WorldWideScience

Sample records for gene ontology analysis

  1. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  2. Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.

    Science.gov (United States)

    Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan

    2017-10-01

    Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.

  3. Gene Ontology Consortium: going forward.

    Science.gov (United States)

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Length bias correction in gene ontology enrichment analysis using logistic regression.

    Science.gov (United States)

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  5. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    Science.gov (United States)

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  6. A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool.

    Science.gov (United States)

    Mazandu, Gaston K; Chimusa, Emile R; Mbiyavanga, Mamana; Mulder, Nicola J

    2016-02-01

    Gene Ontology (GO) semantic similarity measures are being used for biological knowledge discovery based on GO annotations by integrating biological information contained in the GO structure into data analyses. To empower users to quickly compute, manipulate and explore these measures, we introduce A-DaGO-Fun (ADaptable Gene Ontology semantic similarity-based Functional analysis). It is a portable software package integrating all known GO information content-based semantic similarity measures and relevant biological applications associated with these measures. A-DaGO-Fun has the advantage not only of handling datasets from the current high-throughput genome-wide applications, but also allowing users to choose the most relevant semantic similarity approach for their biological applications and to adapt a given module to their needs. A-DaGO-Fun is freely available to the research community at http://web.cbio.uct.ac.za/ITGOM/adagofun. It is implemented in Linux using Python under free software (GNU General Public Licence). gmazandu@cbio.uct.ac.za or Nicola.Mulder@uct.ac.za Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach.

    Science.gov (United States)

    Zhang, Song; Cao, Jing; Kong, Y Megan; Scheuermann, Richard H

    2010-04-01

    A typical approach for the interpretation of high-throughput experiments, such as gene expression microarrays, is to produce groups of genes based on certain criteria (e.g. genes that are differentially expressed). To gain more mechanistic insights into the underlying biology, overrepresentation analysis (ORA) is often conducted to investigate whether gene sets associated with particular biological functions, for example, as represented by Gene Ontology (GO) annotations, are statistically overrepresented in the identified gene groups. However, the standard ORA, which is based on the hypergeometric test, analyzes each GO term in isolation and does not take into account the dependence structure of the GO-term hierarchy. We have developed a Bayesian approach (GO-Bayes) to measure overrepresentation of GO terms that incorporates the GO dependence structure by taking into account evidence not only from individual GO terms, but also from their related terms (i.e. parents, children, siblings, etc.). The Bayesian framework borrows information across related GO terms to strengthen the detection of overrepresentation signals. As a result, this method tends to identify sets of closely related GO terms rather than individual isolated GO terms. The advantage of the GO-Bayes approach is demonstrated with a simulation study and an application example.

  8. Markov Chain Ontology Analysis (MCOA).

    Science.gov (United States)

    Frost, H Robert; McCray, Alexa T

    2012-02-03

    Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.

  9. Exploring autophagy with Gene Ontology

    Science.gov (United States)

    2018-01-01

    ABSTRACT Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of ‘annotations’ that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study. PMID:29455577

  10. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Science.gov (United States)

    2011-01-01

    Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were

  11. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application.

    Science.gov (United States)

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-06-16

    microRNAs (miRNAs) are single-stranded RNA molecules of about 20-23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA.

  12. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Malin Lando

    2009-11-01

    Full Text Available Integrative analysis of gene dosage, expression, and ontology (GO data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1 and 13q (FAM48A, MED4 correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.

  13. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS

    Directory of Open Access Journals (Sweden)

    Kim Nora

    2012-07-01

    Full Text Available Abstract Background It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO. Results We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs. Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, ‘Regulation of Cellular Component Organization and Biogenesis’, a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, ‘Actin Cytoskeleton’, a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Conclusions Pathway

  14. Extracting Cross-Ontology Weighted Association Rules from Gene Ontology Annotations.

    Science.gov (United States)

    Agapito, Giuseppe; Milano, Marianna; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-01-01

    Gene Ontology (GO) is a structured repository of concepts (GO Terms) that are associated to one or more gene products through a process referred to as annotation. The analysis of annotated data is an important opportunity for bioinformatics. There are different approaches of analysis, among those, the use of association rules (AR) which provides useful knowledge, discovering biologically relevant associations between terms of GO, not previously known. In a previous work, we introduced GO-WAR (Gene Ontology-based Weighted Association Rules), a methodology for extracting weighted association rules from ontology-based annotated datasets. We here adapt the GO-WAR algorithm to mine cross-ontology association rules, i.e., rules that involve GO terms present in the three sub-ontologies of GO. We conduct a deep performance evaluation of GO-WAR by mining publicly available GO annotated datasets, showing how GO-WAR outperforms current state of the art approaches.

  15. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.

    Science.gov (United States)

    Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D

    2017-01-04

    The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Fast gene ontology based clustering for microarray experiments.

    Science.gov (United States)

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  17. DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures.

    Science.gov (United States)

    Mazandu, Gaston K; Mulder, Nicola J

    2013-09-25

    The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis.

  18. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    Energy Technology Data Exchange (ETDEWEB)

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G. [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada); Law, R. David, E-mail: dlaw@lakeheadu.ca [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada)

    2012-10-15

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  19. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    International Nuclear Information System (INIS)

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G.; Law, R. David

    2012-01-01

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  20. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  1. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  2. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  3. Fast Gene Ontology based clustering for microarray experiments

    Directory of Open Access Journals (Sweden)

    Ovaska Kristian

    2008-11-01

    Full Text Available Abstract Background Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. Results We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Conclusion Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  4. The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life.

    Directory of Open Access Journals (Sweden)

    Yu-Hang Zhang

    Full Text Available A drug's biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347, monoamine transmembrane transporter activity (GO:0008504, negative regulation of synaptic transmission (GO:0050805, neuroactive ligand-receptor interaction (hsa04080, serotonergic synapse (hsa04726, and linoleic acid metabolism (hsa00591, among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives.

  5. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  6. [Key effect genes responding to nerve injury identified by gene ontology and computer pattern recognition].

    Science.gov (United States)

    Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei

    2012-07-01

    In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.

  7. Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis.

    Science.gov (United States)

    Weber, K; Mock, U; Petrowitz, B; Bartsch, U; Fehse, B

    2010-04-01

    Vector-encoded fluorescent proteins (FPs) facilitate unambiguous identification or sorting of gene-modified cells by fluorescence-activated cell sorting (FACS). Exploiting this feature, we have recently developed lentiviral gene ontology (LeGO) vectors (www.LentiGO-Vectors.de) for multi-gene analysis in different target cells. In this study, we extend the LeGO principle by introducing 10 different drug-selectable FPs created by fusing one of the five selection marker (protecting against blasticidin, hygromycin, neomycin, puromycin and zeocin) and one of the five FP genes (Cerulean, eGFP, Venus, dTomato and mCherry). All tested fusion proteins allowed both fluorescence-mediated detection and drug-mediated selection of LeGO-transduced cells. Newly generated codon-optimized hygromycin- and neomycin-resistance genes showed improved expression as compared with their ancestors. New LeGO constructs were produced at titers >10(6) per ml (for non-concentrated supernatants). We show efficient combinatorial marking and selection of various cells, including mesenchymal stem cells, simultaneously transduced with different LeGO constructs. Inclusion of the cytomegalovirus early enhancer/chicken beta-actin promoter into LeGO vectors facilitated robust transgene expression in and selection of neural stem cells and their differentiated progeny. We suppose that the new drug-selectable markers combining advantages of FACS and drug selection are well suited for numerous applications and vector systems. Their inclusion into LeGO vectors opens new possibilities for (stem) cell tracking and functional multi-gene analysis.

  8. Defining functional distances over Gene Ontology

    Directory of Open Access Journals (Sweden)

    del Pozo Angela

    2008-01-01

    Full Text Available Abstract Background A fundamental problem when trying to define the functional relationships between proteins is the difficulty in quantifying functional similarities, even when well-structured ontologies exist regarding the activity of proteins (i.e. 'gene ontology' -GO-. However, functional metrics can overcome the problems in the comparing and evaluating functional assignments and predictions. As a reference of proximity, previous approaches to compare GO terms considered linkage in terms of ontology weighted by a probability distribution that balances the non-uniform 'richness' of different parts of the Direct Acyclic Graph. Here, we have followed a different approach to quantify functional similarities between GO terms. Results We propose a new method to derive 'functional distances' between GO terms that is based on the simultaneous occurrence of terms in the same set of Interpro entries, instead of relying on the structure of the GO. The coincidence of GO terms reveals natural biological links between the GO functions and defines a distance model Df which fulfils the properties of a Metric Space. The distances obtained in this way can be represented as a hierarchical 'Functional Tree'. Conclusion The method proposed provides a new definition of distance that enables the similarity between GO terms to be quantified. Additionally, the 'Functional Tree' defines groups with biological meaning enhancing its utility for protein function comparison and prediction. Finally, this approach could be for function-based protein searches in databases, and for analysing the gene clusters produced by DNA array experiments.

  9. The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. PMID:24093723

  10. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    Science.gov (United States)

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology.

    Science.gov (United States)

    Lovering, Ruth C; Roncaglia, Paola; Howe, Douglas G; Laulederkind, Stanley J F; Khodiyar, Varsha K; Berardini, Tanya Z; Tweedie, Susan; Foulger, Rebecca E; Osumi-Sutherland, David; Campbell, Nancy H; Huntley, Rachael P; Talmud, Philippa J; Blake, Judith A; Breckenridge, Ross; Riley, Paul R; Lambiase, Pier D; Elliott, Perry M; Clapp, Lucie; Tinker, Andrew; Hill, David P

    2018-02-01

    A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. © 2018 The Authors.

  12. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  13. OAHG: an integrated resource for annotating human genes with multi-level ontologies.

    Science.gov (United States)

    Cheng, Liang; Sun, Jie; Xu, Wanying; Dong, Lixiang; Hu, Yang; Zhou, Meng

    2016-10-05

    OAHG, an integrated resource, aims to establish a comprehensive functional annotation resource for human protein-coding genes (PCGs), miRNAs, and lncRNAs by multi-level ontologies involving Gene Ontology (GO), Disease Ontology (DO), and Human Phenotype Ontology (HPO). Many previous studies have focused on inferring putative properties and biological functions of PCGs and non-coding RNA genes from different perspectives. During the past several decades, a few of databases have been designed to annotate the functions of PCGs, miRNAs, and lncRNAs, respectively. A part of functional descriptions in these databases were mapped to standardize terminologies, such as GO, which could be helpful to do further analysis. Despite these developments, there is no comprehensive resource recording the function of these three important types of genes. The current version of OAHG, release 1.0 (Jun 2016), integrates three ontologies involving GO, DO, and HPO, six gene functional databases and two interaction databases. Currently, OAHG contains 1,434,694 entries involving 16,929 PCGs, 637 miRNAs, 193 lncRNAs, and 24,894 terms of ontologies. During the performance evaluation, OAHG shows the consistencies with existing gene interactions and the structure of ontology. For example, terms with more similar structure could be associated with more associated genes (Pearson correlation γ 2  = 0.2428, p < 2.2e-16).

  14. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-08

    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  15. Transcriptome Analysis of Porcine PBMCs Reveals the Immune Cascade Response and Gene Ontology Terms Related to Cell Death and Fibrosis in the Progression of Liver Failure

    Directory of Open Access Journals (Sweden)

    YiMin Zhang

    2018-01-01

    Full Text Available Background. The key gene sets involved in the progression of acute liver failure (ALF, which has a high mortality rate, remain unclear. This study aims to gain a deeper understanding of the transcriptional response of peripheral blood mononuclear cells (PBMCs following ALF. Methods. ALF was induced by D-galactosamine (D-gal in a porcine model. PBMCs were separated at time zero (baseline group, 36 h (failure group, and 60 h (dying group after D-gal injection. Transcriptional profiling was performed using RNA sequencing and analysed using DAVID bioinformatics resources. Results. Compared with the baseline group, 816 and 1,845 differentially expressed genes (DEGs were identified in the failure and dying groups, respectively. A total of five and two gene ontology (GO term clusters were enriched in 107 GO terms in the failure group and 154 GO terms in the dying group. These GO clusters were primarily immune-related, including genes regulating the inflammasome complex and toll-like receptor signalling pathways. Specifically, GO terms related to cell death, including apoptosis, pyroptosis, and autophagy, and those related to fibrosis, coagulation dysfunction, and hepatic encephalopathy were enriched. Seven Kyoto Encyclopedia of Genes and Genomes (KEGG pathways, cytokine-cytokine receptor interaction, hematopoietic cell lineage, lysosome, rheumatoid arthritis, malaria, and phagosome and pertussis pathways were mapped for DEGs in the failure group. All of these seven KEGG pathways were involved in the 19 KEGG pathways mapped in the dying group. Conclusion. We found that the dramatic PBMC transcriptome changes triggered by ALF progression was predominantly related to immune responses. The enriched GO terms related to cell death, fibrosis, and so on, as indicated by PBMC transcriptome analysis, seem to be useful in elucidating potential key gene sets in the progression of ALF. A better understanding of these gene sets might be of preventive or

  16. Ontology Maintenance using Textual Analysis

    Directory of Open Access Journals (Sweden)

    Yassine Gargouri

    2003-10-01

    Full Text Available Ontologies are continuously confronted to evolution problem. Due to the complexity of the changes to be made, a maintenance process, at least a semi-automatic one, is more and more necessary to facilitate this task and to ensure its reliability. In this paper, we propose a maintenance ontology model for a domain, whose originality is to be language independent and based on a sequence of text processing in order to extract highly related terms from corpus. Initially, we deploy the document classification technique using GRAMEXCO to generate classes of texts segments having a similar information type and identify their shared lexicon, agreed as highly related to a unique topic. This technique allows a first general and robust exploration of the corpus. Further, we apply the Latent Semantic Indexing method to extract from this shared lexicon, the most associated terms that has to be seriously considered by an expert to eventually confirm their relevance and thus updating the current ontology. Finally, we show how the complementarity between these two techniques, based on cognitive foundation, constitutes a powerful refinement process.

  17. The representation of heart development in the gene ontology.

    Science.gov (United States)

    Khodiyar, Varsha K; Hill, David P; Howe, Doug; Berardini, Tanya Z; Tweedie, Susan; Talmud, Philippa J; Breckenridge, Ross; Bhattarcharya, Shoumo; Riley, Paul; Scambler, Peter; Lovering, Ruth C

    2011-06-01

    An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development. This work also aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area. Copyright © 2011

  18. The Representation of Heart Development in the Gene Ontology

    Science.gov (United States)

    Khodiyar, Varsha K.; Hill, David P.; Howe, Doug; Berardini, Tanya Z.; Tweedie, Susan; Talmud, Philippa J.; Breckenridge, Ross; Bhattarcharya, Shoumo; Riley, Paul; Scambler, Peter; Lovering, Ruth C.

    2012-01-01

    An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development and aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area. PMID:21419760

  19. Prediction of regulatory gene pairs using dynamic time warping and gene ontology.

    Science.gov (United States)

    Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K

    2014-01-01

    Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.

  20. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...

  1. Development and application of an interaction network ontology for literature mining of vaccine-associated gene-gene interactions.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Literature mining of gene-gene interactions has been enhanced by ontology-based name classifications. However, in biomedical literature mining, interaction keywords have not been carefully studied and used beyond a collection of keywords. In this study, we report the development of a new Interaction Network Ontology (INO) that classifies >800 interaction keywords and incorporates interaction terms from the PSI Molecular Interactions (PSI-MI) and Gene Ontology (GO). Using INO-based literature mining results, a modified Fisher's exact test was established to analyze significantly over- and under-represented enriched gene-gene interaction types within a specific area. Such a strategy was applied to study the vaccine-mediated gene-gene interactions using all PubMed abstracts. The Vaccine Ontology (VO) and INO were used to support the retrieval of vaccine terms and interaction keywords from the literature. INO is aligned with the Basic Formal Ontology (BFO) and imports terms from 10 other existing ontologies. Current INO includes 540 terms. In terms of interaction-related terms, INO imports and aligns PSI-MI and GO interaction terms and includes over 100 newly generated ontology terms with 'INO_' prefix. A new annotation property, 'has literature mining keywords', was generated to allow the listing of different keywords mapping to the interaction types in INO. Using all PubMed documents published as of 12/31/2013, approximately 266,000 vaccine-associated documents were identified, and a total of 6,116 gene-pairs were associated with at least one INO term. Out of 78 INO interaction terms associated with at least five gene-pairs of the vaccine-associated sub-network, 14 terms were significantly over-represented (i.e., more frequently used) and 17 under-represented based on our modified Fisher's exact test. These over-represented and under-represented terms share some common top-level terms but are distinct at the bottom levels of the INO hierarchy. The analysis of these

  2. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  3. Approaching the axiomatic enrichment of the Gene Ontology from a lexical perspective.

    Science.gov (United States)

    Quesada-Martínez, Manuel; Mikroyannidi, Eleni; Fernández-Breis, Jesualdo Tomás; Stevens, Robert

    2015-09-01

    The main goal of this work is to measure how lexical regularities in biomedical ontology labels can be used for the automatic creation of formal relationships between classes, and to evaluate the results of applying our approach to the Gene Ontology (GO). In recent years, we have developed a method for the lexical analysis of regularities in biomedical ontology labels, and we showed that the labels can present a high degree of regularity. In this work, we extend our method with a cross-products extension (CPE) metric, which estimates the potential interest of a specific regularity for axiomatic enrichment in the lexical analysis, using information on exact matches in external ontologies. The GO consortium recently enriched the GO by using so-called cross-product extensions. Cross-products are generated by establishing axioms that relate a given GO class with classes from the GO or other biomedical ontologies. We apply our method to the GO and study how its lexical analysis can identify and reconstruct the cross-products that are defined by the GO consortium. The label of the classes of the GO are highly regular in lexical terms, and the exact matches with labels of external ontologies affect 80% of the GO classes. The CPE metric reveals that 31.48% of the classes that exhibit regularities have fragments that are classes into two external ontologies that are selected for our experiment, namely, the Cell Ontology and the Chemical Entities of Biological Interest ontology, and 18.90% of them are fully decomposable into smaller parts. Our results show that the CPE metric permits our method to detect GO cross-product extensions with a mean recall of 62% and a mean precision of 28%. The study is completed with an analysis of false positives to explain this precision value. We think that our results support the claim that our lexical approach can contribute to the axiomatic enrichment of biomedical ontologies and that it can provide new insights into the engineering of

  4. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning

    Directory of Open Access Journals (Sweden)

    Tsatsoulis Costas

    2010-05-01

    Full Text Available Abstract Background There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. Results We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80 of the classification rules produced. Conclusions We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes.

  5. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Deng Jixin

    2009-02-01

    Full Text Available Abstract Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO. In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57% being annotated with 1,957 distinct and specific GO terms. Unannotated proteins

  6. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  7. GOseek: a gene ontology search engine using enhanced keywords.

    Science.gov (United States)

    Taha, Kamal

    2013-01-01

    We propose in this paper a biological search engine called GOseek, which overcomes the limitation of current gene similarity tools. Given a set of genes, GOseek returns the most significant genes that are semantically related to the given genes. These returned genes are usually annotated to one of the Lowest Common Ancestors (LCA) of the Gene Ontology (GO) terms annotating the given genes. Most genes have several annotation GO terms. Therefore, there may be more than one LCA for the GO terms annotating the given genes. The LCA annotating the genes that are most semantically related to the given gene is the one that receives the most aggregate semantic contribution from the GO terms annotating the given genes. To identify this LCA, GOseek quantifies the contribution of the GO terms annotating the given genes to the semantics of their LCAs. That is, it encodes the semantic contribution into a numeric format. GOseek uses microarray experiment data to rank result genes based on their significance. We evaluated GOseek experimentally and compared it with a comparable gene prediction tool. Results showed marked improvement over the tool.

  8. Terminological Ontologies for Risk and Vulnerability Analysis

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2014-01-01

    Risk and vulnerability analyses are an important preliminary stage in civil contingency planning. The Danish Emergency Management Agency has developed a generic model and a set of tools that may be used in the preparedness planning, i.e. for identifying and describing society’s critical functions......, for formulating threat scenarios and for assessing consequences. Terminological ontologies, which are systems of domain specific concepts comprising concept relations and characteristics, are useful, both when describing the central concepts of risk and vulnerability analysis (meta concepts), and for further...

  9. Protein-Protein Interaction Network and Gene Ontology

    Science.gov (United States)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  10. Multicriteria analysis of ontologically represented information

    Science.gov (United States)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.

    2014-11-01

    Our current work concerns the development of a decision support system for the software selection problem. The main idea is to utilize expert knowledge to help the user in selecting the best software / method / computational resource to solve a computational problem. Obviously, this involves multicriterial decision making and the key open question is: which method to choose. The context of the work is provided by the Agents in Grid (AiG) project, where the software selection (and thus multicriterial analysis) is to be realized when all information concerning the problem, the hardware and the software is ontologically represented. Initially, we have considered the Analytical Hierarchy Process (AHP), which is well suited for the hierarchical data structures (e.g., such that have been formulated in terms of ontologies). However, due to its well-known shortcomings, we have decided to extend our search for the multicriterial analysis method best suited for the problem in question. In this paper we report results of our search, which involved: (i) TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), (ii) PROMETHEE, and (iii) GRIP (Generalized Regression with Intensities of Preference). We also briefly argue why other methods have not been considered as valuable candidates.

  11. The mammalian adult neurogenesis gene ontology (MANGO provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available BACKGROUND: Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. CONCLUSIONS/SIGNIFICANCE: The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already

  12. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of

  13. A robust data-driven approach for gene ontology annotation.

    Science.gov (United States)

    Li, Yanpeng; Yu, Hong

    2014-01-01

    Gene ontology (GO) and GO annotation are important resources for biological information management and knowledge discovery, but the speed of manual annotation became a major bottleneck of database curation. BioCreative IV GO annotation task aims to evaluate the performance of system that automatically assigns GO terms to genes based on the narrative sentences in biomedical literature. This article presents our work in this task as well as the experimental results after the competition. For the evidence sentence extraction subtask, we built a binary classifier to identify evidence sentences using reference distance estimator (RDE), a recently proposed semi-supervised learning method that learns new features from around 10 million unlabeled sentences, achieving an F1 of 19.3% in exact match and 32.5% in relaxed match. In the post-submission experiment, we obtained 22.1% and 35.7% F1 performance by incorporating bigram features in RDE learning. In both development and test sets, RDE-based method achieved over 20% relative improvement on F1 and AUC performance against classical supervised learning methods, e.g. support vector machine and logistic regression. For the GO term prediction subtask, we developed an information retrieval-based method to retrieve the GO term most relevant to each evidence sentence using a ranking function that combined cosine similarity and the frequency of GO terms in documents, and a filtering method based on high-level GO classes. The best performance of our submitted runs was 7.8% F1 and 22.2% hierarchy F1. We found that the incorporation of frequency information and hierarchy filtering substantially improved the performance. In the post-submission evaluation, we obtained a 10.6% F1 using a simpler setting. Overall, the experimental analysis showed our approaches were robust in both the two tasks. © The Author(s) 2014. Published by Oxford University Press.

  14. Comparative GO: a web application for comparative gene ontology and gene ontology-based gene selection in bacteria.

    Directory of Open Access Journals (Sweden)

    Mario Fruzangohar

    Full Text Available The primary means of classifying new functions for genes and proteins relies on Gene Ontology (GO, which defines genes/proteins using a controlled vocabulary in terms of their Molecular Function, Biological Process and Cellular Component. The challenge is to present this information to researchers to compare and discover patterns in multiple datasets using visually comprehensible and user-friendly statistical reports. Importantly, while there are many GO resources available for eukaryotes, there are none suitable for simultaneous, graphical and statistical comparison between multiple datasets. In addition, none of them supports comprehensive resources for bacteria. By using Streptococcus pneumoniae as a model, we identified and collected GO resources including genes, proteins, taxonomy and GO relationships from NCBI, UniProt and GO organisations. Then, we designed database tables in PostgreSQL database server and developed a Java application to extract data from source files and loaded into database automatically. We developed a PHP web application based on Model-View-Control architecture, used a specific data structure as well as current and novel algorithms to estimate GO graphs parameters. We designed different navigation and visualization methods on the graphs and integrated these into graphical reports. This tool is particularly significant when comparing GO groups between multiple samples (including those of pathogenic bacteria from different sources simultaneously. Comparing GO protein distribution among up- or down-regulated genes from different samples can improve understanding of biological pathways, and mechanism(s of infection. It can also aid in the discovery of genes associated with specific function(s for investigation as a novel vaccine or therapeutic targets.http://turing.ersa.edu.au/BacteriaGO.

  15. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  16. Expert Judgement Assessment & SCENT Ontological Analysis

    Directory of Open Access Journals (Sweden)

    NICHERSU Iulian

    2018-05-01

    Full Text Available This study aims to provide insights in the starting point of the Horizon 2020 ECfunded project SCENT (Smart Toolbox for Εngaging Citizens into a People-Centric Observation Web Citizen Observatory (CO in terms of existing infrastructure, existing monitoring systems and some discussion on the existing legal and administrative framework that relate to flood monitoring and management in the area of Danube Delta. The methodology used in this approach is based on expert judgement and ontological analysis, using the information collected from the identified end-users of the SCENT toolbox. In this type of analysis the stages of flood monitoring and management that the experts are involved in are detailed. This is done through an Expert Judgement Assessment analysis. The latter is complemented by a set of Key Performance Indicators that the stakeholders have assessed and/or proposed for the evaluation of the SCENT demonstrations, for the impact of the project and finally for SCENT toolbox performance and usefulness. The second part of the study presents an analysis that attempts to map the interactions between different organizations and components of the existing monitoring systems in the Danube Delta case study. Expert Judgement (EJ allows to gain information from specialists in a specific field through a consultation process with one or more experts that have experience in similar and complementary topics. Expert judgment, expert estimates, or expert opinion are all terms that refer to the contents of the problem; estimates, outcomes, predictions, uncertainties, and their corresponding assumptions and conditions are all examples of expert judgment. Expert Judgement is affected by the process used to gather it. On the other hand, the ontological analysis comes to complete this study, by organizing and presenting the connections behind the flood management and land use systems in the three phases of the flood event.

  17. Correlating Information Contents of Gene Ontology Terms to Infer Semantic Similarity of Gene Products

    Directory of Open Access Journals (Sweden)

    Mingxin Gan

    2014-01-01

    Full Text Available Successful applications of the gene ontology to the inference of functional relationships between gene products in recent years have raised the need for computational methods to automatically calculate semantic similarity between gene products based on semantic similarity of gene ontology terms. Nevertheless, existing methods, though having been widely used in a variety of applications, may significantly overestimate semantic similarity between genes that are actually not functionally related, thereby yielding misleading results in applications. To overcome this limitation, we propose to represent a gene product as a vector that is composed of information contents of gene ontology terms annotated for the gene product, and we suggest calculating similarity between two gene products as the relatedness of their corresponding vectors using three measures: Pearson’s correlation coefficient, cosine similarity, and the Jaccard index. We focus on the biological process domain of the gene ontology and annotations of yeast proteins to study the effectiveness of the proposed measures. Results show that semantic similarity scores calculated using the proposed measures are more consistent with known biological knowledge than those derived using a list of existing methods, suggesting the effectiveness of our method in characterizing functional relationships between gene products.

  18. BiNChE: a web tool and library for chemical enrichment analysis based on the ChEBI ontology.

    Science.gov (United States)

    Moreno, Pablo; Beisken, Stephan; Harsha, Bhavana; Muthukrishnan, Venkatesh; Tudose, Ilinca; Dekker, Adriano; Dornfeldt, Stefanie; Taruttis, Franziska; Grosse, Ivo; Hastings, Janna; Neumann, Steffen; Steinbeck, Christoph

    2015-02-21

    Ontology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis. We describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology. BiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.

  19. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Matching biomedical ontologies based on formal concept analysis.

    Science.gov (United States)

    Zhao, Mengyi; Zhang, Songmao; Li, Weizhuo; Chen, Guowei

    2018-03-19

    The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign

  1. Text Mining to Support Gene Ontology Curation and Vice Versa.

    Science.gov (United States)

    Ruch, Patrick

    2017-01-01

    In this chapter, we explain how text mining can support the curation of molecular biology databases dealing with protein functions. We also show how curated data can play a disruptive role in the developments of text mining methods. We review a decade of efforts to improve the automatic assignment of Gene Ontology (GO) descriptors, the reference ontology for the characterization of genes and gene products. To illustrate the high potential of this approach, we compare the performances of an automatic text categorizer and show a large improvement of +225 % in both precision and recall on benchmarked data. We argue that automatic text categorization functions can ultimately be embedded into a Question-Answering (QA) system to answer questions related to protein functions. Because GO descriptors can be relatively long and specific, traditional QA systems cannot answer such questions. A new type of QA system, so-called Deep QA which uses machine learning methods trained with curated contents, is thus emerging. Finally, future advances of text mining instruments are directly dependent on the availability of high-quality annotated contents at every curation step. Databases workflows must start recording explicitly all the data they curate and ideally also some of the data they do not curate.

  2. Application of Ontology Technology in Health Statistic Data Analysis.

    Science.gov (United States)

    Guo, Minjiang; Hu, Hongpu; Lei, Xingyun

    2017-01-01

    Research Purpose: establish health management ontology for analysis of health statistic data. Proposed Methods: this paper established health management ontology based on the analysis of the concepts in China Health Statistics Yearbook, and used protégé to define the syntactic and semantic structure of health statistical data. six classes of top-level ontology concepts and their subclasses had been extracted and the object properties and data properties were defined to establish the construction of these classes. By ontology instantiation, we can integrate multi-source heterogeneous data and enable administrators to have an overall understanding and analysis of the health statistic data. ontology technology provides a comprehensive and unified information integration structure of the health management domain and lays a foundation for the efficient analysis of multi-source and heterogeneous health system management data and enhancement of the management efficiency.

  3. GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data.

    Science.gov (United States)

    Rue-Albrecht, Kévin; McGettigan, Paul A; Hernández, Belinda; Nalpas, Nicolas C; Magee, David A; Parnell, Andrew C; Gordon, Stephen V; MacHugh, David E

    2016-03-11

    Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.

  4. Determining the semantic similarities among Gene Ontology terms.

    Science.gov (United States)

    Taha, Kamal

    2013-05-01

    We present in this paper novel techniques that determine the semantic relationships among GeneOntology (GO) terms. We implemented these techniques in a prototype system called GoSE, which resides between user application and GO database. Given a set S of GO terms, GoSE would return another set S' of GO terms, where each term in S' is semantically related to each term in S. Most current research is focused on determining the semantic similarities among GO ontology terms based solely on their IDs and proximity to one another in the GO graph structure, while overlooking the contexts of the terms, which may lead to erroneous results. The context of a GO term T is the set of other terms, whose existence in the GO graph structure is dependent on T. We propose novel techniques that determine the contexts of terms based on the concept of existence dependency. We present a stack-based sort-merge algorithm employing these techniques for determining the semantic similarities among GO terms.We evaluated GoSE experimentally and compared it with three existing methods. The results of measuring the semantic similarities among genes in KEGG and Pfam pathways retrieved from the DBGET and Sanger Pfam databases, respectively, have shown that our method outperforms the other three methods in recall and precision.

  5. GOPET: A tool for automated predictions of Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Glatting Karl-Heinz

    2006-03-01

    Full Text Available Abstract Background Vast progress in sequencing projects has called for annotation on a large scale. A Number of methods have been developed to address this challenging task. These methods, however, either apply to specific subsets, or their predictions are not formalised, or they do not provide precise confidence values for their predictions. Description We recently established a learning system for automated annotation, trained with a broad variety of different organisms to predict the standardised annotation terms from Gene Ontology (GO. Now, this method has been made available to the public via our web-service GOPET (Gene Ontology term Prediction and Evaluation Tool. It supplies annotation for sequences of any organism. For each predicted term an appropriate confidence value is provided. The basic method had been developed for predicting molecular function GO-terms. It is now expanded to predict biological process terms. This web service is available via http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar Conclusion Our web service gives experimental researchers as well as the bioinformatics community a valuable sequence annotation device. Additionally, GOPET also provides less significant annotation data which may serve as an extended discovery platform for the user.

  6. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships.

    Science.gov (United States)

    Manda, Prashanti; McCarthy, Fiona; Bridges, Susan M

    2013-10-01

    The Gene Ontology (GO), a set of three sub-ontologies, is one of the most popular bio-ontologies used for describing gene product characteristics. GO annotation data containing terms from multiple sub-ontologies and at different levels in the ontologies is an important source of implicit relationships between terms from the three sub-ontologies. Data mining techniques such as association rule mining that are tailored to mine from multiple ontologies at multiple levels of abstraction are required for effective knowledge discovery from GO annotation data. We present a data mining approach, Multi-ontology data mining at All Levels (MOAL) that uses the structure and relationships of the GO to mine multi-ontology multi-level association rules. We introduce two interestingness measures: Multi-ontology Support (MOSupport) and Multi-ontology Confidence (MOConfidence) customized to evaluate multi-ontology multi-level association rules. We also describe a variety of post-processing strategies for pruning uninteresting rules. We use publicly available GO annotation data to demonstrate our methods with respect to two applications (1) the discovery of co-annotation suggestions and (2) the discovery of new cross-ontology relationships. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Providing visualisation support for the analysis of anatomy ontology data

    Directory of Open Access Journals (Sweden)

    Burger Albert

    2005-03-01

    Full Text Available Abstract Background Improvements in technology have been accompanied by the generation of large amounts of complex data. This same technology must be harnessed effectively if the knowledge stored within the data is to be retrieved. Storing data in ontologies aids its management; ontologies serve as controlled vocabularies that promote data exchange and re-use, improving analysis. The Edinburgh Mouse Atlas Project stores the developmental stages of the mouse embryo in anatomy ontologies. This project is looking at the use of visual data overviews for intuitive analysis of the ontology data. Results A prototype has been developed that visualises the ontologies using directed acyclic graphs in two dimensions, with the ability to study detail in regions of interest in isolation or within the context of the overview. This is followed by the development of a technique that layers individual anatomy ontologies in three-dimensional space, so that relationships across multiple data sets may be mapped using physical links drawn along the third axis. Conclusion Usability evaluations of the applications confirmed advantages in visual analysis of complex data. This project will look next at data input from multiple sources, and continue to develop the techniques presented to provide intuitive identification of relationships that span multiple ontologies.

  8. Codon bias and gene ontology in holometabolous and hemimetabolous insects.

    Science.gov (United States)

    Carlini, David B; Makowski, Matthew

    2015-12-01

    The relationship between preferred codon use (PCU), developmental mode, and gene ontology (GO) was investigated in a sample of nine insect species with sequenced genomes. These species were selected to represent two distinct modes of insect development, holometabolism and hemimetabolism, with an aim toward determining whether the differences in developmental timing concomitant with developmental mode would be mirrored by differences in PCU in their developmental genes. We hypothesized that the developmental genes of holometabolous insects should be under greater selective pressure for efficient translation, manifest as increased PCU, than those of hemimetabolous insects because holometabolism requires abundant protein expression over shorter time intervals than hemimetabolism, where proteins are required more uniformly in time. Preferred codon sets were defined for each species, from which the frequency of PCU for each gene was obtained. Although there were substantial differences in the genomic base composition of holometabolous and hemimetabolous insects, both groups exhibited a general preference for GC-ending codons, with the former group having higher PCU averaged across all genes. For each species, the biological process GO term for each gene was assigned that of its Drosophila homolog(s), and PCU was calculated for each GO term category. The top two GO term categories for PCU enrichment in the holometabolous insects were anatomical structure development and cell differentiation. The increased PCU in the developmental genes of holometabolous insects may reflect a general strategy to maximize the protein production of genes expressed in bursts over short time periods, e.g., heat shock proteins. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 686-698, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  10. The Social Ontology of the Film "Avatar." Anthropological Analysis

    Directory of Open Access Journals (Sweden)

    Marija Krstić

    2016-02-01

    Full Text Available Review of a book by Nina Kulenović. The Social Ontology of the Film "Avatar." Anthropological Analysis. 2011. Belgrade: University of Belgrade - Faculty of Philosophy, Department of Ethnology and Anthropology

  11. OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression

    Directory of Open Access Journals (Sweden)

    Johnson Helen L

    2008-01-01

    Full Text Available Abstract Background Information extraction (IE efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering. Results OpenDMAP information extraction systems were produced for extracting protein transport assertions (transport, protein-protein interaction assertions (interaction and assertions that a gene is expressed in a cell type (expression. Evaluations were performed on each system, resulting in F-scores ranging from .26 – .72 (precision .39 – .85, recall .16 – .85. Additionally, each of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport instances, 265,795 interaction instances and 176,153 expression instances. Conclusion OpenDMAP advances the performance standards for extracting protein-protein interaction predications from the full texts of biomedical research articles. Furthermore, this level of performance appears to generalize to other information extraction tasks, including extracting information about predicates of more than two arguments. The output of the information extraction system is always constructed from elements of an ontology, ensuring that the knowledge representation is grounded with respect to a carefully constructed model of reality. The results of these efforts can be used to increase the efficiency of manual curation efforts and to provide additional features in systems that integrate multiple sources for

  12. Networks in biological systems: An investigation of the Gene Ontology as an evolving network

    International Nuclear Information System (INIS)

    Coronnello, C; Tumminello, M; Micciche, S; Mantegna, R.N.

    2009-01-01

    Many biological systems can be described as networks where different elements interact, in order to perform biological processes. We introduce a network associated with the Gene Ontology. Specifically, we construct a correlation-based network where the vertices are the terms of the Gene Ontology and the link between each two terms is weighted on the basis of the number of genes that they have in common. We analyze a filtered network obtained from the correlation-based network and we characterize its evolution over different releases of the Gene Ontology.

  13. Representing virus-host interactions and other multi-organism processes in the Gene Ontology.

    Science.gov (United States)

    Foulger, R E; Osumi-Sutherland, D; McIntosh, B K; Hulo, C; Masson, P; Poux, S; Le Mercier, P; Lomax, J

    2015-07-28

    The Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms. To address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms. Building on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.

  14. A methodology to migrate the gene ontology to a description logic environment using DAML+OIL.

    Science.gov (United States)

    Wroe, C J; Stevens, R; Goble, C A; Ashburner, M

    2003-01-01

    The Gene Ontology Next Generation Project (GONG) is developing a staged methodology to evolve the current representation of the Gene Ontology into DAML+OIL in order to take advantage of the richer formal expressiveness and the reasoning capabilities of the underlying description logic. Each stage provides a step level increase in formal explicit semantic content with a view to supporting validation, extension and multiple classification of the Gene Ontology. The paper introduces DAML+OIL and demonstrates the activity within each stage of the methodology and the functionality gained.

  15. Evaluating Functional Annotations of Enzymes Using the Gene Ontology.

    Science.gov (United States)

    Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C

    2017-01-01

    The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.

  16. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  17. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  18. The Software Ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation.

    Science.gov (United States)

    Malone, James; Brown, Andy; Lister, Allyson L; Ison, Jon; Hull, Duncan; Parkinson, Helen; Stevens, Robert

    2014-01-01

    Biomedical ontologists to date have concentrated on ontological descriptions of biomedical entities such as gene products and their attributes, phenotypes and so on. Recently, effort has diversified to descriptions of the laboratory investigations by which these entities were produced. However, much biological insight is gained from the analysis of the data produced from these investigations, and there is a lack of adequate descriptions of the wide range of software that are central to bioinformatics. We need to describe how data are analyzed for discovery, audit trails, provenance and reproducibility. The Software Ontology (SWO) is a description of software used to store, manage and analyze data. Input to the SWO has come from beyond the life sciences, but its main focus is the life sciences. We used agile techniques to gather input for the SWO and keep engagement with our users. The result is an ontology that meets the needs of a broad range of users by describing software, its information processing tasks, data inputs and outputs, data formats versions and so on. Recently, the SWO has incorporated EDAM, a vocabulary for describing data and related concepts in bioinformatics. The SWO is currently being used to describe software used in multiple biomedical applications. The SWO is another element of the biomedical ontology landscape that is necessary for the description of biomedical entities and how they were discovered. An ontology of software used to analyze data produced by investigations in the life sciences can be made in such a way that it covers the important features requested and prioritized by its users. The SWO thus fits into the landscape of biomedical ontologies and is produced using techniques designed to keep it in line with user's needs. The Software Ontology is available under an Apache 2.0 license at http://theswo.sourceforge.net/; the Software Ontology blog can be read at http://softwareontology.wordpress.com.

  19. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  20. Multi-label literature classification based on the Gene Ontology graph

    Directory of Open Access Journals (Sweden)

    Lu Xinghua

    2008-12-01

    Full Text Available Abstract Background The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. Results In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Conclusion Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate

  1. Using the gene ontology to scan multilevel gene sets for associations in genome wide association studies.

    Science.gov (United States)

    Schaid, Daniel J; Sinnwell, Jason P; Jenkins, Gregory D; McDonnell, Shannon K; Ingle, James N; Kubo, Michiaki; Goss, Paul E; Costantino, Joseph P; Wickerham, D Lawrence; Weinshilboum, Richard M

    2012-01-01

    Gene-set analyses have been widely used in gene expression studies, and some of the developed methods have been extended to genome wide association studies (GWAS). Yet, complications due to linkage disequilibrium (LD) among single nucleotide polymorphisms (SNPs), and variable numbers of SNPs per gene and genes per gene-set, have plagued current approaches, often leading to ad hoc "fixes." To overcome some of the current limitations, we developed a general approach to scan GWAS SNP data for both gene-level and gene-set analyses, building on score statistics for generalized linear models, and taking advantage of the directed acyclic graph structure of the gene ontology when creating gene-sets. However, other types of gene-set structures can be used, such as the popular Kyoto Encyclopedia of Genes and Genomes (KEGG). Our approach combines SNPs into genes, and genes into gene-sets, but assures that positive and negative effects of genes on a trait do not cancel. To control for multiple testing of many gene-sets, we use an efficient computational strategy that accounts for LD and provides accurate step-down adjusted P-values for each gene-set. Application of our methods to two different GWAS provide guidance on the potential strengths and weaknesses of our proposed gene-set analyses. © 2011 Wiley Periodicals, Inc.

  2. Gene Ontology and KEGG Enrichment Analyses of Genes Related to Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-01-01

    Full Text Available Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes.

  3. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  4. Ontology-based specification, identification and analysis of perioperative risks.

    Science.gov (United States)

    Uciteli, Alexandr; Neumann, Juliane; Tahar, Kais; Saleh, Kutaiba; Stucke, Stephan; Faulbrück-Röhr, Sebastian; Kaeding, André; Specht, Martin; Schmidt, Tobias; Neumuth, Thomas; Besting, Andreas; Stegemann, Dominik; Portheine, Frank; Herre, Heinrich

    2017-09-06

    Medical personnel in hospitals often works under great physical and mental strain. In medical decision-making, errors can never be completely ruled out. Several studies have shown that between 50 and 60% of adverse events could have been avoided through better organization, more attention or more effective security procedures. Critical situations especially arise during interdisciplinary collaboration and the use of complex medical technology, for example during surgical interventions and in perioperative settings (the period of time before, during and after surgical intervention). In this paper, we present an ontology and an ontology-based software system, which can identify risks across medical processes and supports the avoidance of errors in particular in the perioperative setting. We developed a practicable definition of the risk notion, which is easily understandable by the medical staff and is usable for the software tools. Based on this definition, we developed a Risk Identification Ontology (RIO) and used it for the specification and the identification of perioperative risks. An agent system was developed, which gathers risk-relevant data during the whole perioperative treatment process from various sources and provides it for risk identification and analysis in a centralized fashion. The results of such an analysis are provided to the medical personnel in form of context-sensitive hints and alerts. For the identification of the ontologically specified risks, we developed an ontology-based software module, called Ontology-based Risk Detector (OntoRiDe). About 20 risks relating to cochlear implantation (CI) have already been implemented. Comprehensive testing has indicated the correctness of the data acquisition, risk identification and analysis components, as well as the web-based visualization of results.

  5. Constructing Ontology for Knowledge Sharing of Materials Failure Analysis

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-01-01

    Full Text Available Materials failure indicates the fault with materials or components during their performance. To avoid the reoccurrence of similar failures, materials failure analysis is executed to investigate the reasons for the failure and to propose improved strategies. The whole procedure needs sufficient domain knowledge and also produces valuable new knowledge. However, the information about the materials failure analysis is usually retained by the domain expert, and its sharing is technically difficult. This phenomenon may seriously reduce the efficiency and decrease the veracity of the failure analysis. To solve this problem, this paper adopts ontology, a novel technology from the Semantic Web, as a tool for knowledge representation and sharing and describes the construction of the ontology to obtain information concerning the failure analysis, application area, materials, and failure cases. The ontology represented information is machine-understandable and can be easily shared through the Internet. At the same time, failure case intelligent retrieval, advanced statistics, and even automatic reasoning can be accomplished based on ontology represented knowledge. Obviously this can promote the knowledge sharing of materials service safety and improve the efficiency of failure analysis. The case of a nuclear power plant area is presented to show the details and benefits of this method.

  6. Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism

    Science.gov (United States)

    The availability of a representative gene ontology (GO) database is a prerequisite for a successful functional genomics study. Using online Blast2GO resources we constructed a GO database of Aspergillus flavus. Of the predicted total 13,485 A. flavus genes 8,987 were annotated with GO terms. The mea...

  7. Sentiment analysis and ontology engineering an environment of computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2016-01-01

    This edited volume provides the reader with a fully updated, in-depth treatise on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligence in the realization of concepts and implementation of models of sentiment analysis and ontology –oriented engineering. The volume involves studies devoted to key issues of sentiment analysis, sentiment models, and ontology engineering. The book is structured into three main parts. The first part offers a comprehensive and prudently structured exposure to the fundamentals of sentiment analysis and natural language processing. The second part consists of studies devoted to the concepts, methodologies, and algorithmic developments elaborating on fuzzy linguistic aggregation to emotion analysis, carrying out interpretability of computational sentiment models, emotion classification, sentiment-oriented information retrieval, a methodology of adaptive dynamics in knowledge acquisition. The third part includes a plethora of applica...

  8. SoFoCles: feature filtering for microarray classification based on gene ontology.

    Science.gov (United States)

    Papachristoudis, Georgios; Diplaris, Sotiris; Mitkas, Pericles A

    2010-02-01

    Marker gene selection has been an important research topic in the classification analysis of gene expression data. Current methods try to reduce the "curse of dimensionality" by using statistical intra-feature set calculations, or classifiers that are based on the given dataset. In this paper, we present SoFoCles, an interactive tool that enables semantic feature filtering in microarray classification problems with the use of external, well-defined knowledge retrieved from the Gene Ontology. The notion of semantic similarity is used to derive genes that are involved in the same biological path during the microarray experiment, by enriching a feature set that has been initially produced with legacy methods. Among its other functionalities, SoFoCles offers a large repository of semantic similarity methods that are used in order to derive feature sets and marker genes. The structure and functionality of the tool are discussed in detail, as well as its ability to improve classification accuracy. Through experimental evaluation, SoFoCles is shown to outperform other classification schemes in terms of classification accuracy in two real datasets using different semantic similarity computation approaches.

  9. A new measure for functional similarity of gene products based on Gene Ontology

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2006-06-01

    Full Text Available Abstract Background Gene Ontology (GO is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role. Results We present a new method for comparing sets of GO terms and for assessing the functional similarity of gene products. The method relies on two semantic similarity measures; simRel and funSim. One measure (simRel is applied in the comparison of the biological processes found in different groups of organisms. The other measure (funSim is used to find functionally related gene products within the same or between different genomes. Results indicate that the method, in addition to being in good agreement with established sequence similarity approaches, also provides a means for the identification of functionally related proteins independent of evolutionary relationships. The method is also applied to estimating functional similarity between all proteins in Saccharomyces cerevisiae and to visualizing the molecular function space of yeast in a map of the functional space. A similar approach is used to visualize the functional relationships between protein families. Conclusion The approach enables the comparison of the underlying molecular biology of different taxonomic groups and provides a new comparative genomics tool identifying functionally related gene products independent of homology. The proposed map of the functional space provides a new global view on the functional relationships between gene products or protein families.

  10. Initial implementation of a comparative data analysis ontology.

    Science.gov (United States)

    Prosdocimi, Francisco; Chisham, Brandon; Pontelli, Enrico; Thompson, Julie D; Stoltzfus, Arlin

    2009-07-03

    Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species) are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: "Operational Taxonomic Units" (OTUs), representing the entities to be compared; "character-state data" representing the observations compared among OTUs; "phylogenetic tree", representing the historical path of evolution among the entities; and "transitions", the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL), we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO). CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc.) that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.

  11. GO(vis), a gene ontology visualization tool based on multi-dimensional values.

    Science.gov (United States)

    Ning, Zi; Jiang, Zhenran

    2010-05-01

    Most of gene product similarity measurements concentrate on the information content of Gene Ontology (GO) terms or use a path-based similarity between GO terms, which may ignore other important information contained in the structure of the ontology. In our study, we integrate different GO similarity measure approaches to analyze the functional relationship of genes and gene products with a new triangle-based visualization tool called GO(Vis). The purpose of this tool is to demonstrate the effect of three important information factors when measuring the similarity between gene products. One advantage of this tool is that its important ratio can be adjusted to meet different measuring requirements according to the biological knowledge of each factor. The experimental results demonstrate that GO(Vis) can display diagrams of the functional relationship for gene products effectively.

  12. An empirical analysis of ontology reuse in BioPortal.

    Science.gov (United States)

    Ochs, Christopher; Perl, Yehoshua; Geller, James; Arabandi, Sivaram; Tudorache, Tania; Musen, Mark A

    2017-07-01

    Biomedical ontologies often reuse content (i.e., classes and properties) from other ontologies. Content reuse enables a consistent representation of a domain and reusing content can save an ontology author significant time and effort. Prior studies have investigated the existence of reused terms among the ontologies in the NCBO BioPortal, but as of yet there has not been a study investigating how the ontologies in BioPortal utilize reused content in the modeling of their own content. In this study we investigate how 355 ontologies hosted in the NCBO BioPortal reuse content from other ontologies for the purposes of creating new ontology content. We identified 197 ontologies that reuse content. Among these ontologies, 108 utilize reused classes in the modeling of their own classes and 116 utilize reused properties in class restrictions. Current utilization of reuse and quality issues related to reuse are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Muscle Research and Gene Ontology: New standards for improved data integration.

    Science.gov (United States)

    Feltrin, Erika; Campanaro, Stefano; Diehl, Alexander D; Ehler, Elisabeth; Faulkner, Georgine; Fordham, Jennifer; Gardin, Chiara; Harris, Midori; Hill, David; Knoell, Ralph; Laveder, Paolo; Mittempergher, Lorenza; Nori, Alessandra; Reggiani, Carlo; Sorrentino, Vincenzo; Volpe, Pompeo; Zara, Ivano; Valle, Giorgio; Deegan, Jennifer

    2009-01-29

    The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic) experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.

  14. Muscle Research and Gene Ontology: New standards for improved data integration

    Directory of Open Access Journals (Sweden)

    Nori Alessandra

    2009-01-01

    Full Text Available Abstract Background The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. Results The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. Conclusion The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.

  15. Custom Ontologies for Expanded Network Analysis

    Science.gov (United States)

    2006-12-01

    for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and

  16. A core ontology for business process analysis

    NARCIS (Netherlands)

    Pedrinaci, C.; Domingue, J.; Alves De Medeiros, A.K.; Bechhofer, S.; Hauswirth, M.; Hoffmann, J.; Koubarakis, M.

    2008-01-01

    Business Process Management (BPM) aims at supporting the whole life-cycle necessary to deploy and maintain business processes in organisations. An important step of the BPM life-cycle is the analysis of the processes deployed in companies. However, the degree of automation currently achieved cannot

  17. Initial Implementation of a comparative Data Analysis Ontology

    Directory of Open Access Journals (Sweden)

    Francisco Prosdocimi

    2009-01-01

    Full Text Available Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: “Operational Taxonomic Units” (OTUs, representing the entities to be compared; “character-state data” representing the observations compared among OTUs; “phylogenetic tree”, representing the historical path of evolution among the entities; and “transitions”, the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL, we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO. CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc. that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.

  18. Initial Implementation of a Comparative Data Analysis Ontology

    Directory of Open Access Journals (Sweden)

    Francisco Prosdocimi

    2009-07-01

    Full Text Available Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: “Operational Taxonomic Units” (OTUs, representing the entities to be compared; “character-state data” representing the observations compared among OTUs; “phylogenetic tree”, representing the historical path of evolution among the entities; and “transitions”, the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL, we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO. CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc. that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.

  19. Systematically characterizing and prioritizing chemosensitivity related gene based on Gene Ontology and protein interaction network

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2012-10-01

    Full Text Available Abstract Background The identification of genes that predict in vitro cellular chemosensitivity of cancer cells is of great importance. Chemosensitivity related genes (CRGs have been widely utilized to guide clinical and cancer chemotherapy decisions. In addition, CRGs potentially share functional characteristics and network features in protein interaction networks (PPIN. Methods In this study, we proposed a method to identify CRGs based on Gene Ontology (GO and PPIN. Firstly, we documented 150 pairs of drug-CCRG (curated chemosensitivity related gene from 492 published papers. Secondly, we characterized CCRGs from the perspective of GO and PPIN. Thirdly, we prioritized CRGs based on CCRGs’ GO and network characteristics. Lastly, we evaluated the performance of the proposed method. Results We found that CCRG enriched GO terms were most often related to chemosensitivity and exhibited higher similarity scores compared to randomly selected genes. Moreover, CCRGs played key roles in maintaining the connectivity and controlling the information flow of PPINs. We then prioritized CRGs using CCRG enriched GO terms and CCRG network characteristics in order to obtain a database of predicted drug-CRGs that included 53 CRGs, 32 of which have been reported to affect susceptibility to drugs. Our proposed method identifies a greater number of drug-CCRGs, and drug-CCRGs are much more significantly enriched in predicted drug-CRGs, compared to a method based on the correlation of gene expression and drug activity. The mean area under ROC curve (AUC for our method is 65.2%, whereas that for the traditional method is 55.2%. Conclusions Our method not only identifies CRGs with expression patterns strongly correlated with drug activity, but also identifies CRGs in which expression is weakly correlated with drug activity. This study provides the framework for the identification of signatures that predict in vitro cellular chemosensitivity and offers a valuable

  20. GOssTo: a stand-alone application and a web tool for calculating semantic similarities on the Gene Ontology

    OpenAIRE

    Caniza, Horacio; Romero, Alfonso E.; Heron, Samuel; Yang, Haixuan; Devoto, Alessandra; Frasca, Marco; Mesiti, Marco; Valentini, Giorgio; Paccanaro, Alberto

    2014-01-01

    Summary: We present GOssTo, the Gene Ontology semantic similarity Tool, a user-friendly software system for calculating semantic similarities between gene products according to the Gene Ontology. GOssTo is bundled with six semantic similarity measures, including both term- and graph-based measures, and has extension capabilities to allow the user to add new similarities. Importantly, for any measure, GOssTo can also calculate the Random Walk Contribution that has been shown to greatly improve...

  1. Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Biswarup [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tyler, Brett M. [Oregon State Univ., Corvallis, OR (United States); Setubal, Joao [Univ. of Sao Paulo (Brazil); Murali, T. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-11-03

    Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed a website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.

  2. Inferring ontology graph structures using OWL reasoning

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies\\' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies\\' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph .Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  3. Inferring ontology graph structures using OWL reasoning.

    Science.gov (United States)

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  4. Signalign: An Ontology of DNA as Signal for Comparative Gene Structure Prediction Using Information-Coding-and-Processing Techniques.

    Science.gov (United States)

    Yu, Ning; Guo, Xuan; Gu, Feng; Pan, Yi

    2016-03-01

    Conventional character-analysis-based techniques in genome analysis manifest three main shortcomings-inefficiency, inflexibility, and incompatibility. In our previous research, a general framework, called DNA As X was proposed for character-analysis-free techniques to overcome these shortcomings, where X is the intermediates, such as digit, code, signal, vector, tree, graph network, and so on. In this paper, we further implement an ontology of DNA As Signal, by designing a tool named Signalign for comparative gene structure analysis, in which DNA sequences are converted into signal series, processed by modified method of dynamic time warping and measured by signal-to-noise ratio (SNR). The ontology of DNA As Signal integrates the principles and concepts of other disciplines including information coding theory and signal processing into sequence analysis and processing. Comparing with conventional character-analysis-based methods, Signalign can not only have the equivalent or superior performance, but also enrich the tools and the knowledge library of computational biology by extending the domain from character/string to diverse areas. The evaluation results validate the success of the character-analysis-free technique for improved performances in comparative gene structure prediction.

  5. Validation test case generation based on safety analysis ontology

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Wang, Wen-Shing

    2012-01-01

    Highlights: ► Current practice in validation test case generation for nuclear system is mainly ad hoc. ► This study designs a systematic approach to generate validation test cases from a Safety Analysis Report. ► It is based on a domain-specific ontology. ► Test coverage criteria have been defined and satisfied. ► A computerized toolset has been implemented to assist the proposed approach. - Abstract: Validation tests in the current nuclear industry practice are typically performed in an ad hoc fashion. This study presents a systematic and objective method of generating validation test cases from a Safety Analysis Report (SAR). A domain-specific ontology was designed and used to mark up a SAR; relevant information was then extracted from the marked-up document for use in automatically generating validation test cases that satisfy the proposed test coverage criteria; namely, single parameter coverage, use case coverage, abnormal condition coverage, and scenario coverage. The novelty of this technique is its systematic rather than ad hoc test case generation from a SAR to achieve high test coverage.

  6. Ontology-Based Approach to Social Data Sentiment Analysis: Detection of Adolescent Depression Signals.

    Science.gov (United States)

    Jung, Hyesil; Park, Hyeoun-Ae; Song, Tae-Min

    2017-07-24

    Social networking services (SNSs) contain abundant information about the feelings, thoughts, interests, and patterns of behavior of adolescents that can be obtained by analyzing SNS postings. An ontology that expresses the shared concepts and their relationships in a specific field could be used as a semantic framework for social media data analytics. The aim of this study was to refine an adolescent depression ontology and terminology as a framework for analyzing social media data and to evaluate description logics between classes and the applicability of this ontology to sentiment analysis. The domain and scope of the ontology were defined using competency questions. The concepts constituting the ontology and terminology were collected from clinical practice guidelines, the literature, and social media postings on adolescent depression. Class concepts, their hierarchy, and the relationships among class concepts were defined. An internal structure of the ontology was designed using the entity-attribute-value (EAV) triplet data model, and superclasses of the ontology were aligned with the upper ontology. Description logics between classes were evaluated by mapping concepts extracted from the answers to frequently asked questions (FAQs) onto the ontology concepts derived from description logic queries. The applicability of the ontology was validated by examining the representability of 1358 sentiment phrases using the ontology EAV model and conducting sentiment analyses of social media data using ontology class concepts. We developed an adolescent depression ontology that comprised 443 classes and 60 relationships among the classes; the terminology comprised 1682 synonyms of the 443 classes. In the description logics test, no error in relationships between classes was found, and about 89% (55/62) of the concepts cited in the answers to FAQs mapped onto the ontology class. Regarding applicability, the EAV triplet models of the ontology class represented about 91

  7. Benchmarking the Applicability of Ontology in Geographic Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Sachit Rajbhandari

    2017-11-01

    Full Text Available In Geographic Object-based Image Analysis (GEOBIA, identification of image objects is normally achieved using rule-based classification techniques supported by appropriate domain knowledge. However, GEOBIA currently lacks a systematic method to formalise the domain knowledge required for image object identification. Ontology provides a representation vocabulary for characterising domain-specific classes. This study proposes an ontological framework that conceptualises domain knowledge in order to support the application of rule-based classifications. The proposed ontological framework is tested with a landslide case study. The Web Ontology Language (OWL is used to construct an ontology in the landslide domain. The segmented image objects with extracted features are incorporated into the ontology as instances. The classification rules are written in Semantic Web Rule Language (SWRL and executed using a semantic reasoner to assign instances to appropriate landslide classes. Machine learning techniques are used to predict new threshold values for feature attributes in the rules. Our framework is compared with published work on landslide detection where ontology was not used for the image classification. Our results demonstrate that a classification derived from the ontological framework accords with non-ontological methods. This study benchmarks the ontological method providing an alternative approach for image classification in the case study of landslides.

  8. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    Science.gov (United States)

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Is the crowd better as an assistant or a replacement in ontology engineering? An exploration through the lens of the Gene Ontology.

    Science.gov (United States)

    Mortensen, Jonathan M; Telis, Natalie; Hughey, Jacob J; Fan-Minogue, Hua; Van Auken, Kimberly; Dumontier, Michel; Musen, Mark A

    2016-04-01

    Biomedical ontologies contain errors. Crowdsourcing, defined as taking a job traditionally performed by a designated agent and outsourcing it to an undefined large group of people, provides scalable access to humans. Therefore, the crowd has the potential to overcome the limited accuracy and scalability found in current ontology quality assurance approaches. Crowd-based methods have identified errors in SNOMED CT, a large, clinical ontology, with an accuracy similar to that of experts, suggesting that crowdsourcing is indeed a feasible approach for identifying ontology errors. This work uses that same crowd-based methodology, as well as a panel of experts, to verify a subset of the Gene Ontology (200 relationships). Experts identified 16 errors, generally in relationships referencing acids and metals. The crowd performed poorly in identifying those errors, with an area under the receiver operating characteristic curve ranging from 0.44 to 0.73, depending on the methods configuration. However, when the crowd verified what experts considered to be easy relationships with useful definitions, they performed reasonably well. Notably, there are significantly fewer Google search results for Gene Ontology concepts than SNOMED CT concepts. This disparity may account for the difference in performance - fewer search results indicate a more difficult task for the worker. The number of Internet search results could serve as a method to assess which tasks are appropriate for the crowd. These results suggest that the crowd fits better as an expert assistant, helping experts with their verification by completing the easy tasks and allowing experts to focus on the difficult tasks, rather than an expert replacement. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genetic Resources for Advanced Biofuel Production Described with the Gene Ontology

    Directory of Open Access Journals (Sweden)

    Trudy eTorto-Alalibo

    2014-10-01

    Full Text Available Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial Energy Gene Ontology (MENGO: http://www.mengo.biochem.vt.edu project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat, can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  11. Aligning ontologies and integrating textual evidence for pathway analysis of microarray data

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Banu; Posse, Christian; Sanfilippo, Antonio P.; Stenzel-Poore, Mary; Stevens, S.L.; Castano, Jose; Beagley, Nathaniel; Riensche, Roderick M.; Baddeley, Bob; Simon, R.P.; Pustejovsky, James

    2006-10-08

    Expression arrays are introducing a paradigmatic change in biology by shifting experimental approaches from single gene studies to genome-level analysis, monitoring the ex-pression levels of several thousands of genes in parallel. The massive amounts of data obtained from the microarray data needs to be integrated and interpreted to infer biological meaning within the context of information-rich pathways. In this paper, we present a methodology that integrates textual information with annotations from cross-referenced ontolo-gies to map genes to pathways in a semi-automated way. We illustrate this approach and compare it favorably to other tools by analyzing the gene expression changes underlying the biological phenomena related to stroke. Stroke is the third leading cause of death and a major disabler in the United States. Through years of study, researchers have amassed a significant knowledge base about stroke, and this knowledge, coupled with new technologies, is providing a wealth of new scientific opportunities. The potential for neu-roprotective stroke therapy is enormous. However, the roles of neurogenesis, angiogenesis, and other proliferative re-sponses in the recovery process following ischemia and the molecular mechanisms that lead to these processes still need to be uncovered. Improved annotation of genomic and pro-teomic data, including annotation of pathways in which genes and proteins are involved, is required to facilitate their interpretation and clinical application. While our approach is not aimed at replacing existing curated pathway databases, it reveals multiple hidden relationships that are not evident with the way these databases analyze functional groupings of genes from the Gene Ontology.

  12. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    Science.gov (United States)

    Xie, Jiangan; He, Yongqun

    2017-01-01

    Vaccine is the one of the greatest inventions of modern medicine that has contributed most to the relief of human misery and the exciting increase in life expectancy. In 1796, an English country physician, Edward Jenner, discovered that inoculating mankind with cowpox can protect them from smallpox (Riedel S, Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center) 18(1):21, 2005). Based on the vaccination worldwide, we finally succeeded in the eradication of smallpox in 1977 (Henderson, Vaccine 29:D7-D9, 2011). Other disabling and lethal diseases, like poliomyelitis and measles, are targeted for eradication (Bonanni, Vaccine 17:S120-S125, 1999).Although vaccine development and administration are tremendously successful and cost-effective practices to human health, no vaccine is 100% safe for everyone because each person reacts to vaccinations differently given different genetic background and health conditions. Although all licensed vaccines are generally safe for the majority of people, vaccinees may still suffer adverse events (AEs) in reaction to various vaccines, some of which can be serious or even fatal (Haber et al., Drug Saf 32(4):309-323, 2009). Hence, the double-edged sword of vaccination remains a concern.To support integrative AE data collection and analysis, it is critical to adopt an AE normalization strategy. In the past decades, different controlled terminologies, including the Medical Dictionary for Regulatory Activities (MedDRA) (Brown EG, Wood L, Wood S, et al., Drug Saf 20(2):109-117, 1999), the Common Terminology Criteria for Adverse Events (CTCAE) (NCI, The Common Terminology Criteria for Adverse Events (CTCAE). Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html . Access on 7 Oct 2015), and the World Health Organization (WHO) Adverse Reactions Terminology (WHO-ART) (WHO, The WHO Adverse Reaction Terminology - WHO-ART. Available from: https://www.umc-products.com/graphics/28010.pdf

  13. Phenotype ontologies and cross-species analysis for translational research.

    Directory of Open Access Journals (Sweden)

    Peter N Robinson

    2014-04-01

    Full Text Available The use of model organisms as tools for the investigation of human genetic variation has significantly and rapidly advanced our understanding of the aetiologies underlying hereditary traits. However, while equivalences in the DNA sequence of two species may be readily inferred through evolutionary models, the identification of equivalence in the phenotypic consequences resulting from comparable genetic variation is far from straightforward, limiting the value of the modelling paradigm. In this review, we provide an overview of the emerging statistical and computational approaches to objectively identify phenotypic equivalence between human and model organisms with examples from the vertebrate models, mouse and zebrafish. Firstly, we discuss enrichment approaches, which deem the most frequent phenotype among the orthologues of a set of genes associated with a common human phenotype as the orthologous phenotype, or phenolog, in the model species. Secondly, we introduce and discuss computational reasoning approaches to identify phenotypic equivalences made possible through the development of intra- and interspecies ontologies. Finally, we consider the particular challenges involved in modelling neuropsychiatric disorders, which illustrate many of the remaining difficulties in developing comprehensive and unequivocal interspecies phenotype mappings.

  14. Development and Evaluation of an Obesity Ontology for Social Big Data Analysis.

    Science.gov (United States)

    Kim, Ae Ran; Park, Hyeoun-Ae; Song, Tae-Min

    2017-07-01

    The aim of this study was to develop and evaluate an obesity ontology as a framework for collecting and analyzing unstructured obesity-related social media posts. The obesity ontology was developed according to the 'Ontology Development 101'. The coverage rate of the developed ontology was examined by mapping concepts and terms of the ontology with concepts and terms extracted from obesity-related Twitter postings. The structure and representative ability of the ontology was evaluated by nurse experts. We applied the ontology to the density analysis of keywords related to obesity types and management strategies and to the sentiment analysis of obesity and diet using social big data. The developed obesity ontology was represented by 8 superclasses and 124 subordinate classes. The superclasses comprised 'risk factors,' 'types,' 'symptoms,' 'complications,' 'assessment,' 'diagnosis,' 'management strategies,' and 'settings.' The coverage rate of the ontology was 100% for the concepts and 87.8% for the terms. The evaluation scores for representative ability were higher than 4.0 out of 5.0 for all of the evaluation items. The density analysis of keywords revealed that the top-two posted types of obesity were abdomen and thigh, and the top-three posted management strategies were diet, exercise, and dietary supplements or drug therapy. Positive expressions of obesity-related postings has increased annually in the sentiment analysis. It was found that the developed obesity ontology was useful to identify the most frequently used terms on obesity and opinions and emotions toward obesity posted by the geneal population on social media.

  15. Interaction between leptin and leptin receptor in gastric carcinoma: Gene ontology analysis Interacción entre la leptina y su receptor en el carcinoma gástrico: análisis de ontología genética

    Directory of Open Access Journals (Sweden)

    V. Wiwanitkit

    2007-04-01

    Full Text Available Gastric carcinoma is a rare but important malignancy. The link between leptin, a cytokine that is elevated in obese individuals, and cancer development has been proposed. It is noted that leptin and its receptor may play a positive role in the progression in gastric cancer. However, the exact mechanism resulting form the interaction between leptin and leptin receptor has never been clarified. Here, the author used a new gene ontology technology to predict the molecular function and biological process due to the interaction between leptin and leptin receptor. Comparing to leptin and leptin receptor, the leptin-leptin receptor poses the same function and biological process as leptin receptor. This can confirm that leptin receptor has a significant suppressive effect on the expression of leptin. Loss of hormone activity and disturbance of normal cell signaling pathway of leptin can be seen. Blocking of receptor might be rational therapeutic strategy.El carcinoma gástrico es un cáncer muy poco frecuente pero importante. Se ha postulado que la leptina, una citocina que aparece elevada en las personas obesas, está relacionada con el cáncer. Se sabe que la leptina y su receptor pueden desempeñar un papel positivo en la progresión del cáncer gástrico. Sin embargo, nunca se ha dilucidado el mecanismo exacto al que daría lugar la interacción entre la leptina y el receptor de leptina. Aquí, el autor empleó una nueva tecnología de ontología genética para predecir la función molecular y el proceso biológico resultantes de la interacción entre la leptina y su receptor. Frente a la leptina y su receptor, el compuesto leptina-receptor realiza la misma función y el mismo proceso biológico que el receptor de leptina. Esto puede confirmar que el receptor de leptina ejerce un importante efecto supresor sobre la expresión de leptina. Pueden observarse una pérdida de actividad hormonal y la alteración de la vía normal de señalización celular

  16. Integration of the Gene Ontology into an object-oriented architecture

    Directory of Open Access Journals (Sweden)

    Zheng W Jim

    2005-05-01

    Full Text Available Abstract Background To standardize gene product descriptions, a formal vocabulary defined as the Gene Ontology (GO has been developed. GO terms have been categorized into biological processes, molecular functions, and cellular components. However, there is no single representation that integrates all the terms into one cohesive model. Furthermore, GO definitions have little information explaining the underlying architecture that forms these terms, such as the dynamic and static events occurring in a process. In contrast, object-oriented models have been developed to show dynamic and static events. A portion of the TGF-beta signaling pathway, which is involved in numerous cellular events including cancer, differentiation and development, was used to demonstrate the feasibility of integrating the Gene Ontology into an object-oriented model. Results Using object-oriented models we have captured the static and dynamic events that occur during a representative GO process, "transforming growth factor-beta (TGF-beta receptor complex assembly" (GO:0007181. Conclusion We demonstrate that the utility of GO terms can be enhanced by object-oriented technology, and that the GO terms can be integrated into an object-oriented model by serving as a basis for the generation of object functions and attributes.

  17. An ontological analysis of the electrocardiogram - DOI: 10.3395/reciis.v3i1.242en

    Directory of Open Access Journals (Sweden)

    Bernardo Gonçalves

    2009-04-01

    Full Text Available Bioinformatics has been a fertile field for the application of the discipline of formal ontology. The principled representation of biomedical entities has increasingly supported biological research, with direct benefits ranging from the reformulation of medical terminologies to the introduction of new perspectives for enhanced models of Electronic Health Records (EHR. This paper introduces an application-independent ontological analysis of the electrocardiogram (ECG grounded in the Unified Foundational Ontology. With the objective of investigating the phenomena underlying this cardiological exam, we deal with the sub-domains of human heart electrophysiology and anatomy. We then outline an ECG Ontology built upon the OBO Relation Ontology. In addition, the domain ontology sketched here takes inspiration both in the Foundational Model of Anatomy and in the Ontology of Functions proposed under the auspices of the General Formal Ontology (GFO research program.

  18. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2009-09-01

    Full Text Available Abstract Background Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

  19. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.

    Science.gov (United States)

    Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S

    2014-07-21

    Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for

  20. Generating Gene Ontology-Disease Inferences to Explore Mechanisms of Human Disease at the Comparative Toxicogenomics Database.

    Directory of Open Access Journals (Sweden)

    Allan Peter Davis

    Full Text Available Strategies for discovering common molecular events among disparate diseases hold promise for improving understanding of disease etiology and expanding treatment options. One technique is to leverage curated datasets found in the public domain. The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/ manually curates chemical-gene, chemical-disease, and gene-disease interactions from the scientific literature. The use of official gene symbols in CTD interactions enables this information to be combined with the Gene Ontology (GO file from NCBI Gene. By integrating these GO-gene annotations with CTD's gene-disease dataset, we produce 753,000 inferences between 15,700 GO terms and 4,200 diseases, providing opportunities to explore presumptive molecular underpinnings of diseases and identify biological similarities. Through a variety of applications, we demonstrate the utility of this novel resource. As a proof-of-concept, we first analyze known repositioned drugs (e.g., raloxifene and sildenafil and see that their target diseases have a greater degree of similarity when comparing GO terms vs. genes. Next, a computational analysis predicts seemingly non-intuitive diseases (e.g., stomach ulcers and atherosclerosis as being similar to bipolar disorder, and these are validated in the literature as reported co-diseases. Additionally, we leverage other CTD content to develop testable hypotheses about thalidomide-gene networks to treat seemingly disparate diseases. Finally, we illustrate how CTD tools can rank a series of drugs as potential candidates for repositioning against B-cell chronic lymphocytic leukemia and predict cisplatin and the small molecule inhibitor JQ1 as lead compounds. The CTD dataset is freely available for users to navigate pathologies within the context of extensive biological processes, molecular functions, and cellular components conferred by GO. This inference set should aid researchers, bioinformaticists, and

  1. Ontology-based representation and analysis of host-Brucella interactions.

    Science.gov (United States)

    Lin, Yu; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host

  2. On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report.

    Directory of Open Access Journals (Sweden)

    Paul D Thomas

    Full Text Available A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011 has proposed a metric for the "functional similarity" between two genes that uses only the Gene Ontology (GO annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the "ortholog conjecture" (or, more properly, the "ortholog functional conservation hypothesis". First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1 that GO annotations are often incomplete, potentially in a biased manner, and subject to an "open world assumption" (absence of an annotation does not imply absence of a function, and 2 that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the

  3. Aplicación de visualización de una ontología para el dominio del análisis del semen humano Application to visualize an ontology for the human semen analysis domain

    Directory of Open Access Journals (Sweden)

    Roberto Casañas

    2007-06-01

    Full Text Available En este trabajo se presenta el diseño e implementación de una ontología para el dominio del análisis del semen humano, cuyo objetivo es representar, organizar, formalizar y estandarizar el conocimiento del dominio, para que éste pueda ser compartido y reutilizado por distintos grupos de personas y aplicaciones de software. Para visualizar la ontología se desarrolló una aplicación basada en una arquitectura cliente/servidor para ambientes Web, la cual está constituida por un módulo de Administración y otro de Acceso Público. A través del primero se mantiene el sitio Web de la ontología, mientras que el segundo permite a los usuarios acceder al conocimiento almacenado y a un conjunto de recursos tales como imágenes, videos, artículos relativos al dominio, manuales y protocolos de laboratorio. La arquitectura propuesta facilita la observación y recuperación de las complejas estructuras de conocimiento, así como la navegación y administración de la información representada en la ontología. El enfoque utilizado en el diseño de los mecanismos de recuperación de información está dirigido tanto a usuarios poco familiarizados con el vocabulario del dominio, como a aquellos que ya lo conocen. Esta funcionalidad es de especial interés dado lo heterogénea que resulta la audiencia a la que está dirigida la ontología, como son profesionales y estudiantes de las ciencias de la salud, entre otros. La metodología Methontology fue seleccionada para desarrollar la ontología y se utilizó el editor Protégé para su implementación.The following work presents the design and implementation of an ontology for human semen analysis whose objective is to present, organize, formalize and standardize the domain knowledge, in order to be shared and reused by different groups of people and software applications. To visualize this ontology, a Web application based on a client/server architecture was developed, which is constituted by an

  4. Delineation and interpretation of gene networks towards their effect in cellular physiology- a reverse engineering approach for the identification of critical molecular players, through the use of ontologies.

    Science.gov (United States)

    Moutselos, K; Maglogiannis, I; Chatziioannou, A

    2010-01-01

    Exploiting ontologies, provides clues regarding the involvement of certain molecular processes in the cellular phenotypic manifestation. However, identifying individual molecular actors (genes, proteins, etc.) for targeted biological validation in a generic, prioritized, fashion, based in objective measures of their effects in the cellular physiology, remains a challenge. In this work, a new meta-analysis algorithm is proposed for the holistic interpretation of the information captured in -omic experiments, that is showcased in a transcriptomic, dynamic, DNA microarray dataset, which examines the effect of mastic oil treatment in Lewis lung carcinoma cells. Through the use of the Gene Ontology this algorithm relates genes to specific cellular pathways and vice versa in order to further reverse engineer the critical role of specific genes, starting from the results of various statistical enrichment analyses. The algorithm is able to discriminate candidate hub-genes, implying critical biochemical cross-talk. Moreover, performance measures of the algorithm are derived, when evaluated with respect to the differential expression gene list of the dataset.

  5. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes.

    Science.gov (United States)

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E; Thomas, Paul D

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo. © The Author(s) 2016. Published by Oxford University Press.

  6. An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence.

    Science.gov (United States)

    Sahoo, Satya S; Bodenreider, Olivier; Rutter, Joni L; Skinner, Karen J; Sheth, Amit P

    2008-10-01

    This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. RESOURCE PAGE: http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/

  7. False positive reduction in protein-protein interaction predictions using gene ontology annotations

    Directory of Open Access Journals (Sweden)

    Lin Yen-Han

    2007-07-01

    Full Text Available Abstract Background Many crucial cellular operations such as metabolism, signalling, and regulations are based on protein-protein interactions. However, the lack of robust protein-protein interaction information is a challenge. One reason for the lack of solid protein-protein interaction information is poor agreement between experimental findings and computational sets that, in turn, comes from huge false positive predictions in computational approaches. Reduction of false positive predictions and enhancing true positive fraction of computationally predicted protein-protein interaction datasets based on highly confident experimental results has not been adequately investigated. Results Gene Ontology (GO annotations were used to reduce false positive protein-protein interactions (PPI pairs resulting from computational predictions. Using experimentally obtained PPI pairs as a training dataset, eight top-ranking keywords were extracted from GO molecular function annotations. The sensitivity of these keywords is 64.21% in the yeast experimental dataset and 80.83% in the worm experimental dataset. The specificities, a measure of recovery power, of these keywords applied to four predicted PPI datasets for each studied organisms, are 48.32% and 46.49% (by average of four datasets in yeast and worm, respectively. Based on eight top-ranking keywords and co-localization of interacting proteins a set of two knowledge rules were deduced and applied to remove false positive protein pairs. The 'strength', a measure of improvement provided by the rules was defined based on the signal-to-noise ratio and implemented to measure the applicability of knowledge rules applying to the predicted PPI datasets. Depending on the employed PPI-predicting methods, the strength varies between two and ten-fold of randomly removing protein pairs from the datasets. Conclusion Gene Ontology annotations along with the deduced knowledge rules could be implemented to partially

  8. The Gene Ontology Differs in Bursa of Fabricius Between Two Breeds of Ducks Post Hatching by Enriching the Differentially Expressed Genes

    Directory of Open Access Journals (Sweden)

    H Liu

    Full Text Available ABSTRACT The bursa of Fabricius (BF is the central humoral immune organ unique to birds. The present study investigated the possible difference on a molecular level between two duck breeds. The digital gene expression profiling (DGE technology was used to enrich the differentially expressed genes (DEGs in BF between the Jianchang and Nonghua-P strains of ducks. DGE data identified 195 DEGs in the bursa. Gene Ontology (GO analysis suggested that DEGs were mainly enriched in the metabolic pathways and ribosome components. Pathways analysis identified the spliceosome, RNA transport, RNA degradation process, Jak-STAT signaling pathway, TNF signaling pathway and B cell receptor signaling pathway. The results indicated that the main difference in the BF between the two duck strains was in the capabilities of protein formation and B cell development. These data have revealed the main divergence in the BF on a molecular level between genetically different duck breeds and may help to perform molecular breeding programs in poultry in the future.

  9. Analysis of multiplex gene expression maps obtained by voxelation.

    Science.gov (United States)

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  10. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  11. Ontological Analysis of Integrated Process Models: testing hypotheses

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    2001-11-01

    Full Text Available Integrated process modeling is achieving prominence in helping to document and manage business administration and IT processes in organizations. The ARIS framework is a popular example for a framework of integrated process modeling not least because it underlies the 800 or more reference models embedded in the world's most popular ERP package, SAP R/3. This paper demonstrates the usefulness of the Bunge-Wand-Weber (BWW representation model for evaluating modeling grammars such as those constituting ARIS. It reports some initial insights gained from pilot testing Green and Rosemann's (2000 evaluative propositions. Even when considering all five views of ARIS, modelers have problems representing business rules, the scope and boundary of systems, and decomposing models. However, even though it is completely ontologically redundant, users still find the function view useful in modeling.

  12. Data mining for ontology development.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.; Strasburg, Jana (Pacific Northwest National Laboratory, Richland, WA); Stampf, David (Brookhaven National Laboratory, Upton, NY); Neymotin,Lev (Brookhaven National Laboratory, Upton, NY); Czajkowski, Carl (Brookhaven National Laboratory, Upton, NY); Shine, Eugene (Savannah River National Laboratory, Aiken, SC); Bollinger, James (Savannah River National Laboratory, Aiken, SC); Ghosh, Vinita (Brookhaven National Laboratory, Upton, NY); Sorokine, Alexandre (Oak Ridge National Laboratory, Oak Ridge, TN); Ferrell, Regina (Oak Ridge National Laboratory, Oak Ridge, TN); Ward, Richard (Oak Ridge National Laboratory, Oak Ridge, TN); Schoenwald, David Alan

    2010-06-01

    A multi-laboratory ontology construction effort during the summer and fall of 2009 prototyped an ontology for counterfeit semiconductor manufacturing. This effort included an ontology development team and an ontology validation methods team. Here the third team of the Ontology Project, the Data Analysis (DA) team reports on their approaches, the tools they used, and results for mining literature for terminology pertinent to counterfeit semiconductor manufacturing. A discussion of the value of ontology-based analysis is presented, with insights drawn from other ontology-based methods regularly used in the analysis of genomic experiments. Finally, suggestions for future work are offered.

  13. GENEASE: Real time bioinformatics tool for multi-omics and disease ontology exploration, analysis and visualization.

    Science.gov (United States)

    Ghandikota, Sudhir; Hershey, Gurjit K Khurana; Mersha, Tesfaye B

    2018-03-24

    Advances in high-throughput sequencing technologies have made it possible to generate multiple omics data at an unprecedented rate and scale. The accumulation of these omics data far outpaces the rate at which biologists can mine and generate new hypothesis to test experimentally. There is an urgent need to develop a myriad of powerful tools to efficiently and effectively search and filter these resources to address specific post-GWAS functional genomics questions. However, to date, these resources are scattered across several databases and often lack a unified portal for data annotation and analytics. In addition, existing tools to analyze and visualize these databases are highly fragmented, resulting researchers to access multiple applications and manual interventions for each gene or variant in an ad hoc fashion until all the questions are answered. In this study, we present GENEASE, a web-based one-stop bioinformatics tool designed to not only query and explore multi-omics and phenotype databases (e.g., GTEx, ClinVar, dbGaP, GWAS Catalog, ENCODE, Roadmap Epigenomics, KEGG, Reactome, Gene and Phenotype Ontology) in a single web interface but also to perform seamless post genome-wide association downstream functional and overlap analysis for non-coding regulatory variants. GENEASE accesses over 50 different databases in public domain including model organism-specific databases to facilitate gene/variant and disease exploration, enrichment and overlap analysis in real time. It is a user-friendly tool with point-and-click interface containing links for support information including user manual and examples. GENEASE can be accessed freely at http://research.cchmc.org/mershalab/genease_new/login.html. Tesfaye.Mersha@cchmc.org, Sudhir.Ghandikota@cchmc.org. Supplementary data are available at Bioinformatics online.

  14. Ontological Analysis of the Project Risk Management Concept ‘Risk’

    Directory of Open Access Journals (Sweden)

    Uzulāns Juris

    2018-02-01

    Full Text Available The aim of the current research series is to examine the definitions of the concept ‘risk’ and analyze the concepts used in the definitions of ‘risk’ in the sources of these definitions in order to perform the ontological analysis of the concept of ‘risk’. Ontological and epistemological analysis of the concepts in the definition of the concept ‘risk’ was used to answer the question what ‘risk’ means in project management. This investigation represents a part of the research series where the ontological, epistemological and methodological analysis of project risk is performed with the aim to improve risk registers and risk management as a whole. In the previous studies the author analyzed the concept of ‘event’ that defines the content of the concept ‘risk’. The use of ‘event’ was analyzed in different sources to find out how the concept should be used. The ontological, epistemological and methodological analysis of the definitions of the concept ‘risk’ is the theoretical foundation for risk register creation because it is possible to create complete and understandable register for the participants of the project risk management process. The author believes that the conducted research helps establish confidence that ontological analysis is the method that together with the epistemological and methodological analysis provides opportunity to perform analysis of risk management sources aimed at improving risk management. The results of the study cannot be considered sufficient for deriving valid conclusions about project risk management and developing recommendations for improving risk management with regard to the content of the risk register. For valid conclusions and recommendations, a deeper research is needed which, first of all, would analyze a larger number of sources.

  15. Mining and gene ontology based annotation of SSR markers from expressed sequence tags of Humulus lupulus

    Science.gov (United States)

    Singh, Swati; Gupta, Sanchita; Mani, Ashutosh; Chaturvedi, Anoop

    2012-01-01

    Humulus lupulus is commonly known as hops, a member of the family moraceae. Currently many projects are underway leading to the accumulation of voluminous genomic and expressed sequence tag sequences in public databases. The genetically characterized domains in these databases are limited due to non-availability of reliable molecular markers. The large data of EST sequences are available in hops. The simple sequence repeat markers extracted from EST data are used as molecular markers for genetic characterization, in the present study. 25,495 EST sequences were examined and assembled to get full-length sequences. Maximum frequency distribution was shown by mononucleotide SSR motifs i.e. 60.44% in contig and 62.16% in singleton where as minimum frequency are observed for hexanucleotide SSR in contig (0.09%) and pentanucleotide SSR in singletons (0.12%). Maximum trinucleotide motifs code for Glutamic acid (GAA) while AT/TA were the most frequent repeat of dinucleotide SSRs. Flanking primer pairs were designed in-silico for the SSR containing sequences. Functional categorization of SSRs containing sequences was done through gene ontology terms like biological process, cellular component and molecular function. PMID:22368382

  16. Protein-Protein Interactions Prediction Based on Iterative Clique Extension with Gene Ontology Filtering

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2014-01-01

    Full Text Available Cliques (maximal complete subnets in protein-protein interaction (PPI network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

  17. GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data

    Directory of Open Access Journals (Sweden)

    Domont Gilberto B

    2009-02-01

    Full Text Available Abstract Background Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. Results Here we present a new algorithm, termed GO Explorer (GOEx, that leverages the gene ontology (GO to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172. We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. Conclusion GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab.

  18. GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data.

    Science.gov (United States)

    Carvalho, Paulo C; Fischer, Juliana Sg; Chen, Emily I; Domont, Gilberto B; Carvalho, Maria Gc; Degrave, Wim M; Yates, John R; Barbosa, Valmir C

    2009-02-24

    Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab.

  19. Annotating activation/inhibition relationships to protein-protein interactions using gene ontology relations.

    Science.gov (United States)

    Yim, Soorin; Yu, Hasun; Jang, Dongjin; Lee, Doheon

    2018-04-11

    Signaling pathways can be reconstructed by identifying 'effect types' (i.e. activation/inhibition) of protein-protein interactions (PPIs). Effect types are composed of 'directions' (i.e. upstream/downstream) and 'signs' (i.e. positive/negative), thereby requiring directions as well as signs of PPIs to predict signaling events from PPI networks. Here, we propose a computational method for systemically annotating effect types to PPIs using relations between functional information of proteins. We used regulates, positively regulates, and negatively regulates relations in Gene Ontology (GO) to predict directions and signs of PPIs. These relations indicate both directions and signs between GO terms so that we can project directions and signs between relevant GO terms to PPIs. Independent test results showed that our method is effective for predicting both directions and signs of PPIs. Moreover, our method outperformed a previous GO-based method that did not consider the relations between GO terms. We annotated effect types to human PPIs and validated several highly confident effect types against literature. The annotated human PPIs are available in Additional file 2 to aid signaling pathway reconstruction and network biology research. We annotated effect types to PPIs by using regulates, positively regulates, and negatively regulates relations in GO. We demonstrated that those relations are effective for predicting not only signs, but also directions of PPIs. The usefulness of those relations suggests their potential applications to other types of interactions such as protein-DNA interactions.

  20. Semantic similarity between ontologies at different scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingpeng; Haglin, David J.

    2016-04-01

    In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea via studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.

  1. Closing the loop: from paper to protein annotation using supervised Gene Ontology classification.

    Science.gov (United States)

    Gobeill, Julien; Pasche, Emilie; Vishnyakova, Dina; Ruch, Patrick

    2014-01-01

    Gene function curation of the literature with Gene Ontology (GO) concepts is one particularly time-consuming task in genomics, and the help from bioinformatics is highly requested to keep up with the flow of publications. In 2004, the first BioCreative challenge already designed a task of automatic GO concepts assignment from a full text. At this time, results were judged far from reaching the performances required by real curation workflows. In particular, supervised approaches produced the most disappointing results because of lack of training data. Ten years later, the available curation data have massively grown. In 2013, the BioCreative IV GO task revisited the automatic GO assignment task. For this issue, we investigated the power of our supervised classifier, GOCat. GOCat computes similarities between an input text and already curated instances contained in a knowledge base to infer GO concepts. The subtask A consisted in selecting GO evidence sentences for a relevant gene in a full text. For this, we designed a state-of-the-art supervised statistical approach, using a naïve Bayes classifier and the official training set, and obtained fair results. The subtask B consisted in predicting GO concepts from the previous output. For this, we applied GOCat and reached leading results, up to 65% for hierarchical recall in the top 20 outputted concepts. Contrary to previous competitions, machine learning has this time outperformed standard dictionary-based approaches. Thanks to BioCreative IV, we were able to design a complete workflow for curation: given a gene name and a full text, this system is able to select evidence sentences for curation and to deliver highly relevant GO concepts. Contrary to previous competitions, machine learning this time outperformed dictionary-based systems. Observed performances are sufficient for being used in a real semiautomatic curation workflow. GOCat is available at http://eagl.unige.ch/GOCat/. http://eagl.unige.ch/GOCat4FT/.

  2. Ontology-based meta-analysis of global collections of high-throughput public data.

    Directory of Open Access Journals (Sweden)

    Ilya Kupershmidt

    2010-09-01

    Full Text Available The investigation of the interconnections between the molecular and genetic events that govern biological systems is essential if we are to understand the development of disease and design effective novel treatments. Microarray and next-generation sequencing technologies have the potential to provide this information. However, taking full advantage of these approaches requires that biological connections be made across large quantities of highly heterogeneous genomic datasets. Leveraging the increasingly huge quantities of genomic data in the public domain is fast becoming one of the key challenges in the research community today.We have developed a novel data mining framework that enables researchers to use this growing collection of public high-throughput data to investigate any set of genes or proteins. The connectivity between molecular states across thousands of heterogeneous datasets from microarrays and other genomic platforms is determined through a combination of rank-based enrichment statistics, meta-analyses, and biomedical ontologies. We address data quality concerns through dataset replication and meta-analysis and ensure that the majority of the findings are derived using multiple lines of evidence. As an example of our strategy and the utility of this framework, we apply our data mining approach to explore the biology of brown fat within the context of the thousands of publicly available gene expression datasets.Our work presents a practical strategy for organizing, mining, and correlating global collections of large-scale genomic data to explore normal and disease biology. Using a hypothesis-free approach, we demonstrate how a data-driven analysis across very large collections of genomic data can reveal novel discoveries and evidence to support existing hypothesis.

  3. Ontology-based meta-analysis of global collections of high-throughput public data.

    Science.gov (United States)

    Kupershmidt, Ilya; Su, Qiaojuan Jane; Grewal, Anoop; Sundaresh, Suman; Halperin, Inbal; Flynn, James; Shekar, Mamatha; Wang, Helen; Park, Jenny; Cui, Wenwu; Wall, Gregory D; Wisotzkey, Robert; Alag, Satnam; Akhtari, Saeid; Ronaghi, Mostafa

    2010-09-29

    The investigation of the interconnections between the molecular and genetic events that govern biological systems is essential if we are to understand the development of disease and design effective novel treatments. Microarray and next-generation sequencing technologies have the potential to provide this information. However, taking full advantage of these approaches requires that biological connections be made across large quantities of highly heterogeneous genomic datasets. Leveraging the increasingly huge quantities of genomic data in the public domain is fast becoming one of the key challenges in the research community today. We have developed a novel data mining framework that enables researchers to use this growing collection of public high-throughput data to investigate any set of genes or proteins. The connectivity between molecular states across thousands of heterogeneous datasets from microarrays and other genomic platforms is determined through a combination of rank-based enrichment statistics, meta-analyses, and biomedical ontologies. We address data quality concerns through dataset replication and meta-analysis and ensure that the majority of the findings are derived using multiple lines of evidence. As an example of our strategy and the utility of this framework, we apply our data mining approach to explore the biology of brown fat within the context of the thousands of publicly available gene expression datasets. Our work presents a practical strategy for organizing, mining, and correlating global collections of large-scale genomic data to explore normal and disease biology. Using a hypothesis-free approach, we demonstrate how a data-driven analysis across very large collections of genomic data can reveal novel discoveries and evidence to support existing hypothesis.

  4. The Proteasix Ontology.

    Science.gov (United States)

    Arguello Casteleiro, Mercedes; Klein, Julie; Stevens, Robert

    2016-06-04

    The Proteasix Ontology (PxO) is an ontology that supports the Proteasix tool; an open-source peptide-centric tool that can be used to predict automatically and in a large-scale fashion in silico the proteases involved in the generation of proteolytic cleavage fragments (peptides) The PxO re-uses parts of the Protein Ontology, the three Gene Ontology sub-ontologies, the Chemical Entities of Biological Interest Ontology, the Sequence Ontology and bespoke extensions to the PxO in support of a series of roles: 1. To describe the known proteases and their target cleaveage sites. 2. To enable the description of proteolytic cleaveage fragments as the outputs of observed and predicted proteolysis. 3. To use knowledge about the function, species and cellular location of a protease and protein substrate to support the prioritisation of proteases in observed and predicted proteolysis. The PxO is designed to describe the biological underpinnings of the generation of peptides. The peptide-centric PxO seeks to support the Proteasix tool by separating domain knowledge from the operational knowledge used in protease prediction by Proteasix and to support the confirmation of its analyses and results. The Proteasix Ontology may be found at: http://bioportal.bioontology.org/ontologies/PXO . This ontology is free and open for use by everyone.

  5. [Using (1)H-nuclear magnetic resonance metabolomics and gene ontology to establish pathological staging model for esophageal cancer patients].

    Science.gov (United States)

    Chen, X; Wang, K; Chen, W; Jiang, H; Deng, P C; Li, Z J; Peng, J; Zhou, Z Y; Yang, H; Huang, G X; Zeng, J

    2016-07-01

    (ethanol amine, hydroxy-propionic acid, homocysteine and estriol) were eventually selected. gene ontology analysis showed that 54 enzymes and genes regulated the 4 key metabolic markers. The quantitative prediction model of esophageal cancer staging based on esophageal cancer NMR spectrum were established. Cross-validation results showed that the predicted effect was good (root mean square error=5.3, R(2)=0.47, P=0.036). The systems biology approaches based on metabolomics and enzyme-gene regulatory network analysis can be used to quantify the metabolic network disturbance of patients with advanced esophageal cancer, and to predict preoperative clinical staging of esophageal cancer patients by plasma NMR metabolomics.

  6. Ontology Design Patterns for Combining Pathology and Anatomy: Application to Study Aging and Longevity in Inbred Mouse Strains

    KAUST Repository

    Alghamdi, Sarah M.

    2018-05-13

    In biomedical research, ontologies are widely used to represent knowledge as well as to annotate datasets. Many of the existing ontologies cover a single type of phenomena, such as a process, cell type, gene, pathological entity or anatomical structure. Consequently, there is a requirement to use multiple ontologies to fully characterize the observations in the datasets. Although this allows precise annotation of different aspects of a given dataset, it limits our ability to use the ontologies in data analysis, as the ontologies are usually disconnected and their combinations cannot be exploited. Motivated by this, here we present novel ontology design methods for combining pathology and anatomy concepts. To this end, we use a dataset of mouse models which has been characterized through two ontologies: one of them is the mouse pathology ontology (MPATH) covering pathological lesions while the other is the mouse anatomy ontology (MA) covering the anatomical site of the lesions. We propose four novel ontology design patterns for combining these ontologies, and use these patterns to generate four ontologies in a data-driven way. To evaluate the generated ontologies, we utilize these in ontology-based data analysis, including ontology enrichment analysis and computation of semantic similarity. We demonstrate that there are significant differences between the four ontologies in different analysis approaches. In addition, when using semantic similarity to confirm the hypothesis that genetically identical mice should develop more similar diseases, the generated combined ontologies lead to significantly better analysis results compared to using each ontology individually. Our results reveal that using ontology design patterns to combine different facets characterizing a dataset can improve established analysis methods.

  7. Toxicology ontology perspectives.

    Science.gov (United States)

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used in predictive toxicology initiatives and applications. Perspectives on resources and initiatives reviewed include OpenTox, eTOX, Pistoia Alliance, ToxWiz, Virtual Liver, EU-ADR, BEL, ToxML, and Bioclipse. We also review existing ontology developments in neighboring fields that can contribute to establishing an ontological framework for predictive toxicology. A significant set of resources is already available to provide a foundation for an ontological framework for 21st century mechanistic-based toxicology research. Ontologies such as ToxWiz provide a basis for application to toxicology investigations, whereas other ontologies under development in the biological, chemical, and biomedical communities could be incorporated in an extended future framework. OpenTox has provided a semantic web framework for the implementation of such ontologies into software applications and linked data resources. Bioclipse developers have shown the benefit of interoperability obtained through ontology by being able to link their workbench application with remote OpenTox web services. Although these developments are promising, an increased international coordination of efforts is greatly needed to develop a more unified, standardized, and open toxicology ontology framework.

  8. An Ontology for State Analysis: Formalizing the Mapping to SysML

    Science.gov (United States)

    Wagner, David A.; Bennett, Matthew B.; Karban, Robert; Rouquette, Nicolas; Jenkins, Steven; Ingham, Michel

    2012-01-01

    State Analysis is a methodology developed over the last decade for architecting, designing and documenting complex control systems. Although it was originally conceived for designing robotic spacecraft, recent applications include the design of control systems for large ground-based telescopes. The European Southern Observatory (ESO) began a project to design the European Extremely Large Telescope (E-ELT), which will require coordinated control of over a thousand articulated mirror segments. The designers are using State Analysis as a methodology and the Systems Modeling Language (SysML) as a modeling and documentation language in this task. To effectively apply the State Analysis methodology in this context it became necessary to provide ontological definitions of the concepts and relations in State Analysis and greater flexibility through a mapping of State Analysis into a practical extension of SysML. The ontology provides the formal basis for verifying compliance with State Analysis semantics including architectural constraints. The SysML extension provides the practical basis for applying the State Analysis methodology with SysML tools. This paper will discuss the method used to develop these formalisms (the ontology), the formalisms themselves, the mapping to SysML and approach to using these formalisms to specify a control system and enforce architectural constraints in a SysML model.

  9. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data.

    Science.gov (United States)

    Hawkins, Troy; Chitale, Meghana; Luban, Stanislav; Kihara, Daisuke

    2009-02-15

    Protein function prediction is a central problem in bioinformatics, increasing in importance recently due to the rapid accumulation of biological data awaiting interpretation. Sequence data represents the bulk of this new stock and is the obvious target for consideration as input, as newly sequenced organisms often lack any other type of biological characterization. We have previously introduced PFP (Protein Function Prediction) as our sequence-based predictor of Gene Ontology (GO) functional terms. PFP interprets the results of a PSI-BLAST search by extracting and scoring individual functional attributes, searching a wide range of E-value sequence matches, and utilizing conventional data mining techniques to fill in missing information. We have shown it to be effective in predicting both specific and low-resolution functional attributes when sufficient data is unavailable. Here we describe (1) significant improvements to the PFP infrastructure, including the addition of prediction significance and confidence scores, (2) a thorough benchmark of performance and comparisons to other related prediction methods, and (3) applications of PFP predictions to genome-scale data. We applied PFP predictions to uncharacterized protein sequences from 15 organisms. Among these sequences, 60-90% could be annotated with a GO molecular function term at high confidence (>or=80%). We also applied our predictions to the protein-protein interaction network of the Malaria plasmodium (Plasmodium falciparum). High confidence GO biological process predictions (>or=90%) from PFP increased the number of fully enriched interactions in this dataset from 23% of interactions to 94%. Our benchmark comparison shows significant performance improvement of PFP relative to GOtcha, InterProScan, and PSI-BLAST predictions. This is consistent with the performance of PFP as the overall best predictor in both the AFP-SIG '05 and CASP7 function (FN) assessments. PFP is available as a web service at http

  10. Development of Smart Sensors System Based on Formal Concept Analysis and Ontology Model

    Directory of Open Access Journals (Sweden)

    Hongsheng Xu

    2013-06-01

    Full Text Available The smart sensor is the product of the combination of one or more sensitive components, precision analog circuits, digital circuits, microprocessor, communication interface, intelligent software systems and hardware integration in a packaging component. Formal concept analysis is from the given data to automatically extract the classification relationship between the entire hidden concept and concept, formation of concept model. Ontology is a set of relations between concepts of the specific domain and concept, and it can effectively express the general knowledge of specific field. The paper proposes development of smart sensors system based on formal concept analysis and ontology model. Smart sensor is a micro processor, sensor with information detection, information processing, information memory, logical thinking and judging function. The methods can improve the effect of the smart sensors.

  11. Prioritising lexical patterns to increase axiomatisation in biomedical ontologies. The role of localisation and modularity.

    Science.gov (United States)

    Quesada-Martínez, M; Fernández-Breis, J T; Stevens, R; Mikroyannidi, E

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". In previous work, we have defined methods for the extraction of lexical patterns from labels as an initial step towards semi-automatic ontology enrichment methods. Our previous findings revealed that many biomedical ontologies could benefit from enrichment methods using lexical patterns as a starting point.Here, we aim to identify which lexical patterns are appropriate for ontology enrichment, driving its analysis by metrics to prioritised the patterns. We propose metrics for suggesting which lexical regularities should be the starting point to enrich complex ontologies. Our method determines the relevance of a lexical pattern by measuring its locality in the ontology, that is, the distance between the classes associated with the pattern, and the distribution of the pattern in a certain module of the ontology. The methods have been applied to four significant biomedical ontologies including the Gene Ontology and SNOMED CT. The metrics provide information about the engineering of the ontologies and the relevance of the patterns. Our method enables the suggestion of links between classes that are not made explicit in the ontology. We propose a prioritisation of the lexical patterns found in the analysed ontologies. The locality and distribution of lexical patterns offer insights into the further engineering of the ontology. Developers can use this information to improve the axiomatisation of their ontologies.

  12. The Domain Shared by Computational and Digital Ontology: A Phenomenological Exploration and Analysis

    Science.gov (United States)

    Compton, Bradley Wendell

    2009-01-01

    The purpose of this dissertation is to explore and analyze a domain of research thought to be shared by two areas of philosophy: computational and digital ontology. Computational ontology is philosophy used to develop information systems also called computational ontologies. Digital ontology is philosophy dealing with our understanding of Being…

  13. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research.

    Science.gov (United States)

    He, Yongqun

    2016-06-01

    Compared with controlled terminologies ( e.g. , MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network ( i.e. , OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.

  14. GGDonto ontology as a knowledge-base for genetic diseases and disorders of glycan metabolism and their causative genes.

    Science.gov (United States)

    Solovieva, Elena; Shikanai, Toshihide; Fujita, Noriaki; Narimatsu, Hisashi

    2018-04-18

    Inherited mutations in glyco-related genes can affect the biosynthesis and degradation of glycans and result in severe genetic diseases and disorders. The Glyco-Disease Genes Database (GDGDB), which provides information about these diseases and disorders as well as their causative genes, has been developed by the Research Center for Medical Glycoscience (RCMG) and released in April 2010. GDGDB currently provides information on about 80 genetic diseases and disorders caused by single-gene mutations in glyco-related genes. Many biomedical resources provide information about genetic disorders and genes involved in their pathogenesis, but resources focused on genetic disorders known to be related to glycan metabolism are lacking. With the aim of providing more comprehensive knowledge on genetic diseases and disorders of glycan biosynthesis and degradation, we enriched the content of the GDGDB database and improved the methods for data representation. We developed the Genetic Glyco-Diseases Ontology (GGDonto) and a RDF/SPARQL-based user interface using Semantic Web technologies. In particular, we represented the GGDonto content using Semantic Web languages, such as RDF, RDFS, SKOS, and OWL, and created an interactive user interface based on SPARQL queries. This user interface provides features to browse the hierarchy of the ontology, view detailed information on diseases and related genes, and find relevant background information. Moreover, it provides the ability to filter and search information by faceted and keyword searches. Focused on the molecular etiology, pathogenesis, and clinical manifestations of genetic diseases and disorders of glycan metabolism and developed as a knowledge-base for this scientific field, GGDonto provides comprehensive information on various topics, including links to aid the integration with other scientific resources. The availability and accessibility of this knowledge will help users better understand how genetic defects impact the

  15. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks

    Directory of Open Access Journals (Sweden)

    Mazo Ilya

    2007-07-01

    Full Text Available Abstract Background Uncovering cellular roles of a protein is a task of tremendous importance and complexity that requires dedicated experimental work as well as often sophisticated data mining and processing tools. Protein functions, often referred to as its annotations, are believed to manifest themselves through topology of the networks of inter-proteins interactions. In particular, there is a growing body of evidence that proteins performing the same function are more likely to interact with each other than with proteins with other functions. However, since functional annotation and protein network topology are often studied separately, the direct relationship between them has not been comprehensively demonstrated. In addition to having the general biological significance, such demonstration would further validate the data extraction and processing methods used to compose protein annotation and protein-protein interactions datasets. Results We developed a method for automatic extraction of protein functional annotation from scientific text based on the Natural Language Processing (NLP technology. For the protein annotation extracted from the entire PubMed, we evaluated the precision and recall rates, and compared the performance of the automatic extraction technology to that of manual curation used in public Gene Ontology (GO annotation. In the second part of our presentation, we reported a large-scale investigation into the correspondence between communities in the literature-based protein networks and GO annotation groups of functionally related proteins. We found a comprehensive two-way match: proteins within biological annotation groups form significantly denser linked network clusters than expected by chance and, conversely, densely linked network communities exhibit a pronounced non-random overlap with GO groups. We also expanded the publicly available GO biological process annotation using the relations extracted by our NLP technology

  16. GOssTo: a stand-alone application and a web tool for calculating semantic similarities on the Gene Ontology.

    Science.gov (United States)

    Caniza, Horacio; Romero, Alfonso E; Heron, Samuel; Yang, Haixuan; Devoto, Alessandra; Frasca, Marco; Mesiti, Marco; Valentini, Giorgio; Paccanaro, Alberto

    2014-08-01

    We present GOssTo, the Gene Ontology semantic similarity Tool, a user-friendly software system for calculating semantic similarities between gene products according to the Gene Ontology. GOssTo is bundled with six semantic similarity measures, including both term- and graph-based measures, and has extension capabilities to allow the user to add new similarities. Importantly, for any measure, GOssTo can also calculate the Random Walk Contribution that has been shown to greatly improve the accuracy of similarity measures. GOssTo is very fast, easy to use, and it allows the calculation of similarities on a genomic scale in a few minutes on a regular desktop machine. alberto@cs.rhul.ac.uk GOssTo is available both as a stand-alone application running on GNU/Linux, Windows and MacOS from www.paccanarolab.org/gossto and as a web application from www.paccanarolab.org/gosstoweb. The stand-alone application features a simple and concise command line interface for easy integration into high-throughput data processing pipelines. © The Author 2014. Published by Oxford University Press.

  17. Ontology-based systematic representation and analysis of traditional Chinese drugs against rheumatism.

    Science.gov (United States)

    Liu, Qingping; Wang, Jiahao; Zhu, Yan; He, Yongqun

    2017-12-21

    Rheumatism represents any disease condition marked with inflammation and pain in the joints, muscles, or connective tissues. Many traditional Chinese drugs have been used for a long time to treat rheumatism. However, a comprehensive information source for these drugs is still missing, and their anti-rheumatism mechanisms remain unclear. An ontology for anti-rheumatism traditional Chinese drugs would strongly support the representation, analysis, and understanding of these drugs. In this study, we first systematically collected reported information about 26 traditional Chinese decoction pieces drugs, including their chemical ingredients and adverse events (AEs). By mostly reusing terms from existing ontologies (e.g., TCMDPO for traditional Chinese medicines, NCBITaxon for taxonomy, ChEBI for chemical elements, and OAE for adverse events) and making semantic axioms linking different entities, we developed the Ontology of Chinese Medicine for Rheumatism (OCMR) that includes over 3000 class terms. Our OCMR analysis found that these 26 traditional Chinese decoction pieces are made from anatomic entities (e.g., root and stem) from 3 Bilateria animals and 23 Mesangiospermae plants. Anti-inflammatory and antineoplastic roles are important for anti-rheumatism drugs. Using the total of 555 unique ChEBI chemical entities identified from these drugs, our ChEBI-based classification analysis identified 18 anti-inflammatory, 33 antineoplastic chemicals, and 9 chemicals (including 3 diterpenoids and 3 triterpenoids) having both anti-inflammatory and antineoplastic roles. Furthermore, our study detected 22 diterpenoids and 23 triterpenoids, including 16 pentacyclic triterpenoids that are likely bioactive against rheumatism. Six drugs were found to be associated with 184 unique AEs, including three AEs (i.e., dizziness, nausea and vomiting, and anorexia) each associated with 5 drugs. Several chemical entities are classified as neurotoxins (e.g., diethyl phthalate) and allergens (e

  18. Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism.

    Science.gov (United States)

    Patel, Sejal; Roncaglia, Paola; Lovering, Ruth C

    2015-06-06

    People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets.

  19. The logic of surveillance guidelines: an analysis of vaccine adverse event reports from an ontological perspective.

    Directory of Open Access Journals (Sweden)

    Mélanie Courtot

    Full Text Available BACKGROUND: When increased rates of adverse events following immunization are detected, regulatory action can be taken by public health agencies. However to be interpreted reports of adverse events must be encoded in a consistent way. Regulatory agencies rely on guidelines to help determine the diagnosis of the adverse events. Manual application of these guidelines is expensive, time consuming, and open to logical errors. Representing these guidelines in a format amenable to automated processing can make this process more efficient. METHODS AND FINDINGS: Using the Brighton anaphylaxis case definition, we show that existing clinical guidelines used as standards in pharmacovigilance can be logically encoded using a formal representation such as the Adverse Event Reporting Ontology we developed. We validated the classification of vaccine adverse event reports using the ontology against existing rule-based systems and a manually curated subset of the Vaccine Adverse Event Reporting System. However, we encountered a number of critical issues in the formulation and application of the clinical guidelines. We report these issues and the steps being taken to address them in current surveillance systems, and in the terminological standards in use. CONCLUSIONS: By standardizing and improving the reporting process, we were able to automate diagnosis confirmation. By allowing medical experts to prioritize reports such a system can accelerate the identification of adverse reactions to vaccines and the response of regulatory agencies. This approach of combining ontology and semantic technologies can be used to improve other areas of vaccine adverse event reports analysis and should inform both the design of clinical guidelines and how they are used in the future. AVAILABILITY: Sufficient material to reproduce our results is available, including documentation, ontology, code and datasets, at http://purl.obolibrary.org/obo/aero.

  20. Construction of mammographic examination process ontology using bottom-up hierarchical task analysis.

    Science.gov (United States)

    Yagahara, Ayako; Yokooka, Yuki; Jiang, Guoqian; Tsuji, Shintarou; Fukuda, Akihisa; Nishimoto, Naoki; Kurowarabi, Kunio; Ogasawara, Katsuhiko

    2018-03-01

    Describing complex mammography examination processes is important for improving the quality of mammograms. It is often difficult for experienced radiologic technologists to explain the process because their techniques depend on their experience and intuition. In our previous study, we analyzed the process using a new bottom-up hierarchical task analysis and identified key components of the process. Leveraging the results of the previous study, the purpose of this study was to construct a mammographic examination process ontology to formally describe the relationships between the process and image evaluation criteria to improve the quality of mammograms. First, we identified and created root classes: task, plan, and clinical image evaluation (CIE). Second, we described an "is-a" relation referring to the result of the previous study and the structure of the CIE. Third, the procedural steps in the ontology were described using the new properties: "isPerformedBefore," "isPerformedAfter," and "isPerformedAfterIfNecessary." Finally, the relationships between tasks and CIEs were described using the "isAffectedBy" property to represent the influence of the process on image quality. In total, there were 219 classes in the ontology. By introducing new properties related to the process flow, a sophisticated mammography examination process could be visualized. In relationships between tasks and CIEs, it became clear that the tasks affecting the evaluation criteria related to positioning were greater in number than those for image quality. We developed a mammographic examination process ontology that makes knowledge explicit for a comprehensive mammography process. Our research will support education and help promote knowledge sharing about mammography examination expertise.

  1. Integrating phenotype ontologies with PhenomeNET

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2017-12-19

    Background Integration and analysis of phenotype data from humans and model organisms is a key challenge in building our understanding of normal biology and pathophysiology. However, the range of phenotypes and anatomical details being captured in clinical and model organism databases presents complex problems when attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have previously developed PhenomeNET, a system for disease gene prioritization that includes as one of its components an ontology designed to integrate phenotype ontologies. While not applicable to matching arbitrary ontologies, PhenomeNET can be used to identify related phenotypes in different species, including human, mouse, zebrafish, nematode worm, fruit fly, and yeast. Results Here, we apply the PhenomeNET to identify related classes from two phenotype and two disease ontologies using automated reasoning. We demonstrate that we can identify a large number of mappings, some of which require automated reasoning and cannot easily be identified through lexical approaches alone. Combining automated reasoning with lexical matching further improves results in aligning ontologies. Conclusions PhenomeNET can be used to align and integrate phenotype ontologies. The results can be utilized for biomedical analyses in which phenomena observed in model organisms are used to identify causative genes and mutations underlying human disease.

  2. Ontology-Based Platform for Conceptual Guided Dataset Analysis

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2016-05-31

    Nowadays organizations should handle a huge amount of both internal and external data from structured, semi-structured, and unstructured sources. This constitutes a major challenge (and also an opportunity) to current Business Intelligence solutions. The complexity and effort required to analyse such plethora of data implies considerable execution times. Besides, the large number of data analysis methods and techniques impede domain experts (laymen from an IT-assisted analytics perspective) to fully exploit their potential, while technology experts lack the business background to get the proper questions. In this work, we present a semantically-boosted platform for assisting layman users in (i) extracting a relevant subdataset from all the data, and (ii) selecting the data analysis technique(s) best suited for scrutinising that subdataset. The outcome is getting better answers in significantly less time. The platform has been evaluated in the music domain with promising results.

  3. Quantum ontologies

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  4. An ontological knowledge based system for selection of process monitoring and analysis tools

    DEFF Research Database (Denmark)

    Singh, Ravendra; Gernaey, Krist; Gani, Rafiqul

    2010-01-01

    monitoring and analysis tools for a wide range of operations has made their selection a difficult, time consuming and challenging task. Therefore, an efficient and systematic knowledge base coupled with an inference system is necessary to support the optimal selection of process monitoring and analysis tools......, satisfying the process and user constraints. A knowledge base consisting of the process knowledge as well as knowledge on measurement methods and tools has been developed. An ontology has been designed for knowledge representation and management. The developed knowledge base has a dual feature. On the one...... procedures has been developed to retrieve the data/information stored in the knowledge base....

  5. Knowledge Enrichment Analysis for Human Tissue- Specific Genes Uncover New Biological Insights

    Directory of Open Access Journals (Sweden)

    Gong Xiu-Jun

    2012-06-01

    Full Text Available The expression and regulation of genes in different tissues are fundamental questions to be answered in biology. Knowledge enrichment analysis for tissue specific (TS and housekeeping (HK genes may help identify their roles in biological process or diseases and gain new biological insights.In this paper, we performed the knowledge enrichment analysis for 17,343 genes in 84 human tissues using Gene Set Enrichment Analysis (GSEA and Hypergeometric Analysis (HA against three biological ontologies: Gene Ontology (GO, KEGG pathways and Disease Ontology (DO respectively.The analyses results demonstrated that the functions of most gene groups are consistent with their tissue origins. Meanwhile three interesting new associations for HK genes and the skeletal muscle tissuegenes are found. Firstly, Hypergeometric analysis against KEGG database for HK genes disclosed that three disease terms (Parkinson’s disease, Huntington’s disease, Alzheimer’s disease are intensively enriched.Secondly, Hypergeometric analysis against the KEGG database for Skeletal Muscle tissue genes shows that two cardiac diseases of “Hypertrophic cardiomyopathy (HCM” and “Arrhythmogenic right ventricular cardiomyopathy (ARVC” are heavily enriched, which are also considered as no relationship with skeletal functions.Thirdly, “Prostate cancer” is intensively enriched in Hypergeometric analysis against the disease ontology (DO for the Skeletal Muscle tissue genes, which is a much unexpected phenomenon.

  6. Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: Extending MapMan ontology for grapevine

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2009-08-01

    Full Text Available Abstract Background Whole genome transcriptomics analysis is a very powerful approach because it gives an overview of the activity of genes in certain cells or tissue types. However, biological interpretation of such results can be rather tedious. MapMan is a software tool that displays large datasets (e.g. gene expression data onto diagrams of metabolic pathways or other processes and thus enables easier interpretation of results. The grapevine (Vitis vinifera genome sequence has recently become available bringing a new dimension into associated research. Two microarray platforms were designed based on the TIGR Gene Index database and used in several physiological studies. Results To enable easy and effective visualization of those and further experiments, annotation of Vitis vinifera Gene Index (VvGI version 5 to MapMan ontology was set up. Due to specificities of grape physiology, we have created new pictorial representations focusing on three selected pathways: carotenoid pathway, terpenoid pathway and phenylpropanoid pathway, the products of these pathways being important for wine aroma, flavour and colour, as well as plant defence against pathogens. This new tool was validated on Affymetrix microarrays data obtained during berry ripening and it allowed the discovery of new aspects in process regulation. We here also present results on transcriptional profiling of grape plantlets after exposal to the fungal pathogen Eutypa lata using Operon microarrays including visualization of results with MapMan. The data show that the genes induced in infected plants, encode pathogenesis related proteins and enzymes of the flavonoid metabolism, which are well known as being responsive to fungal infection. Conclusion The extension of MapMan ontology to grapevine together with the newly constructed pictorial representations for carotenoid, terpenoid and phenylpropanoid metabolism provide an alternative approach to the analysis of grapevine gene expression

  7. PIERO ontology for analysis of biochemical transformations: effective implementation of reaction information in the IUBMB enzyme list.

    Science.gov (United States)

    Kotera, Masaaki; Nishimura, Yosuke; Nakagawa, Zen-ichi; Muto, Ai; Moriya, Yuki; Okamoto, Shinobu; Kawashima, Shuichi; Katayama, Toshiaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2014-12-01

    Genomics is faced with the issue of many partially annotated putative enzyme-encoding genes for which activities have not yet been verified, while metabolomics is faced with the issue of many putative enzyme reactions for which full equations have not been verified. Knowledge of enzymes has been collected by IUBMB, and has been made public as the Enzyme List. To date, however, the terminology of the Enzyme List has not been assessed comprehensively by bioinformatics studies. Instead, most of the bioinformatics studies simply use the identifiers of the enzymes, i.e. the Enzyme Commission (EC) numbers. We investigated the actual usage of terminology throughout the Enzyme List, and demonstrated that the partial characteristics of reactions cannot be retrieved by simply using EC numbers. Thus, we developed a novel ontology, named PIERO, for annotating biochemical transformations as follows. First, the terminology describing enzymatic reactions was retrieved from the Enzyme List, and was grouped into those related to overall reactions and biochemical transformations. Consequently, these terms were mapped onto the actual transformations taken from enzymatic reaction equations. This ontology was linked to Gene Ontology (GO) and EC numbers, allowing the extraction of common partial reaction characteristics from given sets of orthologous genes and the elucidation of possible enzymes from the given transformations. Further future development of the PIERO ontology should enhance the Enzyme List to promote the integration of genomics and metabolomics.

  8. Witnessing stressful events induces glutamatergic synapse pathway alterations and gene set enrichment of positive EPSP regulation within the VTA of adult mice: An ontology based approach

    Science.gov (United States)

    Brewer, Jacob S.

    It is well known that exposure to severe stress increases the risk for developing mood disorders. Currently, the neurobiological and genetic mechanisms underlying the functional effects of psychological stress are poorly understood. Presenting a major obstacle to the study of psychological stress is the inability of current animal models of stress to distinguish between physical and psychological stressors. A novel paradigm recently developed by Warren et al., is able to tease apart the effects of physical and psychological stress in adult mice by allowing these mice to "witness," the social defeat of another mouse thus removing confounding variables associated with physical stressors. Using this 'witness' model of stress and RNA-Seq technology, the current study aims to study the genetic effects of psychological stress. After, witnessing the social defeat of another mouse, VTA tissue was extracted, sequenced, and analyzed for differential expression. Since genes often work together in complex networks, a pathway and gene ontology (GO) analysis was performed using data from the differential expression analysis. The pathway and GO analyzes revealed a perturbation of the glutamatergic synapse pathway and an enrichment of positive excitatory post-synaptic potential regulation. This is consistent with the excitatory synapse theory of depression. Together these findings demonstrate a dysregulation of the mesolimbic reward pathway at the gene level as a result of psychological stress potentially contributing to depressive like behaviors.

  9. DOSE RESPONSE FROM HIGH THROUGHPUT GENE EXPRESSION STUDIES AND THE INFLUENCE OF TIME AND CELL LINE ON INFERRED MODE OF ACTION BY ONTOLOGIC ENRICHMENT (SOT)

    Science.gov (United States)

    Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...

  10. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  11. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms.

    Science.gov (United States)

    Falda, Marco; Toppo, Stefano; Pescarolo, Alessandro; Lavezzo, Enrico; Di Camillo, Barbara; Facchinetti, Andrea; Cilia, Elisa; Velasco, Riccardo; Fontana, Paolo

    2012-03-28

    Predicting protein function has become increasingly demanding in the era of next generation sequencing technology. The task to assign a curator-reviewed function to every single sequence is impracticable. Bioinformatics tools, easy to use and able to provide automatic and reliable annotations at a genomic scale, are necessary and urgent. In this scenario, the Gene Ontology has provided the means to standardize the annotation classification with a structured vocabulary which can be easily exploited by computational methods. Argot2 is a web-based function prediction tool able to annotate nucleic or protein sequences from small datasets up to entire genomes. It accepts as input a list of sequences in FASTA format, which are processed using BLAST and HMMER searches vs UniProKB and Pfam databases respectively; these sequences are then annotated with GO terms retrieved from the UniProtKB-GOA database and the terms are weighted using the e-values from BLAST and HMMER. The weighted GO terms are processed according to both their semantic similarity relations described by the Gene Ontology and their associated score. The algorithm is based on the original idea developed in a previous tool called Argot. The entire engine has been completely rewritten to improve both accuracy and computational efficiency, thus allowing for the annotation of complete genomes. The revised algorithm has been already employed and successfully tested during in-house genome projects of grape and apple, and has proven to have a high precision and recall in all our benchmark conditions. It has also been successfully compared with Blast2GO, one of the methods most commonly employed for sequence annotation. The server is freely accessible at http://www.medcomp.medicina.unipd.it/Argot2.

  12. Gene set analysis of the EADGENE chicken data-set

    DEFF Research Database (Denmark)

    Skarman, Axel; Jiang, Li; Hornshøj, Henrik

    2009-01-01

     Abstract Background: Gene set analysis is considered to be a way of improving our biological interpretation of the observed expression patterns. This paper describes different methods applied to analyse expression data from a chicken DNA microarray dataset. Results: Applying different gene set...... analyses to the chicken expression data led to different ranking of the Gene Ontology terms tested. A method for prediction of possible annotations was applied. Conclusion: Biological interpretation based on gene set analyses dependent on the statistical method used. Methods for predicting the possible...

  13. Biomedical ontologies: toward scientific debate.

    Science.gov (United States)

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  14. Ontology-based content analysis of US patent applications from 2001-2010.

    Science.gov (United States)

    Weber, Lutz; Böhme, Timo; Irmer, Matthias

    2013-01-01

    Ontology-based semantic text analysis methods allow to automatically extract knowledge relationships and data from text documents. In this review, we have applied these technologies for the systematic analysis of pharmaceutical patents. Hierarchical concepts from the knowledge domains of chemical compounds, diseases and proteins were used to annotate full-text US patent applications that deal with pharmacological activities of chemical compounds and filed in the years 2001-2010. Compounds claimed in these applications have been classified into their respective compound classes to review the distribution of scaffold types or general compound classes such as natural products in a time-dependent manner. Similarly, the target proteins and claimed utility of the compounds have been classified and the most relevant were extracted. The method presented allows the discovery of the main areas of innovation as well as emerging fields of patenting activities - providing a broad statistical basis for competitor analysis and decision-making efforts.

  15. Research on Ontology Modeling of Steel Manufacturing Process Based on Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Bao Qing

    2016-01-01

    Full Text Available As an important method that steel industries ride the Indutrie 4.0 wave, knowledge management is expected to be versatile, effective and intelligent. Mechanism modeling difficulties, numerous influencing factors and complex industrial chains hinder the development of knowledge and information integration. Using data potentials, big data analysis can be an effective way to deal with knowledge acquisition as it solves the inaccuracy and imperfection mechanism modeling may lead to. This paper proposes a big data knowledge management system(BDAKMS adhering to data driven, intelligent analysis, service publication, dynamic update principle which can effectively extracts knowledge from mass data. Then, ontology modeling gives the knowledge unified descriptions as well as inference details combined with semantic web techniques.

  16. Investigating Correlation between Protein Sequence Similarity and Semantic Similarity Using Gene Ontology Annotations.

    Science.gov (United States)

    Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir

    2018-01-01

    Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.

  17. An ontology-driven semantic mash-up of gene and biological pathway information: Application to the domain of nicotine dependence

    Science.gov (United States)

    Sahoo, Satya S.; Bodenreider, Olivier; Rutter, Joni L.; Skinner, Karen J.; Sheth, Amit P.

    2008-01-01

    Objectives This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. Methods We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Results Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Conclusion Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. Resource page http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/ PMID:18395495

  18. Mining rare associations between biological ontologies.

    Science.gov (United States)

    Benites, Fernando; Simon, Svenja; Sapozhnikova, Elena

    2014-01-01

    The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

  19. Mining rare associations between biological ontologies.

    Directory of Open Access Journals (Sweden)

    Fernando Benites

    Full Text Available The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

  20. OmniSearch: a semantic search system based on the Ontology for MIcroRNA Target (OMIT) for microRNA-target gene interaction data.

    Science.gov (United States)

    Huang, Jingshan; Gutierrez, Fernando; Strachan, Harrison J; Dou, Dejing; Huang, Weili; Smith, Barry; Blake, Judith A; Eilbeck, Karen; Natale, Darren A; Lin, Yu; Wu, Bin; Silva, Nisansa de; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming; Ruttenberg, Alan

    2016-01-01

    As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.

  1. Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes.

    Directory of Open Access Journals (Sweden)

    José Cuenca

    Full Text Available Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR to map a genome region linked to Alternaria brown spot (ABS resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.

  2. Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes.

    Science.gov (United States)

    Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis

    2013-01-01

    Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.

  3. Ontological Planning

    Directory of Open Access Journals (Sweden)

    Ahmet Alkan

    2017-12-01

    • Is it possible to redefine ontology within the hierarchical structure of planning? We are going to seek answers to some of these questions within the limited scope of this paper and we are going to offer the rest for discussion by just asking them. In light of these assessments, drawing attention, based on ontological knowledge relying on the wholeness of universe, to the question, on macro level planning, of whether or not the ontological realities of man, energy and movements of thinking can provide macro data for planning on a universal level as important factors affecting mankind will be one of the limited objectives of the paper.

  4. Object-based image analysis and data mining for building ontology of informal urban settlements

    Science.gov (United States)

    Khelifa, Dejrriri; Mimoun, Malki

    2012-11-01

    During recent decades, unplanned settlements have been appeared around the big cities in most developing countries and as consequence, numerous problems have emerged. Thus the identification of different kinds of settlements is a major concern and challenge for authorities of many countries. Very High Resolution (VHR) Remotely Sensed imagery has proved to be a very promising way to detect different kinds of settlements, especially through the using of new objectbased image analysis (OBIA). The most important key is in understanding what characteristics make unplanned settlements differ from planned ones, where most experts characterize unplanned urban areas by small building sizes at high densities, no orderly road arrangement and Lack of green spaces. Knowledge about different kinds of settlements can be captured as a domain ontology that has the potential to organize knowledge in a formal, understandable and sharable way. In this work we focus on extracting knowledge from VHR images and expert's knowledge. We used an object based strategy by segmenting a VHR image taken over urban area into regions of homogenous pixels at adequate scale level and then computing spectral, spatial and textural attributes for each region to create objects. A genetic-based data mining was applied to generate high predictive and comprehensible classification rules based on selected samples from the OBIA result. Optimized intervals of relevant attributes are found, linked with land use types for forming classification rules. The unplanned areas were separated from the planned ones, through analyzing of the line segments detected from the input image. Finally a simple ontology was built based on the previous processing steps. The approach has been tested to VHR images of one of the biggest Algerian cities, that has grown considerably in recent decades.

  5. A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.

    Science.gov (United States)

    Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo

    2015-07-01

    In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.

  6. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  7. Knowledge retrieval from PubMed abstracts and electronic medical records with the Multiple Sclerosis Ontology.

    Science.gov (United States)

    Malhotra, Ashutosh; Gündel, Michaela; Rajput, Abdul Mateen; Mevissen, Heinz-Theodor; Saiz, Albert; Pastor, Xavier; Lozano-Rubi, Raimundo; Martinez-Lapiscina, Elena H; Martinez-Lapsicina, Elena H; Zubizarreta, Irati; Mueller, Bernd; Kotelnikova, Ekaterina; Toldo, Luca; Hofmann-Apitius, Martin; Villoslada, Pablo

    2015-01-01

    In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS). The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology. Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports. The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.

  8. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  9. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2017-01-01

    Full Text Available Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.

  10. The use of semantic similarity measures for optimally integrating heterogeneous Gene Ontology data from large scale annotation pipelines

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    2014-08-01

    Full Text Available With the advancement of new high throughput sequencing technologies, there has been an increase in the number of genome sequencing projects worldwide, which has yielded complete genome sequences of human, animals and plants. Subsequently, several labs have focused on genome annotation, consisting of assigning functions to gene products, mostly using Gene Ontology (GO terms. As a consequence, there is an increased heterogeneity in annotations across genomes due to different approaches used by different pipelines to infer these annotations and also due to the nature of the GO structure itself. This makes a curator's task difficult, even if they adhere to the established guidelines for assessing these protein annotations. Here we develop a genome-scale approach for integrating GO annotations from different pipelines using semantic similarity measures. We used this approach to identify inconsistencies and similarities in functional annotations between orthologs of human and Drosophila melanogaster, to assess the quality of GO annotations derived from InterPro2GO mappings compared to manually annotated GO annotations for the Drosophila melanogaster proteome from a FlyBase dataset and human, and to filter GO annotation data for these proteomes. Results obtained indicate that an efficient integration of GO annotations eliminates redundancy up to 27.08 and 22.32% in the Drosophila melanogaster and human GO annotation datasets, respectively. Furthermore, we identified lack of and missing annotations for some orthologs, and annotation mismatches between InterPro2GO and manual pipelines in these two proteomes, thus requiring further curation. This simplifies and facilitates tasks of curators in assessing protein annotations, reduces redundancy and eliminates inconsistencies in large annotation datasets for ease of comparative functional genomics.

  11. The Plasmodium falciparum Sexual Development Transcriptome: A Microarray Analysis using Ontology-Based Pattern Identification

    National Research Council Canada - National Science Library

    Young, Jason A; Fivelman, Quinton L; Blair, Peter L; de la Vega, Patricia; Le Roch, Karine G; Zhou, Yingyao; Carucci, Daniel J; Baker, David A; Winzeler, Elizabeth A

    2005-01-01

    ... a full-genome high-density oligonucleotide microarray. The interpretation of this transcriptional data was aided by applying a novel knowledge-based data-mining algorithm termed ontology-based pattern identification (OPI...

  12. Model-based gene set analysis for Bioconductor.

    Science.gov (United States)

    Bauer, Sebastian; Robinson, Peter N; Gagneur, Julien

    2011-07-01

    Gene Ontology and other forms of gene-category analysis play a major role in the evaluation of high-throughput experiments in molecular biology. Single-category enrichment analysis procedures such as Fisher's exact test tend to flag large numbers of redundant categories as significant, which can complicate interpretation. We have recently developed an approach called model-based gene set analysis (MGSA), that substantially reduces the number of redundant categories returned by the gene-category analysis. In this work, we present the Bioconductor package mgsa, which makes the MGSA algorithm available to users of the R language. Our package provides a simple and flexible application programming interface for applying the approach. The mgsa package has been made available as part of Bioconductor 2.8. It is released under the conditions of the Artistic license 2.0. peter.robinson@charite.de; julien.gagneur@embl.de.

  13. SUGOI: automated ontology interchangeability

    CSIR Research Space (South Africa)

    Khan, ZC

    2015-04-01

    Full Text Available A foundational ontology can solve interoperability issues among the domain ontologies aligned to it. However, several foundational ontologies have been developed, hence such interoperability issues exist among domain ontologies. The novel SUGOI tool...

  14. Towards a social ontology of the body in Butler: analysis and limits

    Directory of Open Access Journals (Sweden)

    Asunción Oliva Portolés

    2015-12-01

    Full Text Available This article analyzes the historical survival of Platonic soul-body dualism and the historical moment in which it was overcome, allowing the analysis of the concept of the body without its opposition with the soul or mind. Michel Foucault and the feminist theories of the twentieth century who made the criticism of a subject without "flesh", disembodied, managed to change the perspective of the body. Between feminist theories that have tried the body, I have chosen the work of J. Butler who, in my opinion, surpasses other conceptions such as the thought of D. Haraway and R. Braidotti on this issue. This author, not without questionable elements, has developed throughout his work a theory she calls "a social ontology of the body". However, the element that I find most problematic in Butler is the high degree of abstraction of their proposals and the unfortunate criticism of the concept of patriarchy. So, I put it as opposed to other approaches, such as the ideas of Mohanty and Eisenstein, and particularly the ideas of C. Amorós, that seem to me closer to the needs of feminism in the age of globalization.

  15. Ontology evolution in physics

    OpenAIRE

    Chan, Michael

    2013-01-01

    With the advent of reasoning problems in dynamic environments, there is an increasing need for automated reasoning systems to automatically adapt to unexpected changes in representations. In particular, the automation of the evolution of their ontologies needs to be enhanced without substantially sacrificing expressivity in the underlying representation. Revision of beliefs is not enough, as adding to or removing from beliefs does not change the underlying formal language. Gene...

  16. Individual Building Extraction from TerraSAR-X Images Based on Ontological Semantic Analysis

    Directory of Open Access Journals (Sweden)

    Rong Gui

    2016-08-01

    Full Text Available Accurate building information plays a crucial role for urban planning, human settlements and environmental management. Synthetic aperture radar (SAR images, which deliver images with metric resolution, allow for analyzing and extracting detailed information on urban areas. In this paper, we consider the problem of extracting individual buildings from SAR images based on domain ontology. By analyzing a building scattering model with different orientations and structures, the building ontology model is set up to express multiple characteristics of individual buildings. Under this semantic expression framework, an object-based SAR image segmentation method is adopted to provide homogeneous image objects, and three categories of image object features are extracted. Semantic rules are implemented by organizing image object features, and the individual building objects expression based on an ontological semantic description is formed. Finally, the building primitives are used to detect buildings among the available image objects. Experiments on TerraSAR-X images of Foshan city, China, with a spatial resolution of 1.25 m × 1.25 m, have shown the total extraction rates are above 84%. The results indicate the ontological semantic method can exactly extract flat-roof and gable-roof buildings larger than 250 pixels with different orientations.

  17. An Analysis of the Ontological Causal Relation in Physics and Its Educational Implications

    Science.gov (United States)

    Cheong, Yong Wook

    2016-01-01

    An ontological causal relation is a quantified relation between certain interactions and changes in corresponding properties. Key ideas in physics, such as Newton's second law and the first law of thermodynamics, are representative examples of these relations. In connection with the teaching and learning of these relations, this study investigated…

  18. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  19. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  20. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    Science.gov (United States)

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  1. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis.

    Science.gov (United States)

    Dong, Yang; Li, Ming; Liu, Puzhao; Song, Haiyan; Zhao, Yuping; Shi, Jianrong

    2014-06-01

    Genes involved in immunity and apoptosis were associated with human presbycusis. CCR3 and GILZ played an important role in the pathogenesis of presbycusis, probably through regulating chemokine receptor, T-cell apoptosis, or T-cell activation pathways. To identify genes associated with human presbycusis and explore the molecular mechanism of presbycusis. Hearing function was tested by pure-tone audiometry. Microarray analysis was performed to identify presbycusis-correlated genes by Illumina Human-6 BeadChip using the peripheral blood samples of subjects. To identify biological process categories and pathways associated with presbycusis-correlated genes, bioinformatics analysis was carried out by Gene Ontology Tree Machine (GOTM) and database for annotation, visualization, and integrated discovery (DAVID). Quantitative RT-PCR (qRT-PCR) was used to validate the microarray data. Microarray analysis identified 469 up-regulated genes and 323 down-regulated genes. Both the dominant biological processes by Gene Ontology (GO) analysis and the enriched pathways by Kyoto encyclopedia of genes and genomes (KEGG) and BIOCARTA showed that genes involved in immunity and apoptosis were associated with presbycusis. In addition, CCR3, GILZ, CXCL10, and CX3CR1 genes showed consistent difference between groups for both the gene chip and qRT-PCR data. The differences of CCR3 and GILZ between presbycusis patients and controls were statistically significant (p < 0.05).

  2. Building ontologies with basic formal ontology

    CERN Document Server

    Arp, Robert; Spear, Andrew D.

    2015-01-01

    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now u...

  3. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability.

    Science.gov (United States)

    Diehl, Alexander D; Meehan, Terrence F; Bradford, Yvonne M; Brush, Matthew H; Dahdul, Wasila M; Dougall, David S; He, Yongqun; Osumi-Sutherland, David; Ruttenberg, Alan; Sarntivijai, Sirarat; Van Slyke, Ceri E; Vasilevsky, Nicole A; Haendel, Melissa A; Blake, Judith A; Mungall, Christopher J

    2016-07-04

    The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class 'cell in vitro' have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies-for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the wider scientific community, and we continue to experience increased interest in the

  4. Information and organization in public health institutes: an ontology-based modeling of the entities in the reception-analysis-report phases.

    Science.gov (United States)

    Pozza, Giandomenico; Borgo, Stefano; Oltramari, Alessandro; Contalbrigo, Laura; Marangon, Stefano

    2016-09-08

    Ontologies are widely used both in the life sciences and in the management of public and private companies. Typically, the different offices in an organization develop their own models and related ontologies to capture specific tasks and goals. Although there might be an overall coordination, the use of distinct ontologies can jeopardize the integration of data across the organization since data sharing and reusability are sensitive to modeling choices. The paper provides a study of the entities that are typically found at the reception, analysis and report phases in public institutes in the life science domain. Ontological considerations and techniques are introduced and their implementation exemplified by studying the Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), a public veterinarian institute with different geographical locations and several laboratories. Different modeling issues are discussed like the identification and characterization of the main entities in these phases; the classification of the (types of) data; the clarification of the contexts and the roles of the involved entities. The study is based on a foundational ontology and shows how it can be extended to a comprehensive and coherent framework comprising the different institute's roles, processes and data. In particular, it shows how to use notions lying at the borderline between ontology and applications, like that of knowledge object. The paper aims to help the modeler to understand the core viewpoint of the organization and to improve data transparency. The study shows that the entities at play can be analyzed within a single ontological perspective allowing us to isolate a single ontological framework for the whole organization. This facilitates the development of coherent representations of the entities and related data, and fosters the use of integrated software for data management and reasoning across the company.

  5. GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou's pseudo-amino acid composition.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2013-04-21

    Prediction of protein subcellular localization is an important yet challenging problem. Recently, several computational methods based on Gene Ontology (GO) have been proposed to tackle this problem and have demonstrated superiority over methods based on other features. Existing GO-based methods, however, do not fully use the GO information. This paper proposes an efficient GO method called GOASVM that exploits the information from the GO term frequencies and distant homologs to represent a protein in the general form of Chou's pseudo-amino acid composition. The method first selects a subset of relevant GO terms to form a GO vector space. Then for each protein, the method uses the accession number (AC) of the protein or the ACs of its homologs to find the number of occurrences of the selected GO terms in the Gene Ontology annotation (GOA) database as a means to construct GO vectors for support vector machines (SVMs) classification. With the advantages of GO term frequencies and a new strategy to incorporate useful homologous information, GOASVM can achieve a prediction accuracy of 72.2% on a new independent test set comprising novel proteins that were added to Swiss-Prot six years later than the creation date of the training set. GOASVM and Supplementary materials are available online at http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Formalized Conflicts Detection Based on the Analysis of Multiple Emails: An Approach Combining Statistics and Ontologies

    Science.gov (United States)

    Zakaria, Chahnez; Curé, Olivier; Salzano, Gabriella; Smaïli, Kamel

    In Computer Supported Cooperative Work (CSCW), it is crucial for project leaders to detect conflicting situations as early as possible. Generally, this task is performed manually by studying a set of documents exchanged between team members. In this paper, we propose a full-fledged automatic solution that identifies documents, subjects and actors involved in relational conflicts. Our approach detects conflicts in emails, probably the most popular type of documents in CSCW, but the methods used can handle other text-based documents. These methods rely on the combination of statistical and ontological operations. The proposed solution is decomposed in several steps: (i) we enrich a simple negative emotion ontology with terms occuring in the corpus of emails, (ii) we categorize each conflicting email according to the concepts of this ontology and (iii) we identify emails, subjects and team members involved in conflicting emails using possibilistic description logic and a set of proposed measures. Each of these steps are evaluated and validated on concrete examples. Moreover, this approach's framework is generic and can be easily adapted to domains other than conflicts, e.g. security issues, and extended with operations making use of our proposed set of measures.

  7. Ontology authoring with Forza

    CSIR Research Space (South Africa)

    Keet, CM

    2014-11-01

    Full Text Available Generic, reusable ontology elements, such as a foundational ontology's categories and part-whole relations, are essential for good and interoperable knowledge representation. Ontology developers, which include domain experts and novices, face...

  8. Ontological Surprises

    DEFF Research Database (Denmark)

    Leahu, Lucian

    2016-01-01

    a hybrid approach where machine learning algorithms are used to identify objects as well as connections between them; finally, it argues for remaining open to ontological surprises in machine learning as they may enable the crafting of different relations with and through technologies.......This paper investigates how we might rethink design as the technological crafting of human-machine relations in the context of a machine learning technique called neural networks. It analyzes Google’s Inceptionism project, which uses neural networks for image recognition. The surprising output...

  9. Anatomy Ontology Matching Using Markov Logic Networks

    Directory of Open Access Journals (Sweden)

    Chunhua Li

    2016-01-01

    Full Text Available The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  10. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk

    OpenAIRE

    Cheng, Liang; Jiang, Yue; Ju, Hong; Sun, Jie; Peng, Jiajie; Zhou, Meng; Hu, Yang

    2018-01-01

    Background Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though similarities between terms within each o...

  11. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  12. Semantic knowledge for histopathological image analysis: from ontologies to processing portals and deep learning

    Science.gov (United States)

    Kergosien, Yannick L.; Racoceanu, Daniel

    2017-11-01

    This article presents our vision about the next generation of challenges in computational/digital pathology. The key role of the domain ontology, developed in a sustainable manner (i.e. using reference checklists and protocols, as the living semantic repositories), opens the way to effective/sustainable traceability and relevance feedback concerning the use of existing machine learning algorithms, proven to be very performant in the latest digital pathology challenges (i.e. convolutional neural networks). Being able to work in an accessible web-service environment, with strictly controlled issues regarding intellectual property (image and data processing/analysis algorithms) and medical data/image confidentiality is essential for the future. Among the web-services involved in the proposed approach, the living yellow pages in the area of computational pathology seems to be very important in order to reach an operational awareness, validation, and feasibility. This represents a very promising way to go to the next generation of tools, able to bring more guidance to the computer scientists and confidence to the pathologists, towards an effective/efficient daily use. Besides, a consistent feedback and insights will be more likely to emerge in the near future - from these sophisticated machine learning tools - back to the pathologists-, strengthening, therefore, the interaction between the different actors of a sustainable biomedical ecosystem (patients, clinicians, biologists, engineers, scientists etc.). Beside going digital/computational - with virtual slide technology demanding new workflows-, Pathology must prepare for another coming revolution: semantic web technologies now enable the knowledge of experts to be stored in databases, shared through the Internet, and accessible by machines. Traceability, disambiguation of reports, quality monitoring, interoperability between health centers are some of the associated benefits that pathologists were seeking. However

  13. Didactical Ontologies

    Directory of Open Access Journals (Sweden)

    Steffen Mencke, Reiner Dumke

    2008-03-01

    Full Text Available Ontologies are a fundamental concept of theSemantic Web envisioned by Tim Berners-Lee [1]. Togetherwith explicit representation of the semantics of data formachine-accessibility such domain theories are the basis forintelligent next generation applications for the web andother areas of interest [2]. Their application for specialaspects within the domain of e-learning is often proposed tosupport the increasing complexity ([3], [4], [5], [6]. So theycan provide a better support for course generation orlearning scenario description [7]. By the modeling ofdidactics-related expertise and their provision for thecreators of courses many improvements like reuse, rapiddevelopment and of course increased learning performancebecome possible due to the separation from other aspects ofe-learning platforms as already proposed in [8].

  14. An analysis of fundamental concepts in the conceptual framework using ontology technologies

    Directory of Open Access Journals (Sweden)

    Marthinus Cornelius Gerber

    2014-08-01

    Full Text Available The interpretation of financial data obtained from the accounting process for reporting purposes is regulated by financial accounting standards (FAS. The history and mechanisms used for the development of ʻThe Conceptual Framework for Financial Reporting’ (the Conceptual Framework as well as the financial accounting standards resulted in impressive volumes of material that guides modern financial reporting practices, but unfortunately, as is often the case with textual manuscripts, it contains descriptions that are vague, inconsistent or ambiguous. As part of the on-going initiatives to improve International Financial Reporting Standards (IFRS, the International Accounting Standards Board (IASB promotes the development of principle-based IFRS, which aim to address the problems of vagueness, inconsistency and ambiguity. This paper reports on the findings of a design science research (DSR project that, as artefact, developed a first version ontology-based formal language representing the definitions of asset, liability and equity (the fundamental elements of the statement of financial position as defined in the Conceptual Framework through the application of knowledge representation (ontology techniques as used within computing. We suggest that this artefact may assist with addressing vagueness, inconsistencies and ambiguities within the definitions of the Conceptual Framework. Based on our findings, we include suggestions for the further development of a formal language and approach to assist the formulation of the Conceptual Framework. The project focuses on the Conceptual Framework for Financial Reporting after the incorporation of Phase A in the convergence project between the Financial Accounting Standards Board (FASB and IASB.

  15. Large-scale gene function analysis with the PANTHER classification system.

    Science.gov (United States)

    Mi, Huaiyu; Muruganujan, Anushya; Casagrande, John T; Thomas, Paul D

    2013-08-01

    The PANTHER (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs). Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways. The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests. It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. In the 2013 release of PANTHER (v.8.0), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the system's analytical capability. This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system.

  16. QTL global meta-analysis: are trait determining genes clustered?

    Directory of Open Access Journals (Sweden)

    Adelson David L

    2009-04-01

    Full Text Available Abstract Background A key open question in biology is if genes are physically clustered with respect to their known functions or phenotypic effects. This is of particular interest for Quantitative Trait Loci (QTL where a QTL region could contain a number of genes that contribute to the trait being measured. Results We observed a significant increase in gene density within QTL regions compared to non-QTL regions and/or the entire bovine genome. By grouping QTL from the Bovine QTL Viewer database into 8 categories of non-redundant regions, we have been able to analyze gene density and gene function distribution, based on Gene Ontology (GO with relation to their location within QTL regions, outside of QTL regions and across the entire bovine genome. We identified a number of GO terms that were significantly over represented within particular QTL categories. Furthermore, select GO terms expected to be associated with the QTL category based on common biological knowledge have also proved to be significantly over represented in QTL regions. Conclusion Our analysis provides evidence of over represented GO terms in QTL regions. This increased GO term density indicates possible clustering of gene functions within QTL regions of the bovine genome. Genes with similar functions may be grouped in specific locales and could be contributing to QTL traits. Moreover, we have identified over-represented GO terminology that from a biological standpoint, makes sense with respect to QTL category type.

  17. Onto-clust--a methodology for combining clustering analysis and ontological methods for identifying groups of comorbidities for developmental disorders.

    Science.gov (United States)

    Peleg, Mor; Asbeh, Nuaman; Kuflik, Tsvi; Schertz, Mitchell

    2009-02-01

    Children with developmental disorders usually exhibit multiple developmental problems (comorbidities). Hence, such diagnosis needs to revolve on developmental disorder groups. Our objective is to systematically identify developmental disorder groups and represent them in an ontology. We developed a methodology that combines two methods (1) a literature-based ontology that we created, which represents developmental disorders and potential developmental disorder groups, and (2) clustering for detecting comorbid developmental disorders in patient data. The ontology is used to interpret and improve clustering results and the clustering results are used to validate the ontology and suggest directions for its development. We evaluated our methodology by applying it to data of 1175 patients from a child development clinic. We demonstrated that the ontology improves clustering results, bringing them closer to an expert generated gold-standard. We have shown that our methodology successfully combines an ontology with a clustering method to support systematic identification and representation of developmental disorder groups.

  18. Formal Ontologies and Uncertainty. In Geographical Knowledge

    Directory of Open Access Journals (Sweden)

    Matteo Caglioni

    2014-05-01

    Full Text Available Formal ontologies have proved to be a very useful tool to manage interoperability among data, systems and knowledge. In this paper we will show how formal ontologies can evolve from a crisp, deterministic framework (ontologies of hard knowledge to new probabilistic, fuzzy or possibilistic frameworks (ontologies of soft knowledge. This can considerably enlarge the application potential of formal ontologies in geographic analysis and planning, where soft knowledge is intrinsically linked to the complexity of the phenomena under study.  The paper briefly presents these new uncertainty-based formal ontologies. It then highlights how ontologies are formal tools to define both concepts and relations among concepts. An example from the domain of urban geography finally shows how the cause-to-effect relation between household preferences and urban sprawl can be encoded within a crisp, a probabilistic and a possibilistic ontology, respectively. The ontology formalism will also determine the kind of reasoning that can be developed from available knowledge. Uncertain ontologies can be seen as the preliminary phase of more complex uncertainty-based models. The advantages of moving to uncertainty-based models is evident: whether it is in the analysis of geographic space or in decision support for planning, reasoning on geographic space is almost always reasoning with uncertain knowledge of geographic phenomena.

  19. How Ontologies are Made: Studying the Hidden Social Dynamics Behind Collaborative Ontology Engineering Projects.

    Science.gov (United States)

    Strohmaier, Markus; Walk, Simon; Pöschko, Jan; Lamprecht, Daniel; Tudorache, Tania; Nyulas, Csongor; Musen, Mark A; Noy, Natalya F

    2013-05-01

    Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product . In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.

  20. How Ontologies are Made: Studying the Hidden Social Dynamics Behind Collaborative Ontology Engineering Projects

    Science.gov (United States)

    Strohmaier, Markus; Walk, Simon; Pöschko, Jan; Lamprecht, Daniel; Tudorache, Tania; Nyulas, Csongor; Musen, Mark A.; Noy, Natalya F.

    2013-01-01

    Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches. PMID:24311994

  1. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    Science.gov (United States)

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Semantic integration of gene expression analysis tools and data sources using software connectors

    Science.gov (United States)

    2013-01-01

    Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools

  3. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Information as signs: A semiotic analysis of the information concept, determining it's ontological and epistemological commitments

    DEFF Research Database (Denmark)

    Thellefsen, Martin Muderspach; Thellefsen, Torkild Leo; Sørensen, Bent

    2018-01-01

    Purpose The purpose of this paper is to formulate an analytical framework for the information concept based on the semiotic theory. Design/methodology/approach The paper is motivated by the apparent controversy that still surrounds the information concept. Information, being a key concept within...... LIS, suffers from being anchored in various incompatible theories. The paper suggests that information is signs, and it demonstrates how the concept of information can be understood within C.S. Peirce’s phenomenologically rooted semiotic. Hence, from there, certain ontological conditions as well...... epistemological consequences of the information concept can be deduced. Findings The paper argues that an understanding of information, as either objective or subjective/discursive, leads to either objective reductionism and signal processing, that fails to explain how information becomes meaningful at all...

  5. LEGO: a novel method for gene set over-representation analysis by incorporating network-based gene weights.

    Science.gov (United States)

    Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong

    2016-01-11

    Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.

  6. ONTOGRABBING: Extracting Information from Texts Using Generative Ontologies

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer; Szymczak, Bartlomiej Antoni; Jensen, P.A.

    2009-01-01

    We describe principles for extracting information from texts using a so-called generative ontology in combination with syntactic analysis. Generative ontologies are introduced as semantic domains for natural language phrases. Generative ontologies extend ordinary finite ontologies with rules...... for producing recursively shaped terms representing the ontological content (ontological semantics) of NL noun phrases and other phrases. We focus here on achieving a robust, often only partial, ontology-driven parsing of and ascription of semantics to a sentence in the text corpus. The aim of the ontological...... analysis is primarily to identify paraphrases, thereby achieving a search functionality beyond mere keyword search with synsets. We further envisage use of the generative ontology as a phrase-based rather than word-based browser into text corpora....

  7. Function analysis of unknown genes

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.

    2002-01-01

      This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... to describe different aspects of molecular biology of the cell, to study changes that occur in the cell due to overexpression or deletion of a gene and to identify various protein modifications. The biological questions and the results of the described studies show the diversity of the information that can...... genes and proteins. It reports the first global proteome database collecting 36 yeast single gene deletion mutants and selecting over 650 differences between analysed mutants and the wild type strain. The obtained results show that two-dimensional gel electrophoresis and mass spectrometry based proteome...

  8. Gene set analysis for GWAS

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette

    2014-01-01

    Abstract We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the co...

  9. Comparing Relational and Ontological Triple Stores in Healthcare Domain

    Directory of Open Access Journals (Sweden)

    Ozgu Can

    2017-01-01

    Full Text Available Today’s technological improvements have made ubiquitous healthcare systems that converge into smart healthcare applications in order to solve patients’ problems, to communicate effectively with patients, and to improve healthcare service quality. The first step of building a smart healthcare information system is representing the healthcare data as connected, reachable, and sharable. In order to achieve this representation, ontologies are used to describe the healthcare data. Combining ontological healthcare data with the used and obtained data can be maintained by storing the entire health domain data inside big data stores that support both relational and graph-based ontological data. There are several big data stores and different types of big data sets in the healthcare domain. The goal of this paper is to determine the most applicable ontology data store for storing the big healthcare data. For this purpose, AllegroGraph and Oracle 12c data stores are compared based on their infrastructural capacity, loading time, and query response times. Hence, healthcare ontologies (GENE Ontology, Gene Expression Ontology (GEXO, Regulation of Transcription Ontology (RETO, Regulation of Gene Expression Ontology (REXO are used to measure the ontology loading time. Thereafter, various queries are constructed and executed for GENE ontology in order to measure the capacity and query response times for the performance comparison between AllegroGraph and Oracle 12c triple stores.

  10. Construction of ontology augmented networks for protein complex prediction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  11. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    Science.gov (United States)

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  12. Digital Gene Expression Profiling Analysis of Aged Mice under Moxibustion Treatment

    Directory of Open Access Journals (Sweden)

    Nan Liu

    2018-01-01

    Full Text Available Aging is closely connected with death, progressive physiological decline, and increased risk of diseases, such as cancer, arteriosclerosis, heart disease, hypertension, and neurodegenerative diseases. It is reported that moxibustion can treat more than 300 kinds of diseases including aging related problems and can improve immune function and physiological functions. The digital gene expression profiling of aged mice with or without moxibustion treatment was investigated and the mechanisms of moxibustion in aged mice were speculated by gene ontology and pathway analysis in the study. Almost 145 million raw reads were obtained by digital gene expression analysis and about 140 million (96.55% were clean reads. Five differentially expressed genes with an adjusted P value 1 were identified between the control and moxibustion groups. They were Gm6563, Gm8116, Rps26-ps1, Nat8f4, and Igkv3-12. Gene ontology analysis was carried out by the GOseq R package and functional annotations of the differentially expressed genes related to translation, mRNA export from nucleus, mRNA transport, nuclear body, acetyltransferase activity, and so on. Kyoto Encyclopedia of Genes and Genomes database was used for pathway analysis and ribosome was the most significantly enriched pathway term.

  13. The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; Overton, James A; Ong, Edison

    2018-01-12

    Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).

  14. DEPONTO: A Reusable Dependability Domain Ontology

    Directory of Open Access Journals (Sweden)

    Teodora Sanislav

    2015-08-01

    Full Text Available This paper proposes a dependability reusable ontology for knowledge representation. The fundamental knowledge related to dependability follows its taxonomy. Thus, this paper gives an analysis of what is the dependability domain ontology andof its components.The dependability domain ontology plays an important role in ensuring the dependability of information systems by providing support for their diagnosis in case of faults, errors and failures.The proposed ontology is used as a dependability framework in two case study Cyber-Physical Systemswhich demonstrate its reusability within this category of systems.

  15. Annotating Evidence Based Clinical Guidelines : A Lightweight Ontology

    NARCIS (Netherlands)

    Hoekstra, R.; de Waard, A.; Vdovjak, R.; Paschke, A.; Burger, A.; Romano, P.; Marshall, M.S.; Splendiani, A.

    2012-01-01

    This paper describes a lightweight ontology for representing annotations of declarative evidence based clinical guidelines. We present the motivation and requirements for this representation, based on an analysis of several guidelines. The ontology provides the means to connect clinical questions

  16. XML, Ontologies, and Their Clinical Applications.

    Science.gov (United States)

    Yu, Chunjiang; Shen, Bairong

    2016-01-01

    The development of information technology has resulted in its penetration into every area of clinical research. Various clinical systems have been developed, which produce increasing volumes of clinical data. However, saving, exchanging, querying, and exploiting these data are challenging issues. The development of Extensible Markup Language (XML) has allowed the generation of flexible information formats to facilitate the electronic sharing of structured data via networks, and it has been used widely for clinical data processing. In particular, XML is very useful in the fields of data standardization, data exchange, and data integration. Moreover, ontologies have been attracting increased attention in various clinical fields in recent years. An ontology is the basic level of a knowledge representation scheme, and various ontology repositories have been developed, such as Gene Ontology and BioPortal. The creation of these standardized repositories greatly facilitates clinical research in related fields. In this chapter, we discuss the basic concepts of XML and ontologies, as well as their clinical applications.

  17. Leave-two-out stability of ontology learning algorithm

    International Nuclear Information System (INIS)

    Wu, Jianzhang; Yu, Xiao; Zhu, Linli; Gao, Wei

    2016-01-01

    Ontology is a semantic analysis and calculation model, which has been applied to many subjects. Ontology similarity calculation and ontology mapping are employed as machine learning approaches. The purpose of this paper is to study the leave-two-out stability of ontology learning algorithm. Several leave-two-out stabilities are defined in ontology learning setting and the relationship among these stabilities are presented. Furthermore, the results manifested reveal that leave-two-out stability is a sufficient and necessary condition for ontology learning algorithm.

  18. Towards refactoring the Molecular Function Ontology with a UML profile for function modeling.

    Science.gov (United States)

    Burek, Patryk; Loebe, Frank; Herre, Heinrich

    2017-10-04

    Gene Ontology (GO) is the largest resource for cataloging gene products. This resource grows steadily and, naturally, this growth raises issues regarding the structure of the ontology. Moreover, modeling and refactoring large ontologies such as GO is generally far from being simple, as a whole as well as when focusing on certain aspects or fragments. It seems that human-friendly graphical modeling languages such as the Unified Modeling Language (UML) could be helpful in connection with these tasks. We investigate the use of UML for making the structural organization of the Molecular Function Ontology (MFO), a sub-ontology of GO, more explicit. More precisely, we present a UML dialect, called the Function Modeling Language (FueL), which is suited for capturing functions in an ontologically founded way. FueL is equipped, among other features, with language elements that arise from studying patterns of subsumption between functions. We show how to use this UML dialect for capturing the structure of molecular functions. Furthermore, we propose and discuss some refactoring options concerning fragments of MFO. FueL enables the systematic, graphical representation of functions and their interrelations, including making information explicit that is currently either implicit in MFO or is mainly captured in textual descriptions. Moreover, the considered subsumption patterns lend themselves to the methodical analysis of refactoring options with respect to MFO. On this basis we argue that the approach can increase the comprehensibility of the structure of MFO for humans and can support communication, for example, during revision and further development.

  19. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  20. Assessment Applications of Ontologies.

    Science.gov (United States)

    Chung, Gregory K. W. K.; Niemi, David; Bewley, William L.

    This paper discusses the use of ontologies and their applications to assessment. An ontology provides a shared and common understanding of a domain that can be communicated among people and computational systems. The ontology captures one or more experts' conceptual representation of a domain expressed in terms of concepts and the relationships…

  1. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  2. Mapping between the OBO and OWL ontology languages.

    Science.gov (United States)

    Tirmizi, Syed Hamid; Aitken, Stuart; Moreira, Dilvan A; Mungall, Chris; Sequeda, Juan; Shah, Nigam H; Miranker, Daniel P

    2011-03-07

    Ontologies are commonly used in biomedicine to organize concepts to describe domains such as anatomies, environments, experiment, taxonomies etc. NCBO BioPortal currently hosts about 180 different biomedical ontologies. These ontologies have been mainly expressed in either the Open Biomedical Ontology (OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene Ontology, and supports most of the biomedical ontology content. In comparison, OWL is a Semantic Web language, and is supported by the World Wide Web consortium together with integral query languages, rule languages and distributed infrastructure for information interchange. These features are highly desirable for the OBO content as well. A convenient method for leveraging these features for OBO ontologies is by transforming OBO ontologies to OWL. We have developed a methodology for translating OBO ontologies to OWL using the organization of the Semantic Web itself to guide the work. The approach reveals that the constructs of OBO can be grouped together to form a similar layer cake. Thus we were able to decompose the problem into two parts. Most OBO constructs have easy and obvious equivalence to a construct in OWL. A small subset of OBO constructs requires deeper consideration. We have defined transformations for all constructs in an effort to foster a standard common mapping between OBO and OWL. Our mapping produces OWL-DL, a Description Logics based subset of OWL with desirable computational properties for efficiency and correctness. Our Java implementation of the mapping is part of the official Gene Ontology project source. Our transformation system provides a lossless roundtrip mapping for OBO ontologies, i.e. an OBO ontology may be translated to OWL and back without loss of knowledge. In addition, it provides a roadmap for bridging the gap between the two ontology languages in order to enable the use of ontology content in a language independent manner.

  3. Análisis de terminologías de salud para su utilización como ontologías computacionales en los sistemas de información clínicos Analysis of health terminologies for use as ontologies in healthcare information systems

    Directory of Open Access Journals (Sweden)

    Maria Teresa Romá-Ferri

    2008-10-01

    limitations imposed by standardized terms. The objective of this study was to establish the extent to which terminologies could be used for the design of ontologies, which could be serve as an aid to resolve problems such as semantic interoperability and knowledge reusability in healthcare information systems. Methods: To determine the extent to which terminologies could be used as ontologies, six of the most important terminologies in clinical, epidemiologic, documentation and administrative-economic contexts were analyzed. The following characteristics were verified: conceptual coverage, hierarchical structure, conceptual granularity of the categories, conceptual relations, and the language used for conceptual representation. Results: MeSH, DeCS and UMLS ontologies were considered lightweight. The main differences among these ontologies concern conceptual specification, the types of relation and the restrictions among the associated concepts. SNOMED and GALEN ontologies have declaratory formalism, based on logical descriptions. These ontologies include explicit qualities and show greater restrictions among associated concepts and rule combinations and were consequently considered as heavyweight. Conclusions: Analysis of the declared representation of the terminologies shows the extent to which they could be reused as ontologies. Their degree of usability depends on whether the aim is for healthcare information systems to solve problems of semantic interoperability (lightweight ontologies or to reuse the systems' knowledge as an aid to decision making (heavyweight ontologies and for non-structured information retrieval, extraction, and classification.

  4. Ontologies vs. Classification Systems

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2009-01-01

    What is an ontology compared to a classification system? Is a taxonomy a kind of classification system or a kind of ontology? These are questions that we meet when working with people from industry and public authorities, who need methods and tools for concept clarification, for developing meta...... data sets or for obtaining advanced search facilities. In this paper we will present an attempt at answering these questions. We will give a presentation of various types of ontologies and briefly introduce terminological ontologies. Furthermore we will argue that classification systems, e.g. product...... classification systems and meta data taxonomies, should be based on ontologies....

  5. Biclustering methods: biological relevance and application in gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Ali Oghabian

    Full Text Available DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering methods where genes (or respectively samples are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes. An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1 we examine how well the considered (biclustering methods differentiate various sample types; (2 we evaluate how well the groups of genes discovered by the (biclustering methods are annotated with similar Gene Ontology categories; (3 we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4 we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.

  6. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.

    Science.gov (United States)

    Brown, William M

    2015-12-01

    Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where

  7. Digital gene expression analysis of Microsporum canis exposed to berberine chloride.

    Directory of Open Access Journals (Sweden)

    Chen-Wen Xiao

    Full Text Available Berberine, a natural isoquinoline alkaloid of many medicinal herbs, has an active function against a variety of microbial infections including Microsporum canis (M. canis. However, the underlying mechanisms are poorly understood. To study the effect of berberine chloride on M. canis infection, a Digital Gene Expression (DGE tag profiling was constructed and a transcriptome analysis of the M. canis cellular responses upon berberine treatment was performed. Illumina/Hisseq sequencing technique was used to generate the data of gene expression profile, and the following enrichment analysis of Gene Ontology (GO and Pathway function were conducted based on the data of transcriptome. The results of DGE showed that there were 8476945, 14256722, 7708575, 5669955, 6565513 and 9303468 tags respectively, which was obtained from M. canis incubated with berberine or control DMSO. 8,783 genes were totally mapped, and 1,890 genes have shown significant changes between the two groups. 1,030 genes were up-regulated and 860 genes were down-regulated (P<0.05 in berberine treated group compared to the control group. Besides, twenty-three GO terms were identified by Gene Ontology functional enrichment analysis, such as calcium-transporting ATPase activity, 2-oxoglutarate metabolic process, valine catabolic process, peroxisome and unfolded protein binding. Pathway significant enrichment analysis indicated 6 signaling pathways that are significant, including steroid biosynthesis, steroid hormone biosynthesis, Parkinson's disease, 2,4-Dichlorobenzoate degradation, and tropane, piperidine and Isoquinoline alkaloid biosynthesis. Among these, eleven selected genes were further verified by qRT-PCR. Our findings provide a comprehensive view on the gene expression profile of M. canis upon berberine treatment, and shed light on its complicated effects on M. canis.

  8. Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  9. Automating Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  10. Uniform approximation is more appropriate for Wilcoxon Rank-Sum Test in gene set analysis.

    Directory of Open Access Journals (Sweden)

    Zhide Fang

    Full Text Available Gene set analysis is widely used to facilitate biological interpretations in the analyses of differential expression from high throughput profiling data. Wilcoxon Rank-Sum (WRS test is one of the commonly used methods in gene set enrichment analysis. It compares the ranks of genes in a gene set against those of genes outside the gene set. This method is easy to implement and it eliminates the dichotomization of genes into significant and non-significant in a competitive hypothesis testing. Due to the large number of genes being examined, it is impractical to calculate the exact null distribution for the WRS test. Therefore, the normal distribution is commonly used as an approximation. However, as we demonstrate in this paper, the normal approximation is problematic when a gene set with relative small number of genes is tested against the large number of genes in the complementary set. In this situation, a uniform approximation is substantially more powerful, more accurate, and less intensive in computation. We demonstrate the advantage of the uniform approximations in Gene Ontology (GO term analysis using simulations and real data sets.

  11. Geo-Ontologies Are Scale Dependent

    Science.gov (United States)

    Frank, A. U.

    2009-04-01

    Philosophers aim at a single ontology that describes "how the world is"; for information systems we aim only at ontologies that describe a conceptualization of reality (Guarino 1995; Gruber 2005). A conceptualization of the world implies a spatial and temporal scale: what are the phenomena, the objects and the speed of their change? Few articles (Reitsma et al. 2003) seem to address that an ontology is scale specific (but many articles indicate that ontologies are scale-free in another sense namely that they are scale free in the link densities between concepts). The scale in the conceptualization can be linked to the observation process. The extent of the support of the physical observation instrument and the sampling theorem indicate what level of detail we find in a dataset. These rules apply for remote sensing or sensor networks alike. An ontology of observations must include scale or level of detail, and concepts derived from observations should carry this relation forward. A simple example: in high resolution remote sensing image agricultural plots and roads between them are shown, at lower resolution, only the plots and not the roads are visible. This gives two ontologies, one with plots and roads, the other with plots only. Note that a neighborhood relation in the two different ontologies also yield different results. References Gruber, T. (2005). "TagOntology - a way to agree on the semantics of tagging data." Retrieved October 29, 2005., from http://tomgruber.org/writing/tagontology-tagcapm-talk.pdf. Guarino, N. (1995). "Formal Ontology, Conceptual Analysis and Knowledge Representation." International Journal of Human and Computer Studies. Special Issue on Formal Ontology, Conceptual Analysis and Knowledge Representation, edited by N. Guarino and R. Poli 43(5/6). Reitsma, F. and T. Bittner (2003). Process, Hierarchy, and Scale. Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information ScienceInternational Conference

  12. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  13. Ranking metrics in gene set enrichment analysis: do they matter?

    Science.gov (United States)

    Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna

    2017-05-12

    There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor results. In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the highest performance in terms of overall sensitivity, overall false positive rate and computational load was established i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size. Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in MATLAB, and is available at https://github.com/ZAEDPolSl/MrGSEA . Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally distributed genes is high, using Baumgartner

  14. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction.

    Directory of Open Access Journals (Sweden)

    Xiaolei Liu

    Full Text Available BACKGROUND: Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva and muscular larva (infective L1 larva. Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE: The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein

  15. Bioinformatics Analysis Reveals Genes Involved in the Pathogenesis of Ameloblastoma and Keratocystic Odontogenic Tumor.

    Science.gov (United States)

    Santos, Eliane Macedo Sobrinho; Santos, Hércules Otacílio; Dos Santos Dias, Ivoneth; Santos, Sérgio Henrique; Batista de Paula, Alfredo Maurício; Feltenberger, John David; Sena Guimarães, André Luiz; Farias, Lucyana Conceição

    2016-01-01

    Pathogenesis of odontogenic tumors is not well known. It is important to identify genetic deregulations and molecular alterations. This study aimed to investigate, through bioinformatic analysis, the possible genes involved in the pathogenesis of ameloblastoma (AM) and keratocystic odontogenic tumor (KCOT). Genes involved in the pathogenesis of AM and KCOT were identified in GeneCards. Gene list was expanded, and the gene interactions network was mapped using the STRING software. "Weighted number of links" (WNL) was calculated to identify "leader genes" (highest WNL). Genes were ranked by K-means method and Kruskal-Wallis test was used (Preview data was used to corroborate the bioinformatics data. CDK1 was identified as leader gene for AM. In KCOT group, results show PCNA and TP53 . Both tumors exhibit a power law behavior. Our topological analysis suggested leader genes possibly important in the pathogenesis of AM and KCOT, by clustering coefficient calculated for both odontogenic tumors (0.028 for AM, zero for KCOT). The results obtained in the scatter diagram suggest an important relationship of these genes with the molecular processes involved in AM and KCOT. Ontological analysis for both AM and KCOT demonstrated different mechanisms. Bioinformatics analyzes were confirmed through literature review. These results may suggest the involvement of promising genes for a better understanding of the pathogenesis of AM and KCOT.

  16. Methodology to build medical ontology from textual resources.

    Science.gov (United States)

    Baneyx, Audrey; Charlet, Jean; Jaulent, Marie-Christine

    2006-01-01

    In the medical field, it is now established that the maintenance of unambiguous thesauri goes through ontologies. Our research task is to help pneumologists code acts and diagnoses with a software that represents medical knowledge through a domain ontology. In this paper, we describe our general methodology aimed at knowledge engineers in order to build various types of medical ontologies based on terminology extraction from texts. The hypothesis is to apply natural language processing tools to textual patient discharge summaries to develop the resources needed to build an ontology in pneumology. Results indicate that the joint use of distributional analysis and lexico-syntactic patterns performed satisfactorily for building such ontologies.

  17. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  18. Making methodology a matter of process ontology

    DEFF Research Database (Denmark)

    Revsbæk, Line

    2016-01-01

    This paper presents a practice of doing qualitative interview analysis from the insights of the process ontology in G. H. Mead’s Philosophy of the Present (1932). The paper presents two cases of analyzing in the present while listening to recorded interview material eliciting researcher’s case...... study and otherwise related experiences creating case narratives inclusive of researcher’s reflexive voice. The paper presents an auto-ethnographic approach to data analysis based on process theory ontology....

  19. On the ontology of the elementary particles. A philosophical analysis of the actual elementary-particle physics

    International Nuclear Information System (INIS)

    Brueckner, Thomas Christian

    2015-01-01

    After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.

  20. An Ontological and Epistemological Analysis of the Presentation of the First Law of Thermodynamics in School and University Textbooks

    Science.gov (United States)

    Poblete, Joaquin Castillo; Rojas, Rocio Ogaz; Merino, Cristian; Quiroz, Waldo

    2016-01-01

    Considering the relevance of thermodynamics to the scientific discipline of chemistry and the curriculum of the Western school system, the philosophical system of Mario Bunge, particularly his ontology and epistemology, is used herein to analyze the presentation of the first law of thermodynamics in 15 school and university textbooks. The…

  1. Research on Ontology Modeling of Steel Manufacturing Process Based on Big Data Analysis

    OpenAIRE

    Bao Qing; Wang Jian; Cheng Jin

    2016-01-01

    As an important method that steel industries ride the Indutrie 4.0 wave, knowledge management is expected to be versatile, effective and intelligent. Mechanism modeling difficulties, numerous influencing factors and complex industrial chains hinder the development of knowledge and information integration. Using data potentials, big data analysis can be an effective way to deal with knowledge acquisition as it solves the inaccuracy and imperfection mechanism modeling may lead to. This paper pr...

  2. Interoperability between phenotype and anatomy ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  3. Constructive Ontology Engineering

    Science.gov (United States)

    Sousan, William L.

    2010-01-01

    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…

  4. A UML profile for the OBO relation ontology

    Science.gov (United States)

    2012-01-01

    Background Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions The use of an established and well-known graphical language in the development of biomedical ontologies provides a more

  5. Towards Agile Ontology Maintenance

    Science.gov (United States)

    Luczak-Rösch, Markus

    Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.

  6. Conceptual querying through ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2009-01-01

    is motivated by an obvious need for users to survey huge volumes of objects in query answers. An ontology formalism and a special notion of-instantiated ontology" are introduced. The latter is a structure reflecting the content in the document collection in that; it is a restriction of a general world......We present here ail approach to conceptual querying where the aim is, given a collection of textual database objects or documents, to target an abstraction of the entire database content in terms of the concepts appearing in documents, rather than the documents in the collection. The approach...... knowledge ontology to the concepts instantiated in the collection. The notion of ontology-based similarity is briefly described, language constructs for direct navigation and retrieval of concepts in the ontology are discussed and approaches to conceptual summarization are presented....

  7. Survey on Ontology Mapping

    Science.gov (United States)

    Zhu, Junwu

    To create a sharable semantic space in which the terms from different domain ontology or knowledge system, Ontology mapping become a hot research point in Semantic Web Community. In this paper, motivated factors of ontology mapping research are given firstly, and then 5 dominating theories and methods, such as information accessing technology, machine learning, linguistics, structure graph and similarity, are illustrated according their technology class. Before we analyses the new requirements and takes a long view, the contributions of these theories and methods are summarized in details. At last, this paper suggest to design a group of semantic connector with the ability of migration learning for OWL-2 extended with constrains and the ontology mapping theory of axiom, so as to provide a new methodology for ontology mapping.

  8. Annotating breast cancer microarray samples using ontologies

    Science.gov (United States)

    Liu, Hongfang; Li, Xin; Yoon, Victoria; Clarke, Robert

    2008-01-01

    As the most common cancer among women, breast cancer results from the accumulation of mutations in essential genes. Recent advance in high-throughput gene expression microarray technology has inspired researchers to use the technology to assist breast cancer diagnosis, prognosis, and treatment prediction. However, the high dimensionality of microarray experiments and public access of data from many experiments have caused inconsistencies which initiated the development of controlled terminologies and ontologies for annotating microarray experiments, such as the standard microarray Gene Expression Data (MGED) ontology (MO). In this paper, we developed BCM-CO, an ontology tailored specifically for indexing clinical annotations of breast cancer microarray samples from the NCI Thesaurus. Our research showed that the coverage of NCI Thesaurus is very limited with respect to i) terms used by researchers to describe breast cancer histology (covering 22 out of 48 histology terms); ii) breast cancer cell lines (covering one out of 12 cell lines); and iii) classes corresponding to the breast cancer grading and staging. By incorporating a wider range of those terms into BCM-CO, we were able to indexed breast cancer microarray samples from GEO using BCM-CO and MGED ontology and developed a prototype system with web interface that allows the retrieval of microarray data based on the ontology annotations. PMID:18999108

  9. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population.

    Directory of Open Access Journals (Sweden)

    Kejun Wang

    Full Text Available In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1, seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3, and one for average daily gain (COL27A1. Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection.

  10. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance.

    Science.gov (United States)

    Cui, Licong

    Biomedical ontologies play a vital role in healthcare information management, data integration, and decision support. Ontology quality assurance (OQA) is an indispensable part of the ontology engineering cycle. Most existing OQA methods are based on the knowledge provided within the targeted ontology. This paper proposes a novel cross-ontology analysis method, Cross-Ontology Hierarchical Relation Examination (COHeRE), to detect inconsistencies and possible errors in hierarchical relations across multiple ontologies. COHeRE leverages the Unified Medical Language System (UMLS) knowledge source and the MapReduce cloud computing technique for systematic, large-scale ontology quality assurance work. COHeRE consists of three main steps with the UMLS concepts and relations as the input. First, the relations claimed in source vocabularies are filtered and aggregated for each pair of concepts. Second, inconsistent relations are detected if a concept pair is related by different types of relations in different source vocabularies. Finally, the uncovered inconsistent relations are voted according to their number of occurrences across different source vocabularies. The voting result together with the inconsistent relations serve as the output of COHeRE for possible ontological change. The highest votes provide initial suggestion on how such inconsistencies might be fixed. In UMLS, 138,987 concept pairs were found to have inconsistent relationships across multiple source vocabularies. 40 inconsistent concept pairs involving hierarchical relationships were randomly selected and manually reviewed by a human expert. 95.8% of the inconsistent relations involved in these concept pairs indeed exist in their source vocabularies rather than being introduced by mistake in the UMLS integration process. 73.7% of the concept pairs with suggested relationship were agreed by the human expert. The effectiveness of COHeRE indicates that UMLS provides a promising environment to enhance

  11. Quality control for terms and definitions in ontologies and taxonomies

    Directory of Open Access Journals (Sweden)

    Rüegg Alexander

    2006-04-01

    Full Text Available Abstract Background Ontologies and taxonomies are among the most important computational resources for molecular biology and bioinformatics. A series of recent papers has shown that the Gene Ontology (GO, the most prominent taxonomic resource in these fields, is marked by flaws of certain characteristic types, which flow from a failure to address basic ontological principles. As yet, no methods have been proposed which would allow ontology curators to pinpoint flawed terms or definitions in ontologies in a systematic way. Results We present computational methods that automatically identify terms and definitions which are defined in a circular or unintelligible way. We further demonstrate the potential of these methods by applying them to isolate a subset of 6001 problematic GO terms. By automatically aligning GO with other ontologies and taxonomies we were able to propose alternative synonyms and definitions for some of these problematic terms. This allows us to demonstrate that these other resources do not contain definitions superior to those supplied by GO. Conclusion Our methods provide reliable indications of the quality of terms and definitions in ontologies and taxonomies. Further, they are well suited to assist ontology curators in drawing their attention to those terms that are ill-defined. We have further shown the limitations of ontology mapping and alignment in assisting ontology curators in rectifying problems, thus pointing to the need for manual curation.

  12. Practical ontologies for information professionals

    CERN Document Server

    AUTHOR|(CDS)2071712

    2016-01-01

    Practical Ontologies for Information Professionals provides an introduction to ontologies and their development, an essential tool for fighting back against information overload. The development of robust and widely used ontologies is an increasingly important tool in the fight against information overload. The publishing and sharing of explicit explanations for a wide variety of conceptualizations, in a machine readable format, has the power to both improve information retrieval and identify new knowledge. This new book provides an accessible introduction to the following: * What is an ontology? Defining the concept and why it is increasingly important to the information professional * Ontologies and the semantic web * Existing ontologies, such as SKOS, OWL, FOAF, schema.org, and the DBpedia Ontology * Adopting and building ontologies, showing how to avoid repetition of work and how to build a simple ontology with Protege * Interrogating semantic web ontologies * The future of ontologies and the role of the ...

  13. Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88.

    Science.gov (United States)

    Yao, Lin; Yang, Qian; Song, Jinzhu; Tan, Chong; Guo, Changhong; Wang, Li; Qu, Lianhai; Wang, Yun

    2013-04-01

    Trichoderma harzianum 88, a filamentous soil fungus, is an effective biocontrol agent against several plant pathogens. High-throughput sequencing was used here to study the mycoparasitism mechanisms of T. harzianum 88. Plate confrontation tests of T. harzianum 88 against plant pathogens were conducted, and a cDNA library was constructed from T. harzianum 88 mycelia in the presence of plant pathogen cell walls. Randomly selected transcripts from the cDNA library were compared with eukaryotic plant and fungal genomes. Of the 1,386 transcripts sequenced, the most abundant Gene Ontology (GO) classification group was "physiological process". Differential expression of 19 genes was confirmed by real-time RT-PCR at different mycoparasitism stages against plant pathogens. Gene expression analysis revealed the transcription of various genes involved in mycoparasitism of T. harzianum 88. Our study provides helpful insights into the mechanisms of T. harzianum 88-plant pathogen interactions.

  14. Ontological foundations for evolutionary economics: A Darwinian social ontology

    NARCIS (Netherlands)

    Stoelhorst, J.W.

    2008-01-01

    The purpose of this paper is to further the project of generalized Darwinism by developing a social ontology on the basis of a combined commitment to ontological continuity and ontological commonality. Three issues that are central to the development of a social ontology are addressed: (1) the

  15. A comparative analysis of biclustering algorithms for gene expression data

    Science.gov (United States)

    Eren, Kemal; Deveci, Mehmet; Küçüktunç, Onur; Çatalyürek, Ümit V.

    2013-01-01

    The need to analyze high-dimension biological data is driving the development of new data mining methods. Biclustering algorithms have been successfully applied to gene expression data to discover local patterns, in which a subset of genes exhibit similar expression levels over a subset of conditions. However, it is not clear which algorithms are best suited for this task. Many algorithms have been published in the past decade, most of which have been compared only to a small number of algorithms. Surveys and comparisons exist in the literature, but because of the large number and variety of biclustering algorithms, they are quickly outdated. In this article we partially address this problem of evaluating the strengths and weaknesses of existing biclustering methods. We used the BiBench package to compare 12 algorithms, many of which were recently published or have not been extensively studied. The algorithms were tested on a suite of synthetic data sets to measure their performance on data with varying conditions, such as different bicluster models, varying noise, varying numbers of biclusters and overlapping biclusters. The algorithms were also tested on eight large gene expression data sets obtained from the Gene Expression Omnibus. Gene Ontology enrichment analysis was performed on the resulting biclusters, and the best enrichment terms are reported. Our analyses show that the biclustering method and its parameters should be selected based on the desired model, whether that model allows overlapping biclusters, and its robustness to noise. In addition, we observe that the biclustering algorithms capable of finding more than one model are more successful at capturing biologically relevant clusters. PMID:22772837

  16. Consensus strategy in genes prioritization and combined bioinformatics analysis for preeclampsia pathogenesis.

    Science.gov (United States)

    Tejera, Eduardo; Cruz-Monteagudo, Maykel; Burgos, Germán; Sánchez, María-Eugenia; Sánchez-Rodríguez, Aminael; Pérez-Castillo, Yunierkis; Borges, Fernanda; Cordeiro, Maria Natália Dias Soeiro; Paz-Y-Miño, César; Rebelo, Irene

    2017-08-08

    Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis. We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways. The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism. Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further

  17. Ontology Design Patterns for Combining Pathology and Anatomy: Application to Study Aging and Longevity in Inbred Mouse Strains

    KAUST Repository

    Alghamdi, Sarah M.

    2018-01-01

    To evaluate the generated ontologies, we utilize these in ontology-based data analysis, including ontology enrichment analysis and computation of semantic similarity. We demonstrate that there are significant differences between the four ontologies in different analysis approaches. In addition, when using semantic similarity to confirm the hypothesis that genetically identical mice should develop more similar diseases, the generated combined ontologies lead to significantly better analysis results compared to using each ontology individually. Our results reveal that using ontology design patterns to combine different facets characterizing a dataset can improve established analysis methods.

  18. MINER: exploratory analysis of gene interaction networks by machine learning from expression data

    Directory of Open Access Journals (Sweden)

    Sivieng Jane

    2009-12-01

    Full Text Available Abstract Background The reconstruction of gene regulatory networks from high-throughput "omics" data has become a major goal in the modelling of living systems. Numerous approaches have been proposed, most of which attempt only "one-shot" reconstruction of the whole network with no intervention from the user, or offer only simple correlation analysis to infer gene dependencies. Results We have developed MINER (Microarray Interactive Network Exploration and Representation, an application that combines multivariate non-linear tree learning of individual gene regulatory dependencies, visualisation of these dependencies as both trees and networks, and representation of known biological relationships based on common Gene Ontology annotations. MINER allows biologists to explore the dependencies influencing the expression of individual genes in a gene expression data set in the form of decision, model or regression trees, using their domain knowledge to guide the exploration and formulate hypotheses. Multiple trees can then be summarised in the form of a gene network diagram. MINER is being adopted by several of our collaborators and has already led to the discovery of a new significant regulatory relationship with subsequent experimental validation. Conclusion Unlike most gene regulatory network inference methods, MINER allows the user to start from genes of interest and build the network gene-by-gene, incorporating domain expertise in the process. This approach has been used successfully with RNA microarray data but is applicable to other quantitative data produced by high-throughput technologies such as proteomics and "next generation" DNA sequencing.

  19. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics

    Science.gov (United States)

    Cooper, Laurel; Meier, Austin; Laporte, Marie-Angélique; Elser, Justin L; Mungall, Chris; Sinn, Brandon T; Cavaliere, Dario; Carbon, Seth; Dunn, Nathan A; Smith, Barry; Qu, Botong; Preece, Justin; Zhang, Eugene; Todorovic, Sinisa; Gkoutos, Georgios; Doonan, John H; Stevenson, Dennis W; Arnaud, Elizabeth

    2018-01-01

    Abstract The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository. PMID:29186578

  20. Digital gene expression analysis in mice lung with coinfection of influenza and streptococcus pneumoniae.

    Science.gov (United States)

    Luo, Jun; Zhou, Linlin; Wang, Hongren; Qin, Zhen; Xiang, Li; Zhu, Jie; Huang, Xiaojun; Yang, Yuan; Li, Wanyi; Wang, Baoning; Li, Mingyuan

    2017-12-22

    Influenza A virus (IAV) and Streptococcus pneumoniae (SP) are two major upper respiratory tract pathogens that can also cause infection in polarized bronchial epithelial cells to exacerbate disease in coinfected individuals which may result in significant morbidity. However, the underlying molecular mechanism is poorly understood. Here, we employed BALB/c ByJ mice inflected with SP, IAV, IAV followed by SP (IAV+SP) and PBS (Control) as models to survey the global gene expression using digital gene expression (DGE) profiling. We attempt to gain insights into the underlying genetic basis of this synergy at the expression level. Gene expression profiles were obtain using the Illimina/Hisseq sequencing technique, and further analyzed by enrichment analysis of Gene Ontology (GO) and Pathway function. The hematoxylin-eosin (HE) staining revealed different tissue changes in groups during which IAV+SP group showed the most severe cell apoptosis. Compared with Control, a total of 2731, 3221 and 3946 differentially expressed genes (DEGs) were detected in SP, IAV and IAV+SP respectively. Besides, sixty-two GO terms were identified by Gene Ontology functional enrichment analysis, such as cell killing, biological regulation, response to stimulus, signaling, biological adhesion, enzyme regulator activity, receptor regulator activity and translation regulator activity. Pathway significant enrichment analysis indicated the dysregulation of multiple pathways, including apoptosis pathway. Among these, five selected genes were further verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). This study shows that infection with SP, IAV or IAV+SP induces apoptosis with different degrees which might provide insights into the molecular mechanisms to facilitate further research.

  1. Perspectives on ontology learning

    CERN Document Server

    Lehmann, J

    2014-01-01

    Perspectives on Ontology Learning brings together researchers and practitioners from different communities − natural language processing, machine learning, and the semantic web − in order to give an interdisciplinary overview of recent advances in ontology learning.Starting with a comprehensive introduction to the theoretical foundations of ontology learning methods, the edited volume presents the state-of-the-start in automated knowledge acquisition and maintenance. It outlines future challenges in this area with a special focus on technologies suitable for pushing the boundaries beyond the c

  2. GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences.

    Science.gov (United States)

    Cumbie, Jason S; Kimbrel, Jeffrey A; Di, Yanming; Schafer, Daniel W; Wilhelm, Larry J; Fox, Samuel E; Sullivan, Christopher M; Curzon, Aron D; Carrington, James C; Mockler, Todd C; Chang, Jeff H

    2011-01-01

    GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts.

  3. GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences.

    Directory of Open Access Journals (Sweden)

    Jason S Cumbie

    Full Text Available GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts.

  4. Identification of distinct genes associated with seawater aspiration-induced acute lung injury by gene expression profile analysis

    Science.gov (United States)

    Liu, Wei; Pan, Lei; Zhang, Minlong; Bo, Liyan; Li, Congcong; Liu, Qingqing; Wang, Li; Jin, Faguang

    2016-01-01

    Seawater aspiration-induced acute lung injury (ALI) is a syndrome associated with a high mortality rate, which is characterized by severe hypoxemia, pulmonary edema and inflammation. The present study is the first, to the best of our knowledge, to analyze gene expression profiles from a rat model of seawater aspiration-induced ALI. Adult male Sprague-Dawley rats were instilled with seawater (4 ml/kg) in the seawater aspiration-induced ALI group (S group) or with distilled water (4 ml/kg) in the distilled water negative control group (D group). In the blank control group (C group) the rats' tracheae were exposed without instillation. Subsequently, lung samples were examined by histopathology; total protein concentration was detected in bronchoalveolar lavage fluid (BALF); lung wet/dry weight ratios were determined; and transcript expression was detected by gene sequencing analysis. The results demonstrated that histopathological alterations, pulmonary edema and total protein concentrations in BALF were increased in the S group compared with in the D group. Analysis of differential gene expression identified up and downregulated genes in the S group compared with in the D and C groups. A gene ontology analysis of the differential gene expression revealed enrichment of genes in the functional pathways associated with neutrophil chemotaxis, immune and defense responses, and cytokine activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the cytokine-cytokine receptor interaction pathway was one of the most important pathways involved in seawater aspiration-induced ALI. In conclusion, activation of the cytokine-cytokine receptor interaction pathway may have an essential role in the progression of seawater aspiration-induced ALI, and the downregulation of tumor necrosis factor superfamily member 10 may enhance inflammation. Furthermore, IL-6 may be considered a biomarker in seawater aspiration-induced ALI. PMID:27509884

  5. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  6. Impact of Docosahexaenoic Acid on Gene Expression during Osteoclastogenesis in Vitro—A Comprehensive Analysis

    Directory of Open Access Journals (Sweden)

    Ikuo Morita

    2013-08-01

    Full Text Available Polyunsaturated fatty acids (PUFAs, especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.

  7. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis.

    Science.gov (United States)

    Sheng, Sheng; Liao, Cheng-Wu; Zheng, Yu; Zhou, Yu; Xu, Yan; Song, Wen-Miao; He, Peng; Zhang, Jian; Wu, Fu-An

    2017-06-01

    Meteorus pulchricornis is an endoparasitoid wasp which attacks the larvae of various lepidopteran pests. We present the first antennal transcriptome dataset for M. pulchricornis. A total of 48,845,072 clean reads were obtained and 34,967 unigenes were assembled. Of these, 15,458 unigenes showed a significant similarity (E-value <10 -5 ) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to classify the functions of M. pulchricornis antennae genes. We identified 16 putative odorant-binding protein (OBP) genes, eight chemosensory protein (CSP) genes, 99 olfactory receptor (OR) genes, 19 ionotropic receptor (IR) genes and one sensory neuron membrane protein (SNMP) gene. BLASTx best hit results and phylogenetic analysis both indicated that these chemosensory genes were most closely related to those found in other hymenopteran species. Real-time quantitative PCR assays showed that 14 MpulOBP genes were antennae-specific. Of these, MpulOBP6, MpulOBP9, MpulOBP10, MpulOBP12, MpulOBP15 and MpulOBP16 were found to have greater expression in the antennae than in other body parts, while MpulOBP2 and MpulOBP3 were expressed predominately in the legs and abdomens, respectively. These results might provide a foundation for future studies of olfactory genes and chemoreception in M. pulchricornis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A Method for Evaluating and Standardizing Ontologies

    Science.gov (United States)

    Seyed, Ali Patrice

    2012-01-01

    The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative effort for developing interoperable, science-based ontologies. The Basic Formal Ontology (BFO) serves as the upper ontology for the domain-level ontologies of OBO. BFO is an upper ontology of types as conceived by defenders of realism. Among the ontologies developed for OBO…

  9. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  10. The Electronic Notebook Ontology

    OpenAIRE

    Chalk, Stuart

    2016-01-01

    Science is rapidly being brought into the electronic realm and electronic laboratory notebooks (ELN) are a big part of this activity. The representation of the scientific process in the context of an ELN is an important component to making the data recorded in ELNs semantically integrated. This presentation will outline initial developments of an Electronic Notebook Ontology (ENO) that will help tie together the ExptML ontology, HCLS Community Profile data descriptions, and the VIVO-ISF ontol...

  11. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  12. Nuclear component design ontology building based on ASME codes

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    The adoption of ontology analysis in the study of concept knowledge acquisition and representation for the nuclear component design process based on computer-supported cooperative work (CSCW) makes it possible to share and reuse numerous concept knowledge of multi-disciplinary domains. A practical ontology building method is accordingly proposed based on Protege knowledge model in combination with both top-down and bottom-up approaches together with Formal Concept Analysis (FCA). FCA exhibits its advantages in the way it helps establish and improve taxonomic hierarchy of concepts and resolve concept conflict occurred in modeling multi-disciplinary domains. With Protege-3.0 as the ontology building tool, a nuclear component design ontology based ASME codes is developed by utilizing the ontology building method. The ontology serves as the basis to realize concept knowledge sharing and reusing of nuclear component design. (authors)

  13. Ontology Update in the Cognitive Model of Ontology Learning

    Directory of Open Access Journals (Sweden)

    Zhang De-Hai

    2016-01-01

    Full Text Available Ontology has been used in many hot-spot fields, but most ontology construction methods are semiautomatic, and the construction process of ontology is still a tedious and painstaking task. In this paper, a kind of cognitive models is presented for ontology learning which can simulate human being’s learning from world. In this model, the cognitive strategies are applied with the constrained axioms. Ontology update is a key step when the new knowledge adds into the existing ontology and conflict with old knowledge in the process of ontology learning. This proposal designs and validates the method of ontology update based on the axiomatic cognitive model, which include the ontology update postulates, axioms and operations of the learning model. It is proved that these operators subject to the established axiom system.

  14. Gene Circuit Analysis of the Terminal Gap Gene huckebein

    Science.gov (United States)

    Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes

    2009-01-01

    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network. PMID:19876378

  15. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    Science.gov (United States)

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  16. A Regulatory Network Analysis of Orphan Genes in Arabidopsis Thaliana

    Science.gov (United States)

    Singh, Pramesh; Chen, Tianlong; Arendsee, Zebulun; Wurtele, Eve S.; Bassler, Kevin E.

    Orphan genes, which are genes unique to each particular species, have recently drawn significant attention for their potential usefulness for organismal robustness. Their origin and regulatory interaction patterns remain largely undiscovered. Recently, methods that use the context likelihood of relatedness to infer a network followed by modularity maximizing community detection algorithms on the inferred network to find the functional structure of regulatory networks were shown to be effective. We apply improved versions of these methods to gene expression data from Arabidopsis thaliana, identify groups (clusters) of interacting genes with related patterns of expression and analyze the structure within those groups. Focusing on clusters that contain orphan genes, we compare the identified clusters to gene ontology (GO) terms, regulons, and pathway designations and analyze their hierarchical structure. We predict new regulatory interactions and unravel the structure of the regulatory interaction patterns of orphan genes. Work supported by the NSF through Grants DMR-1507371 and IOS-1546858.

  17. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes

    Directory of Open Access Journals (Sweden)

    Elvezia Maria Paraboschi

    2015-09-01

    Full Text Available Abnormalities in RNA metabolism and alternative splicing (AS are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls, followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015 by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  18. Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis.

    Science.gov (United States)

    Shen, Po-Chih; Hour, Ai-Ling; Liu, Li-Yu Daisy

    2017-12-01

    Abiotic stresses are the major limiting factors that affect plant growth, development, yield and final quality. Deciphering the underlying mechanisms of plants' adaptations to stresses using few datasets might overlook the different aspects of stress tolerance in plants, which might be simultaneously and consequently operated in the system. Fortunately, the accumulated microarray expression data offer an opportunity to infer abiotic stress-specific gene expression patterns through meta-analysis. In this study, we propose to combine microarray gene expression data under control, cold, drought, heat, and salt conditions and determined modules (gene sets) of genes highly associated with each other according to the observed expression data. By analyzing the expression variations of the Eigen genes from different conditions, we had identified two, three, and five gene modules as cold-, heat-, and salt-specific modules, respectively. Most of the cold- or heat-specific modules were differentially expressed to a particular degree in shoot samples, while most of the salt-specific modules were differentially expressed to a particular degree in root samples. A gene ontology (GO) analysis on the stress-specific modules suggested that the gene modules exclusively enriched stress-related GO terms and that different genes under the same GO terms may be alternatively disturbed in different conditions. The gene regulatory events for two genes, DREB1A and DEAR1, in the cold-specific gene module had also been validated, as evidenced through the literature search. Our protocols study the specificity of the gene modules that were specifically activated under a particular type of abiotic stress. The biplot can also assist to visualize the stress-specific gene modules. In conclusion, our approach has the potential to further elucidate mechanisms in plants and beneficial for future experiments design under different abiotic stresses.

  19. Empirical Phenomenon, Subjective Construction And Ontological Trught: (An Analysis of Problems of Scientific Explanation and Critical Realism Approach

    Directory of Open Access Journals (Sweden)

    Faramarz Taghilou

    2014-12-01

    Full Text Available Both the positivist and negativist frameworks of explanation are common in this naturalist proposition that unlike the metaphysical philosophy, reality is embedded only in experimental level. Therefore, the scientific explanation of natural and social phenomenon should refer to this experimental level in order to be called meaningful, verifiable and scientific. But, the problem was always that the principle of causality as a necessary condition for every kind of scientific explanation is not logically deductible from induction in experimental level and remains as a metaphysical principle. The principle of experimental objectivity as a condition for the verifiability clause of scientific explanations could not be defended, because the experimentation was always embedded in subjectivity and theory. The Kantian idealists, in contrast, considering the scientific explanation as a mere representation of reality in subjective categories, could not justify the experimental knowledge of reality and the rationality for comparison among theories and paradigms. Critical Realism as an important approach in philosophy of science that relates to the works and thoughts of Roy Bhaskar tries to solve these problems by resorting to its principles of ontological realism, epistemological relativism, and judgmental rationality. Considering and analyzing the scientific explanation’s issues, we have focused here on the answers of the Critical Realism in this case. We will argue that how the Critical Realist interpretation of scientific explanation, the experimental phenomenon, and the subjective construction and ontological reality all reach to a logical coherence with each other.

  20. ``Force,'' ontology, and language

    Science.gov (United States)

    Brookes, David T.; Etkina, Eugenia

    2009-06-01

    We introduce a linguistic framework through which one can interpret systematically students’ understanding of and reasoning about force and motion. Some researchers have suggested that students have robust misconceptions or alternative frameworks grounded in everyday experience. Others have pointed out the inconsistency of students’ responses and presented a phenomenological explanation for what is observed, namely, knowledge in pieces. We wish to present a view that builds on and unifies aspects of this prior research. Our argument is that many students’ difficulties with force and motion are primarily due to a combination of linguistic and ontological difficulties. It is possible that students are primarily engaged in trying to define and categorize the meaning of the term “force” as spoken about by physicists. We found that this process of negotiation of meaning is remarkably similar to that engaged in by physicists in history. In this paper we will describe a study of the historical record that reveals an analogous process of meaning negotiation, spanning multiple centuries. Using methods from cognitive linguistics and systemic functional grammar, we will present an analysis of the force and motion literature, focusing on prior studies with interview data. We will then discuss the implications of our findings for physics instruction.

  1. DeMO: An Ontology for Discrete-event Modeling and Simulation

    Science.gov (United States)

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  2. Gene set analysis using variance component tests.

    Science.gov (United States)

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  3. GeneBins: a database for classifying gene expression data, with application to plant genome arrays

    Directory of Open Access Journals (Sweden)

    Weiller Georg

    2007-03-01

    Full Text Available Abstract Background To interpret microarray experiments, several ontological analysis tools have been developed. However, current tools are limited to specific organisms. Results We developed a bioinformatics system to assign the probe set sequences of any organism to a hierarchical functional classification modelled on KEGG ontology. The GeneBins database currently supports the functional classification of expression data from four Affymetrix arrays; Arabidopsis thaliana, Oryza sativa, Glycine max and Medicago truncatula. An online analysis tool to identify relevant functions is also provided. Conclusion GeneBins provides resources to interpret gene expression results from microarray experiments. It is available at http://bioinfoserver.rsbs.anu.edu.au/utils/GeneBins/

  4. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  5. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    Science.gov (United States)

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  6. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  7. Ontology: ambiguity and accuracy

    Directory of Open Access Journals (Sweden)

    Marcelo Schiessl

    2012-08-01

    Full Text Available Ambiguity is a major obstacle to information retrieval. It is source of several researches in Information Science. Ontologies have been studied in order to solve problems related to ambiguities. Paradoxically, “ontology” term is also ambiguous and it is understood according to the use by the community. Philosophy and Computer Science seems to have the most accentuated difference related to the term sense. The former holds undisputed tradition and authority. The latter, in despite of being quite recent, holds an informal sense, but pragmatic. Information Science acts ranging from philosophical to computational approaches so as to get organized collections based on balance between users’ necessities and available information. The semantic web requires informational cycle automation and demands studies related to ontologies. Consequently, revisiting relevant approaches for the study of ontologies plays a relevant role as a way to provide useful ideas to researchers maintaining philosophical rigor, and convenience provided by computers.

  8. Ontological engineering versus metaphysics

    Science.gov (United States)

    Tataj, Emanuel; Tomanek, Roman; Mulawka, Jan

    2011-10-01

    It has been recognized that ontologies are a semantic version of world wide web and can be found in knowledge-based systems. A recent time survey of this field also suggest that practical artificial intelligence systems may be motivated by this research. Especially strong artificial intelligence as well as concept of homo computer can also benefit from their use. The main objective of this contribution is to present and review already created ontologies and identify the main advantages which derive such approach for knowledge management systems. We would like to present what ontological engineering borrows from metaphysics and what a feedback it can provide to natural language processing, simulations and modelling. The potential topics of further development from philosophical point of view is also underlined.

  9. Gene Expression Analysis in Tubule Interstitial Compartments Reveals Candidate Agents for IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2014-09-01

    Full Text Available Background/Aims: Our aim was to explore the molecular mechanism underlying development of IgA nephropathy and discover candidate agents for IgA nephropathy. Methods: The differentially expressed genes (DEGs between patients with IgA nephropathy and normal controls were identified by the data of GSE35488 downloaded from GEO (Gene Expression Omnibus database. The co-expressed gene pairs among DEGs were screened to construct the gene-gene interaction network. Gene Ontology (GO enrichment analysis was performed to analyze the functions of DEGs. The biologically active small molecules capable of targeting IgA nephropathy were identified using the Connectivity Map (cMap database. Results: A total of 55 genes involved in response to organic substance, transcription factor activity and response to steroid hormone stimulus were identified to be differentially expressed in IgA nephropathy patients compared to healthy individuals. A network with 45 co-expressed gene pairs was constructed. DEGs in the network were significantly enriched in response to organic substance. Additionally, a group of small molecules were identified, such as doxorubicin and thapsigargin. Conclusion: Our work provided a systematic insight in understanding the mechanism of IgA nephropathy. Small molecules such as thapsigargin might be potential candidate agents for the treatment of IgA nephropathy.

  10. Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients.

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Teixeira

    Full Text Available BACKGROUND: Large-scale gene expression profiling of peripheral blood mononuclear cells from Rheumatoid Arthritis (RA patients could provide a molecular description that reflects the contribution of diverse cellular responses associated with this disease. The aim of our study was to identify peripheral blood gene expression profiles for RA patients, using Illumina technology, to gain insights into RA molecular mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: The Illumina Human-6v2 Expression BeadChips were used for a complete genome-wide transcript profiling of peripheral blood mononuclear cells (PBMCs from 18 RA patients and 15 controls. Differential analysis per gene was performed with one-way analysis of variance (ANOVA and P values were adjusted to control the False Discovery Rate (FDR<5%. Genes differentially expressed at significant level between patients and controls were analyzed using Gene Ontology (GO in the PANTHER database to identify biological processes. A differentially expression of 339 Reference Sequence genes (238 down-regulated and 101 up-regulated between the two groups was observed. We identified a remarkably elevated expression of a spectrum of genes involved in Immunity and Defense in PBMCs of RA patients compared to controls. This result is confirmed by GO analysis, suggesting that these genes could be activated systemically in RA. No significant down-regulated ontology groups were found. Microarray data were validated by real time PCR in a set of nine genes showing a high degree of correlation. CONCLUSIONS/SIGNIFICANCE: Our study highlighted several new genes that could contribute in the identification of innovative clinical biomarkers for diagnostic procedures and therapeutic interventions.

  11. A Method for Building Personalized Ontology Summaries

    OpenAIRE

    Queiroz-Sousa, Paulo Orlando; Salgado, Ana Carolina; Pires, Carlos Eduardo

    2013-01-01

    In the context of ontology engineering, the ontology understanding is the basis for its further developmentand reuse. One intuitive eective approach to support ontology understanding is the process of ontology summarizationwhich highlights the most important concepts of an ontology. Ontology summarization identies an excerpt from anontology that contains the most relevant concepts and produces an abridged ontology. In this article, we present amethod for summarizing ontologies that represent ...

  12. Ontology and medical diagnosis.

    Science.gov (United States)

    Bertaud-Gounot, Valérie; Duvauferrier, Régis; Burgun, Anita

    2012-03-01

    Ontology and associated generic tools are appropriate for knowledge modeling and reasoning, but most of the time, disease definitions in existing description logic (DL) ontology are not sufficient to classify patient's characteristics under a particular disease because they do not formalize operational definitions of diseases (association of signs and symptoms=diagnostic criteria). The main objective of this study is to propose an ontological representation which takes into account the diagnostic criteria on which specific patient conditions may be classified under a specific disease. This method needs as a prerequisite a clear list of necessary and sufficient diagnostic criteria as defined for lots of diseases by learned societies. It does not include probability/uncertainty which Web Ontology Language (OWL 2.0) cannot handle. We illustrate it with spondyloarthritis (SpA). Ontology has been designed in Protégé 4.1 OWL-DL2.0. Several kinds of criteria were formalized: (1) mandatory criteria, (2) picking two criteria among several diagnostic criteria, (3) numeric criteria. Thirty real patient cases were successfully classified with the reasoner. This study shows that it is possible to represent operational definitions of diseases with OWL and successfully classify real patient cases. Representing diagnostic criteria as descriptive knowledge (instead of rules in Semantic Web Rule Language or Prolog) allows us to take advantage of tools already available for OWL. While we focused on Assessment of SpondyloArthritis international Society SpA criteria, we believe that many of the representation issues addressed here are relevant to using OWL-DL for operational definition of other diseases in ontology.

  13. Core Semantics for Public Ontologies

    National Research Council Canada - National Science Library

    Suni, Niranjan

    2005-01-01

    ... (schemas or ontologies) with respect to objects. The DARPA Agent Markup Language (DAML) through the use of ontologies provides a very powerful way to describe objects and their relationships to other objects...

  14. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  15. Learning expressive ontologies

    CERN Document Server

    Völker, J

    2009-01-01

    This publication advances the state-of-the-art in ontology learning by presenting a set of novel approaches to the semi-automatic acquisition, refinement and evaluation of logically complex axiomatizations. It has been motivated by the fact that the realization of the semantic web envisioned by Tim Berners-Lee is still hampered by the lack of ontological resources, while at the same time more and more applications of semantic technologies emerge from fast-growing areas such as e-business or life sciences. Such knowledge-intensive applications, requiring large scale reasoning over complex domai

  16. ONTOLOGY IN PHARMACY

    Directory of Open Access Journals (Sweden)

    L. Yu. Babintseva

    2015-05-01

    Full Text Available It’s considered ontological models for formalization of knowledge in pharmacy. There is emphasized the view that the possibility of rapid exchange of information in the pharmaceutical industry, it is necessary to create a single information space. This means not only the establishment of uniform standards for the presentation of information on pharmaceutical groups pharmacotherapeutic classifications, but also the creation of a unified and standardized system for the transfer and renewal of knowledge. It is the organization of information in the ontology helps quickly in the future to build expert systems and applications to work with data.

  17. Summarization by domain ontology navigation

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2013-01-01

    of the subject. In between these two extremes, conceptual summaries encompass selected concepts derived using background knowledge. We address in this paper an approach where conceptual summaries are provided through a conceptualization as given by an ontology. The ontology guiding the summarization can...... be a simple taxonomy or a generative domain ontology. A domain ontology can be provided by a preanalysis of a domain corpus and can be used to condense improved summaries that better reflects the conceptualization of a given domain....

  18. GFVO: the Genomic Feature and Variation Ontology

    KAUST Repository

    Baran, Joachim

    2015-05-05

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  19. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.

    Science.gov (United States)

    Cheng, Liang; Jiang, Yue; Ju, Hong; Sun, Jie; Peng, Jiajie; Zhou, Meng; Hu, Yang

    2018-01-19

    Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though similarities between terms within each ontology have been studied with in silico methods, term similarities across different ontologies were not investigated as deeply. The latest method took advantage of gene functional interaction network (GFIN) to explore such inter-ontology similarities of terms. However, it only used gene interactions and failed to make full use of the connectivity among gene nodes of the network. In addition, all existent methods are particularly designed for GO and their performances on the extended ontology community remain unknown. We proposed a method InfAcrOnt to infer similarities between terms across ontologies utilizing the entire GFIN. InfAcrOnt builds a term-gene-gene network which comprised ontology annotations and GFIN, and acquires similarities between terms across ontologies through modeling the information flow within the network by random walk. In our benchmark experiments on sub-ontologies of GO, InfAcrOnt achieves a high average area under the receiver operating characteristic curve (AUC) (0.9322 and 0.9309) and low standard deviations (1.8746e-6 and 3.0977e-6) in both human and yeast benchmark datasets exhibiting superior performance. Meanwhile, comparisons of InfAcrOnt results and prior knowledge on pair-wise DO-HPO terms and pair-wise DO-GO terms show high correlations. The experiment results show that InfAcrOnt significantly improves the performance of inferring similarities between terms across ontologies in benchmark set.

  20. Using a Foundational Ontology for Reengineering a Software Enterprise Ontology

    Science.gov (United States)

    Perini Barcellos, Monalessa; de Almeida Falbo, Ricardo

    The knowledge about software organizations is considerably relevant to software engineers. The use of a common vocabulary for representing the useful knowledge about software organizations involved in software projects is important for several reasons, such as to support knowledge reuse and to allow communication and interoperability between tools. Domain ontologies can be used to define a common vocabulary for sharing and reuse of knowledge about some domain. Foundational ontologies can be used for evaluating and re-designing domain ontologies, giving to these real-world semantics. This paper presents an evaluating of a Software Enterprise Ontology that was reengineered using the Unified Foundation Ontology (UFO) as basis.

  1. Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes.

    Science.gov (United States)

    Celik Altunoglu, Yasemin; Baloglu, Mehmet Cengiz; Baloglu, Pinar; Yer, Esra Nurten; Kara, Sibel

    2017-01-01

    Late embryogenesis abundant (LEA) proteins are large and diverse group of polypeptides which were first identified during seed dehydration and then in vegetative plant tissues during different stress responses. Now, gene family members of LEA proteins have been detected in various organisms. However, there is no report for this protein family in watermelon and melon until this study. A total of 73 LEA genes from watermelon ( ClLEA ) and 61 LEA genes from melon ( CmLEA ) were identified in this comprehensive study. They were classified into four and three distinct clusters in watermelon and melon, respectively. There was a correlation between gene structure and motif composition among each LEA groups. Segmental duplication played an important role for LEA gene expansion in watermelon. Maximum gene ontology of LEA genes was observed with poplar LEA genes. For evaluation of tissue specific expression patterns of ClLEA and CmLEA genes, publicly available RNA-seq data were analyzed. The expression analysis of selected LEA genes in root and leaf tissues of drought-stressed watermelon and melon were examined using qRT-PCR. Among them, ClLEA - 12 - 17 - 46 genes were quickly induced after drought application. Therefore, they might be considered as early response genes for water limitation conditions in watermelon. In addition, CmLEA - 42 - 43 genes were found to be up-regulated in both tissues of melon under drought stress. Our results can open up new frontiers about understanding of functions of these important family members under normal developmental stages and stress conditions by bioinformatics and transcriptomic approaches.

  2. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    Science.gov (United States)

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. An efficient, large-scale, non-lattice-detection algorithm for exhaustive structural auditing of biomedical ontologies.

    Science.gov (United States)

    Zhang, Guo-Qiang; Xing, Guangming; Cui, Licong

    2018-04-01

    One of the basic challenges in developing structural methods for systematic audition on the quality of biomedical ontologies is the computational cost usually involved in exhaustive sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial lowest common ancestors (LCA) of each pair of concepts in the hierarchical order induced by an ontology. The computation of LCA is a fundamental step for non-lattice approach for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-LCA employs a simple but innovative algorithmic strategy combining topological order and dynamic programming to keep track of non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA achieved an average computation time of 30 and 3 sec per version for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best known approaches. Our algorithm overcomes a fundamental computational barrier in sub-graph based structural analysis of large ontological systems. It enables the implementation of a new breed of structural auditing methods that not only identifies potential problematic areas, but also automatically suggests changes to fix the issues. Such structural auditing methods can lead to more effective tools supporting ontology quality assurance work. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The design ontology

    DEFF Research Database (Denmark)

    Storga, Mario; Andreasen, Mogens Myrup; Marjanovic, Dorian

    2010-01-01

    The article presents the research of the nature, building and practical role of a Design Ontology as a potential framework for the more efficient product development (PD) data-, information- and knowledge- description, -explanation, -understanding and -reusing. In the methodology for development ...

  5. Dahlbeck and Pure Ontology

    Science.gov (United States)

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  6. Audit Validation Using Ontologies

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2015-01-01

    Full Text Available Requirements to increase quality audit processes in enterprises are defined. It substantiates the need for assessment and management audit processes using ontologies. Sets of rules, ways to assess the consistency of rules and behavior within the organization are defined. Using ontologies are obtained qualifications that assess the organization's audit. Elaboration of the audit reports is a perfect algorithm-based activity characterized by generality, determinism, reproducibility, accuracy and a well-established. The auditors obtain effective levels. Through ontologies obtain the audit calculated level. Because the audit report is qualitative structure of information and knowledge it is very hard to analyze and interpret by different groups of users (shareholders, managers or stakeholders. Developing ontology for audit reports validation will be a useful instrument for both auditors and report users. In this paper we propose an instrument for validation of audit reports contain a lot of keywords that calculates indicators, a lot of indicators for each key word there is an indicator, qualitative levels; interpreter who builds a table of indicators, levels of actual and calculated levels.

  7. Biomedicine: an ontological dissection.

    Science.gov (United States)

    Baronov, David

    2008-01-01

    Though ubiquitous across the medical social sciences literature, the term "biomedicine" as an analytical concept remains remarkably slippery. It is argued here that this imprecision is due in part to the fact that biomedicine is comprised of three interrelated ontological spheres, each of which frames biomedicine as a distinct subject of investigation. This suggests that, depending upon one's ontological commitment, the meaning of biomedicine will shift. From an empirical perspective, biomedicine takes on the appearance of a scientific enterprise and is defined as a derivative category of Western science more generally. From an interpretive perspective, biomedicine represents a symbolic-cultural expression whose adherence to the principles of scientific objectivity conceals an ideological agenda. From a conceptual perspective, biomedicine represents an expression of social power that reflects structures of power and privilege within capitalist society. No one perspective exists in isolation and so the image of biomedicine from any one presents an incomplete understanding. It is the mutually-conditioning interrelations between these ontological spheres that account for biomedicine's ongoing development. Thus, the ontological dissection of biomedicine that follows, with particular emphasis on the period of its formal crystallization in the latter nineteenth and early twentieth century, is intended to deepen our understanding of biomedicine as an analytical concept across the medical social sciences literature.

  8. GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.

    Science.gov (United States)

    Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee

    2010-02-01

    Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.

  9. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  10. Community-based Ontology Development, Annotation and Discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia

    Science.gov (United States)

    Ong, Edison; He, Yongqun

    2016-01-01

    Hundreds of biological and biomedical ontologies have been developed to support data standardization, integration and analysis. Although ontologies are typically developed for community usage, community efforts in ontology development are limited. To support ontology visualization, distribution, and community-based annotation and development, we have developed Ontokiwi, an ontology extension to the MediaWiki software. Ontokiwi displays hierarchical classes and ontological axioms. Ontology classes and axioms can be edited and added using Ontokiwi form or MediaWiki source editor. Ontokiwi also inherits MediaWiki features such as Wikitext editing and version control. Based on the Ontokiwi/MediaWiki software package, we have developed Ontobedia, which targets to support community-based development and annotations of biological and biomedical ontologies. As demonstrations, we have loaded the Ontology of Adverse Events (OAE) and the Cell Line Ontology (CLO) into Ontobedia. Our studies showed that Ontobedia was able to achieve expected Ontokiwi features. PMID:27570653

  11. Epistemology and ontology in core ontologies: FOLaw and LRI-Core, two core ontologies for law

    NARCIS (Netherlands)

    Breukers, J.A.P.J.; Hoekstra, R.J.

    2004-01-01

    For more than a decade constructing ontologies for legal domains, we, at the Leibniz Center for Law, felt really the need to develop a core ontology for law that would enable us to re-use the common denominator of the various legal domains. In this paper we present two core ontologies for law. The

  12. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis.

    Science.gov (United States)

    Qiu, Ying-Hua; Deng, Fei-Yan; Li, Min-Jing; Lei, Shu-Feng

    2014-11-01

    Type 1 diabetes mellitus is a serious disorder characterized by destruction of pancreatic β-cells, culminating in absolute insulin deficiency. Genetic factors contribute to the susceptibility of type 1 diabetes mellitus. The aim of the present study was to identify more susceptibility genes of type 1 diabetes mellitus. We carried out an initial gene-based genome-wide association study in a total of 4,075 type 1 diabetes mellitus cases and 2,604 controls by using the Gene-based Association Test using Extended Simes procedure. Furthermore, we carried out replication studies, differential expression analysis and functional annotation clustering analysis to support the significance of the identified susceptibility genes. We identified 452 genes associated with type 1 diabetes mellitus, even after adapting the genome-wide threshold for significance (P diabetes mellitus, which were ignored in single-nucleotide polymorphism-based association analysis and were not previously reported. We found that 53 genes have supportive evidence from replication studies and/or differential expression studies. In particular, seven genes including four non-human leukocyte antigen (HLA) genes (RASIP1, STRN4, BCAR1 and MYL2) are replicated in at least one independent population and also differentially expressed in peripheral blood mononuclear cells or monocytes. Furthermore, the associated genes tend to enrich in immune-related pathways or Gene Ontology project terms. The present results suggest the high power of gene-based association analysis in detecting disease-susceptibility genes. Our findings provide more insights into the genetic basis of type 1 diabetes mellitus.

  13. OAE: The Ontology of Adverse Events.

    Science.gov (United States)

    He, Yongqun; Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Guo, Abra; Zhang, Shelley; Jagannathan, Desikan; Toldo, Luca; Tao, Cui; Smith, Barry

    2014-01-01

    A medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health. The Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term 'adverse event' denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA. OAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of adverse events and of the factors (e

  14. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    International Nuclear Information System (INIS)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance

  15. Development of an Ontology for Periodontitis.

    Science.gov (United States)

    Suzuki, Asami; Takai-Igarashi, Takako; Nakaya, Jun; Tanaka, Hiroshi

    2015-01-01

    In the clinical dentists and periodontal researchers' community, there is an obvious demand for a systems model capable of linking the clinical presentation of periodontitis to underlying molecular knowledge. A computer-readable representation of processes on disease development will give periodontal researchers opportunities to elucidate pathways and mechanisms of periodontitis. An ontology for periodontitis can be a model for integration of large variety of factors relating to a complex disease such as chronic inflammation in different organs accompanied by bone remodeling and immune system disorders, which has recently been referred to as osteoimmunology. Terms characteristic of descriptions related to the onset and progression of periodontitis were manually extracted from 194 review articles and PubMed abstracts by experts in periodontology. We specified all the relations between the extracted terms and constructed them into an ontology for periodontitis. We also investigated matching between classes of our ontology and that of Gene Ontology Biological Process. We developed an ontology for periodontitis called Periodontitis-Ontology (PeriO). The pathological progression of periodontitis is caused by complex, multi-factor interrelationships. PeriO consists of all the required concepts to represent the pathological progression and clinical treatment of periodontitis. The pathological processes were formalized with reference to Basic Formal Ontology and Relation Ontology, which accounts for participants in the processes realized by biological objects such as molecules and cells. We investigated the peculiarity of biological processes observed in pathological progression and medical treatments for the disease in comparison with Gene Ontology Biological Process (GO-BP) annotations. The results indicated that peculiarities of Perio existed in 1) granularity and context dependency of both the conceptualizations, and 2) causality intrinsic to the pathological processes

  16. Benchmarking ontologies: bigger or better?

    Directory of Open Access Journals (Sweden)

    Lixia Yao

    2011-01-01

    Full Text Available A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1 four of the most common medical ontologies with respect to a corpus of medical documents and (2 seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them.

  17. Ontology-based Information Retrieval

    DEFF Research Database (Denmark)

    Styltsvig, Henrik Bulskov

    In this thesis, we will present methods for introducing ontologies in information retrieval. The main hypothesis is that the inclusion of conceptual knowledge such as ontologies in the information retrieval process can contribute to the solution of major problems currently found in information...... retrieval. This utilization of ontologies has a number of challenges. Our focus is on the use of similarity measures derived from the knowledge about relations between concepts in ontologies, the recognition of semantic information in texts and the mapping of this knowledge into the ontologies in use......, as well as how to fuse together the ideas of ontological similarity and ontological indexing into a realistic information retrieval scenario. To achieve the recognition of semantic knowledge in a text, shallow natural language processing is used during indexing that reveals knowledge to the level of noun...

  18. Toward a formal ontology for narrative

    Directory of Open Access Journals (Sweden)

    Ciotti, Fabio

    2016-03-01

    Full Text Available In this paper the rationale and the first draft of a formal ontology for modeling narrative texts are presented. Building on the semiotic and structuralist narratology, and on the work carried out in the late 1980s by Giuseppe Gigliozzi in Italy, the focus of my research are the concepts of character and of narrative world/space. This formal model is expressed in the OWL 2 ontology language. The main reason to adopt a formal modeling approach is that I consider the purely probabilistic-quantitative methods (now widespread in digital literary studies inadequate. An ontology, on one hand provides a tool for the analysis of strictly literary texts. On the other hand (though beyond the scope of the present work, its formalization can also represent a significant contribution towards grounding the application of storytelling methods outside of scholarly contexts.

  19. The Russian Quest for Ontological Security

    DEFF Research Database (Denmark)

    Pedersen, Jonas Gejl

    This paper argues that Russia’s decision to militarily intervene in the Kosovo crisis (1999) arose out of ontological, alongside material, insecurity. Whereas states’ material security essentially deals with national survival, ontological security concerns safety of the ‘national Self......’. By supplementing the existing theories of geopolitics and regime security with the conceptual lens of ontological security, my interpretivist case study demonstrates why Russia, despite great risk and material costs, decided to militarily intervene and traces how Russian senses of ‘national Self’ were...... fundamentally reconstructed during intervention. I find that the anxiety arising from a future scenario of an already weak post-Soviet ‘Russian Self’ gradually being engulfed by a confident ‘Western Self’ played a significant role in Russia’s decision to occupy Slatina airbase. My analysis paradoxically shows...

  20. Modelling the cybersecurity environment using morphological ontology design engineering

    CSIR Research Space (South Africa)

    Jansen van Vuuren, JC

    2015-03-01

    Full Text Available ). This methodology is based on the combination of three different research methods, i.e. design science, general morphological analysis, and ontology based representation. General morphological analysis offers a solution for extracting meaningful information from...

  1. Application of Pareto optimization method for ontology matching in nuclear reactor domain

    International Nuclear Information System (INIS)

    Meenachi, N. Madurai; Baba, M. Sai

    2017-01-01

    This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.

  2. Application of Pareto optimization method for ontology matching in nuclear reactor domain

    Energy Technology Data Exchange (ETDEWEB)

    Meenachi, N. Madurai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Planning and Human Resource Management Div.; Baba, M. Sai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Resources Management Group

    2017-12-15

    This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.

  3. AnGeLi: A Tool for the Analysis of Gene Lists from Fission Yeast

    Directory of Open Access Journals (Sweden)

    Danny A Bitton

    2015-11-01

    Full Text Available Genome-wide assays and screens typically result in large lists of genes or proteins. Enrichments of functional or other biological properties within such lists can provide valuable insights and testable hypotheses. To systematically detect these enrichments can be challenging and time-consuming, because relevant data to compare against query gene lists are spread over many different sources. We have developed AnGeLi (Analysis of Gene Lists, an intuitive, integrated web-tool for comprehensive and customized interrogation of gene lists from the fission yeast, Schizosaccharomyces pombe. AnGeLi searches for significant enrichments among multiple qualitative and quantitative information sources, including gene and phenotype ontologies, genetic and protein interactions, numerous features of genes, transcripts, translation, and proteins such as copy numbers, chromosomal positions, genetic diversity, RNA polymerase II and ribosome occupancy, localization, conservation, half-lives, domains and molecular weight among others, as well as diverse sets of genes that are co-regulated or lead to the same phenotypes when mutated. AnGeLi uses robust statistics which can be tailored to specific needs. It also provides the option to upload user-defined gene sets to compare against the query list. Through an integrated data submission form, AnGeLi encourages the community to contribute additional curated gene lists to further increase the usefulness of this resource and to get the most from the ever increasing large-scale experiments. AnGeLi offers a rigorous yet flexible statistical analysis platform for rich insights into functional enrichments and biological context for query gene lists, thus providing a powerful exploratory tool through which S. pombe researchers can uncover fresh perspectives and unexpected connections from genomic data. AnGeLi is freely available at: www.bahlerlab.info/AnGeLi

  4. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  5. Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome.

    Directory of Open Access Journals (Sweden)

    Fanyue Sun

    Full Text Available BACKGROUND: Catfish has a male-heterogametic (XY sex determination system, but genes involved in gonadogenesis, spermatogenesis, testicular determination, and sex determination are poorly understood. As a first step of understanding the transcriptome of the testis, here, we conducted RNA-Seq analysis using high throughput Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: A total of 269.6 million high quality reads were assembled into 193,462 contigs with a N50 length of 806 bp. Of these contigs, 67,923 contigs had hits to a set of 25,307 unigenes, including 167 unique genes that had not been previously identified in catfish. A meta-analysis of expressed genes in the testis and in the gynogen (double haploid female allowed the identification of 5,450 genes that are preferentially expressed in the testis, providing a pool of putative male-biased genes. Gene ontology and annotation analysis suggested that many of these male-biased genes were involved in gonadogenesis, spermatogenesis, testicular determination, gametogenesis, gonad differentiation, and possibly sex determination. CONCLUSION/SIGNIFICANCE: We provide the first transcriptome-level analysis of the catfish testis. Our analysis would lay the basis for sequential follow-up studies of genes involved in sex determination and differentiation in catfish.

  6. Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.

    Science.gov (United States)

    Walls, Ramona L; Deck, John; Guralnick, Robert; Baskauf, Steve; Beaman, Reed; Blum, Stanley; Bowers, Shawn; Buttigieg, Pier Luigi; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Morrison, Norman; Ó Tuama, Éamonn; Schildhauer, Mark; Smith, Barry; Stucky, Brian J; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.

  7. Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies

    Science.gov (United States)

    Baskauf, Steve; Blum, Stanley; Bowers, Shawn; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Tuama, Éamonn Ó.; Schildhauer, Mark; Smith, Barry; Stucky, Brian J.; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers

  8. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.

    Science.gov (United States)

    Lamy, Jean-Baptiste

    2017-07-01

    Ontologies are widely used in the biomedical domain. While many tools exist for the edition, alignment or evaluation of ontologies, few solutions have been proposed for ontology programming interface, i.e. for accessing and modifying an ontology within a programming language. Existing query languages (such as SPARQL) and APIs (such as OWLAPI) are not as easy-to-use as object programming languages are. Moreover, they provide few solutions to difficulties encountered with biomedical ontologies. Our objective was to design a tool for accessing easily the entities of an OWL ontology, with high-level constructs helping with biomedical ontologies. From our experience on medical ontologies, we identified two difficulties: (1) many entities are represented by classes (rather than individuals), but the existing tools do not permit manipulating classes as easily as individuals, (2) ontologies rely on the open-world assumption, whereas the medical reasoning must consider only evidence-based medical knowledge as true. We designed a Python module for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they were objects in the programming language. We propose a simple high-level syntax for managing classes and the associated "role-filler" constraints. We also propose an algorithm for performing local closed world reasoning in simple situations. We developed Owlready, a Python module for a high-level access to OWL ontologies. The paper describes the architecture and the syntax of the module version 2. It details how we integrated the OWL ontology model with the Python object model. The paper provides examples based on Gene Ontology (GO). We also demonstrate the interest of Owlready in a use case focused on the automatic comparison of the contraindications of several drugs. This use case illustrates the use of the specific syntax proposed for manipulating classes and for performing local closed world reasoning. Owlready has been successfully

  9. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    Science.gov (United States)

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  10. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  11. Comprehensive analysis of gene-expression profile in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Wei L

    2015-06-01

    COPD. The identified DEGs, especially HLA-A, may serve as diagnosis markers for COPD. Keywords: chronic obstructive pulmonary disease, differentially expressed genes, gene-ontology analysis, protein–protein interaction

  12. Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow

    Directory of Open Access Journals (Sweden)

    Su Chen

    2014-09-01

    Full Text Available In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481 was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.

  13. Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data.

    Science.gov (United States)

    Farber, Charles R

    2010-11-01

    Bone mineral density (BMD) is influenced by a complex network of gene interactions; therefore, elucidating the relationships between genes and how those genes, in turn, influence BMD is critical for developing a comprehensive understanding of osteoporosis. To investigate the role of transcriptional networks in the regulation of BMD, we performed a weighted gene coexpression network analysis (WGCNA) using microarray expression data on monocytes from young individuals with low or high BMD. WGCNA groups genes into modules based on patterns of gene coexpression. and our analysis identified 11 gene modules. We observed that the overall expression of one module (referred to as module 9) was significantly higher in the low-BMD group (p = .03). Module 9 was highly enriched for genes belonging to the immune system-related gene ontology (GO) category "response to virus" (p = 7.6 × 10(-11)). Using publically available genome-wide association study data, we independently validated the importance of module 9 by demonstrating that highly connected module 9 hubs were more likely, relative to less highly connected genes, to be genetically associated with BMD. This study highlights the advantages of systems-level analyses to uncover coexpression modules associated with bone mass and suggests that particular monocyte expression patterns may mediate differences in BMD. © 2010 American Society for Bone and Mineral Research.

  14. Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens

    Science.gov (United States)

    Zhou, Xiaohong; Wang, Ke; Lv, Dongwen; Wu, Chengjun; Li, Jiarui; Zhao, Pei; Lin, Zhishan; Du, Lipu; Yan, Yueming; Ye, Xingguo

    2013-01-01

    Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops. PMID:24278131

  15. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    Full Text Available Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs and differentially expressed proteins (DEPs were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq and two-dimensional electrophoresis (2-DE in conjunction with mass spectrometry (MS. A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.

  16. Completeness, supervenience and ontology

    International Nuclear Information System (INIS)

    Maudlin, Tim W E

    2007-01-01

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction

  17. Completeness, supervenience and ontology

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, Tim W E [Department of Philosophy, Rutgers University, 26 Nichol Avenue, New Brunswick, NJ 08901-1411 (United States)

    2007-03-23

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction.

  18. Reconciliation of ontology and terminology to cope with linguistics.

    Science.gov (United States)

    Baud, Robert H; Ceusters, Werner; Ruch, Patrick; Rassinoux, Anne-Marie; Lovis, Christian; Geissbühler, Antoine

    2007-01-01

    To discuss the relationships between ontologies, terminologies and language in the context of Natural Language Processing (NLP) applications in order to show the negative consequences of confusing them. The viewpoints of the terminologist and (computational) linguist are developed separately, and then compared, leading to the presentation of reconciliation among these points of view, with consideration of the role of the ontologist. In order to encourage appropriate usage of terminologies, guidelines are presented advocating the simultaneous publication of pragmatic vocabularies supported by terminological material based on adequate ontological analysis. Ontologies, terminologies and natural languages each have their own purpose. Ontologies support machine understanding, natural languages support human communication, and terminologies should form the bridge between them. Therefore, future terminology standards should be based on sound ontology and do justice to the diversities in natural languages. Moreover, they should support local vocabularies, in order to be easily adaptable to local needs and practices.

  19. From Patient Discharge Summaries to an Ontology for Psychiatry.

    Science.gov (United States)

    Richard, Marion; Aimé, Xavier; Jaulent, Marie-Christine; Krebs, Marie-Odile; Charlet, Jean

    2017-01-01

    Psychiatry aims at detecting symptoms, providing diagnoses and treating mental disorders. We developed ONTOPSYCHIA, an ontology for psychiatry in three modules: social and environmental factors of mental disorders, mental disorders, and treatments. The use of ONTOPSYCHIA, associated with dedicated tools, will facilitate semantic research in Patient Discharge Summaries (PDS). To develop the first module of the ontology we propose a PDS text analysis in order to explicit psychiatry concepts. We decided to set aside classifications during the construction of the modu le, to focus only on the information contained in PDS (bottom-up approach) and to return to domain classifications solely for the enrichment phase (top-down approach). Then, we focused our work on the development of the LOVMI methodology (Les Ontologies Validées par Méthode Interactive - Ontologies Validated by Interactive Method), which aims to provide a methodological framework to validate the structure and the semantic of an ontology.

  20. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  1. LOGISTICS OPTIMIZATION USING ONTOLOGIES

    OpenAIRE

    Hendi , Hayder; Ahmad , Adeel; Bouneffa , Mourad; Fonlupt , Cyril

    2014-01-01

    International audience; Logistics processes involve complex physical flows and integration of different elements. It is widely observed that the uncontrolled processes can decline the state of logistics. The optimization of logistic processes can support the desired growth and consistent continuity of logistics. In this paper, we present a software framework for logistic processes optimization. It primarily defines logistic ontologies and then optimize them. It intends to assist the design of...

  2. A unified anatomy ontology of the vertebrate skeletal system.

    Directory of Open Access Journals (Sweden)

    Wasila M Dahdul

    Full Text Available The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO, to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish and multispecies (teleost, amphibian vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages, and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO, Gene Ontology (GO, Uberon, and Cell Ontology (CL, and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  3. A unified anatomy ontology of the vertebrate skeletal system.

    Science.gov (United States)

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  4. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    Science.gov (United States)

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  5. Feasibility of automated foundational ontology interchangeability

    CSIR Research Space (South Africa)

    Khan, ZC

    2014-11-01

    Full Text Available the Source Domain Ontology (sOd), with the domain knowledge com- ponent of the source ontology, the Source Foundational Ontology (sOf ) that is the foundational ontology component of the source ontology that is to be interchanged, and any equivalence... or subsumption mappings between enti- ties in sOd and sOf . – The Target Ontology (tO) which has been interchanged, which comprises the Target Domain Ontology (tOd), with the domain knowledge component of the target ontology, and the Target Foundational Ontology...

  6. Principles of gene microarray data analysis.

    Science.gov (United States)

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  7. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis) Revealed by Brain Transcriptome Analysis.

    Science.gov (United States)

    Wang, Pingping; Zheng, Min; Liu, Jian; Liu, Yongzhuang; Lu, Jianguo; Sun, Xiaowen

    2016-08-26

    In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female's highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.

  8. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis Revealed by Brain Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Pingping Wang

    2016-08-01

    Full Text Available In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female’s highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.

  9. An Ontology for Software Engineering Education

    Science.gov (United States)

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  10. Semi-automated ontology generation and evolution

    Science.gov (United States)

    Stirtzinger, Anthony P.; Anken, Craig S.

    2009-05-01

    Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural

  11. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.

    Science.gov (United States)

    Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-09-01

    High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

  12. Partial Least Squares Based Gene Expression Analysis in EBV- Positive and EBV-Negative Posttransplant Lymphoproliferative Disorders.

    Science.gov (United States)

    Wu, Sa; Zhang, Xin; Li, Zhi-Ming; Shi, Yan-Xia; Huang, Jia-Jia; Xia, Yi; Yang, Hang; Jiang, Wen-Qi

    2013-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.

  13. Semantic web for integrated network analysis in biomedicine.

    Science.gov (United States)

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  14. Drug target ontology to classify and integrate drug discovery data

    DEFF Research Database (Denmark)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande

    2017-01-01

    using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem...... of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target...... characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. CONCLUSIONS: DTO was built based on the need for a formal semantic model for druggable targets including various related information such as protein, gene, protein...

  15. Isoflurane is a suitable alternative to ether for anesthetizing rats prior to euthanasia for gene expression analysis.

    Science.gov (United States)

    Nakatsu, Noriyuki; Igarashi, Yoshinobu; Aoshi, Taiki; Hamaguchi, Isao; Saito, Masumichi; Mizukami, Takuo; Momose, Haruka; Ishii, Ken J; Yamada, Hiroshi

    2017-01-01

    Diethyl ether (ether) had been widely used in Japan for anesthesia, despite its explosive properties and toxicity to both humans and animals. We also had used ether as an anesthetic for euthanizing rats for research in the Toxicogenomics Project (TGP). Because the use of ether for these purposes will likely cease, it is required to select an alternative anesthetic which is validated for consistency with existing TGP data acquired under ether anesthesia. We therefore compared two alternative anesthetic candidates, isoflurane and pentobarbital, with ether in terms of hematological findings, serum biochemical parameters, and gene expressions. As a result, few differences among the three agents were observed. In hematological and serum biochemistry analysis, no significant changes were found. In gene expression analysis, four known genes were extracted as differentially expressed genes in the liver of rats anesthetized with ether, isoflurane, or pentobarbital. However, no significant relationships were detected using gene ontology, pathway, or gene enrichment analyses by DAVID and TargetMine. Surprisingly, although it was expected that the lung would be affected by administration via inhalation, only one differentially expressed gene was extracted in the lung. Taken together, our data indicate that there are no significant differences among ether, isoflurane, and pentobarbital with respect to effects on hematological parameters, serum biochemistry parameters, and gene expression. Based on its smallest affect to existing data and its safety profile for humans and animals, we suggest isoflurane as a suitable alternative anesthetic for use in rat euthanasia in toxicogenomics analysis.

  16. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis.

    Science.gov (United States)

    Asamizu, Erika; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2004-02-01

    To perform a comprehensive analysis of genes expressed in a model legume, Lotus japonicus, a total of 74472 3'-end expressed sequence tags (EST) were generated from cDNA libraries produced from six different organs. Clustering of sequences was performed with an identity criterion of 95% for 50 bases, and a total of 20457 non-redundant sequences, 8503 contigs and 11954 singletons were generated. EST sequence coverage was analyzed by using the annotated L. japonicus genomic sequence and 1093 of the 1889 predicted protein-encoding genes (57.9%) were hit by the EST sequence(s). Gene content was compared to several plant species. Among the 8503 contigs, 471 were identified as sequences conserved only in leguminous species and these included several disease resistance-related genes. This suggested that in legumes, these genes may have evolved specifically to resist pathogen attack. The rate of gene sequence divergence was assessed by comparing similarity level and functional category based on the Gene Ontology (GO) annotation of Arabidopsis genes. This revealed that genes encoding ribosomal proteins, as well as those related to translation, photosynthesis, and cellular structure were more abundantly represented in the highly conserved class, and that genes encoding transcription factors and receptor protein kinases were abundantly represented in the less conserved class. To make the sequence information and the cDNA clones available to the research community, a Web database with useful services was created at http://www.kazusa.or.jp/en/plant/lotus/EST/.

  17. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium.

    Directory of Open Access Journals (Sweden)

    Fengxi Yang

    Full Text Available Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms

  18. RNA-seq analysis of overexpressing ovine AANAT gene of melatonin biosynthesis in switchgrass

    Directory of Open Access Journals (Sweden)

    Shan Yuan

    2016-08-01

    Full Text Available Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector (EV control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differential expression genes (DEGs in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid and gingerol and signaling pathways (MAPK signaling pathway, estrogen signaling pathway were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism.

  19. Different gene expression patterns between leaves and flowers in Lonicera japonica revealed by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Libin eZhang

    2016-05-01

    Full Text Available The perennial and evergreen twining vine, Lonicera japonica is an important herbal medicine with great economic value. However, gene expression information for flowers and leaves of L. japonica remains elusive, which greatly impedes functional genomics research on this species. In this study, transcriptome profiles from leaves and flowers of L. japonica were examined using next-generation sequencing technology. A total of 239.41 million clean reads were used for de novo assembly with Trinity software, which generated 150,523 unigenes with N50 containing 947 bp. All the unigenes were annotated using Nr, SwissProt, COGs (Clusters of Orthologous Groups, GO (Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes databases. A total of 35,327 differentially expressed genes (DEGs, P≤0.05 between leaves and flowers were detected. Among them, a total of 6,602 DEGs were assigned with important biological processes including Metabolic process, Response to stimulus, Cellular process and etc. KEGG analysis showed that three possible enzymes involved in the biosynthesis of chlorogenic acid were up-regulated in flowers. Furthermore, the TF-based regulation network in L. japonica identified three differentially expressed transcription factors between leaves and flowers, suggesting distinct regulatory roles in L. japonica. Taken together, this study has provided a global picture of differential gene expression patterns between leaves and flowers in L japonica, providing a useful genomic resource that can also be used for functional genomics research on L. japonica in the future.

  20. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana).

    Science.gov (United States)

    Xu, Kai; Niu, Qingsheng; Zhao, Huiting; Du, Yali; Jiang, Yusuo

    2017-01-01

    The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.

  1. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.

  2. Bioinformatic Analysis of Strawberry GSTF12 Gene

    Science.gov (United States)

    Wang, Xiran; Jiang, Leiyu; Tang, Haoru

    2018-01-01

    GSTF12 has always been known as a key factor of proanthocyanins accumulate in plant testa. Through bioinformatics analysis of the nucleotide and encoded protein sequence of GSTF12, it is more advantageous to the study of genes related to anthocyanin biosynthesis accumulation pathway. Therefore, we chosen GSTF12 gene of 11 kinds species, downloaded their nucleotide and protein sequence from NCBI as the research object, found strawberry GSTF12 gene via bioinformation analyse, constructed phylogenetic tree. At the same time, we analysed the strawberry GSTF12 gene of physical and chemical properties and its protein structure and so on. The phylogenetic tree showed that Strawberry and petunia were closest relative. By the protein prediction, we found that the protein owed one proper signal peptide without obvious transmembrane regions.

  3. ONSET: Automated foundational ontology selection and explanation

    CSIR Research Space (South Africa)

    Khan, Z

    2012-10-01

    Full Text Available It has been shown that using a foundational ontology for domain ontology development is beneficial in theory and practice. However, developers have difficulty with choosing the appropriate foundational ontology, and why. In order to solve...

  4. Using OWL reasoning to support the generation of novel gene sets for enrichment analysis.

    Science.gov (United States)

    Osumi-Sutherland, David J; Ponta, Enrico; Courtot, Melanie; Parkinson, Helen; Badi, Laura

    2018-02-14

    The Gene Ontology (GO) consists of over 40,000 terms for biological processes, cell components and gene product activities linked into a graph structure by over 90,000 relationships. It has been used to annotate the functions and cellular locations of several million gene products. The graph structure is used by a variety of tools to group annotated genes into sets whose products share function or location. These gene sets are widely used to interpret the results of genomics experiments by assessing which sets are significantly over- or under-represented in results lists. F Hoffmann-La Roche Ltd. has developed a bespoke, manually maintained controlled vocabulary (RCV) for use in over-representation analysis. Many terms in this vocabulary group GO terms in novel ways that cannot easily be derived using the graph structure of the GO. For example, some RCV terms group GO terms by the cell, chemical or tissue type they refer to. Recent improvements in the content and formal structure of the GO make it possible to use logical queries in Web Ontology Language (OWL) to automatically map these cross-cutting classifications to sets of GO terms. We used this approach to automate mapping between RCV and GO, largely replacing the increasingly unsustainable manual mapping process. We then tested the utility of the resulting groupings for over-representation analysis. We successfully mapped 85% of RCV terms to logical OWL definitions and showed that these could be used to recapitulate and extend manual mappings between RCV terms and the sets of GO terms subsumed by them. We also show that gene sets derived from the resulting GO terms sets can be used to detect the signatures of cell and tissue types in whole genome expression data. The rich formal structure of the GO makes it possible to use reasoning to dynamically generate novel, biologically relevant groupings of GO terms. GO term groupings generated with this approach can be used in. over-representation analysis to detect

  5. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Thomassen, Mads; Riley, Caroline H

    2012-01-01

    The recent discovery of the Janus activating kinase 2 V617F mutation in most patients with polycythemia vera (PV) and half of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF) has favored the hypothesis of a biological continuum from ET over PV to PMF. We performed gene...... with biological relevant overlaps between the different entities. Moreover, the analysis separates Janus activating kinase 2-negative ET patients from Janus activating kinase 2-positive ET patients. Functional annotation analysis demonstrates that clusters of gene ontology terms related to inflammation, immune...... system, apoptosis, RNA metabolism, and secretory system were the most significantly deregulated terms in the three different disease groups. Our results yield further support for the hypothesis of a biological continuum originating from ET over PV to PMF. Functional analysis suggests an important...

  6. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  7. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus

    Science.gov (United States)

    2012-01-01

    Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and

  8. Ontology-based coupled optimisation design method using state-space analysis for the spindle box system of large ultra-precision optical grinding machine

    Science.gov (United States)

    Wang, Qianren; Chen, Xing; Yin, Yuehong; Lu, Jian

    2017-08-01

    With the increasing complexity of mechatronic products, traditional empirical or step-by-step design methods are facing great challenges with various factors and different stages having become inevitably coupled during the design process. Management of massive information or big data, as well as the efficient operation of information flow, is deeply involved in the process of coupled design. Designers have to address increased sophisticated situations when coupled optimisation is also engaged. Aiming at overcoming these difficulties involved in conducting the design of the spindle box system of ultra-precision optical grinding machine, this paper proposed a coupled optimisation design method based on state-space analysis, with the design knowledge represented by ontologies and their semantic networks. An electromechanical coupled model integrating mechanical structure, control system and driving system of the motor is established, mainly concerning the stiffness matrix of hydrostatic bearings, ball screw nut and rolling guide sliders. The effectiveness and precision of the method are validated by the simulation results of the natural frequency and deformation of the spindle box when applying an impact force to the grinding wheel.

  9. ER2OWL: Generating OWL Ontology from ER Diagram

    Science.gov (United States)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  10. Gene set analysis for interpreting genetic studies

    DEFF Research Database (Denmark)

    Pers, Tune H

    2016-01-01

    Interpretation of genome-wide association study (GWAS) results is lacking behind the discovery of new genetic associations. Consequently, there is an urgent need for data-driven methods for interpreting genetic association studies. Gene set analysis (GSA) can identify aetiologic pathways...

  11. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  12. Ontology Based Model Transformation Infrastructure

    NARCIS (Netherlands)

    Göknil, Arda; Topaloglu, N.Y.

    2005-01-01

    Using MDA in ontology development has been investigated in several works recently. The mappings and transformations between the UML constructs and the OWL elements to develop ontologies are the main concern of these research projects. We propose another approach in order to achieve the collaboration

  13. Ontology through a Mindfulness Process

    Science.gov (United States)

    Bearance, Deborah; Holmes, Kimberley

    2015-01-01

    Traditionally, when ontology is taught in a graduate studies course on social research, there is a tendency for this concept to be examined through the process of lectures and readings. Such an approach often leaves graduate students to grapple with a personal embodiment of this concept and to comprehend how ontology can ground their research.…

  14. The foundational ontology library ROMULUS

    CSIR Research Space (South Africa)

    Khan, ZC

    2013-09-01

    Full Text Available . We present here a basic step in that direction with the Repository of Ontologies for MULtiple USes, ROMULUS, which is the first online library of machine-processable, modularised, aligned, and logic-based merged foundational ontologies. In addition...

  15. Tracking Changes during Ontology Evolution

    NARCIS (Netherlands)

    Noy, Natalya F.; Kunnatur, Sandhya; Klein, Michel; Musen, Mark A.

    2004-01-01

    As ontology development becomes a collaborative process, developers face the problem of maintaining versions of ontologies akin to maintaining versions of software code or versions of documents in large projects. Traditional versioning systems enable users to compare versions, examine changes, and

  16. PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain.

    Science.gov (United States)

    Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin

    2015-09-22

    Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1

  17. Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach.

    Science.gov (United States)

    Shaar-Moshe, Lidor; Hübner, Sariel; Peleg, Zvi

    2015-05-03

    Drought is the major environmental stress threatening crop-plant productivity worldwide. Identification of new genes and metabolic pathways involved in plant adaptation to progressive drought stress at the reproductive stage is of great interest for agricultural research. We developed a novel Cross-Species meta-Analysis of progressive Drought stress at the reproductive stage (CSA:Drought) to identify key drought adaptive genes and mechanisms and to test their evolutionary conservation. Empirically defined filtering criteria were used to facilitate a robust integration of 17 deposited microarray experiments (148 arrays) of Arabidopsis, rice, wheat and barley. By prioritizing consistency over intensity, our approach was able to identify 225 differentially expressed genes shared across studies and taxa. Gene ontology enrichment and pathway analyses classified the shared genes into functional categories involved predominantly in metabolic processes (e.g. amino acid and carbohydrate metabolism), regulatory function (e.g. protein degradation and transcription) and response to stimulus. We further investigated drought related cis-acting elements in the shared gene promoters, and the evolutionary conservation of shared genes. The universal nature of the identified drought-adaptive genes was further validated in a fifth species, Brachypodium distachyon that was not included in the meta-analysis. qPCR analysis of 27, randomly selected, shared orthologs showed similar expression pattern as was found by the CSA:Drought.In accordance, morpho-physiological characterization of progressive drought stress, in B. distachyon, highlighted the key role of osmotic adjustment as evolutionary conserved drought-adaptive mechanism. Our CSA:Drought strategy highlights major drought-adaptive genes and metabolic pathways that were only partially, if at all, reported in the original studies included in the meta-analysis. These genes include a group of unclassified genes that could be involved

  18. MAGMA: generalized gene-set analysis of GWAS data.

    NARCIS (Netherlands)

    de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D.

    2015-01-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical

  19. MAGMA: Generalized Gene-Set Analysis of GWAS Data

    NARCIS (Netherlands)

    de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D.

    2015-01-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical

  20. Analysis of cassava (Manihot esculenta) ESTs: A tool for the discovery of genes

    International Nuclear Information System (INIS)

    Zapata, Andres; Neme, Rafik; Sanabria, Carolina; Lopez, Camilo

    2011-01-01

    Cassava (Manihot esculenta) is the main source of calories for more than 1,000 millions of people around the world and has been consolidated as the fourth most important crop after rice, corn and wheat. Cassava is considered tolerant to abiotic and biotic stress conditions; nevertheless these characteristics are mainly present in non-commercial varieties. Genetic breeding strategies represent an alternative to introduce the desirable characteristics into commercial varieties. A fundamental step for accelerating the genetic breeding process in cassava requires the identification of genes associated to these characteristics. One rapid strategy for the identification of genes is the possibility to have a large collection of ESTs (expressed sequence tag). In this study, a complete analysis of cassava ESTs was done. The cassava ESTs represent 80,459 sequences which were assembled in a set of 29,231 unique genes (unigen), comprising 10,945 contigs and 18,286 singletones. These 29,231 unique genes represent about 80% of the genes of the cassava's genome. Between 5% and 10% of the unigenes of cassava not show similarity to any sequences present in the NCBI database and could be consider as cassava specific genes. a functional category was assigned to a group of sequences of the unigen set (29%) following the Gene Ontology Vocabulary. the molecular function component was the best represented with 43% of the sequences, followed by the biological process component (38%) and finally the cellular component with 19%. in the cassava ESTs collection, 3,709 microsatellites were identified and they could be used as molecular markers. this study represents an important contribution to the knowledge of the functional genomic structure of cassava and constitutes an important tool for the identification of genes associated to agricultural characteristics of interest that could be employed in cassava breeding programs.

  1. Ontology Design of Influential People Identification Using Centrality

    Science.gov (United States)

    Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi

    2018-04-01

    Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.

  2. COMMIT at SemEval-2017 Task 5: Ontology-based Method for Sentiment Analysis of Financial Headlines

    NARCIS (Netherlands)

    Schouten, Kim; Frasincar, Flavius; de Jong, F.M.G.

    2017-01-01

    This paper describes our submission to Task 5 of SemEval 2017, Fine-Grained Sentiment Analysis on Financial Microblogs and News, where we limit ourselves to performing sentiment analysis on news headlines only (track 2). The approach presented in this paper uses a Support Vector Machine to do the

  3. Identification of protein features encoded by alternative exons using Exon Ontology.

    Science.gov (United States)

    Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier

    2017-06-01

    Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  5. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  6. Logic and Ontology

    Directory of Open Access Journals (Sweden)

    Newton C. A. da Costa

    2002-12-01

    Full Text Available In view of the present state of development of non classical logic, especially of paraconsistent logic, a new stand regarding the relations between logic and ontology is defended In a parody of a dictum of Quine, my stand May be summarized as follows. To be is to be the value of a variable a specific language with a given underlying logic Yet my stand differs from Quine’s, because, among other reasons, I accept some first order heterodox logics as genuine alternatives to classical logic I also discuss some questions of non classical logic to substantiate my argument, and suggest that may position complements and extends some ideas advanced by L Apostel.

  7. MAGMA: generalized gene-set analysis of GWAS data.

    Science.gov (United States)

    de Leeuw, Christiaan A; Mooij, Joris M; Heskes, Tom; Posthuma, Danielle

    2015-04-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn's Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn's Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn's Disease data was found to be considerably faster as well.

  8. Building a developmental toxicity ontology.

    Science.gov (United States)

    Baker, Nancy; Boobis, Alan; Burgoon, Lyle; Carney, Edward; Currie, Richard; Fritsche, Ellen; Knudsen, Thomas; Laffont, Madeleine; Piersma, Aldert H; Poole, Alan; Schneider, Steffen; Daston, George

    2018-04-03

    As more information is generated about modes of action for developmental toxicity and more data are generated using high-throughput and high-content technologies, it is becoming necessary to organize that information. This report discussed the need for a systematic representation of knowledge about developmental toxicity (i.e., an ontology) and proposes a method to build one based on knowledge of developmental biology and mode of action/ adverse outcome pathways in developmental toxicity. This report is the result of a consensus working group developing a plan to create an ontology for developmental toxicity that spans multiple levels of biological organization. This report provide a description of some of the challenges in building a developmental toxicity ontology and outlines a proposed methodology to meet those challenges. As the ontology is built on currently available web-based resources, a review of these resources is provided. Case studies on one of the most well-understood morphogens and developmental toxicants, retinoic acid, are presented as examples of how such an ontology might be developed. This report outlines an approach to construct a developmental toxicity ontology. Such an ontology will facilitate computer-based prediction of substances likely to induce human developmental toxicity. © 2018 Wiley Periodicals, Inc.

  9. Gene expression analysis of flax seed development

    Science.gov (United States)

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  10. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  11. Improving the extraction of complex regulatory events from scientific text by using ontology-based inference.

    Science.gov (United States)

    Kim, Jung-Jae; Rebholz-Schuhmann, Dietrich

    2011-10-06

    The extraction of complex events from biomedical text is a challenging task and requires in-depth semantic analysis. Previous approaches associate lexical and syntactic resources with ontologies for the semantic analysis, but fall short in testing the benefits from the use of domain knowledge. We developed a system that deduces implicit events from explicitly expressed events by using inference rules that encode domain knowledge. We evaluated the system with the inference module on three tasks: First, when tested against a corpus with manually annotated events, the inference module of our system contributes 53.2% of correct extractions, but does not cause any incorrect results. Second, the system overall reproduces 33.1% of the transcription regulatory events contained in RegulonDB (up to 85.0% precision) and the inference module is required for 93.8% of the reproduced events. Third, we applied the system with minimum adaptations to the identification of cell activity regulation events, confirming that the inference improves the performance of the system also on this task. Our research shows that the inference based on domain knowledge plays a significant role in extracting complex events from text. This approach has great potential in recognizing the complex concepts of such biomedical ontologies as Gene Ontology in the literature.

  12. Improving the extraction of complex regulatory events from scientific text by using ontology-based inference

    Directory of Open Access Journals (Sweden)

    Kim Jung-jae

    2011-10-01

    Full Text Available Abstract Background The extraction of complex events from biomedical text is a challenging task and requires in-depth semantic analysis. Previous approaches associate lexical and syntactic resources with ontologies for the semantic analysis, but fall short in testing the benefits from the use of domain knowledge. Results We developed a system that deduces implicit events from explicitly expressed events by using inference rules that encode domain knowledge. We evaluated the system with the inference module on three tasks: First, when tested against a corpus with manually annotated events, the inference module of our system contributes 53.2% of correct extractions, but does not cause any incorrect results. Second, the system overall reproduces 33.1% of the transcription regulatory events contained in RegulonDB (up to 85.0% precision and the inference module is required for 93.8% of the reproduced events. Third, we applied the system with minimum adaptations to the identification of cell activity regulation events, confirming that the inference improves the performance of the system also on this task. Conclusions Our research shows that the inference based on domain knowledge plays a significant role in extracting complex events from text. This approach has great potential in recognizing the complex concepts of such biomedical ontologies as Gene Ontology in the literature.

  13. A New role of ontologies and advanced scientific visualization in big data analytics

    OpenAIRE

    Chuprina, Svetlana

    2016-01-01

    Accessing and contextual semantic searching structured, semi-structured and unstructured information resources and their ontology based analysis in a uniform way across text-free Big Data query implementation is a main feature of approach under discussion. To increase the semantic power of query results’ analysis the ontology based implementation of multiplatform adaptive tools of scientific visualization are demonstrated. The ontologies are used not for integration of heterogeneous resources...

  14. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  15. Identification of the intestinal type gastric adenocarcinoma transcriptomic markers using bioinformatic and gene expression analysis

    Directory of Open Access Journals (Sweden)

    V. V. Volkomorov

    2017-01-01

    Full Text Available Introduction. Searching for specific and sensitive molecular tumor markers is one of the important tasks of modern oncology. These markers can be used for early tumor diagnosis and prognosis as well as for prediction of therapeutic response, estimation of tumor volume or to assess disease recurrence through monitoring. Gene expression data base mining followed by experimental validation of results obtained is one of the promising approaches for searching of that kind.Objective: to identify several membrane proteins which can be used for serum diagnosis of intestinal type of gastric adenocarcinoma.Materials and methods. We used bioinformatic-driven search using Gene Ontology and The Cancer Genome Atlas (TCGA data to identify mRNA up-regulated in gastric cancer (GC. Then, the expression levels of the mRNAs in 55 pare clinical specimens were investigated using reverse transcription polymerase chain reaction.Results. Comparative analysis of the mRNA levels in normal and tumor tissues using a new bioinformatics algorithm allowed to identify 3 high-copy transcripts (SULF1, PMEPA1 and SPARC, intracellular content of which markedly increased in GC. Expression analysis of these genes in clinical specimens showed significantly higher mRNA levels of PMEPA1 and SPARC in tumor as compared to normal gastric tissue. Interestingly more than twofold increase in expression level of these genes was observed in 75 % of intestinal-type GC. The same results were found only in 25 and 38 % of diffuse-type GC respectively.Conclusions. As a result of original bioinforamtic analysis using TCGA data base two genes (PMEPA1 and SPARC were shown to be significantly upregulated in intestinal-type gastric adenocarcinoma. The findings show the importance of further investigation to clarify the clinical value of their expression level in stomach tumors as well as their role in carcinogenesis.

  16. Operational Plan Ontology Model for Interconnection and Interoperability

    Science.gov (United States)

    Long, F.; Sun, Y. K.; Shi, H. Q.

    2017-03-01

    Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.

  17. On the ontology of the elementary particles. A philosophical analysis of the actual elementary-particle physics; Zur Ontologie der Elementarteilchen. Eine philosophische Analyse der aktuellen Elementarteilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, Thomas Christian

    2015-07-01

    After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.

  18. There is no quantum ontology without classical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Helmut [Institut fuer Theoretische Physik, Univ. Erlangen-Nuernberg (Germany)

    2011-07-01

    The relation between quantum physics and classical physics is still under debate. In his recent book ''Rational Reconstructions of Modern Physics'', Peter Mittelstaedt explores a route from classical to quantum mechanics by reduction and elimination of (some of) the ontological hypotheses underlying classical mechanics. While, according to Mittelstaedt, classical mechanics describes a fictitious world that does not exist in reality, he claims to achieve a universal quantum ontology that can be improved by incorporating unsharp properties and equipped with Planck's constant without any need to refer to classical concepts. In this talk, we argue that quantum ontology in Mittelstaedt's sense is not enough. Quantum ontology can never be universal as long as the difference between potential and real properties is not represented adequately. Quantum properties are potential, not (yet) real, be they sharp or unsharp. Hence, preparation and measurement presuppose classical concepts, even in quantum theory. We end up with a classical-quantum sandwich ontology, which is still less extravagant than Bohmian or many-worlds ontologies are.

  19. Analysis of baseline gene expression levels from ...

    Science.gov (United States)

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  20. Adding a little reality to building ontologies for biology.

    Directory of Open Access Journals (Sweden)

    Phillip Lord

    Full Text Available BACKGROUND: Many areas of biology are open to mathematical and computational modelling. The application of discrete, logical formalisms defines the field of biomedical ontologies. Ontologies have been put to many uses in bioinformatics. The most widespread is for description of entities about which data have been collected, allowing integration and analysis across multiple resources. There are now over 60 ontologies in active use, increasingly developed as large, international collaborations. There are, however, many opinions on how ontologies should be authored; that is, what is appropriate for representation. Recently, a common opinion has been the "realist" approach that places restrictions upon the style of modelling considered to be appropriate. METHODOLOGY/PRINCIPAL FINDINGS: Here, we use a number of case studies for describing the results of biological experiments. We investigate the ways in which these could be represented using both realist and non-realist approaches; we consider the limitations and advantages of each of these models. CONCLUSIONS/SIGNIFICANCE: From our analysis, we conclude that while realist principles may enable straight-forward modelling for some topics, there are crucial aspects of science and the phenomena it studies that do not fit into this approach; realism appears to be over-simplistic which, perversely, results in overly complex ontological models. We suggest that it is impossible to avoid compromise in modelling ontology; a clearer understanding of these compromises will better enable appropriate modelling, fulfilling the many needs for discrete mathematical models within computational biology.

  1. Global Warming and Geographically Scalar Climatic Objects Exist: An Ontologically Realist and Object-Oriented Analysis of the Daymet TMAX Climate Summaries for North America

    Science.gov (United States)

    Jackson, C. P.

    2017-12-01

    The scientific materialist worldview, what Peter Unger refers to as the Scientiphical worldview, or Scientiphicalism, has been utterly catastrophic for mesoscale objects in general, but, with its closely associated twentieth-century formal logic, this has been especially true for notoriously vague things like climate change, coastlines, mountains and dust storms. That is, any so-called representations or references ultimately suffer the same ontological demise as their referents, no matter how well-defined their boundaries may in fact be. Against this reductionist metaphysics, climatic objects are discretized within three separate ontologically realist systems, Graham Harman's object-oriented philosophy, or ontology (OOO), Markus Gabriel's ontology of fields of sense (OFS) and Tristan Garcia's two systems and new order of time, so as to make an ontological case for any geographically scalar object, beginning with pixels, as well as any notoriously vague thing they are said to represent. Four-month overlapping TMAX seasonals were first developed from the Oak Ridge National Laboratory (ORNL) Daymet climate temperature maximum (TMAX) monthly summaries (1980-2016) for North America and segmented within Trimble's eCognition Developer using the simple and widely familiar quadtree algorithm with a scale parameter of four, in this example. The regression coefficient was then calculated for the resulting 37-year climatic objects and an equally simple classification was applied. The same segmentation and classification was applied to the Daymet annual summaries, as well, for comparison. As was expected, the mean warming and cooling trends are lowest for the annual summary TMAX climatic objects. However, the Fall (SOND) season has the largest and smallest areas of warming and cooling, respectively, and the highest mean trend for warming objects. Conversely, Spring (MAMJ) has the largest and smallest areas undergoing cooling and warming, respectively. Finally, Summer (JJAS

  2. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  3. development of ontological knowledge representation

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. This paper presents the development of an ontological knowledge organization and .... intelligence in order to facilitate knowledge sharing and reuse of acquired knowledge (15). Soon, ..... Water Chemistry, AJCE, 1(2), 50-58. 25.

  4. A Mobile Army of Ontologies

    DEFF Research Database (Denmark)

    Juul, Jesper

    2015-01-01

    Presentation at the Ludo-ontologies panel. Do we need ludo-ontologies, and what are they? In this event several scholars of games and videogames discuss these questions from a variety of perspectives. What different game and videogame ontologies exist and could exist, and why they are important...... for game and videogame research? The round table is designed to promote ludo-ontological dialogue in order to make these questions visible and debated. A series of short presentations (approximately 10 minutes each) will be followed by an intense debate through freeform dialogue. After the industrial...... commercialization of games and videogames their study has shifted between approaches focused on players (ludic processes) and artifacts (ludic objects). Some attempts to analyze the relationship between the process and the object have occasionally been done in terms of ‘ontology’ (Zagal 2005; Leino 2010; Gualeni...

  5. BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data

    Directory of Open Access Journals (Sweden)

    Madeira Sara C

    2009-07-01

    Full Text Available Abstract Background The ability to monitor changes in expression patterns over time, and to observe the emergence of coherent temporal responses using expression time series, is critical to advance our understanding of complex biological processes. Biclustering has been recognized as an effective method for discovering local temporal expression patterns and unraveling potential regulatory mechanisms. The general biclustering problem is NP-hard. In the case of time series this problem is tractable, and efficient algorithms can be used. However, there is still a need for specialized applications able to take advantage of the temporal properties inherent to expression time series, both from a computational and a biological perspective. Findings BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing expression time series. Gene Ontology (GO annotations are used to assess the biological relevance of the biclusters. Methods for preprocessing expression time series and post-processing results are also included. The analysis is additionally supported by a visualization module capable of displaying informative representations of the data, including heatmaps, dendrograms, expression charts and graphs of enriched GO terms. Conclusion BiGGEsTS is a free open source graphical software tool for revealing local coexpression of genes in specific intervals of time, while integrating meaningful information on gene annotations. It is freely available at: http://kdbio.inesc-id.pt/software/biggests. We present a case study on the discovery of transcriptional regulatory modules in the response of Saccharomyces cerevisiae to heat stress.

  6. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    Science.gov (United States)

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  7. Comparative transcriptome analysis on the alteration of gene expression in ayu (Plecoglossus altivelis) larvae associated with salinity change.

    Science.gov (United States)

    Lu, Xin-Jiang; Zhang, Hao; Yang, Guan-Jun; Li, Ming-Yun; Chen, Jiong

    2016-05-18

    Ayu (Plecoglossus altivelis) fish, which are an amphidromous species distributed in East Asia, live in brackish water (BW) during their larval stage and in fresh water (FW) during their adult stage. In this study, we found that FW-acclimated ayu larvae exhibited a slower growth ratio compared with that of BW-acclimated larvae. However, the mechanism underlying FW acclimation on growth suppression is poorly known. We employed transcriptome analysis to investigate the differential gene expression of FW acclimation by RNA sequencing. We identified 158 upregulated and 139 downregulated transcripts in FW-acclimated ayu larvae compared with that in BW-acclimated larvae. As determined by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway mapping, functional annotation of the genes covered diverse biological functions and processes, and included neuroendocrinology, osmotic regulation, energy metabolism, and the cytoskeleton. Transcriptional expression of several differentially expressed genes in response to FW acclimation was further confirmed by real-time quantitative PCR. In accordance with transcriptome analysis, iodothyronine deiodinase (ID), pro-opiomelanocortin (POMC), betaine-homocysteine S-methyltransferase 1(BHMT), fructose-bisphosphate aldolase B (aldolase B), tyrosine aminotransferase (TAT), and Na(+)-K(+) ATPase (NKA) were upregulated after FW acclimation. Furthermore, the mRNA expressions of b-type natriuretic peptide (BNP) and transgelin were downregulated after FW acclimation. Our data indicate that FW acclimation reduced the growth rate of ayu larvae, which might result from the expression alteration of genes related to endocrine hormones, energy metabolism, and direct osmoregulation.

  8. A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer's disease progression.

    Science.gov (United States)

    Ray, Sumanta; Hossain, Sk Md Mosaddek; Khatun, Lutfunnesa; Mukhopadhyay, Anirban

    2017-12-20

    Alzheimer's disease (AD) is a chronic neuro-degenerative disruption of the brain which involves in large scale transcriptomic variation. The disease does not impact every regions of the brain at the same time, instead it progresses slowly involving somewhat sequential interaction with different regions. Analysis of the expression patterns of the genes in different regions of the brain influenced in AD surely contribute for a enhanced comprehension of AD pathogenesis and shed light on the early characterization of the disease. Here, we have proposed a framework to identify perturbation and preservation characteristics of gene expression patterns across six distinct regions of the brain ("EC", "HIP", "PC", "MTG", "SFG", and "VCX") affected in AD. Co-expression modules were discovered considering a couple of regions at once. These are then analyzed to know the preservation and perturbation characteristics. Different module preservation statistics and a rank aggregation mechanism have been adopted to detect the changes of expression patterns across brain regions. Gene ontology (GO) and pathway based analysis were also carried out to know the biological meaning of preserved and perturbed modules. In this article, we have extensively studied the preservation patterns of co-expressed modules in six distinct brain regions affected in AD. Some modules are emerged as the most preserved while some others are detected as perturbed between a pair of brain regions. Further investigation on the topological properties of preserved and non-preserved modules reveals a substantial association amongst "betweenness centrality" and "degree" of the involved genes. Our findings may render a deeper realization of the preservation characteristics of gene expression patterns in discrete brain regions affected by AD.

  9. Building a Chemical Ontology using Methontology and the Ontology Design Environment

    OpenAIRE

    Fernández López, Mariano; Gómez-Pérez, A.; Pazos Sierra, Alejandro; Pazos Sierra, Juan

    1999-01-01

    METHONTOLOGY PROVIDES GUIDELINES FOR SPECIFYING ONTOLOGIES AT THE KNOWLEDGE LEVEL, AS A SPECIFICATION OF A CONCEPTUALIZATION. ODE ENABLES ONTOLOGY CONSTRUCTION, COVERING THE ENTIRE LIFE CYCLE AND AUTOMATICALLY IMPLEMENTING ONTOLOGIES

  10. De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress.

    Directory of Open Access Journals (Sweden)

    Sadegh Mousavi

    Full Text Available Almond (Prunus dulcis Mill., one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond's transcriptome under the cold stress conditions. In the current research, we used RNA-seq technique to study the response of the reproductive tissues of almond (anther and ovary to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomly selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.

  11. De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress.

    Science.gov (United States)

    Mousavi, Sadegh; Alisoltani, Arghavan; Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah

    2014-01-01

    Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond's transcriptome under the cold stress conditions. In the current research, we used RNA-seq technique to study the response of the reproductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomly selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.

  12. Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells.

    Science.gov (United States)

    Torun, D; Torun, Z Ö; Demirkaya, K; Sarper, M; Elçi, M P; Avcu, F

    2017-11-01

    Triethylene glycol dimethacrylate (TEGDMA) is an important resin monomer commonly used in the structure of dental restorative materials. Recent studies have shown that unpolymerized resin monomers may be released into the oral environment and cause harmful biological effects. We investigated changes in the gene expression profiles of TEGDMA-treated human dental pulp cells (hDPCs) following short- (1-day) and long-term (7-days) exposure. HDPCs were exposed to a noncytotoxic concentration of TEGDMA, and gene expression profiles were evaluated by microarray analysis. The results were confirmed by quantitative reverse-transcriptase PCR (qRT PCR). In total, 1282 and 1319 genes (up- or down-regulated) were differentially expressed compared with control group after the 1- and 7-day incubation periods, respectively. Biological ontology-based analyses revealed that metabolic, cellular, and developmental processes constituted the largest groups of biological functional processes. qRT-PCR analysis on bone morphogenetic protein-2 (BMP-2), BMP-4, secreted protein, acidic, cysteine-rich, collagen type I alpha 1, oxidative stress-induced growth inhibitor 1, MMP3, interleukin-6, and heme oxygenase-1 genes confirmed the changes in expression observed in the microarray analysis. Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  13. Automating data acquisition into ontologies from pharmacogenetics relational data sources using declarative object definitions and XML.

    Science.gov (United States)

    Rubin, Daniel L; Hewett, Micheal; Oliver, Diane E; Klein, Teri E; Altman, Russ B

    2002-01-01

    Ontologies are useful for organizing large numbers of concepts having complex relationships, such as the breadth of genetic and clinical knowledge in pharmacogenomics. But because ontologies change and knowledge evolves, it is time consuming to maintain stable mappings to external data sources that are in relational format. We propose a method for interfacing ontology models with data acquisition from external relational data sources. This method uses a declarative interface between the ontology and the data source, and this interface is modeled in the ontology and implemented using XML schema. Data is imported from the relational source into the ontology using XML, and data integrity is checked by validating the XML submission with an XML schema. We have implemented this approach in PharmGKB (http://www.pharmgkb.org/), a pharmacogenetics knowledge base. Our goals were to (1) import genetic sequence data, collected in relational format, into the pharmacogenetics ontology, and (2) automate the process of updating the links between the ontology and data acquisition when the ontology changes. We tested our approach by linking PharmGKB with data acquisition from a relational model of genetic sequence information. The ontology subsequently evolved, and we were able to rapidly update our interface with the external data and continue acquiring the data. Similar approaches may be helpful for integrating other heterogeneous information sources in order make the diversity of pharmacogenetics data amenable to computational analysis.

  14. USE OF ONTOLOGIES FOR KNOWLEDGE BASES CREATION TUTORING COMPUTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheremisina Lyubov

    2014-11-01

    Full Text Available This paper deals with the use of ontology for the use and development of intelligent tutoring systems. We consider the shortcomings of educational software and distance learning systems and the advantages of using ontology’s in their design. Actuality creates educational computer systems based on systematic knowledge. We consider classification of properties, use and benefits of ontology’s. Characterized approaches to the problem of ontology mapping, the first of which – manual mapping, the second – a comparison of the names of concepts based on their lexical similarity and using special dictionaries. The analysis of languages available for the formal description of ontology. Considered a formal mathematical model of ontology’s and ontology consistency problem, which is that different developers for the same domain ontology can be created, syntactically or semantically heterogeneous, and their use requires a compatible broadcast or display. An algorithm combining ontology’s. The characteristic of the practical value of developing an ontology for electronic educational resources and recommendations for further research and development, such as implementation of other components of the system integration, formalization of the processes of integration and development of a universal expansion algorithms ontology’s software

  15. Gene coexpression network analysis as a source of functional annotation for rice genes.

    Directory of Open Access Journals (Sweden)

    Kevin L Childs

    Full Text Available With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional

  16. The Ontology Lookup Service, a lightweight cross-platform tool for controlled vocabulary queries

    Directory of Open Access Journals (Sweden)

    Apweiler Rolf

    2006-02-01

    Full Text Available Abstract Background With the vast amounts of biomedical data being generated by high-throughput analysis methods, controlled vocabularies and ontologies are becoming increasingly important to annotate units of information for ease of search and retrieval. Each scientific community tends to create its own locally available ontology. The interfaces to query these ontologies tend to vary from group to group. We saw the need for a centralized location to perform controlled vocabulary queries that would offer both a lightweight web-accessible user interface as well as a consistent, unified SOAP interface for automated queries. Results The Ontology Lookup Service (OLS was created to integrate publicly available biomedical ontologies into a single database. All modified ontologies are updated daily. A list of currently loaded ontologies is available online. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A programmatic interface is available to query the webservice using SOAP. The service is described by a WSDL descriptor file available online. A sample Java client to connect to the webservice using SOAP is available for download from SourceForge. All OLS source code is publicly available under the open source Apache Licence. Conclusion The OLS provides a user-friendly single entry point for publicly available ontologies in the Open Biomedical Ontology (OBO format. It can be accessed interactively or programmatically at http://www.ebi.ac.uk/ontology-lookup/.

  17. Using GO-WAR for mining cross-ontology weighted association rules.

    Science.gov (United States)

    Agapito, Giuseppe; Cannataro, Mario; Guzzi, Pietro Hiram; Milano, Marianna

    2015-07-01

    The Gene Ontology (GO) is a structured repository of concepts (GO terms) that are associated to one or more gene products. The process of association is referred to as annotation. The relevance and the specificity of both GO terms and annotations are evaluated by a measure defined as information content (IC). The analysis of annotated data is thus an important challenge for bioinformatics. There exist different approaches of analysis. From those, the use of association rules (AR) may provide useful knowledge, and it has been used in some applications, e.g. improving the quality of annotations. Nevertheless classical association rules algorithms do not take into account the source of annotation nor the importance yielding to the generation of candidate rules with low IC. This paper presents GO-WAR (Gene Ontology-based Weighted Association Rules) a methodology for extracting weighted association rules. GO-WAR can extract association rules with a high level of IC without loss of support and confidence from a dataset of annotated data. A case study on using of GO-WAR on publicly available GO annotation datasets is used to demonstrate that our method outperforms current state of the art approaches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Semantic Similarity between Web Documents Using Ontology

    Science.gov (United States)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-06-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  19. Semantic Similarity between Web Documents Using Ontology

    Science.gov (United States)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-03-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  20. The Human Phenotype Ontology in 2017

    International Nuclear Information System (INIS)

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie

    2016-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  1. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis

    Directory of Open Access Journals (Sweden)

    Akira Ishikawa

    2017-11-01

    Full Text Available Large numbers of quantitative trait loci (QTL affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  2. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    Science.gov (United States)

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narro