously demonstrated that the region -87/+ 134 of the human ezrin gene (VIL2) exhibited promoter activity in human esophageal carcinoma EC109 cells, and a further upstream region -1324/-890 positively regulated transcription.In this study, to identify the transcriptional regulatory regions upstream of the VIL2 promoter, we cloned VIL2 - 1541/- 706 segment containing the -1324/-890, and investigated its transcriptional regulatory properties via luciferase assays in transiently transfected cells.In EC109 cells, it was found that VIL2 -1541/-706 possessed promoter and enhancer activities.We also localized transcriptional regulatory regions by fusing 5′- or 3′-deletion segments of VIL2 -1541/-706 to a luciferase reporter.We found that there were three positive and one negative transcriptional regulatory regions ithin VIL2 -1541/-706 in EC109 cells.When these regions were separately located upstream of the luciferase gene without promoter, or located upstream of the VIL2 promoter or SV40 promoter directing the luciferase gene, only VIL2 -1297/-1186 exhibited considerable promoter and enhancer activities, which were lower than those of -1541/-706.In addition, transient expression of Sp1 increased ezrin expression and the transcriptional activation of VIL2 -1297/-1186.Other three regions,although exhibiting significantly positive or negative transcriptional regulation in deletion experiments, showed a weaker or absent regulation.These data suggested that more than one region upstream of the VIL2 promoter participated in VIL2 transcription, and the VIL2 -1297/-1186, probably as a key transcriptional regulatory region, regulated VIL2 transcription in company with other potential regulatory regions.

  8. Overexpression of a MADS-box gene from birch (Betula platyphylla promotes flowering and enhances chloroplast development in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Guan-Zheng Qu

    Full Text Available In this study, a MADS-box gene (BpMADS, which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla. Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS. In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.

  9. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Science.gov (United States)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  10. ParaHox genes in pancreatic cell cultures: effects on the insulin promoter regulation

    Directory of Open Access Journals (Sweden)

    Anna Rosanas-Urgell, Jordi Garcia-Fernàndez, Gemma Marfany

    2008-01-01

    Full Text Available The gene encoding PDX1 (pancreatic duodenum homeobox 1, the main transcription factor regulating the glucose-dependent transactivation of the insulin promoter in pancreatic β-cells, clusters with two closely related homeobox genes (Gsh1 and Cdx2/3, all of them belonging to the ParaHox gene family. The ParaHox gene evolutionary history in the vertebrate lineage involved duplications of the cluster and subsequent loss of some members, so that eventually, the human and murine genomes contain only 6 ParaHox genes. The crucial role of PDX1 in pancreas development, beta-cell formation and insulin transcription regulation has long been established. There is some data on CDX2/3 function in α-cells, but remarkably, nothing is known on the role of the other ParaHox genes, which are also expressed in the endocrine pancreas. Homeobox transcription factors that belong to the same family show high conservation of the homeodomain and share similar target sites and oligomeric partners, and thus may act redundantly, synergistically or antagonistically on the same promoters. Therefore, we explored the effects of the Parahox proteins (GSH1, GSH2, CDX1, CDX2/3 and CDX4 on the regulation of the insulin promoter in transfected α- and β- cultured cell lines at different glucose concentrations and compared them to those of PDX1. Noticeably, several ParaHox transcription factors are able to transactivate or inhibit the insulin promoter, depending on the cell type and glucose concentration, thus suggesting their possible participation in the regulation of similar target genes, such as insulin, either by silencing or activating them, in the absence of PDX1.

  11. The promoter analysis of the human C17orf25 gene, a novel chromosome 17p13.3 gene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The human C17orf25 gene (Accession No. AF177342) is one of thirteen genes cloned from a regiondisplaying a high score of loss of heterozygosity within chromosome 17p13.3 in human hepatocellular car-cinoma in China[1]. To unveil the underlying mechanisms for the transcription regulation of this gene andunderstand its implication to the hepatocellular carcinogenesis, we looked into the relevant aspects by bothbioinformatic and experimental executions. We found: 1, The abundant expression of the C17orf25 genewas evident in all the cell lines and tissue samples tested, showing little hepatoma-selectivity; 2, Its tran-scription starts at a single site, locating at -60 from the translation initiation codon; 3, A 58 bp fragmentcontaining the transcription start, extending from -112 to -55, represents the minimal promoter; 4, Theconsensus sequence within this fragment recognized by SP1 contributes predominantly to the activity of theminimal promoter; 5, The bioinformatic analysis suggests that the C17orf25 gene may encode a protein inthe family of the glyoxalase. Our data has provided some deep insight into both function and regulation ofthe C17orf25 gene in the context of the normal liver and hepatocellular carcinoma.

  12. Analysis of polymorphism in the survivin gene promoter as a potential risk factor for head and neck cancers development

    Directory of Open Access Journals (Sweden)

    Kostić Marija

    2013-01-01

    Full Text Available Introduction. Association studies have shown that gene polymorphisms in various classes of genes can modulate cancer risk. The -31G/C polymorphism in the promoter of survivin gene, affects the expression of the anti-apoptotic protein survivin which in turn may predispose an individual to some types of cancer. Objective. The aim of the study was to determine whether the survivin promoter -31G/C polymorphism could be a susceptibility factor for squamous cell carcinoma (SCC of the oral cavity and basal cell carcinoma (BCC of the skin. Methods. The DNA obtained from 88 patients with SCC, 60 patients with BCC and 111 healthy individuals was subjected to polymerase chain reaction-restriction fragment length polymorphism analysis (PCR- RFLP in order to determine genotype and allele frequencies in patients and control groups. Logistic regression was used for cancer risk assessment. Results. The following distribution of genotypes was obtained: CC genotype 15% in the SCC group, 13% in the BCC group and 12% in controls; CG genotype 41% in SCCs, 35% in BCCs, 48% in controls; GG genotype 44% in SCCs, 52% in BCCs and 40% in controls. Allelic frequencies were as follows: G allele 0.65 in SCCs, 0.69 in BCCs and 0.64 in the control group; C allele 0.35 in SCCs, 0.31 in BCCs and 0.36 in the control group. There was no statistically significant difference in allele or genotype frequencies between the patients and controls (p>0.05. Conclusion. In Serbian population, -31G/C polymorphism in the promoter of the survivin gene cannot be considered as a risk factor for oral squamous cell carcinoma and skin basal cell carcinoma. [Projekat Ministarstva nauke Republike Srbije, br. 175075

  13. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Piotr Szymczyk

    2016-09-01

    Full Text Available The promoter, 5' UTR, and 34-nt 5' fragments of protein encoding region of the Salvia miltiorrhiza copalyl diphosphate synthase gene were cloned and characterized. No tandem repeats, miRNA binding sites, or CpNpG islands were observed in the promoter, 5' UTR, or protein encoding fragments. The entire isolated promoter and 5' UTR is 2235 bp long and contains repetitions of many cis-active elements, recognized by homologous transcription factors, found in Arabidopsis thaliana and other plant species. A pyrimidine-rich fragment with only 6 non-pyrimidine bases was localized in the 33-nt stretch from nt 2185 to 2217 in the 5' UTR. The observed cis-active sequences are potential binding sites for trans-factors that could regulate spatio-temporal CPS gene expression in response to biotic and abiotic stress conditions. Obtained results are initially verified by in silico and co-expression studies based on A. thaliana microarray data. The quantitative RT-PCR analysis confirmed that the entire 2269-bp copalyl diphosphate synthase gene fragment has the promoter activity. Quantitative RT-PCR analysis was used to study changes in CPS promoter activity occurring in response to the application of four selected biotic and abiotic regulatory factors; auxin, gibberellin, salicylic acid, and high-salt concentration.

  14. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  15. Monoamine Oxidase a Promoter Gene Associated with Problem Behavior in Adults with Intellectual/Developmental Disabilities

    Science.gov (United States)

    May, Michael E.; Srour, Ali; Hedges, Lora K.; Lightfoot, David A.; Phillips, John A., III; Blakely, Randy D.; Kennedy, Craig H.

    2009-01-01

    A functional polymorphism in the promoter of the gene encoding monoamine oxidase A has been associated with problem behavior in various populations. We examined the association of MAOA alleles in adult males with intellectual/developmental disabilities with and without established histories of problem behavior. These data were compared with a…

  16. Examination of the phosphoenolpyruvate carboxykinase gene promoter in patients with noninsulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, D.S. [Beth Israel Hospital, Boston, MA (United States)]|[Children`s Hospital, Boston, MA (United States); Vidal-Puig, A.; Moller, D.E. [Beth Israel Hospital, Boston, MA (United States)] [and others

    1996-02-01

    Expression of phosphoenolpyruvate carboxykinase (PEPCK), a rate-limiting enzyme in gluconeogenesis, is under dominant negative regulation by insulin. In this study, we sought to test the hypothesis that mutations in the PEPCK gene promoter may impair the ability of insulin to suppress hepatic glucose production, thereby contributing to both the insulin resistance and increased rate of gluconeogenesis characteristic of NIDDM. The proximal PEPCK promoter region in 117 patients with noninsulin-dependent diabetes mellitus and 20 obese Pima Indians was amplified by PCR and analyzed with single strand conformation of polymorphism techniques. In addition, limited direct DNA sequencing was performed on the insulin response sequence and flanking regions. No DNA sequence polymorphisms were found in any patient. This result suggests that mutations in cis-acting PEPCK gene regulatory elements do not constitute a common cause of noninsulin-dependent diabetes mellitus. The significance of genetic variation in promoter regions to human disease is discussed. 40 refs., 1 figs., 1 tab.

  17. Gene trap-based identification of a guard cell promoter in Arabidopsis.

    Science.gov (United States)

    Francia, Priscilla; Simoni, Laura; Cominelli, Eleonora; Tonelli, Chiara; Galbiati, Massimo

    2008-09-01

    Preserving crop yield under drought stress is a major challenge for modern agriculture. To cope with the detrimental effects of water scarcity on crop productivity it is important to develop new plants with a more sustainable use of water and capable of higher performance under stress conditions. Transpiration through stomatal pores accounts for over 90% of water loss in land plants. Recent studies have increased our understanding of the networks that control stomatal activity and have led to practical approaches for enhancing drought tolerance. Genetic engineering of target genes in stomata requires effective expression systems, including suitable promoters, because constitutive promoters (i.e., CaMV35S) are not always functional or can have negative effects on plant growth and productivity. Here we describe the identification of the CYP86A2 guard cell promoter and discuss its potential for gene expression in stomata.

  18. A mutation in a functional Sp1 binding site of the telomerase RNA gene (hTERC promoter in a patient with Paroxysmal Nocturnal Haemoglobinuria

    Directory of Open Access Journals (Sweden)

    Mason Philip J

    2004-06-01

    Full Text Available Abstract Background Mutations in the gene coding for the RNA component of telomerase, hTERC, have been found in autosomal dominant dyskeratosis congenita (DC and aplastic anemia. Paroxysmal nocturnal hemoglobinuria (PNH is a clonal blood disorder associated with aplastic anemia and characterized by the presence of one or more clones of blood cells lacking glycosylphosphatidylinositol (GPI anchored proteins due to a somatic mutation in the PIGA gene. Methods We searched for mutations in DNA extracted from PNH patients by amplification of the hTERC gene and denaturing high performance liquid chromatography (dHPLC. After a mutation was found in a potential transcription factor binding site in one patient electrophoretic mobility shift assays were used to detect binding of transcription factors to that site. The effect of the mutation on the function of the promoter was tested by transient transfection constructs in which the promoter is used to drive a reporter gene. Results Here we report the finding of a novel promoter mutation (-99C->G in the hTERC gene in a patient with PNH. The mutation disrupts an Sp1 binding site and destroys its ability to bind Sp1. Transient transfection assays show that mutations in this hTERC site including C-99G cause either up- or down-regulation of promoter activity and suggest that the site regulates core promoter activity in a context dependent manner in cancer cells. Conclusions These data are the first report of an hTERC promoter mutation from a patient sample which can modulate core promoter activity in vitro, raising the possibility that the mutation may affect the transcription of the gene in hematopoietic stem cells in vivo, and that dysregulation of telomerase may play a role in the development of bone marrow failure and the evolution of PNH clones.

  19. Functional analysis of the larval serum protein gene promoter from silkworm,Bombyx mori.

    Institute of Scientific and Technical Information of China (English)

    TANG Shunming; YI Yongzhu; SHEN Xingjia; ZHANG Zhifang; LI Yiren; HE Jialu

    2003-01-01

    The regulation region of larval serum protein gene, Bombyx mori. (BmLSP), consisting of the first intron, the first exon, the central promoter region and 5′-upstream region, is cloned from genomic DNA from the silkworm variety of Suju×Minghu. Using PCR and restriction endonuclease methods, a series of luciferase reporter plasmids, driven by different length of BmLSP promoters, are constructed. Via the transient expression system in BmN cells, the effects of the regulation elements and foreign insect hormones on the BmLSP promoter activity are investigated. The results demonstrate that the promoter activity of BmLSP is 5.8- or 4.4-fold higher than that of BmLSPs whose first intron or the element in 5′-upstream region harboring the homologous sequence with the first intron of light-chain fibroin gene (EHIF) is deleted, respectively, suggesting that both the first intron and EHIF contain the main positive cis-acting elements. However, the inactive mariner transposable element (MTE) in 5′-upstream region presents a negative effect. Furthermore, the effects of juvenile hormone analogue (JHA) on the BmLSP promoter activity show a typical dose-dependent manner, that is, low concentration treatments increase the BmLSP promoter activity and high concentration treatments decrease it. Meanwhile, insect ecdysone (MH) treatments present no significant effect.

  20. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  1. The expression profile and promoter analysis of ultraspiracle gene in the silkworm Bombyx mori.

    Science.gov (United States)

    Huang, Ming-xia; Du, Jie; Su, Bao-jin; Zhao, Guo-dong; Shen, Wei-de; Wei, Zheng-guo

    2014-12-01

    The nuclear receptor, ultraspiracle protein (USP), is a transcription factor and an essential component of a heterodimeric receptor complex with ecdysone receptor. However, the mechanisms underlying the transcriptional regulation of USP in silkworm are unknown. In this study, using dual-spike-in qPCR method, we examined the expression of Bombyx ultraspiracle gene (BmUSP) in various tissues of silkworm as well as expression changes after stimulation with ecdysone. The results showed that the expression levels of BmUSP gene varied in different tissues and were increased 2 h after exposure to ecdysone. To identify the molecular mechanism underlying the regulation of USP gene expression in silkworm Bombyx mori, promoter truncation analyses were performed using the luciferase reporter assay and Bac-to-Bac expression system in several tissues of B. mori. BmUSP gene promoter with 5' end serial deletions showed different levels of activity in various tissues, higher in fat body and Malpighian tubule. Deletion of the region from -485 to -445 and -307 to -281 upstream of BmUSP gene abolished and increased its promoter activity, respectively. This region contains AP-1, Dfd transcription factor binding sites. These results indicate that BmUSP are expressed at different levels in different tissues of the silkworm, but all are subjected to the regulation by ecdysone. This study would provide an important foundation for investigating the mechanism underlying the transcriptional regulation of BmUSP in the silkworm.

  2. Novel and functional DNA sequence variants within the GATA5 gene promoter in ventricular septal defects

    Institute of Scientific and Technical Information of China (English)

    Ji-Ping Shan; Xiao-Li Wang; Yuan-Gang Qiao; Hong-Xin Wan Yan; Wen-Hui Huang; Shu-Chao Pang; Bo Yan

    2014-01-01

    Background: Congenital heart disease (CHD) is the most common human birth defect. Genetic causes for CHD remain largely unknown. GATA transcription factor 5 (GATA 5) is an essential regulator for the heart development. Mutations in the GATA5 gene have been reported in patients with a variety of CHD. Since misregulation of gene expression have been associated with human diseases, we speculated that changed levels of cardiac transcription factors, GATA5, may mediate the development of CHD. Methods: In this study, GATA5 gene promoter was genetically and functionally analyzed in large cohorts of patients with ventricular septal defect (VSD) (n=343) and ethnic-matched healthy controls (n=348). Results: Two novel and heterozygous DNA sequence variants (DSVs), g.61051165A>G and g.61051463delC, were identified in three VSD patients, but not in the controls. In cultured cardiomyocytes, GATA5 gene promoter activities were significantly decreased by DSV g.61051165A>G and increased by DSV g.61051463delC. Moreover, fathers of the VSD patients carrying the same DSVs had reduced diastolic function of left ventricles. Three SNPs, g.61051279C>T (rs77067995), g.61051327A>C (rs145936691) and g.61051373G>A (rs80197101), and one novel heterozygous DSV, g.61051227C>T, were found in both VSD patients and controls with similar frequencies. Conclusion: Our data suggested that the DSVs in the GATA5 gene promoter may increase the susceptibility to the development of VSD as a risk factor.

  3. Lentiviral gene therapy using cellular promoters cures type 1 Gaucher disease in mice.

    Science.gov (United States)

    Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan

    2015-05-01

    Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease.

  4. Methylation of the SLC6a2 gene promoter in major depression and panic disorder.

    Directory of Open Access Journals (Sweden)

    Richard Bayles

    Full Text Available Reduced function of the noradrenaline transporter (NET has been demonstrated in patients with major depressive disorder (MDD and panic disorder. Attempts to explain NET dysfunction in MDD and panic disorder by genetic variation in the NET gene SLC6a2 have been inconclusive. Transcriptional silencing of the SLC6a2 gene may be an alternative mechanism which can lead to NET dysfunction independent of DNA sequence. The objective of this study was to characterise the DNA methylation state of the SLC6a2 gene promoter in patients with MDD and panic disorder. SLC6a2 promoter methylation was also analysed before and after antidepressant treatment. This study was performed with DNA from blood, using bisulphite sequencing and EpiTYPER methylation analyses. Patients with MDD or panic disorder were not found to differ significantly from healthy controls in the pattern of methylation of the SLC6a2 gene promotor. While significant correlations between methylation levels at some CpG sites and physiological measures were identified, overall the variation in DNA methylation between patients was small, and the significance of this variation remains equivocal. No significant changes in SLC6a2 promoter methylation were observed in response to antidepressant treatment. Further in-depth analysis of alternative mechanisms of transcriptional regulation of the SLC6a2 gene in human health and disease would be of value.

  5. IL-10 promoter polymorphisms affect IL-10 production and associate with susceptibility to acute myeloid leukemia.

    Science.gov (United States)

    Chenjiao, Yao; Zili, Fan; Haibin, Chen; Ying, Liu; Sheng, Xiao; Lihua, Huang; Wei, Du

    2013-03-01

    We investigated the possible association of Interleukin-10 (IL-10) single nucleotide polymorphisms (SNPs) and susceptibility to acute myeloid leukemia (AML) in 115 AML patients and 137 gender- and age-matched controls. Genetic analysis of IL-10 SNPs at -819 and -592 was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results revealed that the -819AA genotype frequencies and the -819A allele frequencies of AML group were higher than the controls (59.1% vs 40.9%; 75.6% vs 63.9%, respectively); there were remarkable differences in -819T/C and -592A/C gene distribution (P<0.05) and the TA haploid frequencies were higher in AML group (75.6% vs 63.9%, P<0.05). The IL-10 mRNA expression of AML patients and controls with different genotype was detected by Real-time quantitative Polymerase Chain Reaction (RT-PCR). IL-10 mRNA expression in incipient AML patients increased obviously compared with the non-tumor group and remission group (P<0.05). Further analysis suggested that the IL-10 mRNA expression of TA/TA genotype was the lowest and CC/CC genotype was the highest; the haploid TA and genotype TA/TA may be associated with AML. The research suggested the IL-10 SNPs at -819 and -592 sites were associated with AML and may affect the IL-10 mRNA expression in AML patients in Han people of Hunan province.

  6. Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Natalie A Twine

    Full Text Available Recent studies strongly indicate that aberrations in the control of gene expression might contribute to the initiation and progression of Alzheimer's disease (AD. In particular, alternative splicing has been suggested to play a role in spontaneous cases of AD. Previous transcriptome profiling of AD models and patient samples using microarrays delivered conflicting results. This study provides, for the first time, transcriptomic analysis for distinct regions of the AD brain using RNA-Seq next-generation sequencing technology. Illumina RNA-Seq analysis was used to survey transcriptome profiles from total brain, frontal and temporal lobe of healthy and AD post-mortem tissue. We quantified gene expression levels, splicing isoforms and alternative transcript start sites. Gene Ontology term enrichment analysis revealed an overrepresentation of genes associated with a neuron's cytological structure and synapse function in AD brain samples. Analysis of the temporal lobe with the Cufflinks tool revealed that transcriptional isoforms of the apolipoprotein E gene, APOE-001, -002 and -005, are under the control of different promoters in normal and AD brain tissue. We also observed differing expression levels of APOE-001 and -002 splice variants in the AD temporal lobe. Our results indicate that alternative splicing and promoter usage of the APOE gene in AD brain tissue might reflect the progression of neurodegeneration.

  7. Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo [corrected] expression technology capture and identification of root-activated promoters.

    Science.gov (United States)

    Ramos-González, María Isabel; Campos, María Jesús; Ramos, Juan L

    2005-06-01

    Pseudomonas putida KT2440, a paradigm organism in biodegradation and a good competitive colonizer of the maize rhizosphere, was the subject of studies undertaken to establish the genetic determinants important for its rhizospheric lifestyle. By using in vivo expression technology (IVET) to positively select single cell survival, we identified 28 rap genes (root-activated promoters) preferentially expressed in the maize rhizosphere. The IVET system had two components: a mutant affected in aspartate-beta-semialdehyde dehydrogenase (asd), which was unable to survive in the rhizosphere, and plasmid pOR1, which carries a promoter-less asd gene. pOR1-borne transcriptional fusions of the rap promoters to the essential gene asd, which were integrated into the chromosome at the original position of the corresponding rap gene, were active and allowed growth of the asd strain in the rhizosphere. The fact that five of the rap genes identified in the course of this work had been formerly characterized as being related to root colonization reinforced the IVET approach. Up to nine rap genes encoded proteins either of unknown function or that had been assigned an unspecific role based on conservation of the protein family domains. Rhizosphere-induced fusions included genes with probable functions in the cell envelope, chemotaxis and motility, transport, secretion, DNA metabolism and defense mechanism, regulation, energy metabolism, stress, detoxification, and protein synthesis.

  8. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease.

    Science.gov (United States)

    Friso, Simonetta; Lotto, Valentina; Choi, Sang-Woon; Girelli, Domenico; Pinotti, Mirko; Guarini, Patrizia; Udali, Silvia; Pattini, Patrizia; Pizzolo, Francesca; Martinelli, Nicola; Corrocher, Roberto; Bernardi, Francesco; Olivieri, Oliviero

    2012-03-01

    Plasma factor VII concentrations (FVIIa), a marker of coronary artery disease (CAD) risk, are influenced by genetic markers at the promoter site: the A2 allele, due to a 10bp insertion at position -323, is a determinant of lower FVIIa concentrations and reduced CAD risk, while the -402A allele, due to a G>A substitution, confers increased transcriptional activity in vitro resulting in higher FVIIa. Transcriptional regulation of F7 by epigenetic features is, however, still unknown as is the inter-relationship of genetic and epigenetic modifications at the promoter site. To investigate a possible epigenetic regulation of the F7 gene at the promoter region and its link with functional F7 polymorphisms at the same site. F7 promoter methylation and its relation to F7 promoter polymorphisms in modulating FVIIa and CAD risk were evaluated by methyl-specific PCR and bisulfite sequencing techniques in 253 subjects, of whom 168 had CAD and 88 were CAD-free. Plasma FVIIa was inversely related to methylation in A1A1 and -402GG, that is in the absence of the rare A2 and -402A allele. The higher FVIIa paralleled the lower methylation in A1A1 compared to A2A2 (p=0.035), while no variation in methylation was associated with the different -402G>A genotypes. The modulation of methylation-induced FVIIa concentrations was observed only in A1A1 where the higher methylation resulting in lower FVIIa was prevalent within the CAD-free group compared to the CAD group (p=0.011). Epigenetic regulation through methylation of F7 promoter is associated with CAD by affecting plasma FVIIa concentrations in A1A1 genotypes.

  9. Analysis of thirteen trinucleotide repeat loci as candidate genes for Schizophrenia and bipolar affective disorder

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S.; Leggo, J.; Ferguson-Smith, M.A.; Rubinsztein, D.C. [Addenbrooke`s NHS Trust, Cambridge (United Kingdom)] [and others

    1996-04-09

    A group of diseases are due to abnormal expansions of trinucleotide repeats. These diseases all affect the nervous system. In addition, they manifest the phenomenon of anticipation, in which the disease tends to present at an earlier age or with greater severity in successive generations. Many additional genes with trinucleotide repeats are believed to be expressed in the human brain. As anticipation has been reported in schizophrenia and bipolar affective disorder, we have examined allele distributions of 13 trinucleotide repeat-containing genes, many novel and all expressed in the brain, in genomic DNA from schizophrenic (n = 20-97) and bipolar affective disorder patients (23-30) and controls (n = 43-146). No evidence was obtained to implicate expanded alleles in these 13 genes as causal factors in these diseases. 26 refs., 1 fig., 2 tabs.

  10. Abscisic Acid, High-Light, and Oxidative Stress Down-Regulate a Photosynthetic Gene via a Promoter Motif Not Involved in Phytochrome-Mediated Transcriptional Regulation

    Institute of Scientific and Technical Information of China (English)

    Roberto J. Staneloni; María José Rodriguez-Batiller; Jorge J. Casal

    2008-01-01

    In etiolated seedlings, light perceived by phytochrome promotes the expression of light-harvesting chlorophyll a/b protein of photosystem Ⅱ (Lhcb) genes. However, excess of photosynthetically active radiation can reduce Lhcb expression. Here, we investigate the convergence and divergence of phytochrome, high-light stress and abscisic acid (ABA)signaling, which could connect these processes. Etiolated Arabidopsis thaliana seedlings bearing an Lhcb promoter fused to a reporter were exposed to continuous far-red light to activate phytochrome and not photosynthesis, and treated with ABA. We identified a cis-acting region of the promoter required for down-regulation by ABA. This region contains a CCAC sequence recently found to be necessary for ABI4-binding to an Lhcb promoter. However, we did not find a G-box-binding core motif often associated with the ABI4-binding site in genes promoted by light and repressed by ABI4. Mutations involving this motif also impaired the responses to reduced water potential, the response to high photosynthetic light and the response to methyl viologen but not the response to low temperature or to Norflurazon. We propose a model based on current and previous findings, in which hydrogen peroxide produced in the chloroplasts under high light conditions interacts with the ABA signaling network to regulate Lhcb expression. Since the mutation that affects high-light and methyl viologen responses does not affect phytochrome-mediated responses, the regulation by retrograde and phytochrome signaling can finally be separated at the target promoter level.

  11. Association between promoter methylation of DAPK gene and HNSCC: A meta-analysis

    Science.gov (United States)

    Cai, Fucheng; Xiao, Xiyue; Niu, Xun; Zhong, Yi

    2017-01-01

    Background The death-associated protein kinase (DAPK) is a tumor suppressor gene, which is a mediator of cell death of INF-γ–induced apoptosis. Aberrant methylation of DAPK promoter has been reported in patients with head and neck squamous cell carcinoma (HNSCC). However, the results of these studies are inconsistent. Hence, the present study aimed to evaluate the association between the promoter methylation of DAPK gene and HNSCC. Methods Relevant studies were systematically searched in PubMed, Web of Science, Ovid, and Embase. The association between DAPK promoter methylation and HNSCC was assessed by odds ratio (ORs) and 95% confidence intervals (CI). To evaluate the potential sources of heterogeneity, we conducted the meta-regression analysis and subgroup analysis. Results Eighteen studies were finally included in the meta-analysis. The frequency of DAPK promoter methylation in patients with HNSCC was 4.09-fold higher than the non-cancerous controls (OR = 3.96, 95%CI = 2.26–6.95). A significant association between DAPK promoter methylation and HNSCC was found among the Asian region and the Non-Asia region (Asian region, OR = 4.43, 95% CI = 2.29–8.58; Non-Asia region, OR = 3.39, 95% CI = 1.18–9.78). In the control source, the significant association between DAPK promoter methylation and HNSCC was seen among the autologous group and the heterogeneous group (autologous group, OR = 2.71, 95% CI = 1.49–4.93; heterogeneous group, OR = 9.50, 95% CI = 2.98–30.27). DAPK promoter methylation was significantly correlated with alcohol status (OR = 1.85, 95% CI = 1.07–3.21). Conclusion The results of this meta-analysis suggested that aberrant methylation of DAPK promoter was associated with HNSCC. PMID:28249042

  12. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans.

    Science.gov (United States)

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S; Mittelman, David; Sharp, Andrew J

    2016-05-05

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Leptin promoter gene polymorphism on -2549 position decreases plasma leptin and increases appetite in normal weight volunteers

    Directory of Open Access Journals (Sweden)

    Sandra Bragança Coelho

    2014-05-01

    Full Text Available Introduction: Investigate whether polymorphism in the promoter region encoding leptin and leptin receptor gene, in normal weight individuals, affects hormonal and appetite responses to peanuts.Materials and methods: Appetite, anthropometric indices, body composition, physical activity, dietary intake and leptin, ghrelin and insulin levels were monitored. Polymorphism analyses were also carried out.Results: None of the treatments led to statistical differences in the analyzed hormones. No polymorphism was found for leptin receptor gene, while for leptin gene, 50% of the volunteers presented one polymorphic allele and 13% presented both polymorphic alleles. These last ones presented lower body fat mass, leptin and ghrelin plasma concentrations, and fullness rates. They also presented higher hunger, desire to eat, and desire to eat sweet and salty foods.Conclusions: Peanut did not affect appetite and presented no different hormonal responses, compared to other foods studied. Polymorphic allele carriers in both alleles presented higher probability to develop obesity. However, the magnitude of this probability could not be measured.

  14. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spink, Barbara C. [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); Bloom, Michael S. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201 (United States); Wu, Susan [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); Sell, Stewart; Schneider, Erasmus [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201 (United States); Ding, Xinxin [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201 (United States); Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201 (United States); Spink, David C., E-mail: spink@wadsworth.org [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201 (United States)

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC){sub n}, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC){sub 2} alleles were observed; however, in western gorilla, (GGGGC){sub n} alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC){sub n} was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC){sub n} alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC){sub 2} was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC){sub n} short tandem repeats are inherited, and that the (GGGGC){sub 2} allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC){sub n}, where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC){sub n} microsatellite instability • AHR promoter activity of a construct with (GGGGC){sub 2} was lower than that of (GGGGC){sub 4} • The frequency of (GGGGC){sub 2} in lung

  15. Expression of the promoter for the maltogenic amylase gene in Bacillus subtilis 168.

    Science.gov (United States)

    Kim, Do-Yeon; Cha, Choon-Hwan; Oh, Wan-Seok; Yoon, Young-Jun; Kim, Jung-Wan

    2004-12-01

    An additional amylase, besides the typical alpha-amylase, was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a maltogenic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the beta-galactosidase activity produced from the bbmA promoter fused to the amino terminus of the lacZ structural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The promoter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing beta-cyclodextrin (beta-CD), maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the beta-CD hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regulatory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the beta-CD hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing beta-CD in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and beta-CD utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

  16. Real-Time Expression Analysis of Selected Anticarsia gemmatalis multiple nucleopolyhedrovirus Gene Promoters during Infection of Permissive, Semipermissive and Nonpermissive Cell Lines.

    Science.gov (United States)

    Morgado, Fabricio da Silva; Ardisson-Araújo, Daniel Mendes Pereira; Ribeiro, Bergmann Morais

    2017-06-01

    Baculovirus infection follows a transcriptionally controlled sequence of gene expression that occurs by activation of different viral gene promoter sequences during infection. This sequence of promoter activation may be disrupted by cellular defenses against viral infection, which might interfere with viral progeny formation. In this work, the activity of the ie1, gp64, lef-1, vp39, p6.9 and polh promoters of the Anticarsia gemmatalis multiple nucleopolyhedrovirus was assessed during infection of permissive, semipermissive and nonpermissive cell lines by a novel methodology that detects reporter protein luminescence in real-time. This technique allowed us to characterize in rich detail the AgMNPV promoters in permissive cell lines and revealed differential profiles of expression in cells with limited permissivity that correlate well with limitations in viral DNA replication. Semipermissive and nonpermissive cell lines presented delays and restrictions in late and very late promoter expression. Cells undergoing apoptosis did not inhibit late gene expression; however, viral progeny formation is severely affected. This work demonstrates the application of the real-time luminescence detection methodology and how the promoter expression profile may be used to diagnose cellular permissivity to baculovirus infection.

  17. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. Methods c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Results Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. Conclusions The distal

  18. Arabidopsis meiotic crossover hotspots overlap with H2A.Z nucleosomes at gene promoters

    Science.gov (United States)

    Choi, Kyuha; Zhao, Xiaohui; Kelly, Krystyna A.; Venn, Oliver; Higgins, James D.; Yelina, Nataliya E.; Hardcastle, Thomas J.; Ziolkowski, Piotr A.; Copenhaver, Gregory P.; Franklin, F. Chris H.; McVean, Gil; Henderson, Ian R.

    2013-01-01

    PRDM9 directs human meiotic crossover hotspots to intergenic sequence motifs, whereas budding yeast hotspots overlap low nucleosome density regions in gene promoters. To investigate hotspots in plants, which lack PRDM9, we used coalescent analysis of Arabidopsis genetic variation. Crossovers increase towards gene promoters and terminators, and hotspots are associated with active chromatin modifications, including H2A.Z, histone H3K4me3, low nucleosome density and low DNA methylation. Hotspot-enriched A-rich and CTT-repeat DNA motifs occur upstream and downstream of transcriptional start respectively. Crossovers are asymmetric around promoters and highest over CTT-motifs and H2A.Z-nucleosomes. Pollen-typing, segregation and cytogenetic analysis show decreased crossovers in the arp6 H2A.Z deposition mutant, at multiple scales. During meiosis H2A.Z and DMC1/RAD51 recombinases form overlapping chromosomal foci. As arp6 reduces DMC1/RAD51 foci, H2A.Z may promote formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hotspots within eukaryotes and PRDM9 is a derived state within vertebrates. PMID:24056716

  19. Functional Characterization of a Putative Nitrate Transporter Gene Promoter from Rice

    Institute of Scientific and Technical Information of China (English)

    Ting-Zhang HU; Kai-Ming CAO; Mian XIA; Xi-Ping WANG

    2006-01-01

    Drought is one of the most significant abiotic stresses that influence plant growth and development. Expression analysis revealed that OsNRT1.3, a putative nitrate transporter gene in rice, was induced by drought. To confirm if the OsNRT1.3 promoter can respond to drought stress, a 2019 bp upstream sequence of OsNRT1.3 was cloned. Three OsNRT1.3 promoter fragments were generated by 5'-deletion, and fused to the β-glucuronidase (GUS) gene. The chimeric genes were introduced into rice plants. NRT2019::GUS, NRT1196: :GUS and NRT719::GUS showed similar expression patterns in seeds,roots, leaves and flowers in all transgenic rice, and GUS activity conferred by different OsNRT1.3 promoter fragments was significantly upregulated by drought stress, indicating that OsNRT1.3 promoter responds to drought stress and the 719 bp upstream sequence of OsNRT1.3 contains the drought response elements.

  20. Cloning and characterization of the human integrin β6 gene promoter.

    Directory of Open Access Journals (Sweden)

    Mingyan Xu

    Full Text Available The integrin β6 (ITGB6 gene, which encodes the limiting subunit of the integrin αvβ6 heterodimer, plays an important role in wound healing and carcinogenesis. The mechanism underlying ITGB6 regulation, including the identification of DNA elements and cognate transcription factors responsible for basic transcription of human ITGB6 gene, remains unknown. This report describes the cloning and characterization of the human ITGB6 promoter. Using 5'-RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis identified and functionally validated a TATA box located in the region -24 to -18 base pairs upstream of the ITGB6 promoter. The regulatory elements for transcription of the ITGB6 gene were predominantly located -289 to -150 from the ITGB6 promoter and contained putative binding sites for transcription factors such as STAT3 and C/EBPα. Using chromatin immunoprecipitation assays, this study has demonstrated, for the first time, that transcription factors STAT3 and C/EBPα are involved in the positive regulation of ITGB6 transcription in oral squamous cell carcinoma cells. These findings have important implications for unraveling the mechanism of abnormal ITGB6 activation in tissue remodeling and tumorigenesis.

  1. RNAi-based conditional gene knockdown in mice using a U6 promoter driven vector

    Directory of Open Access Journals (Sweden)

    Vivek Shukla, Xavier Coumoul, Chu-Xia Deng

    2007-01-01

    Full Text Available RNA interference (RNAi is a powerful tool widely used for studying gene function in a number of species. We have previously developed an approach that allows conditional expression of a polymerase III promoter based small hairpin RNA (shRNA in mice using the Cre-LoxP system. This approach uses a U6 promoter, which is inactive due to the presence of a ploxPneo cassette in the promoter; this promoter can be activated after excision of the neo gene in transgenic mice that express a Cre recombinase transgene. As a proof of principle, we have previously knocked down over 95% of Fgfr2 transcripts in mouse germlines, leading to embryonic lethality, while restricting the knockdown to the progress zone of the limb results in live animals with malformation of digits of both the forelimbs and hindlimbs. We now provide a detailed protocol, including a simplified single-step cloning procedure for vector construction. This method provides a fast yet efficient way to decipher gene functions in vivo in a tissue specific manner.

  2. Overexpression and promoter mutation of the TERT gene in malignant pleural mesothelioma.

    Science.gov (United States)

    Tallet, A; Nault, J-C; Renier, A; Hysi, I; Galateau-Sallé, F; Cazes, A; Copin, M-C; Hofman, P; Andujar, P; Le Pimpec-Barthes, F; Zucman-Rossi, J; Jaurand, M-C; Jean, D

    2014-07-10

    Malignant pleural mesothelioma (MPM) is a very aggressive tumor with no known curative treatment. Better knowledge of the molecular mechanisms of mesothelial carcinogenesis is required to develop new therapeutic strategies. MPM, like all cancer cells, needs to maintain telomere length to prevent senescence. Previous studies suggested that the telomere lengthening mechanism in MPM is based mainly on telomerase activity. For this reason, we focused on the key catalytic enzyme, TERT (telomerase reverse transcriptase), by analyzing its gene expression in MPM and by studying the mechanism underlying its upregulation. We used our large collection of MPM composed of 61 MPM in culture and 71 frozen MPM tumor samples. Evaluation of TERT mRNA expression by quantitative RT-PCR showed overexpression in MPM in culture compared with normal mesothelial cells, and in MPM tumor samples compared with normal pleura. We identified a 'hot spot' of mutations in the TERT gene core promoter in both MPM in culture and in MPM tumor samples with an overall frequency of 15%. Furthermore, data clearly identified mutation in the TERT promoter as a mechanism of TERT mRNA upregulation in MPM. In contrast, gene copy number amplification was not associated with TERT overexpression. Then, we analyzed the clinicopathological, etiological and genetic characteristics of MPM with mutations in the TERT promoter. TERT promoter mutations were more frequent in MPM with sarcomatoid histologic subtype (Ppromoter mutations, which lead to TERT mRNA upregulation. This is the first recurrent gain-of-function oncogenic mutations identified in MPM.

  3. Determination of the promoter region of an early vaccinia virus gene encoding thymidine kinase.

    Science.gov (United States)

    Weir, J P; Moss, B

    1987-05-01

    Nine recombinant vaccinia viruses that contain overlapping segments of the putative promoter region of the vaccinia virus thymidine kinase (TK) gene linked to DNA coding for the prokaryotic enzyme chloramphenicol acetyltransferase (CAT) were constructed. In each case, the RNA start site and 5 bp of DNA downstream were retained. No significant difference in CAT expression occurred as the deletion was extended from 352 to 32 bp before the RNA start site. Deletion of a further 10 bp, however, led to complete cessation of early promoter activity. Primer extension analysis of the 5' ends of the transcripts verified that the natural TK RNA start site was still used when only 32 bp of upstream DNA remained. Loss of early promoter activity was previously found when deletions were extended from 31 to 24 bp before the RNA start site of another vaccinia gene that is expressed constitutively throughout infection (M.A. Cochran, C. Puckett, and B. Moss, 1985, Proc. Natl. Acad. Sci. USA 82, 19-23). Sequence similarities in the promoter regions of these two genes were noted.

  4. Identification of SNPs in the promoter of β-lactoglobulin gene in three Sicilian goat breeds

    Directory of Open Access Journals (Sweden)

    Baldassare Portolano

    2010-01-01

    Full Text Available The aim of this work was to sequence the full-length promoter region of the caprine β-lactoglobulin (β-lg gene in three Sicilian goat breeds (Girgentana, Maltese, and Derivata di Siria, in order to identify polymorphisms, to search for transcription factors (TFs sites, and to check if polymorphisms found lay within TFs binding sites. The promoter region of β-lg gene in Sicilian goat breeds showed high level of polymorphism due to the presence of 31 SNPs. Binding sites for several TFs were found within the goat β-lg promoter and within regions conserved between ovine and caprine species. Two SNPs were detected within TFs binding sites, such as MPBF and NF-I. Further studies are in progress to confirm polymorphic sites, to evaluate the possible effect of these mutations on binding affinity of TFs, their relationship with β-lg gene expression, and the functional role of SNPs within the TFs sites of the promoter region on milk traits.

  5. Prolonged treatment with DNMT inhibitors induces distinct effects in promoters and gene-bodies.

    Directory of Open Access Journals (Sweden)

    Yan-Fung Wong

    Full Text Available Treatment with the demethylating drugs 5-azacytidine (AZA and decitabine (DAC is now recognised as an effective therapy for patients with Myelodysplastic Syndromes (MDS, a range of disorders arising in clones of hematopoietic progenitor cells. A variety of cell models have been used to study the effect of these drugs on the methylation of promoter regions of tumour suppressor genes, with recent efforts focusing on the ability of these drugs to inhibit DNA methylation at low doses. However, it is still not clear how nano-molar drug treatment exerts its effects on the methylome. In this study, we have characterised changes in DNA methylation caused by prolonged low-dose treatment in a leukemic cell model (SKM-1, and present a genome-wide analysis of the effects of AZA and DAC. At nano-molar dosages, a one-month continuous treatment halved the total number of hypermethylated probes in leukemic cells and our analysis identified 803 candidate regions with significant demethylation after treatment. Demethylated regions were enriched in promoter sequences whereas gene-body CGIs were more resistant to the demethylation process. CGI methylation in promoters was strongly correlated with gene expression but this correlation was lost after treatment. Our results indicate that CGI demethylation occurs preferentially at promoters, but that it is not generally sufficient to modify expression patterns, and emphasises the roles of other means of maintaining cell state.

  6. Isolation and characterization of "GmScream" promoters that regulate highly expressing soybean (Glycine max Merr.) genes.

    Science.gov (United States)

    Zhang, Ning; McHale, Leah K; Finer, John J

    2015-12-01

    To increase our understanding of the regulatory components that control gene expression, it is important to identify, isolate and characterize new promoters. In this study, a group of highly expressed soybean (Glycine max Merr.) genes, which we have named "GmScream", were first identified from RNA-Seq data. The promoter regions were then identified, cloned and fused with the coding region of the green fluorescent protein (gfp) gene, for introduction and analysis in different tissues using 3 tools for validation. Approximately half of the GmScream promoters identified showed levels of GFP expression comparable to or higher than the Cauliflower Mosaic Virus 35S (35S) promoter. Using transient expression in lima bean cotyledonary tissues, the strongest GmScream promoters gave over 6-fold higher expression than the 35S promoter while several other GmScream promoters showed 2- to 3-fold higher expression. The two highest expressing promoters, GmScreamM4 and GmScreamM8, regulated two different elongation factor 1A genes in soybean. In stably transformed soybean tissues, GFP driven by the GmScreamM4 or GmScreamM8 promoter exhibited constitutive high expression in most tissues with preferentially higher expression in proliferative embryogenic tissues, procambium, vascular tissues, root tips and young embryos. Using deletion analysis of the promoter, two proximal regions of the GmScreamM8 promoter were identified as contributing significantly to high levels of gene expression.

  7. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits.

    Science.gov (United States)

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.

  8. Aromatase (CYP19) promoter gene polymorphism and risk of nonviral hepatitis-related hepatocellular carcinoma.

    Science.gov (United States)

    Koh, Woon-Puay; Yuan, Jian-Min; Wang, Renwei; Govindarajan, Sugantha; Oppenheimer, Rowena; Zhang, Zhen Quan; Yu, Mimi C; Ingles, Sue Ann

    2011-08-01

    Experimental studies suggest that sex hormones may induce or promote the development of hepatocellular carcinoma (HCC). Androgens are converted to estrogens by the CYP19 gene product, aromatase. Hepatic aromatase level and activity have been shown to be markedly elevated in HCC. Aromatase expression in liver tumors is driven by a promoter upstream of CYP19 exon I.6. First, the authors identified an A/C polymorphism in the exon I.6 promoter of the CYP19 gene. To determine whether allelic variants in the CYP19 I.6 promoter differ in their ability to drive gene expression, we carried out an in vitro reporter gene assay. Then, the authors studied the association between this polymorphism and HCC risk in 2 complementary case-control studies: 1 in high-risk southern Guangxi, China, and another in low-risk US non-Asians of Los Angeles County. Transcriptional activity was 60% higher for promoter vectors carrying the rs10459592 C allele compared with those carrying an A allele (P = .007). In both study populations, among subjects negative for at-risk serologic markers of hepatitis B or C, there was a dose-dependent association between number of high activity C allele and risk of HCC (P(trend) = .014). Risk of HCC was significantly higher (odds ratio [OR], 2.25; 95% confidence interval (CI), 1.18-4.31) in subjects homozygous for the C allele compared with those homozygous for the A allele. This study provides epidemiologic evidence for the role of hepatic aromatization of androgen into estrogen in the development of nonviral hepatitis-related HCC. Copyright © 2011 American Cancer Society.

  9. Tissue-specific regulation of the mouse Pkhd1 (ARPKD) gene promoter

    Science.gov (United States)

    Williams, Scott S.; Cobo-Stark, Patricia; Hajarnis, Sachin; Aboudehen, Karam; Shao, Xinli; Richardson, James A.; Patel, Vishal

    2014-01-01

    Autosomal recessive polycystic kidney disease, an inherited disorder characterized by the formation of cysts in renal collecting ducts and biliary dysgenesis, is caused by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene. Expression of PKHD1 is tissue specific and developmentally regulated. Here, we show that a 2.0-kb genomic fragment containing the proximal promoter of mouse Pkhd1 directs tissue-specific expression of a lacZ reporter gene in transgenic mice. LacZ is expressed in renal collecting ducts beginning during embryonic development but is not expressed in extrarenal tissues. The Pkhd1 promoter contains a binding site for the transcription factor hepatocyte nuclear factor (HNF)-1β, which is required for activity in transfected cells. Mutation of the HNF-1β-binding site abolishes the expression of the lacZ reporter gene in renal collecting ducts. Transgenes containing the 2.0-kb promoter and 2.7 kb of additional genomic sequence extending downstream to the second exon are expressed in the kidney, intrahepatic bile ducts, and male reproductive tract. This pattern overlaps with the endogenous expression of Pkhd1 and coincides with sites of expression of HNF-1β. We conclude that the proximal 2.0-kb promoter is sufficient for tissue-specific expression of Pkhd1 in renal collecting ducts in vivo and that HNF-1β is required for Pkhd1 promoter activity in collecting ducts. Additional genomic sequences located from exons 1-2 or elsewhere in the gene locus are required for expression in extrarenal tissues. PMID:24899057

  10. Study on RIZ1 gene promoter methylation status in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shang-Wen Dong; Peng Zhang; Yi-Mei Liu; Yuan-Tao Cui; Shuo Wang; Shao-Jie Liang; Zhun He; Pei Sun; Yuan-Guo Wang

    2012-01-01

    AIM: To investigate the promoter region methylation status of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) in the human esophageal squamous cell carcinoma (ESCC) cell lines and tissues and verify the relationship between methylation of RIZ1 and oncogen-esis, tumor progression and metastasis etc of ESCC.METHODS: Methylation-specific polymerase chain reaction (MSP) was used to investigate the promoter region methylation status of RIZ1 in 6 ESCC cell lines. One cell line where RIZ1 promoter region methylation was detected was selected for the next study, where the cell line was treated with 5-aza-CdR. Real-time polymerase chain reaction was used to investigate its influence on the transcription of RIZ1. Experiments using frozen pathological specimens from 47 ESCC patients were performed using the same MSP methodology.RESULTS: Promoter methylation of RIZ1 gene was detected in TE13, CaEs17 and EC109 cell lines and the cell line TE13 was chosen for further study. The expression of RIZ1 mRNA in TE-13 was up-regulated after treatment with 5-aza-CdR. The rate of methylation in carcinomas tissues was significantly higher than those in matched neighboring normal and distal ending normal tissue, and the deviation of data was statistically significant (x2 = 24.136, P < 0.01). Analysis of the gender, age familial history, tumour deviation, tumour saturation, lymph gland displacement and clinical staging of 47 samples from ESCC patients showed that the fluctuation of data was not statistically significant.CONCLUSION: Promoter methylation may play an important role in the epigenetic silencing of RIZ1 gene expression in human ESCC. RIZ1 is considered to be a potential tumor suppressor gene and may be a biological parameter for testing early stage human ESCC.

  11. Characterisation of the promoter region of the human DNA-repair gene Rad51.

    Science.gov (United States)

    Hasselbach, L; Haase, S; Fischer, D; Kolberg, H C; Stürzbecher, H W

    2005-01-01

    Regulatory elements of the 5'-flanking region of the DNA-repair gene Rad51 were analysed to characterise pathological alterations of Rad51 mRNA expression during tumour development. Various fragments of the Rad51 promoter were cloned into the pGL3 reporter vector and the respective promoter activity was determined by luciferase assays in transfected U2-OS cells. Transcription factor binding was identified using Protein/DNA arrays. The region encompassing base pairs -204 to -58 was identified as crucial for Rad51 gene transcription. Down regulator sequences are present upstream (-305 to -204) and downstream (-48 and +204) of this core promoter element. Promoter activity is significantly enhanced by substituting G at the polymorphic positions +135 and +172 for C and T, respectively. Transcription factors Ets1/PEA3, E2F1, p53, EGR1, and Stat5 were identified as relevant for regulating expression of Rad51. We identified three separate cis-sequence elements within the Rad51 transcriptional promoter, one ensuring basal levels of expression and two elements limiting expression to relatively low levels. The characterisation of transcription factor binding might help to explain high-level expression of Rad51 in a variety of solid tumours. The polymorphic sites appear important for the increased risk of breast and/or ovarian cancer for BRCA2 mutation carriers.

  12. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1.

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    Full Text Available The myeloid translocation gene 16 (MTG16 co-repressor down regulates expression of multiple glycolytic genes, which are targets of the hypoxia-inducible factor 1 (HIF1 heterodimer transcription factor that is composed of oxygen-regulated labile HIF1α and stable HIF1β subunits. For this reason, we investigated whether MTG16 might regulate HIF1 negatively contributing to inhibition of glycolysis and stimulation of mitochondrial respiration. A doxycycline Tet-On system was used to control levels of MTG16 in B-lymphoblastic Raji cells. Results from co-association studies revealed MTG16 to interact with HIF1α. The co-association required intact N-terminal MTG16 residues including Nervy Homology Region 1 (NHR1. Furthermore, electrophoretic mobility shift assays demonstrated an association of MTG16 with hypoxia response elements (HREs in PFKFB3, PFKFB4 and PDK1 promoters in-vitro. Results from chromatin immunoprecipitation assays revealed co-occupancy of these and other glycolytic gene promoters by HIF1α, HIF1β and MTG16 in agreement with possible involvement of these proteins in regulation of glycolytic target genes. In addition, MTG16 interacted with prolyl hydroxylase D2 and promoted ubiquitination and proteasomal degradation of HIF1α. Our findings broaden the area of MTG co-repressor functions and reveal MTG16 to be part of a protein complex that controls the levels of HIF1α.

  13. Loss of heterozygosity of the Mutated in Colorectal Cancer gene is not associated with promoter methylation in non-small cell lung cancer.

    Science.gov (United States)

    Poursoltan, Pirooz; Currey, Nicola; Pangon, Laurent; van Kralingen, Christa; Selinger, Christina I; Mahar, Annabelle; Cooper, Wendy A; Kennedy, Catherine W; McCaughan, Brian C; Trent, Ronald; Kohonen-Corish, Maija R J

    2012-08-01

    'Mutated in Colorectal Cancer' (MCC) is emerging as a multifunctional protein that affects several cellular processes and pathways. Although the MCC gene is rarely mutated in colorectal cancer, it is frequently silenced through promoter methylation. Previous studies have reported loss of heterozygosity (LOH) of the closely linked MCC and APC loci in both colorectal and lung cancers. APC promoter methylation is a marker of poor survival in non-small cell lung cancer (NSCLC). However, MCC methylation has not been previously studied in lung cancer. Therefore, we wanted to determine if MCC is silenced through promoter methylation in lung cancer and whether this methylation is associated with LOH of the MCC locus or methylation of the APC gene. Three polymorphic markers for the APC/MCC locus were analysed for LOH in 64 NSCLC specimens and matching normal tissues. Promoter methylation of both genes was determined using methylation specific PCR in primary tumours. LOH of the three markers was found in 41-49% of the specimens. LOH within the MCC locus was less common in adenocarcinoma (ADC) (29%) than in squamous cell carcinoma (SCC) (72%; P=0.006) or large cell carcinoma (LCC) (75%; P=0.014). However, this LOH was not accompanied by MCC promoter methylation, which was found in only two cancers (3%). In contrast, 39% of the specimens showed APC methylation, which was more common in ADC (58%) than in SCC (13%). Western blotting revealed that MCC was expressed in a subset of lung tissue specimens but there was marked variation between patients rather than between cancer and matching non-cancer tissue specimens. In conclusion, we have shown that promoter methylation of the APC gene does not extend to the neighbouring MCC gene in lung cancer, but LOH is found at both loci. The variable levels of MCC expression were not associated with promoter methylation and may be regulated through other cellular mechanisms.

  14. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet.

    Science.gov (United States)

    Zhao, Hua; Li, Ke; Tang, Jia-Yong; Zhou, Ji-Chang; Wang, Kang-Ning; Xia, Xin-Jie; Lei, Xin Gen

    2015-07-01

    Relations of the 25 mammalian selenoprotein genes with obesity and the associated inflammation remain unclear. This study explored impacts of high-fat diet-induced obesity on inflammation and expressions of selenoprotein and obesity-related genes in 10 tissues of pigs. Plasma and 10 tissues were collected from pigs (n = 10) fed a corn-soy-based control diet or that diet containing 3-7% lard from weanling to finishing (180 d). Plasma concentrations (n = 8) of cytokines and thyroid hormones and tissue mRNA abundance (n = 4) of 25 selenoprotein genes and 16 obesity-related genes were compared between the pigs fed the control and high-fat diets. Stepwise regression was applied to analyze correlations among all these measures, including the previously reported body physical and plasma biochemical variables. The high-fat diet elevated (P obesity-related genes in 3 patterns. Specifically, the high-fat diet up-regulated 12 selenoprotein genes in 6 tissues, down-regulated 13 selenoprotein genes in 7 tissues, and exerted no effect on 5 genes in any tissue. Body weights and plasma triglyceride concentrations of pigs showed the strongest regressions to tissue mRNA abundances of selenoprotein and obesity-related genes. Among the selenoprotein genes, selenoprotein V and I were ranked as the strongest independent variables for the regression of phenotypic and plasma measures. Meanwhile, agouti signaling protein, adiponectin, and resistin genes represented the strongest independent variables of the obesity-related genes for the regression of tissue selenoprotein mRNA. The high-fat diet induced inflammation in pigs and affected their gene expression of selenoproteins associated with thioredoxin and oxidoreductase systems, local tissue thyroid hormone activity, endoplasmic reticulum protein degradation, and phosphorylation of lipids. This porcine model may be used to study interactive mechanisms between excess fat intake and selenoprotein function. © 2015 American Society for

  15. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression.

    NARCIS (Netherlands)

    H. Russcher (Henk); P. Smit (Pauline); E.L.T. van den Akker (Erica); E.F.C. van Rossum (Liesbeth); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractCONTEXT: Interindividual variation in glucocorticoid (GC)-sensitivity can be partly explained by polymorphisms in the GC receptor (GR) gene. The ER22/23EK and N363S polymorphisms have been described to be associated with lower and higher GC sensitivity, respectively. OBJECTIVE AND DESIGN

  16. Methylation status of the interferon-gamma gene promoter in chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To evaluate the methylation status at CpG site -55 in the interferon-gamma (IFN-7) gene promoter and its effect on IFN-7 expression in chronic hepatitis B. Method The authors recruited 30 patients with UBeAg-positive chronic hepatitis B (CHB), 30 HBeAg-negative CHB patients, and 30 healthy blood donors. Pyrosequeneing was used to determine the methylation status at CpG site -55 in the IFN-γ gene promoter following bisulfite treatment of DNA in peripheral blood mononuclear cells (PBMCs). The expression of IFN-γ was analyzed by real-time RT-PCR and ELISA. HBV DNA in PBMCs was detected by nested PCR. Results The methylation level at CpG site -55 in the IFN-γ gene promoter was significantly increased, resulting in subsequent down-regulation of the expression of this cytoldne in CHB. The methylation level at CpG site -55 was significantly higher in HBeAg-positive patients than in HBeAg-negative ones (P<0.01) and was also significantly higher in PBMCs from HBV DNA-positive patients than from HBV DNA-negative ones (P<0.01) ; the methylation level at CpG site -55 was positively correlated with the amount of HBV DNA in serum (P<0.01). Oonclusion IFN-γ gene expression appears to be regulated by methylation of the IFN-γ gene promoter in CHB; the methylation level at CpG site -55 is associated with HBV infection.

  17. Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression.

    Science.gov (United States)

    Mayer, Sandra; Roeser, Marc; Lachmann, Peter; Ishii, Sumiyashi; Suh, Jae Mi; Harlander, Sabine; Desch, Michael; Brunssen, Coy; Morawietz, Henning; Tsai, Sophia Y; Tsai, Ming-Jer; Hohenstein, Bernd; Hugo, Christian; Todorov, Vladimir T

    2012-07-13

    This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression.

  18. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    To investigate the structural basis for genetic regulation of the human serotonin transporter gene, a 1.8 kb fragment upstream to the cap site was cloned and sequenced. The promoter possesses a polymorphic repeat region with 16 and 14 repeats, respectively. Both were cloned and characterized....... The promoter sequence revealed an internal 379 bp fragment not reported in previous publications. This novel fragment contains consensus sequences for several transcription factors including SpI and GATA. DNA from 48 unrelated individuals was PCR amplified, in this region, to test for allelic variations. All...

  19. Myristic Acid (MA) Promotes Adipogenic Gene Expression and the Differentiation of Porcine Intramuscular Adipocyte Precursor Cells

    Institute of Scientific and Technical Information of China (English)

    LU Nai-sheng; ZHANG Yong-liang; JIANG Qing-yan; SHU Gang; XIE Qiu-ping; ZHU Xiao-tong; GAO Ping; ZHOU Gui-xuan; WANG Song-bo; WANG Li-na; XI Qian-yun

    2014-01-01

    Intramuscular fat (IMF) content is considered to be a key factor that affects the marbling, tenderness, juiciness and lfavor of pork. To investigate the effects of myristic acid (MA) on the differentiation of porcine intramuscular adipocytes, cells were isolated from longissimus dorsi muscle (LDM) and treated with 0, 10, 50 or 100μmol L-1 MA. The results showed that MA signiifcantly promotes the differentiation of intramuscular adipocytes in a dose-dependent manner. MA also led to a parallel increase in the expression of peroxisome proliferator activated receptor-γ(PPARγ) and adipose-related genes, such as glucose transporter 1 (GLUT1), lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4/aP2), fatty acid translocase (FAT), acetyl-CoA carboxylaseα(ACCα), adipose triglyceride lipase (ATGL) and fatty acid synthase (FASN). However, no signiifcant effects of MA were observed on the expression of CAAT enhancer binding protein-α(C/EBPα) or hormone sensitive lipase (HSL). The expression of pyruvate dehydrogenase kinase 4 (PDK4) was increased by MA during the early stages of differentiation (day 1-3). In addition, MA also increased the absolute content of C14 (P<0.001) and saturated fatty acids (SFA) (P<0.05) to varying degrees, but no effects were observed on other fatty acids. These results suggest that MA might be able to enhance the IMF content of pork and increase the accumulation of myristic and myristoleic acid in muscle, which might have beneifcial implications for human health.

  20. Identification of susceptibility genes for bipolar affective disorder and schizophrenia on chromosome 22q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob Eg

    2006-01-01

    Linkage analyses suggest that chromosome 22q12-13 may harbor one or more shared susceptibility loci for bipolar affective disorder (BPD) and schizophrenia (SZ). In a study of distantly related cases and control individuals from the Faeroe Islands our group has previously reported that chromosome 22......q13 may harbor two shared susceptibility loci for BPD and SZ. The aim of the Ph.D. project was to identify and characterize susceptibility genes for BPD and SZ located in these two loci on 22q13, primarily by association analyses of selected positional candidate genes in a number of population...... samples (total of 1,751 individuals), and by bioinformatic and expression analyses of a subset of disease associated genes and gene variants. In total 67 single nucleotide polymorphisms (SNPs) located in 18 positional candidate genes, and 4 microsattelite markers were investigated, using a Scottish case...

  1. Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects.

    Science.gov (United States)

    Lucht, Michael J; Barnow, Sven; Sonnenfeld, Christine; Rosenberger, Albert; Grabe, Hans Joergen; Schroeder, Winnie; Völzke, Henry; Freyberger, Harald J; Herrmann, Falko H; Kroemer, Heyo; Rosskopf, Dieter

    2009-08-01

    Associations of oxytocin receptor gene (OXTR) variants and autism spectrum disorders (ASD) have been reported in earlier studies; in one of the studies associations with IQ and daily living skills were found additionally. Variations of the oxytocin receptor gene might also regulate affect, attachment and separation beyond the diagnostic borders of autism. We tested hypotheses of associations between positive and negative affects and social and emotional loneliness (285 adults), IQ (117 adolescents) and polymorphisms of the oxytocin receptor gene (OXTR rs53576, rs2254298 and rs2228485) in normal subjects. Individuals with the oxytocin OXTR rs53576 A/A genotype showed lower positive affect scores (F=5.532, df=1; p=0.019). This effect was restricted to males (F=13.098, df=1; p=0.00047). Haplotypes constructed with the three markers were associated with positive affect (p=0.0012), negative affect (p<0.0001) and emotional loneliness (p<0.0001). Non-verbal intelligence was significantly reduced in rs53576 A/A adolescents (T=2.247, p=0.027). Our findings support a role for the oxytocin receptor haplotypes in the generation of affectivity, emotional loneliness and IQ.

  2. Functional analysis of bifidobacterial promoters in Bifidobacterium longum and Escherichia coli using the α-galactosidase gene as a reporter.

    Science.gov (United States)

    Sakanaka, Mikiyasu; Tamai, Saki; Hirayama, Yosuke; Onodera, Ai; Koguchi, Hiroka; Kano, Yasunobu; Yokota, Atsushi; Fukiya, Satoru

    2014-11-01

    Heterologous gene expression in bifidobacteria requires weak, strong, and inducible promoters depending on the objectives of different expression studies. Weak promoters in Escherichia coli can also be desirable for stable heterologous gene cloning. Here, we developed a reporter system using the Bifidobacterium longum α-galactosidase gene and investigated the activity and inducibility of seven bifidobacterial promoters in B. longum and their activities in E. coli. These studies revealed diverse promoter activities. Three promoters were highly active in B. longum, but only slightly active in E. coli. Among these, two phosphoketolase gene (xfp) promoters exhibited strong activity in B. longum cells grown on glucose. In contrast, the promoter activity of the fructose transporter operon (fruEKFG) was strongly induced by carbohydrates other than glucose, including fructose, xylose, and ribose. These promoters will allow strong or highly inducible expression in bifidobacteria and stable gene cloning in E. coli. In contrast to the functions of these promoters, the promoter of sucrose-utilization operon cscBA showed very high activity in E. coli but low activity in B. longum. Other three promoters were functional in both B. longum and E. coli. In particular, two sucrose phosphorylase gene (scrP) promoters showed inducible activity by sucrose and raffinose in B. longum, indicating their applicability for regulated expression studies. The diverse promoter functions revealed in this study will contribute to enabling the regulated expression of heterologous genes in bifidobacteria research.

  3. Promoters for the human beta-hexosaminidase genes, HEXA and HEXB.

    Science.gov (United States)

    Norflus, F; Yamanaka, S; Proia, R L

    1996-02-01

    Human lysosomal beta-hexosaminidases are encoded by two genes, HEXA and HEXB, specifying an alpha- and a beta-subunit, respectively. The subunits dimerize to form beta-hexosaminidase A (alpha beta), beta-hexosaminidase B (beta beta), and beta-hexosaminidase S (alpha alpha). This enzyme system has the capacity to degrade a variety of cellular substrates: oligosaccharides, glycosaminoglycans, and glycolipids containing beta-linked N-acetylglucosaminyl or N-galactosaminyl residues. Mutations in either the HEXA gene or HEXB gene lead to an accumulation of GM2 ganglioside in neurons, resulting in the severe neurodegenerative disorders termed the GM2 gangliosidoses. To identify the DNA elements responsible for hexosaminidase expression, we ligated the 5'-flanking sequences of both the human and mouse hexosaminidase genes to a chloramphenicol acetyltransferase (CAT) gene. The resulting plasmids were transfected into NIH-3T3 cells and CAT activity was determined as a measure of promoter strength. By 5' deletion analysis, it was found that essential sequences for HEXA expression resided within a 40-bp region between 100 bp and 60 bp upstream of the ATG initiation codon. This area contained two potential estrogen response element half-sites as well as potential binding sites for transcription factors NF-E1 and AP-2. Similarly, important HEXB promoter sequences were localized to a 60-bp region between 150 bp and 90 bp upstream of the ATG codon. By performing scanning mutagenesis on a 60-bp region within the 150-bp HEXB construct, we defined an essential promoter element of 12 bp that contained two potential AP-1 sites. The mouse Hexa and Hexb 5'-flanking sequences were found to contain regions similar in sequence, location, and activity to the essential promoter elements defined in the cognate human genes. No sequence similarity was found, however, between 5'-flanking regions of the HEXA and HEXB genes. These essential promoter elements represent potential sites for HEXA and

  4. Age and diet affect gene expression profiles in canine liver tissue.

    Directory of Open Access Journals (Sweden)

    Dong Yong Kil

    Full Text Available BACKGROUND: The liver plays a central role in nutrient and xenobiotic metabolism, but its functionality declines with age. Senior dogs suffer from many of the chronic hepatic diseases as elderly humans, with age-related alterations in liver function influenced by diet. However, a large-scale molecular analysis of the liver tissue as affected by age and diet has not been reported in dogs. METHODOLOGY/PRINCIPAL FINDINGS: Liver tissue samples were collected from six senior (12-year old and six young adult (1-year old female beagles fed an animal protein-based diet (APB or a plant protein-based diet (PPB for 12 months. Total RNA in the liver tissue was extracted and hybridized to Affymetrix GeneChip® Canine Genome Arrays. Using a 2.0-fold cutoff and false discovery rate <0.10, our results indicated that expression of 234 genes was altered by age, while 137 genes were differentially expressed by diet. Based on functional classification, genes affected by age and/or diet were involved in cellular development, nutrient metabolism, and signal transduction. In general, gene expression suggested that senior dogs had an increased risk of the progression of liver disease and dysfunction, as observed in aged humans and rodents. In particular for aged liver, genes related to inflammation, oxidative stress, and glycolysis were up-regulated, whereas genes related to regeneration, xenobiotic metabolism, and cholesterol trafficking were down-regulated. Diet-associated changes in gene expression were more common in young adult dogs (33 genes as compared to senior dogs (3 genes. CONCLUSION: Our results provide molecular insight pertaining to the aged canine liver and its predisposition to disease and abnormalities. Therefore, our data may aid in future research pertaining to age-associated alterations in hepatic function or identification of potential targets for nutritional management as a means to decrease incidence of age-dependent liver dysfunction.

  5. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters

    Science.gov (United States)

    Yap, Chui-Sun; Peterson, Abigail L; Castellani, Gastone

    2011-01-01

    Mammalian c-Myc is a member of a small family of three related proto-oncogenic transcription factors. c-Myc has an unusually broad array of regulatory functions, which include roles in cell cycle and apoptosis, a variety of metabolic functions, cell differentiation, senescence and stem cell maintenance. c-Myc modulates the expression of a very large number of genes, but the magnitude of the majority of the regulatory effects is only two-fold or less. c-Myc can both activate and repress the promoters of its target genes. Identification of genes directly regulated by c-Myc has been an enduring question in the field. We report here microarray expression profiling of a high resolution time course of c-Myc induction, using fibroblast cells in which c-Myc activity can be modulated from null to physiological. The c-Myc transcriptome data set presented is the largest reported to date with 4,186 differentially regulated genes (1,826 upregulated, 2,360 downregulated, 1% FDR). The gene expression patterns fit well with the known biological functions of c-Myc. We describe several novel findings and present tools for further data mining. Although the mechanisms of transcriptional activation by c-Myc are well understood, how c-Myc represses an even greater number of genes remains incompletely described. One mechanism involves the binding of c-Myc to other, positively acting transcription factors and interfering with their activities. We identified rapid-response genes likely to be direct c-Myc targets and analyzed the promoters of the repressed genes to identify transcription factors that could be targets of c-Myc repression. PMID:21623162

  6. Structural and functional analysis of the Entamoeba histolytica EhrabB gene promoter

    Directory of Open Access Journals (Sweden)

    Rodríguez Mario A

    2007-09-01

    Full Text Available Abstract Background The Entamoeba histolytica EhrabB gene encodes for a Rab GTPase involved in phagocytosis. It is located at a virulence locus where the Ehcp112 gene is in the complementary strand at 332 bp of EhrabB start codon, suggesting a finely regulated transcription of both genes. However, the transcription regulation in this parasite is poorly understood. Results To initiate the knowledge of EhrabB gene expression regulation, here we studied the structural characteristics of its gene promoter and its control transcription elements. In silico searches of the EhrabB 5'-flanking region revealed that it contains a motif similar to the upstream regulatory element 1 (URE1 of the E. histolytica hgl5 gene. It also has sequences with homology to C/EBP and GATA1 binding sites, and heat shock elements (HSE. Primer extension experiments revealed that EhrabB has at least four transcription initiation sites. The elements at the 5'-flanking region that drive EhrabB gene expression were detected and characterized using transitory transfected trophozoites with a plasmid carrying the CAT reporter gene. EhrabB transcription is negatively regulated by a sequence located between positions -491 to -428 with respect to the first transcription initiation site. We also showed that the URE1-like motif activates EhrabB transcription. In addition, heat shock activated the EhrabB promoter in episomal constructs and lead to an increase in de novo EhrabB transcription. Conclusion The data suggest that EhrabB transcription is controlled negatively by an unidentified sequence, but it is activated by an URE1-like motif. Our analyses also revealed the presence of activator HSE that function under stress.

  7. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis

    Directory of Open Access Journals (Sweden)

    Loor Juan J

    2010-03-01

    Full Text Available Abstract Background The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs using co-expression, promoter, pathway and network analysis. Results Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. Conclusions The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution.

  8. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis.

    Science.gov (United States)

    Kumar, Charu G; Everts, Robin E; Loor, Juan J; Lewin, Harris A

    2010-03-09

    The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs) from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs) using co-expression, promoter, pathway and network analysis. Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution.

  9. Transcription factors interacting with herpes simplex virus alpha gene promoters in sensory neurons.

    Science.gov (United States)

    Hagmann, M; Georgiev, O; Schaffner, W; Douville, P

    1995-01-01

    Interference with VP16-mediated activation of herpes virus immediate-early (or alpha) genes is thought to be the major cause of establishing viral latency in sensory neurons. This could be brought about by lack of a key activating transcription factor(s) or active repression. In this study we find that sensory neurons express all important components for VP16-mediated alpha gene induction, such as the POU transcription factor Oct-1, host cell factor (HCF) and GABP alpha/beta. However, Oct-1 and GABP alpha/beta are only present at low levels and the VP16-induced complex (VIC) appears different. We do not find protein expression of the transcription factor Oct-2, implicated by others as an alpha gene repressor. The POU factor N-Oct3 (Brn 2 or POU3F2) is also present in sensory neurons and binds viral TAATGARAT motifs with higher affinity than Oct-1, indicating that it may be a candidate repressor for competitive binding to TAATGARAT motifs. When transfected into HeLa cells, where Oct-1 and GABP alpha/beta are highly abundant, N-Oct3 represses model promoters with multimerized TAATGARAT motifs, but fails to repress complete alpha gene promoters. Taken together our findings suggest that modulation of alpha gene promoters could contribute to viral latency when low concentrations of the activating transcription factors Oct-1 and GABP alpha/beta prevail. Our data, however, refute the notion that competing Oct factors are able to block alpha gene transcription to achieve viral latency. Images PMID:8559654

  10. The Varicella-Zoster Virus Immediate-Early 63 protein affects chromatin controlled gene transcription in a cell-type dependent manner

    Directory of Open Access Journals (Sweden)

    Bontems Sébastien

    2007-10-01

    Full Text Available Abstract Background Varicella Zoster Virus Immediate Early 63 protein (IE63 has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.

  11. [Analysis of the status of DACH1 gene promoter methylation in endometrial carcinoma and its clinical significance].

    Science.gov (United States)

    Deng, Xin-Chao; Li, Shao-Ru; Zhang, Qing; Zhou, Cheng-Jun; Yang, Qi-Feng; Jiang, Jie; Kong, Bei-Hua

    2012-04-01

    To analyze the status of DACH1 gene promoter methylation and explore its association with the expression of DACH1 gene promoter methylation and clinical significance of endometrium carcinoma (EC). From February 2004 to August 2008, a total of 80 EC tissue samples with comprehensive surgical pathology staging were collected and used for this study. Twenty normal endometrium tissues in 2008 were abstained from the fractional curettage because of dysfunctional uterine bleeding as control. All samples were confirmed pathologically. Methylation specific PCR (MSP) was performed to detect the promoter methylation of DACH1 gene, and analyze its influence on the expression of DACH1 and the relationship between DACH1 promoter methylation and clinicopathological factors in EC. DACH1 protein expression was detected by western blot. Chi-square test and Pearson test were used for statistical analysis. The rate of promoter methylation of DACH1 gene in the EC tissues was significantly higher than that in the normal endometrium issues (30% vs. 5%, P promoter methylation (r = -0.30, P 0.05). DACH1 gene promoter methylaion could lead to a decrease or absence in the DACH1 expression in EC. The promoter methylation of DACH1 gene may induce the inhibition of DACH1 expression, which might be one of the mechanisms of DACH1 gene inactivation in human EC.

  12. Characterization of chicken riboflavin carrier protein gene structure and promoter regulation by estrogen

    Indian Academy of Sciences (India)

    Nandini Vasudevan; Urvashi Bahadur; Paturu Kondaiah

    2001-03-01

    The chicken riboflavin carrier protein (RCP) is an estrogen induced egg yolk and white protein. Eggs from hens which have a splice mutation in RCP gene fail to hatch, indicating an absolute requirement of RCP for the transport of riboflavin to the oocyte. In order to understand the mechanism of regulation of this gene by estrogen, the chicken RCP gene including 1 kb of the 5′ flanking region has been isolated. Characterization of the gene structure shows that it contains six exons and five introns, including an intron in the 5′ untranslated region. Sequence analysis of the 5′ flanking region does not show the presence of any classical, palindromic estrogen response element (ERE). However, there are six half site ERE consensus elements. Four deletion constructs of the 5′ flanking region with varying number of ERE half sites were made in pGL3 basic vector upstream of the luciferase-coding region. Transient transfection of these RCP promoter deletion constructs into a chicken hepatoma cell line (LMH2A) showed 6-12-fold transcriptional induction by a stable estrogen analogue, moxesterol. This suggests that the RCP gene is induced by estrogen even in the absence of a classical ERE and the half sites of ERE in this promoter may be important for estrogen induction.

  13. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  14. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene family from Citrus and the effect of fruit load on their expression

    Directory of Open Access Journals (Sweden)

    Liron eShalom

    2015-05-01

    Full Text Available We recently identified a Citrus gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL transcription factor that contained a sequence complementary to miR156. Genes of the SPL family are known to play a role in flowering regulation and phase transition. In Citrus, the mRNA levels of the gene were significantly altered by fruit load in buds; under heavy fruit load (ON-Crop trees, known to suppress next year flowering, the mRNA levels were down-regulated, while fruit removal (de-fruiting, inducing next-year flowering, resulted in its up-regulation. In the current work, we set on to study the function of the gene. We showed that the Citrus SPL was able promote flowering independently of photoperiod in Arabidopsis, while miR156 repressed its flowering-promoting activity. In order to find out if fruit load affected the expression of additional genes of the SPL family, we identified and classified all SPL members in the Citrus genome, and studied their seasonal expression patterns in buds and leaves, and in response to de-fruiting. Results showed that two additional SPL-like genes and miR172, known to be induced by SPLs in Arabidopsis, were altered by fruit load. The relationships between these factors in relation to the fruit-load effect on Citrus flowering are discussed.

  15. Study on the Polymorphisms of Porcine Myostatin Gene in Promoter Region by PCR-RFLPS

    Institute of Scientific and Technical Information of China (English)

    YANG Xiu-qin; LIU Di

    2005-01-01

    In order to further study functions of the porcine myostatin gene, we analyzed the polymorphisms of porcine myostatin gene in promoter region among different breeds including Yorkshire, Landrace, Duroc, Junmu, Min pig and Sanjiang white pig by PCR-RFLPs. The allele T dominated in the imported lean-type pig breeds such as Yorkshire, Landrace and Duroc. No allele A was detected in Junmu and Sanjiang white pig, and the frequencies of three genotypes were about equal in Min pig. The result using X2 analysis showed that the distribution of three genotypes was related to pig breeds.

  16. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Chandler, Ronald L. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Fritz, David T. [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Mortlock, Douglas P. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Rogers, Melissa B., E-mail: rogersmb@umdnj.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States)

    2010-02-05

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  17. Interferon gamma response region in the promoter of the human DPA gene.

    OpenAIRE

    1990-01-01

    The interferon gamma (IFN-gamma) response region of the human class II major histocompatibility complex gene, DPA, has been localized to a 52-base-pair (bp) DNA fragment in the proximal promotor at -107 to -55 bp after transfection into HeLa cells of a series of 5', 3', and gap deletion mutants linked to a reporter gene, human growth hormone, as well as of synthetic oligonucleotides fused to the heterologous promoter thymidine kinase. The 52-mer sequence contains the X and Y box elements cons...

  18. Maximal Expression of the Evolutionarily Conserved Slit2 Gene Promoter Requires Sp1.

    Science.gov (United States)

    Saunders, Jacquelyn; Wisidagama, D Roonalika; Morford, Travis; Malone, Cindy S

    2016-08-01

    Slit2 is a neural axon guidance and chemorepellent protein that stimulates motility in a variety of cell types. The role of Slit2 in neural development and neoplastic growth and migration has been well established, while the genetic mechanisms underlying regulation of the Slit2 gene have not. We identified the core and proximal promoter of Slit2 by mapping multiple transcriptional start sites, analyzing transcriptional activity, and confirming sequence homology for the Slit2 proximal promoter among a number of species. Deletion series and transient transfection identified the Slit2 proximal promoter as within 399 base pairs upstream of the start of transcription. A crucial region for full expression of the Slit2 proximal promoter lies between 399 base pairs and 296 base pairs upstream of the start of transcription. Computer modeling identified three transcription factor-binding consensus sites within this region, of which only site-directed mutagenesis of one of the two identified Sp1 consensus sites inhibited transcriptional activity of the Slit2 proximal promoter (-399 to +253). Bioinformatics analysis of the Slit2 proximal promoter -399 base pair to -296 base pair region shows high sequence conservation over twenty-two species, and that this region follows an expected pattern of sequence divergence through evolution.

  19. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  20. Mindfulness training promotes upward spirals of positive affect and cognition: multilevel and autoregressive latent trajectory modeling analyses.

    Science.gov (United States)

    Garland, Eric L; Geschwind, Nicole; Peeters, Frenk; Wichers, Marieke

    2015-01-01

    Recent theory suggests that positive psychological processes integral to health may be energized through the self-reinforcing dynamics of an upward spiral to counter emotion dysregulation. The present study examined positive emotion-cognition interactions among individuals in partial remission from depression who had been randomly assigned to treatment with mindfulness-based cognitive therapy (MBCT; n = 64) or a waitlist control condition (n = 66). We hypothesized that MBCT stimulates upward spirals by increasing positive affect and positive cognition. Experience sampling assessed changes in affect and cognition during 6 days before and after treatment, which were analyzed with a series of multilevel and autoregressive latent trajectory models. Findings suggest that MBCT was associated with significant increases in trait positive affect and momentary positive cognition, which were preserved through autoregressive and cross-lagged effects driven by global emotional tone. Findings suggest that daily positive affect and cognition are maintained by an upward spiral that might be promoted by mindfulness training.

  1. Mindfulness training promotes upward spirals of positive affect and cognition: multilevel and autoregressive latent trajectory modeling analyses

    Science.gov (United States)

    Garland, Eric L.; Geschwind, Nicole; Peeters, Frenk; Wichers, Marieke

    2015-01-01

    Recent theory suggests that positive psychological processes integral to health may be energized through the self-reinforcing dynamics of an upward spiral to counter emotion dysregulation. The present study examined positive emotion–cognition interactions among individuals in partial remission from depression who had been randomly assigned to treatment with mindfulness-based cognitive therapy (MBCT; n = 64) or a waitlist control condition (n = 66). We hypothesized that MBCT stimulates upward spirals by increasing positive affect and positive cognition. Experience sampling assessed changes in affect and cognition during 6 days before and after treatment, which were analyzed with a series of multilevel and autoregressive latent trajectory models. Findings suggest that MBCT was associated with significant increases in trait positive affect and momentary positive cognition, which were preserved through autoregressive and cross-lagged effects driven by global emotional tone. Findings suggest that daily positive affect and cognition are maintained by an upward spiral that might be promoted by mindfulness training. PMID:25698988

  2. Promoter competition assay for analyzing gene regulation in joint tissue engineering.

    Science.gov (United States)

    Sun, Hui Bin; Malacinski, George M; Yokota, Hiroki

    2002-08-01

    We describe a new biochemical technique, "promoter competition assay," for examining the role of cis-acting DNA elements in tissue cultures. Recent advances in tissue engineering permit the culture of a variety of cells. Many tissues are engineered, however, without an appropriate understanding of molecular machinery that regulates gene expression and cellular growth. For elucidating the role of cis-acting regulatory elements in cellular differentiation and growth, we developed the promoter competition assay. This assay uses a transient transfer into cells of double-stranded DNA fragments consisting of cis-acting regulatory elements. The transferred DNA fragments act as a competitor and titrate the function of their genomic counterparts. Using synovial cells derived from a rheumatoid arthritis patient, we examined a role of NF-kappa B binding sites in the regulation of the expression of matrix metalloproteinase (MMP) genes. The results support a stimulatory role of NF-kappa B in transcriptional regulation of MMP-1 and MMP-13.

  3. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti.

    Science.gov (United States)

    Price, David P; Schilkey, Faye D; Ulanov, Alexander; Hansen, Immo A

    2015-04-28

    Environmental factors such as temperature, nutrient availability, and larval density determine the outcome of postembryonic development in mosquitoes. Suboptimal temperatures, crowding, and starvation during the larval phase reduce adult mosquito size, nutrient stores and affect vectorial capacity. In this study we compared adult female Aedes aegypti, Rockefeller strain, raised under standard laboratory conditions (Large) with those raised under crowded and nutritionally deprived conditions (Small). To compare the gene expression and nutritional state of the major energy storage and metabolic organ, the fat body, we performed transcriptomics using Illumina based RNA-seq and metabolomics using GC/MS on females before and 24 hours following blood feeding. Analysis of fat body gene expression between the experimental groups revealed a large number of significantly differentially expressed genes. Transcripts related to immunity, reproduction, autophagy, several metabolic pathways; including amino acid degradation and metabolism; and membrane transport were differentially expressed. Metabolite profiling identified 60 metabolites within the fat body to be significantly affected between small and large mosquitoes, with the majority of detected free amino acids at a higher level in small mosquitoes compared to large. Gene expression and metabolites in the adult fat body reflect the individual post-embryonic developmental history of a mosquito larva. These changes affect nutritional storage and utilization, immunity, and reproduction. Therefore, it is apparent that changes in larval environment due to weather conditions, nutrition availability, vector control efforts, and other factors can affect adult vectorial capacity in the field.

  4. ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation

    Science.gov (United States)

    The objective of this study was to determine whether 5-lipoxygenase (ALOX5) gene variants associated with cardiovascular disease affect eicosanoid production by monocytes. The study was a randomized, double-masked, parallel intervention trial with fish oil (5.0 g of fish oil daily, containing 2.0 g ...

  5. Get a taste of your goals: promoting motive-goal congruence through affect-focus goal fantasy.

    Science.gov (United States)

    Job, Veronika; Brandstätter, Veronika

    2009-10-01

    Studies show that motive-goal congruence is an important predictor of well-being (Baumann, Kaschel, & Kuhl, 2005; Brunstein, Schultheiss, & Grässmann, 1998). However, little is known about the factors that promote congruence between implicit motives and goals. Relying on McClelland's (1985) concept of implicit motives and the theory of fantasy realization (Oettingen, 1999), we postulated that goal fantasies focusing on motive-specific affective incentives promote motive-congruent goal setting. This hypothesis was tested in 3 experimental studies. In Study 1 (n=46) and Study 2 (n=48), participants were asked to select goals in a hypothetical scenario. In Study 3 (n=179), they rated their commitment to personal goals for their actual life situation. The results of all 3 studies supported our hypothesis that participants who focus on motive-specific affective incentives in their goal fantasies set their goals in line with their corresponding implicit motive dispositions.

  6. Molecular Cloning and Characterization of Human Homeobox Gene Nkx3.1 Promoter

    Institute of Scientific and Technical Information of China (English)

    An-LiJIANG; Jian-YeZHANG; CharlesYOUNG; Xiao-YanHU; Yong-MeiWANG; Zhi-FangLIU; Mei-LanHAO

    2004-01-01

    Nkx3.1 is a prostate-specific homeobox gene related strongly to prostate development and prostate cancer. To study its regulation of transcription, 1.06 kb 5′ flanking region of Nkx3.1 gene and its 5′ deletion mutants (861,617,417 and 238 bp) were obtained by PCR and cloned into pGL3-basic, a promoter-less luciferase reporter vector, to examine their promoter activities driving the reporter gene transcription, pRL-TK, a Renilla luciferase reporter vector was used as internal control, and pGL3-control and pGL3-basic were used as positive and negative control respectively. The promoter activities were determined by dual-luciferase reporter assay 48h after pGL3 constructs were cotransfected with pRL-TK into prostate cancer cell LNCaP. The results showed that dual-luciferase reporter assay (M/M2) of pGL3-1.06kb cotransfection with pRL-TK was 2.7, which was about 1.5-fold higher than that of pGL3-control cotransfection with pRL-TK and 50-fold higher than that of pGL3-basic cotransfection with pRL-TK. The results also showed that the relative activities (M1/M2) were 0.71, 0.84, 0.44 and 2.07 respectively for pGL3-861bp, pGL3-617bp, pGL3-417bp, pGL3-238bp, the last one still had 80% promoter activity compared with pGL3-1.06kb, which showed that deletion from 1.06kb to 238 bp had small effects on promoter activity. The conclusion was that the 238bp fragment containing a TATA box and two CAAT boxes had strong promoter activity. However, the deletion from 1.06kb to 861bp reduced activity 3.8-fold while the deletion from 417bp to 238bp enhanced activity 4.7-fold, which indicated that these deleted sequences might contain some important positive or negative regulatory elements. It will be important to identify the elements within the Nkx3.1 promoter that contribute to regulation of the gene transcription in the future studies.

  7. A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia.

    Directory of Open Access Journals (Sweden)

    Travis J Wiles

    2013-02-01

    Full Text Available In bacteria, laterally acquired genes are often concentrated within chromosomal regions known as genomic islands. Using a recently developed zebrafish infection model, we set out to identify unique factors encoded within genomic islands that contribute to the fitness and virulence of a reference urosepsis isolate-extraintestinal pathogenic Escherichia coli strain CFT073. By screening a series of deletion mutants, we discovered a previously uncharacterized gene, neaT, that is conditionally required by the pathogen during systemic infections. In vitro assays indicate that neaT can limit bacterial interactions with host phagocytes and alter the aggregative properties of CFT073. The neaT gene is localized within an integrated P2-like bacteriophage in CFT073, but was rarely found within other proteobacterial genomes. Sequence-based analyses revealed that neaT homologues are present, but discordantly conserved, within a phyletically diverse set of bacterial species. In CFT073, neaT appears to be unameliorated, having an exceptionally A+T-rich composition along with a notably altered codon bias. These data suggest that neaT was recently brought into the proteobacterial pan-genome from an extra-phyletic source. Interestingly, even in G+C-poor genomes, as found within the Firmicutes lineage, neaT-like genes are often unameliorated. Sequence-level features of neaT homologues challenge the common supposition that the A+T-rich nature of many recently acquired genes reflects the nucleotide composition of their genomes of origin. In total, these findings highlight the complexity of the evolutionary forces that can affect the acquisition, utilization, and assimilation of rare genes that promote the niche-dependent fitness and virulence of a bacterial pathogen.

  8. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Rachel M. Woodfint

    2017-01-01

    Full Text Available Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2 expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2, GATA binding protein 4 (GATA4, hepatocyte nuclear factor 4 α (HNF4A, and transcription factor 4 (TCF4 that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine.

  9. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Science.gov (United States)

    Woodfint, Rachel M.; Chen, Paula R.; Ahn, Jinsoo; Suh, Yeunsu; Hwang, Seongsoo; Lee, Sang Suk; Lee, Kichoon

    2017-01-01

    Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2) expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR) analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2), GATA binding protein 4 (GATA4), hepatocyte nuclear factor 4 α (HNF4A), and transcription factor 4 (TCF4) that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP) reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine. PMID:28106824

  10. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression.

    Science.gov (United States)

    Archacki, Rafal; Yatusevich, Ruslan; Buszewicz, Daniel; Krzyczmonik, Katarzyna; Patryn, Jacek; Iwanicka-Nowicka, Roksana; Biecek, Przemyslaw; Wilczynski, Bartek; Koblowska, Marta; Jerzmanowski, Andrzej; Swiezewski, Szymon

    2017-04-07

    ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    Directory of Open Access Journals (Sweden)

    Hasson Esteban

    2008-08-01

    Full Text Available Abstract Background Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line. In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive

  12. Single-nucleotide polymorphisms and activity analysis of the promoter and enhancer of the pig lactase gene.

    Science.gov (United States)

    Du, Hai-Ting; Zhu, Hong-Yan; Wang, Jia-Mei; Zhao, Wei; Tao, Xiao-Li; Ba, Cai-Feng; Tian, Yu-Min; Su, Yu-Hong

    2014-07-15

    Lactose intolerance in northern Europeans is strongly associated with a single-nucleotide polymorphism (SNP) located 14 kb upstream of the human lactase gene: -13,910 C/T. We examined whether SNPs in the 5' flanking region of the pig lactase gene are similar to those in the human gene and whether these polymorphisms play a functional role in regulating pig lactase gene expression. The 5' flanking region of the lactase gene from several different breeds of pigs was cloned and analyzed for gene regulatory activity of a luciferase reporter gene. One SNP was found in the enhancer region (-797 G/A) and two were found in the promoter region (-308G/C and -301 A/G). The promoter C-308,G-301(Pro-CG) strongly promotes the expression of the lactase gene, but the promoter G-308,A-301(Pro-GA) does not. The enhancer A-797(Enh-A) genotype for Pro-GA can significantly enhance promoter activity, but has an inhibitory effect on Pro-CG. The Enhancer G-797(Enh-G) has a significant inhibitory effect on both promoters. In conclusion, the order of effectiveness on the pig lactase gene is Enh-A+Pro-GA>Enh-A/G+Pro-CG>Enh-G+Pro-GA.

  13. Association between Osteopontin Promoter Gene Polymorphisms and Haplotypes with Risk of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Balneek Singh Cheema

    2015-06-01

    Full Text Available Background: Osteopontin (OPN C-443T promoter polymorphism has been shown as a genetic risk factor for diabetic nephropathy (DN in type 2 diabetic patients (T2D. Methods: In the present study we investigated the association of three functional promoter gene polymorphisms C-443T, delG-156G, and G-66T and their haplotypes with the risk of DN and estimated Glomerular Filtration Rate (eGFR in Asian Indians T2D patients using Real time PCR based Taqman assay. A total of 1165 T2D patients, belonging to two independently ascertained Indian Asian cohorts, were genotyped for three OPN promoter polymorphisms C-443T (rs11730582, delG-156G (rs17524488 and G-66T (rs28357094. Results: -156G allele and GG genotypes (delG-156G and haplotypes G-C-G and T-C-G (G-66T, C-443T, delG-156G were associated with decreased risk of DN and higher eGFR. Haplotype G-T-delG and T-T-delG (G-66T, C-443T, delG-156G were identified as risk haplotypes, as shown by lower eGFR. Conclusion: This is the first study to report an association of OPN promoter gene polymorphisms; G-66T and delG-156G and their haplotypes with DN in T2D. Our results suggest an association between OPN promoter gene polymorphisms and their haplotypes with DN.

  14. Novel screening assay for in vivo selection of Klebsiella pneumoniae genes promoting gastrointestinal colonisation

    DEFF Research Database (Denmark)

    Boll, Erik J.; Nielsen, Lene N; Krogfelt, Karen A.;

    2012-01-01

    Klebsiella pneumoniae is an important opportunistic pathogen causing pneumonia, sepsis and urinary tract infections. Colonisation of the gastrointestinal (GI) tract is a key step in the development of infections; yet the specific factors important for K. pneumoniae to colonize and reside in the GI...... tract of the host are largely unknown. To identify K. pneumoniae genes promoting GI colonisation, a novel genomic-library-based approach was employed....

  15. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  16. Transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans

    CSIR Research Space (South Africa)

    Crampton, Michael C

    2010-07-01

    Full Text Available (2006). Trends in Microbiology 14: 151-155. Slide 7 © CSIR 2006 www.csir.co.za Evaluation of different genetic backgrounds on peptide secretion during log and stationary phase Berger et al (2009) Applied and Environmental... • Transcriptional analysis Fermentation • Micro-array analysis of global gene expression during transition between exponential and stationary phase • Directed evolution of σD promoter Acknowledgements Maureen Louw Eldie Berger Erika Du Plessis Nolwandle...

  17. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-12-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  18. Phenotype of mutations in the promoter region of the β-globin gene.

    Science.gov (United States)

    Ropero, Paloma; Erquiaga, Sara; Arrizabalaga, Beatriz; Pérez, Germán; de la Iglesia, Silvia; Torrejón, María José; Gil, Celia; Elena, Cela; Tenorio, María; Nieto, Jorge M; de la Fuente-Gonzalo, Félix; Villegas, Ana; González Fernández, Fernando-Ataúlfo; Martínez, Rafael

    2017-10-01

    β(+)-Thalassaemia is characterised by reduced production of β chains, which decrease can be caused by mutations in the promoter region (CACCC or TATA box), and is classified as mild or silent depending on the extent of β-globin chain reduction. In both cases, homozygotes or compound heterozygotes for these mutations usually have thalassaemia intermedia. Frequently the diagnosis is made in adulthood or even in old age. A total of 37 alterations in the promoter region have been described so far. In this report we describe the mutations found in the promoter region of the β-globin gene in a single hospital in Madrid. Between 1998 and 2015, more than 9000 blood samples were analysed for full blood count and underwent haemoglobin electrophoresis and high performance liquid chromatography. Genetic analysis of the β and Gγ-globin genes was carried out by automatic sequencing and, in the case of α genes, by multiplex PCR. 35 samples showed mutation in the promoter region of the β-globin gene, with a total of six different mutations identified: one in the distal CACCC box, two in the proximal CACCC box, three in the ATA box. Any alterations in the proximal CACCC and TATA boxes lead to a moderate decrease in synthesis of the β-globin chain, which has been demonstrated in cases of thalassaemia intermedia that have presented in the second decade of life with a moderate clinical course. Published by the BMJ Publishing Group Limited. Fo