WorldWideScience

Sample records for gene product recql4

  1. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress

    International Nuclear Information System (INIS)

    Woo, Leslie L.; Futami, Kazunobu; Shimamoto, Akira; Furuichi, Yasuhiro; Frank, Karen M.

    2006-01-01

    Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome (RTS), which is characterized by poikiloderma, growth deficiency, and a predisposition to cancer. Examination of RECQL4 subcellular localization in live cells demonstrated a nucleoplasmic pattern and, to a lesser degree, staining in nucleoli. Analysis of RECQL4-GFP deletion mutants revealed two nuclear localization regions in the N-terminal region of RECQL4 and a nucleolar localization signal at amino acids 376-386. RECQL4 localization did not change after treatment with the DNA-damaging agents bleomycin, etoposide, UV irradiation and γ irradiation, in contrast to the Bloom and Werner syndrome helicases that relocate to distinct nuclear foci after damage. However, in a significant number of cells exposed to hydrogen peroxide or streptonigrin, RECQL4 accumulated in nucleoli. Using a T7 phage display screen, we determined that RECQL4 interacts with poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that promotes genomic integrity through its involvement in DNA repair and signaling pathways. The RECQL4 nucleolar localization was inhibited by pretreatment with a PARP-1 inhibitor. The C-terminal portion of RECQL4 was found to be an in vitro substrate for PARP-1. These results demonstrate changes in the intracellular localization of RECQL4 in response to oxidative stress and identify an interaction between RECQL4 and PARP-1

  2. p300-mediated acetylation of the Rothmund-Thomson-syndrome gene product RECQL4 regulates its subcellular localization

    DEFF Research Database (Denmark)

    Dietschy, Tobias; Shevelev, Igor; Pena Diaz, Javier

    2009-01-01

    RECQL4 belongs to the conserved RecQ family of DNA helicases, members of which play important roles in the maintenance of genome stability in all organisms that have been examined. Although genetic alterations in the RECQL4 gene are reported to be associated with three autosomal recessive disorde...... by p300 regulates the trafficking of RECQL4 between the nucleus and the cytoplasm....

  3. Recurrent RECQL4 Imbalance and Increased Gene Expression Levels Are Associated with Structural Chromosomal Instability in Sporadic Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Georges Maire

    2009-03-01

    Full Text Available Osteosarcoma (OS is an aggressive bone tumor with complex abnormal karyotypes and a highly unstable genome, exhibiting both numerical- and structural-chromosomal instability (N- and S-CIN. Chromosomal rearrangements and genomic imbalances affecting 8q24 are frequent in OS. RECQL4 gene maps to this cytoband and encodes a putative helicase involved in the fidelity of DNA replication and repair. This protective genomic function of the protein is relevant because often patients with Rothmund-Thomson syndrome have constitutional mutations of RECQL4 and carry a very high risk of developing OS. To determine the relative level of expression of RECQL4 in OS, 18 sporadic tumors were studied by reverse transcription–polymerase chain reaction. All tumors overexpressed RECQL4 in comparison to control osteoblasts, and fluorescence in situ hybridization analysis of tumor DNA showed that expression levels were strongly copy number–dependent. Relative N- and S-CIN levels were determined by classifying copy number transitions within array comparative genomic hybridization profiles and by enumerating the frequency of break-apart fluorescence in situ hybridization within 8q24 using region-specific and control probes. Although there was no evidence that disruption of 8q24 in OS led to an elevated expression of RECQL4, there was a marked association between increased overall levels of S-CIN, determined by copy number transition frequency and higher levels of RECQL4.

  4. The mutation spectrum in RECQL4 diseases

    NARCIS (Netherlands)

    Siitonen, H. Annika; Sotkasiira, Jenni; Biervliet, Martine; Benmansour, Abdelmadjid; Capri, Yline; Cormier-Daire, Valerie; Crandall, Barbara; Hannula-Jouppi, Katariina; Hennekam, Raoul; Herzog, Denise; Keymolen, Kathelijn; Lipsanen-Nyman, Marita; Miny, Peter; Plon, Sharon E.; Riedl, Stefan; Sarkar, Ajoy; Vargas, Fernando R.; Verloes, Alain; Wang, Lisa L.; Kääriäinen, Helena; Kestilä, Marjo

    2009-01-01

    Mutations in the RECQL4 gene can lead to three clinical phenotypes with overlapping features. All these syndromes, Rothmund-Thomson (RTS), RAPADILINO and Baller-Gerold (BGS), are characterized by growth retardation and radial defects, but RAPADILINO syndrome lacks the main dermal manifestation,

  5. The involvement of human RECQL4 in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Singh, Dharmendra Kumar; Karmakar, Parimal; Aamann, Maria Diget

    2010-01-01

    Rothmund-Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas......-induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with gammaH2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N-terminus domain between amino...

  6. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    International Nuclear Information System (INIS)

    Yang Jieping; Murthy, Sreemala; Winata, Therry; Werner, Sean; Abe, Masumi; Prahalad, Agasanur K.; Hock, Janet M.

    2006-01-01

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development

  7. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika

    2012-01-01

    in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial......Q helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  8. p300-mediated acetylation of the Rothmund-Thomson-syndrome gene product RECQL4 regulates its subcellular localization

    Czech Academy of Sciences Publication Activity Database

    Dietschy, T.; Shevelev, Igor; Pena-Diaz, J.; Hühn, D.; Kuenzle, S.; Mak, R.; Miah, M.F.; Hess, D.; Fey, M.; Hottiger, M.O.; Janščák, Pavel; Stagljar, I.

    2009-01-01

    Roč. 122, Pt 8 (2009), s. 1258-1267 ISSN 0021-9533 Institutional research plan: CEZ:AV0Z50520514 Keywords : RECQL4 * RecQ helicases * Genome stability * p300 * Protein acetylation Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 6.144, year: 2009

  9. Decreased RECQL5 correlated with disease progression of osteosarcoma

    International Nuclear Information System (INIS)

    Wu, Junlong; Zhi, Liqiang; Dai, Xin; Cai, Qingchun; Ma, Wei

    2015-01-01

    Human RecQ helicase family, consisting of RECQL, RECQL4, RECQL5, BLM and WRN, has critical roles in genetic stability and tumorigenesis. Although RECQL5 has been reported to correlate with the susceptibility to malignances including osteosarcoma, the specific effect on tumor genesis and progression is not yet clarified. Here we focused on the relationship between RECQL5 expression and osteosarcoma disease progression, and further investigated the function of RECQL5 on MG-63 cell proliferation and apoptosis. By immunohistochemical analysis, qRT-PCR and western blot, we found that RECQL5 expression was downregulated in osteosarcoma tissues and cells. Patients with advanced tumor stage and low grade expressed lower RECQL5. To construct a stable RECQL5 overexpression osteosarcoma cell line (MG-63-RECQL5), RECQL5 gene was inserted into the human AAVS1 safe harbor by CRISPR/Cas9 system. The overexpression of RECQL5 was verified by qRT-PCR and western blot. Cell proliferation, cell cycle and apoptosis assay revealed that RECQL5 overexpression inhibited proliferation, induced G1-phase arrest and promoted apoptosis in MG-63 cells. Collectively, our results suggested RECQL5 as a tumor suppressor in osteosarcoma and may be a potential therapeutic target for osteosarcoma treatment. - Highlights: • The expression of RECQL5 was downregulated in osteosarcoma tissues and cells. • Decreased RECQL5 correlated with osteosarcoma Enneking surgical classification. • We constructed a stable RECQL5 overexpression cell line by CRISPR/Cas9 system. • RECQL5 overexpression inhibited proliferation of MG-63 cells. • RECQL5 overexpression promoted apoptosis of MG-63 cells.

  10. Decreased RECQL5 correlated with disease progression of osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junlong; Zhi, Liqiang; Dai, Xin; Cai, Qingchun; Ma, Wei, E-mail: doctormawei@163.com

    2015-11-27

    Human RecQ helicase family, consisting of RECQL, RECQL4, RECQL5, BLM and WRN, has critical roles in genetic stability and tumorigenesis. Although RECQL5 has been reported to correlate with the susceptibility to malignances including osteosarcoma, the specific effect on tumor genesis and progression is not yet clarified. Here we focused on the relationship between RECQL5 expression and osteosarcoma disease progression, and further investigated the function of RECQL5 on MG-63 cell proliferation and apoptosis. By immunohistochemical analysis, qRT-PCR and western blot, we found that RECQL5 expression was downregulated in osteosarcoma tissues and cells. Patients with advanced tumor stage and low grade expressed lower RECQL5. To construct a stable RECQL5 overexpression osteosarcoma cell line (MG-63-RECQL5), RECQL5 gene was inserted into the human AAVS1 safe harbor by CRISPR/Cas9 system. The overexpression of RECQL5 was verified by qRT-PCR and western blot. Cell proliferation, cell cycle and apoptosis assay revealed that RECQL5 overexpression inhibited proliferation, induced G1-phase arrest and promoted apoptosis in MG-63 cells. Collectively, our results suggested RECQL5 as a tumor suppressor in osteosarcoma and may be a potential therapeutic target for osteosarcoma treatment. - Highlights: • The expression of RECQL5 was downregulated in osteosarcoma tissues and cells. • Decreased RECQL5 correlated with osteosarcoma Enneking surgical classification. • We constructed a stable RECQL5 overexpression cell line by CRISPR/Cas9 system. • RECQL5 overexpression inhibited proliferation of MG-63 cells. • RECQL5 overexpression promoted apoptosis of MG-63 cells.

  11. Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents

    Energy Technology Data Exchange (ETDEWEB)

    Caseira Cabral, Rosa Estela [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France); Instituto de Biofisica Carlos Chagas Filho, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro (Brazil); Queille, Sophie [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France); Bodemer, Christine; Prost, Yves de [Service de Dermatologie, Hopital Necker-Enfants Malades, Universite Decartes-Paris V, APHP, Cedex (France); Bispo Cabral Neto, Januario [Instituto de Biofisica Carlos Chagas Filho, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro (Brazil); Sarasin, Alain [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France); Daya-Grosjean, Leela [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France)], E-mail: daya@igr.fr

    2008-08-25

    Rothmund-Thomson syndrome (RTS), a rare recessive autosomal disorder, presents genome instability and clinical heterogeneity with growth deficiency, skin and bone defects, premature aging symptoms and cancer susceptibility. A subset of RTS patients presents mutations of the RECQL4 gene, member of the RecQ family of DNA helicases, including the RECQL2 (BLM) and RECQL3 (WRN) genes, defective in the cancer prone Bloom and Werner syndromes, respectively. Analysis of the RECQL4 gene in six clinically diagnosed RTS patients shows five patients, including two siblings, with eight mutations mainly located in the helicase domain, three patients presenting two mutations. The alterations include four missense mutations, one nonsense mutation and the same frameshift deletion, g.2881delG in exon 9 found in three patients. Seven RECQL4 polymorphisms, two being new, have also been identified. Primary RTS fibroblasts from these RTS patients show no sensitivity to a wide variety of genotoxic agents including ionizing or ultraviolet irradiation, nitrogen mustard, 4NQO, 8-MOP, Cis-Pt, MMC, H{sub 2}O{sub 2}, HU, or UV plus caffeine which could be related to the RECQL4 alterations identified here. This is in contrast with the DNA damage sensitive Bloom and Werner cells and highlights the complexity of the numerous RecQ protein functions implicated in the different cellular pathways required for maintaining genomic integrity.

  12. Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents

    International Nuclear Information System (INIS)

    Caseira Cabral, Rosa Estela; Queille, Sophie; Bodemer, Christine; Prost, Yves de; Bispo Cabral Neto, Januario; Sarasin, Alain; Daya-Grosjean, Leela

    2008-01-01

    Rothmund-Thomson syndrome (RTS), a rare recessive autosomal disorder, presents genome instability and clinical heterogeneity with growth deficiency, skin and bone defects, premature aging symptoms and cancer susceptibility. A subset of RTS patients presents mutations of the RECQL4 gene, member of the RecQ family of DNA helicases, including the RECQL2 (BLM) and RECQL3 (WRN) genes, defective in the cancer prone Bloom and Werner syndromes, respectively. Analysis of the RECQL4 gene in six clinically diagnosed RTS patients shows five patients, including two siblings, with eight mutations mainly located in the helicase domain, three patients presenting two mutations. The alterations include four missense mutations, one nonsense mutation and the same frameshift deletion, g.2881delG in exon 9 found in three patients. Seven RECQL4 polymorphisms, two being new, have also been identified. Primary RTS fibroblasts from these RTS patients show no sensitivity to a wide variety of genotoxic agents including ionizing or ultraviolet irradiation, nitrogen mustard, 4NQO, 8-MOP, Cis-Pt, MMC, H 2 O 2 , HU, or UV plus caffeine which could be related to the RECQL4 alterations identified here. This is in contrast with the DNA damage sensitive Bloom and Werner cells and highlights the complexity of the numerous RecQ protein functions implicated in the different cellular pathways required for maintaining genomic integrity

  13. Human RECQL5beta stimulates flap endonuclease 1

    DEFF Research Database (Denmark)

    Speina, Elzbieta; Dawut, Lale; Hedayati, Mohammad

    2010-01-01

    devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5beta, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5beta...... dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5beta and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4's stimulation of FEN1, suggests...

  14. Relationship between osteosarcoma and ionizing radiation hypersensitive human B lymphocyte cells lacking RecQL4 helicase

    International Nuclear Information System (INIS)

    Kohzaki, Masaoki; Moritake, Takashi; Okazaki, Ryuji; Ootsuyama, Akira

    2015-01-01

    Japanese society is now facing a transition period from aging society to super aging society. Concomitant with this situation, it is estimated that number of cancer patients and the requirement of less invasive Radiation Therapy (RT) for cancers will increase. Therefore, understanding of mechanisms without delay on second cancers caused by RT is indispensable. Osteosarcoma, an aggressive bone tumor frequently occurring 5% of cancers in young adult and children, increase statistically after RT for cancers. Although, mutation in p53, Rb and RecQL4 genes statistically relate with osteosarcoma incidence, precise mechanisms of osteosarcoma development by ionizing Radiation (IR) remain to be elucidated. Genome instability is one of the tumor promoting factors and we focused on RecQL4 in RecQ helicase family, which is involved in aging and cancer. We established RecQL4 knock-in human B lymphocyte Nalm-6 cells and found their hypersensitivity to IR, replication fork stall/collapses after IR. In this review, we summarize recently published studies on genetic cancer-predisposing syndrome and possible origins of bone cancers induced by IR. Then, we discuss what and how we address molecular mechanisms on osteosarcoma induced by IR in the future. (author)

  15. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome

    International Nuclear Information System (INIS)

    Werner, Sean R.; Prahalad, Agasanur K.; Yang Jieping; Hock, Janet M.

    2006-01-01

    Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H 2 O 2 )-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H 2 O 2 treatment. H 2 O 2 induces 8-oxo-dG formation in both RTS and normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed

  16. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Martin

    Full Text Available Osteosarcoma is the most common malignancy of bone, and occurs most frequently in children and adolescents. Currently, the most reliable technique for determining a patients' prognosis is measurement of histopathologic tumor necrosis following pre-operative neo-adjuvant chemotherapy. Unfavourable prognosis is indicated by less than 90% estimated necrosis of the tumor. Neither genetic testing nor molecular biomarkers for diagnosis and prognosis have been described for osteosarcomas. We used the novel nanoString mRNA digital expression analysis system to analyse gene expression in 32 patients with sporadic paediatric osteosarcoma. This system used specific molecular barcodes to quantify expression of a set of 17 genes associated with osteosarcoma tumorigenesis. Five genes, from this panel, which encoded the bone differentiation regulator RUNX2, the cell cycle regulator CDC5L, the TP53 transcriptional inactivator MDM2, the DNA helicase RECQL4, and the cyclin-dependent kinase gene CDK4, were differentially expressed in tumors that responded poorly to neo-adjuvant chemotherapy. Analysis of the signalling relationships of these genes, as well as other expression markers of osteosarcoma, indicated that gene networks linked to RB1, TP53, PI3K, PTEN/Akt, myc and RECQL4 are associated with osteosarcoma. The discovery of these networks provides a basis for further experimental studies of role of the five genes (RUNX2, CDC5L, MDM2, RECQL4, and CDK4 in differential response to chemotherapy.

  17. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients

    DEFF Research Database (Denmark)

    Jensen, Martin Borch; Dunn, Christopher A; Keijzers, Guido

    2012-01-01

    RECQL4 is one of five members of the human RecQ helicase family, and is implicated in three syndromes displaying accelerating aging, developmental abnormalities and a predisposition to cancer. In this study, we purified three variants of RECQL4 carrying previously reported patient mutations....... These three mutant proteins were analyzed for the known biochemical activities of RECQL4: DNA binding, unwinding of duplex DNA, ATP hydrolysis and annealing of simplex DNA. Further, the mutant proteins were evaluated for stability and recruitment to sites of laser-induced DNA damage. One mutant was helicase...

  18. RECQ HELICASE RECQL4 PARTICIPATES IN NON-HOMOLOGOUS END JOINING AND INTERACTS WITH THE KU COMPLEX

    DEFF Research Database (Denmark)

    Shamanna, Raghavendra A; Singh, Dharmendra Kumar; Lu, Huiming

    2014-01-01

    -irradiation and resulted in accumulation of 53BP1 foci after irradiation, indicating defects in the processing of DSB. We find that RECQL4 interacts with the Ku70/Ku80 heterodimer, part of the DNA-dependent protein kinase (DNA-PK) complex, via its N-terminal domain. Further, RECQL4 stimulates higher order DNA binding...... of Ku70/Ku80 to a blunt end DNA substrate. Taken together, these results implicate that RECQL4 participates in the NHEJ pathway of DSB repair via a functional interaction with the Ku70/Ku80 complex. This is the first study to provide both in vitro and in vivo evidence for a role of a RecQ helicase...

  19. Human RecQL4 helicase plays critical roles in prostate carcinogenesis

    DEFF Research Database (Denmark)

    Su, Yanrong; Meador, Jarah A; Calaf, Gloria M

    2010-01-01

    Prostate cancer is the second leading cause of cancer-associated deaths among men in the western countries. Here, we report that human RecQL4 helicase, which is implicated in the pathogenesis of a subset of cancer-prone Rothmund-Thomson syndrome, is highly elevated in metastatic prostate cancer c...

  20. RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability

    Directory of Open Access Journals (Sweden)

    Edwin Chen

    2015-12-01

    Full Text Available JAK2V617F is the most common oncogenic lesion in patients with myeloproliferative neoplasms (MPNs. Despite the ability of JAK2V617F to instigate DNA damage in vitro, MPNs are nevertheless characterized by genomic stability. In this study, we address this paradox by identifying the DNA helicase RECQL5 as a suppressor of genomic instability in MPNs. We report increased RECQL5 expression in JAK2V617F-expressing cells and demonstrate that RECQL5 is required to counteract JAK2V617F-induced replication stress. Moreover, RECQL5 depletion sensitizes JAK2V617F mutant cells to hydroxyurea (HU, a pharmacological inducer of replication stress and the most common treatment for MPNs. Using single-fiber chromosome combing, we show that RECQL5 depletion in JAK2V617F mutant cells impairs replication dynamics following HU treatment, resulting in increased double-stranded breaks and apoptosis. Cumulatively, these findings identify RECQL5 as a critical regulator of genome stability in MPNs and demonstrate that replication stress-associated cytotoxicity can be amplified specifically in JAK2V617F mutant cells through RECQL5-targeted synthetic lethality.

  1. The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability

    Czech Academy of Sciences Publication Activity Database

    Singh, D.K.; Popuri, V.; Kulikowicz, T.; Shevelev, Igor; Ghosh, A.K.; Ramamoorthy, M.; Rossi, M.L.; Janščák, Pavel; Croteau, D.L.; Bohr, V.A.

    2012-01-01

    Roč. 40, č. 14 (2012), s. 6632-6648 ISSN 0305-1048 R&D Projects: GA ČR GAP305/10/0281 Grant - others:NIH(US) Z01-AG000726-17 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : RecQ helicase * genome stability * BLM * RECQL4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.278, year: 2012

  2. RecQL5 promotes genome stabilization through two parallel mechanisms--interacting with RNA polymerase II and acting as a helicase.

    Science.gov (United States)

    Islam, M Nurul; Fox, David; Guo, Rong; Enomoto, Takemi; Wang, Weidong

    2010-05-01

    The RecQL5 helicase is essential for maintaining genome stability and reducing cancer risk. To elucidate its mechanism of action, we purified a RecQL5-associated complex and identified its major component as RNA polymerase II (Pol II). Bioinformatics and structural modeling-guided mutagenesis revealed two conserved regions in RecQL5 as KIX and SRI domains, already known in transcriptional regulators for Pol II. The RecQL5-KIX domain binds both initiation (Pol IIa) and elongation (Pol IIo) forms of the polymerase, whereas the RecQL5-SRI domain interacts only with the elongation form. Fully functional RecQL5 requires both helicase activity and associations with the initiation polymerase, because mutants lacking either activity are partially defective in the suppression of sister chromatid exchange and resistance to camptothecin-induced DNA damage, and mutants lacking both activities are completely defective. We propose that RecQL5 promotes genome stabilization through two parallel mechanisms: by participation in homologous recombination-dependent DNA repair as a RecQ helicase and by regulating the initiation of Pol II to reduce transcription-associated replication impairment and recombination.

  3. Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production.

    Science.gov (United States)

    Masud, H M Abdullah Al; Watanabe, Takahiro; Yoshida, Masahiro; Sato, Yoshitaka; Goshima, Fumi; Kimura, Hiroshi; Murata, Takayuki

    2017-12-01

    Epstein-Barr virus (EBV), a member of human gammaherpesvirus, infects mainly B cells. EBV has two alternative life cycles, latent and lytic, and is reactivated occasionally from the latent stage to the lytic cycle. To combat EBV-associated disorders, understanding the molecular mechanisms of the EBV lytic replication cycle is also important. Here, we focused on an EBV lytic gene, BKRF4. Using our anti-BKRF4 antibody, we revealed that the BKRF4 gene product is expressed during the lytic cycle with late kinetics. To characterize the role of BKRF4, we constructed BKRF4-knockout mutants using the bacterial artificial chromosome (BAC) and CRISPR/Cas9 systems. Although disruption of the BKRF4 gene had almost no effect on viral protein expression and DNA synthesis, it significantly decreased progeny virion levels in HEK293 and Akata cells. Furthermore, we show that BKRF4 is involved not only in production of progeny virions but also in increasing the infectivity of the virus particles. Immunoprecipitation assays revealed that BKRF4 interacted with a virion protein, BGLF2. We showed that the C-terminal region of BKRF4 was critical for this interaction and for efficient progeny production. Immunofluorescence analysis revealed that BKRF4 partially colocalized with BGLF2 in the nucleus and perinuclear region. Finally, we showed that BKRF4 is a phosphorylated, possible tegument protein and that the EBV protein kinase BGLF4 may be important for this phosphorylation. Taken together, our data suggest that BKRF4 is involved in the production of infectious virions. IMPORTANCE Although the latent genes of EBV have been studied extensively, the lytic genes are less well characterized. This study focused on one such lytic gene, BKRF4, which is conserved only among gammaherpesviruses (ORF45 of Kaposi's sarcoma-associated herpesvirus or murine herpesvirus 68). After preparing the BKRF4 knockout virus using B95-8 EBV-BAC, we demonstrated that the BKRF4 gene was involved in infectious

  4. Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy

    International Nuclear Information System (INIS)

    Sadikovic, Bekim; Thorner, Paul; Chilton-MacNeill, Susan; Martin, Jeff W; Cervigne, Nilva K; Squire, Jeremy; Zielenska, Maria

    2010-01-01

    Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L. Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal human osteoblasts. RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant overexpression in tumors that had a poor response to chemotherapy relative to good responders. These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a potential biomarker of chemotherapy failure in osteosarcoma

  5. Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits

    Directory of Open Access Journals (Sweden)

    Wang Heng

    2008-06-01

    Full Text Available Abstract Background In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. Results We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11–16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P Conclusion Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.

  6. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    Directory of Open Access Journals (Sweden)

    Matei Irina

    2001-08-01

    Full Text Available Abstract Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP positive and negative gastric carcinomas (GCs. Methods We analyzed 50 gastric carcinomas (GCs for mutations in the BLM poly(A tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases but not in any of the MMP negative GCs (0/35 cases. The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %, BAX (27%, hMSH6 (20%,hMSH3 (13%, CBL (13%, IGFIIR (7%, RECQL (0% and WRN (0%. Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors.

  7. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    Science.gov (United States)

    Calin, George; Ranzani, Guglielmina N; Amadori, Dino; Herlea, Vlad; Matei, Irina; Barbanti-Brodano, Giuseppe; Negrini, Massimo

    2001-01-01

    Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). Methods We analyzed 50 gastric carcinomas (GCs) for mutations in the BLM poly(A) tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases) but not in any of the MMP negative GCs (0/35 cases). The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %), BAX (27%), hMSH6 (20%),hMSH3 (13%), CBL (13%), IGFIIR (7%), RECQL (0%) and WRN (0%). Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors. PMID:11532193

  8. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    OpenAIRE

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  9. Arabidopsis RecQsim, a plant-specific member of the RecQ helicase family, can suppress the MMS hypersensitivity of the yeast sgs1 mutant

    NARCIS (Netherlands)

    Bagherieh-Najjar, MB; de Vries, OMH; Kroon, JTM; Wright, EL; Elborough, KM; Hille, J; Dijkwel, PP

    The Arabidopsis genome contains seven genes that belong to the RecQ family of ATP-dependent DNA helicases. RecQ members in Saccharomyces cerevisiae (SGS1) and man (WRN, BLM and RecQL4) are involved in DNA recombination, repair and genome stability maintenance, but little is known about the function

  10. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2018-04-01

    Full Text Available Considering that mutations in known prostate cancer (PrCa predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  11. The Effect of IL-4 Gene Polymorphisms on Cytokine Production in Patients with Chronic Periodontitis and in Healthy Controls

    Directory of Open Access Journals (Sweden)

    Jirina Bartova

    2014-01-01

    Full Text Available Chronic periodontitis (CP is an inflammatory disease of the teeth-supporting tissues in which genetic predisposition, dental plaque bacteria, and immune mechanisms all play important roles. The aim of this study was to evaluate the occurrence of IL-4 gene polymorphisms in chronic periodontitis and to investigate the association between polymorphisms and cytokines production after bacterial stimulation. Sixty-two subjects (47 CP patients and 15 healthy controls with detected two polymorphisms in the IL-4 gene (-590C/T and intron 3 VNTR were examined. Production of cytokines (IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNFα, INFγ, and VEGF was studied after in vitro stimulation of isolated peripheral blood by mitogens (Pokeweed mitogen, Concanavalin A, dental plaque bacteria (Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, and Prevotella intermedia, and Heat Shock Protein (HSP 70 by the Luminex multiplex cytokine analysis system. The results were correlated with IL-4 genotypes in patients with CP and healthy controls. The mononuclear cells isolated from peripheral blood of CP patients with selected IL-4 polymorphisms significantly altered the production of IFNγ, IL-10, IL-1β, IL-1α, TNFα, and IL-6 after stimulation by HSP 70 or selected bacteria (from P<0.001 to P<0.05. IL-4 gene polymorphisms may influence the function of mononuclear cells to produce not only interleukin-4 but also other cytokines, especially in patients with CP.

  12. Interaction of maternal atopy, CTLA-4 gene polymorphism and gender on antenatal immunoglobulin E production.

    Science.gov (United States)

    Yang, K D; Ou, C-Y; Hsu, T-Y; Chang, J-C; Chuang, H; Liu, C-A; Liang, H-M; Kuo, H-C; Chen, R-F; Huang, E-Y

    2007-05-01

    Genetic heritability and maternal atopy have been correlated to antenatal IgE production, but very few studies have studied gene-maternal atopy interaction on antenatal IgE production. This study investigated the interaction of CTLA-4 polymorphism with prenatal factors on the elevation of cord blood IgE (CBIgE). Pregnant women were antenatally recruited for collection of prenatal environmental factors by a questionnaire. Umbilical cord blood samples were collected for CBIgE detection by fluorescence-linked enzyme assay and CTLA-4 polymorphism measurement by restriction fragment length polymorphism. A total of 1104 pregnant women initially participated in this cohort study, and 898 of them completed cord blood collection. 21.4% of the newborns had elevation of CBIgE (>or=0.5 kU/L). The CTLA-4+49A allele (P=0.021), maternal atopy (Ppaternal atopy, were significantly correlated with the CBIgE elevation in multivariate analysis. A dichotomous analysis of gene-maternal atopy interactions identified maternal atopy and CTLA-4+49A allele had an additive effect on the CBIgE elevation, especially prominent in male newborns; and in the absence of maternal atopy, CTLA-4+49GG genotype had a protective effect on CBIgE elevation in female newborns. Maternal but not paternal atopy has significant impacts on CBIgE elevation depending on gender and CTLA-4+49A/G polymorphism of newborns. Control of maternal atopy and modulation of CTLA-4 expression in the prenatal stage may be a target for the early prevention of perinatal allergy sensitization.

  13. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    Science.gov (United States)

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  14. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    International Nuclear Information System (INIS)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2010-01-01

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  15. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  16. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    Directory of Open Access Journals (Sweden)

    George Q Perrin

    2016-01-01

    Full Text Available The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8 vector expressing cytoplasmic ovalbumin (OVA into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.

  17. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production

    Directory of Open Access Journals (Sweden)

    Izabela eChincinska

    2013-02-01

    Full Text Available Several recent publications report different subcellular localisation of members of the SUT4 subfamily of sucrose transporters. The physiological function of SUT4 sucrose transporters is still not entirely clarified as down-regulation of members of the SUT4 clade had very different effects in rice, poplar and potato. Here, we provide new data on the localization and function of the Solanaceous StSUT4 protein, further elucidating involvement in the onset of flowering, tuberization and in the shade avoidance syndrome of potato plants.Induction of early flowering and tuberization in SUT4-inhibited potato plants correlates with increased sucrose export from leaves and increased sucrose and starch accumulation in terminal sink organs such as developing tubers. SUT4 does not only affect the expression of gibberellin and ethylene biosynthetic enzymes, but also the rate of ethylene synthesis in potato. In SUT4-inhibited plants, the ethylene production no longer follows a diurnal rhythm, leading to the assumption that StSUT4 controls circadian gene expression, potentially by regulating sucrose export from leaves. Furthermore, SUT4 expression affects clock-regulated genes such as StFT, StSOC1 and StCO, which might also be involved in a photoperiod-dependently controlled tuberization. A model is proposed in which StSUT4 controls a phloem-mobile signalling molecule generated in leaves which together with enhanced sucrose export affects developmental switches in apical meristems. SUT4 seems to link photoreceptor-perceived information about the light quality and day length, with phytohormone biosynthesis and the expression of circadian genes.

  18. Rothmund-Thomson Syndrome: Insights from New Patients on the Genetic Variability Underpinning Clinical Presentation and Cancer Outcome

    Directory of Open Access Journals (Sweden)

    Elisa A. Colombo

    2018-04-01

    Full Text Available Biallelic mutations in RECQL4 gene, a caretaker of the genome, cause Rothmund-Thomson type-II syndrome (RTS-II and confer increased cancer risk if they damage the helicase domain. We describe five families exemplifying clinical and allelic heterogeneity of RTS-II, and report the effect of pathogenic RECQL4 variants by in silico predictions and transcripts analyses. Complete phenotype of patients #39 and #42 whose affected siblings developed osteosarcoma correlates with their c.[1048_1049del], c.[1878+32_1878+55del] and c.[1568G>C;1573delT], c.[3021_3022del] variants which damage the helicase domain. Literature survey highlights enrichment of these variants affecting the helicase domain in patients with cancer outcome raising the issue of strict oncological surveillance. Conversely, patients #29 and #19 have a mild phenotype and carry, respectively, the unreported homozygous c.3265G>T and c.3054A>G variants, both sparing the helicase domain. Finally, despite matching several criteria for RTS clinical diagnosis, patient #38 is heterozygous for c.2412_2414del; no pathogenic CNVs out of those evidenced by high-resolution CGH-array, emerged as contributors to her phenotype.

  19. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Nakajima, S.; Sugiyama, M.; Iwai, S.; Hitomi, K.; Otoshi, E.; Kim SangTae; Jiang CaiZhong; Todo, T.; Britt, A.B.; Yamamoto, K.

    1998-01-01

    UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo

  20. The association of telomere length and genetic variation in telomere biology genes.

    Science.gov (United States)

    Mirabello, Lisa; Yu, Kai; Kraft, Peter; De Vivo, Immaculata; Hunter, David J; Prescott, Jennifer; Wong, Jason Y Y; Chatterjee, Nilanjan; Hayes, Richard B; Savage, Sharon A

    2010-09-01

    Telomeres cap chromosome ends and are critical for genomic stability. Many telomere-associated proteins are important for telomere length maintenance. Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in genes encoding telomere-associated proteins (RTEL1 and TERT-CLPTM1) as markers of cancer risk. We conducted an association study of telomere length and 743 SNPs in 43 telomere biology genes. Telomere length in peripheral blood DNA was determined by Q-PCR in 3,646 participants from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial and Nurses' Health Study. We investigated associations by SNP, gene, and pathway (functional group). We found no associations between telomere length and SNPs in TERT-CLPTM1L or RTEL1. Telomere length was not significantly associated with specific functional groups. Thirteen SNPs from four genes (MEN1, MRE11A, RECQL5, and TNKS) were significantly associated with telomere length. The strongest findings were in MEN1 (gene-based P=0.006), menin, which associates with the telomerase promoter and may negatively regulate telomerase. This large association study did not find strong associations with telomere length. The combination of limited diversity and evolutionary conservation suggest that these genes may be under selective pressure. More work is needed to explore the role of genetic variants in telomere length regulation. Published 2010 Wiley-Liss, Inc.

  1. Transcriptional regulation of genes related to progesterone production.

    Science.gov (United States)

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  2. An Intelligent Method of Product Scheme Design Based on Product Gene

    Directory of Open Access Journals (Sweden)

    Qing Song Ai

    2013-01-01

    Full Text Available Nowadays, in order to have some featured products, many customers tend to buy customized products instead of buying common ones in supermarket. The manufacturing enterprises, with the purpose of improving their competitiveness, are focusing on providing customized products with high quality and low cost as well. At present, how to produce customized products rapidly and cheaply has been the key challenge to manufacturing enterprises. In this paper, an intelligent modeling approach applied to supporting the modeling of customized products is proposed, which may improve the efficiency during the product design process. Specifically, the product gene (PG method, which is an analogy of biological evolution in engineering area, is employed to model products in a new way. Based on product gene, we focus on the intelligent modeling method to generate product schemes rapidly and automatically. The process of our research includes three steps: (1 develop a product gene model for customized products; (2 find the obtainment and storage method for product gene; and (3 propose a specific genetic algorithm used for calculating the solution of customized product and generating new product schemes. Finally, a case study is applied to test the usefulness of our study.

  3. Real-time PCR quantification of human complement C4A and C4B genes

    Directory of Open Access Journals (Sweden)

    Fust George

    2006-01-01

    Full Text Available Abstract Background The fourth component of human complement (C4, an essential factor of the innate immunity, is represented as two isoforms (C4A and C4B in the genome. Although these genes differ only in 5 nucleotides, the encoded C4A and C4B proteins are functionally different. Based on phenotypic determination, unbalanced production of C4A and C4B is associated with several diseases, such as systemic lupus erythematosus, type 1 diabetes, several autoimmune diseases, moreover with higher morbidity and mortality of myocardial infarction and increased susceptibility for bacterial infections. Despite of this major clinical relevance, only low throughput, time and labor intensive methods have been used so far for the quantification of C4A and C4B genes. Results A novel quantitative real-time PCR (qPCR technique was developed for rapid and accurate quantification of the C4A and C4B genes applying a duplex, TaqMan based methodology. The reliable, single-step analysis provides the determination of the copy number of the C4A and C4B genes applying a wide range of DNA template concentration (0.3–300 ng genomic DNA. The developed qPCR was applied to determine C4A and C4B gene dosages in a healthy Hungarian population (N = 118. The obtained data were compared to the results of an earlier study of the same population. Moreover a set of 33 samples were analyzed by two independent methods. No significant difference was observed between the gene dosages determined by the employed techniques demonstrating the reliability of the novel qPCR methodology. A Microsoft Excel worksheet and a DOS executable are also provided for simple and automated evaluation of the measured data. Conclusion This report describes a novel real-time PCR method for single-step quantification of C4A and C4B genes. The developed technique could facilitate studies investigating disease association of different C4 isotypes.

  4. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    Improving drought tolerance and productivity is one of the most difficult tasks for ... Keywords. Candidate gene; mapping population; polymerase chain reaction; single marker analysis. .... ple and the mean value computed. 2.4 Isolation of DNA.

  5. Characterization, expression profiles, intercellular distribution and association analysis of porcine PNAS-4 gene with production traits

    NARCIS (Netherlands)

    Mo, D.L.; Zhu, Z.M.; Pas, te M.F.W.; Li, X.Y.; Yang, S.L.; Wang, H.; Wang, H.L.; Li, K.

    2008-01-01

    Background - In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and

  6. Gene analogue finder: a GRID solution for finding functionally analogous gene products

    Directory of Open Access Journals (Sweden)

    Licciulli Flavio

    2007-09-01

    Full Text Available Abstract Background To date more than 2,1 million gene products from more than 100000 different species have been described specifying their function, the processes they are involved in and their cellular localization using a very well defined and structured vocabulary, the gene ontology (GO. Such vast, well defined knowledge opens the possibility of compare gene products at the level of functionality, finding gene products which have a similar function or are involved in similar biological processes without relying on the conventional sequence similarity approach. Comparisons within such a large space of knowledge are highly data and computing intensive. For this reason this project was based upon the use of the computational GRID, a technology offering large computing and storage resources. Results We have developed a tool, GENe AnaloGue FINdEr (ENGINE that parallelizes the search process and distributes the calculation and data over the computational GRID, splitting the process into many sub-processes and joining the calculation and the data on the same machine and therefore completing the whole search in about 3 days instead of occupying one single machine for more than 5 CPU years. The results of the functional comparison contain potential functional analogues for more than 79000 gene products from the most important species. 46% of the analyzed gene products are well enough described for such an analysis to individuate functional analogues, such as well-known members of the same gene family, or gene products with similar functions which would never have been associated by standard methods. Conclusion ENGINE has produced a list of potential functionally analogous relations between gene products within and between species using, in place of the sequence, the gene description of the GO, thus demonstrating the potential of the GO. However, the current limiting factor is the quality of the associations of many gene products from non

  7. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    Science.gov (United States)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  8. Correlating Information Contents of Gene Ontology Terms to Infer Semantic Similarity of Gene Products

    Directory of Open Access Journals (Sweden)

    Mingxin Gan

    2014-01-01

    Full Text Available Successful applications of the gene ontology to the inference of functional relationships between gene products in recent years have raised the need for computational methods to automatically calculate semantic similarity between gene products based on semantic similarity of gene ontology terms. Nevertheless, existing methods, though having been widely used in a variety of applications, may significantly overestimate semantic similarity between genes that are actually not functionally related, thereby yielding misleading results in applications. To overcome this limitation, we propose to represent a gene product as a vector that is composed of information contents of gene ontology terms annotated for the gene product, and we suggest calculating similarity between two gene products as the relatedness of their corresponding vectors using three measures: Pearson’s correlation coefficient, cosine similarity, and the Jaccard index. We focus on the biological process domain of the gene ontology and annotations of yeast proteins to study the effectiveness of the proposed measures. Results show that semantic similarity scores calculated using the proposed measures are more consistent with known biological knowledge than those derived using a list of existing methods, suggesting the effectiveness of our method in characterizing functional relationships between gene products.

  9. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    Science.gov (United States)

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  10. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsushika, Akinori; Hoshino, Tamotsu

    2015-12-01

    The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.

  11. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy.

    Science.gov (United States)

    Santana, Nadja de Lima; Rêgo, Jamile Leão; Oliveira, Joyce Moura; Almeida, Lucas Frederico de; Braz, Marcos; Machado, Lídia Maria Medeiros; Machado, Paulo Roberto Lima; Castellucci, Léa Cristina

    2017-04-01

    Leprosy or hansen's disease is a spectral disease whose clinical forms mostly depends on host's immune and genetic factors. Different Toll-like receptors (TLR) variants have been described associated with leprosy, but with some lack of replication across different populations. To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551), TLR2 (rs7656411, rs3804099) and TLR4 (rs1927914, rs1927911). A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA) test in the serum of a subgroup of patients with and without leprosy reactions. Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR) = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2). Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host's production of key cytokines and chemokines involved in the pathogenesis of this disease.

  12. Modulation of NO and ROS production by AdiNOS transduced vascular cells through supplementation with L-Arg and BH4: implications for gene therapy of restenosis.

    Science.gov (United States)

    Forbes, Scott P; Alferiev, Ivan S; Chorny, Michael; Adamo, Richard F; Levy, Robert J; Fishbein, Ilia

    2013-09-01

    Gene therapy with viral vectors encoding for NOS enzymes has been recognized as a potential therapeutic approach for the prevention of restenosis. Optimal activity of iNOS is dependent on the intracellular availability of L-Arg and BH4 via prevention of NOS decoupling and subsequent ROS formation. Herein, we investigated the effects of separate and combined L-Arg and BH4 supplementation on the production of NO and ROS in cultured rat arterial smooth muscle and endothelial cells transduced with AdiNOS, and their impact on the antirestenotic effectiveness of AdiNOS delivery to balloon-injured rat carotid arteries. Supplementation of AdiNOS transduced endothelial and vascular smooth muscle cells with L-Arg (3.0 mM), BH4 (10 μM) and especially their combination resulted in a significant increase in NO production as measured by nitrite formation in media. Formation of ROS was dose-dependently increased following transduction with increasing MOIs of AdiNOS. Exposure of RASMC to AdiNOS tethered to meshes via a hydrolyzable cross-linker, modeling viral delivery from stents, resulted in increased ROS production, which was decreased by supplementation with BH4 but not L-Arg or L-Arg/BH4. Enhanced cell death, caused by AdiNOS transduction, was also preventable with BH4 supplementation. In the rat carotid model of balloon injury, intraluminal delivery of AdiNOS in BH4-, L-Arg-, and especially in BH4 and L-Arg supplemented animals was found to significantly enhance the antirestenotic effects of AdiNOS-mediated gene therapy. Fine-tuning of iNOS function by L-Arg and BH4 supplementation in the transduced vasculature augments the therapeutic potential of gene therapy with iNOS for the prevention of restenosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. [Study on association of CTLA4 gene polymorphism with Grave's disease in Guangxi Zhuang nationality population].

    Science.gov (United States)

    Liang, Xing-huan; Qin, Ying-fen; Ma, Yan; Xie, Xin-rong; Xie, Kai-qing; Luo, Zuo-jie

    2006-06-01

    To investigate the relationship between the polymorphic (AT)n repeats in 3ountranslated region of exon 4 of CTLA4 gene [CTLA4(AT)n] and Graveso disease (GD) in Zhuang nationality population of Guangxi province. The studied groups comprised 48 patients with GD and 44 normal controls. Amplification of target DNA was carried out by polymerase chain reaction (PCR). The amplified products were run by 8% polyacrylamide gel electrophoresis, and then followed by 0.1% silver staining. Some of amplified products were sequenced directly. Nineteen alleles of CTLA4 gene microsatellite polymorphism were found in Guangxi Zhuang nationality individuals. The 106 bp long allele was apparently increased in patients with GD of Zhuang nationality but not in healthy controls (Pdisease in Zhuang nationality population of Guangxi province. CTLA4(AT)n 106 bp may be the susceptible gene in GD patients of Zhuang nationality in Guangxi; 19 alleles of CTLA4 gene microsatellite polymorphism were found in Guangxi Zhuang nationality individuals.

  14. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses.

    Science.gov (United States)

    Dai, Mingqiu; Hu, Yongfeng; Ma, Qian; Zhao, Yu; Zhou, Dao-Xiu

    2008-02-01

    The homeodomain-leucine zipper (HD-Zip) putative transcription factor genes are divided into 4 families. In this work, we studied the function of a rice HD-Zip I gene, H OME O BO X4 (Oshox4). Oshox4 transcripts were detected in leaf and floral organ primordia but excluded from the shoot apical meristem and the protein was nuclear localized. Over-expression of Oshox4 in rice induced a semi-dwarf phenotype that could not be complemented by applied GA3. The over-expression plants accumulated elevated levels of bioactive GA, while the GA catabolic gene GA2ox3 was upregulated in the transgenic plants. In addition, over-expression of Oshox4 blocked GA-dependent alpha-amylase production. However, down-regulation of Oshox4 in RNAi transgenic plants induced no phenotypic alteration. Interestingly, the expression of YAB1 that is involved in the negative feedback regulation of the GA biosynthesis was upregulated in the Oshox4 over-expressing plants. One-hybrid assays showed that Oshox4 could interact with YAB1 promoter in yeast. In addition, Oshox4 expression was upregulated by GA. These data together suggest that Oshox4 may be involved in the negative regulation of GA signalling and may play a role to fine tune GA responses in rice.

  15. A new measure for functional similarity of gene products based on Gene Ontology

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2006-06-01

    Full Text Available Abstract Background Gene Ontology (GO is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role. Results We present a new method for comparing sets of GO terms and for assessing the functional similarity of gene products. The method relies on two semantic similarity measures; simRel and funSim. One measure (simRel is applied in the comparison of the biological processes found in different groups of organisms. The other measure (funSim is used to find functionally related gene products within the same or between different genomes. Results indicate that the method, in addition to being in good agreement with established sequence similarity approaches, also provides a means for the identification of functionally related proteins independent of evolutionary relationships. The method is also applied to estimating functional similarity between all proteins in Saccharomyces cerevisiae and to visualizing the molecular function space of yeast in a map of the functional space. A similar approach is used to visualize the functional relationships between protein families. Conclusion The approach enables the comparison of the underlying molecular biology of different taxonomic groups and provides a new comparative genomics tool identifying functionally related gene products independent of homology. The proposed map of the functional space provides a new global view on the functional relationships between gene products or protein families.

  16. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy

    Directory of Open Access Journals (Sweden)

    Nadja de Lima Santana

    Full Text Available BACKGROUND Leprosy or hansen’s disease is a spectral disease whose clinical forms mostly depends on host’s immune and genetic factors. Different Toll-like receptors (TLR variants have been described associated with leprosy, but with some lack of replication across different populations. OBJECTIVES To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. METHODS Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551, TLR2 (rs7656411, rs3804099 and TLR4 (rs1927914, rs1927911. A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA test in the serum of a subgroup of patients with and without leprosy reactions. FINDINGS Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2. Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. MAIN CONCLUSIONS All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host’s production of key cytokines and chemokines involved in the pathogenesis of this disease.

  17. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy

    Science.gov (United States)

    Santana, Nadja de Lima; Rêgo, Jamile Leão; Oliveira, Joyce Moura; de Almeida, Lucas Frederico; Braz, Marcos; Machado, Lídia Maria Medeiros; Machado, Paulo Roberto Lima; Castellucci, Léa Cristina

    2017-01-01

    BACKGROUND Leprosy or hansen’s disease is a spectral disease whose clinical forms mostly depends on host’s immune and genetic factors. Different Toll-like receptors (TLR) variants have been described associated with leprosy, but with some lack of replication across different populations. OBJECTIVES To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. METHODS Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551), TLR2 (rs7656411, rs3804099) and TLR4 (rs1927914, rs1927911). A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA) test in the serum of a subgroup of patients with and without leprosy reactions. FINDINGS Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR) = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2). Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. MAIN CONCLUSIONS All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host’s production of key cytokines and chemokines involved in the pathogenesis of this disease. PMID:28327786

  18. Rothmund-Thomson Syndrome

    DEFF Research Database (Denmark)

    Suter, Aude-Annick; Itin, Peter; Heinimann, Karl

    2016-01-01

    with neutropenia (PN) and Dyskeratosis Congenita (DC), poikiloderma occurs as one of the main symptoms. Here, we report on genotype and phenotype data of a cohort of 44 index patients with RTS or related genodermatoses. METHODS: DNA samples from 43 patients were screened for variants in the 21 exons of the RECQL4...... to assess the patients' cancer risk, to avoid continuous and inconclusive clinical evaluations and to clarify the recurrence risk in the families. Additionally, it shows that the phenotype of more than 50% of the patients with suspected Rothmund-Thomson disease may be due to mutations in other genes raising...

  19. The development of the conditionally replication-competent adenovirus: replacement of E4 orf1-4 region by exogenous gene.

    Science.gov (United States)

    Nam, Jae-Kook; Lee, Mi-Hyang; Seo, Hae-Hyun; Kim, Seok-Ki; Lee, Kang-Huyn; Kim, In-Hoo; Lee, Sang-Jin

    2010-05-01

    Tumor or tissue specific replicative adenovirus armed with a therapeutic gene has shown a promising anti-cancer therapeutic modality. However, because the genomic packaging capacity is constrained, only a few places inside it are available for transgene insertion. In the present study, we introduce a novel strategy utilizing the early E4 region for the insertion of therapeutic gene(s). We constructed the conditionally replication-competent adenovirus (CRAd), Ad5E4(mRFP) by: (i) replacing the E4/E1a promoter by the prostate-specific enhancer element; (ii) inserting mRFP inside the E4orf1-4 deletion region; and (iii) sub-cloning enhanced green fluorescent protein controlled by cytomegalovirus promoter in the left end of the viral genome. Subsequently, we evaluated its replication abilities and killing activities in vitro, as well as its in vivo anti-tumor efficacy in CWR22rv xenografts. When infected with Ad5E4(mRFP), the number and intensity of the mRFP gene products increased in a prostate cancer cell-specific manner as designed, suggesting that the mRFP gene and E4orfs other than E4orf1-4 were well synthesized from one transcript via alternative splicing as the recombinant adenovirus replicated. As expected from the confirmed virus replication capability, Ad5E4(mRFP) induced cell lysis as potent as the wild-type adenovirus and effectively suppressed tumor growth when tested in the CWR22rv xenografts in nude mice. Furthermore, Ad5E4(endo/angio) harboring an endostatin-angiostatin gene in E4orf1-4 was able to enhance CRAd by replacing mRFP with a therapeutic gene. The approach employed in the present study for the insertion of a therapeutic transgene in CRAd should facilitate the construction of CRAd containing multiple therapeutic genes in the viral genome that may have the potential to serve as highly potent cancer therapeutic reagents. Copyright (c) 2010 John Wiley & Sons, Ltd.

  20. [Functional activity of the modA, gene in Methylobacterium dichloromethanicum DM4].

    Science.gov (United States)

    Firsova, Y E; Trotsenko, Y A

    2014-01-01

    The putative METDI2644 (modA2) gene of Methylobacterium dichloromethanicum DM4, present in the 126-kbp chromosomal fragment associated with dichloromethane (DCM) degradation was investigated. While this gene is presumed to encode the periplasmic substrate-binding subunit of the molybdate ABC transporter, its conceptual translation also exhibits similarity to the proteins containing the ostA conservative domain and responsible for resistance of gram-negative bacteria to organic solvents. Reverse transcription polymerase chain reaction (RT-PCR) revealed the RNA transcripts of this gene in the cells grown on either DCM or methanol. The mobilizable suicide vector pK18mob was used to obtain a knockout mutant with the METDI2644 gene inactivated by insertion of the gentamycin cassette. The mutant pregrown on methanol exhibited lower growth rate on DCM than the wild-type strain DM4. The difference was not alleviated by addition of sodium molybdate. Our results suggest that the METDI2644 gene product plays a role in cell adaptation to DCM degradation.

  1. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products.

    Directory of Open Access Journals (Sweden)

    Leyre Lavilla Lerma

    Full Text Available The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR, cutting room (CR and commercial meat products (MP. Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR zones, and also refrigerator 4 (F4 and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.

  2. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products.

    Science.gov (United States)

    Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate

    2014-01-01

    The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.

  3. Exposure to 4-tert-octylphenol, an environmentally persistent alkylphenol, enhances interleukin-4 production in T cells via NF-AT activation

    International Nuclear Information System (INIS)

    Lee, Mi H.; Kim, Eugene; Kim, Tae S.

    2004-01-01

    4-tert-Octylphenol (OP) is a representative endocrine disruptor that may have adverse effects on human health. The influence of this compound on allergic immune responses remains unclear. In this study, we have examined the effects of OP on production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune responses. OP significantly enhanced IL-4 production in antigen-primed T cells in a dose-dependent manner. Treatment with OP in vivo resulted in significant increase of IL-4 production in T cells and of IgE levels in sera of antigen-primed mice. Furthermore, OP enhanced the activation of IL-4 gene promoter in EL4 T cells transiently transfected with IL-4 promoter/reporter constructs, and the enhancing effect mapped to a region in the IL-4 promoter containing binding sites for nuclear factor of activated T cell (NF-AT). Activation of T cells by phorbol-12-myristate-13-acetate (PMA) resulted in markedly enhanced binding activities to the NF-AT site, which significantly increased upon addition of OP, indicating that the transcription factor NF-AT was involved in the enhancing effect of OP on IL-4 production. The enhancement of IL-4 production by OP was blocked by FK506, a calcineurin inhibitor, but not by the estrogen receptor (ER) antagonist ICI 182 780. FK506 inhibited the NF-AT-DNA binding activity and IL-4 gene promoter activity enhanced by OP in a dose-dependent manner. These findings demonstrate that OP enhances IL-4 production in T cells via the stimulation of calcineurin-dependent NF-AT activation

  4. A deletion in the Hermansky-Pudlak syndrome 4 (Hps4) gene appears to be responsible for albinism in channel catfish.

    Science.gov (United States)

    Li, Yueru; Geng, Xin; Bao, Lisui; Elaswad, Ahmed; Huggins, Kevin W; Dunham, Rex; Liu, Zhanjiang

    2017-06-01

    Albinism is caused by a series of genetic abnormalities leading to reduction of melanin production. Albinism is quite frequent in catfish, but the causative gene and the molecular basis were unknown. In this study, we conducted a genome-wide association study (GWAS) using the 250 K SNP array. The GWAS analysis allowed mapping of the albino phenotype in the Hermansky-Pudlak syndrome 4 (Hps4) gene, which is known to be involved in melanosome biosynthesis. Sequencing analysis revealed that a 99-bp deletion was present in all analyzed albino catfish at the intron 2 and exon 3 junction. This deletion led to the skipping of the entire exon 3 which was confirmed by RT-PCR. Therefore, Hps4 was determined to be the candidate gene of the catfish albinism.

  5. Revealing gene action for production characteristics by inbreeding ...

    African Journals Online (AJOL)

    Revealing gene action for production characteristics by inbreeding, based on a long-term selection ... The gene action involved in the expression of production characters was investigated, using the effect of the theoretical inbreeding ..... and predicted selection responses for growth, fat and lean traits in mice. J. Anim. Sci.

  6. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation

    Science.gov (United States)

    Pham, Duy; Yu, Qing; Walline, Crystal C.; Muthukrishnan, Rajarajeswari; Blum, Janice S.; Kaplan, Mark H.

    2013-01-01

    The Signal Transducer and Activator of Transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including H3K4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in H3K27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFNγ production. Moreover, although STAT4-deficient mice are protected from the development of EAE, mice deficient in STAT4 and conditionally-deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are de-repressed in the absence of Dnmt3a have greater induction following the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a de-repressed genetic state susceptible to transactivation by additional fate-determining transcription factors. PMID:23772023

  7. Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: A review

    Directory of Open Access Journals (Sweden)

    Hiroshi Kikukawa

    2018-05-01

    Full Text Available The filamentous fungus Mortierella alpina 1S-4 is capable of accumulating a large amount of triacylglycerol containing C20 polyunsaturated fatty acids (PUFAs. Indeed, triacylglycerol production by M. alpina 1S-4 can reach 20 g/L of culture broth, and the critical cellular signaling and structural PUFA arachidonic acid (ARA comprises 30%–70% of the total fatty acid. The demonstrated health benefits of functional PUFAs have in turn encouraged the search for rich sources of these compounds, including fungal strains showing enhanced production of specific PUFAs. Screening for mutants and targeted gene manipulation of M. alpina 1S-4 have elucidated the functions of various enzymes involved in PUFA biosynthesis and established lines with improved PUFA productivity. In some cases, these strains have been used for indistrial-scale production of PUFAs, including ARA. In this review, we described practical ARA production through mutant breeding, functional analyses of genes encoding enzymes involved in PUFA biosynthesis, and recent advances in the production of specific PUFAs through molecular breeding of M. alpina 1S-4. Keywords: Arachidonic acid, Mortierella alpina, Molecular breeding, Fatty acid desaturase

  8. The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate.

    Science.gov (United States)

    Aksyuk, Anastasia A; Leiman, Petr G; Shneider, Mikhail M; Mesyanzhinov, Vadim V; Rossmann, Michael G

    2009-06-10

    The baseplate of bacteriophage T4 is a multicomponent protein complex, which controls phage attachment to the host. It assembles from six wedges and a central hub. During infection the baseplate undergoes a large conformational change from a dome-shaped to a flat, star-shaped structure. We report the crystal structure of the C-terminal half of gene product (gp) 6 and investigate its motion with respect to the other proteins during the baseplate rearrangement. Six gp6 dimers interdigitate, forming a ring that maintains the integrity of the baseplate in both conformations. One baseplate wedge contains an N-terminal dimer of gp6, whereas neighboring wedges are tied together through the C-terminal dimer of gp6. The dimeric interactions are preserved throughout the rearrangement of the baseplate. However, the hinge angle between the N- and C-terminal parts of gp6 changes by approximately 15 degrees , accounting for a 10 A radial increase in the diameter of the gp6 ring.

  9. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    Science.gov (United States)

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l -1 , monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  10. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-08

    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  11. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum.

    Science.gov (United States)

    Cardoza, R E; McCormick, S P; Malmierca, M G; Olivera, E R; Alexander, N J; Monte, E; Gutiérrez, S

    2015-09-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Effect of mating types on amorpha-4, 11-diene production in ...

    African Journals Online (AJOL)

    user

    2012-01-26

    Jan 26, 2012 ... pYeDP60/GAPDH/ADS harbouring the amorpha-4,11-diene synthase (ADS) gene was transformed into ... cost and an unreliable supply chain for artemisinin ... production mode which could dramatically reduce the cost of ...

  13. Expression of cocoa genes in Saccharomyces cerevisiae improves cocoa butter production

    DEFF Research Database (Denmark)

    Wei, Yongjun; Bergenholm, David; Gossing, Michael

    2018-01-01

    Background: Cocoa butter (CB) extracted from cocoa beans (Theobroma cacao) is the main raw material for chocolate production, but CB supply is insufficient due to the increased chocolate demand and limited CB production. CB is mainly composed of three different kinds of triacylglycerols (TAGs), 1......), and it is essential to modulate the yeast TAG biosynthetic pathway for higher CBL production.Results: We cloned seven GPAT genes and three LPAT genes from cocoa cDNA, in order to screen for CBL biosynthetic gene candidates. By expressing these cloned cocoa genes and two synthesized cocoa DGAT genes in S. cerevisiae......, we successfully increased total fatty acid production, TAG production and CBL production in some of the strains. In the best producer, the potential CBL content was eightfold higher than the control strain, suggesting the cocoa genes expressed in this strain were functional and might be responsible...

  14. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  15. Regulation of metabolic products and gene expression in Fusarium asiaticum by agmatine addition.

    Science.gov (United States)

    Suzuki, Tadahiro; Kim, Young-Kyung; Yoshioka, Hifumi; Iwahashi, Yumiko

    2013-05-01

    The metabolic products resulting from the cultivation of F. asiaticum in agmatine were identified using capillary electrophoresis-time of flight mass spectrometry. Glyoxylic acid was detected from fungal cultures grown in agmatine, while it was absent in control cells. The abundance of other metabolic products of the glycolytic pathway also increased because of agmatine; however, there was no increase in the amounts of pyruvic acid or metabolites from the tricarboxylic acid cycle. Moreover, gene expression levels within Fusarium asiaticum exposed to agmatine were analyzed by DNA microarray. Changes in gene expression levels directed the changes in metabolic products. Our results suggest that acetyl coenzyme A, which is a starting substrate for the biosynthesis of deoxynivalenol (DON), was simultaneously produced by activated β-oxidation. Furthermore, the content of 4-aminobutyrate (GABA) was increased in the agmatine addition culture medium. GABA can be synthesized from agmatine through putrescine and might influence the regulation of DON-related genes.

  16. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus).

    Science.gov (United States)

    Manzano, Susana; Aguado, Encarnación; Martínez, Cecilia; Megías, Zoraida; García, Alicia; Jamilena, Manuel

    2016-01-01

    Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy.

  17. Application of Various Statistical Models to Explore Gene-Gene Interactions in Folate, Xenobiotic, Toll-Like Receptor and STAT4 Pathways that Modulate Susceptibility to Systemic Lupus Erythematosus.

    Science.gov (United States)

    Rupasree, Yedluri; Naushad, Shaik Mohammad; Varshaa, Ravi; Mahalakshmi, Govindaraj Swathika; Kumaraswami, Konda; Rajasekhar, Liza; Kutala, Vijay Kumar

    2016-02-01

    In view of our previous studies showing an independent association of genetic polymorphisms in folate, xenobiotic, and toll-like receptor (TLR) pathways with the risk for systemic lupus erythematosus (SLE), we have developed three statistical models to delineate complex gene-gene interactions between folate, xenobiotic, TLR, and signal transducer and activator of transcription 4 (STAT4) signaling pathways in association with the molecular pathophysiology of SLE. We developed additive, multifactor dimensionality reduction (MDR), and artificial neural network (ANN) models. The additive model, although the simplest, suggested a moderate predictability of 30 polymorphisms of these four pathways (area under the curve [AUC] 0.66). MDR analysis revealed significant gene-gene interactions among glutathione-S-transferase (GST)T1 and STAT4 (rs3821236 and rs7574865) polymorphisms, which account for moderate predictability of SLE. The MDR model for specific auto-antibodies revealed the importance of gene-gene interactions among cytochrome P450, family1, subfamily A, polypeptide 1 (CYP1A1) m1, catechol-O-methyltransferase (COMT) H108L, solute carrier family 19 (folate transporter), member 1 (SLC19A1) G80A, estrogen receptor 1 (ESR1), TLR5, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), thymidylate synthase (TYMS). and STAT4 polymorphisms. The ANN model for disease prediction showed reasonably good predictability of SLE risk with 30 polymorphisms (AUC 0.76). These polymorphisms contribute towards the production of SSB and anti-dsDNA antibodies to the extent of 48 and 40%, respectively, while their contribution for the production of antiRNP, SSA, and anti-cardiolipin antibodies varies between 20 and 30%. The current study highlighted the importance of genetic polymorphisms in folate, xenobiotic, TLR, and STAT4 signaling pathways as moderate predictors of SLE risk and delineates the molecular pathophysiology associated with these single nucleotide

  18. Identification of potentially hazardous human gene products in GMO risk assessment.

    Science.gov (United States)

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.

  19. A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter system. In addition the invention relates to the use...... of the dual cassette reporter system for assessing target gene translation and target gene product folding....

  20. Gene therapy for Stargardt disease associated with ABCA4 gene.

    Science.gov (United States)

    Han, Zongchao; Conley, Shannon M; Naash, Muna I

    2014-01-01

    Mutations in the photoreceptor-specific flippase ABCA4 lead to accumulation of the toxic bisretinoid A2E, resulting in atrophy of the retinal pigment epithelium (RPE) and death of the photoreceptor cells. Many blinding diseases are associated with these mutations including Stargardt's disease (STGD1), cone-rod dystrophy, retinitis pigmentosa (RP), and increased susceptibility to age-related macular degeneration. There are no curative treatments for any of these dsystrophies. While the monogenic nature of many of these conditions makes them amenable to treatment with gene therapy, the ABCA4 cDNA is 6.8 kb and is thus too large for the AAV vectors which have been most successful for other ocular genes. Here we review approaches to ABCA4 gene therapy including treatment with novel AAV vectors, lentiviral vectors, and non-viral compacted DNA nanoparticles. Lentiviral and compacted DNA nanoparticles in particular have a large capacity and have been successful in improving disease phenotypes in the Abca4 (-/-) murine model. Excitingly, two Phase I/IIa clinical trials are underway to treat patients with ABCA4-associated Startgardt's disease (STGD1). As a result of the development of these novel technologies, effective therapies for ABCA4-associated diseases may finally be within reach.

  1. fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study.

    Science.gov (United States)

    Bag, Susmita; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-07

    Network study on genes and proteins offers functional basics of the complexity of gene and protein, and its interacting partners. The gene fatty acid-binding protein 4 (fabp4) is found to be highly expressed in adipose tissue, and is one of the most abundant proteins in mature adipocytes. Our investigations on functional modules of fabp4 provide useful information on the functional genes interacting with fabp4, their biochemical properties and their regulatory functions. The present study shows that there are eight set of candidate genes: acp1, ext2, insr, lipe, ostf1, sncg, usp15, and vim that are strongly and functionally linked up with fabp4. Gene ontological analysis of network modules of fabp4 provides an explicit idea on the functional aspect of fabp4 and its interacting nodes. The hierarchal mapping on gene ontology indicates gene specific processes and functions as well as their compartmentalization in tissues. The fabp4 along with its interacting genes are involved in lipid metabolic activity and are integrated in multi-cellular processes of tissues and organs. They also have important protein/enzyme binding activity. Our study elucidated disease-associated nsSNP prediction for fabp4 and it is interesting to note that there are four rsID׳s (rs1051231, rs3204631, rs140925685 and rs141169989) with disease allelic variation (T104P, T126P, G27D and G90V respectively). On the whole, our gene network analysis presents a clear insight about the interactions and functions associated with fabp4 gene network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785.

    Science.gov (United States)

    Dertli, Enes; Mayer, Melinda J; Colquhoun, Ian J; Narbad, Arjan

    2016-07-01

    Lactobacillus johnsonii FI9785 has an eps gene cluster which is required for the biosynthesis of homopolymeric exopolysaccharides (EPS)-1 and heteropolymeric EPS-2 as a capsular layer. The first gene of the cluster, epsA, is the putative transcriptional regulator. In this study we showed the crucial role of epsA in EPS biosynthesis by demonstrating that deletion of epsA resulted in complete loss of both EPS-1 and EPS-2 on the cell surface. Plasmid complementation of the epsA gene fully restored EPS production, as confirmed by transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, this complementation resulted in a twofold increase in the expression levels of this gene, which almost doubled amounts of EPS production in comparison with the wild-type strain. Analysis of EPS by NMR showed an increased ratio of the heteropolysaccharide to homopolysaccharide in the complemented strain and allowed identification of the acetylated residue in EPS-2 as the (1,4)-linked βGlcp unit, with the acetyl group located at O-6. These findings indicate that epsA is a positive regulator of EPS production and that EPS production can be manipulated by altering its expression. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Mutation analysis of COL4A3 and COL4A4 genes in a Chinese

    Indian Academy of Sciences (India)

    Autosomal dominant Alport syndrome (ADAS) accounts for 5% of all cases of Alport syndrome (AS), a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family.Mutationsin COL4A3 and COL4A4 genes were reported to be associated with ADAS. In this study, clinical ...

  4. Efficient production of antibody Fab fragment by transient gene expression in insect cells.

    Science.gov (United States)

    Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki

    2017-08-01

    Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Stimulation of the synthesis of bacteriophage T4 gene 32 protein by ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Krisch, H.M.; Van Houwe, G.

    1976-01-01

    The synthesis of bacteriophage T4 gene 32 product, P32, has been followed by gel electrophoresis of lysates of infected cells which have been irradiated with ultraviolet light. In wild-type infections irradiation after the commencement of late gene expression results in a rapid stimulation of the rate of P32 synthesis. Within four minutes after irradiation P32 is synthesized at 11 times the rate of the unirradiated control infection. P32 seems to be the only T4 protein which exhibits such u.v. inducibility. This inducibility is dependent on the function of genes 46 and 47 and to a lesser extent on several other T4 genes thought to be involved in repair (P43, w and y). An infection defective in both P43 and P46 shows essentially no stimulation of the rate of P32 synthesis after irradiation. In the absence of DNA replication the parental DNA is degraded after irradiation in a dose-dependent manner. The extent of P32 induction in such an infection is also proportional to the dose. It is suggested that the production of gaps during repair of u.v.-irradiated DNA is responsible for the stimulation of P32 synthesis. A model is proposed in which such regions of single-stranded DNA compete for P32 by binding it nonspecifically, thus reducing the amount of P32 free to block the expression of gene 32. Because the expression of gene 32 is self-regulatory this would result in increased P32 synthesis. The possible role of P32 in the repair of u.v.-damaged DNA is discussed. (author)

  6. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology

    Directory of Open Access Journals (Sweden)

    Millard Andrew D

    2010-10-01

    Full Text Available Abstract From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.

  7. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  8. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  9. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2007-01-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy

  10. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-02

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  11. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    Science.gov (United States)

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  12. Expression of p16(INK4A) gene in human pituitary tumours.

    Science.gov (United States)

    Machiavelli, Gloria; Cotignola, Javier; Danilowicz, Karina; Carbonara, Carolina; Paes de Lima, Andrea; Basso, Armando; Bruno, Oscar Domingo; Szijan, Irene

    2008-01-01

    Pituitary adenomas comprise 10-15% of primary intracranial tumours but the mechanisms leading to tumour development are yet to be clearly established. The retinoblastoma pathway, which regulates the progression through the cell cycle, is often deregulated in different types of tumours. We studied the cyclin-dependent kinase inhibitor p16(INK4A) gene expression at mRNA level in human pituitary adenomas. Forty-six tumour specimens of different subtypes, 21 clinically non-functioning, 12 growth hormone-secreting, 6 prolactin-secreting, 6 adrenocorticotropin-secreting, and 1 thyrotropin-secreting tumours were studied. All clinically non-functioning and most of the hormone-secreting tumours were macroadenomas (38/46). The RT-PCR assay and electrophoresis of the PCR-products showed that p16(INK4A) mRNA was undetectable in: 62% of non-functioning, 8% of growth hormone-secreting, 17% of prolactin-secreting and 17% of adrenocorticotropin-secreting adenomas. Forty percent of all macroadenomas and 25% of microadenomas had negative p16(INK4A) mRNA, the latter results suggest that the absence of p16(INK4A) product might be an early event in tumours with no expression of this suppressor gene. Within the non-functioning adenomas 63% were "null cell" and 37% were positive for some hormone, both subgroups showed similar percentage of cases with absence of p16(INK4A) mRNA. Our results show that clinically non-functioning macroadenomas have impaired p16(INK4A) expression in a clearly higher proportion than any other pituitary tumour subtype investigated. Other regulatory pathways may be implicated in the development of tumours with positive p16(INK4A) expression.

  13. Nonsense mutants in the bacteriophage T4D v gene

    Energy Technology Data Exchange (ETDEWEB)

    Minderhout, L van; Grimbergen, J; Groot, B de [Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica en Chemische Mutagenese; Cohen (J.A.) Instituut voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1975-09-01

    Ten UV-sensitive mutants of T4D with the v phenotype were isolated. Of these ten mutants, two are amber and two opal. In UV curves and in photoreactivation and multiplicity reactivation experiments the nonsense mutants show the v phenotype in su/sup -/ hosts and almost the T4/sup +/ phenotype in su/sup +/ hosts. The mutations are located between rl and e and are alleles of v/sub 1/. In crosses with irradiated and non-irradiated phages the recombinant frequency is not reduced by uvs5. Amber uvs5 propagated in CR63 su/sup +/ is with B su/sup -/ just as sensitive to UV as uvs5 propagated in B su/sup -/, which permits the conclusion that the capsid of T4 phage particles does not contain the v gene product.

  14. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    Science.gov (United States)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  15. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    Science.gov (United States)

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients.

  16. Identification of an ovine atadenovirus gene whose product activates the viral E2 promoter: possible involvement of E2F-1

    International Nuclear Information System (INIS)

    Kuemin, Daniel; Hofmann, Christian; Uckert, Wolfgang; Both, Gerald W.; Loeser, Peter

    2004-01-01

    Activation of the adenoviral E2 promoter is an early step in adenovirus gene expression. For members of the mast- and aviadenoviruses, this requires induction of the cellular transcription factor E2F by virally encoded gene products such as E1A, E4orf6/7 and orf22/GAM-1. The newly recognized genus atadenovirus, of which the ovine isolate OAdV is the prototype, lacks any sequence homology to those genes. To find a possible link between E2 promoter activation and OAdV gene expression, we utilized a screening method to search for genes within the OAdV genome that were capable of stimulating the viral E2 promoter. One such gene, E43, was identified within the proposed E4 region toward the right-hand end of the OAdV genome. The E43 gene product was also found to be capable of stimulating E2F-1-dependent gene expression. A closer inspection of the E2 promoter revealed the presence of a non-palindromic E2F binding site within the OAdV E2 promoter. Mutation of this site markedly reduced both E2F-1- and E43-dependent promoter activation. Moreover, a direct protein-protein interaction of the E43 gene product with E2F, but not with the retinoblastoma protein pRb, suggested a possible cooperation between these two proteins in activating the E2 promoter. The importance of the E43 gene product for virus replication is also underlined by the finding that an OAdV recombinant with a functionally inactivated E43 gene showed severely inhibited virus growth

  17. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  18. Genetic Resources for Advanced Biofuel Production Described with the Gene Ontology

    Directory of Open Access Journals (Sweden)

    Trudy eTorto-Alalibo

    2014-10-01

    Full Text Available Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial Energy Gene Ontology (MENGO: http://www.mengo.biochem.vt.edu project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat, can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  19. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  20. Phylogenetic analysis of the MS4A and TMEM176 gene families.

    Directory of Open Access Journals (Sweden)

    Jonathan Zuccolo

    2010-02-01

    Full Text Available The MS4A gene family in humans includes CD20 (MS4A1, FcRbeta (MS4A2, Htm4 (MS4A3, and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells.Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus. A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio. The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus. Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system.Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells.

  1. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  2. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    International Nuclear Information System (INIS)

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses

  3. The immunomodulatory gene products of myxoma virus

    Indian Academy of Sciences (India)

    Unknown

    273. Keywords. Gene products; myxoma virus; Oryctolagus cuniculus; poxvirus; skin lesions ...... these data is that these viral proteins do not promote class .... Cudmore S, Reckmann I and Way M 1997 Viral manipulations of the actin ...

  4. Cyclic Equibiaxial Tensile Strain Alters Gene Expression of Chondrocytes via Histone Deacetylase 4 Shuttling.

    Directory of Open Access Journals (Sweden)

    Chongwei Chen

    Full Text Available This paper aims to investigate whether equibiaxial tensile strain alters chondrocyte gene expression via controlling subcellular localization of histone deacetylase 4 (HDAC4.Murine chondrocytes transfected with GFP-HDAC4 were subjected to 3 h cyclic equibiaxial tensile strain (CTS, 6% strain at 0.25 Hz by a Flexcell® FX-5000™ Tension System. Fluorescence microscope and western blot were used to observe subcellular location of HDAC4. The gene expression was analyzed by real-time RT-PCR. The concentration of Glycosaminoglycans in culture medium was quantified by bimethylmethylene blue dye; Collagen II protein was evaluated by western blot. Cells phenotype was identified by immunohistochemistry. Cell viability was evaluated by live-dead cell detect kit. Okadaic acid, an inhibitor of HDAC4 nuclear relocation, was used to further validate whether HDAC4 nuclear relocation plays a role in gene expression in response to tension stimulation.87.5% of HDAC4 was located in the cytoplasm in chondrocytes under no loading condition, but it was relocated to the nucleus after CTS. RT-PCR analysis showed that levels of mRNA for aggrecan, collagen II, LK1 and SOX9 were all increased in chondrocytes subjected to CTS as compared to no loading control chondrocytes; in contrast, the levels of type X collagen, MMP-13, IHH and Runx2 gene expression were decreased in the chondrocytes subjected to CTS as compared to control chondrocytes. Meanwhile, CTS contributed to elevation of glycosaminoglycans and collagen II protein, but did not change collagen I production. When Okadaic acid blocked HDAC4 relocation from the cytoplasm to nucleus, the changes of the chondrocytes induced by CTS were abrogated. There was no chondrocyte dead detected in this study in response to CTS.CTS is able to induce HDAC4 relocation from cytoplasm to nucleus. Thus, CTS alters chondrocytes gene expression in association with the relocation of HDAC4 induced by CTS.

  5. Agrobacterium-mediated transformation of plants: Basic principles ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Furthermore, inactivation of RecQl4A in Arabidopsis leads to 7.5 to 20 fold increase in ... Enriched co-culture medium with 200 mM sucrose and 200 mM ... The effect of temperature during co-culture on T-DNA delivery was first ...

  6. Phylogenetic Analysis of the MS4A and TMEM176 Gene Families

    Science.gov (United States)

    Zuccolo, Jonathan; Bau, Jeremy; Childs, Sarah J.; Goss, Greg G.; Sensen, Christoph W.; Deans, Julie P.

    2010-01-01

    Background The MS4A gene family in humans includes CD20 (MS4A1), FcRβ (MS4A2), Htm4 (MS4A3), and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells. Principal Findings Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus) and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus). A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio). The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus). Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system. Conclusions/Significance Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells. PMID:20186339

  7. Development of a PCR-based marker utilizing a deletion mutation in the dihydroflavonol 4-reductase (DFR) gene responsible for the lack of anthocyanin production in yellow onions (Allium cepa).

    Science.gov (United States)

    Kim, Sunggil; Yoo, Kil Sun; Pike, Leonard M

    2005-02-01

    Bulb color in onions (Allium cepa) is an important trait, but the mechanism of color inheritance is poorly understood at the molecular level. A previous study showed that inactivation of the dihydroflavonol 4-reductase (DFR) gene at the transcriptional level resulted in a lack of anthocyanin production in yellow onions. The objectives of the present study were the identification of the critical mutations in the DFR gene (DFR-A) and the development of a PCR-based marker for allelic selection. We report the isolation of two additional DFR homologs (DFR-B and DFR-C). No unique sequences were identified in either DFR homolog, even in the untranslated region (UTR). Both genes shared more than 95% nucleotide sequence identity with the DFR-A gene. To obtain a unique sequence from each gene, we isolated the promoter regions. Sequences of the DFR-A and DFR-B promoters differed completely from one another, except for an approximately 100-bp sequence adjacent to the 5'UTR. It was possible to specifically amplify only the DFR-A gene using primers designed to anneal to the unique promoter region. The sequences of yellow and red DFR-A alleles were the same except for a single base-pair change in the promoter and an approximately 800-bp deletion within the 3' region of the yellow DFR-A allele. This deletion was used to develop a co-dominant PCR-based marker that segregated perfectly with color phenotypes in the F2 population. These results indicate that a deletion mutation in the yellow DFR-A gene results in the lack of anthocyanin production in yellow onions.

  8. Vasopressin Gene-Related Products in the Management of Breast Cancer

    National Research Council Canada - National Science Library

    North, William

    1998-01-01

    .... The VP gene is expressed by seemingly all breast cancers and by all DCIS, and this information coupled with an absence of VP gene-related products from fibrocystic disease potentially provides us...

  9. STAT4 gene polymorphism in patients after renal allograft transplantation.

    Science.gov (United States)

    Dąbrowska-Żamojcin, Ewa; Dziedziejko, Violetta; Safranow, Krzysztof; Domański, Leszek; Słuczanowska-Głabowska, Sylwia; Pawlik, Andrzej

    2016-01-01

    STAT4 (signal transducer and activator of transcription 4) is involved in the regulation of innate and adaptive immune responses. Some studies have suggested that STAT4 may be involved in the immune response after graft transplantation. Several polymorphisms in the STAT4 gene have been identified. The most commonly studied polymorphism in the STAT4 gene is rs7574865. In our study, we examined whether this polymorphism is associated with the early and late functions of renal allografts. A total of 270 recipients of first renal transplants were included in the study. Single nucleotide polymorphisms (SNPs) within the STAT4 gene were genotyped using TaqMan genotyping assays. There were no statistically significant associations between the STAT4 gene rs7574865 polymorphism and delayed graft function, acute rejection, chronic allograft dysfunction, post-transplant diabetes mellitus, or creatinine serum concentrations after transplantation. Our results suggest a lack of association between the STAT4 rs7574865 SNP and kidney allograft function in the Polish population.

  10. Gene expression analysis of FABP4 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Abdulkarim Yasin Karim

    2016-06-01

    Full Text Available Purpose: Gastric cancer has high incidence and mortality rate in several countries and is still one of the most frequent and lethal disease. In this study, we aimed to determine diagnostic markers in gastric cancer by molecular techniques; include mRNA expression analysis of FABP4 gene. Fatty acid binding protein 4 (FABP4 gene encodes the fatty acid binding protein found in adipocytes. The protein encoded by FABP4 are a family of small, highly conserved, cytoplasmic proteins that bind long-chain fatty acids and other hydrophobic ligands. It is thought that FABPs roles include fatty acid uptake, transport, and metabolism. Material and Methods: Total RNA were extracted from paired tumor and normal tissues of 47 gastric cancer. The mRNA expression level of FABP4 was measured employing semi- quantitative reverse transcription- polymerase chain reaction (RT- PCR. Results: The mRNA expression level of FABP4 was significantly decreased (down- regulated. Conclusion: Down-regulation of FABP4 gene seems to occur at the initial steps of gastric cancer development. In order to confirm the relationship between the gastric tumor and FABP4 gene, further analysis like immunohistochemistry and epigenetc techniques are necessary. [Cukurova Med J 2016; 41(2.000: 248-252

  11. Mapping of HNF4alpha target genes in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Boyd, Mette; Bressendorff, Simon; Moller, Jette

    2009-01-01

    ABSTRACT: BACKGROUND: The role of HNF4alpha has been extensively studied in hepatocytes and pancreatic beta-cells, and HNF4alpha is also regarded as key regulator of intestinal epithelial cell differentiation as well. The aim of the present work is to identify novel HNF4alpha target genes....... The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS: 1,541 genes were identified as potential HNF4alpha targets, many of which have...

  12. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle

    DEFF Research Database (Denmark)

    Hart, Jane; MacHugh, Niall D.; Sheldrake, Tara

    2017-01-01

    candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens...... cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV...

  13. Genetic Analysis Using Partial Sequencing of Melanocortin 4 Receptor (MC4R Gene in Bligon Goat

    Directory of Open Access Journals (Sweden)

    Latifah Latifah

    2017-08-01

    Full Text Available Melanocortin 4 Receptor gene is involved in sympathetic nerve activity, adrenal and thyroid functions, and media for leptin in regulating energy balance and homeostasis. The aim of this research was to perform genetic analysis of MC4R gene sequences from Bligon goats. Fourty blood samples of Bligon does were used for DNA extraction. The primers were designed after alignment of 12 DNA sequences of MC4R gene from goat, sheep, and cattle. The primers were constructed on the Capra hircus MC4R gene sequence from GenBank (accession No. NM_001285591. Two DNA polymorphisms of MC4R were revealed in exon region (g.998 A/G and g.1079 C/T. The SNP g.998 A/G was a non-synonymous polymorphism i.e., changing of amino acid from methionine (Met to isoleucine (Ile. The SNP g.1079 C/T was a synonymous polymorphism. Restriction enzyme mapping on Bligon goat MC4R gene revealed three restriction enzymes (RsaI (GT’AC, Acc651 (G’GTAC_C, and KpnI (G_GTAC’C, which can recognize the SNP at g.1079 C/T. The restriction enzymes may be used for genotyping of the gene target using PCR-RFLP method in the future research.

  14. Mutation analysis of COL4A3 and COL4A4 genes in a Chinese ...

    Indian Academy of Sciences (India)

    2016-10-24

    ,. People's Republic of China ... mutations in COL4A3 and COL4A4 genes which encode type IV collagen α3 and α4 chainsrespectively can .... hematuria and evidence for activation of the unfolded protein response. Focal and ...

  15. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    NARCIS (Netherlands)

    Jaakson, K.; Zernant, J.; Kulm, M.; Hutchinson, A.; Tonisson, N.; Glavac, D.; Ravnik-Glavac, M.; Hawlina, M.; Meltzer, M.R.; Caruso, R.C.; Testa, F.; Maugeri, A.; Hoyng, C.B.; Gouras, P.; Simonelli, F.; Lewis, R.A.; Lupski, J.R.; Cremers, F.P.M.; Allikmets, R.

    2003-01-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics

  16. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    Science.gov (United States)

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  17. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei Zhang; Xian-Fu Sun; Ya-Ning He; Jun-Tao Li; Xu-Hui Guo; Hui Liu

    2013-01-01

    Objective: To analyze breast cancer bone metastasis related gene-CXCR4. Methods: This research screened breast cancer bone metastasis related genes by high-flux gene chip. Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations. The expression of chemokine receptor CXCR4 was obviously up-regulated in the tissue with breast cancer bone metastasis. Compared with the tissue without bone metastasis, there was significant difference, which indicated that CXCR4 played a vital role in breast cancer bone metastasis. Conclusions: The bioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis, target gene therapy and evaluation of prognosis.

  18. A Study of the Impact of Death Receptor 4 (DR4) Gene Polymorphisms in Alzheimer's Disease.

    Science.gov (United States)

    Edgünlü, Tuba Gökdoğan; Ozge, Aynur; Yalın, Osman Özgür; Kul, Seval; Erdal, Mehmet Emin

    2013-09-01

    Excessive apoptosis is believed to play a role in many degenerative and non-degenerative neurological diseases including Alzheimer's disease (AD). Much recent data suggest that apoptotic mechanisms may represent the missing link between Aβ deposition and proteolysis of tau protein. However, there is emerging evidence that apoptotic mechanisms may play a role in Alzheimer's Disease pathogenesis in the absence of overt apoptosis. TNF-related apoptosis inducing ligand receptor 1 (Death Receptor 4, DR4) might impair the apoptotic signal transduction and lead to dysregulation of the homeostasis between cell survival and cell death. The aim of our study was to further investigate the relationship between genetic variants of DR4 and Alzheimer's Disease. Case control study. Sixty-eight patients with AD were included in the study. The control group comprised 72 subjects without signs of neurodegenerative diseases, as evidenced by the examination.DNA was extracted from whole blood using the salting-out procedure. Genotypes were identified by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR-RFLP) products. We observed significant differences in the genotypic distribution of the rs6557634 polymorphism in AD patients compared with controls (p0.05) and the DR4 rs20576 polymorphism (p>0.05). According to haplotype analysis of the DR4 gene for rs6557634, rs20575 and rs20576 polymorphisms, GCA and GCC haplotypes might be a risk factor for AD. Also, we have shown that ACA, GGC and GGA haplotypes might be protective factors against AD. The present results indicate for the first time the possible contribution of the DR4 gene rs6557634, rs20575, rs20576 polymorphisms in Alzheimer's Disease, which may influence susceptibility to Alzheimer's Disease.

  19. Homologous overexpression of RfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide.

    Science.gov (United States)

    Cimini, Donatella; De Rosa, Mario; Carlino, Elisabetta; Ruggiero, Alessandro; Schiraldi, Chiara

    2013-05-09

    Glycosaminoglycans, such as hyaluronic acid, heparin, and chondroitin sulfate, are among the top ranked products in industrial biotechnology for biomedical applications, with a growing world market of billion dollars per year. Recently a remarkable progress has been made in the development of tailor-made strains as sources for the manufacturing of such products. The genetic modification of E. coli K4, a natural producer of chondroitin sulfate precursor, is challenging considering the lack of detailed information on its genome, as well as its mobilome. Chondroitin sulfate is currently used as nutraceutical for the treatment of osteoarthritis, and several new therapeutic applications, spanning from the development of skin substitutes to live attenuated vaccines, are under evaluation. E. coli K4 was used as host for the overexpression of RfaH, a positive regulator that controls expression of the polysaccharide biosynthesis genes and other genes necessary for the virulence of E. coli K4. Various engineering strategies were compared to investigate different types of expression systems (plasmid vs integrative cassettes) and integration sites (genome vs endogenous mobile element). All strains analysed in shake flasks on different media showed a capsular polysaccharide production improved by 40 to 140%, compared to the wild type, with respect to the final product titer. A DO-stat fed-batch process on the 2L scale was also developed for the best performing integrative strain, EcK4r3, yielding 5.3 g ∙ L(-1) of K4 polysaccharide. The effect of rfaH overexpression in EcK4r3 affected the production of lipopolysaccharide and the expression of genes involved in the polysaccharide biosynthesis pathway (kfoC and kfoA), as expected. An alteration of cellular metabolism was revealed by changes of intracellular pools of UDP-sugars which are used as precursors for polysaccharide biosynthesis. The present study describes the identification of a gene target and the application of a

  20. Molecular characterization of the VP4, VP6, VP7, and NSP4 genes of lapine rotaviruses identified in italy: emergence of a novel VP4 genotype

    International Nuclear Information System (INIS)

    Martella, Vito; Ciarlet, Max; Camarda, Antonio; Pratelli, Annamaria; Tempesta, Maria; Greco, Grazia; Cavalli, Alessandra; Elia, Gabriella; Decaro, Nicola; Terio, Valentina; Bozzo, Giancarlo; Camero, Michele; Buonavoglia, Canio

    2003-01-01

    The genes encoding the glycoprotein VP7, the VP8* trypsin-cleavage product of the protein VP4, a fragment of the protein VP6 associated with subgroup (SG) specificity, and the enterotoxin NSP4 of rotavirus strains identified in diarrheic fecal samples of rabbits in Italy were sequenced. The Italian lapine rotavirus (LRV) strains possessed a G3 VP7, SG I VP6, and KUN-like NSP4, a gene constellation typical of LRVs. One LRV strain (30/96), isolated in 1996, shared the closest amino acid (aa) identity (87-96%) with the P[14] genotype, composed of human and LRV strains. Conversely, three LRV strains (160/01, 229/01, and 308/01), identified in 2001, were highly identical (90-95%) among each other, but showed low aa identity (34-77%) to the VP8* genotype-specific sequences of representative rotavirus strains of all remaining P genotypes. This report confirms the worldwide genetic constellations of LRVs and identifies a novel VP4 genotype in rabbits, tentatively proposed as genotype P[22

  1. Serovar 4b complex predominates among Listeria monocytogenes isolates from imported aquatic products in China.

    Science.gov (United States)

    Chen, Jianshun; Chen, Qiaomiao; Jiang, Jianjun; Hu, Hongxia; Ye, Jiangbo; Fang, Weihuan

    2010-01-01

    Listeria monocytogenes, the causative organism of listeriosis, is primarily transmitted to humans through contaminated food. In this study, we examined 1275 batches of aquatic products imported from 29 countries and found that 36 batches from 8 countries were contaminated by Listeria (2.8%), with L. monocytogenes accounting for 2.6% (33/1275) and L. innocua for 0.2% (3/1275). Of the 23 selected L. monocytogenes isolates (from the 33 identified), 15 (65.2%) were of serovar 4b complex (4b, 4d, or 4e), three (13.0%) of 1/2a or 3a, four (17.4%) of 1/2b or 3b, and one (4.4%) of 1/2c or 3c. Notably, four of the 23 isolates belonged to epidemic clone I (ECI) and another four were associated with epidemic clone II (ECII), two highly clonal 4b clusters responsible for most of the documented listeriosis outbreaks. In the multilocus sequence typing scheme based on the concatenated genes gyrB-dapE-hisJ-sigB-ribC-purM-betL-gap-tuf, serovar 4b complex isolates from imported aquatic products exhibited significant genetic diversity. While the four ECI isolates were genetically related to those from Chinese diseased animals, both lacking one proline-rich repeat of ActA, the four ECII isolates were located between 1/2b or 3b strains. As the L. monocytogenes isolates from imported aquatic products possessed a nearly complete set of major infection-related genes, they demonstrated virulence potential in mouse model.

  2. redD and actII-ORF4, Pathway-Specific Regulatory Genes for Antibiotic Production in Streptomyces coelicolor A3(2), Are Transcribed In Vitro by an RNA Polymerase Holoenzyme Containing σhrdD

    NARCIS (Netherlands)

    Fujii, T.; Gramajo, H.C.; Takano, E.; Bibb, M.J.

    1996-01-01

    redD and actII-ORF4, regulatory genes required for synthesis of the antibiotics undecylprodigiosin and actinorhodin by Streptomyces coelicolor A3(2), were transcribed in vitro by an RNA polymerase holoenzyme containing σhrdD. Disruption of hrdD had no effect on antibiotic production, indicating that

  3. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  4. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  5. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Science.gov (United States)

    2011-02-16

    ...] Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability AGENCY: Food and... Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene... for Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance...

  6. Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene-related Peptide-induced cerebral reactivity

    DEFF Research Database (Denmark)

    Chadha, Preet S; Jepps, Thomas A; Carr, Georgina

    2014-01-01

    Middle cerebral artery (MCA) diameter is regulated by inherent myogenic activity and the effect of potent vasodilators such as calcitonin gene-related peptide (CGRP). Previous studies showed that MCAs express KCNQ1, 4, and 5 potassium channel genes, and the expression products (Kv7 channels) part......) participate in the myogenic control of MCA diameter. The present study investigated the contribution of Kv7.4 and Kv7.5 isoforms to myogenic and CGRP regulation of MCA diameter and determined whether they were affected in hypertensive animals....

  7. Regulatory structures for gene therapy medicinal products in the European Union.

    Science.gov (United States)

    Klug, Bettina; Celis, Patrick; Carr, Melanie; Reinhardt, Jens

    2012-01-01

    Taking into account the complexity and technical specificity of advanced therapy medicinal products: (gene and cell therapy medicinal products and tissue engineered products), a dedicated European regulatory framework was needed. Regulation (EC) No. 1394/2007, the "ATMP Regulation" provides tailored regulatory principles for the evaluation and authorization of these innovative medicines. The majority of gene or cell therapy product development is carried out by academia, hospitals, and small- and medium-sized enterprises (SMEs). Thus, acknowledging the particular needs of these types of sponsors, the legislation also provides incentives for product development tailored to them. The European Medicines Agency (EMA) and, in particular, its Committee for Advanced Therapies (CAT) provide a variety of opportunities for early interaction with developers of ATMPs to enable them to have early regulatory and scientific input. An important tool to promote innovation and the development of new medicinal products by micro-, small-, and medium-sized enterprises is the EMA's SME initiative launched in December 2005 to offer financial and administrative assistance to smaller companies. The European legislation also foresees the involvement of stakeholders, such as patient organizations, in the development of new medicines. Considering that gene therapy medicinal products are developed in many cases for treatment of rare diseases often of monogenic origin, the involvement of patient organizations, which focus on rare diseases and genetic and congenital disorders, is fruitful. Two such organizations are represented in the CAT. Research networks play another important role in the development of gene therapy medicinal products. The European Commission is funding such networks through the EU Sixth Framework Program. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The role of IL-4 gene 70 bp VNTR and ACE gene I/D variants in Familial Mediterranean fever.

    Science.gov (United States)

    Yigit, Serbülent; Tural, Sengul; Tekcan, Akın; Tasliyurt, Turker; Inanir, Ahmet; Uzunkaya, Süheyla; Kismali, Gorkem

    2014-05-01

    Familial Mediterranean fever (FMF) is characterized by recurrent attacks of fever and inflammation in the peritoneum, synovium, or pleura, accompanied by pain. It is an autosomal recessive disease caused by mutations in the MEFV (MEditerranean FeVer) gene. Patients with similar genotypes exhibit phenotypic diversity. As a result, the variations in different genes could be responsible for the clinical findings of this disease. In previous studies genes encoding Angiotensin-Converting Enzyme (ACE) and IL-4 (Interleukin-4) were found to be associated with rheumatologic and autoimmune diseases. In the present study we hypothesized whether ACE I/D or IL-4 70 bp variable tandem repeats (VNTR) genes are associated with FMF and its clinical findings in Turkish patients. Genomic DNA obtained from 670 persons (339 patients with FMF and 331 healthy controls) was used in the study. Genotypes for an ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR were determined by polymerase chain reaction with specific primers. To our knowledge, this is the first study examining ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR polymorphism in FMF patients. As a result, there was a statistically significant difference between the groups with respect to genotype distribution (pACE gene DD genotype was associated with an increased risk in FMF [pACE genotype frequencies according to the clinical characteristics, we found a statistically significant association between DD+ID genotype and fever (p=0.04). In addition IL-4 gene P1P1 genotype was associated with FMF (pACE gene and P1 allele or P1P1 genotype of IL-4 gene may be important molecular markers for susceptibility of FMF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    tropics. Improving drought tolerance and productivity is one of the most difficult tasks for cereal breeders. The diffi- culty arises from the diverse strategies adopted by plants themselves to combat drought stress depending on the timing,. Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.).

  10. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

    Science.gov (United States)

    Cronin, Katherine R; Mangan, Thomas P; Carew, Josephine A

    2012-01-01

    Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, pfactor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.

  11. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    Science.gov (United States)

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  12. Lovastatin in Aspergillus terreus: fermented rice straw extracts interferes with methane production and gene expression in Methanobrevibacter smithii.

    Science.gov (United States)

    Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ho, Yin Wan; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa; Chin, James

    2013-01-01

    Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3 methyl glutaryl CoA) reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE) can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen). By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P < 0.01) the expression of HMG-CoA reductase gene (hmg). In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.

  13. Lovastatin in Aspergillus terreus: Fermented Rice Straw Extracts Interferes with Methane Production and Gene Expression in Methanobrevibacter smithii

    Directory of Open Access Journals (Sweden)

    Mohammad Faseleh Jahromi

    2013-01-01

    Full Text Available Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3methyl glutaryl CoA reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen. By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P<0.01 the expression of HMG-CoA reductase gene (hmg. In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.

  14. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    Science.gov (United States)

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  15. STAT4 gene polymorphism in patients after renal allograft transplantation

    OpenAIRE

    D?browska-?amojcin, Ewa; Dziedziejko, Violetta; Safranow, Krzysztof; Doma?ski, Leszek; S?uczanowska-G?abowska, Sylwia; Pawlik, Andrzej

    2016-01-01

    Introduction STAT4 (signal transducer and activator of transcription 4) is involved in the regulation of innate and adaptive immune responses. Some studies have suggested that STAT4 may be involved in the immune response after graft transplantation. Several polymorphisms in the STAT4 gene have been identified. The most commonly studied polymorphism in the STAT4 gene is rs7574865. In our study, we examined whether this polymorphism is associated with the early and late functions of renal allog...

  16. Aspirin induces IL-4 production: augmented IL-4 production in aspirin-exacerbated respiratory disease

    Science.gov (United States)

    Kong, Su-Kang; Soo Kim, Byung; Gi Uhm, Tae; Soo Chang, Hun; Sook Park, Jong; Woo Park, Sung; Park, Choon-Sik; Chung, Il Yup

    2016-01-01

    Aspirin hypersensitivity is a hallmark of aspirin-exacerbated respiratory disease (AERD), a clinical syndrome characterized by the severe inflammation of the respiratory tract after ingestion of cyclooxygenase-1 inhibitors. We investigated the capacity of aspirin to induce interleukin-4 (IL-4) production in inflammatory cells relevant to AERD pathogenesis and examined the associated biochemical and molecular pathways. We also compared IL-4 production in peripheral blood mononuclear cells (PBMCs) from patients with AERD vs aspirin-tolerant asthma (ATA) upon exposure to aspirin. Aspirin induced IL-4 expression and activated the IL-4 promoter in a report assay. The capacity of aspirin to induce IL-4 expression correlated with its activity to activate mitogen-activated protein kinases, to form DNA–protein complexes on P elements in the IL-4 promoter and to synthesize nuclear factor of activated T cells, critical transcription factors for IL-4 transcription. Of clinical importance, aspirin upregulated IL-4 production twice as much in PBMCs from patients with AERD compared with PBMCs from patients with ATA. Our results suggest that IL-4 is an inflammatory component mediating intolerance reactions to aspirin, and thus is crucial for AERD pathogenesis. PMID:27534531

  17. DNA-binding site of major regulatory protein alpha 4 specifically associated with promoter-regulatory domains of alpha genes of herpes simplex virus type 1.

    OpenAIRE

    Kristie, T M; Roizman, B

    1986-01-01

    Herpes simplex virus type 1 genes form at least five groups (alpha, beta 1, beta 2, gamma 1, and gamma 2) whose expression is coordinately regulated and sequentially ordered in a cascade fashion. Previous studies have shown that functional alpha 4 gene product is essential for the transition from alpha to beta protein synthesis and have suggested that alpha 4 gene expression is autoregulatory. We have previously reported that labeled DNA fragments containing promoter-regulatory domains of thr...

  18. Nucleotide variability and linkage disequilibrium patterns in the porcine MUC4 gene

    Directory of Open Access Journals (Sweden)

    Yang Ming

    2012-07-01

    Full Text Available Abstract Background MUC4 is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4 plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4 gene, we surveyed the nucleotide variability and linkage disequilibrium (LD within this gene in Chinese indigenous breeds and Western commercial breeds. Results A total of 53 SNPs covering the MUC4 gene were genotyped on 5 wild boars and 307 domestic pigs representing 11 Chinese breeds and 3 Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4 were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4 locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4 in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4 had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than 20 kb. This is different from the presumed high LD extent (more than 100 kb in Western commercial breeds. The significant positive Tajima’D, and Fu and Li’s D statistics in a few Chinese and Western breeds implied that MUC4 might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process. Conclusions Chinese and Western breeds have

  19. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus.

    Science.gov (United States)

    Liu, Yang; Fang, Shengzuo; Yang, Wanxia; Shang, Xulan; Fu, Xiangxiang

    2018-02-01

    Understanding the responses of plant growth and secondary metabolites to differential light conditions is very important to optimize cultivation conditions of medicinal woody plants. As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. In this study, LED-based light including white light (WL), blue light (BL), red light (RL), and green light (GL) were used to affect leaf biomass production, flavonoid accumulation and related gene expression of one-year C. paliurus seedlings in controlled environments. After the treatments of 60 days, the highest leaf biomass appeared in the treatment of WL, while the lowest leaf biomass was found under GL. Compared to WL, the total flavonoid contents of C. paliurus leaves were significantly higher in BL, RL, and GL, but the highest values of selected flavonoids (kaempferol, isoquercitrin and quercetin) were observed under BL. Furthermore, the greatest yields of total and selected flavonoids in C. paliurus leaves per seedling were also achieved under BL, indicating that blue light was effective for inducing the production of flavonoids in C. paliurus leaves. Pearson's correlation analysis showed that there were significantly positive correlations between leaf flavonoid content and relative gene expression of key enzymes (phenylalanine ammonia lyase, PAL; 4-coumaroyl CoA-ligase, 4CL; and chalcone synthase, CHS) in the upstream, which converting phenylalanine into the flavonoid skeleton of tetrahydroxy chalcone. It is concluded that manipulating light quality may be potential mean to achieve the highest yields of flavonoids in C. paliurus cultivation, however this needs to be further verified by more field trials. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Radiochemical identification of the kil gene product of bacteriophage lambda

    International Nuclear Information System (INIS)

    Greer, H.; Ausubel, F.M.

    1979-01-01

    The coliphage lambda kil gene product has been identified using a differential labeling technique . The kil gene polypeptide has a molecular weight of about 16,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration of the kil protein indicates that it may exist as a tetramer in native form

  1. Role of TLR4 gene polymorphisms in the colorectal cancer risk ...

    African Journals Online (AJOL)

    Saniya Nissar

    2016-05-26

    May 26, 2016 ... This is an open access article under the CC BY-NC-ND license ... eliminate infectious pathogens and cancer debris [5–7]. The TLR4 gene is .... evidence of involvement of TLR4 gene in driving CRC and this. TLR4 may serve ...

  2. 7 CFR 959.4 - Production area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Production area. 959.4 Section 959.4 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ONIONS GROWN IN SOUTH TEXAS Order Regulating Handling Definitions § 959.4 Production area. Production area means the counties of Val Verde...

  3. 7 CFR 956.4 - Production area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Production area. 956.4 Section 956.4 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE SWEET ONIONS GROWN IN THE WALLA WALLA VALLEY OF SOUTHEAST WASHINGTON AND NORTHEAST OREGON Definitions § 956.4 Production area. Production area...

  4. Sulfur source-mediated transcriptional regulation of the rhlABC genes involved in biosurfactants production by Pseudomonas sp. strain AK6U.

    Science.gov (United States)

    Ismail, Wael; El Nayal, Ashraf M; Ramadan, Ahmed R; Abotalib, Nasser

    2014-01-01

    Despite the nutritional significance of sulfur, its influence on biosurfactants production has not been sufficiently studied. We investigated the expression of key biosurfactants production genes, rhlABC, in cultures of Pseudomonas sp. AK6U grown with inorganic or organic sulfur sources. AK6U grew with either inorganic sulfate (MgSO4), dibenzothiophene (DBT), or DBT-sulfone as a sole sulfur source in the presence of glucose as a carbon source. The AK6U cultures produced variable amounts of biosurfactants depending on the utilized sulfur source. Biosurfactants production profile of the DBT cultures was significantly different from that of the DBT-sulfone and inorganic sulfate cultures. The last two cultures were very similar in terms of biosurfactants productivity. Biosurfactants yield in the DBT cultures (1.3 g/L) was higher than that produced by the DBT-sulfone (0.5 g/L) and the inorganic sulfate (0.44 g/L) cultures. Moreover, the surface tension reduction in the DBT cultures (33 mN/m) was much stronger than that measured in the DBT-sulfone (58 mN/m) or inorganic sulfate (54 mN/m) cultures. RT-qPCR revealed variations in the expression levels of the rhlABC genes depending on the sulfur source. The DBT cultures had higher expression levels for the three genes as compared to the DBT-sulfone and inorganic sulfate cultures. There was no significant difference in the expression profiles between the DBT-sulfone and the MgSO4 cultures. The increased expression of rhlC in the DBT cultures is indicative for production of higher amounts of dirhamnolipids compared to the DBT-sulfone and inorganic sulfate cultures. The gene expression results were in good agreement with the biosurfactants production yields and surface tension measurements. The sulfur source mediates a fine-tuned mechanism of transcriptional regulation of biosurfactants production genes. Our findings can have an impact on industrial production of biosurfactants and other biotechnological processes like

  5. Detection of biosurfactants in Bacillus species: genes and products identification.

    Science.gov (United States)

    Płaza, G; Chojniak, J; Rudnicka, K; Paraszkiewicz, K; Bernat, P

    2015-10-01

    To screen environmental Bacillus strains for detection of genes encoding the enzymes involved in biosurfactant synthesis and to evaluate their products e.g. surfactin, iturin and fengycin. The taxonomic identification of isolated from the environment Bacillus strains was performed by Microgene ID Bacillus panel and GEN III Biolog system. The polymerase chain reaction (PCR) strategy for screening of genes in Bacillus strains was set up. Liquid chromatography-mass spectrometry (LC-MS/MS) method was used for the identification of lipopeptides (LPs). All studied strains exhibited the presence of srfAA gene and produced surfactin mostly as four homologues (C13 to C16). Moreover, in 2 strains (KP7, T'-1) simultaneous co-production of 3 biosurfactants: surfactin, iturin and fengycin was observed. Additionally, it was found out that isolate identified as Bacillus subtilis ssp. subtilis (KP7), beside LPs co-production, synthesizes surfactin with the efficiency much higher than other studied strains (40·2 mg l(-1) ) and with the yield ranging from 0·8 to 8·3 mg l(-1) . We showed that the combined methodology based on PCR and LC-MS/MS technique is an optimal tool for the detection of genes encoding enzymes involved in biosurfactant synthesis as well as their products, e.g. surfactin, iturin and fengycin. This approach improves the screening and the identification of environmental Bacillus co-producing biosurfactants-stimulating and facilitating the development of this area of science. The findings of this work will help to improve screening of biosurfactant producers. Discovery of novel biosurfactants and biosurfactants co-production ability has shed light on their new application fields and for the understanding of their interactions and properties. © 2015 The Society for Applied Microbiology.

  6. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    International Nuclear Information System (INIS)

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes

  7. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  8. 7 CFR 955.4 - Production area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Production area. 955.4 Section 955.4 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE VIDALIA ONIONS GROWN IN GEORGIA Definitions § 955.4 Production area. Production area means that part of the State of Georgia enclosed by the...

  9. Analysis of porcine MUC4 gene as a candidate gene for prolificacy QTL on SSC13 in an Iberian × Meishan F2 population

    Directory of Open Access Journals (Sweden)

    Balcells Ingrid

    2011-10-01

    Full Text Available Abstract Background Reproductive traits, such as prolificacy, are of great interest to the pig industry. Better understanding of their genetic architecture should help to increase the efficiency of pig productivity through the implementation of marker assisted selection (MAS programmes. Results The Mucin 4 (MUC4 gene has been evaluated as a candidate gene for a prolificacy QTL described in an Iberian × Meishan (Ib × Me F2 intercross. For association analyses, two previously described SNPs (DQ124298:g.243A>G and DQ124298:g.344A>G were genotyped in 347 pigs from the Ib × Me population. QTL for the number of piglets born alive (NBA and for the total number of piglets born (TNB were confirmed on SSC13 at positions 44 cM and 51 cM, respectively. The MUC4 gene was successfully located within the confidence intervals of both QTL. Only DQ124298:g.344A>G MUC4 polymorphism was significantly associated with both NBA and TNB (P-value MUC4 expression level was determined in F2 sows displaying extreme phenotypes for the number of embryos (NE at 30-32 days of gestation. Differences in the uterine expression of MUC4 were found between high (NE ≥ 13 and low (NE ≤ 11 prolificacy sows. Overall, MUC4 expression in high prolificacy sows was almost two-fold increased compared with low prolificacy sows. Conclusions Our data suggest that MUC4 could play an important role in the establishment of an optimal uterine environment that would increase embryonic survival during pig gestation.

  10. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    Science.gov (United States)

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. On the interplay of telomeres, nevi and the risk of melanoma.

    Directory of Open Access Journals (Sweden)

    Clara Bodelon

    Full Text Available The relationship between telomeres, nevi and melanoma is complex. Shorter telomeres have been found to be associated with many cancers and with number of nevi, a known risk factor for melanoma. However, shorter telomeres have also been found to decrease melanoma risk. We performed a systematic analysis of telomere-related genes and tagSNPs within these genes, in relation to the risk of melanoma, dysplastic nevi, and nevus count combining data from four studies conducted in Italy. In addition, we examined whether telomere length measured in peripheral blood leukocytes is related to the risk of melanoma, dysplastic nevi, number of nevi, or telomere-related SNPs. A total of 796 cases and 770 controls were genotyped for 517 SNPs in 39 telomere-related genes genotyped with a custom-made array. Replication of the top SNPs was conducted in two American populations consisting of 488 subjects from 53 melanoma-prone families and 1,086 cases and 1,024 controls from a case-control study. We estimated odds ratios for associations with SNPs and combined SNP P-values to compute gene region-specific, functional group-specific, and overall P-value using an adaptive rank-truncated product algorithm. In the Mediterranean population, we found suggestive evidence that RECQL4, a gene involved in genome stability, RTEL1, a gene regulating telomere elongation, and TERF2, a gene implicated in the protection of telomeres, were associated with melanoma, the presence of dysplastic nevi and number of nevi, respectively. However, these associations were not found in the American samples, suggesting variable melanoma susceptibility for these genes across populations or chance findings in our discovery sample. Larger studies across different populations are necessary to clarify these associations.

  12. Genes contributing to prion pathogenesis

    DEFF Research Database (Denmark)

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V

    2008-01-01

    incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 candidate genes...... show that many genes previously implicated in prion replication have no discernible effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of the amyloid beta (A4) precursor protein (App) or interleukin-1 receptor, type I (Il1r1...

  13. 4-Aminopyridine Decreases Progesterone Production by Porcine Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Mitchell Brianna M

    2003-04-01

    Full Text Available Abstract Background Ion channels occur as large families of related genes with cell-specific expression patterns. Granulosa cells have been shown to express voltage-gated potassium channels from more than one family. The purpose of this study was to determine the effects of 4-aminopyridine (4-AP, an antagonist of KCNA but not KCNQ channels. Methods Granulosa cells were isolated from pig follicles and cultured with 4-AP, alone or in combination with FSH, 8-CPT-cAMP, estradiol 17β, and DIDS. Complimentary experiments determined the effects of 4-AP on the spontaneously established pig granulosa cell line PGC-2. Granulosa cell or PGC-2 function was assessed by radio-immunoassay of media progesterone accumulation. Cell viability was assessed by trypan blue exclusion. Drug-induced changes in cell membrane potential and intracellular potassium concentration were documented by spectrophotometric determination of DiBAC4(3 and PBFI fluorescence, respectively. Expression of proliferating cell nuclear antigen (PCNA and steroidogenic acute regulatory protein (StAR was assessed by immunoblotting. Flow cytometry was also used to examine granulosa cell viability and size. Results 4-AP (2 mM decreased progesterone accumulation in the media of serum-supplemented and serum-free granulosa cultures, but inhibited cell proliferation only under serum-free conditions. 4-AP decreased the expression of StAR, the production of cAMP and the synthesis of estradiol by PGC-2. Addition of either 8-CPT-cAMP or estradiol 17β to serum-supplemented primary cultures reduced the inhibitory effects of 4-AP. 4-AP treatment was also associated with increased cell size, increased intracellular potassium concentration, and hyperpolarization of resting membrane potential. The drug-induced hyperpolarization of resting membrane potential was prevented either by decreasing extracellular chloride or by adding DIDS to the media. DIDS also prevented 4-AP inhibition of progesterone production

  14. Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells.

    Science.gov (United States)

    Sun, Ying; Shu, Rong; Li, Chao-Lun; Zhang, Ming-Zhu

    2010-10-01

    Periodontitis is a bacterially induced chronic inflammatory disease. Toll-like receptors (TLRs), which could recognize microbial pathogens, are important components in the innate and adaptive immune systems. Both qualitatively and quantitatively distinct immune responses might result from different bacteria stimulation and the triggering of different TLRs. This study explores the interaction of Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) with TLR2 and TLR4. We studied the gene expression changes of TLR2 and TLR4 and cytokine production (interleukin-1β, -6, -8, -10, and tumor necrosis factor-alpha) in human periodontal ligament cells (HPDLCs) stimulated with heat-killed bacteria or P. gingivalis lipopolysaccharide (LPS) in the presence or absence of monoclonal antibodies to TLR2 or TLR4 (anti-TLR2/4 mAb). Both test bacteria and 10 microg/ml P. gingivalis LPS treatment increased the gene expression of TLR2 and TLR4 and cytokine production in HPDLCs. In addition, these upregulations could be blocked by anti-TLR2/4 mAb. However, the expression of TLR4 mRNA in HPDLCs stimulated with 1 microg/ml P. gingivalis LPS was not increased. No differences were found in the cytokine production caused by 1 microg/ml P. gingivalis LPS treatment in the presence or absence of anti-TLR4 mAb. These patterns of gene expression and cytokine production indicate that Gram-negative periodontal bacteria or their LPS might play a role in triggering TLR2 and/or TLR4, and be of importance for the immune responses in periodontitis.

  15. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    Science.gov (United States)

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  16. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification

    DEFF Research Database (Denmark)

    Blin, Kai; Wolf, Thomas; Chevrette, Marc G.

    2017-01-01

    Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding...... the production of such compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features...

  17. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  18. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Science.gov (United States)

    Burt, Andrew J; William, H Manilal; Perry, Gregory; Khanal, Raja; Pauls, K Peter; Kelly, James D; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  19. Cytotoxic T lymphocyte associated molecule -4 (CTLA-4 gene polymorphisms in ovarian cancer patients

    Directory of Open Access Journals (Sweden)

    Sirous Naeimi

    2010-09-01

    Full Text Available Background: Ovarian cancer is a relatively common cancer among postmenopausal women. Nowadays, there is controversy about immunotherapy of ovarian cancer patients with interleukins such as interferon to reach better out come in prognosis of patients under chemotherapy. CTLA-4 is a gene, which has an important role in homeostasis and regulation of immune response. Inhibitory nature of CTLA-4 is proved to be of significance in autoimmune diseases as well as in cancer. In this study we intend to find out the relationship between polymorphisms of this gene at the sites of +49 A/G and -318 C/T and ovarian cancer.Methods: The polymorphisms of the CTLA-4 gene at the sites of +49 A/G exon and -318 C/T promoter were investigated. Blood samples of 73 patients with ovarian cancer and 115 healthy subjects used for DNA extraction. Two groups genotypes and alleles were determined using PCR method and compared by statistical t-student test.Results: There was no statistically significant difference in genotypes and alleles prevalence of +49 A/G and -317 C/T between two groups (p>0.05.Conclusion: Further researches with larger sample size while paying attention to the relation between the gene polymorphism and stage and type of tumor is recommended.

  20. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.

    Science.gov (United States)

    Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong

    2017-09-01

    Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

  1. Genetic variation at Exon2 of TLR4 gene and its association with ...

    African Journals Online (AJOL)

    This study was conducted to analyze the polymorphisms of chicken Toll-like receptors 4(TLR4) gene and aimed to provide a theoretical foundation for a further research on correlation between chicken TLR4 gene and disease resistance. Genetic variations at exon 2 of TLR4 gene in 14 chicken breeds and the red jungle ...

  2. Transcription factor SP4 is a susceptibility gene for bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Xianjin Zhou

    Full Text Available The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, p = 0.022; rs12673091, p = 0.0005; rs3735440, p = 0.019; rs11974306, p = 0.018. To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, p = 0.009; rs12673091, p = 0.002; rs1018954, p = 0.001; rs3735440, p = 0.029, and two of them (rs12673091, rs3735440 were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, p = 0.012 also displayed a significant association. The SNP7 (rs12673091 was therefore significantly associated in all three samples, and shared the same susceptibility allele (A across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these

  3. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  4. Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as hypertension susceptibility genes in Han Chinese with a genome-wide gene-based association study.

    Directory of Open Access Journals (Sweden)

    Hsin-Chou Yang

    Full Text Available Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to

  5. Transcriptional regulation of genes involved in terpenoid índole alkaloid production in Catharanthus roseus seedlings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rocha

    2002-07-01

    Full Text Available Catharanthus roseus (L. G Don is a medicinal plant that produces a variety of terpenoid indole alkaloids (TIAs, some of which display pharmacological activity. C. roseus plants and cell cultures have been used to elucidate the TIAs biosynthetic pathway. A considerable number or enzymes have also been characterised, and their respective genes cloned. TIAs production in C. roseus plant and cell cultures is highly regulated at transcriptional-, develop-mental-, and environmental-level. Studies into TIAs biosynthetic gene regulation have been carried out using cell cultures. However, regulation in plants is almost unknown. Here, biosynthetic genes idc, strl, d4h and dat expres-sion levels are qualitatively examined in a developmental series of C. roseus seedlings. The effect of water- and light-stress and methyl jasmonate (MeJa and acetyl salicylic acid (ASA elicitation is also examined. Comparison between seedlings and cell cultures strongly suggests that TIAs biosynthetic gene transcriptional regulation is different in C.roseus plants and cell cultures.

  6. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

    Directory of Open Access Journals (Sweden)

    Katherine R Cronin

    Full Text Available BACKGROUND: Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. METHODOLOGY/PRINCIPAL FINDINGS: Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, p<0.001 at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. CONCLUSIONS/SIGNIFICANCE: Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.

  7. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    Science.gov (United States)

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, Ptrichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (PTrichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  8. A variant in the fat mass and obesity-associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) do not influence dietary intake

    DEFF Research Database (Denmark)

    Hasselbalch, Ann L; Angquist, Lars; Christiansen, Lene

    2010-01-01

    We investigated the role of the fat mass and obesity associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) in modulating habitual intake of total energy and macronutrients, glycemic index, glycemic load, dietary energy density, and energy from 20 food groups in adults...... with intake of energy from whole grains (P >or= 0.04). These associations did not remain significant after controlling for multiple testing. The outcome of this study indicates that polymorphisms in the FTO gene and near the MC4R gene do not have a role in regulating food intake and preference for specific....... In a population-based sample of 756 healthy adult twin pairs, we studied associations between FTO rs9939609, near-MC4R rs12970134, rs17700633, and rs17782313 single nucleotide polymorphisms (SNP) and habitual dietary intake. Habitual dietary intake was assessed by a 247-question FFQ. Nontransformed variables...

  9. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Directory of Open Access Journals (Sweden)

    Andrew J Burt

    Full Text Available Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris. Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08 where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  10. Gene-gene interactions of IRF5, STAT4, IKZF1 and ETS1 in systemic lupus erythematosus.

    Science.gov (United States)

    Dang, J; Shan, S; Li, J; Zhao, H; Xin, Q; Liu, Y; Bian, X; Liu, Q

    2014-06-01

    Interferon (IFN) activation signaling and T helper 17 (Th17)-cell/B-cell regulation play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). Several studies have provided convincing evidence that polymorphisms in IRF5, STAT4, IKZF1 and ETS1 from these pathways may be involved in SLE by affecting gene expression or epistasis. We analyzed the genetic interaction in known SLE susceptibility loci from the four genes in northern Han Chinese. A total of 946 northern Han Chinese participated in this study (370 unrelated SLE patients and 576 healthy controls). Subjects underwent genotyping for the single-nucleotide polymorphisms (SNPs) rs2004640 in IRF5, rs7574865 in STAT4, rs4917014 in IKZF1 and rs1128334 in ETS1 by use of a TaqMan SNP genotyping assay and direct sequencing. Gene-gene interaction analysis involved direct counting, multifactor dimensionality reduction (MDR) and linear regression analysis. SLE patients and controls differed in allele frequencies of rs7574865, rs1128334 (P < 0.001) and rs4917014 (P < 0.01). Direct counting revealed that the frequency of risk homozygote combinations was higher for SLE patients than controls (P < 0.01). Furthermore, 2-, 3- and 4-way gene-gene epistasis in SLE was confirmed by parametric methods and MDR analysis. Gene expression analysis partially supported the findings. Our study confirmed the association of the IFN pathway or Th17/B-cells and the pathogenesis of SLE, and gene-gene interaction in this pathway may increase the risk of SLE. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. S.; Ahring, Birgitte K.; Linggi, Bryan E.

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. We found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  12. The Dopamine Receptor D4 Gene ("DRD4") Moderates Family Environmental Effects on ADHD

    Science.gov (United States)

    Martel, Michelle M.; Nikolas, Molly; Jernigan, Katherine; Friderici, Karen; Waldman, Irwin; Nigg, Joel T.

    2011-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a prime candidate for exploration of gene-by-environment interaction (i.e., G x E), particularly in relation to dopamine system genes, due to strong evidence that dopamine systems are dysregulated in the disorder. Using a G x E design, we examined whether the "DRD4" promoter 120-bp tandem repeat…

  13. Biochemical and Functional Studies on the Burkholderia cepacia Complex bceN Gene, Encoding a GDP-D-Mannose 4,6-Dehydratase

    Science.gov (United States)

    Pinheiro, Pedro F.; Leitão, Jorge H.

    2013-01-01

    This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis. PMID:23460819

  14. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase.

    Directory of Open Access Journals (Sweden)

    Sílvia A Sousa

    Full Text Available This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47. Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min(-1.mg(-1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.

  15. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater.

    Science.gov (United States)

    Liu, Miaomiao; Ding, Ran; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Zhang, Tong; Yang, Min

    2014-10-15

    The behaviors of the Macrolide-Lincosamide-Streptogramin (MLS) resistance genes were investigated in an anaerobic-aerobic pilot-scale system treating spiramycin (SPM) production wastewater. After screening fifteen typical MLS resistance genes with different mechanisms using conventional PCR, eight detected genes were determined by quantitative PCR, together with three mobile elements. Aerobic sludge in the pilot system exhibited a total relative abundance of MLS resistance genes (per 16S rRNA gene) 2.5 logs higher than those in control samples collected from sewage and inosine wastewater treatment systems (P resistance genes. However, the total relative gene abundance in anaerobic sludge (4.3 × 10(-1)) was lower than that in aerobic sludge (3.7 × 10(0)) despite of the higher SPM level in anaerobic reactor, showing the advantage of anaerobic treatment in reducing the production of MLS resistance genes. The rRNA methylase genes (erm(B), erm(F), erm(X)) were the most abundant in the aerobic sludge (5.3 × 10(-1)-1.7 × 10(0)), followed by esterase gene ere(A) (1.3 × 10(-1)) and phosphorylase gene mph(B) (5.7 × 10(-2)). In anaerobic sludge, erm(B), erm(F), ere(A), and msr(D) were the major ones (1.2 × 10(-2)-3.2 × 10(-1)). These MLS resistance genes (except for msr(D)) were positively correlated with Class 1 integron (r(2) = 0.74-0.93, P < 0.05), implying the significance of horizontal transfer in their proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Fuyan; Chen, Feng; Wu, Peipei; Zhang, Ning; Cui, Dangqun

    2015-08-01

    This study cloned two novel TaLox genes on chromosome of 4BS and developed a co-dominant marker, Lox-B23, in bread wheat that showed highly significant association with lipoxygenase activity. Lipoxygenase (Lox), a critical enzyme in the carotenoid biosynthetic pathway, significantly influences the color and processing quality of wheat-based products. Two novel Lox genes, designated TaLox-B2 and TaLox-B3, were cloned on chromosome 4BS of Chinese bread wheat. The deduced amino acid sequence showed that both TaLox-B2 and TaLox-B3 genes encoded an 861-aa protein and possessed a lipoxygenase superfamily domain at the 170-838 interval. Two different TaLox-B2 alleles, designated TaLox-B2a and TaLox-B2b, were subsequently discovered. A co-dominant marker, Lox-B23, was developed based on sequences of TaLox-B2a, TaLox-B2b, and TaLox-B3 genes to precisely distinguish these three alleles in Chinese bread cultivars. Among five allelic combinations of Lox genes at Lox-B1, Lox-B2, and Lox-B3 loci, wheat cultivars with TaLox-B1a/TaLox-B2a/TaLox-B3a combination exhibited the highest Lox activity, whereas those with TaLox-B1a/TaLox-B2b/TaLox-B3b combination significantly showed the lowest Lox activity. A RIL population was used to evaluate the influence of TaLox-B3a gene on Lox activity. Results showed that TaLox-B3a gene could significantly increase the Lox activity in bread wheat. Physical mapping indicated that both TaLox-B2 and TaLox-B3 genes were located on chromosome 4BS in bread wheat. This study provides useful information to further understand the molecular and genetic bases of Lox activity in bread wheat.

  17. Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes.

    Science.gov (United States)

    Welker, Noah C; Habig, Jeffrey W; Bass, Brenda L

    2007-07-01

    We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes.

  18. Age-related hearing loss: Aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain

    Science.gov (United States)

    Christensen, Nathan; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2009-01-01

    Presbycusis – age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response – ABR thresholds, and distortion-product otoacoustic emission – DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain – inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age. PMID:19070604

  19. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response

    Directory of Open Access Journals (Sweden)

    J. E. Zhang

    2017-05-01

    Full Text Available Genetic polymorphisms in the gene encoding cytochrome P450 (CYP 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149 obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS data from a prospective cohort of warfarin-treated patients (n = 711 was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017, an effect opposite to that previously reported with CYP4F2 (rs2108622. However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI, gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex

  20. Vasopressin Gene-Related Products in the Management of Breast Cancer

    National Research Council Canada - National Science Library

    North, William

    1999-01-01

    ...), and this information coupled with an absence of vasopressin gene-related products from fibrocystic disease potentially provides us with a new screening test for distinguishing both breast cancer...

  1. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    Science.gov (United States)

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  2. Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant.

    Science.gov (United States)

    Tamano, Koichi; Miura, Ai

    2016-09-01

    Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.

  3. DNA repair synthesis dependent on the uvrA,B gene products

    International Nuclear Information System (INIS)

    Moses, R.E.; Moody, E.E.M.

    1975-01-01

    Ultraviolet irradiation of toluene-treated Escherichia coli causes an inhibition of replicative DNA synthesis. This is followed by the appearance of nonconservative DNA repair synthesis which does not require either the polymerase or 5' → 3' exonucleolytic activities of DNA polymerase I. The repair synthesis may be catalyzed by DNA polymerase III activity but does not require a functional DNA polymerase II. The ultraviolet-induced synthesis requires ATP and is dependent on a functional uvrA and uvrB gene product. However, other uvr gene products are not required for the synthesis. The recB function is also not required

  4. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  5. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    Science.gov (United States)

    Aubry, Sylvain; Kelly, Steven; Kümpers, Britta M C; Smith-Unna, Richard D; Hibberd, Julian M

    2014-06-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by

  6. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    Directory of Open Access Journals (Sweden)

    Sylvain Aubry

    2014-06-01

    Full Text Available With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors

  7. Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: first evidence in preclinical hepatocellular carcinoma.

    Science.gov (United States)

    Galal El-Shemi, A; Mohammed Ashshi, A; Oh, E; Jung, B-K; Basalamah, M; Alsaegh, A; Yun, C-O

    2018-01-01

    Current treatments of hepatocellular carcinoma (HCC) are ineffective and unsatisfactory in many aspects. Cancer-targeting gene virotherapy using oncolytic adenoviruses (OAds) armed with anticancer genes has shown efficacy and safety in clinical trials. Nowadays, both inhibitor of growth 4 (ING4), as a multimodal tumor suppressor gene, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as a potent apoptosis-inducing gene, are experiencing a renaissance in cancer gene therapy. Herein we investigated the antitumor activity and safety of mono- and combined therapy with OAds armed with ING4 (Ad-ΔB/ING4) and TRAIL (Ad-ΔB/TRAIL) gene, respectively, on preclinical models of human HCC. OAd-mediated expression of ING4 or TRAIL transgene was confirmed. Ad-ΔB/TRAIL and/or Ad-ΔB/ING4 exhibited potent killing effect on human HCC cells (HuH7 and Hep3B) but not on normal liver cells. Most importantly, systemic therapy with Ad-ΔB/ING4 plus Ad-ΔB/TRAIL elicited more eradicative effect on an orthotopic mouse model of human HCC than their monotherapy, without causing obvious overlapping toxicity. Mechanistically, Ad-ΔB/ING4 and Ad-ΔB/TRAIL were remarkably cooperated to induce antitumor apoptosis and immune response, and to repress tumor angiogenesis. This is the first study showing that concomitant therapy with Ad-ΔB/ING4 and Ad-ΔB/TRAIL may provide a potential strategy for HCC therapy and merits further investigations to realize its possible clinical translation.

  8. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene

    OpenAIRE

    Seandel, Marco; Butler, Jason M.; Kobayashi, Hideki; Hooper, Andrea T.; White, Ian A.; Zhang, Fan; Vertes, Eva L.; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V.; Hackett, Neil R.; Rabbany, Sina; Boyer, Julie L.; Rafii, Shahin

    2008-01-01

    Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates orga...

  9. Alternative transcription of sodium/bicarbonate transporter SLC4A7 gene enhanced by single nucleotide polymorphisms.

    Science.gov (United States)

    Park, Hae Jeong; Lee, Soojung; Ju, Eunji; Jones, Jayre A; Choi, Inyeong

    2017-03-01

    Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH 2 -terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter. Copyright © 2017 the American Physiological Society.

  10. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  11. The Aspergillus flavus Homeobox Gene, hbx1, Is Required for Development and Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cary

    2017-10-01

    Full Text Available Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B1 and B2, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δhbx1 mutants did not produce conidiophores. The inability of Δhbx1 mutants to produce conidia was related to downregulation of brlA (bristle and abaA (abacus, regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC, aflD, aflM and the cluster-specific regulatory gene, aflR. Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.

  12. New insights about antibiotic production by Pseudomonas aeruginosa: a gene expression analysis

    Science.gov (United States)

    Gionco, Bárbara; Tavares, Eliandro R.; de Oliveira, Admilton G.; Yamada-Ogatta, Sueli F.; do Carmo, Anderson O.; Pereira, Ulisses de Pádua; Chideroli, Roberta T.; Simionato, Ane S.; Navarro, Miguel O. P.; Chryssafidis, Andreas L.; Andrade, Galdino

    2017-09-01

    The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified twelve upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.

  13. Investigation of SLC6A4 gene expression in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Elif Funda Şener

    2015-06-01

    Full Text Available Objective: Autism is defined as a complex neurodevelopmental disorder. Genetics plays a major role in the etiology of autism spectrum disorders (ASD. The role of the serotonin in the development of autism has been widely investigated. SLC6A4 gene (SERT or 5-HT has an important role reuptaking of serotonin. Because of this, our study examined the expression level of SLC6A4 gene in autism patients. Methods: Thirty-four patients (26 male, 8 female who diagnosed as autism firstly according to DSM-V criteria in the Department of child psychiatry, Erciyes University Medical Faculty and healthy 23 controls (16 male, 7 female were enrolled in this study. Total RNA was isolated from peripheral blood samples using TRIzol. Quantitative Real-time PCR (qRT-PCR was performed to detect SLC6A4 gene expression. Results: SLC6A4 gene expression was found statistically significant and low in autism group compared with controls (p=0,027. Conclusion: The low gene expression in the patient group implied that there is an abnormality of serotonin reuptake. According to our results, we suggest that much more studies may be planned with the expression and methylation profile of this gene combined with gene polymorphisms especially affecting the expression in larger sample sizes. J Clin Exp Invest 2015; 6 (2: 165-169

  14. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.

    Science.gov (United States)

    Zhang, Junjiao; Zhao, Xiangying; Zhang, Jiaxiang; Zhao, Chen; Liu, Jianjun; Tian, Yanjun; Yang, Liping

    2017-09-14

    The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20 g/L of glucose media. The acetoin yield of BS168D reached 6.61 g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47 g/L). Then, when the glucose concentration was increased to 100 g/L, the acetoin yield reached 24.6 g/L, but 2.4 g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation.

  15. Influence of Different Lignocellulose Sources on Endo-1,4-β-Glucanase Gene Expression and Enzymatic Activity of Bacillus amyloliquefaciens B31C

    Directory of Open Access Journals (Sweden)

    Rosangela Di Pasqua

    2014-01-01

    Full Text Available Conversion of cellulose into fermentable sugars for ethanol production is currently performed by enzymatic hydrolysis catalyzed by cellulases. The cellulases are produced by a wide variety of microorganisms, playing a major role in the recycling of biomass. The endo-1,4-β-glucanase (CelB31C from Bacillus amyloliquefaciens B31C, isolated from compost and previously selected on the basis of highest cellulase activity levels among Bacillus isolated, was characterized as being a potential candidate for a biocatalyst in lignocellulose conversion for second-generation bioethanol production. The aim of this work was to evaluate the changes in production of enzymatic activity of the endo-1,4-β-glucanase (CelB31C and the expression of its gene (bglC using a carboxymethylcellulase activity assay and qRT-PCR analysis, respectively, during growth of B. amyloliquefaciens B31C on different cellulose sources: carboxymethylcellulose (CMC, pure cellulose from Arundo donax, pretreated Arundo donax biomass (Chemtex, and microcrystalline cellulose (Avicel. The results showed that both the expression of bglC gene and the enzymatic activity production are related to the type of cellulose source. The strain showed a high enzymatic activity on lignocellulosic biomass and on microcrystalline cellulose. Furthermore, the highest gene expression occurred during the exponential phase of growth, except in the presence of Avicel.

  16. Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells overexpressing CXCR4 (MSC(CXCR4.

    Directory of Open Access Journals (Sweden)

    Jialiang Liang

    Full Text Available BACKGROUND: Our previous studies indicated that MSC(CXCR4 improved cardiac function after myocardial infarction (MI. This study was aimed to investigate the specific role of MSC(CXCR4 in neovascularization of infarcted myocardium using a suicide gene approach. METHODS: MSCs were transduced with either lentivirus-null vector/GFP (MSC(Null as control or vector encoding for overexpressing CXCR4/GFP. The MSC derived-endothelial cell (EC differentiation was assessed by a tube formation assay, Dil-ac-LDL uptake, EC marker expression, and VE-cadherin promoter activity assay. Gene expression was analyzed by quantitative RT-PCR or Western blot. The suicide gene approach was under the control of VE-cadherin promoter. In vivo studies: Cell patches containing MSC(Null or MSC(CXCR4 were transduced with suicide gene and implanted into the myocardium of MI rat. Rats received either ganciclovir (GCV or vehicle after cell implantation. After one month, the cardiac functional changes and neovascularization were assessed by echocardiography, histological analysis, and micro-CT imaging. RESULTS: The expression of VEGF-A and HIF-1α was significantly higher in MSC(CXCR4 as compared to MSC(Null under hypoxia. Additionally, MSC(CXCR4 enhanced new vessel formation and EC differentiation, as well as STAT3 phosphorylation under hypoxia. STAT3 participated in the transcription of VE-cadherin in MSC(CXCR4 under hypoxia, which was inhibited by WP1066 (a STAT3 inhibitor. In addition, GCV specifically induced death of ECs with suicide gene activation. In vivo studies: MSC(CXCR4 implantation promoted cardiac functional restoration, reduced infarct size, improved cardiac remodeling, and enhanced neovascularization in ischemic heart tissue. New vessels derived from MSC(CXCR4 were observed at the injured heart margins and communicated with native coronary arteries. However, the derived vessel networks were reduced by GCV, reversing improvement of cardiac function. CONCLUSION: The

  17. A second pectin lyase gene (pel2) from Aspergillus oryzae KBN616: its sequence analysis and overexpression, and characterization of the gene products.

    Science.gov (United States)

    Kitamoto, N; Yoshino-Yasuda, S; Ohmiya, K; Tsukagoshi, N

    2001-01-01

    A second pectin lyase gene, designated pel2, was isolated from a shoyu koji mold Aspergillus oryzae KBN616 and characterized. The structural gene comprised 1306 bp with three introns. The ORF encoded 375 amino acids with a signal peptide of 19 amino acids. The deduced amino acid sequence showed high similarity to those of A. oryzae Pel1, Aspergillus niger pectin lyases and Glomerella cingulata Pn1A. The pel2 gene was overexpressed under the control of the promoter of the A. oryzae TEF1 gene for purification and enzymatic characterization of its gene product. The gene product exhibited two molecular masses of 48 and 44 kDa due to different degrees of glycosylation. Both proteins had the same pH optimum of 6.0 and temperature optimum of 50 degrees C.

  18. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX......The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation......2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report...

  19. Structure and expression of the human and mouse T4 genes

    International Nuclear Information System (INIS)

    Maddon, P.J.; Molineaux, S.M.; Maddon, D.F.; Zimmerman, K.A.; Godfrey, M.; Alt, F.W.; Chess, L.; Axel, R.

    1987-01-01

    The T4 molecule may serve as a T-cell receptor recognizing molecules on the surface of specific target cells and also serves as the receptor for the human immunodeficiency virus. To define the mechanisms of interaction of T4 with the surface of antigen-presenting cells as well as with human immunodeficiency virus, the authors have further analyzed the sequence, structure, and expression of the human and mouse T4 genes. T4 consists of an extracellular segment comprised of a leader sequence followed by four tandem variable-joining (VJ)-like domains, a transmembrane domain, and A cytoplasmic segment. The structural domains of the T4 protein deduced from amino acid sequence are precisely reflected in the intron-exon organization of the gene. Analysis of the expression of the T4 gene indicates that T4 RNA is expressed not only in T lymphocytes, but in B cells, macrophages, and granulocytes. T4 is also expressed in a developmentally regulated manner in specific regions of the brain. It is, therefore, possible that T4 plays a more general role in mediating cell recognition events that are not restricted to the cellular immune response

  20. Major genes and QTL influencing wool production and quality: a review

    Directory of Open Access Journals (Sweden)

    Purvis Ian

    2005-12-01

    Full Text Available Abstract The opportunity exists to utilise our knowledge of major genes that influence the economically important traits in wool sheep. Genes with Mendelian inheritance have been identified for many important traits in wool sheep. Of particular importance are genes influencing pigmentation, wool quality and the keratin proteins, the latter of which are important for the morphology of the wool fibre. Gene mapping studies have identified some chromosomal regions associated with variation in wool quality and production traits. The challenge now is to build on this knowledge base in a cost-effective way to deliver molecular tools that facilitate enhanced genetic improvement programs for wool sheep.

  1. The Presence of Amorpha-4, 11-Diene Synthase, a Key Enzyme in Artemisinin Production in Ten Artemisia Species

    Directory of Open Access Journals (Sweden)

    GA. Garoosi

    2011-12-01

    Full Text Available Background and the purpose of the study: Artemisinin is one of the most effective medicine against malaria, which is produced naturally by Artemisia annua in low yield. It is produced in a metabolic pathway, in which several genes and gene products are involved. One of the key genes in this pathway is am1, which encodes amorpha-4, 11-diene synthase (ADS, a key enzyme in artemisinin biosynthesis pathway. The aim of this study was to determine the presence of this gene in ten Artemisia species in order to increase the yield of production of Artemisinin. Methods : The experiments were carried out using PCR. Specific primers were designed based on the published am1 gene sequence obtained from A. annua (NCBI, accession number AF327527. Results: The amplification of this gene by the specific primers was considered as a positive sign for the potentiality of artemisinin production. Since the entire am1 gene was not amplified in any of the 10 species used, four parts of the gene, essential in ADS enzyme function, corresponding to a pair site of Arg10-Pro12 in the first 100 amino acids, b aspartate rich motif (DDXXD, c active site final lid and d active site including farnesyl diphosphate (FDP ionization sites and catalytic site in the ADS enzyme, were investigated. Major conclusion: The sequence corresponding to ADS active site was amplified only in A. annua, A. aucheri and A. chamaemelifolia. The negative results obtained with other species could be due to some sequence alteration, such as point mutations or INDELs. We propose A. aucheri and A. chamaemelifolia as two potential candidate species for further characterization, breeding and transferring am1 gene for artemisinin overproduction.

  2. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    Directory of Open Access Journals (Sweden)

    Karhumaa Kaisa

    2011-07-01

    Full Text Available Abstract Background Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. Results The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD complex medium under aerobic conditions, respectively. Conclusions Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media

  3. Regulatory Oversight of Cell and Gene Therapy Products in Canada.

    Science.gov (United States)

    Ridgway, Anthony; Agbanyo, Francisca; Wang, Jian; Rosu-Myles, Michael

    2015-01-01

    Health Canada regulates gene therapy products and many cell therapy products as biological drugs under the Canadian Food and Drugs Act and its attendant regulations. Cellular products that meet certain criteria, including minimal manipulation and homologous use, may be subjected to a standards-based approach under the Safety of Human Cells, Tissues and Organs for Transplantation Regulations. The manufacture and clinical testing of cell and gene therapy products (CGTPs) presents many challenges beyond those for protein biologics. Cells cannot be subjected to pathogen removal or inactivation procedures and must frequently be administered shortly after final formulation. Viral vector design and manufacturing control are critically important to overall product quality and linked to safety and efficacy in patients through concerns such as replication competence, vector integration, and vector shedding. In addition, for many CGTPs, the value of nonclinical studies is largely limited to providing proof of concept, and the first meaningful data relating to appropriate dosing, safety parameters, and validity of surrogate or true determinants of efficacy must come from carefully designed clinical trials in patients. Addressing these numerous challenges requires application of various risk mitigation strategies and meeting regulatory expectations specifically adapted to the product types. Regulatory cooperation and harmonisation at an international level are essential for progress in the development and commercialisation of these products. However, particularly in the area of cell therapy, new regulatory paradigms may be needed to harness the benefits of clinical progress in situations where the resources and motivation to pursue a typical drug product approval pathway may be lacking.

  4. A preliminary study on the association of single nucleotide polymorphisms of interleukin 4 (IL4, IL13, IL4 receptor alpha (IL4Rα & Toll-like receptor 4 (TLR4 genes with asthma in Indian adults

    Directory of Open Access Journals (Sweden)

    Parisa Davoodi

    2015-01-01

    Full Text Available Background & objectives: Interleukin 4 (IL4 and IL13 genes are believed to be responsible for inflammation of the airways in asthmatics. These share a common receptor component called IL4Rα which is another potentially important candidate gene linked to asthma phenotypes. Another gene Toll-like receptor 4 (TLR4 might affect the incidence or progression of asthma through the expression of proinflammatory genes. Several single nucleotide polymorphisms (SNPs in IL4, IL13, IL4Rα and TLR4 have been reported to be linked to asthma or related phenotypes in several ethnic populations using linkage studies and association studies. However, the results have not been consistent. We investigated five SNPs (C-589T and C-33T of IL4, G+2044A of IL13, A+1902G of IL4Rα, and A+896G of TLR4 in patients with adult onset asthma to evaluate their role in manifestation and severity of asthma. Methods: Adult (>18 yr of age patients with asthma (n=100 and healthy controls (n=50 were included in the study. Genotyping was performed using sequenom MassARRAY technology. Results: The mutant alleles of the C-589T and C-33T SNPs in the promoter region of IL4 were present in 4 per cent patients with asthma but absent from the control group suggesting that the variations in IL4 may contribute to asthma occurrence. The SNPs of other genes were seen in both controls and patients. Interpretation & conclusions: The results suggest the possible association between the genetic distribution of C-589T and C-33T SNPs of IL4 with asthma in Indian adults.

  5. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations

    Directory of Open Access Journals (Sweden)

    Pereira Francisco B

    2011-12-01

    Full Text Available Abstract Background The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as required for maximal fermentation performance under industrial conditions. Results Chemogenomics data were used to identify eight genes whose expression confers simultaneous resistance to high concentrations of glucose, acetic acid and ethanol, chemical stresses relevant for VHG fermentations; and eleven genes conferring simultaneous resistance to stresses relevant during lignocellulosic fermentations. These eleven genes were identified based on two different sets: one with five genes granting simultaneous resistance to ethanol, acetic acid and furfural, and the other with six genes providing simultaneous resistance to ethanol, acetic acid and vanillin. The expression of Bud31 and Hpr1 was found to lead to the increase of both ethanol yield and fermentation rate, while Pho85, Vrp1 and Ygl024w expression is required for maximal ethanol production in VHG fermentations. Five genes, Erg2, Prs3, Rav1, Rpb4 and Vma8, were found to contribute to the maintenance of cell viability in wheat straw hydrolysate and/or the maximal fermentation rate of this substrate. Conclusions The identified genes stand as preferential targets for genetic engineering manipulation in order to generate more robust industrial strains, able to cope with the most significant fermentation stresses and, thus, to increase ethanol production rate and final ethanol titers.

  6. New Insights about Antibiotic Production by Pseudomonas aeruginosa: A Gene Expression Analysis

    Directory of Open Access Journals (Sweden)

    Bárbara Gionco

    2017-09-01

    Full Text Available The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified 12 upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and we suggesting that may involve in the biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.

  7. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins

    International Nuclear Information System (INIS)

    Strebel, K.; Beck, E.; Strohmaier, K.; Schaller, H.

    1986-01-01

    Defined segments of the cloned foot-and-mouth disease virus genome corresponding to all parts of the coding region were expressed in Escherichia coli as fusions to the N-terminal part of the MS2-polymerase gene under the control of the inducible λPL promoter. All constructs yielded large amounts of proteins, which were purified and used to raise sequence-specific antisera in rabbits. These antisera were used to identify the corresponding viral gene products in 35 S-labeled extracts from foot-and-mouth disease virus-infected BHK cells. This allowed us to locate unequivocally all mature foot-and-mouth disease virus gene products in the nucleotide sequence, to identify precursor-product relationships, and to detect several foot-and mouth disease virus gene products not previously identified in vivo or in vitro

  8. Analysis of Prolactin Gene Exon 4 Diversity in Peking, White Mojosari, and Peking White Mojosari Crossbreed

    Directory of Open Access Journals (Sweden)

    M. Indriati

    2016-04-01

    Full Text Available Genetic marker linked to loci reproductive traits could be used to increase an effectiveness of improvement in animal breeding. Association between DNA polymorphism and a trait could be considered as candidate genetic marker for marker assisted selection (MAS programs. Prolactin (PRL is one of polypeptide hormones secreted by anterior pituitary gland in vertebrates. PRL plays an important role in onset of poultry incubation and brooding behavior. The aim of this study was to investigate the diversity of prolactin gene and to characterize the type of mutation in partial intron 3, intron 4 and exon 4 of duck prolactin gene. Blood extraction was collected from 168 ducks consisted of 19 Peking, 36 Mojosari, and 113 Peking White Mojosari (Peking Mojosari putih ducks. Polymerase chain reaction of fragment prolactin gene exon 4 and partial intron 3 and 4 have been successfully amplified with length of base pair were 496 bp. A total of 30 µL PCR product from each sample were sequenced for forward sequence using BIOTRACE 3730 by First Base Company, Malaysia. Alignment analysis found six SNP consisted of g.3941T>G, g.3975C>A, g.4110T>C, INDEL 3724A, INDEL 34031, and INDEL 3939A. Analysis of SNP frequency result indicated mutation of INDEL 3724A, g.3941T>G, g.3975C>A, INDEL 4031A and g.4110T>A in duck sample were polymorphic and INDEL 3939A were monomorphic.

  9. Increasing Avermectin Production in Streptomyces avermitilis by Manipulating the Expression of a Novel TetR-Family Regulator and Its Target Gene Product.

    Science.gov (United States)

    Liu, Wenshuai; Zhang, Qinling; Guo, Jia; Chen, Zhi; Li, Jilun; Wen, Ying

    2015-08-01

    Avermectins produced by Streptomyces avermitilis are commercially important anthelmintic agents. The detailed regulatory mechanisms of avermectin biosynthesis remain unclear. Here, we identified SAV3619, a TetR-family transcriptional regulator designated AveT, to be an activator for both avermectin production and morphological differentiation in S. avermitilis. AveT was shown to indirectly stimulate avermectin production by affecting transcription of the cluster-situated activator gene aveR. AveT directly repressed transcription of its own gene (aveT), adjacent gene pepD2 (sav_3620), sav_7490 (designated aveM), and sav_7491 by binding to an 18-bp perfect palindromic sequence (CGAAACGKTKYCGTTTCG, where K is T or G and Y is T or C and where the underlining indicates inverted repeats) within their promoter regions. aveM (which encodes a putative transmembrane efflux protein belonging to the major facilitator superfamily [MFS]), the important target gene of AveT, had a striking negative effect on avermectin production and morphological differentiation. Overexpression of aveT and deletion of aveM in wild-type and industrial strains of S. avermitilis led to clear increases in the levels of avermectin production. In vitro gel-shift assays suggested that C-5-O-B1, the late pathway precursor of avermectin B1, acts as an AveT ligand. Taken together, our findings indicate positive-feedback regulation of aveT expression and avermectin production by a late pathway intermediate and provide the basis for an efficient strategy to increase avermectin production in S. avermitilis by manipulation of AveT and its target gene product, AveM. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    2011-09-01

    Full Text Available Tuberculosis (TB treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4 inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH. Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.

  11. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    Directory of Open Access Journals (Sweden)

    Bahl Hubert

    2011-01-01

    Full Text Available Abstract Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7 acids are the dominant product while at low pH (pH 4.5 this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.

  12. Identification and localization of a gene that specifies production of Escherichia coli DNA topoisomerase I

    International Nuclear Information System (INIS)

    Trucksis, M.; Depew, R.E.

    1981-01-01

    A gene that specifies production of Escherichia coli DNA topoisomerase I (ω protein) was identified with the aid of a radioimmunoassay for this protein. E. coli DNA topoisomerase I was produced by Salmonella typhimurium merodiploids that harbored E. coli plasmid F' 123, but not by strains that lost this plasmid. Analysis of strains with spontaneous deletions of F' 123 showed that the gene, topA, required for production of the E. coli ω protein was between the trp operon and the cysB gene. Deletions that eliminated topA also eliminated the supX gene. We suggest that topA is the structural gene of E. coli DNA topoisomerase I and that topA is identical to supX

  13. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    Science.gov (United States)

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus. © 2014 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists®

  14. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    Science.gov (United States)

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  15. The evaluation of angiotensin-converting enzyme (ACE) gene I/D and IL-4 gene intron 3 VNTR polymorphisms in coronary artery disease.

    Science.gov (United States)

    Basol, Nursah; Celik, Atac; Karakus, Nevin; Ozturk, Sibel Demir; Ozsoy, Sibel Demir; Yigit, Serbulent

    2014-01-01

    Genetic polymorphism is a strong risk factor for coronary artery disease (CAD). In the present study, our aim was to evaluate angiotensin-converting enzyme (ACE) gene I/D polymorphism and interleukin-4 (IL-4) gene Intron 3 variable number of tandem repeat (VNTR) polymorphism in CAD. One hundred and twenty-four CAD patients and one hundred and twenty-three controls were enrolled. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) analyses. The risk associated with inheriting the combined genotypes for the two polymorphisms were evaluated and it was found that the individuals who were P2P2-homozygous at IL-4 gene intron 3 VNTR and DD-homozygous at ACE gene I/D have a higher risk of developing CAD. Although, there is no correlation between IL4 VNTR polymorphism and ACE gene polymorphism and CAD, there is a strong association between CAD and co-existence of IL-4 VNTR and ACE gene polymorphisms in the Turkish population. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Characterization and Heterologous Expression of the Genes Encoding Enterocin A Production, Immunity, and Regulation in Enterococcus faecium DPC1146

    Science.gov (United States)

    O’Keeffe, Triona; Hill, Colin; Ross, R. Paul

    1999-01-01

    Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the

  17. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    Energy Technology Data Exchange (ETDEWEB)

    Basen, M; Schut, GJ; Nguyen, DM; Lipscomb, GL; Benn, RA; Prybol, CJ; Vaccaro, BJ; Poole, FL; Kelly, RM; Adams, MWW

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  18. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    Science.gov (United States)

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  19. Effect of KH2PO4 on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    Science.gov (United States)

    Kahrizi, D; Ghari, S M; Ghaheri, M; Fallah, F; Ghorbani, T; Beheshti Ale Agha, A; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana is one of the most important biologically sourced and low-calorie sweeteners Bertoni that has a lot of steviol glycosides. Tissue culture is the best for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. Therefore, the effect of different concentrations of KH2PO4on stevia growth factors and gene expression had been studied by tissue culture methods, RT-PCR and HPLC. According the results, bud numbers had increased significantly in MS + 0.034 mMKH2PO4 media and the highest measured length was seen in plants grown under MS + 0.034 mM KH2PO4 treatment. Also, the highest growth rate (1.396 mm/d) was observed in MS + 0.034 mMKH2PO4.The best concentration of KH2PO4 for expression of UGT74G1 was 0.00425mMand the best one for UGT76G1 expression was 0.017mM. Interestingly, the best media for both stevioside and rebaudioside A accumulation was 0.017mM KH2PO4containing media. There was positive correlation between the best media for gene expression and the best one for steviol glycosides production.

  20. Polymorphisms of the dopamine D4 receptor gene (DRD4 VNTR) and cannabinoid CB1 receptor gene (CNR1) are not strongly related to cue-reactivity after alcohol exposure

    NARCIS (Netherlands)

    Wildenberg, E. van den; Janssen, R.G.J.H.; Hutchison, K.E.; Breukelen, G.J.P. van; Wiers, R.W.H.J.

    2007-01-01

    Polymorphisms in the D4 dopamine receptor gene (DRD4) and the CB1 cannabinoid receptor gene (CNR1) have been associated with a differential response to alcohol after consumption. The goal of the present study was to investigate whether heavy drinkers with these polymorphisms would respond with

  1. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b.

    Directory of Open Access Journals (Sweden)

    Rebecca Cotterman

    2009-06-01

    Full Text Available myc genes are best known for causing tumors when overexpressed, but recent studies suggest endogenous myc regulates pluripotency and self-renewal of stem cells. For example, N-myc is associated with a number of tumors including neuroblastoma, but also plays a central role in the function of normal neural stem and precursor cells (NSC. Both c- and N-myc also enhance the production of induced pluripotent stem cells (iPSC and are linked to neural tumor stem cells. The mechanisms by which myc regulates normal and neoplastic stem-related functions remain largely open questions. Here from a global, unbiased search for N-Myc bound genes using ChIP-chip assays in neuroblastoma, we found lif as a putative N-Myc bound gene with a number of strong N-Myc binding peaks in the promoter region enriched for E-boxes. Amongst putative N-Myc target genes in expression microarray studies in neuroblastoma we also found lif and three additional important embryonic stem cell (ESC-related factors that are linked to production of iPSC: klf2, klf4, and lin28b. To examine the regulation of these genes by N-Myc, we measured their expression using neuroblastoma cells that contain a Tet-regulatable N-myc transgene (TET21N as well as NSC with a nestin-cre driven N-myc knockout. N-myc levels closely correlated with the expression of all of these genes in neuroblastoma and all but lif in NSC. Direct ChIP assays also indicate that N-Myc directly binds the lif promoter. N-Myc regulates trimethylation of lysine 4 of histone H3 in the promoter of lif and possibly in the promoters of several other stem-related genes. Together these findings indicate that N-Myc regulates overlapping stem-related gene expression programs in neuroblastoma and NSC, supporting a novel model by which amplification of the N-myc gene may drive formation of neuroblastoma. They also suggest mechanisms by which Myc proteins more generally contribute to maintenance of pluripotency and self-renewal of ESC as

  2. Systematic Analysis of the 4-Coumarate:Coenzyme A Ligase (4CL Related Genes and Expression Profiling during Fruit Development in the Chinese Pear

    Directory of Open Access Journals (Sweden)

    Yunpeng Cao

    2016-10-01

    Full Text Available In plants, 4-coumarate:coenzyme A ligases (4CLs, comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR. We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes.

  3. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?

    Science.gov (United States)

    Zheng, Hai-Tao; Jiang, Li-Xin; Lv, Zhong-Chuan; Li, Da-Peng; Zhou, Chong-Zhi; Gao, Jian-Jun; He, Lin; Peng, Zhi-Hai

    2008-01-07

    To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients. Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by c2 test. Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).

  4. A shortest-path graph kernel for estimating gene product semantic similarity

    Directory of Open Access Journals (Sweden)

    Alvarez Marco A

    2011-07-01

    Full Text Available Abstract Background Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. Results We present a shortest-path graph kernel (spgk method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Conclusions Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.

  5. Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis in the Resistant Musa Accession 'Calcutta-4' Using Suppression Subtractive Hybridization.

    Science.gov (United States)

    Sánchez Timm, Eduardo; Hidalgo Pardo, Lisette; Pacheco Coello, Ricardo; Chávez Navarrete, Tatiana; Navarrete Villegas, Oscar; Santos Ordóñez, Efrén

    2016-01-01

    Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession 'Calcutta-4' has a natural resistance to Black Sigatoka; however, the fruit is not valuable for commercialization. Gene identification and expression studies in 'Calcutta-4' might reveal possible gene candidates for resistant to the disease and elucidate mechanisms for resistance. A subtracted cDNA library was generated from leaves after 6, 9 and 12 days inoculated with M. fijiensis conidia on greenhouse banana plants of the accession 'Calcutta-4'. Bioinformatic analysis revealed 99 good quality sequences. Blast2go analysis revealed that 31% of the sequences could not be categorized and, according to the Biological Process Category, 32 and 28 ESTs are related to general metabolic and cellular processes, respectively; while 10 ESTs response to stimulus. Seven sequences were redundant and one was similar to genes that may be involved in pathogen resistance including the putative disease resistance protein RGA1. Genes encoding zinc finger domains were identified and may play an important role in pathogen resistance by inducing the expression of downstream genes. Expression analysis of four selected genes was performed using RT-qPCR during the early stage of the disease development at 6, 9, 12 and 15 days post inoculation showing a peak of up regulation at 9 or 12 days post inoculation. Three of the four genes showed an up-regulation of expression in 'Calcutta-4' when compared to 'Williams' after inoculation with M. fijiensis, suggesting a fine regulation of specific gene candidates that may lead to a resistance response. The genes identified in early responses in a plant-pathogen interaction may be relevant for the resistance response of 'Calcutta-4' to Black Sigatoka

  6. Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis in the Resistant Musa Accession 'Calcutta-4' Using Suppression Subtractive Hybridization.

    Directory of Open Access Journals (Sweden)

    Eduardo Sánchez Timm

    Full Text Available Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession 'Calcutta-4' has a natural resistance to Black Sigatoka; however, the fruit is not valuable for commercialization. Gene identification and expression studies in 'Calcutta-4' might reveal possible gene candidates for resistant to the disease and elucidate mechanisms for resistance. A subtracted cDNA library was generated from leaves after 6, 9 and 12 days inoculated with M. fijiensis conidia on greenhouse banana plants of the accession 'Calcutta-4'. Bioinformatic analysis revealed 99 good quality sequences. Blast2go analysis revealed that 31% of the sequences could not be categorized and, according to the Biological Process Category, 32 and 28 ESTs are related to general metabolic and cellular processes, respectively; while 10 ESTs response to stimulus. Seven sequences were redundant and one was similar to genes that may be involved in pathogen resistance including the putative disease resistance protein RGA1. Genes encoding zinc finger domains were identified and may play an important role in pathogen resistance by inducing the expression of downstream genes. Expression analysis of four selected genes was performed using RT-qPCR during the early stage of the disease development at 6, 9, 12 and 15 days post inoculation showing a peak of up regulation at 9 or 12 days post inoculation. Three of the four genes showed an up-regulation of expression in 'Calcutta-4' when compared to 'Williams' after inoculation with M. fijiensis, suggesting a fine regulation of specific gene candidates that may lead to a resistance response. The genes identified in early responses in a plant-pathogen interaction may be relevant for the resistance response of 'Calcutta-4' to

  7. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species

    Science.gov (United States)

    Ding, Zehong; Weissmann, Sarit; Wang, Minghui; Du, Baijuan; Huang, Lei; Wang, Lin; Tu, Xiaoyu; Zhong, Silin; Myers, Christopher; Brutnell, Thomas P.; Sun, Qi; Li, Pinghua

    2015-01-01

    Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops. PMID:26465154

  8. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.

    Science.gov (United States)

    Ding, Zehong; Weissmann, Sarit; Wang, Minghui; Du, Baijuan; Huang, Lei; Wang, Lin; Tu, Xiaoyu; Zhong, Silin; Myers, Christopher; Brutnell, Thomas P; Sun, Qi; Li, Pinghua

    2015-01-01

    Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops.

  9. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.

    Directory of Open Access Journals (Sweden)

    Zehong Ding

    Full Text Available Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops.

  10. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    Science.gov (United States)

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861

  11. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery.

    Science.gov (United States)

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J

    2013-07-10

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.

  12. Process optimization for enhancing production of cis-4-hydroxy-L-proline by engineered Escherichia coli.

    Science.gov (United States)

    Chen, Kequan; Pang, Yang; Zhang, Bowen; Feng, Jiao; Xu, Sheng; Wang, Xin; Ouyang, Pingkai

    2017-11-22

    Understanding the bioprocess limitations is critical for the efficient design of biocatalysts to facilitate process feasibility and improve process economics. In this study, a proline hydroxylation process with recombinant Escherichia coli expressing L-proline cis-4-hydroxylase (SmP4H) was investigated. The factors that influencing the metabolism of microbial hosts and process economics were focused on for the optimization of cis-4-hydroxy-L-proline (CHOP) production. In recombinant E. coli, SmP4H synthesis limitation was observed. After the optimization of expression system, CHOP production was improved in accordance with the enhanced SmP4H synthesis. Furthermore, the effects of the regulation of proline uptake and metabolism on whole-cell catalytic activity were investigated. The improved CHOP production by repressing putA gene responsible for L-proline degradation or overexpressing L-proline transporter putP on CHOP production suggested the important role of substrate uptake and metabolism on the whole-cell biocatalyst efficiency. Through genetically modifying these factors, the biocatalyst activity was significantly improved, and CHOP production was increased by twofold. Meanwhile, to further improve process economics, a two-strain coupling whole-cell system was established to supply co-substrate (α-ketoglutarate, α-KG) with a cheaper chemical L-glutamate as a starting material, and 13.5 g/L of CHOP was successfully produced. In this study, SmP4H expression, and L-proline uptake and degradation, were uncovered as the hurdles for microbial production of CHOP. Accordingly, the whole-cell biocatalysts were metabolically engineered for enhancing CHOP production. Meanwhile, a two-strain biotransformation system for CHOP biosynthesis was developed aiming at supplying α-KG more economically. Our work provided valuable insights into the design of recombinant microorganism to improve the biotransformation efficiency that catalyzed by Fe

  13. Functional Characterization of 4´OMT and 7OMT Genes in BIA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Tugba eGurkok

    2016-02-01

    Full Text Available Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L., the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-methylcoclaurine 4´-O-methyltransferase (4´OMT and reticuline 7-O-methyltransferase (7OMT genes were subjected tomanipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem and capsule tissues accordingly. Suppression of 4´OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4´OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4´OMT and 7OMT were observed upon manipulation of 4´OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4´OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues.

  14. 5' Region of the human interleukin 4 gene: structure and potential regulatory elements

    Energy Technology Data Exchange (ETDEWEB)

    Eder, A; Krafft-Czepa, H; Krammer, P H

    1988-01-25

    The lymphokine Interleukin 4 (IL-4) is secreted by antigen or mitogen activated T lymphocytes. IL-4 stimulates activation and differentiation of B lymphocytes and growth of T lymphocytes and mast cells. The authors isolated the human IL-4 gene from a lambda EMBL3 genomic library. As a probe they used a synthetic oligonucleotide spanning position 40 to 79 of the published IL-4 cDNA sequence. The 5' promoter region contains several sequence elements which may have a cis-acting regulatory function for IL-4 gene expression. These elements include a TATA-box, three CCAAT-elements (two are on the non-coding strand) and an octamer motif. A comparison of the 5' flanking region of the human murine IL-4 gene (4) shows that the region between position -306 and +44 is highly conserved (83% homology).

  15. Use of galerina marginata genes and proteins for peptide production

    Science.gov (United States)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2018-04-03

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  16. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2017-03-21

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  17. Id-1 and Id-2 genes and products as markers of epithelial cancer

    Science.gov (United States)

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  18. Expression of nm23-H1 gene product in esophageal squamous cell carcinoma and its association with vessel invasion and survival

    International Nuclear Information System (INIS)

    Tomita, Masaki; Ayabe, Takanori; Matsuzaki, Yasunori; Edagawa, Masao; Maeda, Masayuki; Shimizu, Tetsuya; Hara, Masaki; Onitsuka, Toshio

    2001-01-01

    We assessed the nm23-H1 gene product expression and its relationship with lymphatic and blood vessel invasion in patients with esophageal squamous cell carcinoma. Formalin-fixed and paraffin-embedded tissue sections from 45 patients who were treated surgically were used in this study. Pathologists graded lymphatic and blood vessel invasion in each of the tissue samples. Expression of nm23-Hl gene product was determined using a specific monoclonal antibody. Expression of nm23-H1 gene product was present in 17 (37.8%) cases. We found an inverse correlation between nm23-H1 gene product expression and lymphatic vessel invasion, whereas no correlation between nm23-H1 gene product expression and blood vessel invasion. Overall survival rate was not different between nm23-H1 gene product positive and negative patients (p = 0.21). However, reduced expression of nm23-H1 gene product was associated with shorter overall survival in patients with involved lymph nodes (p < 0.05), but not in patients without involved lymph nodes (p = 0.87). In patients with esophageal squamous cell carcinoma, there appears to be an inverse relationship between nm23-H1 gene product expression and lymphatic vessel invasion. Furthermore, nm23-H1 gene product expression might be a prognostic marker in patients with involved lymph nodes. Our data does not demonstrate any correlation between nm23-H1 gene product expression and blood vessel invasion

  19. Cloning and knockout of formate hydrogen lyase and H{sub 2}-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hongxin; Ma, Kun; Lu, Yuan; Zhang, Chong; Wang, Liyan; Xing, Xin-Hui [Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Tsinghua Yuan, Beijing 100084 (China)

    2009-01-15

    A 5431-bp DNA fragment partially encoding the formate hydrogen lyase (FHL) gene cluster hycABCDE was isolated and identified from Enterobacter aerogenes IAM1183 chromosomal DNA. All the five putative gene products showed a high degree of homology to the reported bacterial FHL proteins. The gene hycA, encoding the FHL repressor protein, and hybO, encoding the small subunit of the uptake hydrogenase, were targeted for genetic knockout for improving the hydrogen production. The pYM-Red recombination system was adopted to form insertional mutations in the E. aerogenes genome, thereby creating mutant strains of IAM1183-A ({delta} hycA), IAM1183-O ({delta} hybO), and IAM1183-AO ({delta} hycA/ {delta} hybO double knockout). The hydrogen production experiments with these mutants showed that the maximum specific hydrogen productivities of IAM1183-A, IAM1183-O, and IAM1183-AO were 2879.466 {+-} 38.59, 2747.203 {+-} 13.25 and 3372.019 {+-} 4.39 (ml h{sup -1} g{sup -1}dry cell weight), respectively, higher than that of the wild strain (2321.861 {+-} 15.34 ml h{sup -1} g{sup -1}dry cell weight). The total H{sub 2} yields by the three mutants IAM1183-A, IAM1183-O and IAM1183-AO were 0.73, 0.78, and 0.83 mol-H{sub 2}/mol glucose, respectively, while the wild-type IAM1183 was only 0.65 mol-H{sub 2}/mol glucose. The metabolites of the mutants including acetate, ethanol, 2,3-butanediol and succinate were all increased compared with that of the wild type, implying the changed metabolic flux by the mutation. In the fermentor cultivation with IAM1183 {delta} hycA/ {delta} hybO, the total hydrogen volume after 16 h cultivation reached 4.4 L, while that for the wild type was only 2.9 L. (author)

  20. Phylogenetic Analysis, Lineage-Specific Expansion and Functional Divergence of seed dormancy 4-Like Genes in Plants.

    Directory of Open Access Journals (Sweden)

    Saminathan Subburaj

    Full Text Available The rice gene seed dormancy 4 (OsSdr4 functions in seed dormancy and is a major factor associated with pre-harvest sprouting (PHS. Although previous studies of this protein family were reported for rice and other species, knowledge of the evolution of genes homologous to OsSdr4 in plants remains inadequate. Fifty four Sdr4-like (hereafter designated Sdr4L genes were identified in nine plant lineages including 36 species. Phylogenetic analysis placed these genes in eight subfamilies (I-VIII. Genes from the same lineage clustered together, supported by analysis of conserved motifs and exon-intron patterns. Segmental duplications were present in both dicot and monocot clusters, while tandemly duplicated genes occurred only in monocot clusters indicating that both tandem and segmental duplications contributed to expansion of the grass I and II subfamilies. Estimation of the approximate ages of the duplication events indicated that ancestral Sdr4 genes evolved from a common angiosperm ancestor, about 160 million years ago (MYA. Moreover, diversification of Sdr4L genes in mono and dicot plants was mainly associated with genome-wide duplication and speciation events. Functional divergence was observed in all subfamily pairs, except IV/VIIIa. Further analysis indicated that functional constraints between subfamily pairs I/II, I/VIIIb, II/VI, II/VIIIb, II/IV, and VI/VIIIb were statistically significant. Site and branch-site model analyses of positive selection suggested that these genes were under strong adaptive selection pressure. Critical amino acids detected for both functional divergence and positive selection were mostly located in the loops, pointing to functional importance of these regions in this protein family. In addition, differential expression studies by transcriptome atlas of 11 Sdr4L genes showed that the duplicated genes may have undergone divergence in expression between plant species. Our findings showed that Sdr4L genes are

  1. The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa.

    Science.gov (United States)

    Yang, Nana; Ding, Shuting; Chen, Feifei; Zhang, Xue; Xia, Yongjie; Di, Hongxia; Cao, Qiao; Deng, Xin; Wu, Min; Wong, Catherine C L; Tian, Xiao-Xu; Yang, Cai-Guang; Zhao, Jing; Lan, Lefu

    2015-05-01

    Rhamnolipid acts as a virulence factor during Pseudomonas aeruginosa infection. Here, we show that deletion of the catabolite repression control (crc) gene in P. aeruginosa leads to a rhamnolipid-negative phenotype. This effect is mediated by the down-regulation of rhl quorum sensing (QS). We discover that a disruption of the gene encoding the Lon protease entirely offsets the effect of crc deletion on the production of both rhamnolipid and rhl QS signal C4-HSL. Crc is unable to bind lon mRNA in vitro in the absence of the RNA chaperon Hfq, while Crc contributes to Hfq-mediated repression of the lon gene expression at a posttranscriptional level. Deletion of crc, which results in up-regulation of lon, significantly reduces the in vivo stability and abundance of the RhlI protein that synthesizes C4-HSL, causing the attenuation of rhl QS. Lon is also capable of degrading the RhlI protein in vitro. In addition, constitutive expression of rhlI suppresses the defects of the crc deletion mutant in rhamnolipid, C4-HSL and virulence on lettuce leaves. This study therefore uncovers a novel posttranscriptional regulatory cascade, Crc-Hfq/Lon/RhlI, for the regulation of rhamnolipid production and rhl QS in P. aeruginosa. © 2015 John Wiley & Sons Ltd.

  2. A New Baltic Population-Specific Human Genetic Marker in the PMCA4 Gene.

    Science.gov (United States)

    Stavusis, Janis; Inashkina, Inna; Lace, Baiba; Pelnena, Dita; Limborska, Svetlana; Khrunin, Andrey; Kucinskas, Vaidutis; Krumina, Astrida; Piekuse, Linda; Zorn, Branko; Fodina, Violeta; Punab, Margus; Erenpreiss, Juris

    2016-01-01

    The PMCA gene family consists of 4 genes and at least 21 splice variants; among these, the Ca2+ ATPase 4 (PMCA4) gene encodes a plasma membrane protein abundantly expressed in several tissues, including the kidney, heart, and sperm. Knockout of PMCA4 causes infertility due to immotile sperm in mouse models. We therefore investigated variants in this gene for potential association with infertility in groups of Estonian (n = 191) and Latvian (n = 92) men with reduced sperm motility. All exons, exon-intron boundaries, 5' and 3' untranslated regions, and the promoter region of the PMCA4 gene were analysed by direct sequencing for a group of Estonian infertile men. Genotyping of guanine and adenine alleles of rs147729934 was performed, using a custom-designed TaqMan® probe for a group of Latvian infertile men as well as additional groups from Latvia and several groups of people with proven ethnicity from the Baltic region. Although we did not identify any significant associations between variants in the gene and infertility, our results indicated that in all studied Latvian and Estonian groups the adenine allele of the variant rs147729934 was present at a higher frequency than expected. Analysis of additional samples indicated that the adenine allele of rs147729934 likely originated once in the modern-day Baltic or western Russia area, as the frequency of the minor adenine allele observed in this region is remarkably higher than that in the general European population. Our results revealed no significant difference in frequencies of genetic variants in PMCA4 gene between men with normal and those with reduced sperm motility. The adenine allele of the variant rs147729934 is potentially an informative tool for future population studies concerning ancient Baltic and Finno-Ugric history. © 2017 S. Karger AG, Basel.

  3. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    Directory of Open Access Journals (Sweden)

    Vanessa Rodrigues Paixão-Côrtes

    Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.

  4. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  5. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  6. Insecticidal activity and expression of cytochrome P450 family 4 genes in Aedes albopictus after exposure to pyrethroid mosquito coils.

    Science.gov (United States)

    Avicor, Silas W; Wajidi, Mustafa F F; El-Garj, Fatma M A; Jaal, Zairi; Yahaya, Zary S

    2014-10-01

    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.

  7. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Science.gov (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  8. Role of gene 59 of bacteriophage T4 in repair of uv-irradiated and alkylated DNA in vivo

    International Nuclear Information System (INIS)

    Wu, R.; Wu, J.L.; Yeh, Y.C.

    1975-01-01

    Nonsense mutants in gene 59 (amC5, am HL628) were used to study the role of this gene in the repair of uv-damaged and alkylated DNA of bacteriophage T4 in vivo. The higher sensitivity to uv irradiation and alkylation of gene 59 mutants after exposure to these agents was established by a comparison of the survival fractions with wild type. Zonal centrifugal analysis of both parental and nascent mutant intracellular DNA molecules after uv irradiation showed that immediately after exposure the size of single-stranded DNA fragments was the same as the wild-type intracellular DNA. However, the capability of rejoining fragmented intracellular DNA was greatly reduced in the mutant. In contrast, the wild-type-infected cells under the same condition resumed DNA replication and repaired its DNA to normal size. Methyl methanesulfonate induced more randomly fragmented intracellular DNA, when compared to uv irradiation. The rate of rejoining under these conditions as judged from their sedimentation profiles was also greatly reduced in mutant-infected cells. Further evidence is presented that uv repair is not a simple consequence of arrested DNA replication, which is a phenotype of the mutant when infected in a nonpermissive host, Escherichia coli B(su - ), but rather that the DNA repair function of gene 59 is independent of the replication function. These and other data presented indicate that a product(s) of gene 59 is essential for both repair of uv lesions and repair of alkylation damage of DNA in vivo. It is suggested that gene 59 may have two functions during viral development: DNA replication and replication repair of DNA molecules

  9. Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene.

    Science.gov (United States)

    Dean, Gillian H; Jin, Zhaoqing; Shi, Lin; Esfandiari, Elahe; McGee, Robert; Nabata, Kylie; Lee, Tiffany; Kunst, Ljerka; Western, Tamara L; Haughn, George W

    2017-09-01

    The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.

  10. Improvement of heterologous protein production in Aspergillus oryzae by RNA interference with alpha-amylase genes.

    Science.gov (United States)

    Nemoto, Takashi; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2009-11-01

    Aspergillus oryzae RIB40 has three alpha-amylase genes (amyA, amyB, and amyC), and secretes alpha-amylase abundantly. However, large amounts of endogenous secretory proteins such as alpha-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of alpha-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three alpha-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of alpha-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in alpha-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of alpha-amylase is effective in heterologous protein production in A. oryzae.

  11. Association between genes encoding components of the IL-4/IL-4 receptor pathway and dermatitis in children.

    Science.gov (United States)

    Hussein, Yousri M; Shalaby, Sally M; Nassar, Amani; Alzahrani, Saad S; Alharbi, Ayman S; Nouh, Maha

    2014-07-25

    To determine whether IL-4, IL-4Rα and STAT6 polymorphisms are associated with susceptibility to dermatitis in Egyptian children. We genotyped three groups of children, consisting of 106 atopic dermatitis (AD) children, 95 non-AD children, and 100 of healthy controls, for IL-4 (-590 C/T), (-33 C/T), IL-4Rα (I50V), (Q576R) and STAT6 (2964 G/A), (2892 C/T) gene polymorphisms using PCR-RFLP assay. Total serum IgE and serum IL-4 levels were detected by ELISA. There was a non-significant association of IL-4 -590 C/T, -33 C/T polymorphisms in the children with non-AD or those with AD when compared with the controls. We identified a significant association between IL-4Rα I50V, Q576R polymorphisms and dermatitis susceptibility in AD (p=0.002, dermatitis was found. Patients who were carriers of IL4 -590C, IL-4Rα I50V G, STAT6 2964 A and STAT6 2892 T had an increased risk of AD [OR and 95% CI: 3.2 (2.5-4.2), p=0.005]. Furthermore, there was no relation between each polymorphism and serum IL-4 level (p>0.05 for each) while homozygosity for the risk alleles of IL-4, IL-4Rα and STAT6 SNPs were significantly associated with increased total IgE levels in all subjects. In Egyptian children, the IL-4Rα and the STAT6 polymorphism may play a role in susceptibility to AD. In addition, gene-gene interaction between the IL-4, the IL-4Rα and the STAT6 significantly increases an individual's susceptibility to AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens

    International Nuclear Information System (INIS)

    Puxeddu, Efisio; Zhao Guisheng; Stringer, James R.; Medvedovic, Mario; Moretti, Sonia; Fagin, James A.

    2005-01-01

    The two main forms of RET rearrangement in papillary thyroid carcinomas (PTC) arise from intrachromosomal inversions fusing the tyrosine kinase domain of RET with either the H4 (RET/PTC1) or the ELE1/RFG genes (RET/PTC3). PTEN codes for a dual-specificity phosphatase and maps to chromosome 10q22-23. Germline mutations confer susceptibility to Cowden syndrome whereas somatic mutations or deletions are common in several sporadic human tumors. Decreased PTEN expression has been implicated in thyroid cancer development. We report the characterization of a new chromosome 10 rearrangement involving H4 and PTEN. The initial H4/PTEN rearrangement was discovered as a non-specific product of RT-PCR for RET/PTC1 in irradiated thyroid cell lines. Sequencing revealed a transcript consisting of exon 1 and 2 of H4 fused with exons 3-6 of PTEN. Nested RT-PCR with specific primers bracketing the breakpoints confirmed the H4/PTEN rearrangements in irradiated KAT-1 and KAT-50 cells. Additional H4/PTEN variants, generated by recombination of either exon 1 or exon 2 of H4 with exon 6 of PTEN, were found in non-irradiated KAK-1, KAT-50, ARO and NPA cells. Their origin through chromosomal recombination was confirmed by detection of the reciprocal PTEN/H4 product. H4/PTEN recombination was not a clonal event in any of the cell lines, as Southern blots with appropriate probes failed to demonstrate aberrant bands, and multicolor FISH of KAK1 cells with BAC probes for H4 and PTEN did not show a signal overlap in all cells. Based on PCR of serially diluted samples, the minimal frequency of spontaneous recombination between these loci was estimated to be approximately 1/10 6 cells. H4/PTEN products were found by nested RT-PCR in 4/14 normal thyroid tissues (28%) and 14/18 PTC (78%) (P < 0.01). H4/PTEN is another example of recombination involving the H4 locus, and points to the high susceptibility of thyroid cells to intrachromosomal gene rearrangements. As this also represents a plausible

  13. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens

    Energy Technology Data Exchange (ETDEWEB)

    Puxeddu, Efisio [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Zhao Guisheng [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Stringer, James R. [Department of Molecular Genetics, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Medvedovic, Mario [Center for Biostatistic Service, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Moretti, Sonia [Dipartimento di Medicina Interna, Universita degli Studi di Perugia, Via E. dal Pozzo, Perugia 06126, (Italy); Fagin, James A. [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States)]. E-mail: james.fagin@uc.edu

    2005-02-15

    The two main forms of RET rearrangement in papillary thyroid carcinomas (PTC) arise from intrachromosomal inversions fusing the tyrosine kinase domain of RET with either the H4 (RET/PTC1) or the ELE1/RFG genes (RET/PTC3). PTEN codes for a dual-specificity phosphatase and maps to chromosome 10q22-23. Germline mutations confer susceptibility to Cowden syndrome whereas somatic mutations or deletions are common in several sporadic human tumors. Decreased PTEN expression has been implicated in thyroid cancer development. We report the characterization of a new chromosome 10 rearrangement involving H4 and PTEN. The initial H4/PTEN rearrangement was discovered as a non-specific product of RT-PCR for RET/PTC1 in irradiated thyroid cell lines. Sequencing revealed a transcript consisting of exon 1 and 2 of H4 fused with exons 3-6 of PTEN. Nested RT-PCR with specific primers bracketing the breakpoints confirmed the H4/PTEN rearrangements in irradiated KAT-1 and KAT-50 cells. Additional H4/PTEN variants, generated by recombination of either exon 1 or exon 2 of H4 with exon 6 of PTEN, were found in non-irradiated KAK-1, KAT-50, ARO and NPA cells. Their origin through chromosomal recombination was confirmed by detection of the reciprocal PTEN/H4 product. H4/PTEN recombination was not a clonal event in any of the cell lines, as Southern blots with appropriate probes failed to demonstrate aberrant bands, and multicolor FISH of KAK1 cells with BAC probes for H4 and PTEN did not show a signal overlap in all cells. Based on PCR of serially diluted samples, the minimal frequency of spontaneous recombination between these loci was estimated to be approximately 1/10{sup 6} cells. H4/PTEN products were found by nested RT-PCR in 4/14 normal thyroid tissues (28%) and 14/18 PTC (78%) (P < 0.01). H4/PTEN is another example of recombination involving the H4 locus, and points to the high susceptibility of thyroid cells to intrachromosomal gene rearrangements. As this also represents a

  14. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  15. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2017-08-01

    The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. The Sorghum Gene for Leaf Color Changes upon Wounding (P Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawahigashi

    2016-05-01

    Full Text Available Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L. Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which are not produced by the tan-phenotype plants. Using map-based cloning in progeny from a cross between purple Nakei-MS3B (PP and tan Greenleaf (pp cultivars, we isolated this gene, which was located in a 27-kb genomic region around the 58.1 Mb position on chromosome 6. Four candidate genes identified in this region were similar to the maize leucoanthocyanidin reductase gene. None of them was expressed before wounding, and only the Sb06g029550 gene was induced in both cultivars after wounding. The Sb06g029550 protein was detected in Nakei-MS3B, but only slightly in Greenleaf, in which it may be unstable because of a Cys252Tyr substitution. A recombinant Sb06g029550 protein had a specific flavanone 4-reductase activity, and converted flavanones (naringenin or eriodictyol to flavan-4-ols (apiforol or luteoforol in vitro. Our data indicate that the Sb06g029550 gene is involved in the 3-deoxyanthocyanidin synthesis pathway.

  17. Identification and characterization of a tandem repeat in exon III of the dopamine receptor D4 (DRD4) gene in cetaceans

    DEFF Research Database (Denmark)

    Mogensen, Line; Kinze, Carl Christian; Werge, Thomas

    2006-01-01

    A large number of mammalian species harbor a tandem repeat in exon III of the gene encoding dopamine receptor D4 (DRD4), a receptor associated with cognitive functions. In this study, a DRD4 gene exon III tandem repeat from the order Cetacea was identified and characterized. Included in our study...

  18. Presence of CP4-EPSPS Component in Roundup Ready Soybean-Derived Food Products

    Directory of Open Access Journals (Sweden)

    Honghong Wu

    2012-02-01

    Full Text Available With the widespread use of Roundup Ready soya (event 40-3-2 (RRS, the traceability of transgenic components, especially protein residues, in different soya-related foodstuffs has become an important issue. In this report, transgenic components in commercial soya (including RRS protein concentrates were firstly detected by using polymerase chain reaction (PCR and western blot. The results illustrated the different degradation patterns of the cp4-epsps gene and corresponding protein in RRS-derived protein concentrates. Furthermore, western blot was applied to investigate the single factor of food processing and the matrix on the disintegration of CP4-EPSPS protein in RRS powder and soya-derived foodstuffs, and trace the degradation patterns during the food production chain. Our results suggested that the exogenous full length of CP4-EPSPS protein in RRS powder was distinctively sensitive to various heat treatments, including heat, microwave and autoclave (especially, and only one degradation fragment (23.4 kD of CP4-EPSPS protein was apparently observed when autoclaving was applied. By tracing the protein degradation during RRS-related products, including tofu, tou-kan, and bean curd sheets, however, four degradation fragments (42.9, 38.2, 32.2 and 23.4 kD were displayed, suggesting that both boiling and bittern adding procedures might have extensive effects on CP4-EPSPS protein degradation. Our results thus confirmed that the distinctive residues of the CP4-EPSPS component could be traced in RRS-related foodstuffs.

  19. Presence of CP4-EPSPS Component in Roundup Ready Soybean-Derived Food Products

    Science.gov (United States)

    Wu, Honghong; Zhang, Yu; Zhu, Changqing; Xiao, Xiao; Zhou, Xinghu; Xu, Sheng; Shen, Wenbiao; Huang, Ming

    2012-01-01

    With the widespread use of Roundup Ready soya (event 40-3-2) (RRS), the traceability of transgenic components, especially protein residues, in different soya-related foodstuffs has become an important issue. In this report, transgenic components in commercial soya (including RRS) protein concentrates were firstly detected by using polymerase chain reaction (PCR) and western blot. The results illustrated the different degradation patterns of the cp4-epsps gene and corresponding protein in RRS-derived protein concentrates. Furthermore, western blot was applied to investigate the single factor of food processing and the matrix on the disintegration of CP4-EPSPS protein in RRS powder and soya-derived foodstuffs, and trace the degradation patterns during the food production chain. Our results suggested that the exogenous full length of CP4-EPSPS protein in RRS powder was distinctively sensitive to various heat treatments, including heat, microwave and autoclave (especially), and only one degradation fragment (23.4 kD) of CP4-EPSPS protein was apparently observed when autoclaving was applied. By tracing the protein degradation during RRS-related products, including tofu, tou-kan, and bean curd sheets, however, four degradation fragments (42.9, 38.2, 32.2 and 23.4 kD) were displayed, suggesting that both boiling and bittern adding procedures might have extensive effects on CP4-EPSPS protein degradation. Our results thus confirmed that the distinctive residues of the CP4-EPSPS component could be traced in RRS-related foodstuffs. PMID:22408431

  20. Excision of foreign gene product with cathepsin D in chicken hepatoma cell line

    International Nuclear Information System (INIS)

    Sato, Masaharu; Kawashima, Tsuyoshi; Aosasa, Masayoshi; Horiuchi, Hiroyuki; Furusawa, Shuichi; Matsuda, Haruo

    2005-01-01

    To easily and rapidly recover exogenous gene products from chicken egg yolk, we constructed pVTG-catD (VTG, vitellogenin; catD, cathepsin D), a vector cassette carrying two catD-recognition signal peptides (catD-RSPs) in addition to the cloning site. An enhanced green fluorescence protein (EGFP)-encoding DNA fragment was ligated into the pVTG-catD. When the resultant construct pVTG-EGFP-catD containing histidine- and myc-tags was transfected into the chicken hepatoma cell line LMH, EGFP-expression at 24 h post-cultivation was confirmed by fluorescence microscopy. Because a signal peptide (NTVLAEF) encoded in pVTG-EGFP-catD is recognized by catD, the VTG-EGFP fusion protein digested with catD was detectable by Western blotting. Digested exogenous gene product was recovered with nickel resin. These results indicate that catD-recognition sites bearing pVTG-catD and His-tags are functional in chicken LMH cells. Therefore, the system described here may be of use in making excision exogenous gene products in the chicken and in creating homozygous knock-in chickens

  1. Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows.

    Science.gov (United States)

    Wang, Haifei; Jiang, Li; Wang, Wenwen; Zhang, Shengli; Yin, Zongjun; Zhang, Qin; Liu, Jian-Feng

    2014-11-25

    The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3'UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle.

  2. Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida.

    Science.gov (United States)

    Chu, Y X; Chen, H R; Wu, A Z; Cai, R; Pan, J S

    2015-05-12

    Dihydroflavonol 4-reductase (DFR) genes from Rosa chinensis (Asn type) and Calibrachoa hybrida (Asp type), driven by a CaMV 35S promoter, were integrated into the petunia (Petunia hybrida) cultivar 9702. Exogenous DFR gene expression characteristics were similar to flower-color changes, and effects on anthocyanin concentration were observed in both types of DFR gene transformants. Expression analysis showed that exogenous DFR genes were expressed in all of the tissues, but the expression levels were significantly different. However, both of them exhibited a high expression level in petals that were starting to open. The introgression of DFR genes may significantly change DFR enzyme activity. Anthocyanin ultra-performance liquid chromatography results showed that anthocyanin concentrations changed according to DFR enzyme activity. Therefore, the change in flower color was probably the result of a DFR enzyme change. Pelargonidin 3-O-glucoside was found in two different transgenic petunias, indicating that both CaDFR and RoDFR could catalyze dihydrokaempferol. Our results also suggest that transgenic petunias with DFR gene of Asp type could biosynthesize pelargonidin 3-O-glucoside.

  3. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina.

    Science.gov (United States)

    Meguro, Akira; Ideta, Hidenao; Ota, Masao; Ito, Norihiko; Ideta, Ryuichi; Yonemoto, Junichi; Takeuchi, Masaki; Uemoto, Riyo; Nishide, Tadayuki; Iijima, Yasuhito; Kawagoe, Tatsukata; Okada, Eiichi; Shiota, Tomoko; Hagihara, Yuta; Oka, Akira; Inoko, Hidetoshi; Mizuki, Nobuhisa

    2012-01-01

    Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls) led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4) gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls) using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6), OR = 0.63 and Pc = 1.0 × 10(-5), OR = 0.69 in a total of 574 patients and 608 controls, respectively). Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.

  4. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina.

    Directory of Open Access Journals (Sweden)

    Akira Meguro

    Full Text Available Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4 gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6, OR = 0.63 and Pc = 1.0 × 10(-5, OR = 0.69 in a total of 574 patients and 608 controls, respectively. Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.

  5. Impact of nitrogen concentration on validamycin A production and related gene transcription in fermentation of Streptomyces hygroscopicus 5008.

    Science.gov (United States)

    Wei, Zhen-Hua; Bai, Linquan; Deng, Zixin; Zhong, Jian-Jiang

    2012-09-01

    Validamycin A (VAL-A) is an important and widely used agricultural antibiotic. In this study, statistical screening designs were applied to identify significant medium variables for VAL-A production and to find their optimal levels. The optimized medium caused 70% enhancement of VAL-A production. The difference between optimized medium and original medium suggested that low nitrogen source level might attribute to the enhancement of VAL-A production. The addition of different nitrogen sources to the optimized medium inhibited VAL-A production, which confirmed the importance of nitrogen concentration for VAL-A production. Furthermore, differences in structural gene transcription and enzyme activity between the two media were assayed. The results showed that lower nitrogen level in the optimized medium could regulate VAL-A production in gene transcriptional level. Our previous study indicated that the transcription of VAL-A structural genes could be enhanced at elevated temperature. In this work, the increased fermentation temperature from 37 to 42 °C with the optimized medium enhanced VAL-A production by 39%, which testified to the importance of structural gene transcription in VAL-A production. The information is useful for further VAL-A production enhancement.

  6. Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes

    Directory of Open Access Journals (Sweden)

    Jacqueline Zoe-Munn Chan

    2014-10-01

    Full Text Available Two bacteriophages, RPP1 and RLP1, infecting members of the marine Roseobacter clade were isolated from seawater. Their linear genomes are 74.7 and 74.6 kb and encode 91 and 92 coding DNA sequences, respectively. Around 30% of these are homologous to genes found in Enterobacter phage N4. Comparative genomics of these two new Roseobacter phages and twenty-three other sequenced N4-like phages (three infecting members of the Roseobacter lineage and twenty infecting other Gammaproteobacteria revealed that N4-like phages share a core genome of 14 genes responsible for control of gene expression, replication and virion proteins. Phylogenetic analysis of these genes placed the five N4-like roseophages (RN4 into a distinct subclade. Analysis of the RN4 phage genomes revealed they share a further 19 genes of which nine are found exclusively in RN4 phages and four appear to have been acquired from their bacterial hosts. Proteomic analysis of the RPP1 and RLP1 virions identified a second structural module present in the RN4 phages similar to that found in the Pseudomonas N4-like phage LIT1. Searches of various metagenomic databases, included the GOS database, using CDS sequences from RPP1 suggests these phages are widely distributed in marine environments in particular in the open ocean environment.

  7. Study on the zona pellucida 4 (ZP4) gene sequence and its expression in the ovaries of patients with polycystic ovary syndrome.

    Science.gov (United States)

    Meczekalski, B; Nawrot, R; Nowak, W; Czyzyk, A; Kedzia, H; Gozdzicka-Jozefiak, A

    2015-07-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder of unknown pathology, involving reproductive and metabolic abnormalities. Oocyte-specific genes are a group of genes expressed exclusively in ovarian tissue; therefore, they can play an important role in ovarian pathologies such as PCOS. The zona pellucida 4 (ZP4) gene encodes glycoprotein which is a part of the extracellular matrix of oocyte. We analyzed 87 patients with PCOS, which were divided into four groups depending on their phenotype. In each patient, we performed profound clinical and biochemical analysis, including the measurement of serum androgens. The ovarian tissue samples were used to perform a real-time polymerase chain reaction and immunohistochemical staining using anti-ZP4 monoclonal antibodies. The ZP4 gene was sequenced from peripheral lymphocytes. The expression of ZP4 was present in early antral follicles and was stronger in mature follicles. The subgroup of patients with eumenorrhea and without hyperandrogenism presented the highest expression of ZP4 in ovarian tissue. In one case, we found a mutation of the ZP4 gene. No correlations were found between the ZP4 expression level and biochemical or clinical indices. Data from this and animal studies suggest a possible relationship between androgens and ZP4 expression. ZP4 expression is highest among patients with PCOS and a regular cycle, and this is a consequence of the presence of mature follicles in this group. In some patients with PCOS and infertility, ZP4 mutation can be found.

  8. Pathologies des hélicases et vieillissement précoce : modèle d'étude par dérivation de cellules souches pluripotentes induites (iPS)

    OpenAIRE

    Gatinois , Vincent

    2017-01-01

    Helicases process the double-stranded DNA dissociation. They are involved in replication, DNA repair and maintenance of telomeres. In human, 3 helicases display mutations responsible for clinical syndromes: WRN for the Werner syndrome, BLM for the Bloom syndrome and RECQL4 for the Rothmund-Thomson syndrome. All these diseases cause premature ageing and high risk of cancer. Molecular and cellular mechanisms involved in these diseases are not well defined. Particularly, little is known concerni...

  9. Dairy Product Consumption Interacts with Glucokinase (GCK Gene Polymorphisms Associated with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Marine S. Da Silva

    2017-08-01

    Full Text Available Dairy product intake and a person’s genetic background have been reported to be associated with the risk of type 2 diabetes (T2D. The objective of this study was to examine the interaction between dairy products and genes related to T2D on glucose-insulin homeostasis parameters. A validated food frequency questionnaire, fasting blood samples, and glucokinase (GCK genotypes were analyzed in 210 healthy participants. An interaction between rs1799884 in GCK and dairy intake on the homeostasis model assessment of insulin resistance was identified. Secondly, human hepatocellular carcinoma cells (HepG2 were grown in a high-glucose medium and incubated with either 1-dairy proteins: whey, caseins, and a mixture of whey and casein; and 2-four amino acids (AA or mixtures of AA. The expression of GCK-related genes insulin receptor substrate-1 (IRS-1 and fatty acid synthase (FASN was increased with whey protein isolate or hydrolysate. Individually, leucine increased IRS-1 expression, whereas isoleucine and valine decreased FASN expression. A branched-chain AA mixture decreased IRS-1 and FASN expression. In conclusion, carriers of the A allele for rs1799884 in the GCK gene may benefit from a higher intake of dairy products to maintain optimal insulin sensitivity. Moreover, the results show that whey proteins affect the expression of genes related to glucose metabolism.

  10. Significant association of interleukin-4 gene intron 3 VNTR polymorphism with susceptibility to knee osteoarthritis.

    Science.gov (United States)

    Yigit, Serbulent; Inanir, Ahmet; Tekcan, Akın; Tural, Ercan; Ozturk, Gokhan Tuna; Kismali, Gorkem; Karakus, Nevin

    2014-03-01

    Interleukin-4 (IL-4) is a strong chondroprotective cytokine and polymorphisms within this gene may be a risk factor for osteoarthritis (OA). We aimed to investigate genotype and allele frequencies of IL-4 gene intron 3 variable number of tandem repeats (VNTR) polymorphism in patients with knee OA in a Turkish population. The study included 202 patients with knee OA and 180 healthy controls. Genomic DNA was isolated and IL-4 gene 70 bp VNTR polymorphism determined by using polymerase chain reaction (PCR) with specific primers followed by restriction fragment length polymorphism (RFLP) analysis. Our result show that there was statistically significant difference between knee OA patients and control group with respect to IL-4 genotype distribution and allele frequencies (p=0.000, OR: 0.20, 95% CI: 0.10-0.41, OR: 0.22, 95% CI: 0.12-0.42, respectively). Our findings suggest that there is an association of IL-4 gene intron 3 VNTR polymorphism with susceptibility of a person for development of knee OA. As a result, IL-4 gene intron 3 VNTR polymorphism could be a genetic marker in OA in a Turkish study population. This is the first association study that evaluates the associations between IL-4 gene VNTR polymorphism and knee OA. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. [Clinical Significance of ID4 Gene Mehtylation in Demethylation-Treated MDS Cell Line and 2 MDS Patients].

    Science.gov (United States)

    Kang, Hui-Yuan; Wang, Xin-Rong; Gao, Li; Wang, Wei; Li, Mian-Yang; Wang, Li-Li; Wang, Cheng-Bin; Yu, Li

    2015-04-01

    To evaluate significance of ID4 gene mehtylation in demethylating myelodysplastic syndrome(MDS) cell Line MUTZ1 and 2 patients with MDS. The methylation-specific PCR (MS-PCR) and reverse transcription-PCR (RT-PCR) were applied to identify the methylation status and gene expression of ID4 gene in MDS cell line MUTZ1, a patient with aplastic anemia(AA) and a donor with normal bone marrow (NBM). RT-PCR was applied to detect the ID4 gene expression status in MUTZ1 cell line treated with decitabine at 3 different concentrations. Then bisulfite sequencing PCR (BSP) was applied to detect ID4 gene methylation status in 2 MDS parients treated with decitabine. The MDS cell line MUTZ-1 displayed a complete methylation of ID4 gene promoter with little mRNA expression. Inversely, bone marrow of an AA patient and NBM showed complete unmethylation of this gene with intensity mRNA expression. With the increase of decitabine concentration, ID4 gene mRNA expression was more and more increased. After decitabine treatment, ID4 gene methylation-positive frequencies of both the 2 MDS patients were much more decreased than that of the first treatment. So, ID4 gene mRNA expression inhibited by promoter hypemethylation could be recovered by using demethylation medicine. ID4 as a new potential anti-oncogene suggests that its methylation may become a marker for selection and assessment of therapeutic schedules in patients with MDS.

  12. Clone and characterization of photolyase-gene from soybean

    International Nuclear Information System (INIS)

    Najrana, T.; Hirouchi, T.; Yamamoto, K.

    2003-01-01

    Full text: Cyclobutane pyrimidine dimer (CPD) and pyrimidine [6-4] pyrimidone photoproduct (6-4pp) are the major products of UV-radiation. Both CPD and 6-4pp posses lethal as well as mutagenic property. Excision repair and photoreactivation are involved as major pathways in repairing those photoproducts. To repair those products plant uses photoreactivation as a major pathway. In photoreactivation process photolyase (enzyme encoded by PHR-gene) catalyzes the splitting of the dimer into a monomer under blue light. Photolyase is specific for damage CPD or 6-4pp. The CPD and 6-4pp photolyases are responsible for repairing CPD and 6-4pp lesions respectively. Several investigators reported that removal of CPD lesion is necessary for survival in higher plants in the early development. Thus one should realize the importance of clone and characterization of CPD-photolyase gene from plants especially from those are lying in the list of foods such as wheat, corn, soybean etc. cDNA library (pSPORT-P) of soybean was amplified using the primers that designated as common for CPD-photolyase gene for plants. These primers gave the desire size of PCR product. Desirable PCR product inserted into TA-cloning vector and sequenced. Amino acid sequence revealed considerable homology with CPD-photolyases of rice, arabidopsis thaliana. Then using dilution-PCR amplification method (Hirouchi et al., MGG in press) I have identified the true clone from cDNA library of soybean that containing the full length of CPD-photolyase gene. Full length of cloned gene is about 1698 bps long and exist start and stop codon. Amino acid sequence of the cloned gene shows more than 70% homology with rice, arabidopsis thaliana. Cloned gene enables to complement the E. coli ( phr-uvrA-recA-) system that is completely defective in photoreactivation. The size of CPD-photolyase of soybean is about 56 KDa as identified by 12% SDS PAGE

  13. Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene.

    Science.gov (United States)

    Feiner, Nathalie; Meyer, Axel; Kuraku, Shigehiro

    2014-06-19

    The members of the paired box (Pax) family regulate key developmental pathways in many metazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1-9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported one more group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this new member Pax10 instead and reconstruct the evolutionary history of the Pax4/6/10 class with solid phylogenetic evidence. Our synteny analysis showed that Pax4, -6, and -10 originated in the 2R genome duplications early in vertebrate evolution. The phylogenetic analyses of relationships between teleost pax6a and other Pax4, -6, and -10 genes, however, do not support the proposed hypothesis of an ancient origin of the acanthopterygian pax6a genes in the 2R genome duplication. Instead, we confirmed the traditional scenario that the acanthopterygian pax6a is derived from the more recent teleost-specific genome duplication. Notably, Pax6 is present in all vertebrates surveyed to date, whereas Pax4 and -10 were lost multiple times in independent vertebrate lineages, likely because of their restricted expression patterns: Among Pax6-positive domains, Pax10 has retained expression in the adult retina alone, which we documented through in situ hybridization and quantitative reverse transcription polymerase chain reaction experiments on zebrafish, Xenopus, and anole lizard. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Cell surface expression system for the display of heterologous gene products using chimeric flagellin fusions of bacillus halodurans isolate

    CSIR Research Space (South Africa)

    Du Plessis, A

    2006-10-01

    Full Text Available system for the display of heterologous gene products using chimeric flagellin fusions of a Bacillus halodurans isolate Slide 2 © CSIR 2006 www.csir.co.za Bacillus halodurans Alk 36 xrhombus Ability to over-produce cell... for functionality of the His-tag for metal binding. Slide 13 © CSIR 2006 www.csir.co.za PAGE gel showing over-production of chimeric poly-His flagellin proteins 66.2 kDa 45.0 kDa 31.0 kDa 1. LMW ladder 2. NC3 3. NHisC3 4. NC6 5...

  15. Mutation analysis of the human CYP3A4 gene 5' regulatory region: population screening using non-radioactive SSCP.

    Science.gov (United States)

    Hamzeiy, Hossein; Vahdati-Mashhadian, Nasser; Edwards, Helen J; Goldfarb, Peter S

    2002-03-20

    Human CYP3A4 is the major cytochrome P450 isoenzyme in adult human liver and is known to metabolise many xenobiotic and endogenous compounds. There is substantial inter-individual variation in the hepatic levels of CYP3A4. Although, polymorphic mutations have been reported in the 5' regulatory region of the CYP3A4 gene, those that have been investigated so far do not appear to have any effect on gene expression. To determine whether other mutations exist in this region of the gene, we have performed a new population screen on a panel of 101 human DNA samples. A 1140 bp section of the 5' proximal regulatory region of the CYP3A4 gene, containing numerous regulatory motifs, was amplified from genomic DNA as three overlapping segments. The 300 bp distal enhancer region at -7.9kb containing additional regulatory motifs was also amplified. Mutation analysis of the resulting PCR products was carried out using non-radioactive single strand conformation polymorphism (SSCP) and confirmatory sequencing of both DNA strands in those samples showing extra SSCP bands. In addition to detection of the previously reported CYP3A4*1B allele in nine subjects, three novel alleles were found: CYP3A4*1E (having a T-->A transversion at -369 in one subject), CYP3A4*1F (having a C-->G tranversion at -747 in 17 subjects) and CYP3A4*15B containing a nine-nucleotide insertion between -845 and -844 linked to an A-->G transition at -392 and a G-->A transition in exon 6 (position 485 in the cDNA) in one subject. All the novel alleles were heterozygous. No mutations were found in the upstream distal enhancer region. Our results clearly indicate that this rapid and simple SSCP approach can reveal mutant alleles in drug metabolising enzyme genes. Detection and determination of the frequency of novel alleles in CYP3A4 will assist investigation of the relationship between genotype, xenobiotic metabolism and toxicity in the CYP3A family of isoenzymes.

  16. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  17. Sequence analysis and molecular characterization of Wnt4 gene in metacestodes of Taenia solium.

    Science.gov (United States)

    Hou, Junling; Luo, Xuenong; Wang, Shuai; Yin, Cai; Zhang, Shaohua; Zhu, Xueliang; Dou, Yongxi; Cai, Xuepeng

    2014-04-01

    Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.

  18. E1B-55K mediated regulation of RNF4 STUbL promotes HAdV gene expression.

    Science.gov (United States)

    Müncheberg, Sarah; Hay, Ron T; Ip, Wing H; Meyer, Tina; Weiß, Christina; Brenke, Jara; Masser, Sawinee; Hadian, Kamyar; Dobner, Thomas; Schreiner, Sabrina

    2018-04-25

    HAdV E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in non-permissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 Ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established.RNF4, a cellular SUMO-targeted Ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM, and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNAi resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies. IMPORTANCE Daxx is a PML-NB-associated transcription factor, which was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 Ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain productive viral life

  19. No association of the IRS1 and PAX4 genes with type I diabetes

    DEFF Research Database (Denmark)

    Bergholdt, R.; Brorsson, C.; Boehm, B.

    2009-01-01

    To reassess earlier suggested type I diabetes (T1D) associations of the insulin receptor substrate 1 (IRS1) and the paired domain 4 gene (PAX4) genes, the Type I Diabetes Genetics Consortium (T1DGC) evaluated single-nucleotide polymorphisms (SNPs) covering the two genomic regions. Sixteen SNPs we...... of tagging SNPs, more than one genotyping platform in high throughput studies, and sufficient power to draw solid conclusions in genetic studies of human complex diseases. Genes and Immunity (2009) 10, S49-S53; doi:10.1038/gene.2009.91 Udgivelsesdato: 2009/12...

  20. Clinical significance of productive immunoglobulin heavy chain gene rearrangements in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Katsibardi, Katerina; Braoudaki, Maria; Papathanasiou, Chrissa; Karamolegou, Kalliopi; Tzortzatou-Stathopoulou, Fotini

    2011-09-01

    We analyzed the CDR3 region of 80 children with B-cell acute lymphoblastic leukemia (B-ALL) using the ImMunoGeneTics Information System and JOINSOLVER. In total, 108 IGH@ rearrangements were analyzed. Most of them (75.3%) were non-productive. IGHV@ segments proximal to IGHD-IGHJ@ were preferentially rearranged (45.3%). Increased utilization of IGHV3 segments IGHV3-13 (11.3%) and IGHV3-15 (9.3%), IGHD3 (30.5%), and IGHJ4 (34%) was noted. In pro-B ALL more frequent were IGHV3-11 (33.3%) and IGHV6-1 (33.3%), IGHD2-21 (50%), IGHJ4 (50%), and IGHJ6 (50%) segments. Shorter CDR3 length was observed in IGHV@6, IGHD7, and IGHJ1 segments, whereas increased CDR3 length was related to IGHV3, IGHD2, and IGHJ4 segments. Increased risk of relapse was found in patients with productive sequences. Specifically, the relapse-free survival rate at 5 years in patients with productive sequences at diagnosis was 75% (standard error [SE] ±9%), whereas in patients with non-productive sequences it was 97% (SE ±1.92%) (p-value =0.0264). Monoclonality and oligoclonality were identified in 81.2% and 18.75% cases at diagnosis, respectively. Sequence analysis revealed IGHV@ to IGHDJ joining only in 6.6% cases with oligoclonality. The majority (75%) of relapsed patients had monoclonal IGH@ rearrangements. The preferential utilization of IGHV@ segments proximal to IGHDJ depended on their location on the IGHV@ locus. Molecular mechanisms occurring during IGH@ rearrangement might play an essential role in childhood ALL prognosis. In our study, the productivity of the rearranged sequences at diagnosis proved to be a significant prognostic factor.

  1. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    Energy Technology Data Exchange (ETDEWEB)

    Suyari, Osamu; Ida, Hiroyuki [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  2. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    International Nuclear Information System (INIS)

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-01-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-β-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  3. Improving the Safety of Cell Therapy Products by Suicide Gene Transfer

    Directory of Open Access Journals (Sweden)

    Antonio eDi Stasi

    2014-11-01

    Full Text Available Adoptive T-cell therapy can involve donor lymphocyte infusion (DLI after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte (TILs expanded ex-vivo, or more recently the use of T cell receptor (TCR or chimeric antigen receptor (CAR redirected T cells. However cellular therapies can pose significant risks, including graft-versus-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The ‘ideal’ suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of ‘all’ and ‘only’ the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase (HSV-TK and inducible-caspase-9 (iCasp9.

  4. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    Science.gov (United States)

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted

  5. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    Science.gov (United States)

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  6. Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco.

    Science.gov (United States)

    Ji, Chang Yoon; Kim, Yun-Hee; Kim, Ho Soo; Ke, Qingbo; Kim, Gun-Woo; Park, Sung-Chul; Lee, Haeng-Soon; Jeong, Jae Cheol; Kwak, Sang-Soo

    2016-09-01

    Tocopherol (vitamin E) is a chloroplast lipid that is presumed to be involved in the plant response to oxidative stress. In this study, we isolated and characterized five tocopherol biosynthetic genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including genes encoding 4-hydroxyphenylpyruvate dioxygenase (IbHPPD), homogentisate phytyltransferase (IbHPT), 2-methyl-6-phytylbenzoquinol methyltransferase (IbMPBQ MT), tocopherol cyclase (IbTC) and γ-tocopherol methyltransferase (IbTMT). Fluorescence microscope analysis indicated that four proteins localized into the chloroplast, whereas IbHPPD observed in the nuclear. Quantitative RT-PCR analysis revealed that the expression patterns of the five tocopherol biosynthetic genes varied in different plant tissues and under different stress conditions. All five genes were highly expressed in leaf tissues, whereas IbHPPD and IbHPT were highly expressed in the thick roots. The expression patterns of these five genes significantly differed in response to PEG, NaCl and H2O2-mediated oxidative stress. IbHPPD was strongly induced following PEG and H2O2 treatment and IbHPT was strongly induced following PEG treatment, whereas IbMPBQ MT and IbTC were highly expressed following NaCl treatment. Upon infection of the bacterial pathogen Pectobacterium chrysanthemi, the expression of IbHPPD increased sharply in sweetpotato leaves, whereas the expression of the other genes was reduced or unchanged. Additionally, transient expression of the five tocopherol biosynthetic genes in tobacco (Nicotiana bentamiana) leaves resulted in increased transcript levels of the transgenes expressions and tocopherol production. Therefore, our results suggested that the five tocopherol biosynthetic genes of sweetpotato play roles in the stress defense response as transcriptional regulators of the tocopherol production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Effects of nickel treatment on H3K4 trimethylation and gene expression.

    Directory of Open Access Journals (Sweden)

    Kam-Meng Tchou-Wong

    Full Text Available Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl(2 for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3, a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq. The effect of NiCl(2 treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl(2. This study may provide insights into the epigenetic mechanism(s underlying the carcinogenicity of nickel compounds.

  8. Overexpression of D-Xylose Reductase (xyl1 Gene and Antisense Inhibition of D-Xylulokinase (xyiH Gene Increase Xylitol Production in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hong

    2014-01-01

    Full Text Available T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH, which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable. The copy number of the xylose reductase gene (xyl1 in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol.

  9. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    Science.gov (United States)

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  10. Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene.

    Science.gov (United States)

    Jiang, Ling; Wu, Qian; Xu, Qing; Zhu, Liying; Huang, He

    2017-08-11

    Clostridium tyrobutyricum ATCC25755 has been reported as being able to produce significant quantities of hydrogen. In this study, the exo-inulinase encoding gene cloned from Paenibacillus polymyxa SC-2 was into the expression plasmid pSY6 and expressed in the cells of C. tyrobutyricum. The engineered C. tyrobutyricum strain efficiently fermented the inulin-type carbohydrates from Jerusalem artichoke, without any pretreatment being necessary for the production of hydrogen. A comparatively high hydrogen yield (3.7 mol/mol inulin-type sugar) was achieved after 96 h in a batch process with simultaneous saccharification and fermentation (SSF), with an overall volumetric productivity rate of 620 ± 60 mL/h/L when the initial total sugar concentration of the inulin extract was increased to 100 g/L. Synthesis of inulinase in the batch SSF culture was closely associated with strain growth until the end of the exponential phase, reaching a maximum activity of 28.4 ± 0.26 U/mL. The overall results show that the highly productive and abundant biomass crop Jerusalem artichoke can be a good substrate for hydrogen production, and that the application of batch SSF for its conversion has the potential to become a cost-effective process in the near future.

  11. Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An F2 population developed from the Xa-4 near isogenic lines,IR24 and IRBB4,was used for fine mapping of the rice bacterial blight resistance gene,Xa-4.Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al.and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the gene Xa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55.The R gene homologous fragment marker RS13 was found co-segregating with Xa-4 by analyzing all the plants in the population.This result opened an approach to map-based cloning of this gene,and marker RS13 can be applied to molecular marker-assisted selection of Xa-4 in rice breeding programs.

  12. Role of plnB gene in the regulation of bacteriocin production in Lactobacillus paraplantarum L-XM1.

    Science.gov (United States)

    Zhang, Xiangmei; Shang, Nan; Zhang, Xu; Gui, Meng; Li, Pinglan

    2013-06-12

    Homologues of plnB gene have been shown to participate in regulation of bacteriocin production through quorum sensing system in other organisms, to investigate the possible role of plnB gene in Lactobacillus paraplantarum L-XM1, we cloned and insertionally inactivated the plnB gene. The plnB knockout mutant ΔplnB21 showed loss of bacteriocin production, its Bac⁺ phenotype could not be restored even after the addition of PlnA. Furthermore, reverse transcription-PCR analysis from total RNA preparations showed that the bacteriocin structural genes of the plnEF and plnJK were not transcribed in the plnB knockout mutant compared with the wild-type strain. It was therefore concluded that plnB is invovled in a quorum sensing based bacteriocin production. This is the first demonstration of a role for plnB by gene knockout in L. paraplantarum. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Regulation of the E. coli SOS response by the lexA gene product

    International Nuclear Information System (INIS)

    Brent, R.

    1983-01-01

    In an Escherichia coli that is growing normally, transcription of many genes is repressed by the product of the lexA gene. If cellular DNA is damaged, proteolytically competent recA protein (recA protease) inactivates lexA protein and these genes are induced. Many of the cellular phenomena observed during the cellular response to DNA damage (the SOS response) are the consequence of the expression of these lexA-prepressed genes. Since the SOS response of E. coli has recently been the subject of a comprehensive review, in this paper I would like to concentrate on some modifications to the picture based on new data. 12 references, 2 figures

  14. Characterisation of five candidate genes within the ETEC F4ab/ac candidate region in pigs

    DEFF Research Database (Denmark)

    Jacobsen, Mette Juul; Cirera Salicio, Susanna; Joller, David

    2011-01-01

    by haplotype sharing to a 2.5 Mb region on pig chromosome 13, a region containing 18 annotated genes. FINDINGS: The coding regions of five candidate genes for susceptibility to ETEC F4ab/ac infection (TFRC, ACK1, MUC20, MUC4 and KIAA0226), all located in the 2.5 Mb region, were investigated for the presence...... polymorphism in exon 22 of KIAA0226. Transcriptional profiles of the five genes were investigated in a porcine tissue panel including various intestinal tissues. All five genes were expressed in intestinal tissues at different levels but none of the genes were found differentially expressed between ETEC F4ab/ac...... of the amino acids composition. However, we cannot exclude that the five tested genes are bona fide candidate genes for susceptibility to ETEC F4ab/ac infection since the identified polymorphism might affect the translational apparatus, alternative splice forms may exist and post translational mechanisms might...

  15. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    International Nuclear Information System (INIS)

    Kokusho, Ryuhei; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu

    2016-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  16. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Ryuhei, E-mail: kokusho@ss.ab.a.u-tokyo.ac.jp; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu, E-mail: katsuma@ss.ab.a.u-tokyo.ac.jp

    2016-11-15

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  17. Molecular Cloning, Expression and Characterization of Plasmid Encoding Rhomboid 4 (ROM4 of Tachyzoite of Toxoplasma gondii RH Strain

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi RAHIMI

    2017-12-01

    Full Text Available AbstractBackground: The objective of this study was to clone, express and characterize the gene encoding rhomboid 4 (ROM4 proteins, a vital gene in surface adhesion and host cell invasion process of tachyzoite of T. gondii in an appropriate expression vector and eukaryotic cell for production of recombinant protein.Methods: Toxoplasma RNA was isolated from tachyzoites (RH strain and complementary DNA was synthesized. Oligonucleotide primer pair was designed based on Toxoplasma ROM4 gene sequence with XhoI and EcoRI restriction sites at 5´ end of forward and reverse primers, respectively. ROM4 gene was amplified by PCR, cloned into pTG19-T vector and the recombinant plasmid was sequenced. The gene was subcloned into pcDNA3 plasmid and expressed in CHO cells as eukaryotic cell. SDS-PAGE and western blotting were performed for protein determination and verification.Results: Cloning of ROM4 gene in pTG19-T vector was confirmed by colony-PCR and enzymatic digestion. The results of enzymatic digestion and gene sequencing confirmed successful cloning and subcloning procedures. The nucleotide sequence of the cloned ROM4 gene showed 99% homology compared to the corresponding sequences of original gene. SDS-PAGE and western blotting analyses of the purified protein revealed a single band having expected size of 65 kDa.Conclusion: This eukaryotic expression system is an appropriate system for high-level recombinant protein production of ROM4 gene from T. gondii tachyzoites used as antigenic component for serological assay and vaccine development.

  18. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    Science.gov (United States)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O'Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  19. Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic-aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater.

    Science.gov (United States)

    Tang, Mei; Dou, Xiaomin; Wang, Chunyan; Tian, Zhe; Yang, Min; Zhang, Yu

    2017-12-01

    The occurrence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) has been intensively investigated for wastewater treatment systems treating single class of antibiotic in recent years. However, the impacts of alternately occurring antibiotics in antibiotic production wastewater on the behavior of ARGs in biological treatment systems were not well understood yet. Herein, techniques including high-capacity quantitative PCR and quantitative PCR (qPCR) were used to investigate the behavior of ARGs in an anaerobic-aerobic full-scale system. The system alternately treated three kinds of antibiotic production wastewater including ribostamycin, spiramycin and paromomycin, which referred to stages 1, 2 and 3. The aminoglycoside ARGs (52.1-79.3%) determined using high-capacity quantitative PCR were the most abundant species in all sludge samples of the three stages. The total relative abundances of macrolide-lincosamide-streptogramin (MLS) resistance genes and aminoglycoside resistance genes measured using qPCR were significantly higher (P  0.05) in both aerobic and anaerobic sludge samples. In aerobic sludge, one acetyltransferase gene (aacA4) and the other three nucleotidyltransferase genes (aadB, aadA and aadE) exhibited positive correlations with intI1 (r 2  = 0.83-0.94; P < 0.05), implying the significance of horizontal transfer in their proliferation. These results and facts will be helpful to understand the abundance and distribution of ARGs from antibiotic production wastewater treatment systems.

  20. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    Science.gov (United States)

    Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R

    2003-11-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley

  1. XKR4 Gene Effects on Cerebellar Development Are Not Specific to ADHD

    NARCIS (Netherlands)

    Shook, Devon; Brouwer, Rachel; de Zeeuw, Patrick; Oranje, Bob; Durston, Sarah

    2017-01-01

    A single-nucleotide polymorphism (SNP) of the XKR4 gene has been linked to Attention-Deficit/Hyperactivity Disorder (ADHD). This gene is preferentially expressed in cerebellum, a brain structure implicated in this disorder. This study investigated the effects of this SNP on cerebellar development in

  2. Variation in 12 porcine genes involved in the carbohydrate moiety assembly of glycosphingolipids does not account for differential binding of F4 Escherichia coli and their fimbriae.

    Science.gov (United States)

    Goetstouwers, Tiphanie; Van Poucke, Mario; Coddens, Annelies; Nguyen, Van Ut; Melkebeek, Vesna; Deforce, Dieter; Cox, Eric; Peelman, Luc J

    2014-10-03

    Glycosphingolipids (GSLs) are important membrane components composed of a carbohydrate structure attached to a hydrophobic ceramide. They can serve as specific membrane receptors for microbes and microbial products, such as F4 Escherichia coli (F4 ETEC) and isolated F4 fimbriae. The aim of this study was to investigate the hypothesis that variation in genes involved in the assembly of the F4 binding carbohydrate moiety of GSLs (i.e. ARSA, B4GALT6, GAL3ST1, GALC, GBA, GLA, GLB1, GLB1L, NEU1, NEU2, UGCG, UGT8) could account for differential binding of F4 ETEC and their fimbriae. RT-PCR could not reveal any differential expression of the 12 genes in the jejunum of F4 receptor-positive (F4R(+)) and F4 receptor-negative (F4R(-)) pigs. Sequencing the complete open reading frame of the 11 expressed genes (NEU2 was not expressed) identified 72 mutations. Although some of them might have a structural effect, none of them could be associated with a F4R phenotype. We conclude that no regulatory or structural variation in any of the investigated genes is responsible for the genetic susceptibility of pigs towards F4 ETEC.

  3. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  4. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  5. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.

    Science.gov (United States)

    Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2016-03-28

    Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes.

  6. Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Carla Ceoloni

    2017-12-01

    Full Text Available Wild species are extremely rich resources of useful genes not available in the cultivated gene pool. For species providing staple food to mankind, such as the cultivated Triticum species, including hexaploid bread wheat (Triticum aestivum, 6x and tetraploid durum wheat (T. durum, 4x, widening the genetic base is a priority and primary target to cope with the many challenges that the crop has to face. These include recent climate changes, as well as actual and projected demographic growth, contrasting with reduction of arable land and water reserves. All of these environmental and societal modifications pose major constraints to the required production increase in the wheat crop. A sustainable approach to address this task implies resorting to non-conventional breeding strategies, such as “chromosome engineering”. This is based on cytogenetic methodologies, which ultimately allow for the incorporation into wheat chromosomes of targeted, and ideally small, chromosomal segments from the genome of wild relatives, containing the gene(s of interest. Chromosome engineering has been successfully applied to introduce into wheat genes/QTL for resistance to biotic and abiotic stresses, quality attributes, and even yield-related traits. In recent years, a substantial upsurge in effective alien gene exploitation for wheat improvement has come from modern technologies, including use of molecular markers, molecular cytogenetic techniques, and sequencing, which have greatly expanded our knowledge and ability to finely manipulate wheat and alien genomes. Examples will be provided of various types of stable introgressions, including pyramiding of different alien genes/QTL, into the background of bread and durum wheat genotypes, representing valuable materials for both species to respond to the needed novelty in current and future breeding programs. Challenging contexts, such as that inherent to the 4x nature of durum wheat when compared to 6x bread wheat, or

  7. Dynamics of plc gene transcription and α-toxin production during growth of Clostridium perfringens strains with contrasting α-toxin production

    DEFF Research Database (Denmark)

    Abildgaard, Lone; Schramm, Andreas; Rudi, Knut

    2009-01-01

    The aim of the present study was to investigate transcription dynamics of the α-toxin-encoding plc gene relative to two housekeeping genes (gyrA and rplL) in batch cultures of three Clostridium perfringens strains with low, intermediate, and high levels of α-toxin production, respectively. The plc...... transcript level was always low in the low α-toxin producing strain. For the two other strains, plc transcription showed an inducible pattern and reached a maximum level in the late exponential growth phase. The transcription levels were however inversely correlated to α-toxin production for the two strains....... We propose that this discrepancy is due to differences in plc translation rates between the strains and that strain-specific translational rates therefore must be determined before α-toxin production can be extrapolated from transcript levels in C. perfringens....

  8. Lack of death receptor 4 (DR4) expression through gene promoter methylation in gastric carcinoma.

    Science.gov (United States)

    Lee, Kyung Hwa; Lim, Sang Woo; Kim, Ho Gun; Kim, Dong Yi; Ryu, Seong Yeob; Joo, Jae Kyun; Kim, Jung Chul; Lee, Jae Hyuk

    2009-07-01

    To determine the underlying mechanism for the differential expression, the extent of promoter methylation in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-related genes acting downstream of TRAIL was examined in early and advanced gastric carcinomas. The extent of promoter methylation in the DR4, DR5, DcR1, DcR2, and CASP8 genes was quantified using bisulfite modification and methylation-specific polymerase chain reaction. The promoters for DcR1, DcR2, and CASP8 were largely unmethylated in early gastric carcinoma, advanced gastric carcinoma, and controls, with no significant difference among them. Protein levels of DR4, DcR1, and DcR2 as revealed by immunohistochemistry correlated with the extent of the respective promoter methylation (P < 0.05 in all cases). Hypomethylation, rather than hypermethylation, of the DR4 promoter was noted in invasive gastric malignancies, with statistical significance (P = 0.003). The promoter methylation status of TRAIL receptors in gastric carcinoma may have clinical implications for improving therapeutic strategies in patients with gastric carcinoma.

  9. Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628.

    Science.gov (United States)

    Ma, Zheng; Luo, Shuai; Xu, Xianhao; Bechthold, Andreas; Yu, Xiaoping

    2016-04-01

    Modification of enzymes involved in transcription- or translation-processes is an interesting way to increase secondary metabolite production in Streptomycetes. However, application of such methods has not been widely described for strains which produce nucleoside antibiotics. The nucleoside antibiotic toyocamycin (TM) is produced by Streptomyces diastatochromogenes 1628. For improving TM production in S. diastatochromogenes 1628, the strain was spread on rifamycin-resistant (Rif(r)) medium. Several spontaneous mutants were obtained with mutations in the rpoB gene which encodes a RNA polymerase β-subunit. The mutants which showed increased TM production were detected at a frequency of 7.5 % among the total Rif(r) mutants. Mutant 1628-T15 harboring amino acid substitution His437Arg was the best TM producer with a 4.5-fold increase in comparison to that of the wild-type strain. The worst producer was mutant 1628-T62 which also showed a poor sporulation behavior. RT-PCR was performed to study the transcription levels of the TM biosynthetic gene toyG in the parental strain as well as in mutants 1628-T15 and 1628-T62. The transcriptional level of toyG was higher in mutant 1628-T15 than that in parental strain 1628, while much lower in mutant 1628-T62. In mutant strain 1628-T62 the expression of adpA sd gene, which is required for morphological differentiation, was also much lower. Our studies also indicate that the introduction of mutations into rpoB is an effective strategy to improve the production of TM which is an important nucleoside antibiotic.

  10. VistA 4 Product Roadmap

    Data.gov (United States)

    Department of Veterans Affairs — The VistA 4 Product Roadmap outlines how the Department of Veterans Affairs (VA), under the direction of the VistA Evolution Program, will build upon the previous...

  11. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin.

    Science.gov (United States)

    Makitrynskyy, Roman; Ostash, Bohdan; Tsypik, Olga; Rebets, Yuriy; Doud, Emma; Meredith, Timothy; Luzhetskyy, Andriy; Bechthold, Andreas; Walker, Suzanne; Fedorenko, Victor

    2013-10-23

    Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production-bldA, adpA and absB-exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNA(Leu)UAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs-that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.

  12. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application.

    Science.gov (United States)

    Riya, Shohei; Takeuchi, Yuki; Zhou, Sheng; Terada, Akihiko; Hosomi, Masaaki

    2017-06-01

    A pulse of nitrous oxide (N 2 O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N 2 O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N 2 O flux was observed following floodwater disappearance after the addition of NH 4 + , with a corresponding increase in the concentrations of NO 3 - and dissolved N 2 O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO 3 - induced the expression of nirK gene and caused a concomitant increase in N 2 O production. These findings suggest that NO 3 - production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N 2 O production.

  13. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    International Nuclear Information System (INIS)

    Wang, C.-P.; Lee, Y.-F.; Chang, C.; Lee, H.-J.

    2006-01-01

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (both DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression

  14. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    Science.gov (United States)

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  15. Association of MC4R gene variants with carcass and meat quality ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... 1College of Animal Science and Technology, Northwest A and F ... MC4R belongs to a seven-transmembrane G-protein-coupled receptor which may regulate body ... targeted disruption of the MC4R gene in mice causes.

  16. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    Science.gov (United States)

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    Science.gov (United States)

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  18. The prevalence of PAI-1 4G/5G gene variant in Serbian population

    Directory of Open Access Journals (Sweden)

    Đorđević Valentina

    2013-01-01

    Full Text Available Introduction: Plasminogen activator inhibitor 1 (PAI-1 has a major role in inhibition of firinolysis and normal haemostasis. The presence of the PAI-1 4G/4G genotype leads to increased expression of PAI-1. High blood level of PAI-1 is associated with many diseases such as thrombosis, cerebral insult, myocardial infarction, pregnancy loss, preeclampsia, insulin resistance, type 2 diabetes, breast cancer and asthma. In this study, the prevalence of PAI-1 4G/5G gene variant was determined in healthy subjects from Serbian population. Methods: The study was carried out in a group of 210 healthy subjects (105 women and 105 men. The presence of PAI-1 4G/5G gene variant was detected by PCR-RFLP analysis. Results: The prevalence of PAI-1 4G/4G genotype was 34.76% and it was increased compared to PAI-1 5G/5G genotype (19.05%. The most frequent was PAI-1 4G/5G genotype (46.19%. Allelic frequency for 4G allele was higher (0.58 compared to 5G allele (0.42. Conclusions: The prevalence of PAI-1 4G/5G gene variant in Serbian population is similar to the neighboring populations. Results of this study represent the first data for Serbian population. This study could be useful for further research where the role of PAI-1 4G/5G gene variant will be assessed in the pathogenesis of many diseases.

  19. Bayesian Computational Approaches for Gene Regulation Studies of Bioethanol and Biohydrogen Production. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, Lee; McCue, Lee Anne; Van Roey, Patrick

    2014-04-17

    The project developed mathematical models and first-version software tools for the understanding of gene regulation across multiple related species. The project lays the foundation for understanding how certain alpha-proteobacterial species control their own genes for bioethanol and biohydrogen production, and sets the stage for exploiting bacteria for the production of fuels. Enabling such alternative sources of fuel is a high priority for the Department of Energy and the public.

  20. The dopamine D4 receptor gene (DRD4) moderates cultural difference in independent versus interdependent social orientation.

    Science.gov (United States)

    Kitayama, Shinobu; King, Anthony; Yoon, Carolyn; Tompson, Steve; Huff, Sarah; Liberzon, Israel

    2014-06-01

    Prior research suggests that cultural groups vary on an overarching dimension of independent versus interdependent social orientation, with European Americans being more independent, or less interdependent, than Asians. Drawing on recent evidence suggesting that the dopamine D4 receptor gene (DRD4) plays a role in modulating cultural learning, we predicted that carriers of DRD4 polymorphisms linked to increased dopamine signaling (7- or 2-repeat alleles) would show higher levels of culturally dominant social orientations, compared with noncarriers. European Americans and Asian-born Asians (total N = 398) reported their social orientation on multiple scales. They were also genotyped for DRD4. As in earlier work, European Americans were more independent, and Asian-born Asians more interdependent. This cultural difference was significantly more pronounced for carriers of the 7- or 2-repeat alleles than for noncarriers. Indeed, no cultural difference was apparent among the noncarriers. Implications for potential coevolution of genes and culture are discussed. © The Author(s) 2014.

  1. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.

    Science.gov (United States)

    Tucker, A S; Al Khamis, A; Sharpe, P T

    1998-08-01

    Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future

  2. TLR4 Gene Expression and Pro-Inflammatory Cytokines in Alzheimer's Disease and in Response to Hippocampal Deafferentation in Rodents.

    Science.gov (United States)

    Miron, Justin; Picard, Cynthia; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes

    2018-01-01

    One important aspect in Alzheimer's disease pathology is the presence of chronic inflammation. Considering its role as a key receptor in the microglial innate immune system, TLR4 was shown to regulate the binding and phagocytosis of amyloid plaques by microglia in several mouse models of amyloidosis, as well as the production of pro-inflammatory cytokines. To our knowledge, TLR4 and its association with cytokines have not been thoroughly examined in the brains of subjects affected with Alzheimer's disease. Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in postmortem human brains, we observed increased expression for the TLR4 and TNF genes (p = 0.001 and p = 0.025, respectively), as well as a trend for higher IL6 gene expression in the frontal cortex of AD subjects when compared to age-matched controls. Similarly, using a mouse model of hippocampal deafferentation without amyloidosis, (i.e., the entorhinal cortex lesioned mouse), we observed significant increases in the expression of both the Tlr4 (p = 0.0367 and p = 0.0193 compared to sham-lesioned mice or to the contralateral side, respectively) and Il1b (p = 0.0055 and p = 0.0066 compared to sham-lesioned mice or to the contralateral side, respectively) genes in the deafferentation phase, but not during the ensuing reinnervation process. In conclusion, we suggest that the modulation of cytokines by TLR4 is differentially regulated whether by the presence of amyloid plaques or by the ongoing deafferentation process.

  3. Association of DPP4 Gene Polymorphisms with Type 2 Diabetes Mellitus in Malaysian Subjects

    OpenAIRE

    Ahmed, Radwan H.; Huri, Hasniza Zaman; Al-Hamodi, Zaid; Salem, Sameer D.; Al-absi, Boshra; Muniandy, Sekaran

    2016-01-01

    Background Genetic polymorphisms of the Dipeptidyl Peptidase 4 (DPP4) gene may play a role in the etiology of type 2 diabetes mellitus (T2DM). This study aimed to investigate the possible association of single nucleotide polymorphisms (SNPs) of the DPP4 gene in Malaysian subjects with T2DM and evaluated whether they had an effect on the serum levels of soluble dipeptidyl peptidase 4 (sDPP-IV). Method Ten DPP4 SNPs were genotyped by TaqMan genotyping assays in 314 subjects with T2DM and 235 co...

  4. Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis in the Resistant Musa Accession ‘Calcutta-4’ Using Suppression Subtractive Hybridization

    Science.gov (United States)

    Pacheco Coello, Ricardo; Chávez Navarrete, Tatiana; Navarrete Villegas, Oscar; Santos Ordóñez, Efrén

    2016-01-01

    Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession ‘Calcutta-4’ has a natural resistance to Black Sigatoka; however, the fruit is not valuable for commercialization. Gene identification and expression studies in ‘Calcutta-4’ might reveal possible gene candidates for resistant to the disease and elucidate mechanisms for resistance. A subtracted cDNA library was generated from leaves after 6, 9 and 12 days inoculated with M. fijiensis conidia on greenhouse banana plants of the accession ‘Calcutta-4’. Bioinformatic analysis revealed 99 good quality sequences. Blast2go analysis revealed that 31% of the sequences could not be categorized and, according to the Biological Process Category, 32 and 28 ESTs are related to general metabolic and cellular processes, respectively; while 10 ESTs response to stimulus. Seven sequences were redundant and one was similar to genes that may be involved in pathogen resistance including the putative disease resistance protein RGA1. Genes encoding zinc finger domains were identified and may play an important role in pathogen resistance by inducing the expression of downstream genes. Expression analysis of four selected genes was performed using RT-qPCR during the early stage of the disease development at 6, 9, 12 and 15 days post inoculation showing a peak of up regulation at 9 or 12 days post inoculation. Three of the four genes showed an up-regulation of expression in ‘Calcutta-4’ when compared to ‘Williams’ after inoculation with M. fijiensis, suggesting a fine regulation of specific gene candidates that may lead to a resistance response. The genes identified in early responses in a plant-pathogen interaction may be relevant for the resistance response of ‘Calcutta-4

  5. Introns in the genome of bacteriophage T4

    International Nuclear Information System (INIS)

    Gott, J.M.

    1987-01-01

    RNA from T4-infected cells yields multiple end-labeled species when incubated with [α- 32 P]GTP under self-splicing conditions. One of these corresponds to the previously characterized intron from the T4 td gene and, as shown in this work, the others represent additional group I introns in T4. Two loci distinct from the td gene were found to hybridize to the mixed GTP-labeled T4 RNA probe. These were mapped to the unlinked genes nrdB and sunY. Cloned DNA from the nrdB region that contained the intron was shown to generate characteristic group I splice products with RNA synthesized in vivo or in vitro. The splice junction of the nrdB gene was determined and the nature of the RNA reaction products characterized. In vivo expression of the nrdB gene and the open reading frame within the intron was studied using in-frame lacZ fusions and primer extension analyses. The data suggest that expression of the intron open reading frame is highly regulated during T4 infection. Possible regulatory mechanisms are discussed

  6. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  7. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene

    NARCIS (Netherlands)

    Lohmann, Katja; Wilcox, Robert A.; Winkler, Susen; Ramirez, Alfredo; Rakovic, Aleksandar; Park, Jin-Sung; Arns, Björn; Lohnau, Thora; Groen, Justus; Kasten, Meike; Brüggemann, Norbert; Hagenah, Johann; Schmidt, Alexander; Kaiser, Frank J.; Kumar, Kishore R.; Zschiedrich, Katja; Alvarez-Fischer, Daniel; Altenmüller, Eckart; Ferbert, Andreas; Lang, Anthony E.; Münchau, Alexander; Kostic, Vladimir; Simonyan, Kristina; Agzarian, Marc; Ozelius, Laurie J.; Langeveld, Antonius P. M.; Sue, Carolyn M.; Tijssen, Marina A. J.; Klein, Christine

    2013-01-01

    OBJECTIVE: A study was undertaken to identify the gene underlying DYT4 dystonia, a dominantly inherited form of spasmodic dysphonia combined with other focal or generalized dystonia and a characteristic facies and body habitus, in an Australian family. METHODS: Genome-wide linkage analysis was

  8. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene

    NARCIS (Netherlands)

    Lohmann, Katja; Wilcox, Robert A.; Winkler, Susen; Ramirez, Alfredo; Rakovic, Aleksandar; Park, Jin-Sung; Arns, Bjoern; Lohnau, Thora; Kasten, Meike; Brueggemann, Norbert; Hagenah, Johann; Schmidt, Alexander; Kaiser, Frank J.; Kumar, Kishore R.; Zschiedrich, Katja; Alvarez-Fischer, Daniel; Altenmueller, Eckart; Ferbert, Andreas; Lang, Anthony E.; Muenchau, Alexander; Kostic, Vladimir; Simonyan, Kristina; Agzarian, Marc; Ozelius, Laurie J.; Langeveld, Antonius P. M.; Sue, Carolyn M.; Tijssen, Marina A. J.; Klein, Christine; Groen, Justus

    Objective A study was undertaken to identify the gene underlying DYT4 dystonia, a dominantly inherited form of spasmodic dysphonia combined with other focal or generalized dystonia and a characteristic facies and body habitus, in an Australian family. Methods Genome-wide linkage analysis was carried

  9. The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway.

    Science.gov (United States)

    Yang, Chao; Ma, Yamei; Li, Jianxiong

    2016-10-01

    YABBY genes encode seed plant-specific transcription factors that play pivotal roles in diverse aspects of leaf, shoot, and flower development. Members of the YABBY gene family are primarily expressed in lateral organs in a polar manner and function to specify abaxial cell fate in dicotyledons, but this polar expression is not conserved in monocotyledons. The function of YABBY genes is therefore not well understood in monocotyledons. Here we show that overexpression of the rice (Oryza sativa L.) YABBY4 gene (OsYABBY4) leads to a semi-dwarf phenotype, abnormal development in the uppermost internode, an increased number of floral organs, and insensitivity to gibberellin (GA) treatment. We report on an important role for OsYABBY4 in negative control of the expression of a GA biosynthetic gene by binding to the promoter region of the gibberellin 20-oxidase 2 gene (GA20ox2), which is a direct target of SLR1 (the sole DELLA protein negatively controlling GA responses in rice). OsYABBY4 also suppresses the expression level of SLR1 and interacts with SLR1 protein. The interaction inhibits GA-dependent degradation of SLR1 and therefore leads to GA insensitivity. These data together suggest that OsYABBY4 serves as a DNA-binding intermediate protein for SLR1 and is associated with the GA signaling pathway regulating gene expression during plant growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. [From gene to disease: from the ABCA4 gene to Stargardt disease, cone-rod dystrophy and retinitis pigmentosa

    NARCIS (Netherlands)

    Cremers, F.P.M.; Maugeri, A.; Klevering, B.J.; Hoefsloot, L.H.; Hoyng, C.B.

    2002-01-01

    Autosomal recessive Stargardt disease is caused by mutations in the ABCA4 gene. Mutations in ABCA4 are also found in two-thirds of cases with autosomal recessive cone-rod dystrophy, and a small fraction of patients with autosomal recessive retinitis pigmentosa. Patients with autosomal recessive

  11. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  12. Structure and expression of the Xenopus retinoblastoma gene.

    Science.gov (United States)

    Destrée, O H; Lam, K T; Peterson-Maduro, L J; Eizema, K; Diller, L; Gryka, M A; Frebourg, T; Shibuya, E; Friend, S H

    1992-09-01

    We have cloned a Xenopus homology (XRb1) of the human retinoblastoma susceptibility gene. DNA sequence analysis shows that the XRb1 gene product is highly conserved in many regions. The leucine repeat motif and many of the potential cdc2 phosphorylation sites, as well as potential sites for other kinases, are retained. The region of the protein homologous to the SV40 T antigen binding site and the basic region directly C-terminal to the E1A binding site are all conserved. XRb1 gene expression at the RNA level was studied by Northern blot analysis. Transcripts of 4.2 and 10-kb are present as maternal RNA stores in the oocyte. While the 4.2-kb product is stable until at least the mid-blastula stage, the 10-kb transcript is selectively degraded. Between stages 11 and 13 the 10-kb transcript reappears and also a minor product of approximately 11 kb becomes apparent. Both the 4.2- and the 10-kb transcripts remain present until later stages of development and are also present in all adult tissues examined, although at differing levels. Antibodies raised against human p105Rb which recognize the protein product of the XRb1 gene, pXRb1, detect the Xenopus 99-kDa protein prior to the mid-blastula stage, but at lower levels than at later stages in development.

  13. GATA4 and GATA6 Knockdown During Luteinization Inhibits Progesterone Production and Gonadotropin Responsiveness in the Corpus Luteum of Female Mice.

    Science.gov (United States)

    Convissar, Scott M; Bennett, Jill; Baumgarten, Sarah C; Lydon, John P; DeMayo, Francesco J; Stocco, Carlos

    2015-12-01

    The surge of luteinizing hormone triggers the genomic reprogramming, cell differentiation, and tissue remodeling of the ovulated follicle, leading to the formation of the corpus luteum. During this process, called luteinization, follicular granulosa cells begin expressing a new set of genes that allow the resulting luteal cells to survive in a vastly different hormonal environment and to produce the extremely high amounts of progesterone (P4) needed to sustain pregnancy. To better understand the molecular mechanisms involved in the regulation of luteal P4 production in vivo, the transcription factors GATA4 and GATA6 were knocked down in the corpus luteum by crossing mice carrying Gata4 and Gata6 floxed genes with mice carrying Cre recombinase fused to the progesterone receptor. This receptor is expressed exclusively in granulosa cells after the luteinizing hormone surge, leading to recombination of floxed genes during follicle luteinization. The findings demonstrated that GATA4 and GATA6 are essential for female fertility, whereas targeting either factor alone causes subfertility. When compared to control mice, serum P4 levels and luteal expression of key steroidogenic genes were significantly lower in conditional knockdown mice. The results also showed that GATA4 and GATA6 are required for the expression of the receptors for prolactin and luteinizing hormone, the main luteotropic hormones in mice. The findings demonstrate that GATA4 and GATA6 are crucial regulators of luteal steroidogenesis and are required for the normal response of luteal cells to luteotropins. © 2015 by the Society for the Study of Reproduction, Inc.

  14. Identification and functional characterization of a solute carrier family 15, member 4 gene in Litopenaeus vannamei.

    Science.gov (United States)

    Chen, Yong-Gui; Yuan, Kai; Zhang, Ze-Zhi; Yuan, Feng-Hua; Weng, Shao-Ping; Yue, Hai-Tao; He, Jian-Guo; Chen, Yi-Hong

    2016-04-01

    Innate immunity in shrimp is important in resisting bacterial infection. The NF-κB pathway is pivotal in such an immune response. This study cloned and functionally characterized the solute carrier family (SLC) 15 member A 4 (LvSLC15A4) gene in Litopenaeus vannamei. The open reading frame of LvSLC15A4 is 1, 902 bp long and encodes a putative 633-amino acid protein, which is localized in the plasma membrane and intracellular vesicular compartments. Results of the reporter gene assay showed that LvSLC15A4 upregulated NF-κB target genes, including the immediate-early gene 1 of white spot syndrome virus, as well as several antimicrobial peptide genes, such as pen4, CecA, AttA, and Mtk in S2 cells. Moreover, knocked-down expression of LvSLC15A4 reduced pen4 expression in L. vannamei. LvSLC15A4 down-regulation also increased the cumulative mortality of Vibrio parahemolyticus-infected L. vannamei. Furthermore, LvSLC15A4 expression was induced by unfolded protein response (UPR) in L. vannamei hematocytes. These results suggest that LvSLC15A4 participates in L. vannamei innate immunity via the NF-κB pathway and thus may be related to UPR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Retracted Association of STAT4 gene polymorphism with systemic lupus erythematosus / lupus nephritis risk.

    Science.gov (United States)

    Zhou, Tian-Biao; Jiang, Zong-Pei; Qin, Yuan-Han; Zhou, Jia-Fan

    2014-04-16

    The association of STAT4 gene polymorphism with systemic lupus erythematosus (SLE) / lupus nephritis (LN) results from the published studies is still conflicting. This meta-analysis was performed to evaluate the relationship between STAT4 rs7574865, rs16833431, rs11889341, rs8179673, rs10168266, rs7582694, rs3821236, rs7601754 gene polymorphism and SLE / LN, and to explore whether STAT4 gene polymorphism could become a predictive marker for SLE / LN risk. Association studies were identified from the databases of PubMed, Embase, Cochrane Library and CBM-disc (China Biological Medicine Database) as of September 1, 2013, and eligible investigations were synthesized using meta-analysis method. 24 investigations were identified for the analysis of association between STAT4 gene polymorphism and SLE, consisting of 31190 patients with SLE and 43940 controls. In STAT4 rs7574865, there was a marked association between T allele or TT genotype and SLE susceptibility (T: OR=1.53, 95% CI: 1.30-1.79, Prs7574865 gene polymorphism was not associated with the LN risk. Our results indicate that T allele or TT homozygous is a significant risk genetic molecular marker to predict the SLE susceptibility and GG genotype is a valuable marker to against the SLE risk, but the association was not found for LN. However, more investigations are required to further clarify the association of the T allele or TT homozygous with SLE / LN susceptibility. This article is protected by copyright. All rights reserved.

  16. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  17. Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1-->3,1-->4)-[beta]-glucan in barley

    DEFF Research Database (Denmark)

    Munck, L.; Møller, B.; Jacobsen, Susanne

    2004-01-01

    -->3,1-->4)-[beta]-glucan (up to 15-20%), thus, maintaining a constant production of polysaccharides at 50-55%, within the range of normal barley.The spectral tool was tested by an independent data set with six mutants with unknown polysaccharide composition. Spectral data from four of these were classified within...... the high (1-->3,1-->4)-[beta]-glucan BG lys5 cluster in a PCA. Their high (1-->3,1-->4)-[beta]-glucan and low starch content was verified. It is concluded that genetic diversity such as from gene regulated polysaccharide and storage protein pathways in the endosperm tissue can be discovered directly from...... the phenotype by chemometric classification of a spectral library, representing the digitised phenome from a barley gene bank....

  18. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  19. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  20. Effects of thiamine on growth, aflatoxin production, and aflr gene expression in A. parasiticus

    Directory of Open Access Journals (Sweden)

    Ladan Nazemi

    2015-01-01

    Results: The minimum inhibitory concentration was yielded as > 500 mg/ml. However, HPLC analysis results showed that aflatoxin production reduced in samples treated with 500 mg/ml of thiamine. In addition, the level of afIR gene expression was significantly reduced after treating with 500 and 250 mg/ml of vitamin B1. Conclusion: Based on the obtained results, thiamine could not inhibit the fungal growth completely. However, the rate of afIR gene expression and aflatoxin production was significantly reduced after fungal treating with thiamine. Consequently, using natural compounds such as vitamins may be regarded as potential antitoxic agent in food industry and the industries related to agriculture.

  1. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    International Nuclear Information System (INIS)

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-01-01

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis

  2. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    Science.gov (United States)

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes

    DEFF Research Database (Denmark)

    Wei, Yongjun; Gossing, Michael; Bergenholm, David

    2017-01-01

    for CB biosynthesis from the cocoa genome using a phylogenetic analysis approach. By expressing the selected cocoa genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some S. cerevisiae strains. The relative CBL content in three yeast...... higher level of CBL compared with the control strain. In summary, CBL production by S. cerevisiae were increased through expressing selected cocoa genes potentially involved in CB biosynthesis.......Cocoa butter (CB) extracted from cocoa beans mainly consists of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol(POS,C16:0C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18...

  4. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants.

    Science.gov (United States)

    Morozov, Sergey Y; Milyutina, Irina A; Bobrova, Vera K; Ryazantsev, Dmitry Y; Erokhina, Tatiana N; Zavriev, Sergey K; Agranovsky, Alexey A; Solovyev, Andrey G; Troitsky, Alexey V

    2015-12-01

    The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Subretinal Fibrosis in Stargardt’s Disease with Fundus Flavimaculatus and ABCA4 Gene Mutation

    Directory of Open Access Journals (Sweden)

    Settimio Rossi

    2012-12-01

    Full Text Available Purpose: To report on 4 patients affected by Stargardt’s disease (STGD with fundus flavimaculatus (FFM and ABCA4 gene mutation associated with subretinal fibrosis. Methods: Four patients with a diagnosis of STGD were clinically examined. All 4 cases underwent a full ophthalmologic evaluation, including best-corrected visual acuity measured by the Snellen visual chart, biomicroscopic examination, fundus examination, fundus photography, electroretinogram, microperimetry, optical coherence tomography and fundus autofluorescence. All patients were subsequently screened for ABCA4 gene mutations, identified by microarray genotyping and confirmed by conventional DNA sequencing of the relevant exons. Results: In all 4 patients, ophthalmologic exam showed areas of subretinal fibrosis in different retinal sectors. In only 1 case, these lesions were correlated to an ocular trauma as confirmed by biomicroscopic examination of the anterior segment that showed a nuclear cataract dislocated to the superior site and vitreous opacities along the lens capsule. The other patients reported a lifestyle characterized by competitive sport activities. The performed instrumental diagnostic investigations confirmed the diagnosis of STGD with FFM in all patients. Moreover, in all 4 affected individuals, mutations in the ABCA4 gene were found. Conclusions: Patients with the diagnosis of STGD associated with FFM can show atypical fundus findings. We report on 4 patients affected by STGD with ABCA4 gene mutation associated with subretinal fibrosis. Our findings suggest that this phenomenon can be accelerated by ocular trauma and also by ocular microtrauma caused by sport activities, highlighting that lifestyle can play a role in the onset of these lesions.

  6. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  7. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Lindsey C. Perkin

    2016-09-01

    Full Text Available Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  8. No linkage and association of atopy to chromosome 16 including the interleukin-4 receptor gene

    DEFF Research Database (Denmark)

    Haagerup, A; Bjerke, T; Schiøtz, P O

    2001-01-01

    BACKGROUND: Several susceptibility genes for atopy have been suggested in recent years. Few have been investigated as intensively as the interleukin-4-receptor alpha (IL4Ralpha) gene on chromosome 16. The results remain in dispute. Therefore, in a robust design, we tested for association of type ...

  9. Sequencing analysis of SLX4/FANCP gene in Italian familial breast cancer cases.

    Directory of Open Access Journals (Sweden)

    Irene Catucci

    Full Text Available Breast cancer can be caused by germline mutations in several genes that are responsible for different hereditary cancer syndromes. Some of the genes causing the Fanconi anemia (FA syndrome, such as BRCA2, BRIP1, PALB2, and RAD51C, are associated with high or moderate risk of developing breast cancer. Very recently, SLX4 has been established as a new FA gene raising the question of its implication in breast cancer risk. This study aimed at answering this question sequencing the entire coding region of SLX4 in 526 familial breast cancer cases from Italy. We found 81 different germline variants and none of these were clearly pathogenic. The statistical power of our sample size allows concluding that in Italy the frequency of carriers of truncating mutations of SLX4 may not exceed 0.6%. Our results indicate that testing for SLX4 germline mutations is unlikely to be relevant for the identification of individuals at risk of breast cancer, at least in the Italian population.

  10. Synthesis of bacteriophage-coded gene products during infection of Escherichia coli with amber mutants of T3 and T7 defective in gene 1

    DEFF Research Database (Denmark)

    Issinger, O G; Hausmann, R

    1973-01-01

    During nonpermissive infection by a T7 amber mutant in gene 1 (phage RNA polymerase-deficient), synthesis of the products of the phage genes 3 (endonuclease), 3, 5 (lysozyme), 5 (DNA polymerase), and 17 (serum blocking power) was shown to occur at about half the rate as during wild-type infection...

  11. Congenital syndactyly in cattle: four novel mutations in the low density lipoprotein receptor-related protein 4 gene (LRP4

    Directory of Open Access Journals (Sweden)

    Höltershinken Martin

    2007-02-01

    Full Text Available Abstract Background Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. Results We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. Conclusion We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.

  12. Localisation of the gene for achondroplasia to the telomeric region of chromosome 4p

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, I.; Velinov, M.; Kilpatrick, M.W. [and others

    1994-09-01

    Achondroplasia (ACH), the most common type of genetic dwarfism, is characterized by a variety of skeletal anomalies including disproportionate short stature and rhizomelic shortening of the extremities. The disorder is inherited as an autosomal dominant trait, with a prevalence of 1-15 per 100,000 live births. The etiology of ACH remains unknown, although evidence points to a defect in the maturation of the chondrocytes in the growth plate of the cartilage. To determine the location of the gene responsible for ACH, a panel of 14 families with a total of 43 meioses was genotyped for 40 polymorphic markers for loci randomly distributed throughout the genome. The first significant positive Lod score was obtained for the locus D4S127 (Zmax=3.65 at {theta}=0.03). A series of 20 markers for chromosome 4p16.3 loci were then used to determine the most likely position of the ACH gene. Two additional loci, D4S412 and IDUA, showed strong linkage to the disease (Zmax=3.34 at {theta}=0.03 and Zmax=3.35 at {theta}=0.0, respectively). Multipoint analysis and direct counting of recombinants places the ACH gene in a 2.5 cM region between the marker D4S43 and the chromosome 4p telomere. No evidence was found for genetic heterogeneity. The ACH region contains a number of genes, including that for the fibroblast growth factor receptor FGFR3, which are being evaluated as candidates for the ACH gene. This identification of tightly linked polymorphic markers, as well as being the first step in the characterization of the ACH gene, offers the possibility of DNA based prenatal diagnosis of this disorder.

  13. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  14. A single gene (Eu4) encodes the tissue-ubiquitous urease of soybean.

    Science.gov (United States)

    Torisky, R S; Griffin, J D; Yenofsky, R L; Polacco, J C

    1994-02-01

    We sought to determine the genetic basis of expression of the ubiquitous (metabolic) urease of soybean. This isozyme is termed the metabolic urease because its loss, in eu4/eu4 mutants, leads to accumulation of urea, whereas loss of the embryo-specific urease isozyme does not. The eu4 lesion eliminated the expression of the ubiquitous urease in vegetative and embryonic tissues. RFLP analysis placed urease clone LC4 near, or within, the Eu4 locus. Sequence comparison of urease proteins (ubiquitous and embryo-specific) and clones (LC4 and LS1) indicated that LC4 and LS1 encode ubiquitous and embryo-specific ureases, respectively. That LC4 is transcribed into poly(A)+ RNA in all tissues was indicated by the amplification of its transcript by an LC4-specific PCR primer. (The LS1-specific primer, on the other hand, amplified poly(A)+ RNA only from developing embryos expressing the embryo-specific urease.) These observations are consistent with Eu4 being the ubiquitous urease structural gene contained in the LC4 clone. In agreement with this notion, the mutant phenotype of eu4/eu4 callus was partially corrected by the LC4 urease gene introduced by particle bombardment.

  15. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene

    Science.gov (United States)

    Catalina, Purificación; Rodríguez, René; Melen, Gustavo J.; Bueno, Clara; Arriero, Mar; García-Sánchez, Félix; Lassaletta, Alvaro; García-Sanz, Ramón

    2009-01-01

    MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4+ B-ALL. Unlike leukemic blasts, MLL-AF4+ BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4+ B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4+ BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors. PMID:19995953

  16. The Muscular Dystrophy Gene TMEM5 Encodes a Ribitol β1,4-Xylosyltransferase Required for the Functional Glycosylation of Dystroglycan.

    Science.gov (United States)

    Manya, Hiroshi; Yamaguchi, Yoshiki; Kanagawa, Motoi; Kobayashi, Kazuhiro; Tajiri, Michiko; Akasaka-Manya, Keiko; Kawakami, Hiroko; Mizuno, Mamoru; Wada, Yoshinao; Toda, Tatsushi; Endo, Tamao

    2016-11-18

    A defect in O-mannosyl glycan is the cause of α-dystroglycanopathy, a group of congenital muscular dystrophies caused by aberrant α-dystroglycan (α-DG) glycosylation. Recently, the entire structure of O-mannosyl glycan, [3GlcAβ1-3Xylα1] n -3GlcAβ1-4Xyl-Rbo5P-1Rbo5P-3GalNAcβ1-3GlcNAcβ1-4 (phospho-6)Manα1-, which is required for the binding of α-DG to extracellular matrix ligands, has been proposed. However, the linkage of the first Xyl residue to ribitol 5-phosphate (Rbo5P) is not clear. TMEM5 is a gene product responsible for α-dystroglycanopathy and was reported as a potential enzyme involved in this linkage formation, although the experimental evidence is still incomplete. Here, we report that TMEM5 is a xylosyltransferase that forms the Xylβ1-4Rbo5P linkage on O-mannosyl glycan. The anomeric configuration and linkage position of the product (β1,4 linkage) was determined by NMR analysis. The introduction of two missense mutations in TMEM5 found in α-dystroglycanopathy patients impaired xylosyltransferase activity. Furthermore, the disruption of the TMEM5 gene by CRISPR/Cas9 abrogated the elongation of the (-3GlcAβ1-3Xylα1-) unit on O-mannosyl glycan. Based on these results, we concluded that TMEM5 acts as a UDP-d-xylose:ribitol-5-phosphate β1,4-xylosyltransferase in the biosynthetic pathway of O-mannosyl glycan. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2010-02-01

    Full Text Available Hox genes encode transcription factors, which regulate skeletal patterning and chondrocyte differentiation during the development of cartilage, the precursor to mature bone. Overexpression of the homeobox transcription factors Hoxc8 and Hoxd4 causes severe cartilage defects due to delay in cartilage maturation. Matrix metalloproteinases (MMPs, bone morphogenetic proteins (BMPs and fibroblastic growth factors (FGFs are known to play important roles in skeletal development and endochondral bone formation and remodeling. In order to investigate whether these molecules are aberrantly expressed in Hoxc8- and/or Hoxd4-transgenic cartilage, we performed quantitative RT-PCR on chondrocytes from Hox-transgenic mice. Gene expression levels of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were altered in Hoxc8-transgenic chondrocytes, and Fgfr3, Ihh, Mmp8, and Wnt3a expression levels were altered in Hoxd4-transgenic chondrocytes, respectively. Notably, Wnt3a expression was elevated in Hoxc8- and reduced in Hoxd4-transgenic cartilage. These results suggest that both transcription factors affect cartilage maturation through different molecular mechanisms, and provide the basis for future studies into the role of these genes and possible interactions in pathogenesis of cartilage defects in Hoxc8- and Hoxd4-transgenic mice.

  18. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants.

    Science.gov (United States)

    Quijano, Carolina Diaz; Wichmann, Fabienne; Schlaich, Thomas; Fammartino, Alessandro; Huckauf, Jana; Schmidt, Kerstin; Unger, Christoph; Broer, Inge; Sautter, Christof

    2016-09-01

    Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  19. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants

    Directory of Open Access Journals (Sweden)

    Carolina Diaz Quijano

    2016-09-01

    Full Text Available Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4 is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  20. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    Energy Technology Data Exchange (ETDEWEB)

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  1. Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase

    CSIR Research Space (South Africa)

    James, ER

    2012-10-01

    Full Text Available Microbiology and Biotechnology October 2012/ Vol. 96, No.2 Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase ER James a,c & WH van Zyl b & PJ van Zyl c & JF Görgens..., Pretoria 0001, South Africa Abstract This study demonstrates the potential of Aspergillus niger as a candidate expression system for virus- like particle production using gene fusion. Hepatitis B surface antigen (HBsAg) production, targeted...

  2. Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds

    International Nuclear Information System (INIS)

    Gracia, Tannia; Hilscherova, Klara; Jones, Paul D.; Newsted, John L.; Higley, Eric B.; Zhang, Xiaowei; Hecker, Markus; Murphy, Margaret B.; Yu, Richard M.K.; Lam, Paul K.S.; Wu, Rudolf S.S.; Giesy, John P.

    2007-01-01

    The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3βHSD2, CYP11β1, CYP11β2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11β2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantly increased CYP11β2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The β-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different

  3. Improvements in algal lipid production: a systems biology and gene editing approach.

    Science.gov (United States)

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  4. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    DEFF Research Database (Denmark)

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile

    2016-01-01

    stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate...... promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly...... the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest...

  5. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    OpenAIRE

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed ...

  6. Regulatory role of melatonin and BMP-4 in prolactin production by rat pituitary lactotrope GH3 cells.

    Science.gov (United States)

    Ogura-Ochi, Kanako; Fujisawa, Satoshi; Iwata, Nahoko; Komatsubara, Motoshi; Nishiyama, Yuki; Tsukamoto-Yamauchi, Naoko; Inagaki, Kenichi; Wada, Jun; Otsuka, Fumio

    2017-08-01

    The effects of melatonin on prolactin production and its regulatory mechanism remain uncertain. We investigated the regulatory role of melatonin in prolactin production using rat pituitary lactotrope GH3 cells by focusing on the bone morphogenetic protein (BMP) system. Melatonin receptor activation, induced by melatonin and its receptor agonist ramelteon, significantly suppressed basal and forskolin-induced prolactin secretion and prolactin mRNA expression in GH3 cells. The melatonin MT2 receptor was predominantly expressed in GH3 cells, and the inhibitory effects of melatonin on prolactin production were reversed by treatment with the receptor antagonist luzindole, suggesting functional involvement of MT2 action in the suppression of prolactin release. Melatonin receptor activation also suppressed BMP-4-induced prolactin expression by inhibiting phosphorylation of Smad and transcription of the BMP-target gene Id-1, while BMP-4 treatment upregulated MT2 expression. Melatonin receptor activation suppressed basal, BMP-4-induced and forskolin-induced cAMP synthesis; however, BtcAMP-induced prolactin mRNA expression was not affected by melatonin or ramelteon, suggesting that MT2 activation leads to inhibition of prolactin production through the suppression of Smad signaling and cAMP synthesis. Experiments using intracellular signal inhibitors revealed that the ERK pathway is, at least in part, involved in prolactin induction by GH3 cells. Thus, a new regulatory role of melatonin involving BMP-4 in prolactin secretion was uncovered in lactotrope GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Analysis of nuclear reprogramming in cloned miniature pig embryos by expression of Oct-4 and Oct-4 related genes

    International Nuclear Information System (INIS)

    Lee, Eugine; Lee, So Hyun; Kim, Sue

    2006-01-01

    Xenotransplantation is a rapidly expanding field of research and cloned miniature pigs have been considered as a model animal for it. However, the efficiency of somatic cell nuclear transfer (SCNT) is extremely low, with most clones resulting in early lethality and several kinds of aberrant development. A possible explanation for the developmental failure of SCNT embryos is insufficient reprogramming of the somatic cell nucleus by the oocyte. In order to test this, we analyzed the reprogramming capacity of differentiated fibroblast cell nuclei and embryonic germ cell nuclei with Oct-4 and Oct-4 related genes (Ndp5211, Dppa2, Dppa3, and Dppa5), which are important for embryonic development, Hand1 and GATA-4, which are important for placental development, as molecular markers using RT-PCR. The Oct-4 expression level was significantly lower (P < 0.05) in cloned hatched blastocysts derived from fibroblasts and many of fibroblast-derived clones failed to reactivate at least one of the tested genes, while most of the germ cell clones and control embryos correctly expressed these genes. In conclusion, our results suggest that the reprogramming of fibroblast-derived cloned embryos is highly aberrant and this improper reprogramming could be one reason of the early lethality and post-implantation anomalies of somatic cell-derived clones

  8. Polymorphism of BMP4 gene in Indian goat breeds differing in prolificacy.

    Science.gov (United States)

    Sharma, Rekha; Ahlawat, Sonika; Maitra, A; Roy, Manoranjan; Mandakmale, S; Tantia, M S

    2013-12-10

    Bone morphogenetic proteins (BMPs) are members of the TGF-β (transforming growth factor-beta) superfamily, of which BMP4 is the most important due to its crucial role in follicular growth and differentiation, cumulus expansion and ovulation. Reproduction is a crucial trait in goat breeding and based on the important role of BMP4 gene in reproduction it was considered as a possible candidate gene for the prolificacy of goats. The objective of the present study was to detect polymorphism in intronic, exonic and 3' un-translated regions of BMP4 gene in Indian goats. Nine different goat breeds (Barbari, Beetal, Black Bengal, Malabari, Jakhrana (Twinning>40%), Osmanabadi, Sangamneri (Twinning 20-30%), Sirohi and Ganjam (Twinning<10%)) differing in prolificacy and geographic distribution were employed for polymorphism scanning. Cattle sequence (AC_000167.1) was used to design primers for the amplification of a targeted region followed by direct DNA sequencing to identify the genetic variations. Single nucleotide polymorphisms (SNPs) were not detected in exon 3, the intronic region and the 3' flanking region. A SNP (G1534A) was identified in exon 2. It was a non-synonymous mutation resulting in an arginine to lysine change in a corresponding protein sequence. G to A transition at the 1534 locus revealed two genotypes GG and GA in the nine investigated goat breeds. The GG genotype was predominant with a genotype frequency of 0.98. The GA genotype was present in the Black Bengal as well as Jakhrana breed with a genotype frequency of 0.02. A microsatellite was identified in the 3' flanking region, only 20 nucleotides downstream from the termination site of the coding region, as a short sequence with more than nineteen continuous and repeated CA dinucleotides. Since the gene is highly evolutionarily conserved, identification of a non-synonymous SNP (G1534A) in the coding region gains further importance. To our knowledge, this is the first report of a mutation in the coding

  9. Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon (L4_C) Product Specification Document

    Science.gov (United States)

    Glassy, Joe; Kimball, John S.; Jones, Lucas; Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project.

  10. The (CTGn polymorphism in the NOTCH4 gene is not associated with schizophrenia in Japanese individuals

    Directory of Open Access Journals (Sweden)

    Okubo Takehito

    2001-06-01

    Full Text Available Abstract Background The human NOTCH4 gene is a candidate gene for schizophrenia due to its chromosomal location and neurobiological roles. In a British linkage study, NOTCH4 gene polymorphisms were highly associated with schizophrenia. In a Japanese case-control association study, however, these polymorphisms did not show significant associations with schizophrenia. We conducted a case-control study with Japanese subjects to explore an association between the triplet repeat polymorphism in the NOTCH4 gene and schizophrenia, including subtypes of schizophrenia, longitudinal disease course characteristics, and a positive family history for psychoses. Methods We examined the (CTGn repeat polymorphism in the NOTCH4 gene among 100 healthy Japanese individuals and 102 patients with schizophrenia (22 paranoid, 38 disorganized, 29 residual, 64 episodic, 31 continuous, 42 with prominent negative symptoms, and 46 with positive family histories using a polymerase chain reaction-based, single-strand conformational polymorphism analysis. Results Five different alleles consisting of 6, 9, 10, 11, and 13 repeats of CTG (Leu in patients with schizophrenia, and 4 alleles consisting of 6, 9, 10, and 11 repeats in controls were found. No significant differences in genotype or allele frequencies of repeat numbers were found between controls and patients. In addition, there were no associations between the polymorphism and schizophrenia subtypes, longitudinal disease course characteristics, or positive family history of the patients. Conclusions Our data suggest a lack of association between the NOTCH4 gene triplet repeat polymorphism and schizophrenia in Japanese individuals.

  11. 46 CFR 57.06-4 - Production testing specimen requirements.

    Science.gov (United States)

    2010-10-01

    ... WELDING AND BRAZING Production Tests § 57.06-4 Production testing specimen requirements. (a) For test... 46 Shipping 2 2010-10-01 2010-10-01 false Production testing specimen requirements. 57.06-4... to welding shall not throw the finished test plate out of line by an angle of over 5°. (c) Where the...

  12. Product evaluation of in situ vitrification engineering, Test 4

    International Nuclear Information System (INIS)

    Loehr, C.A.; Weidner, J.R.; Bates, S.O.

    1991-09-01

    This report is one of several that evaluates the In Situ Vitrification (ISV) Engineering-Scale Test 4 (ES-4). This document describes the chemical and physical composition, microstructure, and leaching characteristics of ES-4 product samples; these data provide insight into the expected performance of a vitrified product in an ISV buried waste application similar to that studied in ES-4

  13. Immunohistochemical Mapping of TRK-Fused Gene Products in the Rat Brainstem

    International Nuclear Information System (INIS)

    Takeuchi, Shigeko; Masuda, Chiaki; Maebayashi, Hisae; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It was since reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. As shown in the accompanying paper, we produced an antibody to rat TFG and used it to localize TFG to selected neurons in specific regions. In the present study, we mapped the TFG-positive neurons in the brainstem, cerebellum, and spinal cord of rats. In the brainstem, neurons intensely positive for TFG were distributed in the raphe nuclei, the gigantocellular reticular nucleus, the reticulotegmental nucleus of the pons, and some cranial nerve nuclei such as the trigeminal nuclei, the vestibulocochlear nuclei, and the dorsal motor nucleus of the vagus. Purkinje cells in the cerebellum and motor neurons in the spinal anterior horn were also positive for TFG. These results provide fundamental data for studying the functions of TFG in the brain

  14. Method for indirect quantification of CH4 production via H2O production using hydrogenotrophic methanogens

    Directory of Open Access Journals (Sweden)

    Ruth-Sophie eTaubner

    2016-04-01

    Full Text Available ydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. They exhibit extraordinary ecological, biochemical, physiological characteristics colorbox{yellow}{and have a huge biotechnological potential}. Yet, the only possibility to assess the methane (CH$_4$ production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH$_4$.In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH$_4$ production potential we developed a novel method for indirect quantification of colorbox{yellow}{the} volumetric CH$_4$ production rate by measuring colorbox{yellow}{the} volumetric water production rate. This colorbox{yellow}{ } method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was colorbox{yellow}{estimated} by determining the difference in mass increase in an isobaric setting.This novel CH$_4$ quantification method is an accurate and precise analytical technique, colorbox{yellow}{which can be used} to rapidly screen pure cultures of methanogens regarding colorbox{yellow}{their} volumetric CH$_{4}$ evolution rate. colorbox{yellow}{It} is a cost effective alternative colorbox{yellow}{determining} CH$_4$ production of methanogens over CH$_4$ quantification by using gas chromatography, especially if colorbox{yellow}{ } applied as a high throughput quantification method. colorbox{yellow}{Eventually, the} method can be universally applied for quantification of CH$_4$ production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens.

  15. Virulence-associated gene pattern of porcine and human Yersinia enterocolitica biotype 4 isolates.

    Science.gov (United States)

    Schneeberger, M; Brodard, I; Overesch, G

    2015-04-02

    Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4

  16. Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius

    International Nuclear Information System (INIS)

    Atoui, A.; El Khoury, R.; Verheecke, C; Mathieu, F.; Maroun, R.; El Khoury, A.

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at μL/mL and 5 μL/mL for each E.O. As a matter of fact, their effects on the OTA production and the growth of A. carbonarius S402 cultures were evaluated, after four days at 28 °C on a Synthetic Grape Medium (SGM). Results showed that A. carbonarius growth was reduced up to 100%, when cultured with the E.Os of cinnamon, taramira, and oregano at both concentrations and the thyme at 5 μL/mL. As for the other six E.Os, their effect on A. carbonarius growth was insignificant, but highly important on the OTA production. Interestingly, the fennel E.O at 5 _L/mL reduced the OTA production up to 88.9% compared to the control, with only 13.8% of fungal growth reduction. We further investigated the effect of these E.Os on the expression levels of the genes responsible for the OTA biosynthesis (acOTApks and acOTAnrps along with the acpks gene) as well as the two regulatory genes laeA and vea, using the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) method. The results revealed that these six E.Os reduced the expression of the five studied genes, where the ackps was downregulated by 99.2% (the highest downregulation in this study) with 5 μL/mL of fennel E.O. As for the acOTApks, acOTAnrps, veA and laeA, their reduction levels ranged between 10% and 96% depending on the nature of the E.O and its concentration in the medium. (author)

  17. Tumor necrosis factor-alpha and interleukin-4 gene polymorphisms in Chinese patients with gout.

    Science.gov (United States)

    Chen, M-L; Tsai, F-J; Tsai, C-H; Huang, C-M

    2007-01-01

    The purpose of this study was to examine whether polymorphisms of interleukin-4 (IL-4) (promoter-590 and intron 3) and tumor necrosis factor-alpha (TNF-alpha) promoter-308 genes are markers of susceptibility to or clinical manifestations of gout in Taiwanese patients. The study included 196 Taiwanese patients with gout and 103 unrelated healthy control subjects living in central Taiwan. Polymorphisms of the IL-4 (promoter-590 and intron 3) and TNF-alpha (promoter-308) genes were typed from genomic DNA. Allelic frequencies and carriage rates were then compared between gout patients and control subjects. The correlation between allelic frequencies, carriage rates and clinical manifestations of gout were evaluated. No significant differences were observed in the allelic frequencies and carriage rates of the IL-4 (promoter-590 and intron 3) and TNF-alpha gene polymorphisms between patients with gout and healthy control subjects. Furthermore, the IL-4 (promoter-590 and intron 3) and TNF-alpha genotypes were not found to be associated with the clinical and laboratory profiles in gout patients. However, there was a significant difference in the TNF-alphapolymorphism genotype between patients with and without hypertriglyceridemia (P=0.001, xi2=11.47, OR=10.3, 95%CI=3.57-29.7). The results of our study suggest that polymorphisms of the IL-4 (promoter-590 and intron 3) and TNF-alpha promoter-308 genes are not related to gout in Chinese patients in Taiwan.

  18. Comparison of Gene Expression by Sheep and Human Blood Stimulated with the TLR4 Agonists Lipopolysaccharide and Monophosphoryl Lipid A.

    Directory of Open Access Journals (Sweden)

    Perenlei Enkhbaatar

    Full Text Available Animal models that mimic human biology are important for successful translation of basic science discoveries into the clinical practice. Recent studies in rodents have demonstrated the efficacy of TLR4 agonists as immunomodulators in models of infection. However, rodent models have been criticized for not mimicking important characteristics of the human immune response to microbial products. The goal of this study was to compare genomic responses of human and sheep blood to the TLR4 agonists lipopolysaccharide (LPS and monophosphoryl lipid A (MPLA.Venous blood, withdrawn from six healthy human adult volunteers (~ 28 years old and six healthy adult female sheep (~3 years old, was mixed with 30 μL of PBS, LPS (1μg/mL or MPLA (10μg/mL and incubated at room temperature for 90 minutes on a rolling rocker. After incubation, 2.5 mL of blood was transferred to Paxgene Blood RNA tubes. Gene expression analysis was performed using an Agilent Bioanalyzer with the RNA6000 Nano Lab Chip. Agilent gene expression microarrays were scanned with a G2565 Microarray Scanner. Differentially expressed genes were identified.11,431 human and 4,992 sheep probes were detected above background. Among them 1,029 human and 175 sheep genes were differentially expressed at a stringency of 1.5-fold change (p 1.5-fold changes in human samples. Genes of major inflammatory mediators, such as IL-1, IL-6 and IL-8, TNF alpha, NF-kappaB, ETS2, PTGS2, PTX3, CXCL16, KYNU, and CLEC4E were similarly (>2-fold upregulated by LPS and MPLA in both species.The genomic responses of peripheral blood to LPS and MPLA in sheep are quite similar to those observed in humans, supporting the use of the ovine model for translational studies that mimic human inflammatory diseases and the study of TLR-based immunomodulators.

  19. Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis

    International Nuclear Information System (INIS)

    Casarin, Alberto; Jimenez-Ortega, Jose Carlos; Trevisson, Eva; Pertegato, Vanessa; Doimo, Mara; Ferrero-Gomez, Maria Lara; Abbadi, Sara; Artuch, Rafael; Quinzii, Catarina; Hirano, Michio; Basso, Giuseppe; Ocana, Carlos Santos; Navas, Placido; Salviati, Leonardo

    2008-01-01

    Defects in genes involved in coenzyme Q (CoQ) biosynthesis cause primary CoQ deficiency, a severe multisystem disorders presenting as progressive encephalomyopathy and nephropathy. The COQ4 gene encodes an essential factor for biosynthesis in Saccharomyces cerevisiae. We have identified and cloned its human ortholog, COQ4, which is located on chromosome 9q34.13, and is transcribed into a 795 base-pair open reading frame, encoding a 265 amino acid (aa) protein (Isoform 1) with a predicted N-terminal mitochondrial targeting sequence. It shares 39% identity and 55% similarity with the yeast protein. Coq4 protein has no known enzymatic function, but may be a core component of multisubunit complex required for CoQ biosynthesis. The human transcript is detected in Northern blots as a ∼1.4 kb single band and is expressed ubiquitously, but at high levels in liver, lung, and pancreas. Transcription initiates at multiple sites, located 333-23 nucleotides upstream of the ATG. A second group of transcripts originating inside intron 1 of the gene encodes a 241 aa protein, which lacks the mitochondrial targeting sequence (isoform 2). Expression of GFP-fusion proteins in HeLa cells confirmed that only isoform 1 is targeted to mitochondria. The functional significance of the second isoform is unknown. Human COQ4 isoform 1, expressed from a multicopy plasmid, efficiently restores both growth in glycerol, and CoQ content in COQ4 null yeast strains. Human COQ4 is an interesting candidate gene for patients with isolated CoQ 10 deficiency

  20. [Carcinogenesis and its mechanism of mutant-type[12Asp]K-ras4B gene].

    Science.gov (United States)

    Gui, Li-ming; Wei, Li-hui; Zhang, Ying-mei; Wang, Jian-liu; Wang, Ying; Chen, Ying; Ma, Da-long

    2002-01-01

    Ras gene plays an important role in the extra- and intra-cellular signal transduction pathway. It mediates series cascade reactions, and eventually actives transcriptional factors in nucleus. It is unknown on the mechanism of carcinogenesis of Ras gene in endometrial carcinoma, though K-ras mutant is very common in endometrial atypical hyperplasia and carcinoma. On basis of discovering the mutation in 12th codon of K-ras in endometrial carcinoma cell line, HEC-1A, we explored the carcinogenesis and molecular mechanism of mutant-type [12Asp] K-ras4B gene. (1) Full-length [12Asp]K-ras4B cDNA was amplified with RT-PCR, then inserted into pcDI eukaryotic expressive vector. (2) Morphological change, growth kinetics in vitro and tumorigencity in nude mice in vivo after-before transfection were observed. (3) To test the cell growth kinetics by methyl thiazolium tetrazolium (MTT) and [3H]thymidine incorporation method. (1) The authors have successfully constructed eukaryotic expression plasmid pcDI-[12Asp] K-ras4B; (2) To confirm that [12Asp] K-ras4B mutant can trigger the neoplastic transformation of NIH3T3 cells by test in vitro and in vivo. (3) After pMCV-RasN17 plasmid, a Ras mutant were transfected into pcDI-[12Asp] K-ras4B cells, the growth of this cell were restrained significantly in comparison with control group. (4) These findings indicate the expression of RafS621A resulted in remarkable inhibition in proliferation of pcDI-[12Asp]K-ras4B cell (P ras4B cell growth (P ras4B gene alone is able to cause neoplastic transformation in NIH3T3 cells in vitro and in vivo. (2) [12Asp]K-ras4B-induced NIH3T3 cells neoplastic transformation required Raf signaling pathway.

  1. Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene

    International Nuclear Information System (INIS)

    Miura, Shinji; Tsunoda, Nobuyo; Ikeda, Shinobu; Kai, Yuko; Cooke, David W.; Lane, M. Daniel; Ezaki, Osamu

    2004-01-01

    Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between -551 and -506 in the 5'-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases -701 and -552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases -700 and -688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5' or 3' half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a -551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT

  2. RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia.

    Science.gov (United States)

    Chen, Jiwei; Zhang, Qian; Wang, Qigang; Feng, Ming; Li, Yang; Meng, Yonglu; Zhang, Yi; Liu, Guoqin; Ma, Zhimin; Wu, Hongzhi; Gao, Junping; Ma, Nan

    2017-02-23

    Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.

  3. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.

    Science.gov (United States)

    Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2013-01-02

    Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the

  4. Expression of death-related genes and reactive oxygen species production in Skeletonema tropicum upon exposure to the polyunsaturated aldehyde octadienal

    Directory of Open Access Journals (Sweden)

    Alessandra A. Gallina

    2015-11-01

    Full Text Available The effects of 4E/Z-octadienal (OCTA on ScDSP-1 and ScDSP-2 gene expression and reactive oxygen species (ROS production were investigated in the marine diatom Skeletonema tropicum (formerly costatum using qRTPCR and flow cytometry. ScDSP-1 and ScDSP-2 genes have been previously shown to be involved in cell death in ageing cells and in response to photosynthetic stress. OCTA induced a differential, concentration-dependent DSP gene expression associated to ROS production, 821.6 and 97.7 folds higher for ScDSP-1 and ScDSP-2, respectively. Among the concentrations tested, only 8 μM OCTA, which caused a reduction of 50% in cell concentrations at 24 h, was able to elicit an expression pattern consistent with a signalling role. Interestingly, only intermediate levels of reactive oxygen species (ROS (i.e., 1.5±0.1 increase were observed to be elicited by such concentration. These results suggest that ROS are key components of the molecular cascade triggered by polyunsaturated aldehydes (PUA and leading to cell death. This could have implications for bloom final stages at sea, where PUA may act as effectors of diatom population dynamics through ROS acting as modulators.

  5. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  6. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    Science.gov (United States)

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or

  7. Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisation.

    Science.gov (United States)

    Cheng, Lifang; Mu, Wanmeng; Jiang, Bo

    2010-06-01

    D-Tagatose, as one of the rare sugars, has been found to be a natural and safe low-calorie sweetener in food products and is classified as a GRAS substance. L-Arabinose isomerase (L-AI, EC 5.3.1.4), catalysing the isomerisations of L-arabinose and D-galactose to L-ribulose and D-tagatose respectively, is considered to be the most promising enzyme for the production of D-tagatose. The araA gene encoding an L-AI from Bacillus stearothermophilus IAM 11001 was cloned, sequenced and overexpressed in Escherichia coli. The gene is composed of 1491 bp nucleotides and codes for a protein of 496 amino acid residues. The recombinant L-AI was purified to electrophoretical homogeneity by affinity chromatography. The purified enzyme was optimally active at 65 degrees C and pH 7.5 and had an absolute requirement for the divalent metal ion Mn(2+) for both catalytic activity and thermostability. The enzyme was relatively active and stable at acidic pH of 6. The bioconversion yield of D-galactose to D-tagatose by the purified L-AI after 12 h at 65 degrees C reached 36%. The purified L-AI from B. stearothermophilus IAM 11001 was characterised and shown to be a good candidate for potential application in D-tagatose production. Copyright (c) 2010 Society of Chemical Industry.

  8. Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury.

    Directory of Open Access Journals (Sweden)

    Sonia Podvin

    Full Text Available By virtue of its ability to regulate the composition of cerebrospinal fluid (CSF, the choroid plexus (CP is ideally suited to instigate a rapid response to traumatic brain injury (TBI by producing growth regulatory proteins. For example, Esophageal Cancer Related Gene-4 (Ecrg4 is a tumor suppressor gene that encodes a hormone-like peptide called augurin that is present in large concentrations in CP epithelia (CPe. Because augurin is thought to regulate senescence, neuroprogenitor cell growth and differentiation in the CNS, we evaluated the kinetics of Ecrg4 expression and augurin immunoreactivity in CPe after CNS injury. Adult rats were injured with a penetrating cortical lesion and alterations in augurin immunoreactivity were examined by immunohistochemistry. Ecrg4 gene expression was characterized by in situ hybridization. Cell surface augurin was identified histologically by confocal microscopy and biochemically by sub-cellular fractionation. Both Ecrg4 gene expression and augurin protein levels were decreased 24-72 hrs post-injury but restored to uninjured levels by day 7 post-injury. Protein staining in the supraoptic nucleus of the hypothalamus, used as a control brain region, did not show a decrease of auguin immunoreactivity. Ecrg4 gene expression localized to CPe cells, and augurin protein to the CPe ventricular face. Extracellular cell surface tethering of 14 kDa augurin was confirmed by cell surface fractionation of primary human CPe cells in vitro while a 6-8 kDa fragment of augurin was detected in conditioned media, indicating release from the cell surface by proteolytic processing. In rat CSF however, 14 kDa augurin was detected. We hypothesize the initial release and proteolytic processing of augurin participates in the activation phase of injury while sustained Ecrg4 down-regulation is dysinhibitory during the proliferative phase. Accordingly, augurin would play a constitutive inhibitory function in normal CNS while down

  9. Lambda bacteriophage gene products and x-ray sensitivity of Escherichia coli: comparison of red-dependent and gam-dependent radioresistance

    International Nuclear Information System (INIS)

    Trgovcevic, Z.; Rupp, W.D.

    1975-01-01

    When gene products of lambda bacteriophage are introduced into a cell by transient induction of a lysogen, increased resistance of the cells to x rays results. This phenomenon has been called phage-induced radioresistance. Genetic studies show at least two classes of induced radioresistance. The first type depends on the products of the lambda red genes and is observed in bacteria that are mutated in the recB gene. It is thought that the lambda red products compensate for the missing RecBC nuclease in the repair of x-ray damage. An optimal effect is obtained even when the lambda red products are supplied 1 h after irradiation. The lesions that are affected by the red-dependent process are probably not deoxyribonucleic acid strand breaks because the extent of deoxyribonucleic acid strand rejoining is not altered by the red products. The second type of phage-induced radioresistance requires the gam product of lambda and is observed in wild-type and polA strains. The lambda gam + gene product must be present immediately after irradiation to exert its full effect. In its presence, DNA breakdown is decreased, and a greater fraction of DNA is converted back to high molecular weight. Strains carrying lex, recA, or certain other combinations of mutations do not show any detectable phage-induced radioresistance. (U.S.)

  10. Glypican-4 gene polymorphism (rs1048369) and susceptibility to Epstein-Barr virus-associated and -negative gastric carcinoma.

    Science.gov (United States)

    Zhao, Danrui; Liu, Shuzhen; Sun, Lingling; Zhao, Zhenzhen; Liu, Song; Kuang, Xiaojing; Shu, Jun; Luo, Bing

    2016-07-15

    Gastric cancer (GC) is one of the most common malignant tumors in China and single nucleotide polymorphisms (SNPs) have been found to be highly related to GC carcinogenesis. Glypican-4 (GPC4), a member of the heparan sulphate proteoglycan family, plays an important role in the regulation of cell growth and differentiation. However, little is known about polymorphisms of GPC4 gene and their associated susceptibility to GC, especially to Epstein-Barr virus-associated GC (EBVaGC). Here we studied the GPC4 polymorphism (rs1048369) in GC individuals, especially those with EBVaGC, and we explored an association between the GPC4 gene polymorphism (rs1048369) and susceptibility to EBVaGC and Epstein-Barr virus-negative GC (EBVnGC) in a population from Northern China. The GPC4 gene polymorphism (rs1048369) was detected in 54 cases of EBVaGC and 73 cases of EBVnGC using polymerase chain reaction (PCR). One hundred and seven peripheral blood samples from healthy individuals were also measured as a control group. There were significant differences in both the genotype and allelic frequency of GPC4 gene (rs1048369) between the EBVaGC and EBVnGC patients. Meanwhile, the distribution of genotype and allelic frequency of GPC4 (rs1048369) differed between EBVaGC and control groups. Distribution of the GPC4 genotype also revealed differences between EBVnGC and control groups, no significant differences in the allelic frequency of the GPC4 gene (rs1048369) were observed. The frequency of the T allele in EBVaGC group was significantly higher than that in control and EBVnGC groups. The GPC4 gene polymorphism and the allele of GPC4 are both associated with susceptibility to EBVaGC. The T allele of GPC4 may represent a risk factor for EBVaGC. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development.

    Directory of Open Access Journals (Sweden)

    Mohammad H Dezfulian

    Full Text Available The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action.

  12. Role of TLR4 gene polymorphisms in the colorectal cancer risk ...

    African Journals Online (AJOL)

    Role of TLR4 gene polymorphisms in the colorectal cancer risk modulation in ethnic Kashmiri population – A case–control study. Saniya Nissar, Aga Syed Sameer, Roohi Rasool, Qurteeba Qadri, Nissar A. Chowdri, Fouzia Rashid ...

  13. Identification of the interleukin 4 receptor alpha gene as a direct target for p73.

    Science.gov (United States)

    Sasaki, Yasushi; Mita, Hiroaki; Toyota, Minoru; Ishida, Setsuko; Morimoto, Ichiro; Yamashita, Toshiharu; Tanaka, Toshihiro; Imai, Kohzoh; Nakamura, Yusuke; Tokino, Takashi

    2003-12-01

    p73 has a high degree of structural homology to p53 and can activate transcription of p53-responsive genes. However, analysis of p73-deficient mice revealed a marked divergence in the physiological activities of p53 family genes and distinguishes p73 from p53. Mice deficient for p73 exhibit profound defects, including hippocampal dysgenesis, chronic infection, and inflammation, as well as abnormalities in pheromone sensory pathways. p73 plays important roles in neurogenesis, sensory pathways, and homeostatic regulation. Here, we found that the interleukin 4 receptor alpha (IL-4Ralpha) gene is up-regulated by p73 but not significantly by p53 in several human cancer cell lines. IL-4Ralphatranscription is also activated in response to cisplatin, a DNA-damaging agent known to induce p73. By using small interference RNA designed to target p73, we demonstrated that silencing endogenous p73 abrogates the induction of the IL-4Ralpha gene after cisplatin treatment. Furthermore, we identified a p73-binding site in the first intron of the IL-4Ralpha gene that can directly interact with the p73 protein in vivo. This p73-binding site consists of eight copies of a 10-bp consensus p53-binding motif and is a functional response element that is relatively specific for p73 among the p53 family. p73beta promoted localized nucleosomal acetylation through recruitment of coactivator p300, indicating that p73 regulates transcription of IL-4Ralpha through the unique p73-binding site. We also found that p73beta-transfected tumor cells are sensitive to IL-4-mediated apoptosis. Our data suggest that IL-4Ralpha could mediate, in part, certain immune responses and p73-dependent cell death.

  14. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  15. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes.

    Science.gov (United States)

    Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich

    2017-02-16

    Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.

  16. denV gene of bacteriophage T4 restores DNA excision repair to mei-9 and mus201 mutants of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Banga, S.S.; Boyd, J.B.; Valerie, K.; Harris, P.V.; Kurz, E.M.; de Riel, J.K.

    1989-01-01

    The denV gene of bacteriophage T4 was fused to a Drosophila hsp70 (70-kDa heat shock protein) promoter and introduced into the germ line of Drosophila by P-element-mediated transformation. The protein product of that gene (endonuclease V) was detected in extracts of heat-shocked transformants with both enzymological and immunoblotting procedures. That protein restores both excision repair and UV resistance to mei-9 and mus201 mutants of this organism. These results reveal that the denV gene can compensate for excision-repair defects in two very different eukayotic mutants, in that the mus201 mutants are typical of excision-deficient mutants in other organisms, whereas the mei-9 mutants exhibit a broad pleiotropism that includes a strong meiotic deficiency. This study permits an extension of the molecular analysis of DNA repair to the germ line of higher eukaryotes. It also provides a model system for future investigations of other well-characterized microbial repair genes on DNA damage in the germ line of this metazoan organism

  17. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  18. Applications of gene-based technologies for improving animal production and health in developing countries

    International Nuclear Information System (INIS)

    Makkar, H.P.S.; Viljoen, G.J.

    2005-01-01

    This book provides a compilation of peer-reviewed scientific contributions from authoritative researchers attending an international symposium convened by the Animal Production and Health Sub-programme of the Animal Production and Health (APH), Joint FAO/IAEA Programme in cooperation with the Animal Production and Health Division of the FAO. These Proceedings contain invaluable information on the role and future potential of gene-based technologies for improving animal production and health, possible applications and constraints in the use of this technology in developing countries and their specific research needs

  19. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    Full Text Available Yin Zhu,1,* Ming Cheng,2,* Zhen Yang,3 Chun-Yan Zeng,3 Jiang Chen,3 Yong Xie,3 Shi-Wen Luo,3 Kun-He Zhang,3 Shu-Feng Zhou,4 Nong-Hua Lu1,31Department of Gastroenterology, 2Department of Orthopedics, 3Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workAbstract: Mesenchymal stem cells (MSCs have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP. Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor

  20. Mutations in the SRY, DAX1, SF1 and WNT4 genes in Brazilian sex-reversed patients

    Directory of Open Access Journals (Sweden)

    S. Domenice

    2004-01-01

    Full Text Available In most mammals, male development is triggered by the transient expression of the SRY gene, which initiates a cascade of gene interactions ultimately leading to the formation of a testis from the indifferent fetal gonad. Mutation studies have identified several genes essential for early gonadal development. We report here a molecular study of the SRY, DAX1, SF1 and WNT4 genes, mainly involved in sexual determination, in Brazilian 46,XX and 46,XY sex-reversed patients. The group of 46,XX sex-reversed patients consisted of thirteen 46,XX true hermaphrodites and four 46,XX males, and was examined for the presence of the SRY gene and for the loss of function (inactivating mutations and deletions of DAX1 and WNT4 genes. In the second group consisting of thirty-three 46,XY sex-reversed patients we investigated the presence of inactivating mutations in the SRY and SF1 genes as well as the overexpression (duplication of the DAX1 and WNT4 genes. The SRY gene was present in two 46,XX male patients and in none of the true hermaphrodites. Only one mutation, located outside homeobox domain of the 5' region of the HMG box of SRY (S18N, was identified in a patient with 46,XY sex reversal. A novel 8-bp microdeletion of the SF1 gene was identified in a 46,XY sex-reversed patient without adrenal insufficiency. The dosage of DAX1 and WNT4 was normal in the sex-reversed patients studied. We conclude that these genes are rarely involved in the etiology of male gonadal development in sex-reversed patients, a fact suggesting the presence of other genes in the sex determination cascade.

  1. The association between the nicotinic acetylcholine receptor α4 subunit gene (CHRNA4 rs1044396 and Internet gaming disorder in Korean male adults.

    Directory of Open Access Journals (Sweden)

    Jo-Eun Jeong

    Full Text Available The primary aim of this study was to investigate the genetic predisposition of Internet gaming disorder (IGD, and the secondary aim was to compare the results to those of alcohol dependence (AD. Two independent case-control studies were conducted. A total of 30 male participants with IGD, diagnosed according to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5 criteria, and 30 sex-matched controls participated in study 1. We designed targeted exome sequencing (TES to test for 72 candidate genes that have been implicated in the pathogenesis of addiction. The genes included seven neurotransmitter (dopamine, serotonin, glutamate, r-aminobutyric acid (GABA, norepinephrine, acetylcholine, and opioid system genes. A total of 31 male in-patients with AD and 29 normal male controls (NC were enrolled in study 2. The same 72 genes included in study 1 and ten additional genes related to alcohol-metabolic enzyme were selected as the target genes, and we identified the genetic variants using the same method (TES. The IGD group had a lower frequency of the T allele of rs1044396 in the nicotinic acetylcholine receptor alpha 4 subunit (CHRNA4, and this variant represents a protective allele against IGD. However, we did not find a significant difference in the polymorphisms of the 72 genes that encode neurotransmitter systems between the AD and NC groups. This study demonstrated that rs1044396 of CHRNA4 was significantly associated with IGD.

  2. An association between apo-A4 gene polymorphism (Thr347Ser ...

    African Journals Online (AJOL)

    Pramod Kumar

    Objective: We aimed at studying the relationship between apoA4 gene polymorphisms (Thr347Ser and ... showed significant association with lipid risk factors like high levels of ..... in German population showed that Ser347 allele is associated.

  3. Tissue-specific posttranscriptional downregulation of expression of the S100A4(mts1) gene in transgenic animals

    DEFF Research Database (Denmark)

    Ambartsumian, N; Klingelhöfer, Jörg; Grigorian, M

    1998-01-01

    The S100A4(mts1) is a gene associated with generation of metastatic disease. In order to analyze the consequences of alteration of the pattern of expression of the S100A4(mts1) gene we obtained strains of transgenic mice bearing the S100A4(mts1) gene under the control of a ubiquitous and constitu....../or posttranslational degradation....

  4. The presence of c-erbB-2 gene product-related protein in culture medium conditioned by breast cancer cell line SK-BR-3

    International Nuclear Information System (INIS)

    Alper, O.; Yamaguchi, K.; Hitomi, J.; Honda, S.; Matsushima, T.; Abe, K.

    1990-01-01

    The Mr 185,000 glycoprotein encoded by human c-erbB-2/neu/HER2 gene, termed c-erbB-2 gene product, shows a close structural similarity with epidermal growth factor receptor and is now regarded to be a growth factor receptor for an as yet unidentified ligand. Abundant c-erbB-2 mRNA was demonstrated by Northern blot studies in the human breast cancer cell line SK-BR-3. Cellular radiolabeling experiments followed by immunoprecipitation with three different anti-c-erbB-2 gene product antibodies, recognizing extracellular domain, kinase domain, and carboxyl-terminal portion, respectively, demonstrated the production of a large amount of c-erbB-2 gene product which had the capacity to be phosphorylated. Immunization of mice with concentrated culture medium conditioned by SK-BR-3 cells always generated antibodies against c-erbB-2 gene product, demonstrating that this culture medium contained substance(s) immunologically indistinguishable from c-erbB-2 gene product. This observation was supported by the successful development of a monoclonal antibody against c-erbB-2 gene product, GFD-OA-p185-1, by immunizing mice with this culture medium. The biochemical nature of the substance(s) present in the culture medium was further characterized. When the culture medium conditioned by [35S]cysteine-labeled SK-BR-3 cells was immunoprecipitated by three different anti-c-erbB-2 gene product antibodies, only the antibody recognizing extracellular domain precipitated the [35S]-labeled protein with a molecular weight of 110,000, namely p110. The newly developed monoclonal antibody also immunoprecipitated this protein

  5. A mutation in the aroE gene affects pigment production, virulence, and chemotaxis in Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Kim, Hong-Il; Noh, Tae-Hwan; Lee, Chang-Soo; Park, Young-Jin

    2015-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice. To study its function, a random insertion mutation library of Xoo was constructed using the Tn5 transposon. A mutant strain with decreased virulence against the susceptible rice cultivar IR24 was isolated from the library (aroE mutant), which also had extremely low pigment production. Thermal asymmetric interlaced-polymerase chain reaction (TAIL-PCR) and sequence analysis of the mutant revealed that the transposon was inserted into the aroE gene (encoding shikimate dehydrogenase). To investigate gene expression changes in the pigment- and virulence-deficient mutant, DNA microarray analysis was performed, which showed downregulation of 20 genes involved in the chemotaxis of Xoo. Our findings reveal that mutation of the aroE gene affects virulence and pigment production, as well as expression of genes involved in Xoo chemotaxis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Purification of Biotransformation Products of Cis-Isoflavan-4-ol by Biphenyl Dioxygenase of Pseudomonas pseudoalcaligenes KF707 Strain Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tri Ratna Sulistiyani

    2013-04-01

    Full Text Available Isoflavone has multiple beneficial effects on human health, especially through its antioxidant and anticancer activities. The biotransformation of isoflavone using byphenyl dioxygenase could be performed to extend the diversity of flavonoids and to improve their biological and physiological properties. Biotransformation of two enantiomers (3R, 4R-cis-isoflavan-4-ol and (3S, 4S-cis-isoflavan-4-ol by E. coli JM109 (pJHF108 carrying a biphenyl dioxygenase gene from P. pseudoalcaligenesKF707 produced two products, designated as CM1 andCM2. The products had a retention time of 11.9 and 14.6 min, respectively, and the same absorption peaks at 204, 220, and 275 nm. CM1 and CM2 had [M-H2O+H]+ at m/z 225. Based on the molecular mass and hydrolysis products, we proposed that epoxidation occurred on cis-isoflavan-4-ol. Chloroform extraction instead of ethyl acetate extraction was performed to improve the stability of cismetabolites, CM1 and CM2.

  7. Cloning and SNP screening of TLR4 gene and the association ...

    African Journals Online (AJOL)

    huis

    Human models, in particular, suggest TLR4 to be a candidate gene .... Rapid amplification of cDNA ends (RACE) was performed with a BD SMART™ RACE cDNA .... content (PIC) were calculated with software of POPGENE (Ver. 1.31).

  8. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: Considering them in empirical studies on divergence with gene flow.

    Science.gov (United States)

    Kulmuni, J; Westram, A M

    2017-06-01

    The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  9. Nicotinic Acetylcholine Receptor α4 Subunit Gene Variation Associated with Attention Deficit Hyperactivity Disorder

    Institute of Scientific and Technical Information of China (English)

    HUANG Xuezhu; XU Yong; LI Qianqian; LIU Pozi; YANG Yuan; ZHANG Fuquan; GUO Tianyou; YANG Chuang; GUO Lanting

    2009-01-01

    Previous pharmacological, human genetics, and animal models have implicated the nicotinic ace-tylcholine receptor a4 subunit (CHRNA4) gene in the pathogenesis of attention deficit/hyperactivity disorder (ADHD). The objective of this study is to examine the genetic association between single nucleotide poly-morphisms in the CHRNA4 gene (rs2273502, rs1044396, rs1044397, and rs3827020 loci) and ADHD. Both case-control and family-based designs are used. Children aged 6 to 16 years were interviewed and as-sessed with the children behavior checklist and the revised conner' parent rating scale to identify probands. No significant differences in the frequency distribution of genotypes or alleles were found between the case and control groups. However, further haplotype analyses showed the CCGG haplotype on dsk for ADHD in 164 case-control samples and the standard transmission disequilibrium test analyses suggest that the allele C of rs2273502 was over-transferred in 98 ADHD parent-offspring tdos. These findings suggest that the CHRNA4 gene may play a role in the pathogenesis of ADHD.

  10. Transcription elongation factors are involved in programming hormone production in pituitary neuroendocrine GH4C1 cells.

    Science.gov (United States)

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2010-05-05

    Transcription elongation of many eukaryotic genes is regulated. Two negative transcription elongation factors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) are known to stall collaboratively RNA polymerase II promoter proximally. We discovered that DSIF and NELF are linked to hormone expression in rat pituitary GH4C1 cells. When NELF-E, a subunit of NELF or Spt5, a subunit of DSIF was stably knocked-down, prolactin (PRL) expression was increased both at the mRNA and protein levels. In contrast, stable knock-down of only Spt5 abolished growth hormone (GH) expression. Transient NELF-E knock-down increased coincidentally PRL expression and enhanced transcription of a PRL-promoter reporter gene. However, no direct interaction of NELF with the PRL gene could be demonstrated by chromatin immuno-precipitation. Thus, NELF suppressed PRL promoter activity indirectly. In conclusion, transcription regulation by NELF and DSIF is continuously involved in the control of hormone production and may contribute to neuroendocrine cell differentiation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. The Role of Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) Gene, Thyroid Stimulating Hormone Receptor (TSHR) Gene and Regulatory T-cells as Risk Factors for Relapse in Patients with Graves Disease.

    Science.gov (United States)

    Eliana, Fatimah; Suwondo, Pradana; Asmarinah, Asmarinah; Harahap, Alida; Djauzi, Samsuridjal; Prihartono, Joedo; Pemayun, Tjokorda Gde Dalem

    2017-07-01

    graves' disease (GD) is the most common condition of thyrotoxicosis. The management of GD is initiated with the administration of antithyroid drugs; however, it requires a long time to achieve remission. In reality more than 50% of patients who had remission may be at risk for relapse after the drug is stopped. This study aimed to evaluate the role of clinical factors such as smoking habit, degree of ophtalmopathy, degree of thyroid enlargement; genetic factors such as CTLA-4 gene on nucleotide 49 at codon 17 of exon 1, CTLA-4 gene of promotor -318, TSHR gene polymorphism rs2268458 of intron 1; and immunological factors such as regulatory T cells (Treg) and thyroid receptor antibody (TRAb); that affecting the relapse of patients with Graves' disease in Indonesia. this was a case-control study, that compared 72 subjects who had relapse and 72 subjects without relapse at 12 months after cessation of antithyroid treatment, who met the inclusion criteria. Genetic polymorphism examination was performed using PCR-RFLP. The number of regulatory T cells was counted using flow cytometry analysis and ELISA was used to measure TRAb. The logistic regression was used since the dependent variables were categorical variables. the analysis of this study demonstrated that there was a correlation between relapse of disease and family factors (p=0.008), age at diagnosis (p=0.021), 2nd degree of Graves' ophthalmopathy (p=0.001), enlarged thyroid gland, which exceeded the lateral edge of the sternocleidomastoid muscles (p=0.040), duration of remission period (p=0.029), GG genotype of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1 (p=0.016), CC genotype of TSHR gene on the rs2268458 of intron 1 (p=0.003), the number of regulatory T cells (p=0.001) and TRAb levels (p=0.002). genetic polymorphisms of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1, TSHR gene SNP rs2268458 of intron 1, number of regulatory T cells and TRAb levels play a role as risk factors for relapse in

  12. The Role of Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4 Gene, Thyroid Stimulating Hormone Receptor (TSHR Gene and Regulatory T-cells as Risk Factors for Relapse in Patients with Graves Disease

    Directory of Open Access Journals (Sweden)

    Fatimah Eliana

    2017-11-01

    Full Text Available Background: graves’ disease (GD is the most common condition of thyrotoxicosis. The management of GD is initiated with the administration of antithyroid drugs; however, it requires a long time to achieve remission. In reality more than 50% of patients who had remission may be at risk for relapse after the drug is stopped. This study aimed to evaluate the role of clinical factors such as smoking habit, degree of ophtalmopathy, degree of thyroid enlargement; genetic factors such as CTLA-4 gene on nucleotide 49 at codon 17 of exon 1, CTLA-4 gene of promotor -318, TSHR gene polymorphism rs2268458 of intron 1; and immunological factors such as regulatory T cells (Treg and thyroid receptor antibody (TRAb; that affecting the relapse of patients with Graves’ disease in Indonesia. Methods: this was a case-control study, that compared 72 subjects who had relapse and 72 subjects without relapse at 12 months after cessation of antithyroid treatment, who met the inclusion criteria. Genetic polymorphism examination was performed using PCR-RFLP. The number of regulatory T cells was counted using flow cytometry analysis and ELISA was used to measure TRAb. The logistic regression was used since the dependent variables were categorical variables. Results: the analysis of this study demonstrated that there was a correlation between relapse of disease and family factors (p=0.008, age at diagnosis (p=0.021, 2nd degree of Graves’ ophthalmopathy (p=0.001, enlarged thyroid gland, which exceeded the lateral edge of the sternocleidomastoid muscles (p=0.040, duration of remission period (p=0.029, GG genotype of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1 (p=0.016, CC genotype of TSHR gene on the rs2268458 of intron 1 (p=0.003, the number of regulatory T cells (p=0.001 and TRAb levels (p=0.002. Conclusion: genetic polymorphisms of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1, TSHR gene SNP rs2268458 of intron 1, number of regulatory T cells and

  13. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.

    Directory of Open Access Journals (Sweden)

    Sandro Roselli

    Full Text Available Chloromethane (CH3Cl is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD, as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2. In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex, conversion of

  14. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L

    2009-01-01

    is circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems...

  15. Coamplification in tumors of KRAS2, type 2 inositol 1,4,5 triphosphate receptor gene, and a novel human gene, KRAG

    Energy Technology Data Exchange (ETDEWEB)

    Heighway, J.; Betticher, D.C.; Altermatt, H.J. [Univ. Hospital of Berne (Switzerland)] [and others

    1996-07-01

    Analysis of a region of DNA, coamplified in tumors with KRAS2, resulted in the identification of the human homologue of the mouse KRAG gene. The gene was widely expressed in range of cell lines, tumors, and normal tissue and demonstrated a high degree of alternate splicing. A human KRAG cDNA sequence, with a structure similar to that encoded by the amplified gene in mouse Y1 adrenal carcinoma cells, was isolated by RT-PCR. The predicted amino acid similarity between the two sequences was 91%, and hydrophobicity plots suggested a structure closely resembling that of transmembrane 4 superfamily members. Identification of a PCR-based restriction fragment length polymorphism allele-specific splicing differences in tumors. Northern analysis of mRNA derived from a range of tissues suggested high level expression in muscle and confirmed alternate splicing. To facilitate the analysis of exon junctions, a YAC clone encoding the genomic sequence was identified. This allowed the localization of KRAG to human chromosome 12p11.2. Isolation of one end of this nonchimeric clone demonstrated a perfect match with a 247-bp sequence within the 3{prime} untranslated region of the type 2 1,4,5-inositol triphosphate receptor gene. Multiplex PCR confirmed the inclusion of both genes. Multiplex PCR confirmed the inclusion of both genes in the KRAS2 amplicon in human malignancy, suggesting that either may contribute to the malignant phenotypes. 35 refs., 6 figs., 1 tab.

  16. The Effect of a High-Protein Diet and Exercise on Cardiac AQP7 and GLUT4 Gene Expression.

    Science.gov (United States)

    Palabiyik, Orkide; Karaca, Aziz; Taştekin, Ebru; Yamasan, Bilge Eren; Tokuç, Burcu; Sipahi, Tammam; Vardar, Selma Arzu

    2016-10-01

    High-protein (HP) diets are commonly consumed by athletes despite their potential health hazard, which is postulated to enforce a negative effect on bone and renal health. However, its effects on heart have not been known yet. Aquaporin-7 (AQP7) is an aquaglyceroporin that facilitates glycerol and water transport. Glycerol is an important cardiac energy production substrate, especially during exercise, in conjunction with fatty acids and glucose. Glucose transporter 4 (GLUT4) is an insulin-sensitive glucose transporter in heart. We aimed to investigate the effect of HPD on AQP7 and GLUT4 levels in the rat heart subjected to exercise. Male Sprague-Dawley rats were divided into control (n = 12), exercise (E) training (n = 10), HPD (n = 12), and HPD-E training (n = 9) groups. The HPD groups were fed a 45 % protein-containing diet 5 weeks. The HPD-E and E groups were performed the treadmill exercise during the 5-week study period. Real-time polymerase chain reaction and immunohistochemistry techniques were used to determine the gene expression and localization of AQP7 and GLUT4 in heart tissue. Results of relative gene expression were calculated by the 'Pfaffl' mathematical method using the REST program. Differences in AQP7 and GLUT4 gene expression were expressed as fold change compared to the control group. Heart weight/tibia ratio and ventricular wall thickness were evaluated as markers of cardiac hypertrophy. Further, serum glucose, glycerol, and insulin levels were also measured. AQP7 gene expression was found to be increased in the E (3.47-fold, p protein expression was also increased in the HPD and HPD-E groups (p protein expression was significantly increased in the E, HPD, and HPD-E groups compared to the control group (p = 0.024, p protein diet groups (C and E). Serum insulin levels were higher for HPD groups compared with the normal-protein diet groups (p < 0.001), whereas no differences were observed between the exercise and sedentary

  17. Rothmund-Thomson Syndrome: A 13-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Guillermo Antonio Guerrero-González

    2014-07-01

    Full Text Available Rothmund-Thomson syndrome (RTS is a rare autosomal recessive disorder presenting with poikiloderma and other clinical features, affecting the bones and eyes and, in type II RTS, presenting an increased risk for malignancy. With about 300 cases reported so far, we present a 13-year follow-up including clinical images, X-rays and genetic analysis. A 13-month-old female started with a facial rash with blisters on her cheeks and limbs at the age of 3 months along with congenital hypoplastic thumbs, frontal bossing and fine hair, eyebrows and eyelashes. The patient was lost to follow-up and returned 12 years later with palmoplantar hyperkeratotic lesions, short stature, disseminated poikiloderma and sparse scalp hair, with absence of eyelashes and eyebrows. Radiographic analysis showed radial ray defect, absence of the thumb and three wrist carpal bones, and reduced bone density. Gene sequencing for the RECQL4 helicase gene revealed a mutation on each allele. RTS is a rare disease, and in this patient we observed the evolution of her skin lesions and other clinical features, which were important for the classification of type II RTS. The next years will provide even more information on this rare disease.

  18. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    International Nuclear Information System (INIS)

    Pan, Hong; Wu, Xinyi

    2012-01-01

    Highlights: ► Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-β. ► Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. ► Hypoxia inhibits Acanthamoeba-induced the activation of NF-κB and ERK1/2 in HCECs. ► Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. ► LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion

  19. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing.

    Science.gov (United States)

    Weber, Jakob; Valiante, Vito; Nødvig, Christina S; Mattern, Derek J; Slotkowski, Rebecca A; Mortensen, Uffe H; Brakhage, Axel A

    2017-01-20

    Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.

  20. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Bahlool, Qusay Zuhair Mohammad; Skovgaard, Alf; Kania, Per Walter

    2013-01-01

    Excretory/secretory (ES) products are molecules produced by parasitic nematodes, including larval Anisakis simplex, a parasite occurring in numerous marine fish hosts. The effects of these substances on host physiology have not been fully described. The present work elucidates the influence of ES...... substances on the fish immune system by measuring immune gene expression in spleen and liver of rainbow trout (Oncorhynchus mykiss) injected intraperitoneally with ES products isolated from A. simplex third stage larvae. The overall gene expression profile of exposed fish showed a generalized down....... This type of hydrolytic enzyme activity may play a role in nematode penetration of host tissue. In addition, based on the notion that A. simplex ES products may have an immune-depressive effect (by minimizing immune gene expression) it could also be suggested that worm enzymes directly target host immune...

  1. Genetic analysis of GRIA2 and GRIA4 genes in migraine.

    Science.gov (United States)

    Gasparini, Claudia F; Sutherland, Heidi G; Haupt, Larisa M; Griffiths, Lyn R

    2014-02-01

    Migraine is a brain disorder affecting ∼12% of the Caucasian population. Genes involved in neurological, vascular, and hormonal pathways have all been implicated in predisposing individuals to developing migraine. The migraineur presents with disabling head pain and varying symptoms of nausea, emesis, photophobia, phonophobia, and occasionally visual sensory disturbances. Biochemical and genetic studies have demonstrated dysfunction of neurotransmitters: serotonin, dopamine, and glutamate in migraine susceptibility. Glutamate mediates the transmission of excitatory signals in the mammalian central nervous system that affect normal brain function including cognition, memory and learning. The aim of this study was to investigate polymorphisms in the GRIA2 and GRIA4 genes, which encode subunits of the ionotropic AMPA receptor for association in an Australian Caucasian population. Genotypes for each polymorphism were determined using high resolution melt analysis and the RFLP method. Statistical analysis showed no association between migraine and the GRIA2 and GRIA4 polymorphisms investigated. Although the results of this study showed no significant association between the tested GRIA gene variants and migraine in our Australian Caucasian population further investigation of other components of the glutamatergic system may help to elucidate if there is a relationship between glutamatergic dysfunction and migraine. © 2013 American Headache Society.

  2. Small Interference RNA Targeting TLR4 Gene Effectively Attenuates Pulmonary Inflammation in a Rat Model

    Directory of Open Access Journals (Sweden)

    Feixiang Wu

    2012-01-01

    Full Text Available Objective. The present study was to investigate the feasibility of adenovirus-mediated small interference RNA (siRNA targeting Toll-like receptor 4 (TLR4 gene in ameliorating lipopolysaccharide- (LPS- induced acute lung injury (ALI. Methods. In vitro, alveolar macrophages (AMs were treated with Ad-siTLR4 and Ad-EFGP, respectively, for 12 h, 24 h, and 48 h, and then with LPS (100 ng/mL for 2 h, and the function and expression of TLR4 were evaluated. In vivo, rats received intratracheal injection of 300 μL of normal saline (control group, 300 μL of Ad-EGFP (Ad-EGFP group, or 300 μL of Ad-siTLR4 (Ad-siTLR4 group and then were intravenously treated with LPS (50 mg/kg to induce ALI. Results. Ad-siTLR4 treatment significantly reduced TLR4 expression and production of proinflammatory cytokines following LPS treatment both in vitro and in vivo. Significant alleviation of tissue edema, microvascular protein leakage, and neutrophil infiltration was observed in the AdsiTLR4-treated animals. Conclusion. TLR4 plays a critical role in LPS-induced ALI, and transfection of Ad-siTLR4 can effectively downregulate TLR4 expression in vitro and in vivo, accompanied by alleviation of LPS-induced lung injury. These findings suggest that TLR4 may serve as a potential target in the treatment of ALI and RNA interfering targeting TLR4 expression represents a therapeutic strategy.

  3. The prevalence of gene duplications and their ancient origin in Rhodobacter sphaeroides 2.4.1

    Directory of Open Access Journals (Sweden)

    Cho Hyuk

    2010-12-01

    Full Text Available Abstract Background Rhodobacter sphaeroides 2.4.1 is a metabolically versatile organism that belongs to α-3 subdivision of Proteobacteria. The present study was to identify the extent, history, and role of gene duplications in R. sphaeroides 2.4.1, an organism that possesses two chromosomes. Results A protein similarity search (BLASTP identified 1247 orfs (~29.4% of the total protein coding orfs that are present in 2 or more copies, 37.5% (234 gene-pairs of which exist in duplicate copies. The distribution of the duplicate gene-pairs in all Clusters of Orthologous Groups (COGs differed significantly when compared to the COG distribution across the whole genome. Location plots revealed clusters of gene duplications that possessed the same COG classification. Phylogenetic analyses were performed to determine a tree topology predicting either a Type-A or Type-B phylogenetic relationship. A Type-A phylogenetic relationship shows that a copy of the protein-pair matches more with an ortholog from a species closely related to R. sphaeroides while a Type-B relationship predicts the highest match between both copies of the R. sphaeroides protein-pair. The results revealed that ~77% of the proteins exhibited a Type-A phylogenetic relationship demonstrating the ancient origin of these gene duplications. Additional analyses on three other strains of R. sphaeroides revealed varying levels of gene loss and retention in these strains. Also, analyses on common gene pairs among the four strains revealed that these genes experience similar functional constraints and undergo purifying selection. Conclusions Although the results suggest that the level of gene duplication in organisms with complex genome structuring (more than one chromosome seems to be not markedly different from that in organisms with only a single chromosome, these duplications may have aided in genome reorganization in this group of eubacteria prior to the formation of R. sphaeroides as gene

  4. Expression and Localization of TRK-Fused Gene Products in the Rat Brain and Retina

    International Nuclear Information System (INIS)

    Maebayashi, Hisae; Takeuchi, Shigako; Masuda, Chiaki; Makino, Satoshi; Fukui, Kenji; Kimura, Hiroshi; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It has been reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. However, no information regarding the localization of Tfg in rat tissues is available. In this study, we investigated the expression of Tfg mRNA in normal rat tissues using reverse transcription-polymerase chain reaction (RT-PCR). We also produced an antibody against Tfg gene products and examined the localization of TFG in the rat brain and retina. The RT-PCR experiments demonstrated that two types of Tfg mRNA were expressed in rat tissues: the conventional form of Tfg (cTfg) and a novel variant form, retinal Tfg (rTfg). RT-PCR analyses demonstrated that cTfg was ubiquitously expressed in rat tissues, while rTfg was predominantly expressed in the brain and retina. Western blot analysis demonstrated two bands with molecular weights of about 30 kDa and 50 kDa in the rat brain. Immunohistochemistry indicated that TFG proteins were predominantly expressed by neurons in the brain. In the rat retina, intense TFG-immunoreactivity was detected in the layer of rods and cones and the outer plexiform layer

  5. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population.

    Directory of Open Access Journals (Sweden)

    Kejun Wang

    Full Text Available In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1, seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3, and one for average daily gain (COL27A1. Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection.

  6. PROTEOLYTIC REMOVAL OF THE CARBOXYL TERMINUS OF THE T4 GENE 32 HELIX-DESTABILIZING PROTEIN ALTERS THE T4 IN VITRO REPLICATION COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Burke, R.L.; Alberts, B.M.; Hosoda, J.

    1980-07-01

    The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. (1) Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32*I protein for this synthesis. (2) Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. (3) Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. (4) The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3{prime}-OH end of a

  7. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4.

    Science.gov (United States)

    Bondurand, Nadege; Dastot-Le Moal, Florence; Stanchina, Laure; Collot, Nathalie; Baral, Viviane; Marlin, Sandrine; Attie-Bitach, Tania; Giurgea, Irina; Skopinski, Laurent; Reardon, William; Toutain, Annick; Sarda, Pierre; Echaieb, Anis; Lackmy-Port-Lis, Marilyn; Touraine, Renaud; Amiel, Jeanne; Goossens, Michel; Pingault, Veronique

    2007-12-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair and skin. Depending on additional symptoms, WS is classified into four subtypes, WS1-WS4. Absence of additional features characterizes WS2. The association of facial dysmorphic features defines WS1 and WS3, whereas the association with Hirschsprung disease (aganglionic megacolon) characterizes WS4, also called "Waardenburg-Hirschsprung disease." Mutations within the genes MITF and SNAI2 have been identified in WS2, whereas mutations of EDN3, EDNRB, and SOX10 have been observed in patients with WS4. However, not all cases are explained at the molecular level, which raises the possibility that other genes are involved or that some mutations within the known genes are not detected by commonly used genotyping methods. We used a combination of semiquantitative fluorescent multiplex polymerase chain reaction and fluorescent in situ hybridization to search for SOX10 heterozygous deletions. We describe the first characterization of SOX10 deletions in patients presenting with WS4. We also found SOX10 deletions in WS2 cases, making SOX10 a new gene of WS2. Interestingly, neurological phenotypes reminiscent of that observed in WS4 (PCWH syndrome [peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease]) were observed in some WS2-affected patients with SOX10 deletions. This study further characterizes the molecular complexity and the close relationship that links the different subtypes of WS.

  8. Associations of CTLA4 Gene Polymorphisms with Graves’ Ophthalmopathy: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Pengfei Du

    2014-01-01

    Full Text Available Many studies have established that T-lymphocyte antigen-4 (CTLA4 is a susceptible gene for Graves’ disease (GD. Also many studies showed the association between the CTLA4 exon-1 49A/G polymorphism and the risk of developing Graves’ ophthalmopathy (GO in GD patients. But those results were inconsistent. In recent years many new studies were published which helped to shed light on the relationship of CTLA4 SNP49 with GO. So we performed the meta-analysis to explore the association between the SNP49 and GO susceptibility in GD patients. Studies up to February 29, 2012, were searched by using PubMed. The odds ratio was used to evaluate the strength of the association. Altogether 12 case-control studies involving 2,505 participants were included in the meta-analysis. Results showed that the G allele was related to the increased risk of GO compared with the A allele under allelic genetic model (OR = 1.14, 95% CI: 1.14–1.72, P=0.001 in European subgroup. No publication bias was detected. Our results showed that the SNP49 polymorphism of CTLA4 gene was related to increased risk of GO.

  9. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Patrick, Brad; Li Jie; Jeyabal, Prince V.S.; Reddy, Prasada M.R.V.; Yang Yusong; Sharma, Rajendra; Sinha, Mala; Luxon, Bruce; Zimniak, Piotr; Awasthi, Sanjay; Awasthi, Yogesh C.

    2005-01-01

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  10. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2010-01-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. Results To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIKwas introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L-1, 4 -fold nikkomycin X and 210 mg L-1, 1.8-fold nikkomycin Z in the resulting exconjugants comparing with the parent strain (220 mg L-1 nikkomycin X and 120 mg L-1 nikkomycin Z. The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. Conclusion A high nikkomycins producing strain (1100 mg L-1 nikkomycins was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.

  11. Characterization of RAD4 gene required for ultraviolet-induced excision repair of Saccharomyces cerevisiae propagated in Escherichia coli without inactivation

    International Nuclear Information System (INIS)

    Choi, I.S.; Kim, J.B.; Lee, K.N.; Park, S.D.

    1990-01-01

    The previously isolated RAD4 gene designated as pPC1 from the genomic library of Saccharomyces cerevisiae appeared to propagate in Escherichia coli and yet retained its complementing activity of rad4 mutants without inactivation. The subcloned RAD4 gene was found to be localized within a 2.5 kb DNA fragment flanking Bg/II and BamHI sites in the insert DNA, and was shown to have the same restriction map as a yeast chromosomal DNA, as determined by Southern hybridization. Tetrad analysis and pulse-field chromosome mapping have revealed that the cloned RAD4 gene can be mapped and integrated into the yeast chromosome V, the actual site of this gene. DNA-tRNA hybridization has shown that the isolated RAD4 gene did not contain a suppressor tRNA gene. These results have indicated that the pPC1 is a functional RAD4 gene playing a unique role involved in the nucleotide excision repair of yeast without any genetic change during amplification in E. coli. (author)

  12. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Lopez, Javiera; Essus, Karen; Kim, Il-Kwon

    2015-01-01

    cells. The additional integration of the carotenoid cleavage dioxygenase gene from the plant Petunia hybrida (PhCCD1) let to the production of low amounts of beta-ionone (0.073 ± 0.01 mg/g DCW) and changed the color of the strain from orange to yellow. The expression of the crtYB gene from a high copy......, the carotenogenic crtYB, crtI genes and the plant PhCCD1 gene-the highest β-ionone concentration reported to date by a cell factory was achieved. This microbial cell factory represents a starting point for flavor production by a sustainable and efficient process that could replace current methods.......Background: Apocarotenoids, like the C13-norisoprenoids, are natural compounds that contribute to the flavor and/or aroma of flowers and foods. They are produced in aromatic plants-like raspberries and roses-by the enzymatic cleavage of carotenes. Due to their pleasant aroma and flavour...

  13. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  14. Effects of phyto-oestrogen quercetin on productive performance, hormones, reproductive organs and apoptotic genes in laying hens.

    Science.gov (United States)

    Yang, J X; Chaudhry, M T; Yao, J Y; Wang, S N; Zhou, B; Wang, M; Han, C Y; You, Y; Li, Y

    2018-04-01

    Quercetin, a polyphenolic flavonoid with diverse biological activities including anti-inflammatory and antiviral, inhibits lipid peroxidation, prevents oxidative injury and cell death. The purpose of the research was to investigate the effect of quercetin on productive performance, reproductive organs, hormones and apoptotic genes in laying hens between 37 and 45 weeks of age, because of the structure and oestrogenic activities similar to 17β-oestradiol. The trial was conducted using 240 Hessian laying hens (37 weeks old), housed in wire cages with two hens in each cage. These hens were randomly allotted to four treatments with six replicates, 10 hens in each replicate and fed with diets containing quercetin as 0, 0.2, 0.4 and 0.6 g/kg feed for 8 weeks. The results showed that dietary quercetin significantly increased (p feed-egg ratio was decreased (p  .05) on average egg weight and average daily feed intake. Compared with control, secretion of hormones, oestradiol (E 2 ) , progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), insulin-like growth factors-1 (IGF-1) and growth hormone (GH), was found to be significantly higher (p  .05) by quercetin, whereas magnum index, isthmus index, magnum length, isthmus length and follicle numbers were significantly increased (p < .05) with quercetin supplementation. Additionally, expression of apoptotic genes was significantly (p < .05) up-regulated or down-regulated by quercetin. These results indicated that quercetin improved productive performance, and its mechanism may be due to the oestrogen-like activities of quercetin. © 2017 Blackwell Verlag GmbH.

  15. Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells.

    Science.gov (United States)

    Bastonero, Sonia; Gargouri, Myriem; Ortiou, Sandrine; Guéant, Jean-Louis; Merten, Marc D

    2005-11-01

    In vivo, tracheal gland serous cells highly express the cystic fibrosis transmembrane conductance regulator (cftr) gene. This gene is mutated in the lethal monogenic disease cystic fibrosis (CF). Clinical trials in which the human CFTR cDNA was delivered to the respiratory epithelia of CF patients have resulted in weak and transient gene expression. As CF is characterized by mucus inspissation, airway infection, and severe inflammation, we tested the hypothesis that inflammation and especially two cytokines involved in the Th1/Th2 inflammatory response, interleukin 4 (IL-4) and TNFalpha, could inhibit gene transfer efficiency using a model of human CF tracheal gland cells (CF-KM4) and Lipofectamine reagent as a transfection reagent. The specific secretory defects of CF-KM4 cells were corrected by Lipofectamine-mediated human CFTR gene transfer. However, this was altered when cells were pre-treated with IL-4 and TNFalpha. Inhibition of luciferase reporter gene expression by IL-4 and TNFalpha pre-treated CF-KM4 cells was measured by activity and real-time RT-PCR. Both cytokines induced similar and synergistic inhibition of transgene expression and activity. This cytokine-mediated inhibition could be prevented by anti-inflammatory agents such as glucocorticoids but not by non-steroidal (NSAI) agents. This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action. Copyright (c) 2005 John Wiley & Sons, Ltd.

  16. Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius.

    Science.gov (United States)

    Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-07-01

    There is increasing evidence indicating that several UV filters might have endocrine disruptive effects. Numerous studies have evaluated hormonal effects in vertebrates, mainly reporting estrogenic and androgenic activities in mammals and fishes. There is only limited knowledge about potential endocrine activity in invertebrate hormonal systems. In this work, the effects on endocrine signaling genes of six frequently used UV filters were investigated in Chironomus riparius, a reference organism in aquatic toxicology. The UV filters studied were: octyl-p-methoxycinnamate (OMC) also called 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4-MBC); benzophenone-3 (BP-3); 4-hidroxybenzophenone (4-HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). After in vivo exposure at different dosages, expression levels of the genes coding for the ecdysone receptor (EcR), the ultraspiracle (usp, ortholog of the RXR) and the estrogen-related receptor (ERR) were quantified by Real Time PCR. The EcR gene was significantly upregulated by 4-MBC, OMC/EHMC and OD-PABA, with a dose-related response following 24h exposure. In contrast, the benzophenones, BP-3 and 4-HB, as well as OC did not alter this gene at the same exposure conditions. The transcription profiles of the usp and ERR genes were not significantly affected, except for BP-3 that inhibited the usp gene at the highest concentration. To our knowledge, this is the first experimental evidence in invertebrates of a direct effect of UV filters on endocrine-related genes, and is consistent with the known effects on vertebrate hormonal receptor genes. The capability of 4-MBC, OMC/EHMC and OD-PABA to stimulate the expression of the ecdysone receptor, a key transcription factor for the ecdysone-genomic response in arthropods, suggests the possibility of a broad and long-term effect on this hormonal pathway. These findings strengthen the need for further research about the ecotoxicological implications

  17. Amphiphilic star block copolymers as gene carrier Part I: Synthesis via ATRP using calix[4]resorcinarene-based initiators and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Anna; Xue, Yan; Wei, Dafu [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Guan, Yong, E-mail: yguan@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining [Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (Canada)

    2013-01-01

    In this work, a cationic star polymer [poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)] was prepared via atom transfer radical polymerization (ATRP), using brominated calix[4]resorcinarene as an initiator. Hydrophobic moieties, methyl methacrylate (MMA) and butyl acrylate (BA), were further incorporated via 'one-pot' method. Well-defined eight-armed star block copolymers bearing hydrophilic blocks inside and hydrophobic blocks outside were synthesized. The molecular weight, particle size, electrophoretic mobility and apparent charge density were determined by gel permeation chromatography (GPC), dynamic light scattering (DLS), phase analysis light scattering (PALS) and colloidal titration, respectively. The zeta potentials and apparent charge densities of the products exhibited the characteristics of polyelectrolyte. The incorporation of hydrophobic moieties generated electrostatic screening effect. The as-synthesized amphiphilic star copolymer is promising as a thermo-sensitive gene carrier for gene therapy. Highlights: Black-Right-Pointing-Pointer Amphiphilic cationic star block copolymers with well-controlled structures were prepared via ATRP. Black-Right-Pointing-Pointer The molecular structures and properties of the initiator and copolymers were systematically characterized. Black-Right-Pointing-Pointer The products exhibited the positive charged character, and hydrophobic moieties generated electrostatic screening effect.

  18. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  19. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  20. The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lu, Lin; Roberts, George G; Oszust, Cynthia; Hudson, Alan P

    2005-10-01

    A putative yeast mitochondrial upstream activating sequence (UAS) was used in a one-hybrid screening procedure that identified the YJR127C ORF on chromosome X. This gene was previously designated ZMS1 and is listed as a transcription factor on the SGD website. Real time RT-PCR assays showed that expression of YJR127C/ZMS1 was glucose-repressible, and a deletion mutant for the gene showed a growth defect on glycerol-based but not on glucose- or ethanol-based medium. Real time RT-PCR analyses identified severely attenuated transcript levels from GUT1 and GUT2 to be the source of that growth defect, the products of GUT1 and GUT2 are required for glycerol utilization. mRNA levels from a large group of mitochondria- and respiration-related nuclear genes also were shown to be attenuated in the deletion mutant. Importantly, transcript levels from the mitochondrial OLI1 gene, which has an associated organellar UAS, were attenuated in the DeltaYJR127C mutant during glycerol-based growth, but those from COX3 (OXI2), which lacks an associated mitochondrial UAS, were not. Transcriptome analysis of the glycerol-grown deletion mutant showed that genes in several metabolic and other categories are affected by loss of this gene product, including protein transport, signal transduction, and others. Thus, the product of YJR127C/ZMS1 is involved in transcriptional control for genes in both cellular genetic compartments, many of which specify products required for glycerol-based growth, respiration, and other functions.

  1. Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.

    Science.gov (United States)

    Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H

    2009-09-01

    Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.

  2. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression

    Directory of Open Access Journals (Sweden)

    G.H.M. eSagor

    2016-02-01

    Full Text Available The link between polyamine oxidases (PAOs, which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5 or the peroxisomal PAO pathway (pao2 pao3 pao4 silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5 decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81% and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions.

  3. Experimental study about the regulating effect of Par-4 gene overexpression on the nephroblastoma sensitivity to cisplatin

    Directory of Open Access Journals (Sweden)

    Hui-Lin Mao

    2017-11-01

    Full Text Available Objective: To study the regulating effect of Par-4 gene overexpression on the nephroblastoma sensitivity to cisplatin. Methods: Nephroblastoma SK-NEP-1 cells were cultured and divided into four groups, control group were treated with RMPI-1640 without serum or drugs, cisplatin group were treated with serum-free RMPI-1640 containing 5 μg/mL cisplatin, Par-4 group were transfected by Par-4 overexpression plasmids with serum-free RMPI-1640, and cisplatin + Par-4 group were transfected by Par-4 overexpression plasmid with serum-free RMPI-1640 containing 5 μg/mL cisplatin. The cell proliferation activity as well the expression of apoptosis genes, migration genes and invasion genes was measured. Results: 8 h, 16 h and 24 h after different conditions of treatment, the cell proliferation activity of cisplatin group, Par-4 group and cisplatin + Par-4 group were significantly lower than that of control group, and the cell proliferation activity of cisplatin + Par-4 group was significantly lower than that of cisplatin group and Par-4 group; 24 h after different conditions of treatment, Bim, PDCD4, WT1, RGS4, Axin, KAI1, E-cadherin, PPARγ and PTEN mRNA expression in cisplatin group, Par-4 group and cisplatin + Par-4 group were greatly higher than those in control group whereas GDNF, GFRα1, TUBB3, NME1 and FGF1 mRNA expression were greatly lower than those in control group; Bim, PDCD4, WT1, RGS4, Axin, KAI1, E-cadherin, PPARγ and PTEN mRNA expression in cisplatin + Par-4 group were greatly higher than those in cisplatin group and Par-4 group whereas GDNF, GFRα1, TUBB3, NME1 and FGF1 mRNA expression were greatly significantly lower than those in cisplatin group and Par-4 group. Conclusion: Par-4 gene overexpression can increase the nephroblastoma sensitivity to cisplatin, reduce cell proliferation activity, promote apoptosis and inhibit cell migration and invasion.

  4. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line

    Directory of Open Access Journals (Sweden)

    Binhai Ren

    2016-04-01

    Full Text Available Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone, H4IIE/ND (NeuroD1 gene alone, and H4IIEins/ND (insulin and NeuroD1 genes. The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes.

  5. Association between single nucleotide polymorphisms of the interleukin-4 gene and atopic dermatitis.

    Science.gov (United States)

    Gharagozlou, Mohammad; Behniafard, Nasrin; Amirzargar, Ali Akbar; Hosseinverdi, Sima; Sotoudeh, Soheila; Farhadi, Elham; Khaledi, Mojdeh; Aryan, Zahra; Moghaddam, Zahra Gholizadeh; Mahmoudi, Maryam; Aghamohammadi, Asghar; Rezaei, Nima

    2015-01-01

    Atopic dermatitis (AD) is an inflammatory skin disease in which both genetic and environmental factors seem to be involved. Several studies investigated the association of certain genetic factors with AD in different ethnic groups, but conflicting data were obtained. This study was performed to check the possible association between single nucleotide polymorphisms (SNPs) of interleukin 4 (IL-4) and the IL-4 receptor α chain (IL-4Rα) and AD in a group of Iranian patients. The allele and genotype frequencies of genes encoding for IL-4 and IL-4Rα were investigated in 89 patients with AD in comparison with 139 healthy controls, using methods based on polymerase chain reaction sequence-specific primers. The most frequent alleles of IL-4 in patients were T at -1098 (P<0.001, odds ratio (OR)=2.35), C at -590 (P<0.001, OR=4.84) and C at -33 (P=0.002, OR=2.08). The most frequent genotypes of IL-4 in patients were TT, CC, and CC at positions -1098 (P<0.001, OR=3.59), -590 (P<0.001, OR=31.25) and -33 (P<0.001, OR=3.46), respectively. We found a significant lower frequency of GT at -1098 GT, TC at -590, and TC at -33 in patients. There were no statistically significant differences in the frequency of alleles and genotypes of IL-4gene at position +1902. A strong positive association was seen between TCC haplotype and AD (68% in patients vs. 23.4% in controls, P<0.001, OR=8.91). We detected a significantly lower frequency of TTC, GCC, and TTT haplotypes (P<0.001, OR=0.02, P<0.001, OR=0.40, P<0.001, OR=0.39, respectively) in patients compared to controls. A significant association between the polymorphisms of the IL-4 gene promoter at positions -1098, -590, and -33 and AD was detected in the Iranian population.

  6. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations.

    Directory of Open Access Journals (Sweden)

    Marie Demion

    Full Text Available RATIONALE: TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES: We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/- model. METHODS AND RESULTS: Morpho-functional analysis revealed left ventricular (LV eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS: TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular

  7. APOE gene ε44 “thrifty” genotype and risk of metabolic disorders in the Uralic peoples

    Directory of Open Access Journals (Sweden)

    Andrey I Kozlov

    2011-06-01

    Full Text Available The prevalence of APOE gene ε44 genotype in the populations with various level of “westernization” is under the consideration. It is proposed that the populations with a high frequency of *ε4 undergoing “modernization transition” are in the most vulnerable state. These are the Eastern Finns and especially indigenous people of the North, who have a higher level of diseases of circulatory system than megacity residents.

  8. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation.

    Science.gov (United States)

    Huang, Chien-Wei; Walker, Michelle E; Fedrizzi, Bruno; Gardner, Richard C; Jiranek, Vladimir

    2017-08-01

    An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Prodrug-activating Gene Therapy with Rabbit Cytochrome P450 4B1/4-Ipomeanol or 2-Aminoanthracene System in Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Tae Sup; Kim, Sung Joo; Kim, Kwang Il; Lee, Yong Jin; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)

    2010-09-15

    We determined the cytotoxic properties of cytochrome P450 4B1 (CYP4B1) activated 4-ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) in rat glioma to verify the CYP4B1/4-ipo or 2-AA system for prodrug-activating gene therapy. The cyp4B1 cDNA was cloned into pcDNA3.1/ Hygro from rabbit lung total RNA (pcDAN-cyp4B1). Lentiviral vector encoding firefly luciferase (fLuc) was infected into C6 (rat glioma), and the fLuc-expressing cell was selected (C6-L). After transfection with pcDNA-cyp4B1 vector into C6-L, the single clone expressing cyp4B1 gene was selected (C6-CL). Prodrug for various concentrations of 4-ipo or 2-AA was treated for 72 h and 96 h. The cell survival rate of C6-CL was determined using MTT assay and trypan-blue dye exclusion methods. By RT-PCR analysis, fLuc and CYP4B1 expression was detected in C6-CL, but not in C6. MTT assay and trypan-blue dye exclusion showed that IC'5'0 of C6-CL was 0.3 mM and <0.01 mM after 4-ipo or 2-AA treatment at 96 h or 72 h exposure, respectively. Cell survivals of C6-CL were more rapidly reduced after treatment with 4-ipo or 2-AA than those of C6-L cells. The cell survival rate with MTT and trypan-blue dye exclusion assay was well correlated with fLuc activity in C6-CL cells. Conclusions CYP4B1-based prodrug-activating gene therapy may have the potential to treat glioma and the cytotoxic effects of CYP4B1 enzyme activated 4-ipo or 2-AA in C6, and could be clearly determined by bioluminescent activity in C6-CL.

  10. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    Science.gov (United States)

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  11. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  12. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  13. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  14. Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles.

    Science.gov (United States)

    Shang, Shuai; Zhong, Huaming; Wu, Xiaoyang; Wei, Qinguo; Zhang, Huanxin; Chen, Jun; Chen, Yao; Tang, Xuexi; Zhang, Honghai

    2018-04-01

    Toll-like receptors (TLRs) encoded by the TLR multigene family play an important role in initial pathogen recognition in vertebrates. Among the TLRs, TLR2 and TLR4 may be of particular importance to reptiles. In order to study the evolutionary patterns and structural characteristics of TLRs, we explored the available genomes of several representative members of reptiles. 25 TLR2 genes and 19 TLR4 genes from reptiles were obtained in this study. Phylogenetic results showed that the TLR2 gene duplication occurred in several species. Evolutionary analysis by at least two methods identified 30 and 13 common positively selected codons in TLR2 and TLR4, respectively. Most positively selected sites of TLR2 and TLR4 were located in the Leucine-rich repeat (LRRs). Branch model analysis showed that TLR2 genes were under different evolutionary forces in reptiles, while the TLR4 genes showed no significant selection pressure. The different evolutionary adaptation of TLR2 and TLR4 among the reptiles might be due to their different function in recognizing bacteria. Overall, we explored the structure and evolution of TLR2 and TLR4 genes in reptiles for the first time. Our study revealed valuable information regarding TLR2 and TLR4 in reptiles, and provided novel insights into the conservation concern of natural populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis.

    Science.gov (United States)

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  16. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera using microarray analysis

    Directory of Open Access Journals (Sweden)

    Hongyi Nie

    2017-10-01

    Full Text Available Abstract China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47% genes were up-regulated, whereas 168 (45.53% were down-regulated in high royal jelly-yielding bees. Gene ontology (GO analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  17. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  18. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking

    Directory of Open Access Journals (Sweden)

    Orozco Helena

    2013-01-01

    Full Text Available Abstract Background Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS, while glycerol extends it. Results Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Conclusions Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins and posttranscriptional (i.e., mRNA binding protein Pub1 levels allows to modulate yeast life span during its biotechnological use. Due to

  19. The Mycobacterium tuberculosis Complex has a Pathway for the Biosynthesis of 4-Formamido-4,6-Dideoxy-d-Glucose.

    Science.gov (United States)

    Brown, Haley A; Vinogradov, Evgeny; Gilbert, Michel; Holden, Hazel M

    2018-05-15

    Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined. This article is protected by copyright. All rights reserved. © 2018 The Protein Society.

  20. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, CJ; Speth, DR; Rha, C; Sinskey, AJ

    2012-10-22

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.

  1. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  2. Study on the IFNL4 gene ss469415590 variant in Ukrainian population

    Directory of Open Access Journals (Sweden)

    Kucherenko A. M.

    2014-09-01

    Full Text Available Aim. To determine genotype and allele disribution for the IFNL4 gene ss469415590 and examine it for linkage with the IL28B gene rs12979860 in Ukrainian population. Methods. The studied group consisted of 100 unrelated donors of Eastern European origin representing the population of Ukraine. Genotyping for the IFNL4 gene ss469415590 was performed using the amplification-refractory mutation system PCR. Genotyping for the IL28B gene rs12979860 was performed by the PCR-based restriction fragment length polymorphism assay. Results. Genotype frequencies for both studied variants showed no significant deviation from those expected according to Hardy-Weinberg equilibrium. Allelic distribution for ss469415590 was: TT – 0.665, G – 0.335. Allelic frequencies of rs12979860 were: C – 0.655, T – 0.345. The results of likelihood ratio test indicated a linkage disequilibrium between the studied variants (p > 0.0001, the major alleles ss469415590 TT and rs12979860 C were in phase. The genetic structure of Ukrainian population in terms of two studied polymorphic variants is similar to the European population presented in the «1000 genomes» project. Conclusions. Considering a tight linkage revealed in Ukrainian population between the ss469415590 variant and rs12979860, a crucial genetic marker of chronic hepatitis C treatment efficiency, this polymorphism might be a promising target for further investigation as a pharmacogenetic marker.

  3. The pseudokinase NIPI-4 is a novel regulator of antimicrobial peptide gene expression.

    Directory of Open Access Journals (Sweden)

    Sid Ahmed Labed

    Full Text Available Hosts have developed diverse mechanisms to counter the pathogens they face in their natural environment. Throughout the plant and animal kingdoms, the up-regulation of antimicrobial peptides is a common response to infection. In C. elegans, infection with the natural pathogen Drechmeria coniospora leads to rapid induction of antimicrobial peptide gene expression in the epidermis. Through a large genetic screen we have isolated many new mutants that are incapable of upregulating the antimicrobial peptide nlp-29 in response to infection (i.e. with a Nipi or 'no induction of peptide after infection' phenotype. More than half of the newly isolated Nipi mutants do not correspond to genes previously associated with the regulation of antimicrobial peptides. One of these, nipi-4, encodes a member of a nematode-specific kinase family. NIPI-4 is predicted to be catalytically inactive, thus to be a pseudokinase. It acts in the epidermis downstream of the PKC∂ TPA-1, as a positive regulator of nlp antimicrobial peptide gene expression after infection. It also controls the constitutive expression of antimicrobial peptide genes of the cnc family that are targets of TGFß regulation. Our results open the way for a more detailed understanding of how host defense pathways can be molded by environmental pathogens.

  4. The Natural Product Osthole Attenuates Yeast Growth by Extensively Suppressing the Gene Expressions of Mitochondrial Respiration Chain.

    Science.gov (United States)

    Wang, Zhe; Shen, Yan

    2017-03-01

    The fast growing evidences have indicated that the natural product osthole is a promising drug candidate for fighting several serious human diseases, for example, cancer and inflammation. However, the mode-of-action (MoA) of osthole remains largely incomplete. In this study, we investigated the growth inhibition activity of osthole using fission yeast as a model, with the goal of understanding the osthole's mechanism of action, especially from the molecular level. Microarray analysis indicated that osthole has significant impacts on gene transcription levels (In total, 214 genes are up-regulated, and 97 genes are down-regulated). Gene set enrichment analysis (GSEA) indicated that 11 genes belong to the "Respiration module" category, especially including the components of complex III and V of mitochondrial respiration chain. Based on GSEA and network analysis, we also found that 54 up-regulated genes belong to the "Core Environmental Stress Responses" category, particularly including many transporter genes, which suggests that the rapidly activated nutrient exchange between cell and environment is part of the MoA of osthole. In summary, osthole can greatly impact on fission yeast transcriptome, and it primarily represses the expression levels of the genes in respiration chain, which next causes the inefficiency of ATP production and thus largely explains osthole's growth inhibition activity in Schizosaccharomyces pombe (S. pombe). The complexity of the osthole's MoA shown in previous studies and our current research demonstrates that the omics approach and bioinformatics tools should be applied together to acquire the complete landscape of osthole's growth inhibition activity.

  5. Deletion and down-regulation of HRH4 gene in gastric carcinomas: a potential correlation with tumor progression.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available BACKGROUND: Histamine is an established growth factor for gastrointestinal malignancies. The effect of histamine is largely determined locally by the histamine receptor expression pattern. Histamine receptor H4 (HRH4, the newest member of the histamine receptor family, is positively expressed on the epithelium of the gastrointestinal tract, and its function remains to be elucidated. Previously, we reported the decreased expression of HRH4 in colorectal cancers and revealed its correlation with tumor proliferation. In the current study, we aimed to investigate the abnormalities of HRH4 gene in gastric carcinomas (GCs. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed H4R expression in collected GC samples by quantitative PCR, Western blot analysis, and immunostaining. Our results showed that the protein and mRNA levels of HRH4 were reduced in some GC samples, especially in advanced GC samples. Copy number decrease of HRH4 gene was observed (17.6%, 23 out of 131, which was closely correlated with the attenuated expression of H4R. In vitro studies, using gastric cancer cell lines, showed that the alteration of HRH4 expression on gastric cancer cells influences tumor growth upon exposure to histamine. CONCLUSIONS/SIGNIFICANCE: We show for the first time that deletion of HRH4 gene is present in GC cases and is closely correlated with attenuated gene expression. Down-regulation of HRH4 in gastric carcinomas plays a role in histamine-mediated growth control of GC cells.

  6. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting.

    Science.gov (United States)

    Wu, Shwu-Yuan; Lee, A-Young; Lai, Hsien-Tsung; Zhang, Hong; Chiang, Cheng-Ming

    2013-03-07

    Bromodomain-containing protein 4 (Brd4) is an epigenetic reader and transcriptional regulator recently identified as a cancer therapeutic target for acute myeloid leukemia, multiple myeloma, and Burkitt's lymphoma. Although chromatin targeting is a crucial function of Brd4, there is little understanding of how bromodomains that bind acetylated histones are regulated, nor how the gene-specific activity of Brd4 is determined. Via interaction screen and domain mapping, we identified p53 as a functional partner of Brd4. Interestingly, Brd4 association with p53 is modulated by casein kinase II (CK2)-mediated phosphorylation of a conserved acidic region in Brd4 that selectively contacts either a juxtaposed bromodomain or an adjacent basic region to dictate the ability of Brd4 binding to chromatin and also the recruitment of p53 to regulated promoters. The unmasking of bromodomains and activator recruitment, concurrently triggered by the CK2 phospho switch, provide an intriguing mechanism for gene-specific targeting by a universal epigenetic reader. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1 transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding.

  8. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae.

    Science.gov (United States)

    Zhu, Lin; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-07-01

    The filamentous fungus Aspergillus oryzae is used as one of the most favored hosts for heterologous protein production due to its ability to secrete large amounts of proteins into the culture medium. We previously generated a hyper-producing mutant strain of A. oryzae, AUT1, which produced 3.2- and 2.6-fold higher levels of bovine chymosin (CHY) and human lysozyme (HLY), respectively, compared with the wild-type strain. However, further enhancement of heterologous protein production by multiple gene disruption is difficult because of the low gene-targeting efficiency in strain AUT1. Here, we disrupted the ligD gene, which is involved in nonhomologous recombination, and the pyrG gene to create uridine/uracil auxotrophy in strain AUT1, to generate a hyper-producing mutant applicable to pyrG marker recycling with highly efficient gene targeting. We generated single and double disruptants of the tripeptidyl peptidase gene AosedD and vacuolar sorting receptor gene Aovps10 in the hyper-producing mutant background, and found that all disruptants showed significant increases in heterologous protein production. Particularly, double disruption of the Aovps10 and AosedD genes increased the production levels of CHY and HLY by 1.6- and 2.1-fold, respectively, compared with the parental strain. Thus, we successfully generated a fungal host for further enhancing the heterologous protein production ability by combining mutational and molecular breeding techniques.

  9. Olefins production from C4 stream; Producao de olefinas a partir de corrente C4

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Julia A.; Feltran, Marina B.; Becker, Patricia Luiza; Rocha, Priscila L. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The petrochemical sector in Brazil has been growing in terms of investment and expansion of production capacity, due to increased demand for thermoplastic products. However, the offer of basic petrochemical raw materials obtained by conventional routes is not following this increasing demand which stimulates the search for new competitive technologies. Moreover, there is the opportunity to use low value added C4 streams from FCC process that are available in the Brazilian refineries, for the production of petrochemicals. Several possibilities of C4 stream use to produce butadienes, MTBE, maleic anhydride, ethylene and propylene have been discussed in this work. The production of propylene seems to be the most economically attractive option in Brazil, since its offer will not keep up with the growth in its demand, according to ABIQUIM forecasts. Therefore some propylene production technologies from C4 streams - steam cracking, metathesis and selective cracking - have been evaluated considering their basic characteristics and applications. The goal of this study is to provide preliminary information to support future project evaluations of petrochemical/refinery integration, through comparative analysis of these technologies. (author)

  10. CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Baumbach Jan

    2007-11-01

    Full Text Available Abstract Background Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum. Results Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user can be analyzed in the context of known

  11. Epigenetic regulation of the DRD4 gene and dimensions of attention-deficit/hyperactivity disorder in children.

    Science.gov (United States)

    Dadds, Mark R; Schollar-Root, Olivia; Lenroot, Rhoshel; Moul, Caroline; Hawes, David J

    2016-10-01

    Recent evidence suggests that epigenetic regulation of the DRD4 gene may characterise specific aspects of ADHD symptomology. We tested associations between ADHD symptoms and epigenetic changes to the DRD4 gene in DNA extracted from blood and saliva in N = 330 children referred for a variety of behavioural and emotional problems. ADHD was indexed using DSM diagnoses as well as mother, father, and teacher reports. Methylation levels were assayed for the island of 18 CpG sites in the DRD4 receptor gene. A nearby SNP, rs3758653, was also genotyped as it has previously been shown to influence methylation levels. There was high consistency of methylation levels across CpG sites and tissue sources, and higher methylation levels were associated with the major allele of SNP rs3758653. Higher methylation levels were associated with more severe ADHD independent of SNP status, tissue source, ethnicity, environmental adversity, and comorbid conduct problems. The association applied specifically to the cognitive/attentional, rather than hyperactivity problems that characterise ADHD. The results indicate that epigenetic regulation of the DRD4 gene in the form of increased methylation is associated with the cognitive/attentional deficits in ADHD.

  12. 2-fermion and 4-fermion production at LEP2

    CERN Document Server

    van Vulpen, Ivo B

    2000-01-01

    We present the measurements on 2-fermion and 4-fermion production in e + e - collisions at centre-of-mass energies ranging from 192 to 202 Ge V as collected by the 4 LEP experiments in 1999. For processes with 2-fermions in the final state we present both production cross sections and asymmetries for event samples at low and high effective centre-of-mass energies, where the latter process is sensitive to possible contributions from various non-SM physics, like contact interactions or Z' exchange, and can therefore be used to set limits on parameters in those models. We also report on the measured cross sections for a subset of processes leading to 4 fermions in the final state: pair production of heavy vector bosons w+w- (NC03) and ZZ (NC02) followed by single-W production. A measurement of the leptonic branching ratio of the W-boson is used to extract information on IV c• I

  13. In children with autoimmune thyroiditis CTLA4 and FCRL3 genes--but not PTPN22--are overexpressed when compared to adults.

    Science.gov (United States)

    Wojciechowska-Durczynska, Katarzyna; Krawczyk-Rusiecka, Kinga; Zygmunt, Arkadiusz; Stawerska, Renata; Lewinski, Andrzej

    2016-01-01

    Numerous genetic studies revealed several susceptibility genes of autoimmune thyroid diseases (AITD), including CTLA4, PTPN22 and FCRL3. These immune-modulating genes are involved in genetic background of AITD among children and adult patients. However, possible age-related differences in overexpression of these genes remain unclear. The goal of this single centre cohort study was evaluation of expression levels of three (3) genes CTLA4, PTPN22 and FCRL3 in adult patients and children with autoimmune thyroiditis. A total of 47 patients--24 adults (mean age--47.7 years) and 23 children (mean age--12.4 years) with autoimmune thyroiditis were assessed for the level of expression of CTLA4, PTPN22 and FCRL3 genes, utilizing ABI PRISM' 7500 Sequence Detection System (Applied Biosystem, Foster City, CA, USA). The overexpression of PTPN22 (mean RQ = 2.988) and FCRL3 (mean RQ = 2.544) genes were confirmed in adult patients with autoimmune thyroiditis, at the same time the expression level of CTLA4 gene was significantly decreased (mean RQ = 0.899) (p thyroiditis in whom overexpression of all three genes--CTLA4, PTPN22 and FCRL3--was observed. Differences in CTLA4 and FCRL3 genes expression levels in patients with autoimmune thyroiditis were found depending on the age, with increased expression levels of CTLA4 (mean RQ = 3.45 1) and FCRL3 (mean RQ = 7.410) in children when compared to adults (p thyroiditis in adults and children. Accordingly, CTLA4 and FCRL3 genes overexpression may play an important role in children suffering from autoimmune thyroiditis.

  14. [Association between eye absent homolog 4 gene polymorphisms and occupational noise-induced hearing loss].

    Science.gov (United States)

    Yang, Q Y; Xu, X R; Jiao, J; Zheng, Y X; He, L H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Li, Y H; Zhang, H L; Zhang, Z R

    2017-01-06

    Objective: To identify the association between genetic polymorphisms in the eye absent homolog 4 (EYA4) gene and noise-induced hearing loss (NIHL). Method: A nested case control study was conducted based on a cohort of noise-exposed subjects. In total, 292 cases were selected from a steel factory from 6 297 subjects during Jan 1, 2006 to Dec 12, 2015,who had an average hearing threshold of more than 40 dB(A); 584 matched control subjects for each case were designated on the basis of matched criteria including same gender, age (±5 years) and duration of exposure to noise (±2 years). What's more, the control group had an average hearing threshold of less than 35 dB(A) in high frequency and less than 25 dB(A) in speech frequency. Four single nucleotide polymorphisms (SNPs) of the EYA4 gene were genotyped using a SNPscan TM multiplex SNP genotyping kit. Hardy-Weinberg equilibrium tests were performed using a χ 2 test for goodness-of-fit for each SNP among the control group, and the effects of genotypes of the EYA4 gene on NIHL were analyzed by logistic regression. The haplotypes were established and their frequencies in the two groups were assessed using Haploview 4.2 and Phase 2.1 software, and interactive effects between haplotypes and cumulative noise exposure were analyzed. Results: The average age of the subjects was (40.1±8.4) years and the average number of noise-exposed working years was 20.3 (8.4, 27.3) years. The range of noise exposure levels and the cumulative noise exposure were 80.2- 98.8 dB (A) and 86.6- 111.2 dB(A) · year, respectively. After adjustment for covariates including height, blood pressure, drinking status and smoking status, in the noise intensity>85 dB (A) group, subjects carrying the rs3813346 TT genotype had a higher NIHL risk than those carrying the GG genotype, and the adjusted OR (95% CI ) value was 2.12 (1.21- 3.69). In the cumulative noise exposure>98 dB (A) · year group, compared with haplotype TGC, haplotype CGT showed a

  15. Overexpression of the p53 tumor suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking

    NARCIS (Netherlands)

    Westra, W. H.; Offerhaus, G. J.; Goodman, S. N.; Slebos, R. J.; Polak, M.; Baas, I. O.; Rodenhuis, S.; Hruban, R. H.

    1993-01-01

    Mutations in the p53 tumor suppressor gene are frequently observed in primary lung adenocarcinomas, suggesting that these mutations are critical events in the malignant transformation of airway cells. These mutations are often associated with stabilization of the p53 gene product, resulting in the

  16. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  17. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    Science.gov (United States)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  18. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  19. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

    Directory of Open Access Journals (Sweden)

    Santoro Thomas J

    2005-02-01

    Full Text Available Abstract Background In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2 is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS. The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine. Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. Methods Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. Results The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti

  20. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription.

    Science.gov (United States)

    Tomita, Michiyo; Holman, Brita J; Santoro, Christopher P; Santoro, Thomas J

    2005-02-25

    BACKGROUND: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine.Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. METHODS: Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. RESULTS: The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin

  1. Integration of C4-specific ppdk gene of Echinochloa to C3 upland ...

    African Journals Online (AJOL)

    Pyruvate orthophosphate dikinase (PPDK) plays a key role in C4 photosynthetic pathway. The enzymatic reaction is one of the rate-limiting steps of the C4 photosynthetic pathway. In this paper, the gene encoding Echinochloa pyruvate orthosphate dikinase (GenBank accession number: AB289641) was introduced into H65 ...

  2. [Antimicrobial susceptibility and drug-resistance genes of Yersinia spp. of retailed poultry in 4 provinces of China].

    Science.gov (United States)

    Peng, Z X; Zou, M Y; Xu, J; Guan, W Y; Li, Y; Liu, D R; Zhang, S S; Hao, Q; Yan, S F; Wang, W; Yu, D M; Li, F Q

    2018-04-06

    Objective: To monitor the antimicrobial resistance and drug-resistance genes of Yersinia enterocolitis , Y. intermedia and Y. frederiksenii recovered from retailed fresh poultry of 4 provinces of China. Methods: The susceptibility of 25 isolated Yersinia spp. to 14 classes and 25 kinds of antibiotics was determined by broth microdilution method according to CLSI (Clinical and Laboratory Standards Institute). The antibiotic resistance genes were predicted with antibiotic resistance genes database (ARDB) using whole genome sequences of Yersinia spp. Results: In all 22 Y. enterocolitis tested, 63.7% (14 isolates), 22.8% (5 isolates), 4.6% and 4.6% of 1 isolates exhibited the resistance to cefoxitin, ampicillin-sulbactam, nitrofurantoin and trimethoprim-sulfamethoxazole, respectively. All the 25 isolates were multi-drug resistant to more than 3 antibiotics, while 64.0% of isolates were resistant to more than 4 antibiotics. A few Y. enterocolitis isolates of this study were intermediate to ceftriaxone and ciprofloxacin. Most Yersinia spp. isolates contained antibiotic resistance genes mdtG, ksgA, bacA, blaA, rosAB and acrB , and 5 isolates recovered from fresh chicken also contained dfrA 1, catB 2 and ant 3 ia . Conclusion: The multi-drug resistant Yersinia spp. isolated from retailed fresh poultry is very serious in the 4 provinces of China, and their contained many kinds of drug-resistance genes.

  3. 21 CFR 720.4 - Information requested about cosmetic products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Information requested about cosmetic products. 720... (CONTINUED) COSMETICS VOLUNTARY FILING OF COSMETIC PRODUCT INGREDIENT COMPOSITION STATEMENTS § 720.4 Information requested about cosmetic products. (a) Form FDA-2512 requests information on: (1) The name and...

  4. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    Science.gov (United States)

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  5. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    International Nuclear Information System (INIS)

    Greco, Sonia A; Leggett, Barbara A; Whitehall, Vicki LJ; Chia, June; Inglis, Kelly J; Cozzi, Sarah-Jane; Ramsnes, Ingunn; Buttenshaw, Ronald L; Spring, Kevin J; Boyle, Glen M; Worthley, Daniel L

    2010-01-01

    Thrombospondin-4 (THBS4) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the

  6. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    Directory of Open Access Journals (Sweden)

    Greco Sonia A

    2010-09-01

    Full Text Available Abstract Background Thrombospondin-4 (THBS4 is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Methods Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. Results THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and

  7. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  8. Determination of transcriptional units and gene products from the ftsA region of Escherichia coli.

    Science.gov (United States)

    Lutkenhaus, J F; Wu, H C

    1980-01-01

    Lambda transducing phage gamma 16-2 carries the genes envA, ftsZ, ftsA, ddl, and murC and directs the synthesis of six unique proteins in ultraviolet-irradiated cells. Various derivatives of gamma 16-2 carrying smaller segments of the bacterial deoxyribonucleic acid have also been analyzed for their capacity to direct protein synthesis in ultraviolet-irradiated cells. These results, in combination with genetic results, have allowed the gene product of each of these genes to be assigned. In addition, an unidentified gene was located counterclockwise to murC between murC and murF. Analysis of the direction of transcription indicates that murC, ddl, ftsA, and ftsZ are transcribed clockwise on the Escherichia coli genetic map, and envA is transcribed counterclockwise. In addition, it is shown that each of the genes envA, ftsZ, and ftsA can be expressed independently. Images PMID:6447690

  9. Supplementary data: Association of CTLA4, CD28 and ICOS gene ...

    Indian Academy of Sciences (India)

    Supplementary data: Association of CTLA4, CD28 and ICOS gene polymorphisms with clinicopathologic characteristics of childhood IgA nephropathy in Korean population. Hak-Jae Kim, Joo-Ho Chung, Sungwook Kang, Su-Kang Kim, Byoung-Soo Cho, Sung-Do Kim and Won-Ho Hahn. J. Genet. 90, 151–155. Table 1.

  10. The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking.

    Science.gov (United States)

    Venkataraman, Chandrasekar; Kuo, Frederick

    2005-11-15

    The orphan G-protein coupled receptor, GPR84 is highly expressed in the bone marrow, and in splenic T cells and B cells. In this study, GPR84-deficient mice were generated to understand the biological function of this orphan receptor. The proliferation of T and B cells in response to various mitogens was normal in GPR84-deficient mice. Interestingly, primary stimulation of T cells with anti-CD3 resulted in increased IL-4 but not IL-2 or IFN-gamma production in GPR84(-/-) mice compared to wild-type mice. Augmented IL-4 production in GPR84-deficient T cells was not related to increased frequency of IL-4-secreting cells in response to anti-CD3 stimulation. In fact, stimulation with anti-CD3 and anti-CD28 resulted in increased levels of IL-4 but not IFN-gamma steady-state mRNA in GPR84(-/-) T cells. In addition, Th2 effector cells generated in vitro from GPR84(-/-) mice produced higher levels of IL-4, IL-5 and IL-13 compared to wild-type mice. However, there was no detectable difference in the extent of IL-4 and IL-5 production between the two groups of mice in response to antigen stimulation of spleen cells, isolated from mice previously immunized with OVA in alum. These studies reveal a novel role for GPR84 in regulating early IL-4 gene expression in activated T cells.

  11. An evolutionary conserved region (ECR in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    Directory of Open Access Journals (Sweden)

    Haddley Kate

    2011-05-01

    Full Text Available Abstract Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs, in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1 supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a a strong enhancer that functions in neurons and b a transcription factor that may modulate the function of that enhancer.

  12. [Experimental study of interleukin-12 gene vaccines in the treatment of low-load malignant lymphoma (EL4)].

    Science.gov (United States)

    Jiang, Q; Da, W; Ou, Y

    2001-11-01

    Two kinds of murine interleukin-12 (mIL-12) fusion gene vaccines were used to treat the murine low-load malignant T cell lymphoma EL4 as minimal residual disease (MRD) model. C57BL/6 synergistical mice were subcutaneously inoculated with 1 x 10(6) wild-type (wt) EL4 tumor cells as low-load lymphoma model treated with two mIL-12 gene vaccines. Package cell line PA317/12 producing mIL-12 retrovirus (RV) was used as in vivo vaccine and EL4 tumor cells transferred with mIL-12 gene as ex vivo vaccine. In both mIL-12 gene vaccine-treated groups, there was no tumor growth in 50% mice 60 days after inoculation. Nine of these no tumor growth mice were re-challenged with 5 x 10(5) wt EL4 cells, and 5 of them survived without tumors in another 60 days. All control mice died with tumors within one month after inoculation. Among those developed tumors in both vaccine-treated groups, the development of tumors was delayed, the survival period prolonged (P EL4 MRD in C57BL/6 mice.

  13. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    Science.gov (United States)

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  14. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    Science.gov (United States)

    Ling, King-Hwa; Brautigan, Peter J.; Moore, Sarah; Fraser, Rachel; Leong, Melody Pui-Yee; Leong, Jia-Wen; Zainal Abidin, Shahidee; Lee, Han-Chung; Cheah, Pike-See; Raison, Joy M.; Babic, Milena; Lee, Young Kyung; Daish, Tasman; Mattiske, Deidre M.; Mann, Jeffrey R.; Adelson, David L.; Thomas, Paul Q.; Hahn, Christopher N.; Scott, Hamish S.

    2016-01-01

    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1. PMID:26958646

  15. A novel recessive mutation in the gene ELOVL4 causes a neuro-ichthyotic disorder with variable expressivity

    Science.gov (United States)

    2014-01-01

    Background A rare neuro-ichthyotic disorder characterized by ichthyosis, spastic quadriplegia and intellectual disability and caused by recessive mutations in ELOVL4, encoding elongase-4 protein has recently been described. The objective of the study was to search for sequence variants in the gene ELOVL4 in three affected individuals of a consanguineous Pakistani family exhibiting features of neuro-ichthyotic disorder. Methods Linkage in the family was searched by genotyping microsatellite markers linked to the gene ELOVL4, mapped at chromosome 6p14.1. Exons and splice junction sites of the gene ELOVL4 were polymerase chain reaction amplified and sequenced in an automated DNA sequencer. Results DNA sequence analysis revealed a novel homozygous nonsense mutation (c.78C > G; p.Tyr26*). Conclusions Our report further confirms the recently described ELOVL4-related neuro-ichthyosis and shows that the neurological phenotype can be absent in some individuals. PMID:24571530

  16. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    King-Hwa Ling

    2016-06-01

    Full Text Available SRY (Sex Determining Region Y-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1,2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH, Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR, gain-of-function and in situ hybridization (ISH experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1.

  17. Common Variants in CLDN2 and MORC4 Genes Confer Disease Susceptibility in Patients with Chronic Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Anil K Giri

    Full Text Available A recent genome-wide association study (GWAS identified association with variants in X-linked CLDN2 and MORC4, and PRSS1-PRSS2 loci with chronic pancreatitis (CP in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525-OR 1.71, P = 1.38 x 10-09; rs12008279-OR 1.56, P = 1.53 x 10-04 and 2 variants in MORC4 gene (rs12688220-OR 1.72, P = 9.20 x 10-09; rs6622126-OR 1.75, P = 4.04x10-05 in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06 and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31-0.78], P = 0.0027. A variant in the gene MORC4 (rs12688220 showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068 suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14. Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients.

  18. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified from 18S ribosomal RNA gene of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanyo, A.; Majiwa, P.W.

    2006-01-01

    Oligonucleotide primers were designed from the conserved nucleotide sequences of 18S ribosomal RNA (18S rRNA) gene of protozoans: Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum. The primers were used in polymerace chain reaction (PCR) to generate PCR products of approximately 1 Kb using genomic DNA from T. brucei and the four genotypic groups of T. congolense as template. The five PCR products so produced were digested with several restriction enzymes and hybridized to a DNA probe made from T. brucei PCR product of the same 18S rRNA gene region. Most restriction enzyme digests revealed polymorphism with respect to the location of their recognition sites on the five PCR products. The restriction fragment length polymorphism (RFLP) pattern observed indicate that the 18S rRNA gene sequences of trypanosomes: T. brucei and the four genotypes of T.congolence group are heterogeneous. The results further demonstrate that the region that was amplified can be used in specific identification of trypanosomes species and subspecies.(author)

  19. Symptoms of Attention-Deficit/Hyperactivity Disorder in Down Syndrome: Effects of the Dopamine Receptor D4 Gene

    Science.gov (United States)

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and…

  20. Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene.

    Directory of Open Access Journals (Sweden)

    Dario Nicetto

    Full Text Available Post-translational modifications (PTMs of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved