WorldWideScience

Sample records for gene organization evolution

  1. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...... and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped...

  2. Gene, cell, and organ multiplication drives inner ear evolution.

    Science.gov (United States)

    Fritzsch, Bernd; Elliott, Karen L

    2017-11-01

    We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Genomic organization and evolution of ruminant lysozyme c genes

    OpenAIRE

    IRWIN, David M

    2015-01-01

    Ruminant stomach lysozyme is a long established model of adaptive gene evolution. Evolution of stomach lysozyme function required changes in the site of expression of the lysozyme c gene and changes in the enzymatic properties of the enzyme. In ruminant mammals, these changes were associated with a change in the size of the lysozyme c gene family. The recent release of near complete genome sequences from several ruminant species allows a more complete examination of the evolution and diversif...

  4. Organization and evolution of the rat tyrosine hydroxylase gene

    International Nuclear Information System (INIS)

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-01-01

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family

  5. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.

    Science.gov (United States)

    Davila-Velderrain, Jose; Servin-Marquez, Andres; Alvarez-Buylla, Elena R

    2014-03-01

    The gene regulatory network of floral organ cell fate specification of Arabidopsis thaliana is a robust developmental regulatory module. Although such finding was proposed to explain the overall conservation of floral organ types and organization among angiosperms, it has not been confirmed that the network components are conserved at the molecular level among flowering plants. Using the genomic data that have accumulated, we address the conservation of the genes involved in this network and the forces that have shaped its evolution during the divergence of angiosperms. We recovered the network gene homologs for 18 species of flowering plants spanning nine families. We found that all the genes are highly conserved with no evidence of positive selection. We studied the sequence conservation features of the genes in the context of their known biological function and the strength of the purifying selection acting upon them in relation to their placement within the network. Our results suggest an association between protein length and sequence conservation, evolutionary rates, and functional category. On the other hand, we found no significant correlation between the strength of purifying selection and gene placement. Our results confirm that the studied robust developmental regulatory module has been subjected to strong functional constraints. However, unlike previous studies, our results do not support the notion that network topology plays a major role in constraining evolutionary rates. We speculate that the dynamical functional role of genes within the network and not just its connectivity could play an important role in constraining evolution.

  6. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms

    Directory of Open Access Journals (Sweden)

    Zhong Daibin

    2006-06-01

    Full Text Available Abstract Background HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. Results Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2 and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all

  7. Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization

    Directory of Open Access Journals (Sweden)

    Van Meir Erwin G

    2005-02-01

    Full Text Available Abstract Background The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10, thrombotic thrombocytopenic purpura (ADAMTS13, and Ehlers-Danlos syndrome type VIIC (ADAMTS2 in humans and belted white-spotting mutation in mice (ADAMTS20. Results Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu, chordate (Ciona and invertebrate (Drosophila and Caenorhabditis ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. Conclusions The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15 that may have distinct aggrecanase and angiogenesis functions.

  8. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    Directory of Open Access Journals (Sweden)

    Kathryn E Bushley

    2013-06-01

    Full Text Available The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921, the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS that encodes for cyclosporin synthetase (simA and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc., and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further

  9. Clustered organization, polycistronic transcription, and evolution of modification-guide snoRNA genes in Euglena gracilis.

    Science.gov (United States)

    Moore, Ashley N; Russell, Anthony G

    2012-01-01

    Previous studies have shown that the eukaryotic microbe Euglena gracilis contains an unusually large assortment of small nucleolar RNAs (snoRNAs) and ribosomal RNA (rRNA) modification sites. However, little is known about the evolutionary mechanisms contributing to this situation. In this study, we have examined the organization and evolution of snoRNA genes in Euglena with the additional objective of determining how these properties relate to the rRNA modification pattern in this protist. We have identified and extensively characterized a clustered pattern of genes encoding previously biochemically isolated snoRNA sequences in E. gracilis. We show that polycistronic transcription is a prevalent snoRNA gene expression strategy in this organism. Further, we have identified 121 new snoRNA coding regions through sequence analysis of these clusters. We have identified an E. gracilis U14 snoRNA homolog clustered with modification-guide snoRNA genes. The U14 snoRNAs in other eukaryotic organisms examined to date typically contain both a modification and a processing domain. E. gracilis U14 lacks the modification domain but retains the processing domain. Our analysis of U14 structure and evolution in Euglena and other eukaryotes allows us to propose a model for its evolution and suggest its processing role may be its more important function, explaining its conservation in many eukaryotes. The preponderance of apparent small and larger-scale duplication events in the genomic regions we have characterized in Euglena provides a mechanism for the generation of the unusually diverse collection and abundance of snoRNAs and modified rRNA sites. Our findings provide the framework for more extensive whole genome analysis to elucidate whether these snoRNA gene clusters are spread across multiple chromosomes and/or form dense "arrays" at a limited number of chromosomal loci.

  10. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    Directory of Open Access Journals (Sweden)

    Schnitzler Christine E

    2012-12-01

    Full Text Available Abstract Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria and comb jellies (Phylum Ctenophora. The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light

  11. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes.

    Science.gov (United States)

    Schnitzler, Christine E; Pang, Kevin; Powers, Meghan L; Reitzel, Adam M; Ryan, Joseph F; Simmons, David; Tada, Takashi; Park, Morgan; Gupta, Jyoti; Brooks, Shelise Y; Blakesley, Robert W; Yokoyama, Shozo; Haddock, Steven Hd; Martindale, Mark Q; Baxevanis, Andreas D

    2012-12-21

    Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light

  12. Insights into the Evolution of a Snake Venom Multi-Gene Family from the Genomic Organization of Echis ocellatus SVMP Genes

    Directory of Open Access Journals (Sweden)

    Libia Sanz

    2016-07-01

    Full Text Available The molecular events underlying the evolution of the Snake Venom Metalloproteinase (SVMP family from an A Disintegrin And Metalloproteinase (ADAM ancestor remain poorly understood. Comparative genomics may provide decisive information to reconstruct the evolutionary history of this multi-locus toxin family. Here, we report the genomic organization of Echis ocellatus genes encoding SVMPs from the PII and PI classes. Comparisons between them and between these genes and the genomic structures of Anolis carolinensis ADAM28 and E. ocellatus PIII-SVMP EOC00089 suggest that insertions and deletions of intronic regions played key roles along the evolutionary pathway that shaped the current diversity within the multi-locus SVMP gene family. In particular, our data suggest that emergence of EOC00028-like PI-SVMP from an ancestral PII(e/d-type SVMP involved splicing site mutations that abolished both the 3′ splice AG acceptor site of intron 12* and the 5′ splice GT donor site of intron 13*, and resulted in the intronization of exon 13* and the consequent destruction of the structural integrity of the PII-SVMP characteristic disintegrin domain.

  13. DIRECTED EVOLUTION: SELECTION OF THE HOST ORGANISM

    Directory of Open Access Journals (Sweden)

    Azadeh Pourmir

    2012-09-01

    Full Text Available Directed evolution has become a well-established tool for improving proteins and biological systems. A critical aspect of directed evolution is the selection of a suitable host organism for achieving functional expression of the target gene. To date, most directed evolution studies have used either Escherichia coli or Saccharomyces cerevisiae as a host; however, other bacterial and yeast species, as well as mammalian and insect cell lines, have also been successfully used. Recent advances in synthetic biology and genomics have opened the possibility of expanding the use of directed evolution to new host organisms such as microalgae. This review focuses on the different host organisms used in directed evolution and highlights some of the recent directed evolution strategies used in these organisms.

  14. Directed evolution: selection of the host organism

    Directory of Open Access Journals (Sweden)

    Azadeh Pourmir

    2012-09-01

    Full Text Available Directed evolution has become a well-established tool for improving proteins and biological systems. A critical aspect of directed evolution is the selection of a suitable host organism for achieving functional expression of the target gene. To date, most directed evolution studies have used either Escherichia coli or Saccharomyces cerevisiae as a host; however, other bacterial and yeast species, as well as mammalian and insect cell lines, have also been successfully used. Recent advances in synthetic biology and genomics have opened the possibility of expanding the use of directed evolution to new host organisms such as microalgae. This review focuses on the different host organisms used in directed evolution and highlights some of the recent directed evolution strategies used in these organisms.

  15. Evolution before genes

    Directory of Open Access Journals (Sweden)

    Vasas Vera

    2012-01-01

    Full Text Available Abstract Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate' of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype, that sustains a molecular periphery (analogous to a phenotype. Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin.

  16. Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants.

    Science.gov (United States)

    Shindo, S; Ito, M; Ueda, K; Kato, M; Hasebe, M

    1999-01-01

    Gnetales, one of the extant gymnosperm orders, has traditionally been recognized to be most closely related to flowering plants, because the reproductive organ of Gnetales has some morphological characteristics similar to flowering plants. Most recent molecular phylogenetic studies do not support the sister relationship of the Gnetales and flowering plants, but instead support a close relationship between Gnetales and other extant gymnosperms. The MADS genes are transcription factors, some of which are involved in reproductive organ development in flowering plants. To resolve the discrepancy in phylogenetic inferences, and to provide insights into the evolution of reproductive organs in seed plants, four MADS genes (GpMADS1-4) were cloned from Gnetum parvifolium. GpMADS2 is likely to be a pseudogene and the other three genes were characterized. A MADS gene tree based on partial amino acid sequences showed that GpMADS3 is included in the AGL6 group, but the other two genes do not cluster with any previously reported MADS gene. The three GpMADS genes were expressed during the early stage of ovule development in the differentiating nucellus and three envelopes. A comparison of MADS gene expression among conifers, Gnetum, and flowering plants suggests that the comparable reproductive organs in Gnetum and flowering plants evolved in parallel, and is likely to support the homology between the ovule-ovuliferous scale complex of conifers and the Gnetum ovules, including the three envelopes.

  17. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation.

    Science.gov (United States)

    Rewitz, Kim F; O'Connor, Michael B; Gilbert, Lawrence I

    2007-08-01

    The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.

  18. Gene duplication as a major force in evolution

    Indian Academy of Sciences (India)

    Abstract. Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Many new gene functions have evolved through gene duplication and it has contributed tremendously to the evolution of developmen- tal programmes in various organisms. Gene duplication can result ...

  19. Floral organ MADS-box genes in Cercidiphyllum japonicum (Cercidiphyllaceae: Implications for systematic evolution and bracts definition.

    Directory of Open Access Journals (Sweden)

    Yupei Jin

    Full Text Available The dioecious relic Cercidiphyllum japonicum is one of two species of the sole genus Cercidiphyllum, with a tight inflorescence lacking an apparent perianth structure. In addition, its systematic place has been much debated and, so far researches have mainly focused on its morphology and chloroplast genes. In our investigation, we identified 10 floral organ identity genes, including four A-class, three B-class, two C-class and one D-class. Phylogenetic analyses showed that all ten genes are grouped with Saxifragales plants, which confirmed the phylogenetic place of C. japonicum. Expression patterns of those genes were examined by quantitative reverse transcriptase PCR, with some variations that did not completely coincide with the ABCDE model, suggesting some subfunctionalization. As well, our research supported the idea that thebract actually is perianth according to our morphological and molecular analyses in Cercidiphyllum japonicum.

  20. Evolution of metabolic network organization

    Directory of Open Access Journals (Sweden)

    Bonchev Danail

    2010-05-01

    Full Text Available Abstract Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya, from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules

  1. Analysis of Genome Content Evolution in PVC Bacterial Super-Phylum: Assessment of Candidate Genes Associated with Cellular Organization and Lifestyle

    Science.gov (United States)

    Kamneva, Olga K.; Knight, Stormy J.; Liberles, David A.; Ward, Naomi L.

    2012-01-01

    The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies. PMID:23221607

  2. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.; Bertina, R.M. (University Hospital, Leiden (Netherlands))

    1990-08-28

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing of an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.

  3. Evolution of gene expression after gene amplification.

    Science.gov (United States)

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-04-24

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Genes, evolution and intelligence.

    Science.gov (United States)

    Bouchard, Thomas J

    2014-11-01

    I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties-intelligence-is best explained by the near infinitesimal model of quantitative genetics.

  5. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms.

    Science.gov (United States)

    Mattick, J S; Gagen, M J

    2001-09-01

    Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian

  6. Gene Expression Data from the Moon Jelly, Aurelia, Provide Insights into the Evolution of the Combinatorial Code Controlling Animal Sense Organ Development.

    Directory of Open Access Journals (Sweden)

    Nagayasu Nakanishi

    Full Text Available In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development and evolution of morphologically and phyletically distinct eyes, including the compound eyes in Drosophila and the camera-type eyes in vertebrates, indicating that bilaterian eyes evolved under the strong influence of ancestral developmental gene regulation. However the conservation in eye developmental genetics deeper in the Eumetazoa, and the origin of the conserved gene regulatory apparatus controlling eye development remain unclear due to limited comparative developmental data from Cnidaria. Here we show in the eye-bearing scyphozoan cnidarian Aurelia that the ectodermal photosensory domain of the developing medusa sensory structure known as the rhopalium expresses sine oculis (so/six1/2 and eyes absent/eya, but not optix/six3/6 or pax (A&B. In addition, the so and eya co-expression domain encompasses the region of active cell proliferation, neurogenesis, and mechanoreceptor development in rhopalia. Consistent with the role of so and eya in rhopalial development, developmental transcriptome data across Aurelia life cycle stages show upregulation of so and eya, but not optix or pax (A&B, during medusa formation. Moreover, pax6 and dach are absent in the Aurelia genome, and thus are not required for eye development in Aurelia. Our data are consistent with so and eya, but not optix, pax or dach, having conserved functions in sensory structure specification across Eumetazoa. The lability of developmental components including Pax genes relative to so-eya is consistent with a model of sense organ development and evolution that involved the lineage specific modification of a combinatorial code that specifies animal sense organs.

  7. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  8. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Arcà Bruno

    2011-02-01

    Full Text Available Abstract Background In the model system Drosophila melanogaster, doublesex (dsx is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx. Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae

  9. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Science.gov (United States)

    2011-01-01

    Background In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx). Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR) led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae Anopheles gambiae orthologue

  10. The evolution of copulatory organs, internal fertilization, placentae and viviparity in killifishes (Cyprinodontiformes) inferred from a DNA phylogeny of the tyrosine kinase gene X-src.

    Science.gov (United States)

    Meyer, A; Lydeard, C

    1993-11-22

    Cyprinodontiforms are a diverse group of approximately 900 pantropical and temperate fishes, mostly found in freshwater. Whereas the vast majority of fishes lay eggs (i.e. are oviparous), this group is unusual in that four groups of cyprinodont fishes give birth to living young (i.e. are viviparous). A molecular phylogenetic hypothesis was based on partial DNA sequences of the tyrosine kinase gene X-src. The study included the major lineages of fishes of the suborder Cyprinodontoidei, order Cyprinodontiformes. Our phylogeny agrees with some but not all of the conclusions of a previous morphological cladistic analysis (Parenti (Bull. Am. Mus. nat. Hist. 168, 335 (1981)). The differences are: (i) the Profundulidae are the sister group to the Goodeidae, not the sister group to all other cyprinodontoids; (ii) Fundulidae are the sister group to the Profundulidae and Goodeidae; (iii) Cubanichthys and the Cyprinodontinae might not be sister taxa; (iv) Cubanichthys, and not the Profundulidae, might be the most basal member of the cyprinodontoids; and (v) the Anablepinae and Poeciliinae might be sister groups. The molecular phylogeny was used to reconstruct the evolution of major life-history traits such as internal fertilization, copulatory organs, livebearing and placentas. Internal fertilization, modifications of the male's anal fin to form a copulatory organ, and viviparity probably evolved independently three times in cyprinodontiform fishes: in the subfamilies Goodeinae, Anablepinae and Poeciliinae (sensu Parenti 1981). The evolution of bundled sperm, spermatozeugmata, is probably not a prerequisite for internal fertilization because at least one species with internal fertilization has free spermatozoa. Livebearing (viviparity), which takes the form of ovoviviparity (where embryos are nourished by their yolk sac only), evolved only in the subfamily Poeciliinae. Advanced forms of viviparity, in which the mother provides additional nourishment to the embryos through

  11. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes.

    Science.gov (United States)

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-08-27

    Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fifteen nitrogen fixation (nif) genes, including three nifH, one nifD, one nifK, four nifB, two nifE, two nifN, one nifX and one nifV. Of the 15 nif genes, eight nif genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) and two non-nif genes (orf1 and hesA) form a complete nif gene cluster. In addition to the nif genes, there are nitrogenase-like genes, including two nifH-like genes and five pairs of nifDK-like genes. IS elements on the flanking regions of nif and nif-like genes imply that these genes might have been obtained by horizontal gene transfer. Phylogenies of the concatenated 8 nif gene (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) products suggest that P. sabinae T27 is closely related to Frankia. RT-PCR analysis showed that the complete nif gene cluster is organized as an operon. We demonstrated that the complete nif gene cluster under the control of σ70-dependent promoter enabled Escherichia coli JM109 to fix nitrogen. Also, here for the first time we demonstrated that unlike nif genes, the transcriptions of nifHDK-like genes were not regulated by ammonium and oxygen, and nifH-like or nifD-like gene could not restore the nitrogenase activity of Klebsiella pneumonia nifH- and nifD- mutant strains, respectively, suggesting that nifHDK-like genes were not involved in nitrogen fixation. Our data and analysis reveal the contents and distribution of nif and nif-like genes and contribute to the study of evolutionary history of nitrogen fixation in Paenibacillus. For the first time we

  12. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  13. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  14. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  15. New genes as drivers of phenotypic evolution.

    Science.gov (United States)

    Chen, Sidi; Krinsky, Benjamin H; Long, Manyuan

    2013-09-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.

  16. New genes as drivers of phenotypic evolution

    Science.gov (United States)

    Chen, Sidi; Krinsky, Benjamin H.; Long, Manyuan

    2014-01-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution. PMID:23949544

  17. The continuing evolution of ultrasocial economic organization.

    Science.gov (United States)

    Farley, Joshua C

    2016-01-01

    Ultrasociality, as expressed in agricultural, monetary, and fossil fuel economies, has spurred exponential growth in population and in resource use that now threaten civilization. These threats take the form of prisoner's dilemmas. Avoiding collapse requires more cooperative economic organization that must be informed by knowledge of human behavior and cultural evolution. The evolution of a cooperative information economy is one possibility.

  18. Evolution of the Vertebrate Resistin Gene Family.

    Directory of Open Access Journals (Sweden)

    Qingda Hu

    Full Text Available Resistin (encoded by Retn was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish, but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.

  19. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  20. Evolution: What is an organism?

    NARCIS (Netherlands)

    West, S.A.; Kiers, E.T.

    2009-01-01

    Defining an organism has long been a tricky problem for biologists. Recent work has shown how an approach based on adaptation can solve this problem, giving a conceptually simple two-dimensional measure of 'organismality'. © 2009 Elsevier Ltd. All rights reserved.

  1. Morphological evolution in land plants: new designs with old genes.

    Science.gov (United States)

    Pires, Nuno D; Dolan, Liam

    2012-02-19

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.

  2. Evolution of Rubisco activase gene in plants.

    Science.gov (United States)

    Nagarajan, Ragupathi; Gill, Kulvinder S

    2018-01-01

    Rubisco activase of plants evolved in a stepwise manner without losing its function to adapt to the major evolutionary events including endosymbiosis and land colonization. Rubisco activase is an essential enzyme for photosynthesis, which removes inhibitory sugar phosphates from the active sites of Rubisco, a process necessary for Rubisco activation and carbon fixation. The gene probably evolved in cyanobacteria as different species differ for its presence. However, the gene is present in all other plant species. At least a single gene copy was maintained throughout plant evolution; but various genome and gene duplication events, which occurred during plant evolution, increased its copy number in some species. The exons and exon-intron junctions of present day higher plant's Rca, which is conserved in most species seem to have evolved in charophytes. A unique tandem duplication of Rca gene occurred in a common grass ancestor, and the two genes evolved differently for gene structure, sequence, and expression pattern. At the protein level, starting with a primitive form in cyanobacteria, RCA of chlorophytes evolved by integrating chloroplast transit peptide (cTP), and N-terminal domains to the ATPase, Rubisco recognition and C-terminal domains. The redox regulated C-terminal extension (CTE) and the associated alternate splicing mechanism, which splices the RCA-α and RCA-β isoforms were probably gained from another gene in charophytes, conserved in most species except the members of Solanaceae family.

  3. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.

    Directory of Open Access Journals (Sweden)

    David Kerk

    Full Text Available Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class ("PP2C7s" which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences, entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A

  4. Evolution of the mammalian lysozyme gene family

    Science.gov (United States)

    2011-01-01

    Background Lysozyme c (chicken-type lysozyme) has an important role in host defense, and has been extensively studied as a model in molecular biology, enzymology, protein chemistry, and crystallography. Traditionally, lysozyme c has been considered to be part of a small family that includes genes for two other proteins, lactalbumin, which is found only in mammals, and calcium-binding lysozyme, which is found in only a few species of birds and mammals. More recently, additional testes-expressed members of this family have been identified in human and mouse, suggesting that the mammalian lysozyme gene family is larger than previously known. Results Here we characterize the extent and diversity of the lysozyme gene family in the genomes of phylogenetically diverse mammals, and show that this family contains at least eight different genes that likely duplicated prior to the diversification of extant mammals. These duplicated genes have largely been maintained, both in intron-exon structure and in genomic context, throughout mammalian evolution. Conclusions The mammalian lysozyme gene family is much larger than previously appreciated and consists of at least eight distinct genes scattered around the genome. Since the lysozyme c and lactalbumin proteins have acquired very different functions during evolution, it is likely that many of the other members of the lysozyme-like family will also have diverse and unexpected biological properties. PMID:21676251

  5. Evolution of the mammalian lysozyme gene family

    Directory of Open Access Journals (Sweden)

    Biegel Jason M

    2011-06-01

    Full Text Available Abstract Background Lysozyme c (chicken-type lysozyme has an important role in host defense, and has been extensively studied as a model in molecular biology, enzymology, protein chemistry, and crystallography. Traditionally, lysozyme c has been considered to be part of a small family that includes genes for two other proteins, lactalbumin, which is found only in mammals, and calcium-binding lysozyme, which is found in only a few species of birds and mammals. More recently, additional testes-expressed members of this family have been identified in human and mouse, suggesting that the mammalian lysozyme gene family is larger than previously known. Results Here we characterize the extent and diversity of the lysozyme gene family in the genomes of phylogenetically diverse mammals, and show that this family contains at least eight different genes that likely duplicated prior to the diversification of extant mammals. These duplicated genes have largely been maintained, both in intron-exon structure and in genomic context, throughout mammalian evolution. Conclusions The mammalian lysozyme gene family is much larger than previously appreciated and consists of at least eight distinct genes scattered around the genome. Since the lysozyme c and lactalbumin proteins have acquired very different functions during evolution, it is likely that many of the other members of the lysozyme-like family will also have diverse and unexpected biological properties.

  6. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  8. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Science.gov (United States)

    2010-01-01

    Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves

  9. Piece2.0: an update for the pant gene structure comparison and evolution database

    Science.gov (United States)

    PIECE (Plant Intron Exon Comparison and Evolution) is a web-accessible database that houses intron and exon information of plant genes. PIECE serves as a resource for biologists interested in comparing intron–exon organization and provides valuable insights into the evolution of gene structure in pl...

  10. The Evolution of Enterprise Organization Designs

    Directory of Open Access Journals (Sweden)

    Jay R. Galbraith

    2012-08-01

    Full Text Available This article extends Alfred Chandler's seminal ideas about strategy and organizational structure, and it predicts the next stage of organizational evolution. Chandler described the evolution of vertical integration and diversification strategies for which the functional and multidivisional structures are appropriate. He also explained how the dominant structure at any point in time is a concatenation or accumulation of all previous strategies and structures. I extend Chandler's ideas by describing how early "structures" became "organizations" (people, rewards, management processes, etc. and by discussing the more recent strategies of international expansion and customer focus. International expansion leads to organizations of three dimensions: functions, business units, and countries. Customer-focused strategies lead to four-dimensional organizations currently found in global firms such as IBM, Nike, and Procter & Gamble. I argue that the next major dimension along which organizations will evolve is emerging in firms which are experimenting with the use of "Big Data."

  11. The chimpanzee GH locus: composition, organization, and evolution.

    Science.gov (United States)

    Pérez-Maya, Antonio A; Rodríguez-Sánchez, Irám P; de Jong, Pieter; Wallis, Michael; Barrera-Saldaña, Hugo A

    2012-06-01

    In most mammals the growth hormone (GH) locus comprises a single gene expressed primarily in the anterior pituitary gland. However, in higher primates multiple duplications of the GH gene gave rise to a complex locus containing several genes. In man this locus comprises five genes, including GH-N (expressed in pituitary) and four genes expressed in the placenta, but in other species the number and organization of these genes vary. The situation in chimpanzee has been unclear, with suggestions of up to seven GH-like genes. We have re-examined the GH locus in chimpanzee and have deduced the complete sequence. The locus includes five genes apparently organized in a fashion similar to that in human, with two of these genes encoding GH-like proteins, and three encoding chorionic somatomammotropins/placental lactogens (CSHs/PLs). There are notable differences between the human and chimpanzee loci with regard to the expressed proteins, gene regulation, and gene conversion events. In particular, one human gene (hCSH-L) has changed substantially since the chimpanzee/human split, potentially becoming a pseudogene, while the corresponding chimpanzee gene (CSH-A1) has been conserved, giving a product almost identical to the adjacent CSH-A2. Chimpanzee appears to produce two CSHs, with potentially differing biological properties, whereas human produces a single CSH. The pattern of gene conversion in human has been quite different from that in chimpanzee. The region around the GH-N gene in chimpanzee is remarkably polymorphic, unlike the corresponding region in human. The results shed new light on the complex evolution of the GH locus in higher primates.

  12. Molecular evolution of bat color vision genes.

    Science.gov (United States)

    Wang, Daryi; Oakley, Todd; Mower, Jeffrey; Shimmin, Lawrence C; Yim, Sokchea; Honeycutt, Rodney L; Tsao, Hsienshao; Li, Wen-Hsiung

    2004-02-01

    The two suborders of bats, Megachiroptera (megabats) and Microchiroptera (microbats), use different sensory modalities for perceiving their environment. Megabats are crepuscular and rely on a well-developed eyes and visual pathway, whereas microbats occupy a nocturnal niche and use acoustic orientation or echolocation more than vision as the major means of perceiving their environment. In view of the differences associated with their sensory systems, we decided to investigate the function and evolution of color vision (opsin genes) in these two suborders of bats. The middle/long wavelength (M/L) and short wavelength (S) opsin genes were sequenced from two frugivorous species of megabats, Haplonycteris fischeri and Pteropus dasymallus formosus, and one insectivorous species of microbat, Myotis velifer. Contrary to the situation in primates, where many nocturnal species have lost the functional S opsin gene, both crepuscular and strictly nocturnal species of bats that we examined have functional M/L and S opsin genes. Surprisingly, the S opsin in these bats may be sensitive to UV light, which is relatively more abundant at dawn and at dusk. The M/L opsin in these bats appears to be the L type, which is sensitive to red and may be helpful for identifying fruits among leaves or for other purposes. Most interestingly, H. fischeri has a recent duplication of the M/L opsin gene, representing to date the only known case of opsin gene duplication in non-primate mammals. Some of these observations are unexpected and may provide insights into the effect of nocturnal life on the evolution of opsin genes in mammals and the evolution of the life history traits of bats in general.

  13. Evolution of trappin genes in mammals

    Directory of Open Access Journals (Sweden)

    Furutani Yutaka

    2010-01-01

    Full Text Available Abstract Background Trappin is a multifunctional host-defense peptide that has antiproteolytic, antiinflammatory, and antimicrobial activities. The numbers and compositions of trappin paralogs vary among mammalian species: human and sheep have a single trappin-2 gene; mouse and rat have no trappin gene; pig and cow have multiple trappin genes; and guinea pig has a trappin gene and two other derivativegenes. Independent duplications of trappin genes in pig and cow were observed recently after the species were separated. To determine whether these trappin gene duplications are restricted only to certain mammalian lineages, we analyzed recently-developed genome databases for the presence of duplicate trappin genes. Results The database analyses revealed that: 1 duplicated trappin multigenes were found recently in the nine-banded armadillo; 2 duplicated two trappin genes had been found in the Afrotherian species (elephant, tenrec, and hyrax since ancient days; 3 a single trappin-2 gene was found in various eutherians species; and 4 no typical trappin gene has been found in chicken, zebra finch, and opossum. Bayesian analysis estimated the date of the duplication of trappin genes in the Afrotheria, guinea pig, armadillo, cow, and pig to be 244, 35, 11, 13, and 3 million-years ago, respectively. The coding regions of trappin multigenes of almadillo, bovine, and pig evolved much faster than the noncoding exons, introns, and the flanking regions, showing that these genes have undergone accelerated evolution, and positive Darwinian selection was observed in pig-specific trappin paralogs. Conclusion These results suggest that trappin is an eutherian-specific molecule and eutherian genomes have the potential to form trappin multigenes.

  14. Expression Analyses of Embryogenesis-Associated Genes during Somatic Embryogenesis of Adiantum capillus-veneris L. In vitro: New Insights into the Evolution of Reproductive Organs in Land Plants

    Directory of Open Access Journals (Sweden)

    Guang-Yuan Rao

    2017-04-01

    Full Text Available An efficient in vitro regeneration system via somatic embryogenesis (SE was developed for a fern species Adiantum capillus-veneris. Adventitious shoots, green globular bodies (GGBs and calli were obtained with the maximal induction rate on the Murashige and Skoog (MS medium of low concentrations of 6-benzyladenine (BA (0–1.0 mg/L, 2.0 mg/L BA without 2,4-dichlorophenoxyacetic acid (2,4-D, 0.5 mg/L 2,4-D and 0.5–1.0 mg/L 6-BA, respectively. Cyto-morphological and histological changes in the shoot development via calli and GGBs were examined. For a better understanding of these developmental events, expression patterns of six genes, AcLBD16, AcAGL, AcBBM, AcWUS, AcRKD, and AcLEC1, were characterized during SE. AcBBM and AcLEC1 were ubiquitously expressed in direct SE (adventitious shoots and GGBs the maximal expression of AcBBM in mature GGBs, and the high expression of AcLEC1 in GGB initiation and adventitious shoots. During the indirect SE, AcLBD16, AcLEC1, AcRKD, and AcWUS were highly expressed in mature calli. Additionally, phylogenetic analyses showed that AcWUS, AcBBM, AcLBD, AcAGL, AcRKD, and their homologs of other green plants formed monophyletic clades, respectively. Some of these gene families, however, diversified rapidly with the occurrence of embryophytes, suggesting that embryogenesis-associated genes could experience a rapid evolution with the colonization of plants to terrestrial environments. Expression and phylogenetic analyses of those embryogenesis-associated genes by the aid of in vitro regeneration system of A. capillus-veneris provide new insights into the evolution of reproductive organs in land plants.

  15. Expression Analyses of Embryogenesis-Associated Genes during Somatic Embryogenesis ofAdiantum capillus-venerisL.In vitro: New Insights into the Evolution of Reproductive Organs in Land Plants.

    Science.gov (United States)

    Li, Xia; Han, Jing-Dan; Fang, Yu-Han; Bai, Shu-Nong; Rao, Guang-Yuan

    2017-01-01

    An efficient in vitro regeneration system via somatic embryogenesis (SE) was developed for a fern species Adiantum capillus-veneris . Adventitious shoots, green globular bodies (GGBs) and calli were obtained with the maximal induction rate on the Murashige and Skoog (MS) medium of low concentrations of 6-benzyladenine (BA) (0-1.0 mg/L), 2.0 mg/L BA without 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5 mg/L 2,4-D and 0.5-1.0 mg/L 6-BA, respectively. Cyto-morphological and histological changes in the shoot development via calli and GGBs were examined. For a better understanding of these developmental events, expression patterns of six genes, AcLBD16, AcAGL, AcBBM, AcWUS, AcRKD , and AcLEC1 , were characterized during SE. AcBBM and AcLEC1 were ubiquitously expressed in direct SE (adventitious shoots and GGBs) the maximal expression of AcBBM in mature GGBs, and the high expression of AcLEC1 in GGB initiation and adventitious shoots. During the indirect SE, AcLBD16, AcLEC1, AcRKD , and AcWUS were highly expressed in mature calli. Additionally, phylogenetic analyses showed that AcWUS, AcBBM, AcLBD, AcAGL, AcRKD , and their homologs of other green plants formed monophyletic clades, respectively. Some of these gene families, however, diversified rapidly with the occurrence of embryophytes, suggesting that embryogenesis-associated genes could experience a rapid evolution with the colonization of plants to terrestrial environments. Expression and phylogenetic analyses of those embryogenesis-associated genes by the aid of in vitro regeneration system of A. capillus-veneris provide new insights into the evolution of reproductive organs in land plants.

  16. Epigenetic silencing may aid evolution by gene duplication.

    Science.gov (United States)

    Rodin, Sergei N; Riggs, Arthur D

    2003-06-01

    Gene duplication is commonly regarded as the main evolutionary path toward the gain of a new function. However, even with gene duplication, there is a loss-versus-gain dilemma: most newly born duplicates degrade to pseudogenes, since degenerative mutations are much more frequent than advantageous ones. Thus, something additional seems to be needed to shift the loss versus gain equilibrium toward functional divergence. We suggest that epigenetic silencing of duplicates might play this role in evolution. This study began when we noticed in a previous publication (Lynch M, Conery JS [2000] Science 291:1151-1155) that the frequency of functional young gene duplicates is higher in organisms that have cytosine methylation (H. sapiens, M. musculus, and A. thaliana) than in organisms that do not have methylated genomes (S. cerevisiae, D. melanogaster, and C. elegans). We find that genome data analysis confirms the likelihood of much more efficient functional divergence of gene duplicates in mammals and plants than in yeast, nematode, and fly. We have also extended the classic model of gene duplication, in which newly duplicated genes have exactly the same expression pattern, to the case when they are epigenetically silenced in a tissue- and/or developmental stage-complementary manner. This exposes each of the duplicates to negative selection, thus protecting from "pseudogenization." Our analysis indicates that this kind of silencing (i) enhances evolution of duplicated genes to new functions, particularly in small populations, (ii) is quite consistent with the subfunctionalization model when degenerative but complementary mutations affect different subfunctions of the gene, and (iii) furthermore, may actually cooperate with the DDC (duplication-degeneration-complementation) process.

  17. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Science.gov (United States)

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-06-27

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Evolution of Genome Organization and Epigenetic Machineries ...

    Indian Academy of Sciences (India)

    48

    specifically appears at the stationary phase when the genome should be organized into a compact structure to ensure that most of the genes are shut down whereas the DNA bending proteins are predominant in the early and late exponential phase to facilitate the recruitment of transcription machineries to complete the life ...

  19. Coordinated evolution of co-expressed gene clusters in the Drosophila transcriptome

    Directory of Open Access Journals (Sweden)

    Jones Corbin D

    2008-01-01

    Full Text Available Abstract Background Co-expression of genes that physically cluster together is a common characteristic of eukaryotic transcriptomes. This organization of transcriptomes suggests that coordinated evolution of gene expression for clustered genes may also be common. Clusters where expression evolution of each gene is not independent of their neighbors are important units for understanding transcriptome evolution. Results We used a common microarray platform to measure gene expression in seven closely related species in the Drosophila melanogaster subgroup, accounting for confounding effects of sequence divergence. To summarize the correlation structure among genes in a chromosomal region, we analyzed the fraction of variation along the first principal component of the correlation matrix. We analyzed the correlation for blocks of consecutive genes to assess patterns of correlation that may be manifest at different scales of coordinated expression. We find that expression of physically clustered genes does evolve in a coordinated manner in many locations throughout the genome. Our analysis shows that relatively few of these clusters are near heterochromatin regions and that these clusters tend to be over-dispersed relative to the rest of the genome. This suggests that these clusters are not the byproduct of local gene clustering. We also analyzed the pattern of co-expression among neighboring genes within a single Drosophila species: D. simulans. For the co-expression clusters identified within this species, we find an under-representation of genes displaying a signature of recurrent adaptive amino acid evolution consistent with previous findings. However, clusters displaying co-evolution of expression among species are enriched for adaptively evolving genes. This finding points to a tie between adaptive sequence evolution and evolution of the transcriptome. Conclusion Our results demonstrate that co-evolution of expression in gene clusters is

  20. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  1. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    In this article, we discuss the dynamic organization of eukaryotic genes into chromatin. Remodeling of chromatin confers it the ability for dynamic change. Remodeling is essential for transcriptional regulation, the first step of gene expression. Chromatin Structure and Gene Expression. Transcription is the first step of gene ...

  2. Evolution of the hepcidin gene in primates

    Directory of Open Access Journals (Sweden)

    Tossi Alessandro

    2008-03-01

    Full Text Available Abstract Background Hepcidin/LEAP-1 is an iron regulatory hormone originally identified as an antimicrobial peptide. As part of a systematic analysis of the evolution of host defense peptides in primates, we have sequenced the orthologous gene from 14 species of non-human primates. Results The sequence of the mature peptide is highly conserved amongst all the analyzed species, being identical to the human one in great apes and gibbons, with a single residue conservative variation in Old-World monkeys and with few substitutions in New-World monkeys. Conclusion Our analysis indicates that hepcidin's role as a regulatory hormone, which involves interaction with a conserved receptor (ferroportin, may result in conservation over most of its sequence, with the exception of the stretch between residues 15 and 18, which in New-World monkeys (as well as in other mammals shows a significant variation, possibly indicating that this structural region is involved in other functions.

  3. The evolution of gene collectives: How natural selection drives chemical innovation.

    Science.gov (United States)

    Fischbach, Michael A; Walsh, Christopher T; Clardy, Jon

    2008-03-25

    DNA sequencing has become central to the study of evolution. Comparing the sequences of individual genes from a variety of organisms has revolutionized our understanding of how single genes evolve, but the challenge of analyzing polygenic phenotypes has complicated efforts to study how genes evolve when they are part of a group that functions collectively. We suggest that biosynthetic gene clusters from microbes are ideal candidates for the evolutionary study of gene collectives; these selfish genetic elements evolve rapidly, they usually comprise a complete pathway, and they have a phenotype-a small molecule-that is easy to identify and assay. Because these elements are transferred horizontally as well as vertically, they also provide an opportunity to study the effects of horizontal transmission on gene evolution. We discuss known examples to begin addressing two fundamental questions about the evolution of biosynthetic gene clusters: How do they propagate by horizontal transfer? How do they change to create new molecules?

  4. Molecular Phylogenetic: Organism Taxonomy Method Based on Evolution History

    Directory of Open Access Journals (Sweden)

    N.L.P Indi Dharmayanti

    2011-03-01

    Full Text Available Phylogenetic is described as taxonomy classification of an organism based on its evolution history namely its phylogeny and as a part of systematic science that has objective to determine phylogeny of organism according to its characteristic. Phylogenetic analysis from amino acid and protein usually became important area in sequence analysis. Phylogenetic analysis can be used to follow the rapid change of a species such as virus. The phylogenetic evolution tree is a two dimensional of a species graphic that shows relationship among organisms or particularly among their gene sequences. The sequence separation are referred as taxa (singular taxon that is defined as phylogenetically distinct units on the tree. The tree consists of outer branches or leaves that represents taxa and nodes and branch represent correlation among taxa. When the nucleotide sequence from two different organism are similar, they were inferred to be descended from common ancestor. There were three methods which were used in phylogenetic, namely (1 Maximum parsimony, (2 Distance, and (3 Maximum likehoood. Those methods generally are applied to construct the evolutionary tree or the best tree for determine sequence variation in group. Every method is usually used for different analysis and data.

  5. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes

    OpenAIRE

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-01-01

    Background Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. Results We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fiftee...

  6. The sociobiology of genes: the gene's eye view as a unifying behavioural-ecological framework for biological evolution.

    Science.gov (United States)

    De Tiège, Alexis; Van de Peer, Yves; Braeckman, Johan; Tanghe, Koen B

    2017-11-22

    Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly 'gene-centred', the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene's eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes within the same organism and genome. Here, we explore the explanatory potential of 'intra-organismic' and 'intra-genomic' gene-selectionism, i.e., of a behavioural-ecological 'gene's eye view' on genetic, genomic and organismal evolution. First, we give a general outline of the framework and how it complements the-to some extent-still 'organism-centred' approach of classical evolutionary theory. Secondly, we give a more in-depth assessment of its explanatory potential for biological evolution, i.e., for Darwin's 'common descent with modification' or, more specifically, for 'historical continuity or homology with modular evolutionary change' as it has been studied by evolutionary developmental biology (evo-devo) during the last few decades. In contrast with classical evolutionary theory, evo-devo focuses on 'within-organism' developmental processes. Given the capacity of gene-selectionism to adopt an intra-organismal gene's eye view, we outline the relevance of the latter model for evo-devo. Overall, we aim for the conceptual integration between the gene's eye view on the one hand, and more organism-centred evolutionary models (both classical evolutionary theory and evo-devo) on the other.

  7. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.

    Science.gov (United States)

    Venkatachalam, Ananda B; Parmar, Manoj B; Wright, Jonathan M

    2017-08-01

    Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.

  8. Molecular Evolution and Expression Divergence of HMT Gene Family in Plants

    Directory of Open Access Journals (Sweden)

    Man Zhao

    2018-04-01

    Full Text Available Homocysteine methyltransferase (HMT converts homocysteine to methionine using S-methylmethionine (SMM or S-adenosylmethionine (SAM as methyl donors in organisms, playing an important role in supplying methionine for the growth and the development of plants. To better understand the functions of the HMT genes in plants, we conducted a wide evolution and expression analysis of these genes. Reconstruction of the phylogenetic relationship showed that the HMT gene family was divided into Class 1 and Class 2. In Class 1, HMTs were only found in seed plants, while Class 2 presented in all land plants, which hinted that the HMT genes might have diverged in seed plants. The analysis of gene structures and selection pressures showed that they were relatively conserved during evolution. However, type I functional divergence had been detected in the HMTs. Furthermore, the expression profiles of HMTs showed their distinct expression patterns in different tissues, in which some HMTs were widely expressed in various organs, whereas the others were highly expressed in some specific organs, such as seeds or leaves. Therefore, according to our results in the evolution, functional divergence, and expression, the HMT genes might have diverged during evolution. Further analysis in the expression patterns of AthHMTs with their methyl donors suggested that the diverged HMTs might be related to supply methionine for the development of plant seeds.

  9. Constrained vertebrate evolution by pleiotropic genes

    DEFF Research Database (Denmark)

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song

    2017-01-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that ...

  10. Genes as leaders and followers in evolution

    NARCIS (Netherlands)

    Schwander, Tanja; Leimar, Olof

    A major question for the study of phenotypic evolution is whether intra- and interspecific diversity originates directly from genetic variation, or instead, as plastic responses to environmental influences initially, followed later by genetic change. In species with discrete alternative phenotypes,

  11. The Evolution of Enterprise Organization Designs

    OpenAIRE

    Jay R. Galbraith

    2012-01-01

    This article extends Alfred Chandler's seminal ideas about strategy and organizational structure, and it predicts the next stage of organizational evolution. Chandler described the evolution of vertical integration and diversification strategies for which the functional and multidivisional structures are appropriate. He also explained how the dominant structure at any point in time is a concatenation or accumulation of all previous strategies and structures. I extend Chandler's ideas by descr...

  12. Many genes in fish have species-specific asymmetric rates of molecular evolution

    Directory of Open Access Journals (Sweden)

    Braasch Ingo

    2006-02-01

    Full Text Available Abstract Background Gene and genome duplication events increase the amount of genetic material that might then contribute to an increase in the genomic and phenotypic complexity of organisms during evolution. Thus, it has been argued that there is a relationship between gene copy number and morphological complexity and/or species diversity. This hypothesis implies that duplicated genes have subdivided or evolved novel functions compared to their pre-duplication proto-orthologs. Such a functional divergence might be caused by an increase in evolutionary rates in one ortholog, by changes in expression, regulatory evolution, insertion of repetitive elements, or due to positive Darwinian selection in one copy. We studied a set of 2466 genes that were present in Danio rerio, Takifugu rubripes, Tetraodon nigroviridis and Oryzias latipes to test (i for forces of positive Darwinian selection; (ii how frequently duplicated genes are retained, and (iii whether novel gene functions might have evolved. Results 25% (610 of all investigated genes show significantly smaller or higher genetic distances in the genomes of particular fish species compared to their human ortholog than their orthologs in other fish according to relative rate tests. We identified 49 new paralogous pairs of duplicated genes in fish, in which one of the paralogs is under positive Darwinian selection and shows a significantly higher rate of molecular evolution in one of the four fish species, whereas the other copy apparently did not undergo adaptive changes since it retained the original rate of evolution. Among the genes under positive Darwinian selection, we found a surprisingly high number of ATP binding proteins and transcription factors. Conclusion The significant rate difference suggests that the function of these rate-changed genes might be essential for the respective fish species. We demonstrate that the measurement of positive selection is a powerful tool to identify

  13. Molecular evolution of genes encoding ribonucleases in ruminant species.

    Science.gov (United States)

    Confalone, E; Beintema, J J; Sasso, M P; Carsana, A; Palmieri, M; Vento, M T; Furia, A

    1995-12-01

    Phylogenetic analysis, based on the primary structures of mammalian pancreatic-type ribonucleases, indicated that gene duplication events, which occurred during the evolution of ancestral ruminants, gave rise to the three paralogous enzymes present in the bovine species. Herein we report data that demonstrate the existence of the orthologues of the bovine pancreatic, seminal, and cerebral ribonucleases coding sequences in the genomes of giraffe and sheep. The "seminal" sequence is a pseudogene in both species. We also report an analysis of the transcriptional expression of ribonuclease genes in sheep tissues. The data presented support a model for positive selection acting on the molecular evolution of ruminant ribonuclease genes.

  14. Organization, Evolution, Cognition and Dynamic Capabilities

    NARCIS (Netherlands)

    Nooteboom, B.

    2006-01-01

    Using insights from 'embodied cognition' and a resulting 'cognitive theory of the firm', I aim to contribute to the further development of evolutionary theory of organizations, in the specification of organizations as 'interactors' that carry organizational competencies as 'replicators', within

  15. Self-organized criticality in forest-landscape evolution

    Science.gov (United States)

    J.C. Sprott; Janine Bolliger; David J. Mladenoff

    2002-01-01

    A simple cellular automaton replicates the fractal pattern of a natural forest landscape and predicts its evolution. Spatial distributions and temporal fluctuations in global quantities show power-law spectra, implying scale-invariance, characteristic of self-organized criticality. The evolution toward the SOC state and the robustness of that state to perturbations...

  16. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    OpenAIRE

    Ozhigov, Yuri I.

    2013-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase ...

  17. Evolution of the Organization for Tropical Studies

    Directory of Open Access Journals (Sweden)

    Leslie J Burlingame

    2002-06-01

    Full Text Available The Organization for Tropical Studies (OTS/Organización para Estudios Tropicales (OET has evolved in many ways since its founding in 1963 as a non-profit consortium offering graduate courses and facilitating research in tropical ecology in Costa Rica. By 2002, its international membership included about 65 institutions, including four from Costa Rica. It had developed three Costa Rican field stations (La Selva, Las Cruces, and Palo Verde with excellent facilities for teaching and research, and it was constructing a new Costa Rican office at the University of Costa Rica. Combinations of internal and external pressures influenced OTS to develop in new directions in the 1980s and 1990s. It became more diversified and more concerned with applied science in its traditional areas of graduate education and research facilitation. The Organization also evolved into new niches: more applied biology, professional education, environmental education and policy, conservation efforts, and an expanded geographic distribution to other Latin American countries. OTS was composed of changing combinations of people (Boards, members, staff with evolving and competing priorities for limited financial resources. External environmental changes also shaped OTS’s evolution. New problems of increased tropical deforestation, the emergence of the biodiversity "crisis" and conservation biology, global climate change, and calls for sustainable development affected OTS constituents and funding priorities of governments and foundations. Both internal and external pressures have in some cases demanded for OTS to improve its relationship with: Costa Rican biologists and their institutions, the Costa Rican government, and Costa Ricans living around the three OTS field stationsLa Organization for Tropical Studies (OTS/Organización para Estudios Tropicales (OET ha evolucionado en diversos campos desde su fundación en 1963 como un consorcio sin fines de lucro que ofrece cursos de

  18. Cross-species gene transfer; implications for a new theory of evolution.

    Science.gov (United States)

    Syvanen, M

    1985-01-21

    It has been established that genes can be transferred and expressed among procaryotes of different species. I am hypothesizing--and there is mounting evidence for this conclusion--that genes are transferred and expressed among all species, and that such exchange is facilitated by, and can help account for, the existence of the biological unities, from the uniform genetic code to the cross-species similarity of the stages of embryological development. If this idea is correct, the uniformity of the genetic code would allow organisms to decipher and use genes transposed from chromosomes of foreign species, and the shared sequence of embryological development within each phylum would allow the organism to integrate these genes, particularly when the genes affect complex morphological traits. The cross-species gene transfer model could help explain many observations which have puzzled evolutionists, such as rapid bursts in evolution and the widespread occurrence of parallelism in the fossil record.

  19. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    Science.gov (United States)

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  20. Reticulate Evolution and Marine Organisms: The Final Frontier?

    Directory of Open Access Journals (Sweden)

    Michael L. Arnold

    2009-09-01

    Full Text Available The role that reticulate evolution (i.e., via lateral transfer, viral recombination and/or introgressive hybridization has played in the origin and adaptation of individual taxa and even entire clades continues to be tested for all domains of life. Though falsified for some groups, the hypothesis of divergence in the face of gene flow is becoming accepted as a major facilitator of evolutionary change for many microorganisms, plants and animals. Yet, the effect of reticulate evolutionary change in certain assemblages has been doubted, either due to an actual dearth of genetic exchange among the lineages belonging to these clades or because of a lack of appropriate data to test alternative hypotheses. Marine organisms represent such an assemblage. In the past half-century, some evolutionary biologists interested in the origin and trajectory of marine organisms, particularly animals, have posited that horizontal transfer, introgression and hybrid speciation have been rare. In this review, we provide examples of such genetic exchange that have come to light largely as a result of analyses of molecular markers. Comparisons among these markers and between these loci and morphological characters have provided numerous examples of marine microorganisms, plants and animals that possess the signature of mosaic genomes.

  1. Selfish cellular networks and the evolution of complex organisms.

    Science.gov (United States)

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Science & Society seminar: Evolution is not only a story of genes

    CERN Multimedia

    2002-01-01

    Memes are behaviours and ideas copied from person to person by imitation. These include songs, habits, skills, inventions and ways of doing things. Darwinian evolutionary theory, which holds that genes control the traits of organisms, has traditionally explained human nature. Susan Blackmore offers a new look at evolution, and considers evolving memes as well as genes. This will be the subject of the next Science and Society seminar, 'The evolution of Meme machines', that will take place on Thursday 24 October. According to the meme idea, everything changed in human evolution when imitation first appeared because imitation let loose a new replicator, the meme. Since that time, two replicators have been driving human evolution, not one. This is why humans have such big brains, and why they alone produce and understand grammatical language, sing, dance, wear clothes and have complex cumulative cultures. Unlike other brains, human brains had to solve the problem of choosing which memes to imitate. In other wor...

  3. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  4. Developmental evolution in social insects: regulatory networks from genes to societies.

    Science.gov (United States)

    Linksvayer, Timothy A; Fewell, Jennifer H; Gadau, Jürgen; Laubichler, Manfred D

    2012-05-01

    The evolution and development of complex phenotypes in social insect colonies, such as queen-worker dimorphism or division of labor, can, in our opinion, only be fully understood within an expanded mechanistic framework of Developmental Evolution. Conversely, social insects offer a fertile research area in which fundamental questions of Developmental Evolution can be addressed empirically. We review the concept of gene regulatory networks (GRNs) that aims to fully describe the battery of interacting genomic modules that are differentially expressed during the development of individual organisms. We discuss how distinct types of network models have been used to study different levels of biological organization in social insects, from GRNs to social networks. We propose that these hierarchical networks spanning different organizational levels from genes to societies should be integrated and incorporated into full GRN models to elucidate the evolutionary and developmental mechanisms underlying social insect phenotypes. Finally, we discuss prospects and approaches to achieve such an integration. © 2012 WILEY PERIODICALS, INC.

  5. Pax genes in eye development and evolution

    Czech Academy of Sciences Publication Activity Database

    Kozmik, Zbyněk

    2005-01-01

    Roč. 15, č. 4 (2005), s. 430-438 ISSN 0959-437X R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA204/04/1358 Institutional research plan: CEZ:AV0Z5052915 Keywords : paxpax * eye development * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.361, year: 2005

  6. The evolution of gene expression QTL in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Ronald

    2007-08-01

    Full Text Available Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL.

  7. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  8. Organization, Evolution, Cognition and Dynamic Capabilities

    NARCIS (Netherlands)

    Nooteboom, B.

    2007-01-01

    Using insights from ‘embodied cognition’ and a resulting ‘cognitive theory of the firm’, I aim to contribute to the further development of evolutionary theory of organizations, in the specification of organizations as ‘interactors’ that carry organizational competencies as ‘replicators’, within

  9. Loss of genes implicated in gastric function during platypus evolution

    OpenAIRE

    Ordoñez, Gonzalo R; Hillier, LaDeana W; Warren, Wesley C; Grützner, Frank; López-Otín, Carlos; Puente, Xose S

    2008-01-01

    Background The duck-billed platypus (Ornithorhynchus anatinus) belongs to the mammalian subclass Prototheria, which diverged from the Theria line early in mammalian evolution. The platypus genome sequence provides a unique opportunity to illuminate some aspects of the biology and evolution of these animals. Results We show that several genes implicated in food digestion in the stomach have been deleted or inactivated in platypus. Comparison with other vertebrate genomes revealed that the main...

  10. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  11. Gene Regulatory Evolution During Speciation in a Songbird

    Directory of Open Access Journals (Sweden)

    John H. Davidson

    2016-05-01

    Full Text Available Over the last decade, tremendous progress has been made toward a comparative understanding of gene regulatory evolution. However, we know little about how gene regulation evolves in birds, and how divergent genomes interact in their hybrids. Because of the unique features of birds – female heterogamety, a highly conserved karyotype, and the slow evolution of reproductive incompatibilities – an understanding of regulatory evolution in birds is critical to a comprehensive understanding of regulatory evolution and its implications for speciation. Using a novel complement of analyses of replicated RNA-seq libraries, we demonstrate abundant divergence in brain gene expression between zebra finch (Taeniopygia guttata subspecies. By comparing parental populations and their F1 hybrids, we also show that gene misexpression is relatively rare among brain-expressed transcripts in male birds. If this pattern is consistent across tissues and sexes, it may partially explain the slow buildup of postzygotic reproductive isolation observed in birds relative to other taxa. Although we expected that the action of genetic drift on the island-dwelling zebra finch subspecies would be manifested in a higher rate of trans regulatory divergence, we found that most divergence was in cis regulation, following a pattern commonly observed in other taxa. Thus, our study highlights both unique and shared features of avian regulatory evolution.

  12. Targeted sequencing of venom genes from cone snail genomes improves understanding of conotoxin molecular evolution.

    Science.gov (United States)

    Phuong, Mark A; Mahardika, Gusti N

    2018-03-05

    To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and non-toxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100X coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of 1-6 exons and are typically short in length (mean = ∼85bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: (a) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, (b) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24%-63%), and (c) extensive gene turnover, where Conidae species varied from 120-859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.

  13. Comparative Analysis of Gene Expression for Convergent Evolution of Camera Eye Between Octopus and Human

    Science.gov (United States)

    Ogura, Atsushi; Ikeo, Kazuho; Gojobori, Takashi

    2004-01-01

    Although the camera eye of the octopus is very similar to that of humans, phylogenetic and embryological analyses have suggested that their camera eyes have been acquired independently. It has been known as a typical example of convergent evolution. To study the molecular basis of convergent evolution of camera eyes, we conducted a comparative analysis of gene expression in octopus and human camera eyes. We sequenced 16,432 ESTs of the octopus eye, leading to 1052 nonredundant genes that have matches in the protein database. Comparing these 1052 genes with 13,303 already-known ESTs of the human eye, 729 (69.3%) genes were commonly expressed between the human and octopus eyes. On the contrary, when we compared octopus eye ESTs with human connective tissue ESTs, the expression similarity was quite low. To trace the evolutionary changes that are potentially responsible for camera eye formation, we also compared octopus-eye ESTs with the completed genome sequences of other organisms. We found that 1019 out of the 1052 genes had already existed at the common ancestor of bilateria, and 875 genes were conserved between humans and octopuses. It suggests that a larger number of conserved genes and their similar gene expression may be responsible for the convergent evolution of the camera eye. PMID:15289475

  14. De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data.

    Science.gov (United States)

    Baalsrud, Helle Tessand; Tørresen, Ole Kristian; Hongrø Solbakken, Monica; Salzburger, Walter; Hanel, Reinhold; Jakobsen, Kjetill S; Jentoft, Sissel

    2017-12-05

    New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. Additionally, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Heredity and self-organization: partners in the generation and evolution of phenotypes.

    Science.gov (United States)

    Malagon, Nicolas; Larsen, Ellen

    2015-01-01

    In this review we examine the role of self-organization in the context of the evolution of morphogenesis. We provide examples to show that self-organized behavior is ubiquitous, and suggest it is a mechanism that can permit high levels of biodiversity without the invention of ever-increasing numbers of genes. We also examine the implications of self-organization for understanding the "internal descriptions" of organisms and the concept of a genotype-phenotype map. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Equine immunoglobulins and organization of immunoglobulin genes.

    Science.gov (United States)

    Walther, Stefanie; Rusitzka, Tamara V; Diesterbeck, Ulrike S; Czerny, Claus-Peter

    2015-12-01

    Our understanding of how equine immunoglobulin genes are organized has increased significantly in recent years. For equine heavy chains, 52 IGHV, 40 IGHD, 8 IGHJ and 11 IGHC are present. Seven of these IGHCs are gamma chain genes. Sequence diversity is increasing between fetal, neonatal, foal and adult age. The kappa light chain contains 60 IGKV, 5 IGKJ and 1 IGKC, whereas there are 144 IGLV, 7 IGLJ, and 7 IGLC for the lambda light chain, which is expressed predominantly in horses. Significant transcriptional differences for IGLV and IGLC are identified in different breeds. Allotypic and allelic variants are observed for IGLC1, IGLC5, and IGLC6/7, and two IGLV pseudogenes are also transcribed. During age development, a decrease in IGLVs is noted, although nucleotide diversity and significant differences in gene usage increased. The following paper suggests a standardization of the existing nomenclature of immunoglobulin genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Virulence genes and the evolution of host specificity in plant-pathogenic fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2007-10-01

    In the fungal kingdom, the ability to cause disease in plants appears to have arisen multiple times during evolution. In many cases, the ability to infect particular plant species depends on specific genes that distinguish virulent fungi from their sometimes closely related nonvirulent relatives. These genes encode host-determining "virulence factors," including small, secreted proteins and enzymes involved in the synthesis of toxins. These virulence factors typically are involved in evolutionary arms races between plants and pathogens. We briefly summarize current knowledge of these virulence factors from several fungal species in terms of function, phylogenetic distribution, sequence variation, and genomic location. Second, we address some issues that are relevant to the evolution of virulence in fungi toward plants; in particular, horizontal gene transfer and the genomic organization of virulence genes.

  18. Evolution of gene regulatory networks by fluctuating selection and intrinsic constraints.

    Directory of Open Access Journals (Sweden)

    Masaki E Tsuda

    Full Text Available Various characteristics of complex gene regulatory networks (GRNs have been discovered during the last decade, e.g., redundancy, exponential indegree distributions, scale-free outdegree distributions, mutational robustness, and evolvability. Although progress has been made in this field, it is not well understood whether these characteristics are the direct products of selection or those of other evolutionary forces such as mutational biases and biophysical constraints. To elucidate the causal factors that promoted the evolution of complex GRNs, we examined the effect of fluctuating environmental selection and some intrinsic constraining factors on GRN evolution by using an individual-based model. We found that the evolution of complex GRNs is remarkably promoted by fixation of beneficial gene duplications under unpredictably fluctuating environmental conditions and that some internal factors inherent in organisms, such as mutational bias, gene expression costs, and constraints on expression dynamics, are also important for the evolution of GRNs. The results indicate that various biological properties observed in GRNs could evolve as a result of not only adaptation to unpredictable environmental changes but also non-adaptive processes owing to the properties of the organisms themselves. Our study emphasizes that evolutionary models considering such intrinsic constraining factors should be used as null models to analyze the effect of selection on GRN evolution.

  19. Speciation through evolution of sex-linked genes.

    Science.gov (United States)

    Qvarnström, A; Bailey, R I

    2009-01-01

    Identification of genes involved in reproductive isolation opens novel ways to investigate links between stages of the speciation process. Are the genes coding for ecological adaptations and sexual isolation the same that eventually lead to hybrid sterility and inviability? We review the role of sex-linked genes at different stages of speciation based on four main differences between sex chromosomes and autosomes; (1) relative speed of evolution, (2) non-random accumulation of genes, (3) exposure of incompatible recessive genes in hybrids and (4) recombination rate. At early stages of population divergence ecological differences appear mainly determined by autosomal genes, but fast-evolving sex-linked genes are likely to play an important role for the evolution of sexual isolation by coding for traits with sex-specific fitness effects (for example, primary and secondary sexual traits). Empirical evidence supports this expectation but mainly in female-heterogametic taxa. By contrast, there is clear evidence for both strong X- and Z-linkage of hybrid sterility and inviability at later stages of speciation. Hence genes coding for sexual isolation traits are more likely to eventually cause hybrid sterility when they are sex-linked. We conclude that the link between sexual isolation and evolution of hybrid sterility is more intuitive in male-heterogametic taxa because recessive sexually antagonistic genes are expected to quickly accumulate on the X-chromosome. However, the broader range of sexual traits that are expected to accumulate on the Z-chromosome may facilitate adaptive speciation in female-heterogametic species by allowing male signals and female preferences to remain in linkage disequilibrium despite periods of gene flow.

  20. Loss of genes implicated in gastric function during platypus evolution.

    Science.gov (United States)

    Ordoñez, Gonzalo R; Hillier, Ladeana W; Warren, Wesley C; Grützner, Frank; López-Otín, Carlos; Puente, Xose S

    2008-01-01

    The duck-billed platypus (Ornithorhynchus anatinus) belongs to the mammalian subclass Prototheria, which diverged from the Theria line early in mammalian evolution. The platypus genome sequence provides a unique opportunity to illuminate some aspects of the biology and evolution of these animals. We show that several genes implicated in food digestion in the stomach have been deleted or inactivated in platypus. Comparison with other vertebrate genomes revealed that the main genes implicated in the formation and activity of gastric juice have been lost in platypus. These include the aspartyl proteases pepsinogen A and pepsinogens B/C, the hydrochloric acid secretion stimulatory hormone gastrin, and the alpha subunit of the gastric H+/K+-ATPase. Other genes implicated in gastric functions, such as the beta subunit of the H+/K+-ATPase and the aspartyl protease cathepsin E, have been inactivated because of the acquisition of loss-of-function mutations. All of these genes are highly conserved in vertebrates, reflecting a unique pattern of evolution in the platypus genome not previously seen in other mammalian genomes. The observed loss of genes involved in gastric functions might be responsible for the anatomical and physiological differences in gastrointestinal tract between monotremes and other vertebrates, including small size, lack of glands, and high pH of the monotreme stomach. This study contributes to a better understanding of the mechanisms that underlie the evolution of the platypus genome, might extend the less-is-more evolutionary model to monotremes, and provides novel insights into the importance of gene loss events during mammalian evolution.

  1. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  2. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2008-09-01

    Full Text Available Abstract Background The autosomal dominant polycystic kidney disease (ADPKD is mostly caused by mutations in the PKD1 (polycystic kidney disease 1 gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative

  3. Molecular evolution of genes encoding ribonucleases in ruminant species

    NARCIS (Netherlands)

    Confalone, E; Beintema, JJ; Sasso, MP; Carsana, A; Palmieri, M; Vento, MT; Furia, A

    1995-01-01

    Phylogenetic analysis, based on the primary structures of mammalian pancreatic-type ribonucleases, indicated that gene duplication events, which occurred during the evolution of ancestral ruminants, gave rise to the three paralogous enzymes present in the bovine species. Herein we report data that

  4. Identification of genes that have undergone adaptive evolution in ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta) is a vital food security crop and staple in Africa, yet cassava brown streak disease (CBSD) and cassava mosaic disease result in substantial yield losses. The aim of this study was to identify genes that have undergone positive selection during adaptive evolution, from CBSD resistant, tolerant ...

  5. Commentary: When does understanding phenotypic evolution require identification of the underlying genes?

    Science.gov (United States)

    Rausher, Mark D; Delph, Lynda F

    2015-07-01

    Adaptive evolution is fundamentally a genetic process. Over the past three decades, characterizing the genes underlying adaptive phenotypic change has revealed many important aspects of evolutionary change. At the same time, natural selection is often fundamentally an ecological process that can often be studied without identifying the genes underlying the variation on which it acts. This duality has given rise to disagreement about whether, and under what circumstances, it is necessary to identify specific genes associated with phenotypic change. This issue is of practical concern, especially for researchers who study nonmodel organisms, because of the often enormous cost and labor required to "go for the genes." We here consider a number of situations and questions commonly addressed by researchers. Our conclusion is that although gene identification can be crucial for answering some questions, there are others for which definitive answers can be obtained without finding underlying genes. It should thus not be assumed that considerations of "empirical completeness" dictate that gene identification is always desirable. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  6. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  7. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  8. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  9. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis

    Directory of Open Access Journals (Sweden)

    Hare Emily E

    2004-08-01

    Full Text Available Abstract Background Aromatic L-amino acid decarboxylase (AADC enzymes catalyze the synthesis of biogenic amines, including the neurotransmitters serotonin and dopamine, throughout the animal kingdom. These neurotransmitters typically perform important functions in both the nervous system and other tissues, as illustrated by the debilitating conditions that arise from their deficiency. Studying the regulation and evolution of AADC genes is therefore desirable to further our understanding of how nervous systems function and evolve. Results In the nematode C. elegans, the bas-1 gene is required for both serotonin and dopamine synthesis, and maps genetically near two AADC-homologous sequences. We show by transformation rescue and sequencing of mutant alleles that bas-1 encodes an AADC enzyme. Expression of a reporter construct in transgenics suggests that the bas-1 gene is expressed, as expected, in identified serotonergic and dopaminergic neurons. The bas-1 gene is one of six AADC-like sequences in the C. elegans genome, including a duplicate that is immediately downstream of the bas-1 gene. Some of the six AADC genes are quite similar to known serotonin- and dopamine-synthetic AADC's from other organisms whereas others are divergent, suggesting previously unidentified functions. In comparing the AADC genes of C. elegans with those of the congeneric C. briggsae, we find only four orthologous AADC genes in C. briggsae. Two C. elegans AADC genes – those most similar to bas-1 – are missing from C. briggsae. Phylogenetic analysis indicates that one or both of these bas-1-like genes were present in the common ancestor of C. elegans and C. briggsae, and were retained in the C. elegans line, but lost in the C. briggsae line. Further analysis of the two bas-1-like genes in C. elegans suggests that they are unlikely to encode functional enzymes, and may be expressed pseudogenes. Conclusions The bas-1 gene of C. elegans encodes a serotonin- and dopamine

  10. Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement

    International Nuclear Information System (INIS)

    Cohen-Gihon, Inbar; Nussinov, Ruth; Sharan, Roded

    2011-01-01

    During evolution, organisms have gained functional complexity mainly by modifying and improving existing functioning systems rather than creating new ones ab initio. Here we explore the interplay between two processes which during evolution have had major roles in the acquisition of new functions: gene duplication and protein domain rearrangements. We consider four possible evolutionary scenarios: gene families that have undergone none of these event types; only gene duplication; only domain rearrangement, or both events. We characterize each of the four evolutionary scenarios by functional attributes. Our analysis of ten fungal genomes indicates that at least for the fungi clade, species significantly appear to gain complexity by gene duplication accompanied by the expansion of existing domain architectures via rearrangements. We show that paralogs gaining new domain architectures via duplication tend to adopt new functions compared to paralogs that preserve their domain architectures. We conclude that evolution of protein families through gene duplication and domain rearrangement is correlated with their functional properties. We suggest that in general, new functions are acquired via the integration of gene duplication and domain rearrangements rather than each process acting independently

  11. The function and evolution of Wnt genes in arthropods.

    Science.gov (United States)

    Murat, Sophie; Hopfen, Corinna; McGregor, Alistair P

    2010-11-01

    Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Divergence and Conservative Evolution of XTNX Genes in Land Plants

    Directory of Open Access Journals (Sweden)

    Yan-Mei Zhang

    2017-10-01

    Full Text Available The Toll-interleukin-1 receptor (TIR and Nucleotide-binding site (NBS domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays, all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.

  13. The coordinated expression, interaction and evolution of the neuroendocrine genes.

    Science.gov (United States)

    Tiwary, Basant K

    2012-11-01

    The neuroendocrine system is a complex biological system controlled by various neuropeptides and hormones. The evolution and network properties of neuroendocrine genes are analyzed along with their expression profiles. The neuroendocrine genes show very similar expression profiles and local network properties across a wide range of tissues consistent with the physiological roles of their proteins. Moreover, the coordinated evolution of 10 neuroendocrine genes involved in mammalian reproduction and homeostasis is demonstrated using several methods, such as correlated evolution, relative-rate test, relative-ratio test and codon usage bias. The neuroendocrine genes seem to evolve predominantly under similar selective strengths and regimes of purifying selection, which is well reflected in their evolutionary fingerprints. This result demonstrates for the first time a key role of natural selection in creating and maintaining a well-designed neuroendocrine system at the genomic level. It also indicates that component properties of a complex system at a higher physiological scale may determine component properties at a lower genomic scale and/or vice versa.

  14. A contribution to the study of plant development evolution based on gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Francisco J. Romero-Campero

    2013-08-01

    Full Text Available Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.

  15. Orthopoxvirus Genome Evolution: The Role of Gene Loss

    Directory of Open Access Journals (Sweden)

    Eneida L. Hatcher

    2010-09-01

    Full Text Available Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue niche.

  16. Glutamine synthetase gene evolution: A good molecular clock

    International Nuclear Information System (INIS)

    Pesole, G.; Lanvave, C.; Saccone, C.; Bozzetti, M.P.; Preparata, G.

    1991-01-01

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves

  17. Evolution and Stress Responses of Gossypium hirsutum SWEET Genes.

    Science.gov (United States)

    Li, Wei; Ren, Zhongying; Wang, Zhenyu; Sun, Kuan; Pei, Xiaoyu; Liu, Yangai; He, Kunlun; Zhang, Fei; Song, Chengxiang; Zhou, Xiaojian; Zhang, Wensheng; Ma, Xiongfeng; Yang, Daigang

    2018-03-08

    The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum , which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutum SWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum , Gossypium raimondii , and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis -acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.

  18. Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions.

    Science.gov (United States)

    Yang, Cheng-Hong; Chuang, Li-Yeh; Lin, Yu-Da

    2017-10-09

    Epistasis within disease-related genes (gene-gene interactions) was determined through contingency table measures based on multifactor dimensionality reduction (MDR) using single-nucleotide polymorphisms (SNPs). Most MDR-based methods use the single contingency table measure to detect gene-gene interactions; however, some gene-gene interactions may require identification through multiple contingency table measures. In this study, a multiobjective differential evolution method (called MODEMDR) was proposed to merge the various contingency table measures based on MDR to detect significant gene-gene interactions. Two contingency table measures, namely the correct classification rate and normalized mutual information, were selected to design the fitness functions in MODEMDR. The characteristics of multiobjective optimization enable MODEMDR to use multiple measures to efficiently and synchronously detect significant gene-gene interactions within a reasonable time frame. Epistatic models with and without marginal effects under various parameter settings (heritability and minor allele frequencies) were used to assess existing methods by comparing the detection success rates of gene-gene interactions. The results of the simulation datasets show that MODEMDR is superior to existing methods. Moreover, a large dataset obtained from the Wellcome Trust Case Control Consortium was used to assess MODEMDR. MODEMDR exhibited efficiency in identifying significant gene-gene interactions in genome-wide association studies.

  19. Echinoderm systems for gene regulatory studies in evolution and development.

    Science.gov (United States)

    Arnone, Maria Ina; Andrikou, Carmen; Annunziata, Rossella

    2016-08-01

    One of the main challenges in Evolutionary Developmental Biology is to understand to which extent developmental changes are driven by regulatory alterations in the genomic sequence. In the recent years, the focus of comparative developmental studies has moved towards a systems biology approach providing a better understanding of the evolution of gene interactions that form the so called Gene Regulatory Networks (GRN). Echinoderms provide a powerful system to reveal regulatory mechanisms and within the past decade, due to the latest technological innovations, a great number of studies have provided valuable information for comparative GRN analyses. In this review we describe recent advances in evolution of GRNs arising from echinoderm systems, focusing on the properties of conserved regulatory kernels, circuit co-option events and GRN topological rearrangements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Of mice and genes: evolution of vertebrate brain development

    Science.gov (United States)

    Fritzsch, B.

    1998-01-01

    In this review the current understanding of genetic and molecular evolution of development, in particular the formation of the major axis of bilateral animals, is critically evaluated, and the early pattern formation in the hindbrain is related as much as possible to these processes. On the genetic level it is proposed that the exuberant multiplication of regulatory genes compared to that of structural genes relates to the increased flexibility of early vertebrate development. In comparisons to fruit flies, many conserved genes are found to be expressed very differently, while many others seem to reflect a comparable pattern and thus suggest a conservation of function. Even genes with a largely conserved pattern of expression may change the level at which they are expressed and the mechanisms by which they are regulated in their expression. Evolution and development of hindbrain motoneurons is reviewed, and it is concluded that both comparative data as well as more recent experimental data suggest a limited importance for the rhombomeres. Clearly, many cell fate-specifying processes work below the level of rhombomeres or in the absence of rhombomeres. It is suggested that more comparative developmental data are needed to establish firmly the relationship between homeobox genes and rhombomere specification in vertebrates other than a few model species.

  1. Evolution of yolk protein genes in the Echinodermata.

    Science.gov (United States)

    Prowse, Thomas A A; Byrne, Maria

    2012-01-01

    Vitellogenin genes (vtg) encode large lipid transfer proteins (LLTPs) that are typically female-specific, functioning as precursors to major yolk proteins (MYPs). Within the phylum Echinodermata, however, the MYP of the Echinozoa (Echinoidea + Holothuroidea) is expressed by an unrelated transferrin-like gene that has a reproductive function in both sexes. We investigated egg proteins in the Asterozoa (Asteroidea + Ophiuroidea), a sister clade to the Echinozoa, showing that eggs of the asteroid Parvulastra exigua contain a vitellogenin protein (Vtg). vtg is expressed by P. exigua, a species with large eggs and nonfeeding larvae, and by the related asterinid Patiriella regularis which has small eggs and feeding larvae. In the Asteroidea, therefore, the reproductive function of vtg is conserved despite significant life history evolution. Like the echinozoan MYP gene, asteroid vtg is expressed in both sexes and may play a role in the development of both ovaries and testes. Phylogenetic analysis indicated that a putative Vtg from the sea urchin genome, a likely pseudogene, does not clade with asteroid Vtg. We propose the following sequence as a potential pathway for the evolution of YP genes in the Echinodermata: (1) the ancestral echinoderm produced YPs derived from Vtg, (2) bisexual vtg expression subsequently evolved in the echinoderm lineage, (3) the reproductive function of vtg was assumed by a transferrin-like gene in the ancestral echinozoan, and (4) redundant echinozoan vtg was released from stabilizing selection. © 2012 Wiley Periodicals, Inc.

  2. Hox genes and evolution [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Steven M. Hrycaj

    2016-05-01

    Full Text Available Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan.

  3. Some Histories of Molecular Evolution: Amniote Phylogeny, Vertebrate Eye Lens Evolution, and the Prion Gene

    NARCIS (Netherlands)

    Rheede, T. van

    2004-01-01

    In this thesis, the principles of molecular evolution and phylogeny are introduced in Chapter 1, while the subsequent chapters deal with the three topics mentioned in the title. Part I: Birds, reptiles and mammals are Amniota, organisms that have an amnion during their embryonal development. Even

  4. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  5. Early events in the evolution of spider silk genes.

    Science.gov (United States)

    Starrett, James; Garb, Jessica E; Kuelbs, Amanda; Azubuike, Ugochi O; Hayashi, Cheryl Y

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of

  6. The evolution and expression of panarthropod frizzled genes

    Directory of Open Access Journals (Sweden)

    Ralf eJanssen

    2015-08-01

    Full Text Available Wnt signaling regulates many important processes during metazoan development. It has been shown that Wnt ligands represent an ancient and diverse family of proteins that likely function in complex signaling landscapes to induce target cells via receptors including those of the Frizzled (Fz family. The four subfamilies of Fz receptors also evolved early in metazoan evolution. To date, Fz receptors have been characterised mainly in mammals, the nematode Caenorhabditis elegans and insects such as Drosophila melanogaster. To compare these findings with other metazoans, we explored the repertoire of fz genes in three panarthropod species: Parasteatoda tepidariorum, Glomeris marginata and Euperipatoides kanangrensis, representing the Chelicerata, Myriapoda and Onychophora respectively. We found that these three diverse panarthropods each have four fz genes, with representatives of all four metazoan fz subfamilies found in Glomeris and Euperipatoides, while Parasteatoda does not have a fz3 gene, but has two fz4 paralogues. Furthermore we characterized the expression patterns of all the fz genes among these animals. Our results exemplify the evolutionary diversity of Fz receptors and reveals conserved and divergent aspects of their protein sequences and expression patterns among panarthropods; thus providing new insights into the evolution of Wnt signaling more generally.

  7. Evolution of major histocompatibility complex class I genes in Cetartiodactyls.

    Science.gov (United States)

    Holmes, Edward C; Roberts, Ann F C; Staines, Karen A; Ellis, Shirley A

    2003-07-01

    Previous studies of cattle MHC have suggested the presence of at least four classical class I loci. Analysis of haplotypes showed that any combination of one, two or three genes may be expressed, although no gene is expressed consistently. The aim of this study was to examine the evolutionary relationships among these genes and to study their phylogenetic history in Cetartiodactyl species, including cattle and their close relatives. A secondary aim was to determine whether recombination had occurred between any of the genes. MHC class I data sets were generated from published sequences or by polymerase chain reaction from cDNA. Phylogenetic analysis revealed that MHC class I sequences from Cetartiodactyl species closely related to cattle were distributed among the main cattle gene "groups", while those from more distantly related species were either scattered (sheep, deer) or clustered in a species-specific manner (sitatunga, giraffe). A comparison between gene and species trees showed a poor match, indicating that divergence of the MHC sequences had occurred independently from that of the hosts from which they were obtained. We also found two clear instances of interlocus recombination among the cattle MHC sequences. Finally, positive natural selection was documented at positions throughout the alpha 1 and 2 domains, primarily on those amino acids directly involved in peptide binding, although two positions in the alpha 3 domain, a region generally conserved in other species, were also shown to be undergoing adaptive evolution.

  8. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    Directory of Open Access Journals (Sweden)

    Catherine E Dana

    Full Text Available Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  9. Molecular evolution, intracellular organization, and the quinary structure of proteins.

    OpenAIRE

    McConkey, E H

    1982-01-01

    High-resolution two-dimensional polyacrylamide gel electrophoresis shows that at least half of 370 denatured polypeptides from hamster cells and human cells are indistinguishable in terms of isoelectric points and molecular weights. Molecular evolution may have been more conservative for this set of proteins than sequence studies on soluble proteins have implied. This may be a consequence of complexities of intracellular organization and the numerous macromolecular interactions in which most ...

  10. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  11. An event-driven approach for studying gene block evolution in bacteria.

    Science.gov (United States)

    Ream, David C; Bankapur, Asma R; Friedberg, Iddo

    2015-07-01

    Gene blocks are genes co-located on the chromosome. In many cases, gene blocks are conserved between bacterial species, sometimes as operons, when genes are co-transcribed. The conservation is rarely absolute: gene loss, gain, duplication, block splitting and block fusion are frequently observed. An open question in bacterial molecular evolution is that of the formation and breakup of gene blocks, for which several models have been proposed. These models, however, are not generally applicable to all types of gene blocks, and consequently cannot be used to broadly compare and study gene block evolution. To address this problem, we introduce an event-based method for tracking gene block evolution in bacteria. We show here that the evolution of gene blocks in proteobacteria can be described by a small set of events. Those include the insertion of genes into, or the splitting of genes out of a gene block, gene loss, and gene duplication. We show how the event-based method of gene block evolution allows us to determine the evolutionary rateand may be used to trace the ancestral states of their formation. We conclude that the event-based method can be used to help us understand the formation of these important bacterial genomic structures. The software is available under GPLv3 license on http://github.com/reamdc1/gene_block_evolution.git. Supplementary online material: http://iddo-friedberg.net/operon-evolution © The Author 2015. Published by Oxford University Press.

  12. Baculovirus Molecular Evolution via Gene Turnover and Recurrent Positive Selection of Key Genes.

    Science.gov (United States)

    Hill, Tom; Unckless, Robert L

    2017-11-15

    Hosts and viruses are locked in an evolutionary arms race. Hosts are constantly evolving to suppress virulence and replication, while viruses, which are reliant on host machinery for survival and reproduction, develop counterstrategies to escape this immune defense. Viruses must also adapt to novel conditions while establishing themselves in a host species. Both processes provide strong selection for viral adaptation. Understanding adaptive evolution in insect viruses can help us to better understand adaptive evolution in general and is important due to the use of these viruses as biocontrol agents and for protecting ecologically or economically important species from outbreaks. Here we examine the molecular evolution of baculoviruses and nudiviruses, a group of insect-infecting viruses with key roles in biocontrol. We looked for signatures of selection between genomes of baculoviruses infecting a range of species and within a population of baculoviruses. Both analyses found only a few strong signatures of positive selection, primarily in replication- and transcription-associated genes and several structural protein genes. In both analyses, we detected a conserved complex of genes, including the helicase gene, showing consistently high levels of adaptive evolution, suggesting that they may be key in antagonistic coevolution to escape host suppression. These genes are integral to the baculovirus life cycle and may be good focal genes for developing baculoviruses as effective biocontrol agents or for targeting baculoviruses infecting ecologically relevant species. Recombination and complex genomes make evolution in these double-stranded DNA viruses more efficient than that in smaller RNA viruses with error-prone replication, as seen via signatures of selection in specific genes within a population of baculoviruses. IMPORTANCE Most viral evolutionary studies focus on RNA viruses. While these viruses cause many human and animal diseases, such studies leave us with a

  13. Trans gene regulation in adaptive evolution: a genetic algorithm model.

    Science.gov (United States)

    Behera, N; Nanjundiah, V

    1997-09-21

    This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate-"plastic"-loci, where a plastic locus had a finite probability in each generation of functioning (being switched "on") or not functioning (being switched "off"). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation. Copyright 1997 Academic Press Limited.

  14. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  15. Horizontal Gene Transfer Contributes to Plant Evolution: The Case of Agrobacterium T-DNAs

    Science.gov (United States)

    Quispe-Huamanquispe, Dora G.; Gheysen, Godelieve; Kreuze, Jan F.

    2017-01-01

    Horizontal gene transfer (HGT) can be defined as the acquisition of genetic material from another organism without being its offspring. HGT is common in the microbial world including archaea and bacteria, where HGT mechanisms are widely understood and recognized as an important force in evolution. In eukaryotes, HGT now appears to occur more frequently than originally thought. Many studies are currently detecting novel HGT events among distinct lineages using next-generation sequencing. Most examples to date include gene transfers from bacterial donors to recipient organisms including fungi, plants, and animals. In plants, one well-studied example of HGT is the transfer of the tumor-inducing genes (T-DNAs) from some Agrobacterium species into their host plant genomes. Evidence of T-DNAs from Agrobacterium spp. into plant genomes, and their subsequent maintenance in the germline, has been reported in Nicotiana, Linaria and, more recently, in Ipomoea species. The transferred genes do not produce the usual disease phenotype, and appear to have a role in evolution of these plants. In this paper, we review previous reported cases of HGT from Agrobacterium, including the transfer of T-DNA regions from Agrobacterium spp. to the sweetpotato [Ipomoea batatas (L.) Lam.] genome which is, to date, the sole documented example of a naturally-occurring incidence of HGT from Agrobacterium to a domesticated crop plant. We also discuss the possible evolutionary impact of T-DNA acquisition on plants. PMID:29225610

  16. Analysis of the complement and molecular evolution of tRNA genes in cow

    Directory of Open Access Journals (Sweden)

    Barris Wesley C

    2009-04-01

    Full Text Available Abstract Background Detailed information regarding the number and organization of transfer RNA (tRNA genes at the genome level is becoming readily available with the increase of DNA sequencing of whole genomes. However the identification of functional tRNA genes is challenging for species that have large numbers of repetitive elements containing tRNA derived sequences, such as Bos taurus. Reliable identification and annotation of entire sets of tRNA genes allows the evolution of tRNA genes to be understood on a genomic scale. Results In this study, we explored the B. taurus genome using bioinformatics and comparative genomics approaches to catalogue and analyze cow tRNA genes. The initial analysis of the cow genome using tRNAscan-SE identified 31,868 putative tRNA genes and 189,183 pseudogenes, where 28,830 of the 31,868 predicted tRNA genes were classified as repetitive elements by the RepeatMasker program. We then used comparative genomics to further discriminate between functional tRNA genes and tRNA-derived sequences for the remaining set of 3,038 putative tRNA genes. For our analysis, we used the human, chimpanzee, mouse, rat, horse, dog, chicken and fugu genomes to predict that the number of active tRNA genes in cow lies in the vicinity of 439. Of this set, 150 tRNA genes were 100% identical in their sequences across all nine vertebrate genomes studied. Using clustering analyses, we identified a new tRNA-GlyCCC subfamily present in all analyzed mammalian genomes. We suggest that this subfamily originated from an ancestral tRNA-GlyGCC gene via a point mutation prior to the radiation of the mammalian lineages. Lastly, in a separate analysis we created phylogenetic profiles for each putative cow tRNA gene using a representative set of genomes to gain an overview of common evolutionary histories of tRNA genes. Conclusion The use of a combination of bioinformatics and comparative genomics approaches has allowed the confident identification of a

  17. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  18. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  19. Revising the taxonomic distribution, origin and evolution of ribosome inactivating protein genes.

    Directory of Open Access Journals (Sweden)

    Walter J Lapadula

    Full Text Available Ribosome inactivating proteins are enzymes that depurinate a specific adenine residue in the alpha-sarcin-ricin loop of the large ribosomal RNA, being ricin and Shiga toxins the most renowned examples. They are widely distributed in plants and their presence has also been confirmed in a few bacterial species. According to this taxonomic distribution, the current model about the origin and evolution of RIP genes postulates that an ancestral RIP domain was originated in flowering plants, and later acquired by some bacteria via horizontal gene transfer. Here, we unequivocally detected the presence of RIP genes in fungi and metazoa. These findings, along with sequence and phylogenetic analyses, led us to propose an alternative, more parsimonious, hypothesis about the origin and evolutionary history of the RIP domain, where several paralogous RIP genes were already present before the three domains of life evolved. This model is in agreement with the current idea of the Last Universal Common Ancestor (LUCA as a complex, genetically redundant organism. Differential loss of paralogous genes in descendants of LUCA, rather than multiple horizontal gene transfer events, could account for the complex pattern of RIP genes across extant species, as it has been observed for other genes.

  20. Evolution of genes and genomes on the Drosophila phylogeny.

    Science.gov (United States)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R; Bergman, Casey M; Oliver, Brian; Markow, Therese A; Kaufman, Thomas C; Kellis, Manolis; Gelbart, William; Iyer, Venky N; Pollard, Daniel A; Sackton, Timothy B; Larracuente, Amanda M; Singh, Nadia D; Abad, Jose P; Abt, Dawn N; Adryan, Boris; Aguade, Montserrat; Akashi, Hiroshi; Anderson, Wyatt W; Aquadro, Charles F; Ardell, David H; Arguello, Roman; Artieri, Carlo G; Barbash, Daniel A; Barker, Daniel; Barsanti, Paolo; Batterham, Phil; Batzoglou, Serafim; Begun, Dave; Bhutkar, Arjun; Blanco, Enrico; Bosak, Stephanie A; Bradley, Robert K; Brand, Adrianne D; Brent, Michael R; Brooks, Angela N; Brown, Randall H; Butlin, Roger K; Caggese, Corrado; Calvi, Brian R; Bernardo de Carvalho, A; Caspi, Anat; Castrezana, Sergio; Celniker, Susan E; Chang, Jean L; Chapple, Charles; Chatterji, Sourav; Chinwalla, Asif; Civetta, Alberto; Clifton, Sandra W; Comeron, Josep M; Costello, James C; Coyne, Jerry A; Daub, Jennifer; David, Robert G; Delcher, Arthur L; Delehaunty, Kim; Do, Chuong B; Ebling, Heather; Edwards, Kevin; Eickbush, Thomas; Evans, Jay D; Filipski, Alan; Findeiss, Sven; Freyhult, Eva; Fulton, Lucinda; Fulton, Robert; Garcia, Ana C L; Gardiner, Anastasia; Garfield, David A; Garvin, Barry E; Gibson, Greg; Gilbert, Don; Gnerre, Sante; Godfrey, Jennifer; Good, Robert; Gotea, Valer; Gravely, Brenton; Greenberg, Anthony J; Griffiths-Jones, Sam; Gross, Samuel; Guigo, Roderic; Gustafson, Erik A; Haerty, Wilfried; Hahn, Matthew W; Halligan, Daniel L; Halpern, Aaron L; Halter, Gillian M; Han, Mira V; Heger, Andreas; Hillier, LaDeana; Hinrichs, Angie S; Holmes, Ian; Hoskins, Roger A; Hubisz, Melissa J; Hultmark, Dan; Huntley, Melanie A; Jaffe, David B; Jagadeeshan, Santosh; Jeck, William R; Johnson, Justin; Jones, Corbin D; Jordan, William C; Karpen, Gary H; Kataoka, Eiko; Keightley, Peter D; Kheradpour, Pouya; Kirkness, Ewen F; Koerich, Leonardo B; Kristiansen, Karsten; Kudrna, Dave; Kulathinal, Rob J; Kumar, Sudhir; Kwok, Roberta; Lander, Eric; Langley, Charles H; Lapoint, Richard; Lazzaro, Brian P; Lee, So-Jeong; Levesque, Lisa; Li, Ruiqiang; Lin, Chiao-Feng; Lin, Michael F; Lindblad-Toh, Kerstin; Llopart, Ana; Long, Manyuan; Low, Lloyd; Lozovsky, Elena; Lu, Jian; Luo, Meizhong; Machado, Carlos A; Makalowski, Wojciech; Marzo, Mar; Matsuda, Muneo; Matzkin, Luciano; McAllister, Bryant; McBride, Carolyn S; McKernan, Brendan; McKernan, Kevin; Mendez-Lago, Maria; Minx, Patrick; Mollenhauer, Michael U; Montooth, Kristi; Mount, Stephen M; Mu, Xu; Myers, Eugene; Negre, Barbara; Newfeld, Stuart; Nielsen, Rasmus; Noor, Mohamed A F; O'Grady, Patrick; Pachter, Lior; Papaceit, Montserrat; Parisi, Matthew J; Parisi, Michael; Parts, Leopold; Pedersen, Jakob S; Pesole, Graziano; Phillippy, Adam M; Ponting, Chris P; Pop, Mihai; Porcelli, Damiano; Powell, Jeffrey R; Prohaska, Sonja; Pruitt, Kim; Puig, Marta; Quesneville, Hadi; Ram, Kristipati Ravi; Rand, David; Rasmussen, Matthew D; Reed, Laura K; Reenan, Robert; Reily, Amy; Remington, Karin A; Rieger, Tania T; Ritchie, Michael G; Robin, Charles; Rogers, Yu-Hui; Rohde, Claudia; Rozas, Julio; Rubenfield, Marc J; Ruiz, Alfredo; Russo, Susan; Salzberg, Steven L; Sanchez-Gracia, Alejandro; Saranga, David J; Sato, Hajime; Schaeffer, Stephen W; Schatz, Michael C; Schlenke, Todd; Schwartz, Russell; Segarra, Carmen; Singh, Rama S; Sirot, Laura; Sirota, Marina; Sisneros, Nicholas B; Smith, Chris D; Smith, Temple F; Spieth, John; Stage, Deborah E; Stark, Alexander; Stephan, Wolfgang; Strausberg, Robert L; Strempel, Sebastian; Sturgill, David; Sutton, Granger; Sutton, Granger G; Tao, Wei; Teichmann, Sarah; Tobari, Yoshiko N; Tomimura, Yoshihiko; Tsolas, Jason M; Valente, Vera L S; Venter, Eli; Venter, J Craig; Vicario, Saverio; Vieira, Filipe G; Vilella, Albert J; Villasante, Alfredo; Walenz, Brian; Wang, Jun; Wasserman, Marvin; Watts, Thomas; Wilson, Derek; Wilson, Richard K; Wing, Rod A; Wolfner, Mariana F; Wong, Alex; Wong, Gane Ka-Shu; Wu, Chung-I; Wu, Gabriel; Yamamoto, Daisuke; Yang, Hsiao-Pei; Yang, Shiaw-Pyng; Yorke, James A; Yoshida, Kiyohito; Zdobnov, Evgeny; Zhang, Peili; Zhang, Yu; Zimin, Aleksey V; Baldwin, Jennifer; Abdouelleil, Amr; Abdulkadir, Jamal; Abebe, Adal; Abera, Brikti; Abreu, Justin; Acer, St Christophe; Aftuck, Lynne; Alexander, Allen; An, Peter; Anderson, Erica; Anderson, Scott; Arachi, Harindra; Azer, Marc; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Berlin, Aaron; Bessette, Daniel; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Bourzgui, Imane; Brown, Adam; Cahill, Patrick; Channer, Sheridon; Cheshatsang, Yama; Chuda, Lisa; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Costello, Maura; D'Aco, Katie; Daza, Riza; De Haan, Georgius; DeGray, Stuart; DeMaso, Christina; Dhargay, Norbu; Dooley, Kimberly; Dooley, Erin; Doricent, Missole; Dorje, Passang; Dorjee, Kunsang; Dupes, Alan; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Fisher, Sheila; Foley, Chelsea D; Franke, Alicia; Friedrich, Dennis; Gadbois, Loryn; Gearin, Gary; Gearin, Christina R; Giannoukos, Georgia; Goode, Tina; Graham, Joseph; Grandbois, Edward; Grewal, Sharleen; Gyaltsen, Kunsang; Hafez, Nabil; Hagos, Birhane; Hall, Jennifer; Henson, Charlotte; Hollinger, Andrew; Honan, Tracey; Huard, Monika D; Hughes, Leanne; Hurhula, Brian; Husby, M Erii; Kamat, Asha; Kanga, Ben; Kashin, Seva; Khazanovich, Dmitry; Kisner, Peter; Lance, Krista; Lara, Marcia; Lee, William; Lennon, Niall; Letendre, Frances; LeVine, Rosie; Lipovsky, Alex; Liu, Xiaohong; Liu, Jinlei; Liu, Shangtao; Lokyitsang, Tashi; Lokyitsang, Yeshi; Lubonja, Rakela; Lui, Annie; MacDonald, Pen; Magnisalis, Vasilia; Maru, Kebede; Matthews, Charles; McCusker, William; McDonough, Susan; Mehta, Teena; Meldrim, James; Meneus, Louis; Mihai, Oana; Mihalev, Atanas; Mihova, Tanya; Mittelman, Rachel; Mlenga, Valentine; Montmayeur, Anna; Mulrain, Leonidas; Navidi, Adam; Naylor, Jerome; Negash, Tamrat; Nguyen, Thu; Nguyen, Nga; Nicol, Robert; Norbu, Choe; Norbu, Nyima; Novod, Nathaniel; O'Neill, Barry; Osman, Sahal; Markiewicz, Eva; Oyono, Otero L; Patti, Christopher; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Raghuraman, Sujaa; Rege, Filip; Reyes, Rebecca; Rise, Cecil; Rogov, Peter; Ross, Keenan; Ryan, Elizabeth; Settipalli, Sampath; Shea, Terry; Sherpa, Ngawang; Shi, Lu; Shih, Diana; Sparrow, Todd; Spaulding, Jessica; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Strader, Christopher; Tesfaye, Senait; Thomson, Talene; Thoulutsang, Yama; Thoulutsang, Dawa; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Young, Geneva; Yu, Qing; Zembek, Lisa; Zhong, Danni; Zimmer, Andrew; Zwirko, Zac; Jaffe, David B; Alvarez, Pablo; Brockman, Will; Butler, Jonathan; Chin, CheeWhye; Gnerre, Sante; Grabherr, Manfred; Kleber, Michael; Mauceli, Evan; MacCallum, Iain

    2007-11-08

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

  1. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    Science.gov (United States)

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  3. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair

    Directory of Open Access Journals (Sweden)

    Irwin David M

    2008-08-01

    Full Text Available Abstract Background Hair is unique to mammals. Keratin associated proteins (KRTAPs, which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. Results The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Conclusion Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.

  4. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  5. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    2007-08-01

    Full Text Available It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate-female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate-female interaction.

  6. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.

    Science.gov (United States)

    Tian, Ran; Losilla, Mauricio; Lu, Ying; Yang, Guang; Zakon, Harold

    2017-02-13

    Nocturnally active gymnotiform weakly electric fish generate electric signals for communication and navigation, which can be energetically taxing. These fish mainly inhabit the Amazon basin, where some species prefer well-oxygenated waters and others live in oxygen-poor, stagnant habitats. The latter species show morphological, physiological, and behavioral adaptations for hypoxia-tolerance. However, there have been no studies of hypoxia tolerance on the molecular level. Globins are classic respiratory proteins. They function principally in oxygen-binding and -delivery in various tissues and organs. Here, we investigate the molecular evolution of alpha and beta hemoglobins, myoglobin, and neuroglobin in 12 gymnotiforms compared with other teleost fish. The present study identified positively selected sites (PSS) on hemoglobin (Hb) and myoglobin (Mb) genes using different maximum likelihood (ML) methods; some PSS fall in structurally important protein regions. This evidence for the positive selection of globin genes suggests that the adaptive evolution of these genes has helped to enhance the capacity for oxygen storage and transport. Interestingly, a substitution of a Cys at a key site in the obligate air-breathing electric eel (Electrophorus electricus) is predicted to enhance oxygen storage of Mb and contribute to NO delivery during hypoxia. A parallel Cys substitution was also noted in an air-breathing African electric fish (Gymnarchus niloticus). Moreover, the expected pattern under normoxic conditions of high expression of myoglobin in heart and neuroglobin in the brain in two hypoxia-tolerant species suggests that the main effect of selection on these globin genes is on their sequence rather than their basal expression patterns. Results indicate a clear signature of positive selection in the globin genes of most hypoxia-tolerant gymnotiform fishes, which are obligate or facultative air breathers. These findings highlight the critical role of globin genes in

  8. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    Remodeling of chromatin confers it the ability for dynamic change. Remodeling is essential for transcriptional regulation, the first step of gene expression. Chromatin Structure and Gene Expression. Transcription is the first step of gene expression in which RNA synthesis occurs from the DNA (gene) template in a series of.

  9. Evolution and differential expression of a vertebrate vitellogenin gene cluster

    Directory of Open Access Journals (Sweden)

    Kongshaug Heidi

    2009-01-01

    Full Text Available Abstract Background The multiplicity or loss of the vitellogenin (vtg gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental, cleavage pattern (meroblastic or holoblastic and character of the egg (pelagic or benthic. Earlier proposals for the existence of three forms of vertebrate vtgs present conflicting models for their origin and subsequent duplication. Results By integrating phylogenetics of novel vtg transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch and Actinopterygii (fish branch. We argue that the vertebrate vtg gene cluster originated in proto-chromosome m, but that vtg genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth vtg transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the vtg gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid vtg genes are further consistent with the notion that neofunctionalized Aa-type vtgs are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts. Conclusion The vertebrate vtg gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of vtg genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration

  10. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    Science.gov (United States)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  11. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2008-07-01

    Plantae by a chlamydial bacterium accompanied by horizontal gene transfer. Subsequently, chlamydial proteins spread through secondary endosymbioses to other eukaryotes. We conclude that intracellular chlamydiae likely persisted throughout the early history of the Plantae donating genes to their hosts that replaced their cyanobacterial/plastid homologs thus shaping early algal/plant evolution before they eventually vanished.

  12. Evolution acts on enhancer organization to fine-tune gradient threshold readouts.

    Directory of Open Access Journals (Sweden)

    Justin Crocker

    2008-11-01

    Full Text Available The elucidation of principles governing evolution of gene regulatory sequence is critical to the study of metazoan diversification. We are therefore exploring the structure and organizational constraints of regulatory sequences by studying functionally equivalent cis-regulatory modules (CRMs that have been evolving in parallel across several loci. Such an independent dataset allows a multi-locus study that is not hampered by nonfunctional or constrained homology. The neurogenic ectoderm enhancers (NEEs of Drosophila melanogaster are one such class of coordinately regulated CRMs. The NEEs share a common organization of binding sites and as a set would be useful to study the relationship between CRM organization and CRM activity across evolving lineages. We used the D. melanogaster transgenic system to screen for functional adaptations in the NEEs from divergent drosophilid species. We show that the individual NEE modules across a genome in any one lineage have independently evolved adaptations to compensate for lineage-specific developmental and/or genomic changes. Specifically, we show that both the site composition and the site organization of NEEs have been finely tuned by distinct, lineage-specific selection pressures in each of the three divergent species that we have examined: D. melanogaster, D. pseudoobscura, and D. virilis. Furthermore, by precisely altering the organization of NEEs with different morphogen gradient threshold readouts, we show that CRM organizational evolution is sufficient for explaining changes in enhancer activity. Thus, evolution can act on CRM organization to fine-tune morphogen gradient threshold readouts over a wide dynamic range. Our study demonstrates that equivalence classes of CRMs are powerful tools for detecting lineage-specific adaptations by gene regulatory sequences.

  13. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  14. A system for studying evolution of life-like virtual organisms

    Directory of Open Access Journals (Sweden)

    Baranova Natalya N

    2006-08-01

    Full Text Available Abstract Background Fitness landscapes, the dependences of fitness on the genotype, are of critical importance for the evolution of living beings. Unfortunately, fitness landscapes that are relevant to the evolution of complex biological functions are very poorly known. As a result, the existing theory of evolution is mostly based on postulated fitness landscapes, which diminishes its usefulness. Attempts to deduce fitness landscapes from models of actual biological processes led, so far, to only limited success. Results We present a model system for studying the evolution of biological function, which makes it possible to attribute fitness to genotypes in a natural way. The system mimics a very simple cell and takes into account the basic properties of gene regulation and enzyme kinetics. A virtual cell contains only two small molecules, an organic nutrient A and an energy carrier X, and proteins of five types – two transcription factors, two enzymes, and a membrane transporter. The metabolism of the cell consists of importing A from the environment and utilizing it in order to produce X and an unspecified end product. The genome may carry an arbitrary number of genes, each one encoding a protein of one of the five types. Both major mutations that affect whole genes and minor mutations that affect individual characteristics of genes are possible. Fitness is determined by the ability of the cell to maintain homeostasis when its environment changes. The system has been implemented as a computer program, and several numerical experiments have been performed on it. Evolution of the virtual cells usually involves a rapid initial increase of fitness, which eventually slows down, until a fitness plateau is reached. The origin of a wide variety of genetic networks is routinely observed in independent experiments performed under the same conditions. These networks can have different, including very high, levels of complexity and often include large

  15. Radio-tolerance of organisms and its evolution

    International Nuclear Information System (INIS)

    Watanabe, H.; Narumi, Issay; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2005-01-01

    Radiosensitivity of organisms varies extensively with species. It has been known that there exists nonsporing but extremely radioresistant bacteria that inhabit in many natural places such as soil and environmental waste. Deinococcus radiodurans, a representative of the radioresistant eubacteria, exhibits extraordinary resistance to the lethal and mutagenic effects of ionizing radiation and many other DNA damaging agents. This resistance has been attributed to its highly proficient DNA repair capacity. Recent molecular biological analysis revealed that the D. radiodurans genome has novel components that are involved in DNA repair. On the other hand, accumulating evidences indicate that some thermophilic archaebacteria also show resistance to ionizing radiation. In this article, we will discuss the radio-tolerance of organisms from an evolutional standpoint. (author)

  16. The Impact of Gene Silencing on Horizontal Gene Transfer and Bacterial Evolution.

    Science.gov (United States)

    Navarre, W W

    2016-01-01

    The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing. © 2016 Elsevier Ltd All rights reserved.

  17. Organization of an echinoderm Hox gene cluster

    OpenAIRE

    Martinez, Pedro; Rast, Jonathan P.; Arenas-Mena, César; Davidson, Eric H.

    1999-01-01

    The Strongylocentrotus purpuratus genome contains a single ten-gene Hox complex >0.5 megabase in length. This complex was isolated on overlapping bacterial artificial chromosome and P1 artificial chromosome genomic recombinants by using probes for individual genes and by genomic walking. Echinoderm Hox genes of Paralog Groups (PG) 1 and 2 are reported. The cluster includes genes representing all paralog groups of vertebrate Hox clusters, except that there is a sing...

  18. Defensins and the convergent evolution of platypus and reptile venom genes.

    Science.gov (United States)

    Whittington, Camilla M; Papenfuss, Anthony T; Bansal, Paramjit; Torres, Allan M; Wong, Emily S W; Deakin, Janine E; Graves, Tina; Alsop, Amber; Schatzkamer, Kyriena; Kremitzki, Colin; Ponting, Chris P; Temple-Smith, Peter; Warren, Wesley C; Kuchel, Philip W; Belov, Katherine

    2008-06-01

    When the platypus (Ornithorhynchus anatinus) was first discovered, it was thought to be a taxidermist's hoax, as it has a blend of mammalian and reptilian features. It is a most remarkable mammal, not only because it lays eggs but also because it is venomous. Rather than delivering venom through a bite, as do snakes and shrews, male platypuses have venomous spurs on each hind leg. The platypus genome sequence provides a unique opportunity to unravel the evolutionary history of many of these interesting features. While searching the platypus genome for the sequences of antimicrobial defensin genes, we identified three Ornithorhynchus venom defensin-like peptide (OvDLP) genes, which produce the major components of platypus venom. We show that gene duplication and subsequent functional diversification of beta-defensins gave rise to these platypus OvDLPs. The OvDLP genes are located adjacent to the beta-defensins and share similar gene organization and peptide structures. Intriguingly, some species of snakes and lizards also produce venoms containing similar molecules called crotamines and crotamine-like peptides. This led us to trace the evolutionary origins of other components of platypus and reptile venom. Here we show that several venom components have evolved separately in the platypus and reptiles. Convergent evolution has repeatedly selected genes coding for proteins containing specific structural motifs as templates for venom molecules.

  19. Gene duplication and concerted evolution of mitochondrial DNA in crane species.

    Science.gov (United States)

    Akiyama, Takuya; Nishida, Chizuko; Momose, Kunikazu; Onuma, Manabu; Takami, Kazutoshi; Masuda, Ryuichi

    2017-01-01

    The gene duplication in mitochondrial DNA (mtDNA) has been reported in diverse bird taxa so far. Although many phylogenetic and population genetic analyses of cranes were carried out based on mtDNA diversity, whether mtDNA contains duplicated regions is unknown. To address the presence or absence of gene duplication in cranes and investigate the molecular evolutionary features of crane mtDNA, we analyzed the gene organization and the molecular phylogeny of mtDNA from 13 crane species. We found that the mtDNA in 13 crane species shared a tandem duplicated region, which consists of duplicated sequence sets including cytochrome b (Cytb), NADH6, control region (CR) and three genes of tRNA. The gene order in the duplicated region was identical among all the 13 crane species, and the nucleotide sequences found within each individual showed high similarities. In addition, phylogenetic trees based on homologous sequences of CR and Cytb indicated the possibility of concerted evolution among the duplicated genes. The results suggested that the duplication event occurred in the common ancestor of crane species or some older ancestors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1.

    Science.gov (United States)

    Kurbidaeva, Amina; Ezhova, Tatiana; Novokreshchenova, Maria

    2014-12-01

    The ability to tolerate environmental stresses is crucial for all living organisms, and gene duplication is one of the sources for evolutionary novelties. Arabidopsis thaliana INDUCER OF CBF EXPRESSION1 and 2 (ICE1 and ICE2) encode MYC-type bHLH (basic helix-loop-helix) transcription factors. They confer cold stress tolerance by induction of the CBF/DREB1 regulon and regulate stomata formation. Although ICE2 is closely related to ICE1, its origin and role in cold response remains uncertain. Here, we used a bioinformatics/phylogenetic approach to uncover the ICE2 evolutionary history, structural evolution and functional divergence from the putative ancestral gene. Sequence diversification from ICE1 included the gain of cis-acting elements in ICE2 promoter sequence that may provide meristem-specific and defense-related gene expression. By analyzing transgenic Arabidopsis lines with ICE2 over-expression we showed that it contributes to stomata formation, flowering time regulation and cold response. Constitutive ICE2 expression led to induced meristem freezing tolerance, resulting from activation of CBF1 and CBF3 genes and ABA biosynthesis by NCED3 induction. We presume that ICE2 gene has originated from a duplication event about 17.9MYA followed by sub- and neofunctionalization of the ancestral ICE1 gene. Moreover, we predict its role in pathogen resistance and flowering time regulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs unveiled by phylogenetic, gene structure and expression analyses

    Directory of Open Access Journals (Sweden)

    Andreia Carina Turchetto-Zolet

    Full Text Available Abstract Since the first diacylglycerol acyltransferase (DGAT gene was characterized in plants, a number of studies have focused on understanding the role of DGAT activity in plant triacylglycerol (TAG biosynthesis. DGAT enzyme is essential in controlling TAGs synthesis and is encoded by different genes. DGAT1 and DGAT2 are the two major types of DGATs and have been well characterized in many plants. On the other hand, the DGAT3 and WS/DGAT have received less attention. In this study, we present the first general view of the presence of putative DGAT3 and WS/DGAT in several plant species and report on the diversity and evolution of these genes and its relationships with the two main DGAT genes (DGAT1 and DGAT2. According to our analyses DGAT1, DGAT2, DGAT3 and WS/DGAT are very divergent genes and may have distinct origin in plants. They also present divergent expression patterns in different organs and tissues. The maintenance of several types of genes encoding DGAT enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis. Evolutionary history studies of DGATs coupled with their expression patterns help us to decipher their functional role in plants, helping to drive future biotechnological studies.

  2. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2009-07-01

    Full Text Available Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time is > approximately 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.

  3. Evolution of C2H2-zinc finger genes and subfamilies in mammals: Species-specific duplication and loss of clusters, genes and effector domains

    Directory of Open Access Journals (Sweden)

    Aubry Muriel

    2008-06-01

    Full Text Available Abstract Background C2H2 zinc finger genes (C2H2-ZNF constitute the largest class of transcription factors in humans and one of the largest gene families in mammals. Often arranged in clusters in the genome, these genes are thought to have undergone a massive expansion in vertebrates, primarily by tandem duplication. However, this view is based on limited datasets restricted to a single chromosome or a specific subset of genes belonging to the large KRAB domain-containing C2H2-ZNF subfamily. Results Here, we present the first comprehensive study of the evolution of the C2H2-ZNF family in mammals. We assembled the complete repertoire of human C2H2-ZNF genes (718 in total, about 70% of which are organized into 81 clusters across all chromosomes. Based on an analysis of their N-terminal effector domains, we identified two new C2H2-ZNF subfamilies encoding genes with a SET or a HOMEO domain. We searched for the syntenic counterparts of the human clusters in other mammals for which complete gene data are available: chimpanzee, mouse, rat and dog. Cross-species comparisons show a large variation in the numbers of C2H2-ZNF genes within homologous mammalian clusters, suggesting differential patterns of evolution. Phylogenetic analysis of selected clusters reveals that the disparity in C2H2-ZNF gene repertoires across mammals not only originates from differential gene duplication but also from gene loss. Further, we discovered variations among orthologs in the number of zinc finger motifs and association of the effector domains, the latter often undergoing sequence degeneration. Combined with phylogenetic studies, physical maps and an analysis of the exon-intron organization of genes from the SCAN and KRAB domains-containing subfamilies, this result suggests that the SCAN subfamily emerged first, followed by the SCAN-KRAB and finally by the KRAB subfamily. Conclusion Our results are in agreement with the "birth and death hypothesis" for the evolution of

  4. Genomewide analysis of the lateral organ boundaries domain gene ...

    Indian Academy of Sciences (India)

    sion patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes ... Keywords. genomewide analysis; lateral organ boundaries domain; gene family; stress; expression; Vitis vinifera. Journal of .... available from the NCBI were used with an e-value cut-off set to 1e-003 ...

  5. The Evolution of gene regulation research in Lactococcus lactis.

    Science.gov (United States)

    Kok, Jan; van Gijtenbeek, Lieke A; de Jong, Anne; van der Meulen, Sjoerd B; Solopova, Ana; Kuipers, Oscar P

    2017-08-01

    Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden. © FEMS 2017.

  6. Parallel Evolution of Genes and Languages in the Caucasus Region

    Science.gov (United States)

    Balanovsky, Oleg; Dibirova, Khadizhat; Dybo, Anna; Mudrak, Oleg; Frolova, Svetlana; Pocheshkhova, Elvira; Haber, Marc; Platt, Daniel; Schurr, Theodore; Haak, Wolfgang; Kuznetsova, Marina; Radzhabov, Magomed; Balaganskaya, Olga; Romanov, Alexey; Zakharova, Tatiana; Soria Hernanz, David F.; Zalloua, Pierre; Koshel, Sergey; Ruhlen, Merritt; Renfrew, Colin; Wells, R. Spencer; Tyler-Smith, Chris; Balanovska, Elena

    2012-01-01

    We analyzed 40 SNP and 19 STR Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees, and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language co-evolution occurred within geographically isolated populations, probably due to its mountainous terrain. PMID:21571925

  7. Adaptive evolution of the FADS gene cluster within Africa.

    Directory of Open Access Journals (Sweden)

    Rasika A Mathias

    Full Text Available Long chain polyunsaturated fatty acids (LC-PUFAs are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA from plant-based medium chain (MC PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ∼85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60-80 kya.

  8. Onychophoran Hox genes and the evolution of arthropod Hox gene expression

    Science.gov (United States)

    2014-01-01

    Introduction Onychophora is a relatively small phylum within Ecdysozoa, and is considered to be the sister group to Arthropoda. Compared to the arthropods, that have radiated into countless divergent forms, the onychophoran body plan is overall comparably simple and does not display much in-phylum variation. An important component of arthropod morphological diversity consists of variation of tagmosis, i.e. the grouping of segments into functional units (tagmata), and this in turn is correlated with differences in expression patterns of the Hox genes. How these genes are expressed in the simpler onychophorans, the subject of this paper, would therefore be of interest in understanding their subsequent evolution in the arthropods, especially if an argument can be made for the onychophoran system broadly reflecting the ancestral state in the arthropods. Results The sequences and embryonic expression patterns of the complete set of ten Hox genes of an onychophoran (Euperipatoides kanangrensis) are described for the first time. We find that they are all expressed in characteristic patterns that suggest a function as classical Hox genes. The onychophoran Hox genes obey spatial colinearity, and with the exception of Ultrabithorax (Ubx), they all have different and distinct anterior expression borders. Notably, Ubx transcripts form a posterior to anterior gradient in the onychophoran trunk. Expression of all onychophoran Hox genes extends continuously from their anterior border to the rear end of the embryo. Conclusions The spatial expression pattern of the onychophoran Hox genes may contribute to a combinatorial Hox code that is involved in giving each segment its identity. This patterning of segments in the uniform trunk, however, apparently predates the evolution of distinct segmental differences in external morphology seen in arthropods. The gradient-like expression of Ubx may give posterior segments their specific identity, even though they otherwise express the same

  9. A study of the evolution of human microRNAs by their apparent repression effectiveness on target genes.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available BACKGROUND: Even though the genomes of many model species have already been sequenced, our knowledge of gene regulation in evolution is still very limited. One big obstacle is that it is hard to predict the target genes of transcriptional factors accurately from sequences. In this respect, microRNAs (miRNAs are different from transcriptional factors, as target genes of miRNAs can be readily predicted from sequences. This feature of miRNAs offers an unprecedented vantage point for evolutionary analysis of gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we analyzed a particular aspect of miRNA evolution, the differences in the "apparent repression effectiveness (ARE" between human miRNAs of different conservational levels. ARE is a measure we designed to evaluate the repression effect of miRNAs on target genes based on publicly available gene expression data in normal tissues and miRNA targeting and expression data. We found that ARE values of more conserved miRNAs are significantly higher than those of less conserved miRNAs in general. We also found the gain in expression abundance and broadness of miRNAs in evolution contributed to the gain in ARE. CONCLUSIONS/SIGNIFICANCE: The ARE measure quantifies the repressive effects of miRNAs and enables us to study the influences of many factors on miRNA-mediated repression, such as conservational levels and expression levels of miRNAs. The gain in ARE can be explained by the existence of a trend of miRNAs in evolution to effectively control more target genes, which is beneficial to the miRNAs but not necessarily to the organism at all times. Our results from miRNAs gave us an insight of the complex interplay between regulators and target genes in evolution.

  10. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    Science.gov (United States)

    Mondragón-Palomino, Mariana; Hiese, Luisa; Härter, Andrea; Koch, Marcus A; Theißen, Günter

    2009-01-01

    Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes) are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection was less stringent in DEF

  11. Adaptive evolution of the mitochondrial ND6 gene in the domestic horse.

    Science.gov (United States)

    Ning, T; Xiao, H; Li, J; Hua, S; Zhang, Y P

    2010-01-26

    Mitochondria play a crucial role in energy metabolism through oxidative phosphorylation. Organisms living at high altitudes are potentially influenced by oxygen deficits and cold temperatures. The severe environmental conditions can impact on metabolism and direct selection of mitochondrial DNA. As a wide-ranging animal, the domestic horse (Equus caballus) has developed various morphological and physiological characteristics for adapting to different altitudes. Thus, this is a good species for studying adaption to high altitudes at a molecular level. We sequenced the complete NADH dehydrogenase 6 gene (ND6) of 509 horses from 24 sampling locations. By comparative analysis of three horse populations living at different altitudes (>2200 m, 1200-1700 m, and horses was found distributed on the selected branches. We conclude that the high-altitude environment has directed adaptive evolution of the mitochondrial ND6 gene in the plateau horse.

  12. The evolution of land plants: a perspective from horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Qia Wang

    2014-12-01

    Full Text Available Recent studies suggest that horizontal gene transfer (HGT played a significant role in the evolution of eukaryotic lineages. We here review the mechanisms of HGT in plants and the importance of HGT in land plant evolution. In particular, we discuss the role of HGT in plant colonization of land, phototropic response, C4 photosynthesis, and mitochondrial genome evolution.

  13. The evolution of land plants: a perspective from horizontal gene transfer

    OpenAIRE

    Qia Wang; Hang Sun; Jinling Huang

    2014-01-01

    Recent studies suggest that horizontal gene transfer (HGT) played a significant role in the evolution of eukaryotic lineages. We here review the mechanisms of HGT in plants and the importance of HGT in land plant evolution. In particular, we discuss the role of HGT in plant colonization of land, phototropic response, C4 photosynthesis, and mitochondrial genome evolution.

  14. Evolution of Self-Organized Task Specialization in Robot Swarms.

    Directory of Open Access Journals (Sweden)

    Eliseo Ferrante

    2015-08-01

    Full Text Available Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as "task partitioning", whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.

  15. Evolution of Self-Organized Task Specialization in Robot Swarms.

    Science.gov (United States)

    Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom

    2015-08-01

    Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as "task partitioning", whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.

  16. Evolution of Self-Organized Task Specialization in Robot Swarms

    Science.gov (United States)

    Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom

    2015-01-01

    Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as “task partitioning”, whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization. PMID:26247819

  17. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV).

    Science.gov (United States)

    Scarborough, Jessica A; Paul, John R; Spencer, Juliet V

    2017-07-01

    Human cytomegalovirus (HCMV) is a widespread pathogen that is particularly skillful at evading immune detection and defense mechanisms, largely due to extensive co-evolution with its host. One aspect of this co-evolution involves the acquisition of virally encoded G protein-coupled receptors (GPCRs) with homology to the chemokine receptor family. GPCRs are the largest family of cell surface proteins, found in organisms from yeast to humans, and they regulate a variety of cellular processes including development, sensory perception, and immune cell trafficking. The US27 and US28 genes are encoded by human and primate CMVs, but homologs are not found in the genomes of viruses infecting rodents or other species. Phylogenetic analysis was used to investigate the US27 and US28 genes, which are adjacent in the unique short (US) region of the HCMV genome, and their relationship to one another and to human chemokine receptor genes. The results indicate that both US27 and US28 share the same common ancestor with human chemokine receptor CX3CR1, suggesting that a single host gene was captured and a subsequent viral gene duplication event occurred. The US28 gene product (pUS28) has maintained the function of the ancestral gene and has the ability to bind and signal in response to CX3CL1/fractalkine, the natural ligand for CX3CR1. In contrast, pUS27 does not bind to any known chemokine ligand, and the sequence has diverged significantly, highlighted by the fact that pUS27 currently exhibits greater sequence similarity to human CCR1. While the evolutionary advantage of the gene duplication and neofunctionalization event remains unclear, the US27 and US28 genes are highly conserved among different HCMV strains and retained even in laboratory strains that have lost many virulence genes, suggesting that US27 and US28 have each evolved distinct, important functions during virus infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  19. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution

    Directory of Open Access Journals (Sweden)

    Hood Leroy

    2004-11-01

    Full Text Available Abstract Background The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family, but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. Results Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. Conclusions Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.

  20. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.

    Science.gov (United States)

    Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael

    2018-04-01

    Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.

  1. Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians.

    Directory of Open Access Journals (Sweden)

    Aldo Nicosia

    Full Text Available Gene family encoding small Heat-Shock Proteins (sHSPs containing α-crystallin domain are found both in prokaryotic and eukaryotic organisms; however, there is limited knowledge of their evolution. In this study, two small HSP genes termed AvHSP28.6 and AvHSP27, both organized in one intron and two exons, were characterised in the Mediterranean snakelocks anemone Anemonia viridis. The release of the genome sequence of Hydra magnipapillata and Nematostella vectensis enabled a comprehensive study of the molecular evolution of α-crystallin gene family among cnidarians. Most of the H. magnipapillata sHSP genes share the same gene organization described for AvHSP28.6 and AvHSP27, differing from the sHSP genes of N. vectensis which mainly show an intronless architecture. The different genomic organization of sHSPs, the phylogenetic analyses based on protein sequences, and the relationships among Cnidarians, suggest that the A.viridis sHSPs represent the common ancestor from which H. magnipapillata genes directly evolved through segmental genome duplication. Additionally retroposition events may be considered responsible for the divergence of sHSP genes of N. vectensis from A. viridis. Analyses of transcriptional expression profile showed that AvHSP28.6 was constitutively expressed among different tissues from both ectodermal and endodermal layers of the adult sea anemones, under normal physiological conditions and also under different stress condition. Specifically, we profiled the transcriptional activation of AvHSP28.6 after challenges with different abiotic/biotic stresses showing induction by extreme temperatures, heavy metals exposure and immune stimulation. Conversely, no AvHSP27 transcript was detected in such dissected tissues, in adult whole body cDNA library or under stress conditions. Hence, the involvement of AvHSP28.6 gene in the sea anemone defensome is strongly suggested.

  2. Genomic organization of the adrenoleukodystrophy gene

    Energy Technology Data Exchange (ETDEWEB)

    Sarde, C.O.; Mosser, J.; Kretz, C. [Institut de Chimie Biologique, Strasbourg (France)] [and others

    1994-07-01

    Adrenoleukodystrophy (ALD), the most frequent peroxisomal disorder, is a severe neurodegenerative disease associated with an impairment of very long chain fatty acids {beta}-oxidation. The authors have recently identified by positional cloning the gene responsible for ALD, located in Xq28. It encodes a new member of the {open_quotes}ABC{close_quotes} superfamily of membrane-associated transporters that shows, in particular, significant homology to the 70-kDa peroxisomal membrane protein (PMP70). They report here a detailed characterization of the ALD gene structure. It extends over 21 kb and consists of 10 exons. To facilitate the detection of mutations in ALD patients, they have determined the intronic sequences flanking the exons as well as the sequence of the 3{prime} untranslated region and of the immediate 5{prime} promoter region. Sequences present in distal exons cross-hybridize strongly to additional sequences in the human genome. The ALD gene has been positioned on a pulsed-field map between DXS15 and the L1CAM gene, about 650 kb upstream from the color pigment genes. The frequent occurrence of color vision anomalies observed in patients with adrenomyeloneuropathy (the adult onset form of ALD) thus does not represent a contiguous gene syndrome but a secondary manifestation of ALD. 37 refs., 6 figs.

  3. Elucidating gene function and function evolution through comparison of co-expression networks in plants

    Directory of Open Access Journals (Sweden)

    Marek eMutwil

    2014-08-01

    Full Text Available The analysis of gene expression data has shown that transcriptionally coordinated (co-expressed genes are often functionally related, enabling scientists to use expression data in gene function prediction. This Focused Review discusses our original paper (Large-scale co-expression approach to dissect secondary cell wall formation across plant species, Frontiers in Plant Science 2:23. In this paper we applied cross-species analysis to co-expression networks of genes involved in cellulose biosynthesis. We show that the co-expression networks from different species are highly similar, indicating that whole biological pathways are conserved across species. This finding has two important implications. First, the analysis can transfer gene function annotation from well-studied plants, such as Arabidopsis, to other, uncharacterized plant species. As the analysis finds genes that have similar sequence and similar expression pattern across different organisms, functionally equivalent genes can be identified. Second, since co-expression analyses are often noisy, a comparative analysis should have higher performance, as parts of co-expression networks that are conserved are more likely to be functionally relevant. In this Focused Review, we outline the comparative analysis done in the original paper and comment on the recent advances and approaches that allow comparative analyses of co-function networks. We hypothesize that, in comparison to simple co-expression analysis, comparative analysis would yield more accurate gene function predictions. Finally, by combining comparative analysis with genomic information of green plants, we propose a possible composition of cellulose biosynthesis machinery during earlier stages of plant evolution.

  4. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    Science.gov (United States)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified

  5. A novel evolution-based method for detecting gene-gene interactions.

    Directory of Open Access Journals (Sweden)

    Shaoqi Rao

    Full Text Available BACKGROUND: The rapid advance in large-scale SNP-chip technologies offers us great opportunities in elucidating the genetic basis of complex diseases. Methods for large-scale interactions analysis have been under development from several sources. Due to several difficult issues (e.g., sparseness of data in high dimensions and low replication or validation rate, development of fast, powerful and robust methods for detecting various forms of gene-gene interactions continues to be a challenging task. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we have developed an evolution-based method to search for genome-wide epistasis in a case-control design. From an evolutionary perspective, we view that human diseases originate from ancient mutations and consider that the underlying genetic variants play a role in differentiating human population into the healthy and the diseased. Based on this concept, traditional evolutionary measure, fixation index (Fst for two unlinked loci, which measures the genetic distance between populations, should be able to reveal the responsible genetic interplays for disease traits. To validate our proposal, we first investigated the theoretical distribution of Fst by using extensive simulations. Then, we explored its power for detecting gene-gene interactions via SNP markers, and compared it with the conventional Pearson Chi-square test, mutual information based test and linkage disequilibrium based test under several disease models. The proposed evolution-based method outperformed these compared methods in dominant and additive models, no matter what the disease allele frequencies were. However, its performance was relatively poor in a recessive model. Finally, we applied the proposed evolution-based method to analysis of a published dataset. Our results showed that the P value of the Fst -based statistic is smaller than those obtained by the LD-based statistic or Poisson regression models. CONCLUSIONS/SIGNIFICANCE: With

  6. Evolution and structural organization of the C proteins of paramyxovirinae.

    Directory of Open Access Journals (Sweden)

    Michael K Lo

    Full Text Available The phosphoprotein (P gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT, and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group and human parainfluenza virus 1 (Sendai group. We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site and a highly constrained region (the C-terminus of C, seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.

  7. Evolution of endogenous non-retroviral genes integrated into plant genomes

    Directory of Open Access Journals (Sweden)

    Hyosub Chu

    2014-08-01

    Full Text Available Numerous comparative genome analyses have revealed the wide extent of horizontal gene transfer (HGT in living organisms, which contributes to their evolution and genetic diversity. Viruses play important roles in HGT. Endogenous viral elements (EVEs are defined as viral DNA sequences present within the genomes of non-viral organisms. In eukaryotic cells, the majority of EVEs are derived from RNA viruses using reverse transcription. In contrast, endogenous non-retroviral elements (ENREs are poorly studied. However, the increasing availability of genomic data and the rapid development of bioinformatics tools have enabled the identification of several ENREs in various eukaryotic organisms. To date, a small number of ENREs integrated into plant genomes have been identified. Of the known non-retroviruses, most identified ENREs are derived from double-strand (ds RNA viruses, followed by single-strand (ss DNA and ssRNA viruses. At least eight virus families have been identified. Of these, viruses in the family Partitiviridae are dominant, followed by viruses of the families Chrysoviridae and Geminiviridae. The identified ENREs have been primarily identified in eudicots, followed by monocots. In this review, we briefly discuss the current view on non-retroviral sequences integrated into plant genomes that are associated with plant-virus evolution and their possible roles in antiviral resistance.

  8. Evolution of xyloglucan-related genes in green plants.

    Science.gov (United States)

    Del Bem, Luiz Eduardo V; Vincentz, Michel G A

    2010-11-05

    The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase) and mobilization/degradation (β-(1→4)-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4)-glucan synthase from the cellulose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Our data support the idea that a primordial xyloglucan-like polymer emerged in

  9. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    OpenAIRE

    Vigeland, Magnus Dehli; Spannagl, Manuel; Asp, Torben; Paina, Cristiana; Rudi, Heidi; Rognli, Odd Arne; Fjellheim, Siri; Sandve, Simen Rød

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted spec...

  10. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    Science.gov (United States)

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-09-02

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Evolution, hierarchy and modular organization in complex networks

    Science.gov (United States)

    Ravasz, Erzsebet

    2005-07-01

    cluster into a few small, well defined modules of the metabolism. Finally, we present an enzyme evolution-based model for metabolic network growth. This model reproduces the observed scale free and hierarchical organization of metabolic networks using local wiring rules.

  12. Principles for the organization of gene-sets.

    Science.gov (United States)

    Li, Wentian; Freudenberg, Jan; Oswald, Michaela

    2015-12-01

    A gene-set, an important concept in microarray expression analysis and systems biology, is a collection of genes and/or their products (i.e. proteins) that have some features in common. There are many different ways to construct gene-sets, but a systematic organization of these ways is lacking. Gene-sets are mainly organized ad hoc in current public-domain databases, with group header names often determined by practical reasons (such as the types of technology in obtaining the gene-sets or a balanced number of gene-sets under a header). Here we aim at providing a gene-set organization principle according to the level at which genes are connected: homology, physical map proximity, chemical interaction, biological, and phenotypic-medical levels. We also distinguish two types of connections between genes: actual connection versus sharing of a label. Actual connections denote direct biological interactions, whereas shared label connection denotes shared membership in a group. Some extensions of the framework are also addressed such as overlapping of gene-sets, modules, and the incorporation of other non-protein-coding entities such as microRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): Identification, characterization, and evolution.

    Science.gov (United States)

    Mei, Ting; Fu, Wen-Bo; Li, Bo; He, Zheng-Bo; Chen, Bin

    2018-01-01

    Chemosensory proteins (CSP) are soluble carrier proteins that may function in odorant reception in insects. CSPs have not been thoroughly studied at whole-genome level, despite the availability of insect genomes. Here, we identified/reidentified 283 CSP genes in the genomes of 22 mosquitoes. All 283 CSP genes possess a highly conserved OS-D domain. We comprehensively analyzed these CSP genes and determined their conserved domains, structure, genomic distribution, phylogeny, and evolutionary patterns. We found an average of seven CSP genes in each of 19 Anopheles genomes, 27 CSP genes in Cx. quinquefasciatus, 43 in Ae. aegypti, and 83 in Ae. albopictus. The Anopheles CSP genes had a simple genomic organization with a relatively consistent gene distribution, while most of the Culicinae CSP genes were distributed in clusters on the scaffolds. Our phylogenetic analysis clustered the CSPs into two major groups: CSP1-8 and CSE1-3. The CSP1-8 groups were all monophyletic with good bootstrap support. The CSE1-3 groups were an expansion of the CSP family of genes specific to the three Culicinae species. The Ka/Ks ratios indicated that the CSP genes had been subject to purifying selection with relatively slow evolution. Our results provide a comprehensive framework for the study of the CSP gene family in these 22 mosquito species, laying a foundation for future work on CSP function in the detection of chemical cues in the surrounding environment.

  14. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  15. Evolution and genomic organization of muscle microRNAs in fish genomes.

    Science.gov (United States)

    Nachtigall, Pedro Gabriel; Dias, Marcos Correa; Pinhal, Danillo

    2014-09-25

    MicroRNAs (miRNAs) are small non-coding RNA molecules with an important role upon post-transcriptional regulation. These molecules have been shown essential for several cellular processes in vertebrates, including muscle biology. Many miRNAs were described as exclusively or highly expressed in skeletal and/or cardiac muscle. However, knowledge on the genomic organization and evolution of muscle miRNAs has been unveiled in a reduced number of vertebrates and mostly only reflects their organization in mammals, whereas fish genomes remain largely uncharted. The main goal of this study was to elucidate particular features in the genomic organization and the putative evolutionary history of muscle miRNAs through a genome-wide comparative analysis of cartilaginous and bony fish genomes. As major outcomes we show that (1) miR-208 was unexpectedly absent in cartilaginous and ray-finned fish genomes whereas it still exist in other vertebrate groups; (2) miR-499 was intergenic in medaka and stickleback conversely to other vertebrates where this miRNA is intronic; (3) the zebrafish genome is the unique harboring two extra paralogous copies of miR-499 and their host gene (Myh7b); (4) a rare deletion event of the intergenic and bicistronic cluster miR-1-1/133a-2 took place only into Tetraodontiformes genomes (pufferfish and spotted green puffer); (5) the zebrafish genome experienced a duplication event of miR-206/-133b; and (6) miR-214 was specifically duplicated in species belonging to superorder Acanthopterygii. Despite of the aforementioned singularities in fish genomes, large syntenic blocks containing muscle-enriched miRNAs were found to persist, denoting colligated functionality between miRNAs and neighboring genes. Based on the genomic data here obtained, we envisioned a feasible scenario for explaining muscle miRNAs evolution in vertebrates.

  16. Molecular Evolution of the Infrared Sensory Gene TRPA1 in Snakes and Implications for Functional Studies

    Science.gov (United States)

    Jiang, Ke; Zhang, Peng

    2011-01-01

    TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of “heat vision” in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing. PMID:22163322

  17. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus.

    Directory of Open Access Journals (Sweden)

    Gregory C Kettler

    2007-12-01

    Full Text Available Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL-adapted clade, or a more divergent low-light (LL-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to

  18. Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Kettler, Gregory C.; Martiny, Adam C.; Huang, Katherine; Zucker, Jeremy; Coleman, Maureen L.; Rodrigue, Sebastien; Chen, Feng; Lapidus, Alla; Ferriera, Steven; Johnson, Justin; Steglich, Claudia; Church, George M.; Richardson, Paul; Chisholm, Sallie W.

    2007-07-30

    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolatesfrom diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3percent, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer

  19. Gene promoter evolution targets the center of the human protein interaction network.

    Directory of Open Access Journals (Sweden)

    Jordi Planas

    Full Text Available Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes. We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively. Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P=0.008, for Eigenvalue centrality. Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P=0.02, for the logistic regression coefficient. This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters

  20. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    Science.gov (United States)

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  1. A limited role for gene duplications in the evolution of platypus venom.

    Science.gov (United States)

    Wong, Emily S W; Papenfuss, Anthony T; Whittington, Camilla M; Warren, Wesley C; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the "venome" of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.

  2. Laboratory studies of monoterpene secondary organic aerosol formation and evolution

    Science.gov (United States)

    Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.

    2017-12-01

    We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.

  3. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...... annotation. The modelling of evolution by the existing comparative gene finders leaves room for improvement. Results: A probabilistic model of both genome structure and evolution is designed. This type of model is called an Evolutionary Hidden Markov Model (EHMM), being composed of an HMM and a set of region...

  4. Evolution of xyloglucan-related genes in green plants

    Directory of Open Access Journals (Sweden)

    Vincentz Michel GA

    2010-11-01

    Full Text Available Abstract Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase and mobilization/degradation (β-(1→4-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a

  5. Evolution of xyloglucan-related genes in green plants

    Science.gov (United States)

    2010-01-01

    Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase) and mobilization/degradation (β-(1→4)-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4)-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a primordial xyloglucan

  6. Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks.

    Directory of Open Access Journals (Sweden)

    Christopher F Steiner

    Full Text Available The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or "evolvability" can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise compared to populations in stable or randomly varying (white noise environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions.

  7. Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution.

    Science.gov (United States)

    Raj, Dibyendu; Ghosh, Esha; Mukherjee, Avik K; Nozaki, Tomoyoshi; Ganguly, Sandipan

    2014-02-10

    drug resistance. Additionally, these data suggest the major role of this early divergent ancient eukaryote in anaerobic to aerobic organism evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    Directory of Open Access Journals (Sweden)

    Zo Young-Gun

    2009-04-01

    Full Text Available Abstract Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx, the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic

  9. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  10. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  11. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  12. Evolution of closely linked gene pairs in vertebrate genomes.

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, W.W.W. de; Lubsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of

  13. Evolution of closely linked gene pairs in vertebrate genomes

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, de W.W.; Lunsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of

  14. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans.

    Science.gov (United States)

    Zhao, Man; Gu, Yongzhe; He, Lingli; Chen, Qingshan; He, Chaoying

    2015-05-15

    The DA1 gene family is plant-specific and Arabidopsis DA1 regulates seed and organ size, but the functions in soybeans are unknown. The cultivated soybean (Glycine max) is believed to be domesticated from the annual wild soybeans (Glycine soja). To evaluate whether DA1-like genes were involved in the evolution of soybeans, we compared variation at both sequence and expression levels of DA1-like genes from G. max (GmaDA1) and G. soja (GsoDA1). Sequence identities were extremely high between the orthologous pairs between soybeans, while the paralogous copies in a soybean species showed a relatively high divergence. Moreover, the expression variation of DA1-like paralogous genes in soybean was much greater than the orthologous gene pairs between the wild and cultivated soybeans during development and challenging abiotic stresses such as salinity. We further found that overexpressing GsoDA1 genes did not affect seed size. Nevertheless, overexpressing them reduced transgenic Arabidopsis seed germination sensitivity to salt stress. Moreover, most of these genes could improve salt tolerance of the transgenic Arabidopsis plants, corroborated by a detection of expression variation of several key genes in the salt-tolerance pathways. Our work suggested that expression diversification of DA1-like genes is functionally associated with adaptive radiation of soybeans, reinforcing that the plant-specific DA1 gene family might have contributed to the successful adaption to complex environments and radiation of the plants.

  15. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  16. MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network.

    Science.gov (United States)

    Hwang, Sohyun; Kim, Eiru; Yang, Sunmo; Marcotte, Edward M; Lee, Insuk

    2014-07-01

    Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences

    Czech Academy of Sciences Publication Activity Database

    Singh, P.; Singh, S. S.; Elster, Josef; Mishra, A. K.

    2013-01-01

    Roč. 250, č. 3 (2013), s. 751-764 ISSN 0033-183X Institutional support: RVO:67985939 Keywords : evolution * heterocystous cyanobacteria * nifH gene Subject RIV: EH - Ecology, Behaviour Impact factor: 3.171, year: 2013

  18. Phylogenomic analysis of secondary metabolism genes sheds light on their evolution in Aspergilli

    DEFF Research Database (Denmark)

    Theobald, Sebastian; Vesth, Tammi Camilla; Rasmussen, Jane Lind Nybo

    .Natural products are encoded by genes located in close proximity, called secondary metabolic gene clusters, which makes them interesting targets for genomic analysis. We use a modified version of the Secondary Metabolite Unique Regions Finder (SMURF) algorithm, combined with InterPro annotations to create...... thereof, find possible common ancestors and detect horizontal gene transfer events.Finally, we have performed large scale analysis of gene cluster dynamics and evolution, which provides us with better understanding of speciation in Aspergilli. With this new insights into the evolution of natural products...

  19. Loss of YABBY2-Like Gene Expression May Underlie the Evolution of the Laminar Style in Canna and Contribute to Floral Morphological Diversity in the Zingiberales.

    Science.gov (United States)

    Morioka, Kelsie; Yockteng, Roxana; Almeida, Ana M R; Specht, Chelsea D

    2015-01-01

    The Zingiberales is an order of tropical monocots that exhibits diverse floral morphologies. The evolution of petaloid, laminar stamens, staminodes, and styles contributes to this diversity. The laminar style is a derived trait in the family Cannaceae and plays an important role in pollination as its surface is used for secondary pollen presentation. Previous work in the Zingiberales has implicated YABBY2-like genes, which function in promoting laminar outgrowth, in the evolution of stamen morphology. Here, we investigate the evolution and expression of Zingiberales YABBY2-like genes in order to understand the evolution of the laminar style in Canna. Phylogenetic analyses show that multiple duplication events have occurred in this gene lineage prior to the diversification of the Zingiberales. Reverse transcription-PCR in Canna, Costus, and Musa reveals differential expression across floral organs, taxa, and gene copies, and a role for YABBY2-like genes in the evolution of the laminar style is proposed. Selection tests indicate that almost all sites in conserved domains are under purifying selection, consistent with their functional relevance, and a motif unique to monocot YABBY2-like genes is identified. These results contribute to our understanding of the molecular mechanisms underlying the evolution of floral morphologies.

  20. Loss of YABBY2-like gene expression may underlie the evolution of the laminar style in Canna and contribute to floral morphological diversity in the Zingiberales

    Directory of Open Access Journals (Sweden)

    Kelsie eMorioka

    2015-12-01

    Full Text Available The Zingiberales is an order of tropical monocots that exhibits diverse floral morphologies. The evolution of petaloid, laminar stamens, staminodes, and styles contributes to this diversity. The laminar style is a derived trait in the family Cannaceae and plays an important role in pollination as its surface is used for secondary pollen presentation. Previous work in the Zingiberales has implicated YABBY2-like genes, which function in promoting laminar outgrowth, in the evolution of stamen morphology. Here, we investigate the evolution and expression of Zingiberales YABBY2-like genes in order to understand the evolution of the laminar style in Canna. Phylogenetic analyses show that multiple duplication events have occurred in this gene lineage prior to the diversification of the Zingiberales. Reverse transcription-PCR in Canna, Costus, and Musa reveals differential expression across floral organs, taxa, and gene copies, and a role for YABBY2-like genes in the evolution of the laminar style is proposed. Selection tests indicate that almost all sites in conserved domains are under purifying selection, consistent with their functional relevance, and a motif unique to monocot YABBY2-like genes is identified. These results contribute to our understanding of the molecular mechanisms underlying the evolution of floral morphologies.

  1. From Sea Anemone to Homo Sapiens: The Evolution of the p53 Family of Genes

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Arnold (Institute for Advanced Study)

    2009-09-14

    The human genome contains three transcription factors termed p53, p63 and p73 which are related orthologues. The function of the p53 protein is to respond to a wide variety of stresses which can disrupt the fidelity of DNA replication and cell division in somatic cells of the body. These stress signals, such as DNA damage, increase the mutation rate during DNA duplication and so an active p53 protein responds by eliminating clones of cells with mutations employing apoptosis, senescence or cell cycle arrest. In this way the p53 protein acts as a tumor suppressor preventing the mutations that can lead to cancers. The p63 and p73 proteins act in a similar fashion to protect the germ line cells in females (eggs). In addition the p63 protein plays a central role in the formation of epithelial cell layers and p73 plays a critical role in the formation of several structures in the central nervous system. Based upon their amino acid sequences and structural considerations the oldest organisms that contain an ancestor of the p53/p63/p73 gene are the sea anemone or hydra. The present day representatives of these animals contain a p63/p73 like ancestor gene and the protein functions in germ cells of this animal to enforce the fidelity of DNA replication after exposure to ultraviolet light. Thus the structure and functions of this gene family have been preserved for over one billion years of evolution. Other invertebrates such as the worm, the fly and the clam contain a very similar ancestor gene with a similar set of functions. The withdrawal of a food source from a worm results in the p63/p73 mediated apoptosis of the eggs so that new organisms will not be hatched into a poor environment. A similar response is thought to occur in humans. Thus this ancestor gene ensures the fidelity of the next generation of organisms. The first time a clearly distinct new p53 gene arises is in the cartilaginous fish and in the bony fish a separation of the p

  2. Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates

    Directory of Open Access Journals (Sweden)

    Eliane Evanovich

    2016-01-01

    Full Text Available Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i the selective pressure on the GT6 paralogs genes in primates; (ii the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions.

  3. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    Energy Technology Data Exchange (ETDEWEB)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R., E-mail: wolfgang.hess@biologie.uni-freiburg.de [Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg, Freiburg (Germany)

    2014-07-14

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  4. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    International Nuclear Information System (INIS)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  5. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  6. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes.

    Science.gov (United States)

    Papa, Francesco; Windbichler, Nikolai; Waterhouse, Robert M; Cagnetti, Alessia; D'Amato, Rocco; Persampieri, Tania; Lawniczak, Mara K N; Nolan, Tony; Papathanos, Philippos Aris

    2017-09-01

    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues. © 2017 Papa et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Gene duplication as a major force in evolution

    Indian Academy of Sciences (India)

    Molecular mechanisms of gene duplication. Duplicated genes may be produced by unequal crossing over, retrotransposition, duplicated DNA transposition and polyploidization. Unequal crossing over. Unequal crossing over produces tandem repeated sequences,. i.e. continuous repeats of DNA sequence. Depending on.

  8. Plant resistance genes : their structure, function and evolution

    NARCIS (Netherlands)

    Takken, F.L.W.; Joosten, M.H.A.J.

    2000-01-01

    Plants have developed efficient mechanisms to avoid infection or to mount responses that render them resistant upon attack by a pathogen. One of the best-studied defence mechanisms is based on gene-for-gene resistance through which plants, harbouring specific resistance (R) genes, specifically

  9. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution

    Science.gov (United States)

    Wheeler, Bayly S; Anderson, Erika; Frøkjær-Jensen, Christian; Bian, Qian; Jorgensen, Erik; Meyer, Barbara J

    2016-01-01

    Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI: http://dx.doi.org/10.7554/eLife.17365.001 PMID:27572259

  10. Search for the algorithm of genes distribution during the process of microbial evolution

    Science.gov (United States)

    Pikuta, Elena V.

    2015-09-01

    Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently

  11. Molecular cloning of RBCS genes in Selaginella and the evolution of the rbcS gene family

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2015-01-01

    Full Text Available Rubisco small subunits (RBCS are encoded by a nuclear rbcS multigene family in higher plants and green algae. However, owing to the lack of rbcS sequences in lycophytes, the characteristics of rbcS genes in lycophytes is unclear. Recently, the complete genome sequence of the lycophyte Selaginella moellendorffii provided the first insight into the rbcS gene family in lycophytes. To understand further the characteristics of rbcS genes in other Selaginella, the full length of rbcS genes (rbcS1 and rbcS2 from two other Selaginella species were isolated. Both rbcS1 and rbcS2 genes shared more than 97% identity among three Selaginella species. RBCS proteins from Selaginella contained the Pfam RBCS domain F00101, which was a major domain of other plant RBCS proteins. To explore the evolution of the rbcS gene family across Selaginella and other plants, we identified and performed comparative analysis of the rbcS gene family among 16 model plants based on a genome-wide analysis. The results showed that (i two rbcS genes were obtained in Selaginella, which is the second fewest number of rbcS genes among the 16 representative plants; (ii an expansion of rbcS genes occurred in the moss Physcomitrella patens; (iii only RBCS proteins from angiosperms contained the Pfam PF12338 domains, and (iv a pattern of concerted evolution existed in the rbcS gene family. Our study provides new insights into the evolution of the rbcS gene family in Selaginella and other plants.

  12. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    Directory of Open Access Journals (Sweden)

    Baines John F

    2009-12-01

    Full Text Available Abstract Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4% have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate

  13. Evolution of the YABBY gene family in seed plants.

    Science.gov (United States)

    Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L

    2016-01-01

    Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants. © 2016 Wiley Periodicals, Inc.

  14. Investigating water soluble organic aerosols: Sources and evolution

    Science.gov (United States)

    Hecobian, Arsineh N.

    Many studies are being conducted on the different properties of organic aerosols (OA-s) as it is first emitted into the atmosphere and the consequent changes in these characteristics as OA-s age and secondary organic aerosol (SOA) is produced and in turn aged. This thesis attempts to address some of the significant and emerging issues that deal with the formation and transformation of water-soluble organic aerosols in the atmosphere. First, a proven method for the measurement of gaseous sulfuric acid, negative ion chemical ionization mass spectrometry (CIMS), has been modified for fast and sensitive measurements of particulate phase sulfuric acid (i.e. sulfate). The modifications implemented on this system have also been the subject of preliminary verifications for measurements of aerosol phase oxalic acid (an organic acid). Second, chemical and physical characteristics of a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS experiment are presented here. A statistical summary of the emission (or enhancement) ratios relative to carbon monoxide is presented for various gaseous and aerosol species. Extensive investigations of fire plume evolutions were undertaken during the second part of this field campaign. For four distinct Boreal fires, where plumes were intercepted by the aircraft over a wide range of down-wind distances, emissions of various compounds and the effect of aging on them were investigated in detail. No clear evidence of production of secondary compounds (e.g., WSOC and OA) was observed. High variability in emissions between the different plumes may have obscured any clear evidence of changes in the mass of various species with increasing plume age. Also, the lack if tropospheric oxidizing species (e.g., O3 and OH) may have contributed to the lack of SOA formation. Individual intercepts of smoke plumes in this study were segregated by source regions. The normalized excess mixing

  15. Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans.

    Science.gov (United States)

    Kishore, Sandeep P; Stiller, John W; Deitsch, Kirk W

    2013-02-11

    The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology. In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available. Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in the evolution to parasitism in

  16. The origin and evolution of Basigin(BSG) gene: A comparative genomic and phylogenetic analysis.

    Science.gov (United States)

    Zhu, Xinyan; Wang, Shenglan; Shao, Mingjie; Yan, Jie; Liu, Fei

    2017-07-01

    Basigin (BSG), also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), plays various fundamental roles in the intercellular recognition involved in immunologic phenomena, differentiation, and development. In this study, we aimed to compare the similarities and differences of BSG among organisms and explore possible evolutionary relationships based on the comparison result. We used the extensive BLAST tool to search the metazoan genomes, N-glycosylation sites, the transmembrane region and other functional sites. We then identified BSG homologs from genomic sequences and analyzed their phylogenetic relationships. We identified that BSG genes exist not only in the vertebrate metazoans but also in the invertebrate metazoans such as Amphioxus B. floridae, D. melanogaster, A. mellifera, S. japonicum, C. gigas, and T. patagoniensis. After sequence analysis, we confirmed that only vertebrate metazoans and Cephalochordate (amphioxus B. floridae) have the classic structure (a signal peptide, two Ig-like domains (IgC2 and IgI), a transmembrane region, and an intracellular domain). The invertebrate metazoans (excluding amphioxus B. floridae) lack the N-terminal signal peptides and IgC2 domain. We then generated a phylogenetic tree, genome organization comparison, and chromosomal disposition analysis based on the biological information obtained from the NCBI and Ensembl databases. Finally, we established the possible evolutionary scenario of the BSG gene, which showed the restricted exon rearrangement that has occurred during evolution, forming the present-day BSG gene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...

  18. Distribution and evolution of genes responsible for biosynthesis of mycotoxins in Fusarium

    Science.gov (United States)

    Fusarium secondary metabolites (SMs) include some of the mycotoxins of greatest concern to food and feed safety. In fungi, genes directly involved in synthesis of the same SM are typically located adjacent to one another in gene clusters. To better understand the distribution and evolution of mycoto...

  19. Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes.

    Science.gov (United States)

    Vialette-Guiraud, Aurélie C M; Adam, Hélène; Finet, Cédric; Jasinski, Sophie; Jouannic, Stefan; Scutt, Charles P

    2011-06-01

    The closely related NAC family genes NO APICAL MERISTEM (NAM) and CUP-SHAPED COTYLEDON3 (CUC3) regulate the formation of boundaries within and between plant organs. NAM is post-transcriptionally regulated by miR164, whereas CUC3 is not. To gain insight into the evolution of NAM and CUC3 in the angiosperms, we analysed orthologous genes in early-diverging ANA-grade angiosperms and gymnosperms. We obtained NAM- and CUC3-like sequences from diverse angiosperms and gymnosperms by a combination of reverse transcriptase PCR, cDNA library screening and database searching, and then investigated their phylogenetic relationships by performing maximum-likelihood reconstructions. We also studied the spatial expression patterns of NAM, CUC3 and MIR164 orthologues in female reproductive tissues of Amborella trichopoda, the probable sister to all other flowering plants. Separate NAM and CUC3 orthologues were found in early-diverging angiosperms, but not in gymnosperms, which contained putative orthologues of the entire NAM + CUC3 clade that possessed sites of regulation by miR164. Multiple paralogues of NAM or CUC3 genes were noted in certain taxa, including Brassicaceae. Expression of NAM, CUC3 and MIR164 orthologues from Am. trichopoda was found to co-localize in ovules at the developmental boundary between the chalaza and nucellus. The NAM and CUC3 lineages were generated by duplication, and CUC3 was subsequently lost regulation by miR164, prior to the last common ancestor of the extant angiosperms. However, the paralogous NAM clade genes CUC1 and CUC2 were generated by a more recent duplication, near the base of Brassicaceae. The function of NAM and CUC3 in defining a developmental boundary in the ovule appears to have been conserved since the last common ancestor of the flowering plants, as does the post-transcriptional regulation in ovule tissues of NAM by miR164.

  20. Communicative genes in the evolution of empathy and altruism.

    Science.gov (United States)

    Buck, Ross

    2011-11-01

    This paper discusses spontaneous communication and its implications for understanding empathy and altruism. The question of the possibility of "true" altruism-giving up one's genetic potential in favor of the genetic potential of another-is a fundamental issue common to the biological, behavioral, and social sciences. Darwin regarded "social instincts and sympathies" to be critical to the social order, but the possibility of biologically-based prosocial motives and emotions was questioned when selection was interpreted as operating at the level of the gene. In the selfish gene hypothesis, Dawkins argued that the unit of evolutionary selection must be an active, germ-line replicator: a unit whose activities determine whether copies of it are made across evolutionary timescales. He argued that the only active replicator existing across evolutionary timescales is the gene, so that the "selfish gene" is a replicator motivated only to make copies of itself. The communicative gene hypothesis notes that genes function by communicating, and the phenotype communication involves not only the individual sending and receiving abilities of the individual genes involved, but also the relationship between them relative to other genes. Therefore the selection of communication as phenotype involves the selection of individual genes and also their relationship. Relationships become replicators, and are selected across evolutionary timescales including social relationships (e.g., sex, nurturance, dominance-submission). An interesting implication of this view: apparent altruism has been interpreted by selfish gene theorists as due to kin selection and reciprocity, in which the survival of kin and comrade indirectly favor the genetic potential of the altruist. From the viewpoint of the communicative gene hypothesis, rather than underlying altruism, kin selection and reciprocity are ways of restricting altruism to kin and comrade: they are mechanisms not of altruism but of xenophobia.

  1. Parallel evolution of auditory genes for echolocation in bats and toothed whales.

    Science.gov (United States)

    Shen, Yong-Yi; Liang, Lu; Li, Gui-Sheng; Murphy, Robert W; Zhang, Ya-Ping

    2012-06-01

    The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.

  2. Parallel evolution of auditory genes for echolocation in bats and toothed whales.

    Directory of Open Access Journals (Sweden)

    Yong-Yi Shen

    2012-06-01

    Full Text Available The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23 and its ligand, protocadherin 15 (Pcdh15, are essential for bundling motility in the sensory hair. Otoferlin (Otof responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.

  3. Phylogenetic characterization and novelty of organic sulphur metabolizing genes of Rhodococcus spp. (Eu-32).

    Science.gov (United States)

    Akhtar, Nasrin; Ghauri, Muhammad A; Anwar, Munir A; Heaphy, Shaun

    2015-04-01

    Rhodococcus spp. (Eu-32) has the unique ability to metabolize organic sulphur containing compounds like dibenzothiophene through an extended sulphur specific pathway (Akhtar et al., in FEMS Microbiol Lett 301:95-102, 2009). Efforts were made to isolate and characterize the presumed desulphurizing genes (dszABC) involved in the sulphur specific pathway of isolate Eu-32 by employing standard and degenerate polymerase chain reaction primers. The partial dszA gene sequence of isolate Eu-32 showed 92% sequence identity with a putative FMNH-2 dependent monooxygenase of Rhodococcus erythropolis PR4. The dszC gene sequence showed 99% homology with the dibenzothiophene monooxygenase desulphurizing enzyme of another Rhodococcus species. The dszB gene was not unambiguously identified. A phylogenetic analysis by maximum likelihood method of the 16S rRNA gene and deduced DszA and C amino acid sequences suggest that horizontal gene transfer events might have taken place during the evolution of desulphurizing genes of Rhodococcus spp. (Eu-32).

  4. Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2010-11-01

    Full Text Available Abstract Elite controllers or suppressors (ES are HIV-1 infected patients who maintain viral loads of gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host.

  5. Gene duplication as a major force in evolution

    Indian Academy of Sciences (India)

    Gene duplication can provide new genetic material for mutation, drift and selection to act upon, the result of which is specialized or new gene functions. Without ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various ...

  6. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Directory of Open Access Journals (Sweden)

    Simmons David K

    2012-01-01

    Full Text Available Abstract Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx, which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet. Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more

  7. Retention and Molecular Evolution of Lipoxygenase Genes in Modern Rosid Plants

    OpenAIRE

    Chen, Zhu; Chen, Danmei; Chu, Wenyuan; Zhu, Dongyue; Yan, Hanwei; Xiang, Yan

    2016-01-01

    ABSTRACTWhole-genome duplication events have occurred more than once in the genomes of some rosids and played a significant role over evolutionary time. Lipoxygenases (LOXs) are involved in many developmental and resistance processes in plants. Our study concerns the subject of the LOX gene family; we tracked the evolutionary process of ancestral LOX genes in four modern rosids. Here we show that some members of the LOX gene family in the Arabidopsis genome are likely to be lost during evolut...

  8. Dosage sensitivity of RPL9 and concerted evolution of ribosomal protein genes in plants

    Directory of Open Access Journals (Sweden)

    Deborah eDevis

    2015-12-01

    Full Text Available The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in A. thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes leads to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes.

  9. Genomewide analysis of the lateral organ boundaries domain gene ...

    Indian Academy of Sciences (India)

    95, 515–526]. Introduction. Transcription factor (TF) families play important roles in several biological processes in plants including growth and development, signal transduction and environmental stress responses. The lateral organ boundaries domain (LBD) gene family encodes plant-specific TFs that function in lateral.

  10. Retention and Molecular Evolution of Lipoxygenase Genes in Modern Rosid Plants.

    Science.gov (United States)

    Chen, Zhu; Chen, Danmei; Chu, Wenyuan; Zhu, Dongyue; Yan, Hanwei; Xiang, Yan

    2016-01-01

    Whole-genome duplication events have occurred more than once in the genomes of some rosids and played a significant role over evolutionary time. Lipoxygenases (LOXs) are involved in many developmental and resistance processes in plants. Our study concerns the subject of the LOX gene family; we tracked the evolutionary process of ancestral LOX genes in four modern rosids. Here we show that some members of the LOX gene family in the Arabidopsis genome are likely to be lost during evolution, leading to a smaller size than that in Populus, Vitis , and Carica . Strong purifying selection acted as a critical role in almost all of the paralogous and orthologous genes. The structure of LOX genes in Carica and Populus are relatively stable, whereas Vitis and Arabidopsis have a difference. By searching conserved motifs of LOX genes, we found that each sub-family shared similar components. Research on intraspecies gene collinearity show that recent duplication holds an important position in Populus and Arabidopsis . Gene collinearity analysis within and between these four rosid plants revealed that all LOX genes in each modern rosid were the offspring from different ancestral genes. This study traces the evolution of LOX genes which have been differentially retained and expanded in rosid plants. Our results presented here may aid in the selection of special genes retained in the rosid plants for further analysis of biological function.

  11. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Directory of Open Access Journals (Sweden)

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  12. Broad-sense sexual selection, sex gene pool evolution, and speciation.

    Science.gov (United States)

    Civetta, A; Singh, R S

    1999-12-01

    Studies of sexual selection have traditionally focused on explaining the extreme sexual dimorphism in male secondary sexual traits and elaborate mating behaviors displayed by males during courtship. In recent years, two aspects of sexual selection have received considerable attention in the literature: an extension of the sexual selection concept to other traits (i.e., postcopulatory behaviors, external and internal genital morphology, gametes, molecules), and alternative mechanistic explanations of the sexual selection process (i.e., coevolutionary runaway, good-genes, sexual conflicts). This article focuses on the need for an extension of sexual selection as a mechanism of change for courtship and (or) mating male characters (i.e., narrow-sense sexual selection) to all components of sexuality not necessarily related to courtship or mating (i.e., broad-sense sexual selection). We bring together evidence from a wide variety of organisms to show that sex-related genes evolve at a fast rate, and discuss the potential role of broad-sense sexual selection as an alternative to models that limit speciation to strict demographic conditions or treat it simply as an epiphenomenon of adaptive evolution.

  13. Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants.

    Science.gov (United States)

    Masalia, Rishi R; Bewick, Adam J; Burke, John M

    2017-01-01

    Gene coexpression networks are a useful tool for summarizing transcriptomic data and providing insight into patterns of gene regulation in a variety of species. Though there has been considerable interest in studying the evolution of network topology across species, less attention has been paid to the relationship between network position and patterns of molecular evolution. Here, we generated coexpression networks from publicly available expression data for seven flowering plant taxa (Arabidopsis thaliana, Glycine max, Oryza sativa, Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays) to investigate the relationship between network position and rates of molecular evolution. We found a significant negative correlation between network connectivity and rates of molecular evolution, with more highly connected (i.e., "hub") genes having significantly lower nonsynonymous substitution rates and dN/dS ratios compared to less highly connected (i.e., "peripheral") genes across the taxa surveyed. These findings suggest that more centrally located hub genes are, on average, subject to higher levels of evolutionary constraint than are genes located on the periphery of gene coexpression networks. The consistency of this result across disparate taxa suggests that it holds for flowering plants in general, as opposed to being a species-specific phenomenon.

  14. Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    DEFF Research Database (Denmark)

    Torday, J.S.; Rehan, V.K.; Hicks, J.W.

    2007-01-01

    other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange...

  15. The role of Pax genes in eye evolution

    Czech Academy of Sciences Publication Activity Database

    Kozmik, Zbyněk

    2008-01-01

    Roč. 75, 2-4 (2008), s. 335-339 ISSN 0361-9230 R&D Projects: GA AV ČR IAA500520604; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : eye * Pax * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.281, year: 2008

  16. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

    Czech Academy of Sciences Publication Activity Database

    Flegontov, Pavel; Gray, M.W.; Burger, G.; Lukeš, Julius

    2011-01-01

    Roč. 57, č. 4 (2011), 225-232 ISSN 0172-8083 Institutional research plan: CEZ:AV0Z60220518 Keywords : Euglena * Diplonema * Mitochondrial genome * RNA editing * Constructive neutral evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.556, year: 2011

  17. The vertebrate RCAN gene family: novel insights into evolution, structure and regulation.

    Directory of Open Access Journals (Sweden)

    Eva Serrano-Candelas

    Full Text Available Recently there has been much interest in the Regulators of Calcineurin (RCAN proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1. How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5' region of the genes, the existence of antisense transcripts (NAT associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.

  18. Model to the evolution of the organic matter in the pampa's soil. Relation with cultivation systems

    International Nuclear Information System (INIS)

    Andriulo, Adrian; Mary, Bruno; Guerif, Jerome; Balesdent, Jerome

    1996-08-01

    The objective of the work is to present a model to describe the evolution of the organic matter in soils of the Argentine's pampa. This model can be utilised to evaluate the evolution of the soil's fertility in the agricultural production at this moment. Three kinds of assay were done. The determination of organic carbon made possible to prove the Henin-Dupuis model and a derived model

  19. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.

    Science.gov (United States)

    Vaughan, E E; Pridmore, R D; Mollet, B

    1998-09-01

    The genetics of lactose utilization within the slow-lactose-fermenting Lactococcus lactis strain NCDO2054 was studied with respect to the organization, expression, and evolution of the lac genes. Initially the beta-galactosidase gene (lacZ) was cloned by complementation of an Escherichia coli mutant on a 7-kb HpaI fragment. Nucleotide sequence analysis of the complete fragment revealed part of a gal-lac operon, and the genes were characterized by inactivation and complementation analyses and in vitro enzyme activity measurements. The gene order is galK-galT-lacA-lacZ-galE; the gal genes encode enzymes of the Leloir pathway for galactose metabolism, and lacA encodes a galactoside acetyltransferase. The galT and galE genes of L. lactis LM0230 (a lactose plasmid-cured derivative of the fast-lactose-fermenting L. lactis C2) were highly similar at the nucleotide sequence level to their counterparts in strain NCDO2054 and, furthermore, had the same gene order except for the presence of the intervening lacA-lacZ strain NCDO2054. Analysis of mRNA for the gal and lac genes revealed an unusual transcriptional organization for the operon, with a surprisingly large number of transcriptional units. The regulation of the lac genes was further investigated by using fusions consisting of putative promoter fragments and the promoterless beta-glucuronidase gene (gusA) from E. coli, which identified three lactose-inducible intergenic promoters in the gal-lac operon. The greater similarity of the lacA and lacZ genes to homologs in gram-negative organisms than to those of gram-positive bacteria, in contrast to the homologies of the gal genes, suggests that the genes within the gal operon of L. lactis NCDO2054 have been recently acquired. Thus, the lacA-lacZ genes appear to have engaged the promoters of the gal operon in order to direct and control their expression.

  20. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates.

    Directory of Open Access Journals (Sweden)

    James H Thomas

    2007-05-01

    Full Text Available Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450 gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50-80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth-death evolution even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. Unstable gene islands in vertebrates share some functional properties with bacterial genomic islands, though they arise by local gene duplication rather than horizontal gene

  1. Development of international organizations in the context of evolution of global political system

    Directory of Open Access Journals (Sweden)

    M A Kaverin

    2014-12-01

    Full Text Available The article analyses general regularities of development of international organizations. Dynamics of international organizations is described with the equation of biological populations’ growth and is related to the evolution of international multilateral law and world development parameters. As the result of the research, the evolution of global political system is represented with the system of international governance based on the multilateral mechanisms and the model of social structures’ types. The transformations in the system of international organizations partially confirm the hypothesis of emerging World-organism.

  2. Gene order phylogeny and the evolution of methanogens.

    Directory of Open Access Journals (Sweden)

    Haiwei Luo

    Full Text Available Methanogens are a phylogenetically diverse group belonging to Euryarchaeota. Previously, phylogenetic approaches using large datasets revealed that methanogens can be grouped into two classes, "Class I" and "Class II". However, some deep relationships were not resolved. For instance, the monophyly of "Class I" methanogens, which consist of Methanopyrales, Methanobacteriales and Methanococcales, is disputable due to weak statistical support. In this study, we use MSOAR to identify common orthologous genes from eight methanogen species and a Thermococcale species (outgroup, and apply GRAPPA and FastME to compute distance-based gene order phylogeny. The gene order phylogeny supports two classes of methanogens, but it differs from the original classification of methanogens by placing Methanopyrales and Methanobacteriales together with Methanosarcinales in Class II rather than with Methanococcales. This study suggests a new classification scheme for methanogens. In addition, it indicates that gene order phylogeny can complement traditional sequence-based methods in addressing taxonomic questions for deep relationships.

  3. Floral organ identity genes in the orchid Dendrobium crumenatum.

    Science.gov (United States)

    Xu, Yifeng; Teo, Lai Lai; Zhou, Jing; Kumar, Prakash P; Yu, Hao

    2006-04-01

    Orchids are members of Orchidaceae, one of the largest families in the flowering plants. Among the angiosperms, orchids are unique in their floral patterning, particularly in floral structures and organ identity. The ABCDE model was proposed as a general model to explain flower development in diverse plant groups, however the extent to which this model is applicable to orchids is still unknown. To investigate the regulatory mechanisms underlying orchid flower development, we isolated candidates for A, B, C, D and E function genes from Dendrobium crumenatum. These include AP2-, PI/GLO-, AP3/DEF-, AG- and SEP-like genes. The expression profiles of these genes exhibited different patterns from their Arabidopsis orthologs in floral patterning. Functional studies showed that DcOPI and DcOAG1 could replace the functions of PI and AG in Arabidopsis, respectively. By using chimeric repressor silencing technology, DcOAP3A was found to be another putative B function gene. Yeast two-hybrid analysis demonstrated that DcOAP3A/B and DcOPI could form heterodimers. These heterodimers could further interact with DcOSEP to form higher protein complexes, similar to their orthologs in eudicots. Our findings suggested that there is partial conservation in the B and C function genes between Arabidopsis and orchid. However, gene duplication might have led to the divergence in gene expression and regulation, possibly followed by functional divergence, resulting in the unique floral ontogeny in orchids.

  4. Root hairs, trichomes and the evolution of duplicate genes.

    Science.gov (United States)

    Kellogg, E A

    2001-12-01

    The MYB-class proteins WEREWOLF and GLABRA1 are functionally interchangeable, even though one is normally expressed solely in roots and the other only in shoots. This shows that their different functions are the result of the modification of cis-regulatory sequences over evolutionary time. The two genes thus provide an example of morphological diversification created by gene duplication and changes in regulation.

  5. DeCoSTAR: Reconstructing the Ancestral Organization of Genes or Genomes Using Reconciled Phylogenies

    Science.gov (United States)

    Anselmetti, Yoann; Patterson, Murray; Ponty, Yann; B�rard, S�verine; Chauve, Cedric; Scornavacca, Celine; Daubin, Vincent; Tannier, Eric

    2017-01-01

    DeCoSTAR is a software that aims at reconstructing the organization of ancestral genes or genomes in the form of sets of neighborhood relations (adjacencies) between pairs of ancestral genes or gene domains. It can also improve the assembly of fragmented genomes by proposing evolutionary-induced adjacencies between scaffolding fragments. Ancestral genes or domains are deduced from reconciled phylogenetic trees under an evolutionary model that considers gains, losses, speciations, duplications, and transfers as possible events for gene evolution. Reconciliations are either given as input or computed with the ecceTERA package, into which DeCoSTAR is integrated. DeCoSTAR computes adjacency evolutionary scenarios using a scoring scheme based on a weighted sum of adjacency gains and breakages. Solutions, both optimal and near-optimal, are sampled according to the Boltzmann–Gibbs distribution centered around parsimonious solutions, and statistical supports on ancestral and extant adjacencies are provided. DeCoSTAR supports the features of previously contributed tools that reconstruct ancestral adjacencies, namely DeCo, DeCoLT, ART-DeCo, and DeClone. In a few minutes, DeCoSTAR can reconstruct the evolutionary history of domains inside genes, of gene fusion and fission events, or of gene order along chromosomes, for large data sets including dozens of whole genomes from all kingdoms of life. We illustrate the potential of DeCoSTAR with several applications: ancestral reconstruction of gene orders for Anopheles mosquito genomes, multidomain proteins in Drosophila, and gene fusion and fission detection in Actinobacteria. Availability: http://pbil.univ-lyon1.fr/software/DeCoSTAR (Last accessed April 24, 2017). PMID:28402423

  6. Mobile gene cassettes: a fundamental resource for bacterial evolution.

    Science.gov (United States)

    Michael, Carolyn A; Gillings, Michael R; Holmes, Andrew J; Hughes, Lesley; Andrew, Nigel R; Holley, Marita P; Stokes, H W

    2004-07-01

    Horizontal gene transfer increases genetic diversity in prokaryotes to a degree not allowed by the limitations of reproduction by binary fission. The integron/gene cassette system is one of the most recently characterized examples of a system that facilitates horizontal gene transfer. This system, discovered in the context of multidrug resistance, is recognized in a clinical context for its role in allowing pathogens to adapt to the widespread use of antibiotics. Recent studies suggest that gene cassettes are common and encode functions relevant to many adaptive traits. To estimate the diversity of mobile cassettes in a natural environment, a molecular technique was developed to provide representative distributions of cassette populations at points within a sampling area. Subsequently, statistical methods analogous to those used for calculating species diversity were employed to assess the diversity of gene cassettes within the sample area in addition to gaining an estimate of cassette pool size. Results indicated that the number of cassettes within a 5x10-m sample area was large and that the overall mobile cassette metagenome was likely to be orders of magnitude larger again. Accordingly, gene cassettes appear to be capable of mobilizing a significant genetic resource and consequently have a substantial impact on bacterial adaptability.

  7. The diversity and evolution of Wolbachia ankyrin repeat domain genes.

    Directory of Open Access Journals (Sweden)

    Stefanos Siozios

    Full Text Available Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.

  8. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana.

    Science.gov (United States)

    Joly-Lopez, Zoé; Forczek, Ewa; Hoen, Douglas R; Juretic, Nikoleta; Bureau, Thomas E

    2012-09-01

    The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG), identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.

  9. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoé Joly-Lopez

    2012-09-01

    Full Text Available The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG, identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.

  10. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    Directory of Open Access Journals (Sweden)

    Barker Melissa

    2010-12-01

    Full Text Available Abstract Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii conserved genome size (between 2.8 and 3.2 Mb, and (iii a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus

  11. Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (Aedes aegypti).

    Science.gov (United States)

    Whittle, Carrie A; Extavour, Cassandra G

    2017-08-01

    Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system ( e.g. , sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition. Copyright © 2017 by the Genetics Society of America.

  12. Organ specific gene expressions in C57BL6 mice

    International Nuclear Information System (INIS)

    Majumder, Zahidur Rahman; Lee, Woo Jung; Kim, Dae Yong; Cho, Chul Koo; Kang, Chang Mo; Lee, Su Jae; Bae, Sang Woo; Lee, Yun Sil; Jeoung, Doo Il

    2004-01-01

    Cellular and tissue sensitivity against ionizing radiation depends on many endogenous gene expression patterns. It is well known that tissue or cells responds differently to various stimuli, including ionizing radiation according to the genetic background and the decision whether the damage is dealt with by apoptosis or whether rescue or repair is attempted is critical. Death of the individual cells removes the problem from the tissue but if the cell does not die, it may acquire genomic instability and lead to a population of cells with abnormally high susceptibility to chromosomal instability mutation and other delayed effects. Studies using inbred strains of rodents have clearly shown genotype-dependent differences in response to radiation exposure, including susceptibility to radiation-induced cellular transformation and tumor formation, as well as differences in susceptibility to radiation-induced chromosomal instability. In experiment systems, mouse models have proven very useful in identifying genes that modify radiation sensitivity. For instance, p53 deficient mice are strongly influenced by genetic background. Another importance aspect is that particular type of tumor that arises is dependent on the genetic background. In this study, we analyzed the genes which were previously reported to be overexpressed by radiation in human peripheral blood lymphocytes, in brain, spleen and lung which have different intrinsic radiosensitivity, and examined the correlation between gene expression patterns and organ sensitivity and identified the possible genes which are responsible for organ sensitivity

  13. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives

    International Nuclear Information System (INIS)

    Warmflash, Aryeh; Siggia, Eric D; Francois, Paul

    2012-01-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)

  14. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    Science.gov (United States)

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  15. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species.

    Science.gov (United States)

    Ometto, Lino; Shoemaker, DeWayne; Ross, Kenneth G; Keller, Laurent

    2011-04-01

    Ants provide remarkable examples of equivalent genotypes developing into divergent and discrete phenotypes. Diploid eggs can develop either into queens, which specialize in reproduction, or workers, which participate in cooperative tasks such as building the nest, collecting food, and rearing the young. In contrast, the differentiation between males and females generally depends upon whether eggs are fertilized, with fertilized (diploid) eggs giving rise to females and unfertilized (haploid) eggs giving rise to males. To obtain a comprehensive picture of the relative contributions of gender (sex), caste, developmental stage, and species divergence to gene expression evolution, we investigated gene expression patterns in pupal and adult queens, workers, and males of two species of fire ants, Solenopsis invicta and S. richteri. Microarray hybridizations revealed that variation in gene expression profiles is influenced more by developmental stage than by caste membership, sex, or species identity. The second major contributor to variation in gene expression was the combination of sex and caste. Although workers and queens share equivalent diploid nuclear genomes, they have highly distinctive patterns of gene expression in both the pupal and the adult stages, as might be expected given their extraordinary level of phenotypic differentiation. Overall, the difference in the proportion of differentially expressed genes was greater between workers and males than between workers and queens or queens and males, consistent with the fact that workers and males share neither gender nor reproductive capability. Moreover, between-species comparisons revealed that the greatest difference in gene expression patterns occurred in adult workers, a finding consistent with the fact that adult workers most directly experience the distinct external environments characterizing the different habitats occupied by the two species. Thus, much of the evolution of gene expression in ants may

  16. Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds.

    Science.gov (United States)

    Dean, Rebecca; Harrison, Peter W; Wright, Alison E; Zimmer, Fabian; Mank, Judith E

    2015-10-01

    The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. The ecology of life history evolution : genes, individuals and populations

    NARCIS (Netherlands)

    Visser, M.E.

    2013-01-01

    Natural selection shapes the life histories of organisms. The ecological interactions of these organisms with their biotic and abiotic environment shape the selection pressure on their phenotypes while their genetics determine how fast this selection leads to adaptation to their environment. The

  18. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Molluscan engrailed expression, serial organization, and shell evolution

    Science.gov (United States)

    Jacobs, D. K.; Wray, C. G.; Wedeen, C. J.; Kostriken, R.; DeSalle, R.; Staton, J. L.; Gates, R. D.; Lindberg, D. R.

    2000-01-01

    Whether the serial features found in some molluscs are ancestral or derived is considered controversial. Here, in situ hybridization and antibody studies show iterated engrailed-gene expression in transverse rows of ectodermal cells bounding plate field development and spicule formation in the chiton, Lepidochitona cavema, as well as in cells surrounding the valves and in the early development of the shell hinge in the clam, Transennella tantilla. Ectodermal expression of engrailed is associated with skeletogenesis across a range of bilaterian phyla, suggesting a single evolutionary origin of invertebrate skeletons. The shared ancestry of bilaterian-invertebrate skeletons may help explain the sudden appearance of shelly fossils in the Cambrian. Our interpretation departs from the consideration of canonical metameres or segments as units of evolutionary analysis. In this interpretation, the shared ancestry of engrailed-gene function in the terminal/posterior addition of serially repeated elements during development explains the iterative expression of engrailed genes in a range of metazoan body plans.

  20. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    Science.gov (United States)

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  1. Evolution of Drosophila ribosomal protein gene core promoters.

    Science.gov (United States)

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  2. Distinctive patterns of evolution of the δ-globin gene (HBD in primates.

    Directory of Open Access Journals (Sweden)

    Ana Moleirinho

    Full Text Available In most vertebrates, hemoglobin (Hb is a heterotetramer composed of two dissimilar globin chains, which change during development according to the patterns of expression of α- and β-globin family members. In placental mammals, the β-globin cluster includes three early-expressed genes, ε(HBE-γ(HBG-ψβ(HBBP1, and the late expressed genes, δ (HBD and β (HBB. While HBB encodes the major adult β-globin chain, HBD is weakly expressed or totally silent. Paradoxically, in human populations HBD shows high levels of conservation typical of genes under strong evolutionary constraints, possibly due to a regulatory role in the fetal-to-adult switch unique of Anthropoid primates. In this study, we have performed a comprehensive phylogenetic and comparative analysis of the two adult β-like globin genes in a set of diverse mammalian taxa, focusing on the evolution and functional divergence of HBD in primates. Our analysis revealed that anthropoids are an exception to a general pattern of concerted evolution in placental mammals, showing a high level of sequence conservation at HBD, less frequent and shorter gene conversion events. Moreover, this lineage is unique in the retention of a functional GATA-1 motif, known to be involved in the control of the developmental expression of the β-like globin genes. We further show that not only the mode but also the rate of evolution of the δ-globin gene in higher primates are strictly associated with the fetal/adult β-cluster developmental switch. To gain further insight into the possible functional constraints that have been shaping the evolutionary history of HBD in primates, we calculated dN/dS (ω ratios under alternative models of gene evolution. Although our results indicate that HBD might have experienced different selective pressures throughout primate evolution, as shown by different ω values between apes and Old World Monkeys + New World Monkeys (0.06 versus 0.43, respectively, these estimates

  3. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae

    Energy Technology Data Exchange (ETDEWEB)

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the [beta]-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate [beta]-carboxy-cis,cis-muconate. [beta]-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for [beta]-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to [beta]-carboxy-cis,cis-muconate.

  4. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.

    Science.gov (United States)

    Ettensohn, Charles A

    2009-01-01

    Significant new insights have emerged from the analysis of a gene regulatory network (GRN) that underlies the development of the endoskeleton of the sea urchin embryo. Comparative studies have revealed ways in which this GRN has been modified (and conserved) during echinoderm evolution, and point to mechanisms associated with the evolution of a new cell lineage. The skeletogenic GRN has also recently been used to study the long-standing problem of developmental plasticity. Other recent findings have linked this transcriptional GRN to morphoregulatory proteins that control skeletal anatomy. These new studies highlight powerful new ways in which GRNs can be used to dissect development and the evolution of morphogenesis.

  5. Gene duplication as a major force in evolution

    Indian Academy of Sciences (India)

    Based on whole-genome analysis of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for creation of many important developmental and regulatory genes ...

  6. Species-specific genes under selection characterize the co-evolution of slavemaker and host lifestyles.

    Science.gov (United States)

    Feldmeyer, B; Elsner, D; Alleman, A; Foitzik, S

    2017-12-04

    The transition to a parasitic lifestyle entails comprehensive changes to the selective regime. In parasites, genes encoding for traits that facilitate host detection, exploitation and transmission should be under selection. Slavemaking ants are social parasites that exploit the altruistic behaviour of their hosts by stealing heterospecific host brood during raids, which afterwards serve as slaves in slavemaker nests. Here we search for evidence of selection in the transcriptomes of three slavemaker species and three closely related hosts. We expected selection on genes underlying recognition and raiding or defense behaviour. Analyses of selective forces in species with a slavemaker or host lifestyle allowed investigation into whether or not repeated instances of slavemaker evolution share the same genetic basis. To investigate the genetic basis of host-slavemaker co-evolution, we created orthologous clusters from transcriptome sequences of six Temnothorax ant species - three slavemakers and three hosts - to identify genes with signatures of selection. We further tested for functional enrichment in selected genes from slavemakers and hosts respectively and investigated which pathways the according genes belong to. Our phylogenetic analysis, based on more than 5000 ortholog sequences, revealed sister species status for two slavemakers as well as two hosts, contradicting a previous phylogeny based on mtDNA. We identified 309 genes with signs of positive selection on branches leading to slavemakers and 161 leading to hosts. Among these were genes potentially involved in cuticular hydrocarbon synthesis, thus species recognition, and circadian clock functionality possibly explaining the different activity patterns of slavemakers and hosts. There was little overlap of genes with signatures of positive selection among species, which are involved in numerous different functions and different pathways. We identified different genes, functions and pathways under positive

  7. The ecology of life history evolution : genes, individuals and populations

    OpenAIRE

    Visser, M.E.

    2013-01-01

    Natural selection shapes the life histories of organisms. The ecological interactions of these organisms with their biotic and abiotic environment shape the selection pressure on their phenotypes while their genetics determine how fast this selection leads to adaptation to their environment. The field of ecological genetics studies the response to natural selection in the wild and thus plays a key role in our understanding of the adaptive capacity of life, essential to understand how a changi...

  8. A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2007-04-01

    Full Text Available Abstract Background As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will

  9. The evolution of the avian bill as a thermoregulatory organ.

    Science.gov (United States)

    Tattersall, Glenn J; Arnaout, Bassel; Symonds, Matthew R E

    2017-08-01

    The avian bill is a textbook example of how evolution shapes morphology in response to changing environments. Bills of seed-specialist finches in particular have been the focus of intense study demonstrating how climatic fluctuations acting on food availability drive bill size and shape. The avian bill also plays an important but under-appreciated role in body temperature regulation, and therefore in energetics. Birds are endothermic and rely on numerous mechanisms for balancing internal heat production with biophysical constraints of the environment. The bill is highly vascularised and heat exchange with the environment can vary substantially, ranging from around 2% to as high as 400% of basal heat production in certain species. This heat exchange may impact how birds respond to heat stress, substitute for evaporative water loss at elevated temperatures or environments of altered water availability, or be an energetic liability at low environmental temperatures. As a result, in numerous taxa, there is evidence for a positive association between bill size and environmental temperatures, both within and among species. Therefore, bill size is both developmentally flexible and evolutionarily adaptive in response to temperature. Understanding the evolution of variation in bill size however, requires explanations of all potential mechanisms. The purpose of this review, therefore, is to promote a greater understanding of the role of temperature on shaping bill size over spatial gradients as well as developmental, seasonal, and evolutionary timescales. © 2016 Cambridge Philosophical Society.

  10. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering

    Directory of Open Access Journals (Sweden)

    Katerina Stamati

    2011-01-01

    Full Text Available Oxygen is one of the critically defining elements resulting in the existence of eukaryotic life on this planet. The rise and fall of this element can be tracked through time and corresponds with the evolution of diverse life forms, development of efficient energy production (oxidative phosphorylation in single cell organisms, the evolution of multicellular organisms and the regulation of complex cell phenotypes. By understanding these events, we can plot the effect of oxygen on evolution and its direct influence on different forms of life today, from the whole organism to specific cells within multicellular organisms. In the emerging field of tissue engineering, understanding the role of different levels of oxygen for normal cell function as well as control of complex signalling cascades is paramount to effectively build 3D tissues in vitro and their subsequent survival when implanted.

  11. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    Science.gov (United States)

    Podar, Mircea; Eads, Jonathan R; Richardson, Toby H

    2005-01-01

    Background Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear. Results We examined the genetic neighborhood of the different subfamily genes and discovered conserved gene clusters or operons associated with specific nitrilase clades. The inferred evolutionary transitions that separate nitrilases which belong to different gene clusters correlated with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted during one of those transitions and identified sites in the enzyme that may have been under positive selection. Conclusion Changes in the observed biochemical properties of the nitrilases associated with the different gene clusters are consistent with a hypothesis that those enzymes have been recruited to a novel metabolic pathway following gene duplication and neofunctionalization. These results demonstrate the benefits of combining environmental genomic sampling and completed genomes data with evolutionary and biochemical analyses in the study of gene families. They also open new directions for studying the functions of nitrilases and the genes they are associated with. PMID:16083508

  12. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    Directory of Open Access Journals (Sweden)

    Eads Jonathan R

    2005-08-01

    Full Text Available Abstract Background Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear. Results We examined the genetic neighborhood of the different subfamily genes and discovered conserved gene clusters or operons associated with specific nitrilase clades. The inferred evolutionary transitions that separate nitrilases which belong to different gene clusters correlated with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted during one of those transitions and identified sites in the enzyme that may have been under positive selection. Conclusion Changes in the observed biochemical properties of the nitrilases associated with the different gene clusters are consistent with a hypothesis that those enzymes have been recruited to a novel metabolic pathway following gene duplication and neofunctionalization. These results demonstrate the benefits of combining environmental genomic sampling and completed genomes data with evolutionary and biochemical analyses in the study of gene families. They also open new directions for studying the functions of nitrilases and the genes they are associated with.

  13. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction.

    Science.gov (United States)

    Li, Aitao; Acevedo-Rocha, Carlos G; Sun, Zhoutong; Cox, Tony; Xu, Jia Lucy; Reetz, Manfred T

    2018-02-02

    Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high-fidelity solid-phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. A traditional combinatorial PCR-based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly (R,R)- and (S,S)-selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Organ Specific Gene Expression by Low Dose Radiation

    International Nuclear Information System (INIS)

    Lee, Woo Jung; Kang, Chang Mo; Lee, Dea Hoon; Bae, Snag Woo; Lee, Yun Sil

    2005-01-01

    Whole gene expression profiling has become one of the most widely used approaches identify genes and their functions in the context of specific biological questions. There is growing acknowledgement of the usefulness of determining expression patterns to identify and categorize genes, be it to use as disease markers, to discover drug targets, to map specific pathways, or to find markers of drug toxicity in early drug testing. Cellular and tissue sensitivity against ionizing radiation depends on many endogenous gene expression patterns. It is well known that various stimuli such as ionizing radiation produce genetic alteration and an important factor seems to be whether the cell dies, repair all the damage, undergoes defective repair or responds in a way which leads to transformation. The decision whether the damage is dealt with apoptosis, rescue or repair is critical. Death of the individual cell removes the problem from the tissue, however, if the cell does not die, it may acquire genomic instability and lead to a population of cells with abnormally high susceptibility to chromosomal instability mutation and other delayed effects. Studies using inbred strains of rodents have clearly shown genotype-dependent differences in response to radiation exposure, including susceptibility to radiation-induced cellular transformation and tumor formation, as well as differences in susceptibility to radiation-induced chromosomal instability. In this study, we analyzed the genes which have previously been reported to be overexpressed in human peripheral blood lymphocytes, in brain, heart, spleen, intestine, and lung which have been shown to have different intrinsic radiosensitivity, especially after low dose radiation exposure (0.2Gy), and examined the correlation between gene expression patterns and organ sensitivity and attempted to identify genes which are possibly responsible for radiation sensitivity

  15. Modification of gene duplicability during the evolution of protein interaction network.

    Directory of Open Access Journals (Sweden)

    Matteo D'Antonio

    2011-04-01

    Full Text Available Duplications of genes encoding highly connected and essential proteins are selected against in several species but not in human, where duplicated genes encode highly connected proteins. To understand when and how gene duplicability changed in evolution, we compare gene and network properties in four species (Escherichia coli, yeast, fly, and human that are representative of the increase in evolutionary complexity, defined as progressive growth in the number of genes, cells, and cell types. We find that the origin and conservation of a gene significantly correlates with the properties of the encoded protein in the protein-protein interaction network. All four species preserve a core of singleton and central hubs that originated early in evolution, are highly conserved, and accomplish basic biological functions. Another group of hubs appeared in metazoans and duplicated in vertebrates, mostly through vertebrate-specific whole genome duplication. Such recent and duplicated hubs are frequently targets of microRNAs and show tissue-selective expression, suggesting that these are alternative mechanisms to control their dosage. Our study shows how networks modified during evolution and contributes to explaining the occurrence of somatic genetic diseases, such as cancer, in terms of network perturbations.

  16. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    Science.gov (United States)

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  17. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    Science.gov (United States)

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  18. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae).

    Science.gov (United States)

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  19. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae and two New World fruit bats (Phyllostomidae. Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  20. Evolution of the cytochrome b gene of mammals.

    Science.gov (United States)

    Irwin, D M; Kocher, T D; Wilson, A C

    1991-02-01

    With the polymerase chain reaction (PCR) and versatile primers that amplify the whole cytochrome b gene (approximately 1140 bp), we obtained 17 complete gene sequences representing three orders of hoofed mammals (ungulates) and dolphins (cetaceans). The fossil record of some ungulate lineages allowed estimation of the evolutionary rates for various components of the cytochrome b DNA and amino acid sequences. The relative rates of substitution at first, second, and third positions within codons are in the ratio 10 to 1 to at least 33. For deep divergences (greater than 5 million years) it appears that both replacements and silent transversions in this mitochondrial gene can be used for phylogenetic inference. Phylogenetic findings include the association of (1) cetaceans, artiodactyls, and perissodactyls to the exclusion of elephants and humans, (2) pronghorn and fallow deer to the exclusion of bovids (i.e., cow, sheep, and goat), (3) sheep and goat to the exclusion of other pecorans (i.e., cow, giraffe, deer, and pronghorn), and (4) advanced ruminants to the exclusion of the chevrotain and other artiodactyls. Comparisons of these cytochrome b sequences support current structure-function models for this membrane-spanning protein. That part of the outer surface which includes the Qo redox center is more constrained than the remainder of the molecule, namely, the transmembrane segments and the surface that protrudes into the mitochondrial matrix. Many of the amino acid replacements within the transmembrane segments are exchanges between hydrophobic residues (especially leucine, isoleucine, and valine). Replacement changes at first and second positions of codons approximate a negative binomial distribution, similar to other protein-coding sequences. At four-fold degenerate positions of codons, the nucleotide substitutions approximate a Poisson distribution, implying that the underlying mutational spectrum is random with respect to position.

  1. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  2. Organization of the gene encoding human lysosomal beta-galactosidase.

    Science.gov (United States)

    Morreau, H; Bonten, E; Zhou, X Y; D'Azzo, A

    1991-09-01

    Human beta-galactosidase precursor mRNA is alternatively spliced into an abundant 2.5-kb transcript and a minor 2.0-kb species. These templates direct the synthesis of the classic lysosomal beta-D-galactosidase enzyme and of a beta-galactosidase-related protein with no enzymatic activity. Mutations in the beta-galactosidase gene result in the lysosomal storage disorders GM1-gangliosidosis and Morquio B syndrome. To analyze the genetic lesions underlying these syndromes we have isolated the human beta-galactosidase gene and determined its organization. The gene spans greater than 62.5 kb and contains 16 exons. Promoter activity is located on a 236-bp Pst I fragment which works in a direction-independent manner. A second Pst I fragment of 851 bp located upstream from the first negatively regulates initiation of transcription. The promoter has characteristics of a housekeeping gene with GC-rich stretches and five potential SP1 transcription elements on two strands. We identified multiple cap sites of the mRNA, the major of which maps 53 bp upstream from the translation initiation codon. The portion of the human pre-mRNA undergoing alternative splicing is encoded by exons II-VII. Sequence analysis of equivalent mouse exons showed an identical genomic organization. However, translation of the corresponding differentially spliced murine transcript is interrupted in its reading frame. Thus, the mouse gene cannot encode a beta-galactosidase-related protein in a manner similar to the human counterpart. Differential expression of the murine beta-galactosidase transcript is observed in different mouse tissues.

  3. Evolution of epithelial morphogenesis: phenotypic integration across multiple levels of biological organization

    Directory of Open Access Journals (Sweden)

    Thorsten eHorn

    2015-09-01

    Full Text Available Morphogenesis involves the dynamic reorganization of cell and tissue shapes to create the three-dimensional body. Intriguingly, different species have evolved different morphogenetic processes to achieve the same general outcomes during embryonic development. How are meaningful comparisons between species made, and where do the differences lie? In this Perspective, we argue that examining the evolution of embryonic morphogenesis requires the simultaneous consideration of different levels of biological organization: (1 genes, (2 cells, (3 tissues, and (4 the entire egg. To illustrate the importance of integrating these levels, we use the extraembryonic epithelia of insects – a lineage-specific innovation and evolutionary hotspot – as an exemplary case study. We discuss how recent functional data, primarily from RNAi experiments targeting the Hox3/ Zen and U-shaped group transcription factors, provide insights into developmental processes at all four levels. Comparisons of these data from several species both challenge and inform our understanding of homology, in assessing how the process of epithelial morphogenesis has itself evolved.

  4. Phylogenetic analysis reveals dynamic evolution of the poly(A)-binding protein gene family in plants.

    Science.gov (United States)

    Gallie, Daniel R; Liu, Renyi

    2014-11-25

    The poly(A)-binding protein (PABP) binds the poly(A) tail of eukaryotic mRNAs and functions to maintain the integrity of the mRNA while promoting protein synthesis through its interaction with eukaryotic translation initiation factor (eIF) 4G and eIF4B. PABP is encoded by a single gene in yeast and marine algae but during plant evolution the PABP gene family expanded substantially, underwent sequence divergence into three subclasses, and acquired tissue-specificity in gene family member expression. Although such changes suggest functional specialization, the size of the family and its sequence divergence have complicated an understanding of which gene family members may be foundational and which may represent more recent expansions of the family to meet the specific needs of speciation. Here, we examine the evolution of the plant PABP gene family to provide insight into these aspects of the family that may yield clues into the function of individual family members. The PABP gene family had expanded to two members by the appearance of fresh water algae and four members in non-vascular plants. In lycophytes, the first sequence divergence yielding a specific class member occurs. The earliest members of the gene family share greatest similarity to those modern members whose expression is confined to reproductive tissues, suggesting that supporting reproductive-associated gene expression is the most conserved function of this family. A family member sharing similarity to modern vegetative-associated members first appears in gymnosperms. Further elaboration of the reproductive-associated and vegetative-associated members occurred during the evolution of flowering plants. Expansion of the plant PABP gene family began prior to the colonization of land. By the evolution of lycophytes, the first class member whose expression is confined to reproductive tissues in higher plants had appeared. A second class member whose expression is vegetative-associated appeared in

  5. The Free Energy Requirements of Biological Organisms; Implications for Evolution

    Directory of Open Access Journals (Sweden)

    David H. Wolpert

    2016-04-01

    Full Text Available Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis, deriving the minimal free energy required by an organism to run a given (stochastic map π from its sensor inputs to its actuator outputs. I use this result to calculate the input-output map π of an organism that optimally trades off the free energy needed to run π with the phenotypic fitness that results from implementing π. I end with a general discussion of the limits imposed on the rate of the terrestrial biosphere’s information processing by the flux of sunlight on the Earth.

  6. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    DEFF Research Database (Denmark)

    Petersen, Gitte; Cuenca, Argelia; Zervas, Athanasios

    2017-01-01

    The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of Zostera marina and Stratiotes...

  7. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  8. The evolution of sex chromosomes in organisms with separate haploid sexes.

    Science.gov (United States)

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  9. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  10. Analysis of the role of retrotransposition in gene evolution in vertebrates

    Directory of Open Access Journals (Sweden)

    Ivanga Mahine

    2007-08-01

    Full Text Available Abstract Background The dynamics of gene evolution are influenced by several genomic processes. One such process is retrotransposition, where an mRNA transcript is reverse-transcribed and reintegrated into the genomic DNA. Results We have surveyed eight vertebrate genomes (human, chimp, dog, cow, rat, mouse, chicken and the puffer-fish T. nigriviridis, for putatively retrotransposed copies of genes. To gain a complete picture of the role of retrotransposition, a robust strategy to identify putative retrogenes (PRs was derived, in tandem with an adaptation of previous procedures to annotate processed pseudogenes, also called retropseudogenes (RψGs. Mammalian genomes are estimated to contain 400–800 PRs (corresponding to ~3% of genes, with fewer PRs and RψGs in the non-mammalian vertebrates. Focussing on human and mouse, we aged the PRs, analysed for evidence of transcription and selection pressures, and assigned functional categories. The PRs have significantly less transcription evidence mappable to them, are significantly less likely to arise from alternatively-spliced genes, and are statistically overrepresented for ribosomal-protein genes, when compared to the proteome in general. We find evidence for spurts of gene retrotransposition in human and mouse, since the lineage of either species split from the dog lineage, with >200 PRs formed in mouse since its divergence from rat. To examine for selection, we calculated: (i Ka/Ks values (ratios of non-synonymous and synonymous substitutions in codons, and (ii the significance of conservation of reading frames in PRs. We found >50 PRs in both human and mouse formed since divergence from dog, that are under pressure to maintain the integrity of their coding sequences. For different subsets of PRs formed at different stages of mammalian evolution, we find some evidence for non-neutral evolution, despite significantly less expression evidence for these sequences. Conclusion These results indicate

  11. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    International Nuclear Information System (INIS)

    Jimenez V, Reina A.

    2007-01-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae

  12. On theoretical models of gene expression evolution with random genetic drift and natural selection.

    Science.gov (United States)

    Ogasawara, Osamu; Okubo, Kousaku

    2009-11-20

    The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence evolution, as the null hypothesis of their statistical inference. In this study, we introduced two novel theoretical models, one based on neutral drift and the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1) our models can reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and Zipf's law of the transcriptome; (2) cytological constraints can be explicitly formulated to describe long-term evolution; (3) the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously published observations than the model of optimized absolute mRNA abundances. The models introduced in this study give a formulation of evolutionary change in the mRNA abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations.

  13. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway.

    Science.gov (United States)

    Nougué, Odrade; Corbi, Jonathan; Ball, Steven G; Manicacci, Domenica; Tenaillon, Maud I

    2014-05-15

    Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called "Escape from Adaptive Conflict" (EAC) model. Because none of the

  14. Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes.

    Science.gov (United States)

    Grueber, Catherine E; Wallis, Graham P; Jamieson, Ian G

    2014-01-01

    Toll-like receptors (TLRs) are a family of conserved pattern-recognition molecules responsible for initiating innate and acquired immune responses. Because they play a key role in host defence, these genes have received increasing interest in the evolutionary and population genetics literature, as their variation represents a potential target of adaptive evolution. However, the role of pathogen-mediated selection (i.e. episodic positive selection) in the evolution of these genes remains poorly known and has not been examined outside of mammals. A recent increase in the number of bird species for which TLR sequences are available has enabled us to examine the selective processes that have influenced evolution of the 10 known avian TLR genes. Specifically, we tested for episodic positive selection to identify codons that experience purifying selection for the majority of their evolution, interspersed with bursts of positive selection that may occur only in restricted lineages. We included up to 23 species per gene (mean = 16.0) and observed that, although purifying selection was evident, an average of 4.5% of codons experienced episodic positive selection across all loci. For four genes in which sequence coverage traversed both the extracellular leucine-rich repeat region (LRR) and transmembrane/intracellular domains of the proteins, increased positive selection was observed at the extracellular domain, consistent with theoretical predictions. Our results provide evidence that episodic positive selection has played an important role in the evolution of most avian TLRs, consistent with the role of these loci in pathogen recognition and a mechanism of host-pathogen coevolution.

  15. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  16. The molecular evolution of cytochrome P450 genes within and between drosophila species.

    Science.gov (United States)

    Good, Robert T; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-04-20

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. What transposable elements tell us about genome organization and evolution: the case of Drosophila.

    Science.gov (United States)

    Biémont, C; Vieira, C

    2005-01-01

    Transposable elements (TEs) have been identified in every organism in which they have been looked for. The sequencing of large genomes, such as the human genome and those of Drosophila, Arabidopsis, Caenorhabditis, has also shown that they are a major constituent of these genomes, accounting for 15% of the genome of Drosophila, 45% of the human genome, and more than 70% in some plants and amphibians. Compared with the 1% of genomic DNA dedicated to protein-coding sequences in the human genome, this has prompted various researchers to suggest that the TEs and the other repetitive sequences that constitute the so-called "noncoding DNA", are where the most stimulating discoveries will be made in the future (Bromham, 2002). We are therefore getting further and further from the original idea that this DNA was simply "junk DNA", that owed its presence in the genome entirely to its capacity for selfish transposition. Our understanding of the structures of TEs, their distribution along the genomes, their sequence and insertion polymorphisms within genomes, and within and between populations and species, their impact on genes and on the regulatory mechanisms of genetic expression, their effects on exon shuffling and other phenomena that reshape the genome, and their impact on genome size has increased dramatically in recent years. This leads to a more general picture of the impact of TEs on genomes, though many copies are still mainly selfish or junk DNA. In this review we focus mainly on discoveries made in Drosophila, but we also use information about other genomes when this helps to elucidate the general processes involved in the organization, plasticity, and evolution of genomes.

  18. Rapid, broad-scale gene expression evolution in experimentally harvested fish populations.

    Science.gov (United States)

    Uusi-Heikkilä, Silva; Sävilammi, Tiina; Leder, Erica; Arlinghaus, Robert; Primmer, Craig R

    2017-08-01

    Gene expression changes potentially play an important role in adaptive evolution under human-induced selection pressures, but this has been challenging to demonstrate in natural populations. Fishing exhibits strong selection pressure against large body size, thus potentially inducing evolutionary changes in life history and other traits that may be slowly reversible once fishing ceases. However, there is a lack of convincing examples regarding the speed and magnitude of fisheries-induced evolution, and thus, the relevant underlying molecular-level effects remain elusive. We use wild-origin zebrafish (Danio rerio) as a model for harvest-induced evolution. We experimentally demonstrate broad-scale gene expression changes induced by just five generations of size-selective harvesting, and limited genetic convergence following the cessation of harvesting. We also demonstrate significant allele frequency changes in genes that were differentially expressed after five generations of size-selective harvesting. We further show that nine generations of captive breeding induced substantial gene expression changes in control stocks likely due to inadvertent selection in the captive environment. The large extent and rapid pace of the gene expression changes caused by both harvest-induced selection and captive breeding emphasizes the need for evolutionary enlightened management towards sustainable fisheries. © 2017 John Wiley & Sons Ltd.

  19. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

    Directory of Open Access Journals (Sweden)

    Lynch Vincent J

    2007-01-01

    Full Text Available Abstract Background Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Results Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. Conclusion These data show that increases in genomic complexity (through gene duplications can lead to phenotypic complexity (venom composition and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  20. Adaptive evolution of Hoxc13 genes in the origin and diversification of the vertebrate integument.

    Science.gov (United States)

    Wu, Jianghong; Husile; Sun, Hailian; Wang, Feng; Li, Yurong; Zhao, Cunfa; Zhang, Wenguang

    2013-11-01

    The problem of origination and diversification of integument derivatives in vertebrates is still a challenge. The homeobox (Hox) genes Hoxc13 control integument formation in vertebrate. Hoxc13 show strong expression in the integument development, are highly conserved across vertebrates, and show mutations that are associated with skin and appendages. To test whether the evolution of the integument is associated with positive selection or relaxation of Hoxc13, we obtained these genes in a wide range of vertebrates. In Hoxc13, we found evidence of diversifying selection after speciation during the origin of vertebrates. In addition, we found the glycine-rich regions in Hoxc13 protein in mammals, but not among non-mammalian taxa. Our results strongly implicate that Hoxc13 genes could have played an important role in the evolution of integument structure. © 2013 Wiley Periodicals, Inc.

  1. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry

    Directory of Open Access Journals (Sweden)

    Preston Jill C

    2012-03-01

    Full Text Available Abstract Background Flower bilateral symmetry (zygomorphy has evolved multiple times independently across angiosperms and is correlated with increased pollinator specialization and speciation rates. Functional and expression analyses in distantly related core eudicots and monocots implicate independent recruitment of class II TCP genes in the evolution of flower bilateral symmetry. Furthermore, available evidence suggests that monocot flower bilateral symmetry might also have evolved through changes in B-class homeotic MADS-box gene function. Methods In order to test the non-exclusive hypotheses that changes in TCP and B-class gene developmental function underlie flower symmetry evolution in the monocot family Commelinaceae, we compared expression patterns of teosinte branched1 (TB1-like, DEFICIENS (DEF-like, and GLOBOSA (GLO-like genes in morphologically distinct bilaterally symmetrical flowers of Commelina communis and Commelina dianthifolia, and radially symmetrical flowers of Tradescantia pallida. Results Expression data demonstrate that TB1-like genes are asymmetrically expressed in tepals of bilaterally symmetrical Commelina, but not radially symmetrical Tradescantia, flowers. Furthermore, DEF-like genes are expressed in showy inner tepals, staminodes and stamens of all three species, but not in the distinct outer tepal-like ventral inner tepals of C. communis. Conclusions Together with other studies, these data suggest parallel recruitment of TB1-like genes in the independent evolution of flower bilateral symmetry at early stages of Commelina flower development, and the later stage homeotic transformation of C. communis inner tepals into outer tepals through the loss of DEF-like gene expression.

  2. CG gene body DNA methylation changes and evolution of duplicated genes in cassava.

    Science.gov (United States)

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J; Bart, Rebecca; Carrington, James C; Jacobsen, Steven E; Ausin, Israel

    2015-11-03

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.

  3. Divergence of gene body DNA methylation and evolution of plant duplicate genes.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes.

  4. Micro-evolution of toxicant tolerance: from single genes to the genome's tangled bank.

    Science.gov (United States)

    van Straalen, Nico M; Janssens, Thierry K S; Roelofs, Dick

    2011-05-01

    Two case-studies published 55 years ago became textbook examples of evolution in action: DDT resistance in houseflies (Busvine) and the rise of melanic forms of the peppered moth (Kettlewell). Now, many years later, molecular studies have elucidated in detail the mechanisms conferring resistance. In this paper we focus on the case of metal tolerance in a soil-living arthropod, Orchesella cincta, and provide new evidence on the transcriptional regulation of a gene involved in stress tolerance, metallothionein. Evolution of resistance is often ascribed to cis-regulatory change of such stress-combatting genes. For example, DDT resistance in the housefly is due to insertion of a mobile element into the promoter of Cyp6g1, and overexpression of this gene allows rapid metabolism of DDT. The discovery of these mechanisms has promoted the idea that resistance to environmental toxicants can be brought about by relatively simple genetic changes, involving up-regulation, duplication or structural alteration of a single-gene. Similarly, the work on O. cincta shows that populations from metal-polluted mining sites have a higher constitutive expression of the cadmium-induced metallothionein (Mt) gene. Moreover, its promoter appears to include a large degree of polymorphism; Mt promoter alleles conferring high expression in cell-based bioreporter assays were shown to occur at higher frequency in populations living at polluted sites. The case is consistent with classical examples of micro-evolution through altered cis-regulation of a key gene. However, new data on qPCR analysis of gene expression in homozygous genotypes with both reference and metal-tolerant genetic backgrounds, show that Mt expression of the same pMt homozygotes depends on the origin of the population. This suggests that trans-acting factors are also important in the regulation of Mt expression and its evolution. So the idea that metal tolerance in Orchesella can be viewed as a single-gene adaptation must be

  5. Evolution of the defensin-like gene family in grass genomes

    Indian Academy of Sciences (India)

    linked cysteines (Thomma et al. ... The chromosomal organization of grass has remained largely conserved for 60 million years (Myr), but ... genome structure and gene function, and for implementing strategies for crop improvement. Materials and ...

  6. Gene structure and evolution of transthyretin in the order Chiroptera.

    Science.gov (United States)

    Khwanmunee, Jiraporn; Leelawatwattana, Ladda; Prapunpoj, Porntip

    2016-02-01

    Bats are mammals in the order Chiroptera. Although many extensive morphologic and molecular genetics analyses have been attempted, phylogenetic relationships of bats has not been completely resolved. The paraphyly of microbats is of particular controversy that needs to be confirmed. In this study, we attempted to use the nucleotide sequence of transthyretin (TTR) intron 1 to resolve the relationship among bats. To explore its utility, the complete sequences of TTR gene and intron 1 region of bats in Vespertilionidae: genus Eptesicus (Eptesicus fuscus) and genus Myotis (Myotis brandtii, Myotis davidii, and Myotis lucifugus), and Pteropodidae (Pteropus alecto and Pteropus vampyrus) were extracted from the retrieved sequences, whereas those of Rhinoluphus affinis and Scotophilus kuhlii were amplified and sequenced. The derived overall amino sequences of bat TTRs were found to be very similar to those in other eutherians but differed from those in other classes of vertebrates. However, missing of amino acids from N-terminal or C-terminal region was observed. The phylogenetic analysis of amino acid sequences suggested bat and other eutherian TTRs lineal descent from a single most recent common ancestor which differed from those of non-placental mammals and the other classes of vertebrates. The splicing of bat TTR precursor mRNAs was similar to those of other eutherian but different from those of marsupial, bird, reptile and amphibian. Based on TTR intron 1 sequence, the inferred evolutionary relationship within Chiroptera revealed more closely relatedness of R. affinis to megabats than to microbats. Accordingly, the paraphyly of microbats was suggested.

  7. Genomic organization of the REF gene in Hevea brasiliensis

    International Nuclear Information System (INIS)

    Attanayaka, D.P.S.T.G.; Karunanayake, E.H.; Lawrence, M.J.; Franklin, F.C.H.; Kekwick, R.G.O.

    1995-01-01

    The genomic organization of the rubber elongation factor (REF) gene in the Hevea genome was investigated by nucelotide sequence analysis and genomic Southern blots. The nucleotide sequence of a genomic clone of the REF gene was obtained. A genomic library of Hevea brasiliensis was constructed and screened with a REF cDNA clone. Ten putative positive clones were detected, five of which were purified by secondary screening. A total of 1099 nucleotides was determined from the insert contained in pGREF1 and found to encode 127 amino acids, including the carboxyl terminus of the REF protein. Nucleotide sequences that encode the rest of the amino terminal amino acids were then obtained using a polymerase chain reaction (PCR) product derived from the same genomic fragment. The nucleotide sequence of the genomic clone revealed the presence of two introns within the coding of the gene. The location of the putative intron/exon splicing sites of both the introns falls between the two codons. The coding region of the REF genomic clone showed 85% nucleotide homology with the REF cDNA sequence, and the deduced amino acid sequence showed 91% homology. The difference in nucleotide sequence between the cDNA and the genomic clones showed the occurrence of polymorphic forms of the REF gene in the Hevea genome. Genomic Southern blot analysis of different Hevea genotypes with the REF cDNA probe revealed the presence of restriction fragment length polymorphism (RFLP). Preliminary studies indicated that this polymorphism could be due to the presence of a multi-allelic REF gene locus. The RFLP pattern obtained using this DNA probe also showed that fingerprinting of the commercial rubber clones is possible. 1 ref., 2 figs

  8. The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution

    Directory of Open Access Journals (Sweden)

    Marden Michael C

    2010-11-01

    Full Text Available Abstract Background The lancelet amphioxus (Cephalochordata is a close relative of vertebrates and thus may enhance our understanding of vertebrate gene and genome evolution. In this context, the globins are one of the best studied models for gene family evolution. Previous biochemical studies have demonstrated the presence of an intracellular globin in notochord tissue and myotome of amphioxus, but the corresponding gene has not yet been identified. Genomic resources of Branchiostoma floridae now facilitate the identification, experimental confirmation and molecular evolutionary analysis of its globin gene repertoire. Results We show that B. floridae harbors at least fifteen paralogous globin genes, all of which reveal evidence of gene expression. The protein sequences of twelve globins display the conserved characteristics of a functional globin fold. In phylogenetic analyses, the amphioxus globin BflGb4 forms a common clade with vertebrate neuroglobins, indicating the presence of this nerve globin in cephalochordates. Orthology is corroborated by conserved syntenic linkage of BflGb4 and flanking genes. The kinetics of ligand binding of recombinantly expressed BflGb4 reveals that this globin is hexacoordinated with a high oxygen association rate, thus strongly resembling vertebrate neuroglobin. In addition, possible amphioxus orthologs of the vertebrate globin X lineage and of the myoglobin/cytoglobin/hemoglobin lineage can be identified, including one gene as a candidate for being expressed in notochord tissue. Genomic analyses identify conserved synteny between amphioxus globin-containing regions and the vertebrate β-globin locus, possibly arguing against a late transpositional origin of the β-globin cluster in vertebrates. Some amphioxus globin gene structures exhibit minisatellite-like tandem duplications of intron-exon boundaries ("mirages", which may serve to explain the creation of novel intron positions within the globin genes

  9. Parallel evolution of genes controlling mitonuclear balance in short-lived annual fishes.

    Science.gov (United States)

    Sahm, Arne; Bens, Martin; Platzer, Matthias; Cellerino, Alessandro

    2017-06-01

    The current molecular understanding of the aging process derives almost exclusively from the study of random or targeted single-gene mutations in highly inbred laboratory species, mostly invertebrates. Little information is available as to the genetic mechanisms responsible for natural lifespan variation and the evolution of lifespan, especially in vertebrates. Here, we investigated the pattern of positive selection in annual (i.e., short-lived) and nonannual (i.e., longer-lived) African killifishes to identify a genomic substrate for evolution of annual life history (and reduced lifespan). We identified genes under positive selection in all steps of mitochondrial biogenesis: mitochondrial (mt) DNA replication, transcription from mt promoters, processing and stabilization of mt RNAs, mt translation, assembly of respiratory chain complexes, and electron transport chain. Signs of paralleled evolution (i.e., evolution in more than one branch of Nothobranchius phylogeny) are observed in four out of five steps. Moreover, some genes under positive selection in Nothobranchius are under positive selection also in long-lived mammals such as bats and mole-rats. Complexes of the respiratory chain are formed in a coordinates multistep process where nuclearly and mitochondrially encoded components are assembled and inserted into the inner mitochondrial membrane. The coordination of this process is named mitonuclear balance, and experimental manipulations of mitonuclear balance can increase longevity of laboratory species. Our data strongly indicate that these genes are also casually linked to evolution lifespan in vertebrates. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Organization and evolution of two SIDER retroposon subfamilies and their impact on the Leishmania genome

    Directory of Open Access Journals (Sweden)

    Bringaud Frédéric

    2009-05-01

    Full Text Available Abstract Background We have recently identified two large families of extinct transposable elements termed Short Interspersed DEgenerated Retroposons (SIDERs in the parasitic protozoan Leishmania major. The characterization of SIDER elements was limited to the SIDER2 subfamily, although members of both subfamilies have been shown to play a role in the regulation of gene expression at the post-transcriptional level. Apparent functional domestication of SIDERs prompted further investigation of their characterization, dissemination and evolution throughout the Leishmania genus, with particular attention to the disregarded SIDER1 subfamily. Results Using optimized statistical profiles of both SIDER1 and SIDER2 subgroups, we report the first automated and highly sensitive annotation of SIDERs in the genomes of L. infantum, L. braziliensis and L. major. SIDER annotations were combined to in-silico mRNA extremity predictions to generate a detailed distribution map of the repeat family, hence uncovering an enrichment of antisense-oriented SIDER repeats between the polyadenylation and trans-splicing sites of intergenic regions, in contrast to the exclusive sense orientation of SIDER elements within 3'UTRs. Our data indicate that SIDER elements are quite uniformly dispersed throughout all three genomes and that their distribution is generally syntenic. However, only 47.4% of orthologous genes harbor a SIDER element in all three species. There is evidence for species-specific enrichment of SIDERs and for their preferential association, especially for SIDER2s, with different metabolic functions. Investigation of the sequence attributes and evolutionary relationship of SIDERs to other trypanosomatid retroposons reveals that SIDER1 is a truncated version of extinct autonomous ingi-like retroposons (DIREs, which were functional in the ancestral Leishmania genome. Conclusion A detailed characterization of the sequence traits for both SIDER subfamilies unveils

  11. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes.

    Science.gov (United States)

    Cortesi, Fabio; Musilová, Zuzana; Stieb, Sara M; Hart, Nathan S; Siebeck, Ulrike E; Malmstrøm, Martin; Tørresen, Ole K; Jentoft, Sissel; Cheney, Karen L; Marshall, N Justin; Carleton, Karen L; Salzburger, Walter

    2015-02-03

    Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification.

  12. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes

    Science.gov (United States)

    Cortesi, Fabio; Musilová, Zuzana; Stieb, Sara M.; Hart, Nathan S.; Siebeck, Ulrike E.; Malmstrøm, Martin; Tørresen, Ole K.; Jentoft, Sissel; Cheney, Karen L.; Marshall, N. Justin; Carleton, Karen L.; Salzburger, Walter

    2015-01-01

    Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification. PMID:25548152

  13. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  14. Evolution of the CLOCK and BMAL1 genes in a subterranean rodent species (Lasiopodomys mandarinus).

    Science.gov (United States)

    Sun, Hong; Zhang, Yifeng; Shi, Yuhua; Li, Yangwei; Li, Wei; Wang, Zhenlong

    2018-04-01

    Lasiopodomys mandarinus, a subterranean rodent, spends its entire life underground. To test whether the CLOCK and BMAL1 genes of L. mandarinus have undergone adaptive evolution to underground darkness, we cloned and analyzed their complete cDNA sequences, using Lasiopodomys brandtii as a control. The phylogenetic trees of the CLOCK and BMAL1 genes were similar to the trees of the conserved Cyt b gene,further, L. mandarinus clustered with L. brandtii and Microtus ochrogaster in the phylogenetic tree. The Q-rich region of the CLOCK gene in L. mandarinus was different from that of other subterranean rodents. Using phylogenetic analysis maximum likelihood (PAML), the ω value (ωCLOCK gene, most of which were located in the trans-transcription activation domain (TAD). In conclusion, CLOCK and BMAL1 genes did not exhibit convergent molecular evolution in subterranean rodents. Moreover, our study highlights the important functionality of the TAD, which is putatively of functional relevance to CLOCK protein activity. The present findings provide novel insights into adaptation to underground darkness, at the gene level, in subterranean rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Molecular evolution of plant haemoglobin: two haemoglobin genes in Nymphaeaceae Euryale ferox.

    Science.gov (United States)

    Guldner, E; Desmarais, E; Galtier, N; Godelle, B

    2004-01-01

    We isolated and sequenced two haemoglobin genes from the early-branching angiosperm Euryale ferox (Nymphaeaceae). The two genes belong to the two known classes of plant haemoglobin. Their existence in Nymphaeaceae supports the theory that class 1 haemoglobin was ancestrally present in all angiosperms, and is evidence for class 2 haemoglobin being widely distributed. These sequences allowed us to unambiguously root the angiosperm haemoglobin phylogeny, and to corroborate the hypothesis that the class 1/class 2 duplication event occurred before the divergence between monocots and eudicots. We addressed the molecular evolution of plant haemoglobin by comparing the synonymous and nonsynonymous substitution rates in various groups of genes. Class 2 haemoglobin genes of legumes (functionally involved in a symbiosis with nitrogen-fixing bacteria) show a higher nonsynonymous substitution rate than class 1 (nonsymbiotic) haemoglobin genes. This suggests that a change in the selective forces applying to plant haemoglobins has occurred during the evolutionary history of this gene family, potentially in relation with the evolution of symbiosis.

  16. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins

    Science.gov (United States)

    Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F.

    2014-01-01

    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive “just-so story” in evolutionary biology. PMID:25079342

  17. Molecular Evolution and Expression Divergence of Aconitase (ACO Gene Family in Land Plants

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2016-12-01

    Full Text Available Aconitase (ACO is a key enzyme that catalyzes the isomerization of citrate to isocitrate in the tricarboxylic acid (TCA and glyoxylate cycles. The function of ACOs has been well studied in model plants, such as Arabidopsis. In contrast, the evolutionary patterns of the ACO family in land plants are poorly understood. In this study, we systematically examined the molecular evolution and expression divergence of the ACO gene family in 12 land plant species. Thirty-six ACO genes were identified from the 12 land plant species representing the four major land plant lineages: bryophytes, lycophytes, gymnosperms, and angiosperms. All of these ACOs belong to the cytosolic isoform. Three gene duplication events contributed to the expansion of the ACO family in angiosperms. The ancestor of angiosperms may have contained only one ACO gene. One gene duplication event split angiosperm ACOs into two distinct clades. Two clades showed a divergence in selective pressure and gene expression patterns. The cis-acting elements that function in light responsiveness were most abundant in the promoter region of the ACO genes, indicating that plant ACO genes might participate in light regulatory pathways. Our findings provide comprehensive insights into the ACO gene family in land plants.

  18. The evolution of gene therapy in X-linked severe combined immunodeficiency.

    Science.gov (United States)

    Rans, Tonya S; England, Ronald

    2009-05-01

    To review the evolution of gene therapy in infants with X-linked severe combined immunodeficiency (XL-SCID) and to evaluate the current challenges facing this evolving field. The MEDLINE, OVID, CINAHL, and HealthSTAR databases were searched to identify pertinent articles using the following keywords: gene therapy, XL-SCID, bone marrow transplant, and viral vectors. Journal articles were selected for their relevance to human gene therapy in patients with XL-SCID. Gene therapy with a retrovirus-derived vector has been used to treat 20 patients with XL-SCID internationally. Although most patients derived improvements in T- and B-cell immune numbers and function, severe adverse effects have occurred. After gene therapy, 5 of the 20 patients developed leukemia. This outcome has been associated with insertion of the corrected gene near the T-cell proto-oncogene LMO2. One of the 5 patients subsequently died. Within the past decade, effective improvements in vectorology and cell culture conditions have resulted in clinical success in some infants with SCID and have revived interest after many years of setbacks. However, clinical success and significant adverse events have been reported in patients with XL-SCID who have undergone gene therapy using a retroviral vector. As extensive research into improving safety through vector development and monitoring of gene therapy continues, further progress in gene therapy development can be anticipated.

  19. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  20. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    -specific characteristics. Conclusions TipE-like genes form a remarkably conserved genomic cluster across all examined insect genomes. This study reveals likely structural and functional constraints on the genomic evolution of insect TipE gene family members maintained in synteny over hundreds of millions of years of evolution. The likely common origin of these NaV channel regulators with BKCa auxiliary subunits highlights the evolutionary plasticity of ion channel regulatory mechanisms.

  1. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

    Directory of Open Access Journals (Sweden)

    Orla Coleman

    2015-03-01

    Full Text Available Phylogenetic (tree-based approaches to understanding evolutionary history are unable to incorporate convergent evolutionary events where two genes merge into one. In this study, as exemplars of what can be achieved when a tree is not assumed a priori, we have analysed the evolutionary histories of polyketide synthase genes and antibiotic resistance genes and have shown that their history is replete with convergent events as well as divergent events. We demonstrate that the overall histories of these genes more closely resembles the remodelling that might be seen with the children’s toy Lego, than the standard model of the phylogenetic tree. This work demonstrates further that genes can act as public goods, available for re-use and incorporation into other genetic goods.

  2. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    Science.gov (United States)

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-06-08

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Morphological evolution through multiple cis-regulatory mutations at a single gene.

    Science.gov (United States)

    McGregor, Alistair P; Orgogozo, Virginie; Delon, Isabelle; Zanet, Jennifer; Srinivasan, Dayalan G; Payre, François; Stern, David L

    2007-08-02

    One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cis-regulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select genes.

  4. Genes involved in the evolution of herbivory by a leaf-mining, Drosophilid fly.

    Science.gov (United States)

    Whiteman, Noah K; Gloss, Andrew D; Sackton, Timothy B; Groen, Simon C; Humphrey, Parris T; Lapoint, Richard T; Sønderby, Ida E; Halkier, Barbara A; Kocks, Christine; Ausubel, Frederick M; Pierce, Naomi E

    2012-01-01

    Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg-adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes.

  5. Evolution of organic molecules under Mars-like UV radiation conditions in space and laboratory

    Science.gov (United States)

    Rouquette, L.; Stalport, F.; Cottin, H.; Coll, P.; Szopa, C.; Saiagh, K.; Poch, O.; Khalaf, D.; Chaput, D.; Grira, K.; Dequaire, T.

    2017-09-01

    The detection and identification of organic molecules at Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now [1]. In order to get a better understanding of the evolution of organic matter at the surface of Mars, we exposed organic molecules under a Mars-like UV radiation environment. Similar organic samples were exposed to the Sun radiation, outside the International Space Station (ISS), and under a UV lamp (martian pressure and temperature conditions) in the laboratory. In both experiments, organic molecules tend to photodegrade under Mars-like UV radiation. Minerals, depending on their nature, can protect or accelerate the degradation of organic molecules. For some molecules, new products, possibly photoresistant, seem to be produced. Finally, experimenting in space allow us to get close to in situ conditions and to validate our laboratory experiment while the laboratory experiment is essential to study the evolution of a large amount and diversity of organic molecules.

  6. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)

    Science.gov (United States)

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J.; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients. PMID:23620821

  8. Adaptive evolution of the myo6 gene in old world fruit bats (family: pteropodidae.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available Myosin VI (encoded by the Myo6 gene is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae, and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae. To investigate what role(s the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients.

  9. Evolution of Daily Gene Co-expression Patterns from Algae to Plants

    Directory of Open Access Journals (Sweden)

    Pedro de los Reyes

    2017-07-01

    Full Text Available Daily rhythms play a key role in transcriptome regulation in plants and microalgae orchestrating responses that, among other processes, anticipate light transitions that are essential for their metabolism and development. The recent accumulation of genome-wide transcriptomic data generated under alternating light:dark periods from plants and microalgae has made possible integrative and comparative analysis that could contribute to shed light on the evolution of daily rhythms in the green lineage. In this work, RNA-seq and microarray data generated over 24 h periods in different light regimes from the eudicot Arabidopsis thaliana and the microalgae Chlamydomonas reinhardtii and Ostreococcus tauri have been integrated and analyzed using gene co-expression networks. This analysis revealed a reduction in the size of the daily rhythmic transcriptome from around 90% in Ostreococcus, being heavily influenced by light transitions, to around 40% in Arabidopsis, where a certain independence from light transitions can be observed. A novel Multiple Bidirectional Best Hit (MBBH algorithm was applied to associate single genes with a family of potential orthologues from evolutionary distant species. Gene duplication, amplification and divergence of rhythmic expression profiles seems to have played a central role in the evolution of gene families in the green lineage such as Pseudo Response Regulators (PRRs, CONSTANS-Likes (COLs, and DNA-binding with One Finger (DOFs. Gene clustering and functional enrichment have been used to identify groups of genes with similar rhythmic gene expression patterns. The comparison of gene clusters between species based on potential orthologous relationships has unveiled a low to moderate level of conservation of daily rhythmic expression patterns. However, a strikingly high conservation was found for the gene clusters exhibiting their highest and/or lowest expression value during the light transitions.

  10. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

    Directory of Open Access Journals (Sweden)

    Gadagkar Sudhindra R

    2010-04-01

    Full Text Available Abstract Background The completion of 19 insect genome sequencing projects spanning six insect orders provides the opportunity to investigate the evolution of important gene families, here tubulins. Tubulins are a family of eukaryotic structural genes that form microtubules, fundamental components of the cytoskeleton that mediate cell division, shape, motility, and intracellular trafficking. Previous in vivo studies in Drosophila find a stringent relationship between tubulin structure and function; small, biochemically similar changes in the major alpha 1 or testis-specific beta 2 tubulin protein render each unable to generate a motile spermtail axoneme. This has evolutionary implications, not a single non-synonymous substitution is found in beta 2 among 17 species of Drosophila and Hirtodrosophila flies spanning 60 Myr of evolution. This raises an important question, How do tubulins evolve while maintaining their function? To answer, we use molecular evolutionary analyses to characterize the evolution of insect tubulins. Results Sixty-six alpha tubulins and eighty-six beta tubulin gene copies were retrieved and subjected to molecular evolutionary analyses. Four ancient clades of alpha and beta tubulins are found in insects, a major isoform clade (alpha 1, beta 1 and three minor, tissue-specific clades (alpha 2-4, beta 2-4. Based on a Homarus americanus (lobster outgroup, these were generated through gene duplication events on major beta and alpha tubulin ancestors, followed by subfunctionalization in expression domain. Strong purifying selection acts on all tubulins, yet maximum pairwise amino acid distances between tubulin paralogs are large (0.464 substitutions/site beta tubulins, 0.707 alpha tubulins. Conversely orthologs, with the exception of reproductive tissue isoforms, show little sequence variation except in the last 15 carboxy terminus tail (CTT residues, which serve as sites for post-translational modifications (PTMs and interactions

  11. Genomic organization and molecular phylogenies of the beta (β keratin multigene family in the chicken (Gallus gallus and zebra finch (Taeniopygia guttata: implications for feather evolution

    Directory of Open Access Journals (Sweden)

    Sawyer Roger H

    2010-05-01

    Full Text Available Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.

  12. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    Science.gov (United States)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

  13. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    David Viktor Dylus

    2016-01-01

    Full Text Available Abstract Background The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya, have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformis pplx, the closest gene to the sea urchin double negative gate (DNG repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element

  14. The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat.

    Science.gov (United States)

    Puechmaille, Sébastien J; Gouilh, Meriadeg Ar; Piyapan, Piyathip; Yokubol, Medhi; Mie, Khin Mie; Bates, Paul J; Satasook, Chutamas; Nwe, Tin; Bu, Si Si Hla; Mackie, Iain J; Petit, Eric J; Teeling, Emma C

    2011-12-06

    The sensory drive theory of speciation predicts that populations of the same species inhabiting different environments can differ in sensory traits, and that this sensory difference can ultimately drive speciation. However, even in the best-known examples of sensory ecology driven speciation, it is uncertain whether the variation in sensory traits is the cause or the consequence of a reduction in levels of gene flow. Here we show strong genetic differentiation, no gene flow and large echolocation differences between the allopatric Myanmar and Thai populations of the world's smallest mammal, Craseonycteris thonglongyai, and suggest that geographic isolation most likely preceded sensory divergence. Within the geographically continuous Thai population, we show that geographic distance has a primary role in limiting gene flow rather than echolocation divergence. In line with sensory-driven speciation models, we suggest that in C. thonglongyai, limited gene flow creates the suitable conditions that favour the evolution of sensory divergence via local adaptation.

  15. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  16. Cross-kingdom gene transfer facilitates the evolution of virulence in fungal pathogens.

    Science.gov (United States)

    Gardiner, Donald M; Kazan, Kemal; Manners, John M

    2013-09-01

    The constant interaction between plants and their pathogens has resulted in the evolution of a diverse array of microbial infection strategies. It is increasingly evident that horizontal acquisition of new virulence functions in fungi is one of the evolutionary processes that maintain pathogens' competitive edge over host plants. Genome analyses of fungi are pointing towards this phenomenon being particularly prevalent in the subphylum Pezizomycota. While the extent of cross-kingdom gene transfer can be determined with existing genomic tools and databases, so far very few horizontally transmitted genes have been functionally characterised, and an understanding of their physiological roles in virulence has been determined for even fewer genes. Understanding the evolutionary selection pressures that drive the retention of acquired genes in particular fungal lineages is important, as it will undoubtedly reveal new insights into both fungal virulence mechanisms and corresponding plant defence processes in the future. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Divergence and adaptive evolution of the gibberellin oxidase genes in plants.

    Science.gov (United States)

    Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan

    2015-09-29

    The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.

  18. Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Grammer Timothy C

    2007-07-01

    Full Text Available Abstract Background Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization ~40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication. Results We identified 2218 gene triplets in which a single gene in X. tropicalis corresponds to precisely two co-orthologous genes in X. laevis – the largest such collection published from any duplication event in animals. Analysis of these triplets reveals accelerated evolution or relaxation of constraint in the peptides of the X. laevis pairs compared with the orthologous sequences in X. tropicalis and other vertebrates. In contrast, single-copy X. laevis genes do not show this acceleration. Duplicated genes can differ substantially in expression levels and patterns. We find no significant difference in gene content in the duplicated set, versus the single-copy set based on molecular and biological function ontologies. Conclusion These results support a scenario in which duplicate genes are retained through a process of subfunctionalization and/or relaxation of constraint on both copies of an ancestral gene.

  19. Evolution of the SPATULA/ALCATRAZ gene lineage and expression analyses in the basal eudicot, Bocconia frutescens L. (Papaveraceae

    Directory of Open Access Journals (Sweden)

    Cecilia Zumajo-Cardona

    2017-03-01

    Full Text Available Abstract Background SPATULA (SPT and ALCATRAZ (ALC are recent paralogs that belong to the large bHLH transcription factor family. Orthologs of these genes have been found in all core eudicots, whereas pre-duplication genes, named paleoSPATULA/ALCATRAZ, have been found in basal eudicots, monocots, basal angiosperms and gymnosperms. Nevertheless, functional studies have only been performed in Arabidopsis thaliana, where SPT and ALC are partially redundant in carpel and valve margin development and ALC has a unique role in the dehiscence zone. Further analyses of pre-duplication genes are necessary to assess the functional evolution of this gene lineage. Results We isolated additional paleoSPT/ALC genes from Aristolochia fimbriata, Bocconia frutescens, Cattleya trianae and Hypoxis decumbens from our transcriptome libraries and performed phylogenetic analyses. We identified the previously described bHLH domain in all analyzed sequences and also new conserved motifs using the MEME suite. Finally, we analyzed the expression of three paleoSPT/ALC genes (BofrSPT1/2/3 from Bocconia frutescens, a basal eudicot in the Papaveraceae. To determine the developmental stages at which these genes were expressed, pre- and post-anthesis carpels and fruits of B. frutescens were collected, sectioned, stained, and examined using light microscopy. Using in situ hybridization we detected that BofrSPT1/2/3 genes are expressed in floral buds, early sepal initiation, stamens and carpel primordia and later during fruit development in the dehiscence zone of the opercular fruit. Conclusions Our expression results, in comparison with those available for core eudicots, suggest conserved roles of members of the SPT/ALC gene lineage across eudicots in the specification of carpel margins and the dehiscence zone of the mature fruits. Although there is some redundancy between ALC and SPT, these gene clades seem to have undergone some degree of sub-functionalization in the core

  20. Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error

    Directory of Open Access Journals (Sweden)

    Davis Anna C

    2008-08-01

    Full Text Available Abstract Background With the advent of increasingly efficient means to obtain genetic information, a great insurgence of data has resulted, leading to the need for methods for analyzing this data beyond that of traditional parametric statistical approaches. Recently we introduced Grammatical Evolution Neural Network (GENN, a machine-learning approach to detect gene-gene or gene-environment interactions, also known as epistasis, in high dimensional genetic epidemiological data. GENN has been shown to be highly successful in a range of simulated data, but the impact of error common to real data is unknown. In the current study, we examine the power of GENN to detect interesting interactions in the presence of noise due to genotyping error, missing data, phenocopy, and genetic heterogeneity. Additionally, we compare the performance of GENN to that of another computational method – Multifactor Dimensionality Reduction (MDR. Findings GENN is extremely robust to missing data and genotyping error. Phenocopy in a dataset reduces the power of both GENN and MDR. GENN is reasonably robust to genetic heterogeneity and find that in some cases GENN has substantially higher power than MDR to detect functional loci in the presence of genetic heterogeneity. Conclusion GENN is a promising method to detect gene-gene interaction, even in the presence of common types of error found in real data.

  1. Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error.

    Science.gov (United States)

    Motsinger-Reif, Alison A; Fanelli, Theresa J; Davis, Anna C; Ritchie, Marylyn D

    2008-08-13

    With the advent of increasingly efficient means to obtain genetic information, a great insurgence of data has resulted, leading to the need for methods for analyzing this data beyond that of traditional parametric statistical approaches. Recently we introduced Grammatical Evolution Neural Network (GENN), a machine-learning approach to detect gene-gene or gene-environment interactions, also known as epistasis, in high dimensional genetic epidemiological data. GENN has been shown to be highly successful in a range of simulated data, but the impact of error common to real data is unknown. In the current study, we examine the power of GENN to detect interesting interactions in the presence of noise due to genotyping error, missing data, phenocopy, and genetic heterogeneity. Additionally, we compare the performance of GENN to that of another computational method - Multifactor Dimensionality Reduction (MDR). GENN is extremely robust to missing data and genotyping error. Phenocopy in a dataset reduces the power of both GENN and MDR. GENN is reasonably robust to genetic heterogeneity and find that in some cases GENN has substantially higher power than MDR to detect functional loci in the presence of genetic heterogeneity. GENN is a promising method to detect gene-gene interaction, even in the presence of common types of error found in real data.

  2. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    LENUS (Irish Health Repository)

    Fitzpatrick, David A

    2010-05-10

    Abstract Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging\\/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http:\\/\\/cgob.ucd.ie.

  3. Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia

    Directory of Open Access Journals (Sweden)

    Cegan Radim

    2010-08-01

    Full Text Available Abstract Background The evolution of sex chromosomes is often accompanied by gene or chromosome rearrangements. Recently, the gene AP3 was characterized in the dioecious plant species Silene latifolia. It was suggested that this gene had been transferred from an autosome to the Y chromosome. Results In the present study we provide evidence for the existence of an X linked copy of the AP3 gene. We further show that the Y copy is probably located in a chromosomal region where recombination restriction occurred during the first steps of sex chromosome evolution. A comparison of X and Y copies did not reveal any clear signs of degenerative processes in exon regions. Instead, both X and Y copies show evidence for relaxed selection compared to the autosomal orthologues in S. vulgaris and S. conica. We further found that promoter sequences differ significantly. Comparison of the genic region of AP3 between the X and Y alleles and the corresponding autosomal copies in the gynodioecious species S. vulgaris revealed a massive accumulation of retrotransposons within one intron of the Y copy of AP3. Analysis of the genomic distribution of these repetitive elements does not indicate that these elements played an important role in the size increase characteristic of the Y chromosome. However, in silico expression analysis shows biased expression of individual domains of the identified retroelements in male plants. Conclusions We characterized the structure and evolution of AP3, a sex linked gene with copies on the X and Y chromosomes in the dioecious plant S. latifolia. These copies showed complementary expression patterns and relaxed evolution at protein level compared to autosomal orthologues, which suggests subfunctionalization. One intron of the Y-linked allele was invaded by retrotransposons that display sex-specific expression patterns that are similar to the expression pattern of the corresponding allele, which suggests that these transposable elements

  4. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular ev...... evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops......Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular...

  5. Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals.

    Directory of Open Access Journals (Sweden)

    Sara L Sawyer

    2007-12-01

    Full Text Available TRIM5alpha provides a cytoplasmic block to retroviral infection, and orthologs encoded by some primates are active against HIV. Here, we present an evolutionary comparison of the TRIM5 gene to its closest human paralogs: TRIM22, TRIM34, and TRIM6. We show that TRIM5 and TRIM22 have a dynamic history of gene expansion and loss during the evolution of mammals. The cow genome contains an expanded cluster of TRIM5 genes and no TRIM22 gene, while the dog genome encodes TRIM22 but has lost TRIM5. In contrast, TRIM6 and TRIM34 have been strictly preserved as single gene orthologs in human, dog, and cow. A more focused analysis of primates reveals that, while TRIM6 and TRIM34 have evolved under purifying selection, TRIM22 has evolved under positive selection as was previously observed for TRIM5. Based on TRIM22 sequences obtained from 27 primate genomes, we find that the positive selection of TRIM22 has occurred episodically for approximately 23 million years, perhaps reflecting the changing pathogenic landscape. However, we find that the evolutionary episodes of positive selection that have acted on TRIM5 and TRIM22 are mutually exclusive, with generally only one of these genes being positively selected in any given primate lineage. We interpret this to mean that the positive selection of one gene has constrained the adaptive flexibility of its neighbor, probably due to genetic linkage. Finally, we find a striking congruence in the positions of amino acid residues found to be under positive selection in both TRIM5alpha and TRIM22, which in both proteins fall predominantly in the beta2-beta3 surface loop of the B30.2 domain. Astonishingly, this same loop is under positive selection in the multiple cow TRIM5 genes as well, indicating that this small structural loop may be a viral recognition motif spanning a hundred million years of mammalian evolution.

  6. Cancer Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes

    Science.gov (United States)

    Ostrow, Sheli L.; Barshir, Ruth; DeGregori, James; Yeger-Lotem, Esti; Hershberg, Ruth

    2014-01-01

    Cancer is an evolutionary process in which cells acquire new transformative, proliferative and metastatic capabilities. A full understanding of cancer requires learning the dynamics of the cancer evolutionary process. We present here a large-scale analysis of the dynamics of this evolutionary process within tumors, with a focus on breast cancer. We show that the cancer evolutionary process differs greatly from organismal (germline) evolution. Organismal evolution is dominated by purifying selection (that removes mutations that are harmful to fitness). In contrast, in the cancer evolutionary process the dominance of purifying selection is much reduced, allowing for a much easier detection of the signals of positive selection (adaptation). We further show that, as a group, genes that are globally expressed across human tissues show a very strong signal of positive selection within tumors. Indeed, known cancer genes are enriched for global expression patterns. Yet, positive selection is prevalent even on globally expressed genes that have not yet been associated with cancer, suggesting that globally expressed genes are enriched for yet undiscovered cancer related functions. We find that the increased positive selection on globally expressed genes within tumors is not due to their expression in the tissue relevant to the cancer. Rather, such increased adaptation is likely due to globally expressed genes being enriched in important housekeeping and essential functions. Thus, our results suggest that tumor adaptation is most often mediated through somatic changes to those genes that are important for the most basic cellular functions. Together, our analysis reveals the uniqueness of the cancer evolutionary process and the particular importance of globally expressed genes in driving cancer initiation and progression. PMID:24603726

  7. Molecular evolution of the Opaque-2 gene in Zea mays L.

    Science.gov (United States)

    Henry, Anne-Marie; Manicacci, Domenica; Falque, Matthieu; Damerval, Catherine

    2005-10-01

    The Opaque-2 gene (O2) in maize encodes a transcriptional activator that controls the expression of various genes during kernel development, particularly some of the most abundant endosperm storage protein genes. Compared to its wild relative teosinte, maize has bigger and heavier kernels, with an increased proportion of starch and an altered distribution of the various storage protein categories. The molecular evolution of the O2 gene was investigated in connection with its possible involvement in the domestication process. Most of the coding sequence and parts of introns, 5'UTR, and 3' noncoding regions were sequenced in a set of cultivated and teosinte accessions. One hundred six polymorphic sites (5.4%) and 72 insertions/deletions, located mostly in noncoding regions, were found. Molecular diversity was quite high (pi = 0.0138, theta = 0.0167) compared to that of other transcription factors in maize. The synonymous and nonsynonymous diversity patterns along the coding sequence suggested that different regions are submitted to different functional constraints. Such an evolution would probably be favored by the observed rapid decay of linkage disequilibrium with distance. Cultivated accessions retained about 70% of the diversity observed in teosintes. Purifying selection was detected in both maize and teosintes. No conclusive evidence was obtained for a role of the O2 gene in the domestication process.

  8. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    Science.gov (United States)

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J

    2014-02-01

    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.

  9. Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria.

    Science.gov (United States)

    Byrne, Maria; Nakajima, Yoko; Chee, Francis C; Burke, Robert D

    2007-01-01

    The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.

  10. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm.

    Science.gov (United States)

    Rothwell, Gar W; Wyatt, Sarah E; Tomescu, Alexandru M F

    2014-06-01

    Paleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as "fingerprints" of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved. When coupled with an understanding of variations and systematic distributions of specific regulatory genetic pathways, this approach provides an avenue for testing evolutionary hypotheses at the organismal level that is analogous to employing bioinformatics to explore genetics at the genomic level. The positions where specific genes, gene families, and developmental regulatory mechanisms first appear in phylogenies are correlated with the positions where fossils with the corresponding structures occur on the tree, thereby yielding testable hypotheses that extend our understanding of the role of developmental changes in the evolution of the body plans of vascular plant sporophytes. As a result, we now have new and powerful methodologies for characterizing major evolutionary changes in morphology, anatomy, and physiology that have resulted from combinations of genetic regulatory changes and that have produced the synapomorphies by which we recognize major clades of plants. © 2014 Botanical Society of America, Inc.

  11. Synthesis of analogues of cometary organic matter: thermochemical evolution and preparation of in-situ observations

    Directory of Open Access Journals (Sweden)

    Fray N.

    2014-02-01

    Full Text Available An organic residue is remaining at 300 K after the VUV photolysis of ices mixture and subsequent heating. This residue is thought to be representative of the organic matter contained in comets. Our experiments show that the thermal evolution is an important process. Indeed, the organic residue remaining at 300 K is not produced completely during the photolysis at low temperature but also during the heating. Furthermore, when heated at temperature higher than 300 K, the residue undergoes chemical evolution which has to be taken into account in astrophysical models. Furthermore, our work allows to propose observational strategy to maximize the chance to detect in-situ some compounds, such as POM and HMT, thanks to COSIMA which is one of the mass spectrometers on board of the Rosetta spacecraft.

  12. Role of the horizontal gene exchange in evolution of pathogenic Mycobacteria

    OpenAIRE

    Reva, Oleg; Korotetskiy, Ilya; Ilin, Aleksandr

    2015-01-01

    Background Mycobacterium tuberculosis is one of the most dangerous human pathogens, the causative agent of tuberculosis. While this pathogen is considered as extremely clonal and resistant to horizontal gene exchange, there are many facts supporting the hypothesis that on the early stages of evolution the development of pathogenicity of ancestral Mtb has started with a horizontal acquisition of virulence factors. Episodes of infections caused by non-tuberculosis Mycobacteria reported worldwid...

  13. Molecular Evolution of the dotA Gene in Legionella pneumophila

    OpenAIRE

    Ko, Kwan Soo; Hong, Seong Karp; Lee, Hae Kyung; Park, Mi-Yeoun; Kook, Yoon-Hoh

    2003-01-01

    The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences ...

  14. [Evolution of pathogenic micro-organisms as a challenge for medicine].

    Science.gov (United States)

    Vaara, Martti

    2009-01-01

    Successful parasitic micro-organisms are able to adapt to the circumstances of the host's organ system, and it is usually not expedient for them to kill their host. Under selection pressure, the evolution of micro-organisms is vastly quicker that that of man. The selection pressure brought about by rapid ecological changes and alterations associated with human action provides for the development of new, dangerous pathogens and transformation of familiar pathogens to become more dangerous. Progress in molecular biology has thus far not yielded as many new tools for the treatment of infectious diseases as the hopes were in the early 2000's.

  15. Molecular Evolution at a Meiosis Gene Mediates Species Differences in the Rate and Patterning of Recombination.

    Science.gov (United States)

    Brand, Cara L; Cattani, M Victoria; Kingan, Sarah B; Landeen, Emily L; Presgraves, Daven C

    2018-04-23

    Crossing over between homologous chromosomes during meiosis repairs programmed DNA double-strand breaks, ensures proper segregation at meiosis I [1], shapes the genomic distribution of nucleotide variability in populations, and enhances the efficacy of natural selection among genetically linked sites [2]. Between closely related Drosophila species, large differences exist in the rate and chromosomal distribution of crossing over. Little, however, is known about the molecular genetic changes or population genetic forces that mediate evolved differences in recombination between species [3, 4]. Here, we show that a meiosis gene with a history of rapid evolution acts as a trans-acting modifier of species differences in crossing over. In transgenic flies, the dicistronic gene, mei-217/mei-218, recapitulates a large part of the species differences in the rate and chromosomal distribution of crossing over. These phenotypic differences appear to result from changes in protein sequence not gene expression. Our population genetics analyses show that the protein-coding sequence of mei-218, but not mei-217, has a history of recurrent positive natural selection. By modulating the intensity of centromeric and telomeric suppression of crossing over, evolution at mei-217/-218 has incidentally shaped gross differences in the chromosomal distribution of nucleotide variability between species. We speculate that recurrent bouts of adaptive evolution at mei-217/-218 might reflect a history of coevolution with selfish genetic elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kass, D.H. [Louisiana State Univ. Medical Center, New Orleans, LA (United States). Dept. of Biochemistry and Molecular Biology; Batzer, M.A. [Lawrence Livermore National Lab., CA (United States); Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States). Dept. of Biochemistry and Molecular Biology]|[Alton Ochsner Medical Foundation, New Orleans, LA (United States). Lab. of Molecular Genetics

    1995-01-01

    The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolutions. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.

  17. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  18. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight.

    Science.gov (United States)

    Wang, Zhe; Dai, Mengyao; Wang, Yao; Cooper, Kimberly L; Zhu, Tengteng; Dong, Dong; Zhang, Junpeng; Zhang, Shuyi

    2014-05-22

    Bats are the only mammals capable of true flight. Critical adaptations for flight include a pair of dramatically elongated hands with broad wing membranes. To study the molecular mechanisms of bat wing evolution, we perform genomewide mRNA sequencing and in situ hybridization for embryonic bat limbs. We identify seven key genes that display unique expression patterns in embryonic bat wings and feet, compared with mouse fore- and hindlimbs. The expression of all 5'HoxD genes (Hoxd9-13) and Tbx3, six known crucial transcription factors for limb and digit development, is extremely high and prolonged in the elongating wing area. The expression of Fam5c, a tumour suppressor, in bat limbs is bat-specific and significantly high in all short digit regions (the thumb and foot digits). These results suggest multiple genetic changes occurred independently during the evolution of bat wings to elongate the hand digits, promote membrane growth and keep other digits short. Our findings also indicate that the evolution of limb morphology depends on the complex integration of multiple gene regulatory networks and biological processes that control digit formation and identity, chondrogenesis, and interdigital regression or retention.

  19. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Directory of Open Access Journals (Sweden)

    Konstantin B Zeldovich

    2007-07-01

    Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  20. Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history.

    Science.gov (United States)

    Castro, L Filipe C; Gonçalves, Odete; Mazan, Sylvie; Tay, Boon-Hui; Venkatesh, Byrappa; Wilson, Jonathan M

    2014-01-22

    The stomach, a hallmark of gnathostome evolution, represents a unique anatomical innovation characterized by the presence of acid- and pepsin-secreting glands. However, the occurrence of these glands in gnathostome species is not universal; in the nineteenth century the French zoologist Cuvier first noted that some teleosts lacked a stomach. Strikingly, Holocephali (chimaeras), dipnoids (lungfish) and monotremes (egg-laying mammals) also lack acid secretion and a gastric cellular phenotype. Here, we test the hypothesis that loss of the gastric phenotype is correlated with the loss of key gastric genes. We investigated species from all the main gnathostome lineages and show the specific contribution of gene loss to the widespread distribution of the agastric condition. We establish that the stomach loss correlates with the persistent and complete absence of the gastric function gene kit--H(+)/K(+)-ATPase (Atp4A and Atp4B) and pepsinogens (Pga, Pgc, Cym)--in the analysed species. We also find that in gastric species the pepsinogen gene complement varies significantly (e.g. two to four in teleosts and tens in some mammals) with multiple events of pseudogenization identified in various lineages. We propose that relaxation of purifying selection in pepsinogen genes and possibly proton pump genes in response to dietary changes led to the numerous independent events of stomach loss in gnathostome history. Significantly, the absence of the gastric genes predicts that reinvention of the stomach in agastric lineages would be highly improbable, in line with Dollo's principle.

  1. Evolution and expression plasticity of opsin genes in a fig pollinator, Ceratosolen solmsi.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available Figs and fig pollinators have co-evolved species-specific systems of mutualism. So far, it was unknown how visual opsin genes of pollinators have evolved in the light conditions inside their host figs. We cloned intact full-length mRNA sequences of four opsin genes from a species of fig pollinator, Ceratosolen solmsi, and tested for selective pressure and expressional plasticity of these genes. Molecular evolutionary analysis indicated that the four opsin genes evolved under different selective constraints. Subsets of codons in the two long wavelength sensitive opsin (LW1, LW2 genes were positively selected in ancestral fig pollinators. The ultraviolet sensitive opsin (UV gene was under strong purifying selection, whereas a relaxation of selective constrains occurred on several amino acids in the blue opsin. RT-qPCR analysis suggested that female and male fig pollinators had different expression patterns possibly due to their distinct lifestyles and different responses to light within the syconia. Co-evolutionary history with figs might have influenced the evolution and expression plasticity of opsin genes in fig pollinators.

  2. Constraints on the evolution of a doublesex target gene arising from doublesex’s pleiotropic deployment

    Science.gov (United States)

    Luo, Shengzhan D.; Baker, Bruce S.

    2015-01-01

    “Regulatory evolution,” that is, changes in a gene’s expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSXF in females and DSXM in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues. PMID:25675536

  3. No Evidence for Phylostratigraphic Bias Impacting Inferences on Patterns of Gene Emergence and Evolution.

    Science.gov (United States)

    Domazet-Lošo, Tomislav; Carvunis, Anne-Ruxandra; Albà, M Mar; Šestak, Martin Sebastijan; Bakaric, Robert; Neme, Rafik; Tautz, Diethard

    2017-04-01

    Phylostratigraphy is a computational framework for dating the emergence of DNA and protein sequences in a phylogeny. It has been extensively applied to make inferences on patterns of genome evolution, including patterns of disease gene evolution, ontogeny and de novo gene origination. Phylostratigraphy typically relies on BLAST searches along a species tree, but new simulation studies have raised concerns about the ability of BLAST to detect remote homologues and its impact on phylostratigraphic inferences. Here, we re-assessed these simulations. We found that, even with a possible overall BLAST false negative rate between 11-15%, the large majority of sequences assigned to a recent evolutionary origin by phylostratigraphy is unaffected by technical concerns about BLAST. Where the results of the simulations did cast doubt on previously reported findings, we repeated the original analyses but now excluded all questionable sequences. The originally described patterns remained essentially unchanged. These new analyses strongly support phylostratigraphic inferences, including: genes that emerged after the origin of eukaryotes are more likely to be expressed in the ectoderm than in the endoderm or mesoderm in Drosophila, and the de novo emergence of protein-coding genes from non-genic sequences occurs through proto-gene intermediates in yeast. We conclude that BLAST is an appropriate and sufficiently sensitive tool in phylostratigraphic analysis that does not appear to introduce significant biases into evolutionary pattern inferences. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.

    Science.gov (United States)

    Head, Jason J; Polly, P David

    2015-04-02

    Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior-posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.

  5. Genomic organization of the mouse dystrobrevin gene: Comparative analysis with the dystrophin gene

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, H.J.; Blake, D.J.; Nawrotzki, R.A.; Davies, K.E. [Univ. of Oxford (United Kingdom)

    1997-02-01

    Dystrobrevin, the mammalian orthologue of the Torpedo 87-kDa postsynaptic protein, is a member of the dystrophin gene family with homology to the cysteine-rich carboxy-terminal domain of dystrophin. Torpedo dystrobrevin copurifies with the acetylcholine receptors and is thought to form a complex with dystrophin and syntrophin. This complex is also found at the sarcolemma in vertebrates and defines the cytoplasmic component of the dystrophin-associated protein complex. Previously we have cloned several dystrobrevin isoforms from mouse brain and muscle. Here we show that these transcripts are the products of a single gene located on proximal mouse chromosome 18. To investigate the diversity of dystrobrevin transcripts we have determined that the mouse dystrobrevin gene is organized into 24 coding exons that span between 130 and 170 kb at the genomic level. The gene encodes at least three distinct protein isoforms that are expressed in a tissue-specific manner. Interestingly, although there is only 27% amino acid identity between the homologous regions of dystrobrevin and dystrophin, the positions of 8 of the 15 exon-intron junctions are identical. 47 refs., 4 figs., 2 tabs.

  6. Genetic accommodation in the wild: evolution of gene expression plasticity during character displacement.

    Science.gov (United States)

    Levis, N A; Serrato-Capuchina, A; Pfennig, D W

    2017-09-01

    Ecological character displacement is considered crucial in promoting diversification, yet relatively little is known of its underlying mechanisms. We examined whether evolutionary shifts in gene expression plasticity ('genetic accommodation') mediate character displacement in spadefoot toads. Where Spea bombifrons and S. multiplicata occur separately in allopatry (the ancestral condition), each produces alternative, diet-induced, larval ecomorphs: omnivores, which eat detritus, and carnivores, which specialize on shrimp. By contrast, where these two species occur together in sympatry (the derived condition), selection to minimize competition for detritus has caused S. bombifrons to become nearly fixed for producing only carnivores, suggesting that character displacement might have arisen through an extreme form of genetic accommodation ('genetic assimilation') in which plasticity is lost. Here, we asked whether we could infer a signature of this process in regulatory changes of specific genes. In particular, we investigated whether genes that are normally expressed more highly in one morph ('biased' genes) have evolved reduced plasticity in expression levels among S. bombifrons from sympatry compared to S. bombifrons from allopatry. We reared individuals from sympatry vs. allopatry on detritus or shrimp and measured the reaction norms of nine biased genes. Although different genes displayed different patterns of gene regulatory evolution, the combined gene expression profiles revealed that sympatric individuals had indeed lost the diet-induced gene expression plasticity present in allopatric individuals. Our data therefore provide one of the few examples from natural populations in which genetic accommodation/assimilation can be traced to regulatory changes of specific genes. Such genetic accommodation might mediate character displacement in many systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For

  7. The complete mitochondrial genome sequence and gene organization of the rainbow runner (Elagatis bipinnulata) (Perciformes: Carangidae).

    Science.gov (United States)

    Ma, Chunyan; Ma, Hongyu; Zhang, Heng; Feng, Chunlei; Wei, Hongqing; Wang, Wei; Chen, Wei; Zhang, Fengying; Ma, Lingbo

    2017-01-01

    The complete mitochondrial genome information can play an important role in species identification, phylogeny, evolution research, genetic differentiation, and diversity. Here we determined the complete mitochondrial genome sequence of Elagatis bipinnulata (Perciformes: Carangidae). This circular genome was 16 542 bp in length, and included all 37 typical mitochondrial genes, containing 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a putative control region. The gene order of E. bipinnulata was identical to that observed in most other vertebrates. Of 37 genes, 28 were encoded by heavy strand, while the other ones were encoded by light strand. According to the phylogenetic analysis based on 13 concatenated protein-coding genes, E. bipinnulata was genetically closer to the species of genus Seriola compared with any other species within Perciformes. This work can provide helpful data for further studies on population genetic diversity and molecular evolution.

  8. Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey.

    Science.gov (United States)

    Alcaide, Miguel; Edwards, Scott V; Negro, Juan J

    2007-11-01

    During the last decade, the major histocompatibility complex (MHC) has received much attention in the fields of evolutionary and conservation biology because of its potential implications in many biological processes. New insights into the gene structure and evolution of MHC genes can be gained through study of additional lineages of birds not yet investigated at the genomic level. In this study, we characterized MHC class II B genes in five families of birds of prey (Accipitridae, Pandionidae, Strigidae, Tytonidae, and Falconidae). Using PCR approaches, we isolated genomic MHC sequences up to 1300 bp spanning exons 1 to 3 in 26 representatives of each raptor lineage, finding no stop codons or frameshift mutations in any coding region. A survey of diversity across the entirety of exon 2 in the lesser kestrel Falco naumanni reported 26 alleles in 21 individuals. Bayesian analysis revealed 21 positively selected amino acid sites, which suggests that the MHC genes described here are functional and probably expressed. Finally, through interlocus comparisons and phylogenetic analysis, we also discuss genetic evidence for concerted and transspecies evolution in the raptor MHC.

  9. Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Kimbrel

    2013-02-01

    Full Text Available Two diametric paradigms have been proposed to model the molecular co-evolution of microbial mutualists and their eukaryotic hosts. In one, mutualist and host exhibit an antagonistic arms race and each partner evolves rapidly to maximize their own fitness from the interaction at potential expense of the other. In the opposing model, conflicts between mutualist and host are largely resolved and the interaction is characterized by evolutionary stasis. We tested these opposing frameworks in two lineages of mutualistic rhizobia, Sinorhizobium fredii and Bradyrhizobium japonicum. To examine genes demonstrably important for host-interactions we coupled the mining of genome sequences to a comprehensive functional screen for type III effector genes, which are necessary for many Gram-negative pathogens to infect their hosts. We demonstrate that the rhizobial type III effector genes exhibit a surprisingly high degree of conservation in content and sequence that is in contrast to those of a well characterized plant pathogenic species. This type III effector gene conservation is particularly striking in the context of the relatively high genome-wide diversity of rhizobia. The evolution of rhizobial type III effectors is inconsistent with the molecular arms race paradigm. Instead, our results reveal that these loci are relatively static in rhizobial lineages and suggest that fitness conflicts between rhizobia mutualists and their host plants have been largely resolved.

  10. Positive selection of HIV host factors and the evolution of lentivirus genes

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2010-06-01

    Full Text Available Abstract Background Positive selection of host proteins that interact with pathogens can indicate factors relevant for infection and potentially be a measure of pathogen driven evolution. Results Our analysis of 1439 primate genes and 175 lentivirus genomes points to specific host factors of high genetic variability that could account for differences in susceptibility to disease and indicate specific mechanisms of host defense and pathogen adaptation. We find that the largest amount of genetic change occurs in genes coding for cellular membrane proteins of the host as well as in the viral envelope genes suggesting cell entry and immune evasion as the primary evolutionary interface between host and pathogen. We additionally detect the innate immune response as a gene functional group harboring large differences among primates that could potentially account for the different levels of immune activation in the HIV/SIV primate infection. We find a significant correlation between the evolutionary rates of interacting host and viral proteins pointing to processes of the host-pathogen biology that are relatively conserved among species and to those undergoing accelerated genetic evolution. Conclusions These results indicate specific host factors and their functional groups experiencing pathogen driven evolutionary selection pressures. Individual host factors pointed to by our analysis might merit further study as potential targets of antiretroviral therapies.

  11. Evolutionary anthropology and genes: investigating the genetics of human evolution from excavated skeletal remains.

    Science.gov (United States)

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. ORGANIZATIONAL DESIGN AND CHANGE. THE EVOLUTION OF TRADE UNIONS ORGANIZATION FORMS IN ROMANIA AFTER 1989

    Directory of Open Access Journals (Sweden)

    LUMINIŢA CRISTINA CIOCAN

    2012-05-01

    Full Text Available The study: „Management and organizational change. Evolution of union organization forms in Romania after 1989” propose as subject of analyze a type of organization which, through its affiliation to the civil society and through its role conferred by low, becomes the key for the proper functioning of the labor market. Along with the change of political regime from December 1989, the trade union organizations were put in a position to cope with a triple: reorganization, learning a new social role and public image reconfiguration, including cancellation of the association (inevitable with the “ancient” trade union. The study proposes three major subjects: defining the term union organization accompanied by possible interpretations of the role of this type of organization at the society level – „collective voice”, counter pole , political actor, collective negotiator, transnational and promoter of the class struggle, the last role not being characteristic to a democratic society; the description of the syndicate organizations evolution in Romania, after 1990; the argue of the necessity of an organizational change felt by the unions, under the impact of some factors depending on socio-economic and politic changes.

  13. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    Directory of Open Access Journals (Sweden)

    Alejandra Moreno-Letelier

    2011-01-01

    Full Text Available The high affinity phosphate transport system (pst is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events.

  14. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles.

    Science.gov (United States)

    Li, Yang I; Kong, Lesheng; Ponting, Chris P; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.

  15. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate

    Science.gov (United States)

    Jerjos, Michael; Hohman, Baily; Lauterbur, M. Elise; Kistler, Logan

    2017-01-01

    Abstract Several taxonomically distinct mammalian groups—certain microbats and cetaceans (e.g., dolphins)—share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat–dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. PMID:28810710

  16. Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1.

    Directory of Open Access Journals (Sweden)

    Zabrina L Brumme

    2007-07-01

    Full Text Available Despite the formidable mutational capacity and sequence diversity of HIV-1, evidence suggests that viral evolution in response to specific selective pressures follows generally predictable mutational pathways. Population-based analyses of clinically derived HIV sequences may be used to identify immune escape mutations in viral genes; however, prior attempts to identify such mutations have been complicated by the inability to discriminate active immune selection from virus founder effects. Furthermore, the association between mutations arising under in vivo immune selection and disease progression for highly variable pathogens such as HIV-1 remains incompletely understood. We applied a viral lineage-corrected analytical method to investigate HLA class I-associated sequence imprinting in HIV protease, reverse transcriptase (RT, Vpr, and Nef in a large cohort of chronically infected, antiretrovirally naïve individuals. A total of 478 unique HLA-associated polymorphisms were observed and organized into a series of "escape maps," which identify known and putative cytotoxic T lymphocyte (CTL epitopes under selection pressure in vivo. Our data indicate that pathways to immune escape are predictable based on host HLA class I profile, and that epitope anchor residues are not the preferred sites of CTL escape. Results reveal differential contributions of immune imprinting to viral gene diversity, with Nef exhibiting far greater evidence for HLA class I-mediated selection compared to other genes. Moreover, these data reveal a significant, dose-dependent inverse correlation between HLA-associated polymorphisms and HIV disease stage as estimated by CD4(+ T cell count. Identification of specific sites and patterns of HLA-associated polymorphisms across HIV protease, RT, Vpr, and Nef illuminates regions of the genes encoding these products under active immune selection pressure in vivo. The high density of HLA-associated polymorphisms in Nef compared to other

  17. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    Directory of Open Access Journals (Sweden)

    Simard Frederic

    2008-03-01

    Full Text Available Abstract Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9 might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria.

  18. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    Science.gov (United States)

    Schurko, Andrew M; Logsdon, John M; Eads, Brian D

    2009-01-01

    Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment. PMID:19383157

  19. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution.

    Science.gov (United States)

    Schurko, Andrew M; Logsdon, John M; Eads, Brian D

    2009-04-21

    Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.

  20. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum.

    Science.gov (United States)

    Zhu, Huayu; Han, Xiaoyong; Lv, Junhong; Zhao, Liang; Xu, Xiaoyang; Zhang, Tianzhen; Guo, Wangzhen

    2011-02-25

    Both Gossypium hirsutum and G. barbadense probably originated from a common ancestor, but they have very different agronomic and fiber quality characters. Here we selected 17 fiber development-related genes to study their structures, tree topologies, chromosomal location and expression patterns to better understand the interspecific divergence of fiber development genes in the two cultivated tetraploid species. The sequence and structure of 70.59% genes were conserved with the same exon length and numbers in different species, while 29.41% genes showed diversity. There were 15 genes showing independent evolution between the A- and D-subgenomes after polyploid formation, while two evolved via different degrees of colonization. Chromosomal location showed that 22 duplicate genes were located in which at least one fiber quality QTL was detected. The molecular evolutionary rates suggested that the D-subgenome of the allotetraploid underwent rapid evolutionary differentiation, and selection had acted at the tetraploid level. Expression profiles at fiber initiation and early elongation showed that the transcripts levels of most genes were higher in Hai7124 than in TM-1. During the primary-secondary transition period, expression of most genes peaked earlier in TM-1 than in Hai7124. Homeolog expression profile showed that A-subgenome, or the combination of A- and D-subgenomes, played critical roles in fiber quality divergence of G. hirsutum and G. barbadense. However, the expression of D-subgenome alone also played an important role. Integrating analysis of the structure and expression to fiber development genes, suggests selective breeding for certain desirable fiber qualities played an important role in divergence of G. hirsutum and G. barbadense.

  1. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    Science.gov (United States)

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  2. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    Science.gov (United States)

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  3. The impact of genome triplication on tandem gene evolution in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lu eFang

    2012-11-01

    Full Text Available Whole genome duplication (WGD and tandem duplication (TD are both important modes of gene expansion. However, how whole genome duplication influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751 and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the 3 species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole-genome polyploidization event.

  4. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    Science.gov (United States)

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  5. The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)

    Science.gov (United States)

    Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.

    2016-06-01

    Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

  6. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  7. The oxytocin receptor gene, an integral piece of the evolution of Canis familaris from Canis lupus

    Directory of Open Access Journals (Sweden)

    Jessica Lee Oliva

    2016-07-01

    Full Text Available Previous research in canids has revealed both group (dog versus wolf and individual differences in object choice task (OCT performance. These differences might be explained by variation in the oxytocin receptor (OXTR gene, as intranasally administered oxytocin has recently been shown to improve performance on this task by domestic dogs. This study looked at microsatellites at various distances from the OXTR gene to determine whether there was an association between this gene and: i species (dog/wolf and ii good versus bad OCT performers. Ten primer sets were designed to amplify 10 microsatellites that were identified at various distances from the canine OXTR gene. We used 94 (52 males, 42 females blood samples from shelter dogs, 75 (33 males, 42 females saliva samples from pet dogs and 12 (6 males, 6 females captive wolf saliva samples to carry out our analyses. Significant species differences were found in the two markers closest to the OXTR gene, suggesting that this gene may have played an important part in the domestic dogs’ evolution from the wolf. However, no significant, meaningful differences were found in microsatellites between good versus bad OCT performers, which suggests that other factors, such as different training and socialisation experiences, probably impacted task performance

  8. Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current.

    Science.gov (United States)

    Thompson, Ammon; Infield, Daniel T; Smith, Adam R; Smith, G Troy; Ahern, Christopher A; Zakon, Harold H

    2018-03-01

    Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.

  9. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    Science.gov (United States)

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches.

  10. Evolution of regulatory genes governing biodegradation in acinetobacter calcoaceticus. Final report, 15 July 1991-31 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ornston, L.N.

    1995-02-22

    The Acinetobacter calcoaceticus pca-qui-pob supraoperonic gene cluster encodes bacterial enzymes that metabolize aromatic and hydroaromatic compounds in the environment. Our investigation is directed to understanding how mutation, gene rearrangement and selection contributed to evolution of the transcriptional controls exercised over genes in the cluster. The complete nucleotide sequence of the 18 kbp gene cluster has been determined, and genetic manipulations have been used to explore mechanisms contributing to expression of the genes. The results reveal that structural gene expression is governed by complex interactions between the products of different regulatory genes some of which share common ancestry. Additional controls appear to be exercised by compartmentation of some catabolic enzymes outside the inner cell membrane. Recombination appears to have made a major contribution to the evolution of existing control mechanisms, and their maintenance may be influence by continuing recombination. Contributions of recombination to mutation and repair are under investigation as are specific molecular mechanisms underlying transcriptional controls.

  11. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow.

    Science.gov (United States)

    Sachdeva, Himani; Barton, Nicholas H

    2017-06-01

    Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. LANDMARKS IN THE EVOLUTION OF THE SOCIAL RESPONSIBILITY OF ORGANIZATIONS IN THE TWENTIETH CENTURY

    Directory of Open Access Journals (Sweden)

    SORIN-GEORGE TOMA

    2011-04-01

    Full Text Available The social responsibility of organizations concept has become the subject of considerable researches, debates and commentaries especially in the second half of the last century. According to ethical principles organizations and individuals have the obligation to act in the benefit of society at large. Consequently, the social responsibility of a business is related to its duties and obligations directed towards the social welfare. The role of corporations in society and the issue of corporate social responsibility have been increasingly debated in the last century. Based on a literature review our paper seeks to describe and summarize some of the main contributions to the development of the social responsibility of organizations. The aims of our paper are to explore the evolution of the social responsibility of organization concept in the last century and to emphasize its various approaches, mostly in the business field. This historical trace identifies both similarities and differences related to social responsibility themes.

  13. Evolution, gene expression profiling and 3D modeling of CSLD proteins in cotton.

    Science.gov (United States)

    Li, Yanpeng; Yang, Tiegang; Dai, Dandan; Hu, Ying; Guo, Xiaoyang; Guo, Hongxia

    2017-07-10

    Among CESA-like gene superfamily, the cellulose synthase-like D (CSLD) genes are most similar to cellulose synthase genes and have been reported to be involved in tip-growing cell and stem development. However, there has been no genome-wide characterization of this gene subfamily in cotton. We thus sought to analyze the evolution and functional characterization of CSLD proteins in cotton based on fully sequenced cotton genomes. A total of 23 full-length CSLD proteins were identified in Gossypium raimondii, Gossypium arboreum and Gossypium hirsutum. The phylogenetic tree divided the CSLD proteins into five clades with strong support: CSLD1, CSLD2/3, CSLD4, CSLD5 and CSLD6. The total expression of GhCSLD genes was the highest in androecium & gynoecium (mostly contributed by CSLD1 and CSLD4) compared with other CSL genes. CSLD1 and CSLD4 were only highly expressed in androecium & gynoecium (A&G), and showed tissue-specific expression. The total expression of CSLD2/3, 5 and 6 was highest in the specific tissues. These results suggest that CSLD genes showed the different pattern of expression. Cotton CSLD proteins were subjected to different evolutionary pressures, and the CSLD1 and CSLD4 proteins exhibited episodic and long-term shift positive selection. The predicted three-dimensional structure of GrCSLD1 suggested that GrCSLD1 belongs to glycosyltransferase family 2. The amino acid residues under positive selection in the CSLD1 lineage are positioned in a region adjacent to the class-specific region (CSR), β1-strand and transmembrane helices (TMHs) in the GrCSLD1structure. Our results characterized the CSLD proteins by an integrated approach containing phylogeny, transcriptional profiling and 3D modeling. The study added to the understanding about the importance of the CSLD family and provide a useful reference for selecting candidate genes and their associations with the biosynthesis of the cell wall in cotton.

  14. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts

    Science.gov (United States)

    Kin, Koryu; Maziarz, Jamie; Chavan, Arun R.; Kamat, Manasi; Vasudevan, Sreelakshmi; Birt, Alyssa; Emera, Deena; Lynch, Vincent J.; Ott, Troy L.; Pavlicev, Mihaela; Wagner, Günter P.

    2016-01-01

    The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type “neo-ESF” in contrast to “paleo-ESF” which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation. PMID:27401177

  15. The phytochelatin synthase gene in date palm (Phoenix dactylifera L.): Phylogeny, evolution and expression.

    Science.gov (United States)

    Zayneb, Chaâbene; Imen, Rekik Hakim; Walid, Kriaa; Grubb, C Douglas; Bassem, Khemakhem; Franck, Vandenbulcke; Hafedh, Mejdoub; Amine, Elleuch

    2017-06-01

    We studied date palm phytochelatin synthase type I (PdPCS1), which catalyzes the cytosolic synthesis of phytochelatins (PCs), a heavy metal binding protein, in plant cells. The gene encoding PdPCS1 (Pdpcs) consists of 8 exons and 7 introns and encodes a protein of 528 amino acids. PCs gene history was studied using Notung phylogeny. During evolution, gene loss from several lineages was predicted including Proteobacteria, Bilateria and Brassicaceae. In addition, eleven gene duplication events appeared toward interior nodes of the reconciled tree and four gene duplication events appeared toward the external nodes. These latter sequences belong to species with a second copy of PCs suggesting that this gene evolved through subfunctionalization. Pdpcs1 gene expression was measured in seedling hypocotyls exposed to Cd, Cu and Cr using quantitative real-time polymerase chain reaction (qPCR). A Pdpcs1 overexpression was evidenced in P. dactylifera seedlings exposed to metals suggesting that 1-the Pdpcs1 gene is functional, 2-there is an implication of the enzyme in metal detoxification mechanisms. Additionally, the structure of PdPCS1 was predicted using its homologue from Nostoc (cyanobacterium, NsPCS) as a template in Discovery studio and PyMol software. These analyses allowed us to identify the phytochelatin synthase type I enzyme in date palm (PdPCS1) via recognition of key consensus amino acids involved in the catalytic mechanism, and to propose a hypothetical binding and catalytic site for an additional substrate binding cavity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A search engine to identify pathway genes from expression data on multiple organisms

    Directory of Open Access Journals (Sweden)

    Zambon Alexander C

    2007-05-01

    Full Text Available Abstract Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR, which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved.

  17. Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

    Directory of Open Access Journals (Sweden)

    Elisson A C Romanel

    Full Text Available BACKGROUND: The B3 DNA binding domain includes five families: auxin response factor (ARF, abscisic acid-insensitive3 (ABI3, high level expression of sugar inducible (HSI, related to ABI3/VP1 (RAV and reproductive meristem (REM. The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily. METHODOLOGY: In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family. CONCLUSIONS: Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.

  18. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Science.gov (United States)

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  19. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Directory of Open Access Journals (Sweden)

    Kuduk Katarzyna

    2012-10-01

    Full Text Available Abstract Background Major histocompatibility complex (MHC proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN exceeded the rate of synonymous substitutions (dS at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  20. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales.

    Science.gov (United States)

    Brockington, Samuel F; Yang, Ya; Gandia-Herrero, Fernando; Covshoff, Sarah; Hibberd, Julian M; Sage, Rowan F; Wong, Gane K S; Moore, Michael J; Smith, Stephen A

    2015-09-01

    Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.]. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  2. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  3. Evolution of African swine fever virus genes related to evasion of host immune response.

    Science.gov (United States)

    Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt

    2016-09-25

    African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    Science.gov (United States)

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  5. Bone-associated gene evolution and the origin of flight in birds.

    Science.gov (United States)

    Machado, João Paulo; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2016-05-18

    Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.

  6. Sequence and evolution of HLA-DR7- and -DRw53-associated. beta. -chain genes

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.A.T.; Wilkinson, D.; Bodmer, W.F.; Trowsdale, J.

    1987-07-01

    cDNA clones representing products of the DR7 and DRw53 ..beta..-chain genes were isolated from the human B-lymphoblastoid cell line MANN (DR7, DRw53, DQw2, DPw2). The DRw53..beta.. sequence was identical to a DRw53..beta.. sequence derived from cells with a DR4 haplotype. In contrast, the DR7..beta.. sequence was as unrelated to DR4..beta.. sequence as it was to other DR..beta..-related genes, except at the 3'-untranslated region. These results suggest that the DR7 and DR4 haplotypes may have been derived relatively recently from a common ancestral haplotype and that the DR4 and DR7 ..beta..-chain genes have undergone more rapid diversification in the ..beta..1 domains, most probably as a result of natural selection, than have the DRw53..beta..-chain genes. Short tracts of sequence within the DR7 and DRw53 ..beta..1 domains were shared with other DR..beta.. sequences, indicating that exchanges of genetic information between ..beta..1 domains of DR..beta..-related genes have played a part in their evolution. Serological analysis of mouse L-cell transfectants expressing surface HLA-DR7 molecules, confirmed by antibody binding and allelic sequence comparison, identified amino acid residues that may be critical to the binding of a monomorphic DR- and CP-specific monoclonal antibody.

  7. Evolution of the division of labor between genes and enzymes in the RNA world.

    Directory of Open Access Journals (Sweden)

    Gergely Boza

    2014-12-01

    Full Text Available The RNA world is a very likely interim stage of the evolution after the first replicators and before the advent of the genetic code and translated proteins. Ribozymes are known to be able to catalyze many reaction types, including cofactor-aided metabolic transformations. In a metabolically complex RNA world, early division of labor between genes and enzymes could have evolved, where the ribozymes would have been transcribed from the genes more often than the other way round, benefiting the encapsulating cells through this dosage effect. Here we show, by computer simulations of protocells harboring unlinked RNA replicators, that the origin of replicational asymmetry producing more ribozymes from a gene template than gene strands from a ribozyme template is feasible and robust. Enzymatic activities of the two modeled ribozymes are in trade-off with their replication rates, and the relative replication rates compared to those of complementary strands are evolvable traits of the ribozymes. The degree of trade-off is shown to have the strongest effect in favor of the division of labor. Although some asymmetry between gene and enzymatic strands could have evolved even in earlier, surface-bound systems, the shown mechanism in protocells seems inevitable and under strong positive selection. This could have preadapted the genetic system for transcription after the subsequent origin of chromosomes and DNA.

  8. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown.

    Science.gov (United States)

    McGowen, Michael R; Grossman, Lawrence I; Wildman, Derek E

    2012-09-22

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10,000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains.

  9. Global characterization of interferon regulatory factor (IRF genes in vertebrates: Glimpse of the diversification in evolution

    Directory of Open Access Journals (Sweden)

    Xu Zhen

    2010-05-01

    Full Text Available Abstract Background Interferon regulatory factors (IRFs, which can be identified based on a unique helix-turn-helix DNA-binding domain (DBD are a large family of transcription factors involved in host immune response, haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have not been investigated in vertebrates. Results Genome data mining has been performed to identify any possible IRF family members in human, mouse, dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a much longer distance in

  10. Genomic organization of a cellulase gene family in Phanerochaete chrysosporium

    Science.gov (United States)

    Sarah F. Covert; Jennifer Bolduc; Daniel Cullen

    1992-01-01

    Southern blot and nucleotide sequence analysis of Phanerochaete chrysosporium BKM-F-1767 genomic clones indicate that this wood-degrading fungus contains at least six genes with significant homology to the Trichoderma reesei cellobiohydrolase I gene (cbh1). Using pulsed-field gel electrophoresis to separate P. chrysosporium chromosomes, the six cellulase genes were...

  11. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Direct