WorldWideScience

Sample records for gene network reconstruction

  1. Gene Expression Network Reconstruction by LEP Method Using Microarray Data

    Directory of Open Access Journals (Sweden)

    Na You

    2012-01-01

    Full Text Available Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration.

  2. Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm

    Institute of Scientific and Technical Information of China (English)

    Gui-xia Liu; Wei Feng; Han Wang; Lei Liu; Chun-guang Zhou

    2009-01-01

    In the post-genomic biology era, the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system, and it has been a challenging task in bioinformatics. The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages, but how to determine the network structure and parameters is still important to be explored. This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network .The new algorithm is evaluated with the use of both simulated and yeast cell cycle data. The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.

  3. Gene Regulatory Network Reconstruction Using Conditional Mutual Information

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2008-06-01

    Full Text Available The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.

  4. Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

    Institute of Scientific and Technical Information of China (English)

    Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou

    2011-01-01

    Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.

  5. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.

    Science.gov (United States)

    Zheng, Guangyong; Xu, Yaochen; Zhang, Xiujun; Liu, Zhi-Ping; Wang, Zhuo; Chen, Luonan; Zhu, Xin-Guang

    2016-12-23

    A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory networks, in particular, genome-scale networks, is essential for comparative exploration of different species and mechanistic investigation of biological processes. Currently, most of network inference methods are computationally intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to construct GRNs at genome-scale. Here, we present a software package for gene regulatory network reconstruction at a genomic level, in which gene interaction is measured by the conditional mutual information measurement using a parallel computing framework (so the package is named CMIP). The package is a greatly improved implementation of our previous PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period. In addition, successful application on a real genomic dataset confirms its practical applicability of the package. This new software package provides a powerful tool for genomic network reconstruction to biological community. The software can be accessed at http://www.picb.ac.cn/CMIP/ .

  6. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  7. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Lodowski Kerrie H

    2009-01-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  8. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  9. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Benjamin A Logsdon

    Full Text Available Cellular gene expression measurements contain regulatory information that can be used to discover novel network relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically and empirically well-behaved method for selecting the regulatory features of a network. Any algorithms designed for network discovery that make use of directed probabilistic graphs require perturbations, produced by either experiments or naturally occurring genetic variation, to successfully infer unique regulatory relationships from gene expression data. Our approach makes use of appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL, which provide a sufficient set of independent perturbations for maximum network resolution. We compare the performance of our network reconstruction algorithm to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and the NEO algorithm, all of which have been used to reconstruct directed networks among phenotypes leveraging QTL. We show that the adaptive lasso can outperform these algorithms for networks of ten genes and ten cis-eQTL, and is competitive with the QDG algorithm for networks with thirty genes and thirty cis-eQTL, with rich topologies and hundreds of samples. Using this novel approach, we identify unique sets of directed relationships in Saccharomyces cerevisiae when analyzing genome-wide gene expression data for an intercross between a wild strain and a lab strain. We recover novel putative network relationships between a tyrosine biosynthesis gene (TYR1, and genes involved in endocytosis (RCY1, the spindle checkpoint (BUB2, sulfonate catabolism (JLP1, and cell-cell communication (PRM7. Our algorithm provides a synthesis of feature selection methods and graphical model theory that has the potential to reveal new directed regulatory relationships from the analysis of population level genetic and gene expression data.

  10. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  11. A fast and efficient gene-network reconstruction method from multiple over-expression experiments

    Directory of Open Access Journals (Sweden)

    Thurner Stefan

    2009-08-01

    Full Text Available Abstract Background Reverse engineering of gene regulatory networks presents one of the big challenges in systems biology. Gene regulatory networks are usually inferred from a set of single-gene over-expressions and/or knockout experiments. Functional relationships between genes are retrieved either from the steady state gene expressions or from respective time series. Results We present a novel algorithm for gene network reconstruction on the basis of steady-state gene-chip data from over-expression experiments. The algorithm is based on a straight forward solution of a linear gene-dynamics equation, where experimental data is fed in as a first predictor for the solution. We compare the algorithm's performance with the NIR algorithm, both on the well known E. coli experimental data and on in-silico experiments. Conclusion We show superiority of the proposed algorithm in the number of correctly reconstructed links and discuss computational time and robustness. The proposed algorithm is not limited by combinatorial explosion problems and can be used in principle for large networks.

  12. Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data.

    Directory of Open Access Journals (Sweden)

    Kevin Y Yip

    Full Text Available We performed computational reconstruction of the in silico gene regulatory networks in the DREAM3 Challenges. Our task was to learn the networks from two types of data, namely gene expression profiles in deletion strains (the 'deletion data' and time series trajectories of gene expression after some initial perturbation (the 'perturbation data'. In the course of developing the prediction method, we observed that the two types of data contained different and complementary information about the underlying network. In particular, deletion data allow for the detection of direct regulatory activities with strong responses upon the deletion of the regulator while perturbation data provide richer information for the identification of weaker and more complex types of regulation. We applied different techniques to learn the regulation from the two types of data. For deletion data, we learned a noise model to distinguish real signals from random fluctuations using an iterative method. For perturbation data, we used differential equations to model the change of expression levels of a gene along the trajectories due to the regulation of other genes. We tried different models, and combined their predictions. The final predictions were obtained by merging the results from the two types of data. A comparison with the actual regulatory networks suggests that our approach is effective for networks with a range of different sizes. The success of the approach demonstrates the importance of integrating heterogeneous data in network reconstruction.

  13. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data

    Science.gov (United States)

    Faria, José P.; Overbeek, Ross; Taylor, Ronald C.; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.

    2016-01-01

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental

  14. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Faria, José P.; Overbeek, Ross; Taylor, Ronald C.; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.

    2016-03-18

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of B. subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches and small regulatory RNAs. Overall, regulatory information is included in the model for approximately 2500 of the ~4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how atomic regulons for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how atomic regulons can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata

  15. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Takeshi Hase

    Full Text Available Elucidating gene regulatory network (GRN from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

  16. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  17. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems

    Directory of Open Access Journals (Sweden)

    Faridah Hani Mohamed Salleh

    2017-01-01

    Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  18. Assessment of FBA Based Gene Essentiality Analysis in Cancer with a Fast Context-Specific Network Reconstruction Method.

    Directory of Open Access Journals (Sweden)

    Luis Tobalina

    Full Text Available Gene Essentiality Analysis based on Flux Balance Analysis (FBA-based GEA is a promising tool for the identification of novel metabolic therapeutic targets in cancer. The reconstruction of cancer-specific metabolic networks, typically based on gene expression data, constitutes a sensible step in this approach. However, to our knowledge, no extensive assessment on the influence of the reconstruction process on the obtained results has been carried out to date.In this article, we aim to study context-specific networks and their FBA-based GEA results for the identification of cancer-specific metabolic essential genes. To that end, we used gene expression datasets from the Cancer Cell Line Encyclopedia (CCLE, evaluating the results obtained in 174 cancer cell lines. In order to more clearly observe the effect of cancer-specific expression data, we did the same analysis using randomly generated expression patterns. Our computational analysis showed some essential genes that are fairly common in the reconstructions derived from both gene expression and randomly generated data. However, though of limited size, we also found a subset of essential genes that are very rare in the randomly generated networks, while recurrent in the sample derived networks, and, thus, would presumably constitute relevant drug targets for further analysis. In addition, we compare the in-silico results to high-throughput gene silencing experiments from Project Achilles with conflicting results, which leads us to raise several questions, particularly the strong influence of the selected biomass reaction on the obtained results. Notwithstanding, using previous literature in cancer research, we evaluated the most relevant of our targets in three different cancer cell lines, two derived from Gliobastoma Multiforme and one from Non-Small Cell Lung Cancer, finding that some of the predictions are in the right track.

  19. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes.

    NARCIS (Netherlands)

    Franke, L.; Bakel, H. van; Fokkens, L.; Jong, E.D. de; Egmont-Peterson, M.; Wijmenga, C.

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain

  20. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes.

    NARCIS (Netherlands)

    Franke, L.; Bakel, H. van; Fokkens, L.; Jong, E.D. de; Egmont-Peterson, M.; Wijmenga, C.

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain

  1. Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.

    Science.gov (United States)

    Kim, Haseong; Gelenbe, Erol

    2012-09-01

    Gene regulatory networks provide the systematic view of molecular interactions in a complex living system. However, constructing large-scale gene regulatory networks is one of the most challenging problems in systems biology. Also large burst sets of biological data require a proper integration technique for reliable gene regulatory network construction. Here we present a new reverse engineering approach based on Bayesian model averaging which attempts to combine all the appropriate models describing interactions among genes. This Bayesian approach with a prior based on the Gibbs distribution provides an efficient means to integrate multiple sources of biological data. In a simulation study with maximum of 2000 genes, our method shows better sensitivity than previous elastic-net and Gaussian graphical models, with a fixed specificity of 0.99. The study also shows that the proposed method outperforms the other standard methods for a DREAM dataset generated by nonlinear stochastic models. In brain tumor data analysis, three large-scale networks consisting of 4422 genes were built using the gene expression of non-tumor, low and high grade tumor mRNA expression samples, along with DNA-protein binding affinity information. We found that genes having a large variation of degree distribution among the three tumor networks are the ones that see most involved in regulatory and developmental processes, which possibly gives a novel insight concerning conventional differentially expressed gene analysis.

  2. PyPanda: a Python package for gene regulatory network reconstruction

    OpenAIRE

    van IJzendoorn, David G. P.; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L

    2016-01-01

    Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of ‘omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. Availability and implementation: The open source PyPanda Python package is freely a...

  3. Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context.

    Directory of Open Access Journals (Sweden)

    Azree Nazri

    Full Text Available The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT and Fisher's inverse combined probability test (FICPT; and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR, Maximum Relevance Minimum Redundancy (MRNET, Relevance Network (RN and Bayesian Network (BN. We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.

  4. PyPanda: a Python package for gene regulatory network reconstruction

    Science.gov (United States)

    van IJzendoorn, David G.P.; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L.

    2016-01-01

    Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of ‘omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. Availability and implementation: The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda. Contact: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl PMID:27402905

  5. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  6. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  7. Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Marwan Wolfgang

    2011-07-01

    Full Text Available Abstract Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model.

  8. Network reconstruction from infection cascades

    CERN Document Server

    Braunstein, Alfredo

    2016-01-01

    Reconstructing propagation networks from observations is a fundamental inverse problem, and it's crucial to understand and control dynamics in complex systems. Here we show that it is possible to reconstruct the whole structure of an interaction network and to simultaneously infer the complete time course of activation spreading, relying just on single snapshots of a small number of activity cascades. The method, that we called Inverse Dynamics Network Reconstruction (IDNR), is shown to work successfully on several synthetic and real networks, inferring the networks and the sources of infection based on sparse observations, including single snapshots. IDNR is built on a Belief Propagation approximation, that has an impressive performance in a wide variety of topological structures. The method can be applied in absence of complete time-series data by providing a detailed modeling of the posterior distribution of trajectories conditioned to the observations. Furthermore, we show by experiments that the informat...

  9. Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient.

    Science.gov (United States)

    Mohamed Salleh, Faridah Hani; Arif, Shereena Mohd; Zainudin, Suhaila; Firdaus-Raih, Mohd

    2015-12-01

    A gene regulatory network (GRN) is a large and complex network consisting of interacting elements that, over time, affect each other's state. The dynamics of complex gene regulatory processes are difficult to understand using intuitive approaches alone. To overcome this problem, we propose an algorithm for inferring the regulatory interactions from knock-out data using a Gaussian model combines with Pearson Correlation Coefficient (PCC). There are several problems relating to GRN construction that have been outlined in this paper. We demonstrated the ability of our proposed method to (1) predict the presence of regulatory interactions between genes, (2) their directionality and (3) their states (activation or suppression). The algorithm was applied to network sizes of 10 and 50 genes from DREAM3 datasets and network sizes of 10 from DREAM4 datasets. The predicted networks were evaluated based on AUROC and AUPR. We discovered that high false positive values were generated by our GRN prediction methods because the indirect regulations have been wrongly predicted as true relationships. We achieved satisfactory results as the majority of sub-networks achieved AUROC values above 0.5.

  10. Network reconstruction via density sampling

    CERN Document Server

    Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego

    2016-01-01

    Reconstructing weighted networks from partial information is necessary in many important circumstances, e.g. for a correct estimation of systemic risk. It has been shown that, in order to achieve an accurate reconstruction, it is crucial to reliably replicate the empirical degree sequence, which is however unknown in many realistic situations. More recently, it has been found that the knowledge of the degree sequence can be replaced by the knowledge of the strength sequence, which is typically accessible, complemented by that of the total number of links, thus considerably relaxing the observational requirements. Here we further relax these requirements and devise a procedure valid when even the the total number of links is unavailable. We assume that, apart from the heterogeneity induced by the degree sequence itself, the network is homogeneous, so that its link density can be estimated by sampling subsets of nodes with representative density. We show that the best way of sampling nodes is the random selecti...

  11. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  12. Reconstruction of the gene regulatory network involved in the sonic hedgehog pathway with a potential role in early development of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Jinhua Liu

    2014-10-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway is crucial for pattern formation in early central nervous system development. By systematically analyzing high-throughput in situ hybridization data of E11.5 mouse brain, we found that Shh and its receptor Ptch1 define two adjacent mutually exclusive gene expression domains: Shh+Ptch1- and Shh-Ptch1+. These two domains are associated respectively with Foxa2 and Gata3, two transcription factors that play key roles in specifying them. Gata3 ChIP-seq experiments and RNA-seq assays on Gata3-knockdown cells revealed that Gata3 up-regulates the genes that are enriched in the Shh-Ptch1+ domain. Important Gata3 targets include Slit2 and Slit3, which are involved in the process of axon guidance, as well as Slc18a1, Th and Qdpr, which are associated with neurotransmitter synthesis and release. By contrast, Foxa2 both up-regulates the genes expressed in the Shh+Ptch1- domain and down-regulates the genes characteristic of the Shh-Ptch1+ domain. From these and other data, we were able to reconstruct a gene regulatory network governing both domains. Our work provides the first genome-wide characterization of the gene regulatory network involved in the Shh pathway that underlies pattern formation in the early mouse brain.

  13. Network reconstruction via graph blending

    Science.gov (United States)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  14. Differential expression analysis and regulatory network reconstruction for genes associated with muscle growth and adipose deposition in obese and lean pigs

    Institute of Scientific and Technical Information of China (English)

    Mingzhou Li; Xuewei Li; Li Zhu; Xiaokun Teng; Huasheng Xiao; Surong Shuai; Lei Chen; Qiang Li; Yujiao Guo

    2008-01-01

    During the growth and development of skeletal muscle cells and adipose cells, the regulatory mechanism of micro-effect polygenes determines porcine meat quality, carcass characteristics and other relative quantitative traits. Obese and lean type pig breeds show obvious differences in muscle growth and adipose deposition; however, the molecular mechanism underlying this phenotypic variation remains unknown. We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with muscle growth and adipose deposition in longissimus dorsi muscle at six growth stages (birth, 1, 2, 3, 4 and 5 months) of Landrace (a leaner, Western breed) and Taihu pigs (a fatty, indigenous, Chinese breed). Variance analysis (ANOVA) revealed that differences in the expression of 18 genes in Landrace pigs and three genes in Taihu pigs were very significant (FDR-adjusted permutation, P<0.01) and differences for 22 genes in Landrace pigs and seven genes in Taihu pigs were significant (FDR-adjusted permutation, P<0.05) among six growth stages. Clustering analysis revealed a high level of significance (FDR-adjusted, P<0.01) for four gene expression patterns, in which genes that strongly up-regulated were mainly associated with the positive regulation of myofiber formation and fatty acid biogenesis and genes that strongly down-regulated were mainly associated with the inhibition of cell proliferation and positive regulation of fatty acid P-oxidation. Based on a dynamic Bayesian network (DBN) model, gene regulatory networks (GRNs) were reconstructed from time-series data for each pig breed. These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of muscle growth and adipose deposition between the two pig breeds; from these results, some potential key genes could be identified. Quantitative real-time RT-PCR (QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the

  15. Reconstructing propagation networks with temporal similarity metrics

    CERN Document Server

    Liao, Hao

    2014-01-01

    Node similarity is a significant property driving the growth of real networks. In this paper, based on the observed spreading results we apply the node similarity metrics to reconstruct propagation networks. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops to nearly zero. In order to improve the similarity-based reconstruction method, we finally propose a temporal similarity metric to take into account the time information of the spreading. The reconstruction results are remarkably improved with the new method.

  16. Automatic Network Reconstruction using ASP

    CERN Document Server

    Ostrowski, Max; Durzinsky, Markus; Marwan, Wolfgang; Wagler, Annegret

    2011-01-01

    Building biological models by inferring functional dependencies from experimental data is an im- portant issue in Molecular Biology. To relieve the biologist from this traditionally manual process, various approaches have been proposed to increase the degree of automation. However, available ap- proaches often yield a single model only, rely on specific assumptions, and/or use dedicated, heuris- tic algorithms that are intolerant to changing circumstances or requirements in the view of the rapid progress made in Biotechnology. Our aim is to provide a declarative solution to the problem by ap- peal to Answer Set Programming (ASP) overcoming these difficulties. We build upon an existing approach to Automatic Network Reconstruction proposed by part of the authors. This approach has firm mathematical foundations and is well suited for ASP due to its combinatorial flavor providing a characterization of all models explaining a set of experiments. The usage of ASP has several ben- efits over the existing heuristic a...

  17. Application of Neural Networks for Energy Reconstruction

    CERN Document Server

    Damgov, Jordan

    2002-01-01

    The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.

  18. Dynamical networks reconstructed from time series

    CERN Document Server

    Levnajić, Zoran

    2012-01-01

    Novel method of reconstructing dynamical networks from empirically measured time series is proposed. By statistically examining the correlations between motions displayed by network nodes, we derive a simple equation that directly yields the adjacency matrix, assuming the intra-network interaction functions to be known. We illustrate the method's implementation on a simple example and discuss the dependence of the reconstruction precision on the properties of time series. Our method is applicable to any network, allowing for reconstruction precision to be maximized, and errors to be estimated.

  19. Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    LIU Bei; MENG Fanjiang; LI Yong; LIU Liyan

    2008-01-01

    The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network.

  20. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  1. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  2. Sparse time series chain graphical models for reconstructing genetic networks

    NARCIS (Netherlands)

    Abegaz, Fentaw; Wit, Ernst

    2013-01-01

    We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of co

  3. Craniofacial Reconstruction Evaluation by Geodesic Network

    Directory of Open Access Journals (Sweden)

    Junli Zhao

    2014-01-01

    Full Text Available Craniofacial reconstruction is to estimate an individual’s face model from its skull. It has a widespread application in forensic medicine, archeology, medical cosmetic surgery, and so forth. However, little attention is paid to the evaluation of craniofacial reconstruction. This paper proposes an objective method to evaluate globally and locally the reconstructed craniofacial faces based on the geodesic network. Firstly, the geodesic networks of the reconstructed craniofacial face and the original face are built, respectively, by geodesics and isogeodesics, whose intersections are network vertices. Then, the absolute value of the correlation coefficient of the features of all corresponding geodesic network vertices between two models is taken as the holistic similarity, where the weighted average of the shape index values in a neighborhood is defined as the feature of each network vertex. Moreover, the geodesic network vertices of each model are divided into six subareas, that is, forehead, eyes, nose, mouth, cheeks, and chin, and the local similarity is measured for each subarea. Experiments using 100 pairs of reconstructed craniofacial faces and their corresponding original faces show that the evaluation by our method is roughly consistent with the subjective evaluation derived from thirty-five persons in five groups.

  4. Reconstruction of periodic signals using neural networks

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2014-01-01

    Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.

  5. Overview of methods of reverse engineering of gene regulatory networks: Boolean and Bayesian networks

    OpenAIRE

    Frolova A. O.

    2012-01-01

    Reverse engineering of gene regulatory networks is an intensively studied topic in Systems Biology as it reconstructs regulatory interactions between all genes in the genome in the most complete form. The extreme computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene regulatory network is a significant obstacle to further development of this area. In this article the two most common methods for modeling gene regulatory networks are surveyed: Bo...

  6. On unitary reconstruction of linear optical networks

    CERN Document Server

    Tillmann, Max; Walther, Philip

    2015-01-01

    Linear optical elements are pivotal instruments in the manipulation of classical and quantum states of light. The vast progress in integrated quantum photonic technology enables the implementation of large numbers of such elements on chip while providing interferometric stability. As a trade-off these structures face the intrinsic challenge of characterizing their optical transformation as individual optical elements are not directly accessible. Thus the unitary transformation needs to be reconstructed from a dataset generated with having access to the input and output ports of the device only. Here we present a novel approach to unitary reconstruction that significantly improves upon existing approaches. We compare its performance to several approaches via numerical simulations for networks up to 14 modes. We show that an adapted version of our approach allows to recover all mode-dependent losses and to obtain highest reconstruction fidelities under such conditions.

  7. Interferometric phase reconstruction using simplified coherence network

    Science.gov (United States)

    Zhang, Kui; Song, Ruiqing; Wang, Hui; Wu, Di; Wang, Hua

    2016-09-01

    Interferometric time-series analysis techniques, which extend the traditional differential radar interferometry, have demonstrated a strong capability for monitoring ground surface displacement. Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accuracy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation between stacked SAR images, the phase reconstruction technique has been developed recently. The main idea of this technique is to reform phase observations along a SAR stack by taking advantage of a maximum likelihood estimator which is defined on the coherence matrix estimated from each target. However, the phase value of a coherence matrix element might be considerably biased when its corresponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper. This approach considers a coherence matrix element to be an arc in a network. A so-called simplified coherence network (SCN) is constructed to decrease the negative impact of outlying samples. Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction problem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images. The results demonstrate that the proposed method has an excellent computational efficiency and could obtain more reliable phase reconstruction solutions compared to the traditional method using phase triangulation algorithm.

  8. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  9. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    and the environment were included. A total of 708 structural open reading frames (ORFs) were accounted for in the reconstructed network, corresponding to 1035 metabolic reactions. Further, 140 reactions were included on the basis of biochemical evidence resulting in a genome-scale reconstructed metabolic network...... with Escherichia coli. The reconstructed metabolic network is the first comprehensive network for a eukaryotic organism, and it may be used as the basis for in silico analysis of phenotypic functions....

  10. Reconstructing complex networks with binary-state dynamics

    CERN Document Server

    Li, Jingwen; Lai, Ying-Cheng; Grebogi, Celso

    2015-01-01

    The prerequisite for our understanding of many complex networked systems lies in the reconstruction of network structure from measurable data. Although binary-state dynamics occurring in a broad class of complex networked systems in nature and society and has been intensively investigated, a general framework for reconstructing complex networks from binary states, the inverse problem, is lacking. Here we offer a general solution to the reconstruction problem by developing a data-based linearization approach for binary-state dynamics with linear, nonlinear, discrete and stochastic switching functions. The linearization allows us to convert the network reconstruction problem into a sparse signal reconstruction problem that can be resolved efficiently and credibly by convex optimization based on compressed sensing. The completely data-based linearization method and the sparse signal reconstruction constitutes a general framework for reconstructing complex networks without any knowledge of the binary-state dynami...

  11. Reconstruction of transcriptional network from microarray data using combined mutual information and network-assisted regression.

    Science.gov (United States)

    Wang, X-D; Qi, Y-X; Jiang, Z-L

    2011-03-01

    Many methods had been developed on inferring transcriptional network from gene expression. However, it is still necessary to design new method that discloses more detailed and exact network information. Using network-assisted regression, the authors combined the averaged three-way mutual information (AMI3) and non-linear ordinary differential equation (ODE) model to infer the transcriptional network, and to obtain both the topological structure and the regulatory dynamics. Synthetic and experimental data were used to evaluate the performance of the above approach. In comparison with the previous methods based on mutual information, AMI3 obtained higher precision with the same sensitivity. To describe the regulatory dynamics between transcription factors and target genes, network-assisted regression and regression without network, respectively, were applied in the steady-state and time series microarray data. The results revealed that comparing with regression without network, network-assisted regression increased the precision, but decreased the fitting goodness. Then, the authors reconstructed the transcriptional network of Escherichia coli and simulated the regulatory dynamics of genes. Furthermore, the authors' approach identified potential transcription factors regulating yeast cell cycle. In conclusion, network-assisted regression, combined AMI3 and ODE model, was a more precisely to infer the topological structure and the regulatory dynamics of transcriptional network from microarray data. [Includes supplementary material].

  12. An integrated text mining framework for metabolic interaction network reconstruction.

    Science.gov (United States)

    Patumcharoenpol, Preecha; Doungpan, Narumol; Meechai, Asawin; Shen, Bairong; Chan, Jonathan H; Vongsangnak, Wanwipa

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module-MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module-MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme-metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and virtual

  13. An integrated text mining framework for metabolic interaction network reconstruction

    Directory of Open Access Journals (Sweden)

    Preecha Patumcharoenpol

    2016-03-01

    Full Text Available Text mining (TM in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR. The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source

  14. Gene therapy in peripheral nerve reconstruction approaches.

    Science.gov (United States)

    Haastert, Kirsten; Grothe, Claudia

    2007-06-01

    Gene transfer to a transected peripheral nerve or avulsed nerve root is discussed to be helpful where neurosurgical peripheral nerve reconstruction alone will not result in full recovery of function. Axonal regeneration is supposed to be facilitated by this new therapeutic approach via delivery of specific regeneration promoting molecules as well as survival proteins for the injured sensory and motor neurons. Therefore gene therapy aims in long-term and site-specific delivery of those neurotrophic factors. This paper reviews methods and perspectives for gene therapy to promote functional recovery of severely injured and thereafter reconstructed peripheral nerves. Experimental in vivo and ex vivo gene therapy approaches are reported by different groups. In vivo gene therapy generally uses direct injection of cDNA vectors to injured peripheral nerves. Ex vivo gene therapy is based on the isolation of autologous cells followed by genetic modification of these cells in vitro and re-transplantation of the modified cells to the patient as part of tissue engineered nerve transplants. Vectors of different origin are published to be suitable for peripheral nerve gene therapy and this review discusses the different strategies with regard to their efficiency in gene transfer, their risks and their potential relevance for clinical application.

  15. Global and partitioned reconstructions of undirected complex networks

    CERN Document Server

    Xu, Ming; Wang, Huan; Li, Yong-Kui; Hu, Jing-Bo; Cao, Ke-Fei

    2015-01-01

    It is a significant challenge to predict the network topology from a small amount of dynamical observations. Different from the usual framework of the node-based reconstruction, two optimization approaches (i.e., the global and partitioned reconstructions) are proposed to reveal the structure of undirected networks from dynamics. These approaches are applied to evolutionary games occurring on both homogeneous and heterogeneous networks via compressed sensing, which can more efficiently achieve higher reconstruction accuracy with relatively small amounts of data. Our approaches provide different perspectives on effectively reconstructing complex networks.

  16. Spectral reconstruction of protein contact networks

    Science.gov (United States)

    Maiorino, Enrico; Rizzi, Antonello; Sadeghian, Alireza; Giuliani, Alessandro

    2017-04-01

    In this work, we present a method for generating an adjacency matrix encoding a typical protein contact network. This work constitutes a follow-up to our recent work (Livi et al., 2015), whose aim was to estimate the relative contribution of different topological features in discovering of the unique properties of protein structures. We perform a genetic algorithm based optimization in order to modify the matrices generated with the procedures explained in (Livi et al., 2015). Our objective here is to minimize the distance with respect to a target spectral density, which is elaborated using the normalized graph Laplacian representation of graphs. Such a target density is obtained by averaging the kernel-estimated densities of a class of experimental protein maps having different dimensions. This is possible given the bounded-domain property of the normalized Laplacian spectrum. By exploiting genetic operators designed for this specific problem and an exponentially-weighted objective function, we are able to reconstruct adjacency matrices representing networks of varying size whose spectral density is indistinguishable from the target. The topological features of the optimized networks are then compared to the real protein contact networks and they show an increased similarity with respect to the starting networks. Subsequently, the statistical properties of the spectra of the newly generated matrices are analyzed by employing tools borrowed from random matrix theory. The nearest neighbors spacing distribution of the spectra of the generated networks indicates that also the (short-range) correlations of the Laplacian eigenvalues are compatible with those of real proteins.

  17. Reconstructing direct and indirect interactions in networked public goods game

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

  18. Reconstructing direct and indirect interactions in networked public goods game.

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-22

    Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

  19. Crowdsourcing the nodulation gene network discovery environment.

    Science.gov (United States)

    Li, Yupeng; Jackson, Scott A

    2016-05-26

    The Legumes (Fabaceae) are an economically and ecologically important group of plant species with the conspicuous capacity for symbiotic nitrogen fixation in root nodules, specialized plant organs containing symbiotic microbes. With the aim of understanding the underlying molecular mechanisms leading to nodulation, many efforts are underway to identify nodulation-related genes and determine how these genes interact with each other. In order to accurately and efficiently reconstruct nodulation gene network, a crowdsourcing platform, CrowdNodNet, was created. The platform implements the jQuery and vis.js JavaScript libraries, so that users are able to interactively visualize and edit the gene network, and easily access the information about the network, e.g. gene lists, gene interactions and gene functional annotations. In addition, all the gene information is written on MediaWiki pages, enabling users to edit and contribute to the network curation. Utilizing the continuously updated, collaboratively written, and community-reviewed Wikipedia model, the platform could, in a short time, become a comprehensive knowledge base of nodulation-related pathways. The platform could also be used for other biological processes, and thus has great potential for integrating and advancing our understanding of the functional genomics and systems biology of any process for any species. The platform is available at http://crowd.bioops.info/ , and the source code can be openly accessed at https://github.com/bioops/crowdnodnet under MIT License.

  20. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa*

    Directory of Open Access Journals (Sweden)

    Molnár István

    2012-10-01

    Full Text Available Abstract Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome

  1. Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.

    Science.gov (United States)

    Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias

    2015-04-01

    Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.

  2. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions

    DEFF Research Database (Denmark)

    Schmidt, R.; Waschina, S.; Boettger-Schmidt, D.

    2015-01-01

    by inherent inconsistencies and gaps. RESULTS: Here we present a novel method to validate metabolic network reconstructions based on the concept of autocatalytic sets. Autocatalytic sets correspond to collections of metabolites that, besides enzymes and a growth medium, are required to produce all biomass......MOTIVATION: Genome-scale metabolic network reconstructions have been established as a powerful tool for the prediction of cellular phenotypes and metabolic capabilities of organisms. In recent years, the number of network reconstructions has been constantly increasing, mostly because...... of the availability of novel (semi-)automated procedures, which enabled the reconstruction of metabolic models based on individual genomes and their annotation. The resulting models are widely used in numerous applications. However, the accuracy and predictive power of network reconstructions are commonly limited...

  3. Robust Reconstruction of Complex Networks from Sparse Data

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Di, Zengru

    2015-01-01

    Reconstructing complex networks from measurable data is a fundamental problem for understanding and controlling collective dynamics of complex networked systems. However, a significant challenge arises when we attempt to decode structural information hidden in limited amounts of data accompanied by noise and in the presence of inaccessible nodes. Here, we develop a general framework for robust reconstruction of complex networks from sparse and noisy data. Specifically, we decompose the task of reconstructing the whole network into recovering local structures centered at each node. Thus, the natural sparsity of complex networks ensures a conversion from the local structure reconstruction into a sparse signal reconstruction problem that can be addressed by using the lasso, a convex optimization method. We apply our method to evolutionary games, transportation, and communication processes taking place in a variety of model and real complex networks, finding that universal high reconstruction accuracy can be achieved from sparse data in spite of noise in time series and missing data of partial nodes. Our approach opens new routes to the network reconstruction problem and has potential applications in a wide range of fields.

  4. Introduction: Cancer Gene Networks.

    Science.gov (United States)

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  5. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49

  6. Overview of methods of reverse engineering of gene regulatory networks: Boolean and Bayesian networks

    Directory of Open Access Journals (Sweden)

    Frolova A. O.

    2012-06-01

    Full Text Available Reverse engineering of gene regulatory networks is an intensively studied topic in Systems Biology as it reconstructs regulatory interactions between all genes in the genome in the most complete form. The extreme computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene regulatory network is a significant obstacle to further development of this area. In this article the two most common methods for modeling gene regulatory networks are surveyed: Boolean and Bayesian networks. The mathematical description of each method is given, as well as several algorithmic approaches to modeling gene networks using these methods; the complexity of algorithms and the problems that arise during its implementation are also noted.

  7. NeuralNetwork Based 3D Surface Reconstruction

    CERN Document Server

    Joseph, Vincy

    2009-01-01

    This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  8. Reconstructing Links in Directed Networks from Noisy Dynamics

    CERN Document Server

    Ching, Emily S C

    2016-01-01

    In this Letter, we address the longstanding challenge of how to reconstruct links in directed networks from measurements, and present a general method that makes use of a noise-induced relation between network structure and both the time-lagged covariance of measurements taken at two different times and the covariance of measurements taken at the same time. For coupling functions that have additional properties, we can further reconstruct the weights of the links.

  9. 3-D flame temperature field reconstruction with multiobjective neural network

    Institute of Scientific and Technical Information of China (English)

    Xiong Wan(万雄); Yiqing Gao(高益庆); Yuanmei Wang(汪元美)

    2003-01-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multi-wavelength thermometry and Hopfield neural network computed tomography. A mathematical modelof multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjectiveoptimization is developed. Through computer simulation and comparison with the algebraic reconstructiontechnique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the newmethod is discussed in detail. The study shows that the new method always gives the best reconstructionresults. At last, temperature distribution of a section of four peaks candle flame is reconstructed with thisnovel method.

  10. Fast reconstruction of compact context-specific metabolic network models.

    Directory of Open Access Journals (Sweden)

    Nikos Vlassis

    2014-01-01

    Full Text Available Systemic approaches to the study of a biological cell or tissue rely increasingly on the use of context-specific metabolic network models. The reconstruction of such a model from high-throughput data can routinely involve large numbers of tests under different conditions and extensive parameter tuning, which calls for fast algorithms. We present fastcore, a generic algorithm for reconstructing context-specific metabolic network models from global genome-wide metabolic network models such as Recon X. fastcore takes as input a core set of reactions that are known to be active in the context of interest (e.g., cell or tissue, and it searches for a flux consistent subnetwork of the global network that contains all reactions from the core set and a minimal set of additional reactions. Our key observation is that a minimal consistent reconstruction can be defined via a set of sparse modes of the global network, and fastcore iteratively computes such a set via a series of linear programs. Experiments on liver data demonstrate speedups of several orders of magnitude, and significantly more compact reconstructions, over a rival method. Given its simplicity and its excellent performance, fastcore can form the backbone of many future metabolic network reconstruction algorithms.

  11. On the Complexity of Reconstructing Chemical Reaction Networks

    DEFF Research Database (Denmark)

    Fagerberg, Rolf; Flamm, Christoph; Merkle, Daniel

    2013-01-01

    The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from...... the full hypergraph description, e.g. on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP...

  12. Human Metabolic Network: Reconstruction, Simulation, and Applications in Systems Biology

    Science.gov (United States)

    Wu, Ming; Chan, Christina

    2012-01-01

    Metabolism is crucial to cell growth and proliferation. Deficiency or alterations in metabolic functions are known to be involved in many human diseases. Therefore, understanding the human metabolic system is important for the study and treatment of complex diseases. Current reconstructions of the global human metabolic network provide a computational platform to integrate genome-scale information on metabolism. The platform enables a systematic study of the regulation and is applicable to a wide variety of cases, wherein one could rely on in silico perturbations to predict novel targets, interpret systemic effects, and identify alterations in the metabolic states to better understand the genotype-phenotype relationships. In this review, we describe the reconstruction of the human metabolic network, introduce the constraint based modeling approach to analyze metabolic networks, and discuss systems biology applications to study human physiology and pathology. We highlight the challenges and opportunities in network reconstruction and systems modeling of the human metabolic system. PMID:24957377

  13. Missing and spurious interactions and the reconstruction of complex networks

    CERN Document Server

    Guimera, R; 10.1073/pnas.0908366106

    2010-01-01

    Network analysis is currently used in a myriad of contexts: from identifying potential drug targets to predicting the spread of epidemics and designing vaccination strategies, and from finding friends to uncovering criminal activity. Despite the promise of the network approach, the reliability of network data is a source of great concern in all fields where complex networks are studied. Here, we present a general mathematical and computational framework to deal with the problem of data reliability in complex networks. In particular, we are able to reliably identify both missing and spurious interactions in noisy network observations. Remarkably, our approach also enables us to obtain, from those noisy observations, network reconstructions that yield estimates of the true network properties that are more accurate than those provided by the observations themselves. Our approach has the potential to guide experiments, to better characterize network data sets, and to drive new discoveries.

  14. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  15. Biblio-MetReS: A bibliometric network reconstruction application and server

    Directory of Open Access Journals (Sweden)

    Alves Rui

    2011-10-01

    Full Text Available Abstract Background Reconstruction of genes and/or protein networks from automated analysis of the literature is one of the current targets of text mining in biomedical research. Some user-friendly tools already perform this analysis on precompiled databases of abstracts of scientific papers. Other tools allow expert users to elaborate and analyze the full content of a corpus of scientific documents. However, to our knowledge, no user friendly tool that simultaneously analyzes the latest set of scientific documents available on line and reconstructs the set of genes referenced in those documents is available. Results This article presents such a tool, Biblio-MetReS, and compares its functioning and results to those of other user-friendly applications (iHOP, STRING that are widely used. Under similar conditions, Biblio-MetReS creates networks that are comparable to those of other user friendly tools. Furthermore, analysis of full text documents provides more complete reconstructions than those that result from using only the abstract of the document. Conclusions Literature-based automated network reconstruction is still far from providing complete reconstructions of molecular networks. However, its value as an auxiliary tool is high and it will increase as standards for reporting biological entities and relationships become more widely accepted and enforced. Biblio-MetReS is an application that can be downloaded from http://metres.udl.cat/. It provides an easy to use environment for researchers to reconstruct their networks of interest from an always up to date set of scientific documents.

  16. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  17. Reconstruction of human protein interolog network using evolutionary conserved network

    Directory of Open Access Journals (Sweden)

    Lin Chung-Yen

    2007-05-01

    Full Text Available Abstract Background The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog. This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction. Results This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast. Conclusion Evaluation results of the proposed method using functional keyword and Gene Ontology (GO annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.

  18. Mean Field Theory for Nonequilibrium Network Reconstruction

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering, as an exam......There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering......-time and one time step-delayed correlation functions....

  19. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    Science.gov (United States)

    Vitkin, Edward; Shlomi, Tomer

    2012-11-29

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files.

  20. Reconstruction of financial networks for robust estimation of systemic risk

    Science.gov (United States)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-03-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.

  1. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function modelToReconstruction

  2. Inference of gene pathways using mixture Bayesian networks

    Directory of Open Access Journals (Sweden)

    Ko Younhee

    2009-05-01

    Full Text Available Abstract Background Inference of gene networks typically relies on measurements across a wide range of conditions or treatments. Although one network structure is predicted, the relationship between genes could vary across conditions. A comprehensive approach to infer general and condition-dependent gene networks was evaluated. This approach integrated Bayesian network and Gaussian mixture models to describe continuous microarray gene expression measurements, and three gene networks were predicted. Results The first reconstructions of a circadian rhythm pathway in honey bees and an adherens junction pathway in mouse embryos were obtained. In addition, general and condition-specific gene relationships, some unexpected, were detected in these two pathways and in a yeast cell-cycle pathway. The mixture Bayesian network approach identified all (honey bee circadian rhythm and mouse adherens junction pathways or the vast majority (yeast cell-cycle pathway of the gene relationships reported in empirical studies. Findings across the three pathways and data sets indicate that the mixture Bayesian network approach is well-suited to infer gene pathways based on microarray data. Furthermore, the interpretation of model estimates provided a broader understanding of the relationships between genes. The mixture models offered a comprehensive description of the relationships among genes in complex biological processes or across a wide range of conditions. The mixture parameter estimates and corresponding odds that the gene network inferred for a sample pertained to each mixture component allowed the uncovering of both general and condition-dependent gene relationships and patterns of expression. Conclusion This study demonstrated the two main benefits of learning gene pathways using mixture Bayesian networks. First, the identification of the optimal number of mixture components supported by the data offered a robust approach to infer gene relationships and

  3. Systemic risk analysis in reconstructed economic and financial networks

    CERN Document Server

    Cimini, Giulio; Gabrielli, Andrea; Garlaschelli, Diego

    2014-01-01

    The assessment of fundamental properties for economic and financial systems, such as systemic risk, is systematically hindered by privacy issues$-$that put severe limitations on the available information. Here we introduce a novel method to reconstruct partially-accessible networked systems of this kind. The method is based on the knowledge of the fitnesses, $i.e.$, intrinsic node-specific properties, and of the number of connections of only a limited subset of nodes. Such information is used to calibrate a directed configuration model which can generate ensembles of networks intended to represent the real system, so that the real network properties can be estimated within the generated ensemble in terms of mean values of the observables. Here we focus on estimating those properties that are commonly used to measure the network resilience to shock and crashes. Tests on both artificial and empirical networks shows that the method is remarkably robust with respect to the limitedness of the information available...

  4. Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide.

    Science.gov (United States)

    Orth, Jeffrey D; Fleming, R M T; Palsson, Bernhard Ø

    2010-09-01

    Biochemical network reconstructions have become popular tools in systems biology. Metabolicnetwork reconstructions are biochemically, genetically, and genomically (BiGG) structured databases of biochemical reactions and metabolites. They contain information such as exact reaction stoichiometry, reaction reversibility, and the relationships between genes, proteins, and reactions. Network reconstructions have been used extensively to study the phenotypic behavior of wild-type and mutant stains under a variety of conditions, linking genotypes with phenotypes. Such phenotypic simulations have allowed for the prediction of growth after genetic manipulations, prediction of growth phenotypes after adaptive evolution, and prediction of essential genes. Additionally, because network reconstructions are organism specific, they can be used to understand differences between organisms of species in a functional context.There are different types of reconstructions representing various types of biological networks (metabolic, regulatory, transcription/translation). This chapter serves as an introduction to metabolic and regulatory network reconstructions and models and gives a complete description of the core Escherichia coli metabolic model. This model can be analyzed in any computational format (such as MATLAB or Mathematica) based on the information given in this chapter. The core E. coli model is a small-scale model that can be used for educational purposes. It is meant to be used by senior undergraduate and first-year graduate students learning about constraint-based modeling and systems biology. This model has enough reactions and pathways to enable interesting and insightful calculations, but it is also simple enough that the results of such calculations can be understoodeasily.

  5. Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics

    Science.gov (United States)

    Lai, Pik-Yin

    2017-02-01

    Reconstructing network connection topology and interaction strengths solely from measurement of the dynamics of the nodes is a challenging inverse problem of broad applicability in various areas of science and engineering. For a discrete-time step network under noises whose noise-free dynamics is stationary, we derive general analytic results relating the weighted connection matrix of the network to the correlation functions obtained from time-series measurements of the nodes for networks with one-dimensional intrinsic node dynamics. Information about the intrinsic node dynamics and the noise strengths acting on the nodes can also be obtained. Based on these results, we develop a scheme that can reconstruct the above information of the network using only the time-series measurements of node dynamics as input. Reconstruction formulas for higher-dimensional node dynamics are also derived and illustrated with a two-dimensional node dynamics network system. Furthermore, we extend our results and obtain a reconstruction scheme even for the cases when the noise-free dynamics is periodic. We demonstrate that our method can give accurate reconstruction results for weighted directed networks with linear or nonlinear node dynamics of various connection topologies, and with linear or nonlinear couplings.

  6. Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.

    Directory of Open Access Journals (Sweden)

    Yuji Zhang

    Full Text Available BACKGROUND: Precise regulation of the cell cycle is crucial to the growth and development of all organisms. Understanding the regulatory mechanism of the cell cycle is crucial to unraveling many complicated diseases, most notably cancer. Multiple sources of biological data are available to study the dynamic interactions among many genes that are related to the cancer cell cycle. Integrating these informative and complementary data sources can help to infer a mutually consistent gene transcriptional regulatory network with strong similarity to the underlying gene regulatory relationships in cancer cells. RESULTS AND PRINCIPAL FINDINGS: We propose an integrative framework that infers gene regulatory modules from the cell cycle of cancer cells by incorporating multiple sources of biological data, including gene expression profiles, gene ontology, and molecular interaction. Among 846 human genes with putative roles in cell cycle regulation, we identified 46 transcription factors and 39 gene ontology groups. We reconstructed regulatory modules to infer the underlying regulatory relationships. Four regulatory network motifs were identified from the interaction network. The relationship between each transcription factor and predicted target gene groups was examined by training a recurrent neural network whose topology mimics the network motif(s to which the transcription factor was assigned. Inferred network motifs related to eight well-known cell cycle genes were confirmed by gene set enrichment analysis, binding site enrichment analysis, and comparison with previously published experimental results. CONCLUSIONS: We established a robust method that can accurately infer underlying relationships between a given transcription factor and its downstream target genes by integrating different layers of biological data. Our method could also be beneficial to biologists for predicting the components of regulatory modules in which any candidate gene is involved

  7. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis.

    Science.gov (United States)

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E; Balázsi, Gábor; Gennaro, Maria Laura

    2016-03-31

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics.

  8. Supersampling and Network Reconstruction of Urban Mobility

    Science.gov (United States)

    Sagarra, Oleguer; Szell, Michael; Santi, Paolo; Díaz-Guilera, Albert; Ratti, Carlo

    2015-01-01

    Understanding human mobility is of vital importance for urban planning, epidemiology, and many other fields that draw policies from the activities of humans in space. Despite the recent availability of large-scale data sets of GPS traces or mobile phone records capturing human mobility, typically only a subsample of the population of interest is represented, giving a possibly incomplete picture of the entire system under study. Methods to reliably extract mobility information from such reduced data and to assess their sampling biases are lacking. To that end, we analyzed a data set of millions of taxi movements in New York City. We first show that, once they are appropriately transformed, mobility patterns are highly stable over long time scales. Based on this observation, we develop a supersampling methodology to reliably extrapolate mobility records from a reduced sample based on an entropy maximization procedure, and we propose a number of network-based metrics to assess the accuracy of the predicted vehicle flows. Our approach provides a well founded way to exploit temporal patterns to save effort in recording mobility data, and opens the possibility to scale up data from limited records when information on the full system is required. PMID:26275237

  9. Supersampling and Network Reconstruction of Urban Mobility.

    Directory of Open Access Journals (Sweden)

    Oleguer Sagarra

    Full Text Available Understanding human mobility is of vital importance for urban planning, epidemiology, and many other fields that draw policies from the activities of humans in space. Despite the recent availability of large-scale data sets of GPS traces or mobile phone records capturing human mobility, typically only a subsample of the population of interest is represented, giving a possibly incomplete picture of the entire system under study. Methods to reliably extract mobility information from such reduced data and to assess their sampling biases are lacking. To that end, we analyzed a data set of millions of taxi movements in New York City. We first show that, once they are appropriately transformed, mobility patterns are highly stable over long time scales. Based on this observation, we develop a supersampling methodology to reliably extrapolate mobility records from a reduced sample based on an entropy maximization procedure, and we propose a number of network-based metrics to assess the accuracy of the predicted vehicle flows. Our approach provides a well founded way to exploit temporal patterns to save effort in recording mobility data, and opens the possibility to scale up data from limited records when information on the full system is required.

  10. Supersampling and Network Reconstruction of Urban Mobility.

    Science.gov (United States)

    Sagarra, Oleguer; Szell, Michael; Santi, Paolo; Díaz-Guilera, Albert; Ratti, Carlo

    2015-01-01

    Understanding human mobility is of vital importance for urban planning, epidemiology, and many other fields that draw policies from the activities of humans in space. Despite the recent availability of large-scale data sets of GPS traces or mobile phone records capturing human mobility, typically only a subsample of the population of interest is represented, giving a possibly incomplete picture of the entire system under study. Methods to reliably extract mobility information from such reduced data and to assess their sampling biases are lacking. To that end, we analyzed a data set of millions of taxi movements in New York City. We first show that, once they are appropriately transformed, mobility patterns are highly stable over long time scales. Based on this observation, we develop a supersampling methodology to reliably extrapolate mobility records from a reduced sample based on an entropy maximization procedure, and we propose a number of network-based metrics to assess the accuracy of the predicted vehicle flows. Our approach provides a well founded way to exploit temporal patterns to save effort in recording mobility data, and opens the possibility to scale up data from limited records when information on the full system is required.

  11. HAWC Energy Reconstruction via Neural Network

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2016-03-01

    The High-Altitude Water-Cherenkov (HAWC) γ-ray observatory is located at 4100 m above sea level on the Sierra Negra mountain in the state of Puebla, Mexico. Its 300 water-filled tanks are instrumented with PMTs that detect Cherenkov light produced by charged particles in atmospheric air showers induced by TeV γ-rays. The detector became fully operational in March of 2015. With a 2-sr field of view and duty cycle exceeding 90%, HAWC is a survey instrument sensitive to diverse γ-ray sources, including supernova remnants, pulsar wind nebulae, active galactic nuclei, and others. Particle-acceleration mechanisms at these sources can be inferred by studying their energy spectra, particularly at high energies. We have developed a technique for estimating primary- γ-ray energies using an artificial neural network (ANN). Input variables to the ANN are selected to characterize shower multiplicity in the detector, the fraction of the shower contained in the detector, and atmospheric attenuation of the shower. Monte Carlo simulations show that the new estimator has superior performance to the current estimator used in HAWC publications. This work was supported by the National Science Foundation.

  12. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  13. Prediction of missing links and reconstruction of complex networks

    Science.gov (United States)

    Zhang, Cheng-Jun; Zeng, An

    2016-04-01

    Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.

  14. Ekofisk chalk: core measurements, stochastic reconstruction, network modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Saifullah

    2002-07-01

    This dissertation deals with (1) experimental measurements on petrophysical, reservoir engineering and morphological properties of Ekofisk chalk, (2) numerical simulation of core flood experiments to analyze and improve relative permeability data, (3) stochastic reconstruction of chalk samples from limited morphological information, (4) extraction of pore space parameters from the reconstructed samples, development of network model using pore space information, and computation of petrophysical and reservoir engineering properties from network model, and (5) development of 2D and 3D idealized fractured reservoir models and verification of the applicability of several widely used conventional up scaling techniques in fractured reservoir simulation. Experiments have been conducted on eight Ekofisk chalk samples and porosity, absolute permeability, formation factor, and oil-water relative permeability, capillary pressure and resistivity index are measured at laboratory conditions. Mercury porosimetry data and backscatter scanning electron microscope images have also been acquired for the samples. A numerical simulation technique involving history matching of the production profiles is employed to improve the relative permeability curves and to analyze hysteresis of the Ekofisk chalk samples. The technique was found to be a powerful tool to supplement the uncertainties in experimental measurements. Porosity and correlation statistics obtained from backscatter scanning electron microscope images are used to reconstruct microstructures of chalk and particulate media. The reconstruction technique involves a simulated annealing algorithm, which can be constrained by an arbitrary number of morphological parameters. This flexibility of the algorithm is exploited to successfully reconstruct particulate media and chalk samples using more than one correlation functions. A technique based on conditional simulated annealing has been introduced for exact reproduction of vuggy

  15. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Novichkov, Pavel; Stavrovskaya, Elena D.; Rodionova, Irina A.; Li, Xiaoqing; Kazanov, Marat D.; Ravcheev, Dmitry A.; Gerasimova, Anna V.; Kazakov, Alexey E.; Kovaleva, Galina Y.; Permina, Elizabeth A.; Laikova, Olga N.; Overbeek, Ross; Romine, Margaret F.; Fredrickson, Jim K.; Arkin, Adam P.; Dubchak, Inna; Osterman, Andrei L.; Gelfand, Mikhail S.

    2011-06-15

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. Despite the growing number of genome-scale gene expression studies, our abilities to convert the results of these studies into accurate regulatory annotations and to project them from model to other organisms are extremely limited. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. However, even orthologous regulators with conserved DNA-binding motifs may control substantially different gene sets, revealing striking differences in regulatory strategies between the Shewanella spp. and E. coli. Multiple examples of regulatory network rewiring include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), and numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. NagR for N-acetylglucosamine catabolism and PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp).

  16. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  17. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

    Science.gov (United States)

    Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.

    2017-03-01

    Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.

  18. Network Reconstruction and Systems Analysis of Cardiac Myocyte Hypertrophy Signaling*

    Science.gov (United States)

    Ryall, Karen A.; Holland, David O.; Delaney, Kyle A.; Kraeutler, Matthew J.; Parker, Audrey J.; Saucerman, Jeffrey J.

    2012-01-01

    Cardiac hypertrophy is managed by a dense web of signaling pathways with many pathways influencing myocyte growth. A quantitative understanding of the contributions of individual pathways and their interactions is needed to better understand hypertrophy signaling and to develop more effective therapies for heart failure. We developed a computational model of the cardiac myocyte hypertrophy signaling network to determine how the components and network topology lead to differential regulation of transcription factors, gene expression, and myocyte size. Our computational model of the hypertrophy signaling network contains 106 species and 193 reactions, integrating 14 established pathways regulating cardiac myocyte growth. 109 of 114 model predictions were validated using published experimental data testing the effects of receptor activation on transcription factors and myocyte phenotypic outputs. Network motif analysis revealed an enrichment of bifan and biparallel cross-talk motifs. Sensitivity analysis was used to inform clustering of the network into modules and to identify species with the greatest effects on cell growth. Many species influenced hypertrophy, but only a few nodes had large positive or negative influences. Ras, a network hub, had the greatest effect on cell area and influenced more species than any other protein in the network. We validated this model prediction in cultured cardiac myocytes. With this integrative computational model, we identified the most influential species in the cardiac hypertrophy signaling network and demonstrate how different levels of network organization affect myocyte size, transcription factors, and gene expression. PMID:23091058

  19. Metabolism and evolution: A comparative study of reconstructed genome-level metabolic networks

    Science.gov (United States)

    Almaas, Eivind

    2008-03-01

    The availability of high-quality annotations of sequenced genomes has made it possible to generate organism-specific comprehensive maps of cellular metabolism. Currently, more than twenty such metabolic reconstructions are publicly available, with the majority focused on bacteria. A typical metabolic reconstruction for a bacterium results in a complex network containing hundreds of metabolites (nodes) and reactions (links), while some even contain more than a thousand. The constrain-based optimization approach of flux-balance analysis (FBA) is used to investigate the functional characteristics of such large-scale metabolic networks, making it possible to estimate an organism's growth behavior in a wide variety of nutrient environments, as well as its robustness to gene loss. We have recently completed the genome-level metabolic reconstruction of Yersinia pseudotuberculosis, as well as the three Yersinia pestis biovars Antiqua, Mediaevalis, and Orientalis. While Y. pseudotuberculosis typically only causes fever and abdominal pain that can mimic appendicitis, the evolutionary closely related Y. pestis strains are the aetiological agents of the bubonic plague. In this presentation, I will discuss our results and conclusions from a comparative study on the evolution of metabolic function in the four Yersiniae networks using FBA and related techniques, and I will give particular focus to the interplay between metabolic network topology and evolutionary flexibility.

  20. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  1. A scalable method for molecular network reconstruction identifies properties of targets and mutations in acute myeloid leukemia.

    Science.gov (United States)

    Ong, Edison; Szedlak, Anthony; Kang, Yunyi; Smith, Peyton; Smith, Nicholas; McBride, Madison; Finlay, Darren; Vuori, Kristiina; Mason, James; Ball, Edward D; Piermarocchi, Carlo; Paternostro, Giovanni

    2015-04-01

    A key aim of systems biology is the reconstruction of molecular networks. We do not yet, however, have networks that integrate information from all datasets available for a particular clinical condition. This is in part due to the limited scalability, in terms of required computational time and power, of existing algorithms. Network reconstruction methods should also be scalable in the sense of allowing scientists from different backgrounds to efficiently integrate additional data. We present a network model of acute myeloid leukemia (AML). In the current version (AML 2.1), we have used gene expression data (both microarray and RNA-seq) from 5 different studies comprising a total of 771 AML samples and a protein-protein interactions dataset. Our scalable network reconstruction method is in part based on the well-known property of gene expression correlation among interacting molecules. The difficulty of distinguishing between direct and indirect interactions is addressed by optimizing the coefficient of variation of gene expression, using a validated gold-standard dataset of direct interactions. Computational time is much reduced compared to other network reconstruction methods. A key feature is the study of the reproducibility of interactions found in independent clinical datasets. An analysis of the most significant clusters, and of the network properties (intraset efficiency, degree, betweenness centrality, and PageRank) of common AML mutations demonstrated the biological significance of the network. A statistical analysis of the response of blast cells from 11 AML patients to a library of kinase inhibitors provided an experimental validation of the network. A combination of network and experimental data identified CDK1, CDK2, CDK4, and CDK6 and other kinases as potential therapeutic targets in AML.

  2. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  3. Unraveling toxicological mechanisms and predicting toxicity classes with gene dysregulation networks

    NARCIS (Netherlands)

    Pronk, T.E.; Someren, P. van; Stierum, R.H.; Ezendam, J.; Pennings, J.L.A.

    2013-01-01

    The use of genes for distinguishing classes of toxicity has become well established. In this paper we combine the reconstruction of a gene dysregulation network (GDN) with a classifier to assign unseen compounds to their appropriate class. Gene pairs in the GDN are dysregulated in the sense that the

  4. Unraveling toxicological mechanisms and predicting toxicity classes with gene dysregulation networks

    NARCIS (Netherlands)

    Pronk, T.E.; Someren, P. van; Stierum, R.H.; Ezendam, J.; Pennings, J.L.A.

    2013-01-01

    The use of genes for distinguishing classes of toxicity has become well established. In this paper we combine the reconstruction of a gene dysregulation network (GDN) with a classifier to assign unseen compounds to their appropriate class. Gene pairs in the GDN are dysregulated in the sense that

  5. Reconstruction of cellular forces in fibrous biopolymer network

    CERN Document Server

    Zhang, Yunsong; Heizler, Shay; Levine, Herbert

    2016-01-01

    How cells move through 3d extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on 2d surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. Here, we use a lattice-based mechanical model of ECM to study the cellular force reconstruction issue. We conceptually propose an efficient computational scheme to reconstruct cellular forces from the deformation and explore the performance of our scheme in presence of noise, varying marker bead distribution, varying bond stiffnesses and changing cell morphology. Our results show that micromechanical information, rather than merely the bulk rheology of the biopolymer networks, is essential for a precise recovery of cellular forces.

  6. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    Directory of Open Access Journals (Sweden)

    Orth Jeffrey D

    2012-05-01

    Full Text Available Abstract Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking.

  7. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Directory of Open Access Journals (Sweden)

    Xionghui Zhou

    Full Text Available Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer. In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis. Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene

  8. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2011-10-01

    Full Text Available Abstract Background Transcriptional regulation by transcription factor (TF controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data.

  9. Gene-network analysis identifies susceptibility genes related to glycobiology in autism.

    Directory of Open Access Journals (Sweden)

    Bert van der Zwaag

    Full Text Available The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD, and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD.

  10. Dynamic Regulatory Network Reconstruction for Alzheimer’s Disease Based on Matrix Decomposition Techniques

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA, which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD.

  11. Reconstruction of ribosomal RNA genes from metagenomic data.

    Directory of Open Access Journals (Sweden)

    Lu Fan

    Full Text Available Direct sequencing of environmental DNA (metagenomics has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data. Simulations showed that reconstructed 16S rRNA genes provided a true picture of the community diversity, had minimal rates of chimera formation and gave taxonomic resolution down to genus level. The strategy was furthermore compared to PCR-based methods to determine the microbial diversity in two marine sponges. This showed that about 30% of the abundant phylotypes reconstructed from metagenomic data failed to be amplified by PCR. Our approach is readily applicable to existing metagenomic datasets and is expected to lead to the discovery of new microbial phylotypes.

  12. Network reconstruction by stationary distribution data of Markov chains based on correlation analysis

    CERN Document Server

    He, Zhe; Wang, Bing-Hong

    2014-01-01

    We propose a new method for network reconstruction by the stationary distribution data of Markov chains on this network. Our method has the merits that: the data we need are much few than most method and need not defer to the time order, and we do not need the input data. We define some criterions to measure the efficacy and the simulation results on several networks, including computer-generated networks and real networks, indicate our method works well. The method consist of two procedures, fist, reconstruct degree sequence, second, reconstruct the network(or edges). And we test the efficacy of each procedure.

  13. 代谢网络的重构%Reconstruction of Metabolic Networks

    Institute of Scientific and Technical Information of China (English)

    邓世果; 吴干华; 杨会杰

    2012-01-01

    A new method was proposed to reconstruct metabolic networks on the basis of the existing method. As an illustration example, the method was used to build the metabolic network for a species of anabaena. By use of the data of organism's biochemical reaction,enzyme and gene in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the preliminary metabolic network for the anabaena was reconstructed. The structural behaviors such as degree distribution, hierarchy, and community were discussed.%在已有的构建代谢网络方法的基础上,提出了构造代谢网络的改进方法.以鱼腥藻作为实例,利用KEGG数据库中生物体的生化反应、酶、基因数据重构出鱼腥藻的初步代谢网络,并对初步代谢网络进行了修正,讨论了该网络的拓扑结构性质.

  14. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  15. Systemic Risk Analysis on Reconstructed Economic and Financial Networks

    Science.gov (United States)

    Cimini, Giulio; Squartini, Tiziano; Garlaschelli, Diego; Gabrielli, Andrea

    2015-10-01

    We address a fundamental problem that is systematically encountered when modeling real-world complex systems of societal relevance: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic node-specific properties and of the number of connections of only a limited subset of nodes. This information is used to calibrate an inference procedure based on fundamental concepts derived from statistical physics, which allows to generate ensembles of directed weighted networks intended to represent the real system—so that the real network properties can be estimated as their average values within the ensemble. We test the method both on synthetic and empirical networks, focusing on the properties that are commonly used to measure systemic risk. Indeed, the method shows a remarkable robustness with respect to the limitedness of the information available, thus representing a valuable tool for gaining insights on privacy-protected economic and financial systems.

  16. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  17. Inferring latent gene regulatory network kinetics

    NARCIS (Netherlands)

    González, Javier; Vujačić, Ivan; Wit, Ernst

    2013-01-01

    Regulatory networks consist of genes encoding transcription factors (TFs) and the genes they activate or repress. Various types of systems of ordinary differential equations (ODE) have been proposed to model these networks, ranging from linear to Michaelis-Menten approaches. In practice, a serious d

  18. Robustness and Optimization of Complex Networks: Reconstructability, Algorithms and Modeling

    NARCIS (Netherlands)

    Liu, D.

    2013-01-01

    The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our

  19. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  20. Stereo Matching Based on Immune Neural Network in Abdomen Reconstruction

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2015-01-01

    Full Text Available Stereo feature matching is a technique that finds an optimal match in two images from the same entity in the three-dimensional world. The stereo correspondence problem is formulated as an optimization task where an energy function, which represents the constraints on the solution, is to be minimized. A novel intelligent biological network (Bio-Net, which involves the human B-T cells immune system into neural network, is proposed in this study in order to learn the robust relationship between the input feature points and the output matched points. A model from input-output data (left reference point-right target point is established. In the experiments, the abdomen reconstructions for different-shape mannequins are then performed by means of the proposed method. The final results are compared and analyzed, which demonstrate that the proposed approach greatly outperforms the single neural network and the conventional matching algorithm in precise. Particularly, as far as time cost and efficiency, the proposed method exhibits its significant promising and potential for improvement. Hence, it is entirely considered as an effective and feasible alternative option for stereo matching.

  1. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  2. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.

    Science.gov (United States)

    Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune

    2016-01-01

    Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.

  3. Modeling of hysteresis in gene regulatory networks.

    Science.gov (United States)

    Hu, J; Qin, K R; Xiang, C; Lee, T H

    2012-08-01

    Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function.

  4. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.

    Science.gov (United States)

    Ravcheev, Dmitry A; Godzik, Adam; Osterman, Andrei L; Rodionov, Dmitry A

    2013-12-12

    Bacteroides thetaiotaomicron, a predominant member of the human gut microbiota, is characterized by its ability to utilize a wide variety of polysaccharides using the extensive saccharolytic machinery that is controlled by an expanded repertoire of transcription factors (TFs). The availability of genomic sequences for multiple Bacteroides species opens an opportunity for their comparative analysis to enable characterization of their metabolic and regulatory networks. A comparative genomics approach was applied for the reconstruction and functional annotation of the carbohydrate utilization regulatory networks in 11 Bacteroides genomes. Bioinformatics analysis of promoter regions revealed putative DNA-binding motifs and regulons for 31 orthologous TFs in the Bacteroides. Among the analyzed TFs there are 4 SusR-like regulators, 16 AraC-like hybrid two-component systems (HTCSs), and 11 regulators from other families. Novel DNA motifs of HTCSs and SusR-like regulators in the Bacteroides have the common structure of direct repeats with a long spacer between two conserved sites. The inferred regulatory network in B. thetaiotaomicron contains 308 genes encoding polysaccharide and sugar catabolic enzymes, carbohydrate-binding and transport systems, and TFs. The analyzed TFs control pathways for utilization of host and dietary glycans to monosaccharides and their further interconversions to intermediates of the central metabolism. The reconstructed regulatory network allowed us to suggest and refine specific functional assignments for sugar catabolic enzymes and transporters, providing a substantial improvement to the existing metabolic models for B. thetaiotaomicron. The obtained collection of reconstructed TF regulons is available in the RegPrecise database (http://regprecise.lbl.gov).

  5. Ancestral gene synteny reconstruction improves extant species scaffolding.

    Science.gov (United States)

    Anselmetti, Yoann; Berry, Vincent; Chauve, Cedric; Chateau, Annie; Tannier, Eric; Bérard, Sèverine

    2015-01-01

    We exploit the methodological similarity between ancestral genome reconstruction and extant genome scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a support computed from an exhaustive exploration of the solution space. We compare our method with a previously published one that follows the same goal on a small number of genomes with universal unicopy genes. Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity depends on the quality of the data and on the proximity of closely related genomes.

  6. Efficient Surface Mesh Reconstruction from Unorganized Points Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    YUANYouwei; YANLamei; GUOQingping

    2005-01-01

    In this paper, a new approach for the automatic reconstruction from unorganized points is presented,where first an artificial neural network is used to order the data and form a grid of control vertices with triangle topology. Then, we present a general scheme for mesh simplification and optimization that allows to control the geometric approximation as well as the element shape and size quality (required for numerical simulations). The new approach makes possible the construction of adapted geometric meshes for surfaces by specifying the element sizes(and directions) so as to bound the error below a usergiven threshold value. The experimental results show that our methods are accurate and simple to implement.

  7. Exploring Normalization and Network Reconstruction Methods using In Silico and In Vivo Models

    Science.gov (United States)

    Abstract: Lessons learned from the recent DREAM competitions include: The search for the best network reconstruction method continues, and we need more complete datasets with ground truth from more complex organisms. It has become obvious that the network reconstruction methods t...

  8. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and cont

  9. Filtering Genes for Cluster and Network Analysis

    Directory of Open Access Journals (Sweden)

    Parkhomenko Elena

    2009-06-01

    Full Text Available Abstract Background Prior to cluster analysis or genetic network analysis it is customary to filter, or remove genes considered to be irrelevant from the set of genes to be analyzed. Often genes whose variation across samples is less than an arbitrary threshold value are deleted. This can improve interpretability and reduce bias. Results This paper introduces modular models for representing network structure in order to study the relative effects of different filtering methods. We show that cluster analysis and principal components are strongly affected by filtering. Filtering methods intended specifically for cluster and network analysis are introduced and compared by simulating modular networks with known statistical properties. To study more realistic situations, we analyze simulated "real" data based on well-characterized E. coli and S. cerevisiae regulatory networks. Conclusion The methods introduced apply very generally, to any similarity matrix describing gene expression. One of the proposed methods, SUMCOV, performed well for all models simulated.

  10. Reconstruction of Protein-Protein Interaction Network of Insulin Signaling in Homo Sapiens

    Directory of Open Access Journals (Sweden)

    Saliha Durmuş Tekir

    2010-01-01

    Full Text Available Diabetes is one of the most prevalent diseases in the world. Type 1 diabetes is characterized by the failure of synthesizing and secreting of insulin because of destroyed pancreatic β-cells. Type 2 diabetes, on the other hand, is described by the decreased synthesis and secretion of insulin because of the defect in pancreatic β-cells as well as by the failure of responding to insulin because of malfunctioning of insulin signaling. In order to understand the signaling mechanisms of responding to insulin, it is necessary to identify all components in the insulin signaling network. Here, an interaction network consisting of proteins that have statistically high probability of being biologically related to insulin signaling in Homo sapiens was reconstructed by integrating Gene Ontology (GO annotations and interactome data. Furthermore, within this reconstructed network, interacting proteins which mediate the signal from insulin hormone to glucose transportation were identified using linear paths. The identification of key components functioning in insulin action on glucose metabolism is crucial for the efforts of preventing and treating type 2 diabetes mellitus.

  11. Reconstruction of social group networks from friendship networks using a tag-based model

    Science.gov (United States)

    Guan, Yuan-Pan; You, Zhi-Qiang; Han, Xiao-Pu

    2016-12-01

    Social group is a type of mesoscopic structure that connects human individuals in microscopic level and the global structure of society. In this paper, we propose a tag-based model considering that social groups expand along the edge that connects two neighbors with a similar tag of interest. The model runs on a real-world friendship network, and its simulation results show that various properties of simulated group network can well fit the empirical analysis on real-world social groups, indicating that the model catches the major mechanism driving the evolution of social groups and successfully reconstructs the social group network from a friendship network and throws light on digging of relationships between social functional organizations.

  12. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  13. Efficient algorithms for reconstructing gene content by co-evolution

    Directory of Open Access Journals (Sweden)

    Tuller Tamir

    2011-10-01

    Full Text Available Abstract Background In a previous study we demonstrated that co-evolutionary information can be utilized for improving the accuracy of ancestral gene content reconstruction. To this end, we defined a new computational problem, the Ancestral Co-Evolutionary (ACE problem, and developed algorithms for solving it. Results In the current paper we generalize our previous study in various ways. First, we describe new efficient computational approaches for solving the ACE problem. The new approaches are based on reductions to classical methods such as linear programming relaxation, quadratic programming, and min-cut. Second, we report new computational hardness results related to the ACE, including practical cases where it can be solved in polynomial time. Third, we generalize the ACE problem and demonstrate how our approach can be used for inferring parts of the genomes of non-ancestral organisms. To this end, we describe a heuristic for finding the portion of the genome ('dominant set’ that can be used to reconstruct the rest of the genome with the lowest error rate. This heuristic utilizes both evolutionary information and co-evolutionary information. We implemented these algorithms on a large input of the ACE problem (95 unicellular organisms, 4,873 protein families, and 10, 576 of co-evolutionary relations, demonstrating that some of these algorithms can outperform the algorithm used in our previous study. In addition, we show that based on our approach a ’dominant set’ cab be used reconstruct a major fraction of a genome (up to 79% with relatively low error-rate (e.g. 0.11. We find that the ’dominant set’ tends to include metabolic and regulatory genes, with high evolutionary rate, and low protein abundance and number of protein-protein interactions. Conclusions The ACE problem can be efficiently extended for inferring the genomes of organisms that exist today. In addition, it may be solved in polynomial time in many practical cases

  14. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks

    Science.gov (United States)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2016-06-01

    Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.

  15. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks.

    Science.gov (United States)

    Barranca, Victor J; Zhou, Douglas; Cai, David

    2016-06-01

    Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.

  16. Structures and Boolean Dynamics in Gene Regulatory Networks

    Science.gov (United States)

    Szedlak, Anthony

    This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle

  17. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  18. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Pengcheng Pan

    Full Text Available With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.

  19. Universal data-based method for reconstructing complex networks with binary-state dynamics

    Science.gov (United States)

    Li, Jingwen; Shen, Zhesi; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2017-03-01

    To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework is completely data driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting complex networked systems with binary-state dynamics.

  20. Network of tRNA Gene Sequences

    Institute of Scientific and Technical Information of China (English)

    WEI Fang-ping; LI Sheng; MA Hong-ru

    2008-01-01

    A network of 3719 tRNA gene sequences was constructed using simplest alignment. Its topology, degree distribution and clustering coefficient were studied. The behaviors of the network shift from fluctuated distribution to scale-free distribution when the similarity degree of the tRNA gene sequences increases. The tRNA gene sequences with the same anticodon identity are more self-organized than those with different anticodon identities and form local clusters in the network. Some vertices of the local cluster have a high connection with other local clusters, and the probable reason was given. Moreover, a network constructed by the same number of random tRNA sequences was used to make comparisons. The relationships between the properties of the tRNA similarity network and the characters of tRNA evolutionary history were discussed.

  1. Gene regulatory network inference using fused LASSO on multiple data sets.

    Science.gov (United States)

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M O; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-02-11

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions.

  2. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-08-31

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  3. Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043

    Directory of Open Access Journals (Sweden)

    Oner Ebru

    2011-01-01

    Full Text Available Abstract Background Chromohalobacter salexigens (formerly Halomonas elongata DSM 3043 is a halophilic extremophile with a very broad salinity range and is used as a model organism to elucidate prokaryotic osmoadaptation due to its strong euryhaline phenotype. Results C. salexigens DSM 3043's metabolism was reconstructed based on genomic, biochemical and physiological information via a non-automated but iterative process. This manually-curated reconstruction accounts for 584 genes, 1386 reactions, and 1411 metabolites. By using flux balance analysis, the model was extensively validated against literature data on the C. salexigens phenotypic features, the transport and use of different substrates for growth as well as against experimental observations on the uptake and accumulation of industrially important organic osmolytes, ectoine, betaine, and its precursor choline, which play important roles in the adaptive response to osmotic stress. Conclusions This work presents the first comprehensive genome-scale metabolic model of a halophilic bacterium. Being a useful guide for identification and filling of knowledge gaps, the reconstructed metabolic network iOA584 will accelerate the research on halophilic bacteria towards application of systems biology approaches and design of metabolic engineering strategies.

  4. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks

    Science.gov (United States)

    Martin, Alberto J. M.; Dominguez, Calixto; Contreras-Riquelme, Sebastián; Holmes, David S.; Perez-Acle, Tomas

    2016-01-01

    Understanding the control of gene expression remains one of the main challenges in the post-genomic era. Accordingly, a plethora of methods exists to identify variations in gene expression levels. These variations underlay almost all relevant biological phenomena, including disease and adaptation to environmental conditions. However, computational tools to identify how regulation changes are scarce. Regulation of gene expression is usually depicted in the form of a gene regulatory network (GRN). Structural changes in a GRN over time and conditions represent variations in the regulation of gene expression. Like other biological networks, GRNs are composed of basic building blocks called graphlets. As a consequence, two new metrics based on graphlets are proposed in this work: REConstruction Rate (REC) and REC Graphlet Degree (RGD). REC determines the rate of graphlet similarity between different states of a network and RGD identifies the subset of nodes with the highest topological variation. In other words, RGD discerns how th GRN was rewired. REC and RGD were used to compare the local structure of nodes in condition-specific GRNs obtained from gene expression data of Escherichia coli, forming biofilms and cultured in suspension. According to our results, most of the network local structure remains unaltered in the two compared conditions. Nevertheless, changes reported by RGD necessarily imply that a different cohort of regulators (i.e. transcription factors (TFs)) appear on the scene, shedding light on how the regulation of gene expression occurs when E. coli transits from suspension to biofilm. Consequently, we propose that both metrics REC and RGD should be adopted as a quantitative approach to conduct differential analyses of GRNs. A tool that implements both metrics is available as an on-line web server (http://dlab.cl/loto). PMID:27695050

  5. Genes2FANs: connecting genes through functional association networks

    Directory of Open Access Journals (Sweden)

    Dannenfelser Ruth

    2012-07-01

    Full Text Available Abstract Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs, researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our

  6. Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks

    NARCIS (Netherlands)

    D.M. Pelt (Daniel); K.J. Batenburg (Joost)

    2013-01-01

    htmlabstractImage reconstruction from a small number of projections is a challenging problem in tomography. Advanced algorithms that incorporate prior knowledge can sometimes produce accurate reconstructions, but they typically require long computation times. Furthermore, the required prior

  7. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  8. Synapto-protective drugs evaluation in reconstructed neuronal network.

    Directory of Open Access Journals (Sweden)

    Bérangère Deleglise

    Full Text Available Chronic neurodegenerative syndromes such as Alzheimer's and Parkinson's diseases, or acute syndromes such as ischemic stroke or traumatic brain injuries are characterized by early synaptic collapse which precedes axonal and neuronal cell body degeneration and promotes early cognitive impairment in patients. Until now, neuroprotective strategies have failed to impede the progression of neurodegenerative syndromes. Drugs preventing the loss of cell body do not prevent the cognitive decline, probably because they lack synapto-protective effects. The absence of physiologically realistic neuronal network models which can be easily handled has hindered the development of synapto-protective drugs suitable for therapies. Here we describe a new microfluidic platform which makes it possible to study the consequences of axonal trauma of reconstructed oriented mouse neuronal networks. Each neuronal population and sub-compartment can be chemically addressed individually. The somatic, mid axon, presynaptic and postsynaptic effects of local pathological stresses or putative protective molecules can thus be evaluated with the help of this versatile "brain on chip" platform. We show that presynaptic loss is the earliest event observed following axotomy of cortical fibers, before any sign of axonal fragmentation or post-synaptic spine alteration. This platform can be used to screen and evaluate the synapto-protective potential of several drugs. For instance, NAD⁺ and the Rho-kinase inhibitor Y27632 can efficiently prevent synaptic disconnection, whereas the broad-spectrum caspase inhibitor zVAD-fmk and the stilbenoid resveratrol do not prevent presynaptic degeneration. Hence, this platform is a promising tool for fundamental research in the field of developmental and neurodegenerative neurosciences, and also offers the opportunity to set up pharmacological screening of axon-protective and synapto-protective drugs.

  9. An algebra-based method for inferring gene regulatory networks.

    Science.gov (United States)

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the

  10. Modeling gene regulatory networks: A network simplification algorithm

    Science.gov (United States)

    Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.

    2016-12-01

    Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.

  11. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2016-08-01

    Full Text Available The inference of gene regulatory networks (GRNs from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN, to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only

  12. Gene regulatory networks governing pancreas development.

    Science.gov (United States)

    Arda, H Efsun; Benitez, Cecil M; Kim, Seung K

    2013-04-15

    Elucidation of cellular and gene regulatory networks (GRNs) governing organ development will accelerate progress toward tissue replacement. Here, we have compiled reference GRNs underlying pancreas development from data mining that integrates multiple approaches, including mutant analysis, lineage tracing, cell purification, gene expression and enhancer analysis, and biochemical studies of gene regulation. Using established computational tools, we integrated and represented these networks in frameworks that should enhance understanding of the surging output of genomic-scale genetic and epigenetic studies of pancreas development and diseases such as diabetes and pancreatic cancer. We envision similar approaches would be useful for understanding the development of other organs.

  13. Evolution of a core gene network for skeletogenesis in chordates.

    Directory of Open Access Journals (Sweden)

    Jochen Hecht

    2008-03-01

    Full Text Available The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB and from dogfish as representative of jawed cartilaginous fish (ScRunx1-3. According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view

  14. Inferring gene regression networks with model trees

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesus S

    2010-10-01

    Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear

  15. How difficult is inference of mammalian causal gene regulatory networks?

    Directory of Open Access Journals (Sweden)

    Djordje Djordjevic

    Full Text Available Gene regulatory networks (GRNs play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect, which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference

  16. How difficult is inference of mammalian causal gene regulatory networks?

    Science.gov (United States)

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  17. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  18. Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing.

    Directory of Open Access Journals (Sweden)

    Long Ma

    Full Text Available Recent years have witnessed a rapid development of network reconstruction approaches, especially for a series of methods based on compressed sensing. Although compressed-sensing based methods require much less data than conventional approaches, the compressed sensing for reconstructing heterogeneous networks has not been fully exploited because of hubs. Hub neighbors require much more data to be inferred than small-degree nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a conflict-based method is proposed to overcome the cast effect to considerably reduce data amounts for achieving accurate reconstruction. Moreover, an element elimination method is presented to use the partially available structural information to reduce data requirements. The integration of both methods can further improve the reconstruction performance than separately using each technique. These methods are validated by exploring two evolutionary games taking place in scale-free networks, where individual information is accessible and an attempt to decode the network structure from measurable data is made. The results demonstrate that for all of the cases, much data are saved compared to that in the absence of these two methods. Due to the prevalence of heterogeneous networks in nature and society and the high cost of data acquisition in large-scale networks, these approaches have wide applications in many fields and are valuable for understanding and controlling the collective dynamics of a variety of heterogeneous networked systems.

  19. Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing.

    Science.gov (United States)

    Ma, Long; Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Di, Zengru

    2015-01-01

    Recent years have witnessed a rapid development of network reconstruction approaches, especially for a series of methods based on compressed sensing. Although compressed-sensing based methods require much less data than conventional approaches, the compressed sensing for reconstructing heterogeneous networks has not been fully exploited because of hubs. Hub neighbors require much more data to be inferred than small-degree nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a conflict-based method is proposed to overcome the cast effect to considerably reduce data amounts for achieving accurate reconstruction. Moreover, an element elimination method is presented to use the partially available structural information to reduce data requirements. The integration of both methods can further improve the reconstruction performance than separately using each technique. These methods are validated by exploring two evolutionary games taking place in scale-free networks, where individual information is accessible and an attempt to decode the network structure from measurable data is made. The results demonstrate that for all of the cases, much data are saved compared to that in the absence of these two methods. Due to the prevalence of heterogeneous networks in nature and society and the high cost of data acquisition in large-scale networks, these approaches have wide applications in many fields and are valuable for understanding and controlling the collective dynamics of a variety of heterogeneous networked systems.

  20. Inferring Phylogenetic Networks from Gene Order Data

    Directory of Open Access Journals (Sweden)

    Alexey Anatolievich Morozov

    2013-01-01

    Full Text Available Existing algorithms allow us to infer phylogenetic networks from sequences (DNA, protein or binary, sets of trees, and distance matrices, but there are no methods to build them using the gene order data as an input. Here we describe several methods to build split networks from the gene order data, perform simulation studies, and use our methods for analyzing and interpreting different real gene order datasets. All proposed methods are based on intermediate data, which can be generated from genome structures under study and used as an input for network construction algorithms. Three intermediates are used: set of jackknife trees, distance matrix, and binary encoding. According to simulations and case studies, the best intermediates are jackknife trees and distance matrix (when used with Neighbor-Net algorithm. Binary encoding can also be useful, but only when the methods mentioned above cannot be used.

  1. ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. | Office of Cancer Genomics

    Science.gov (United States)

    The accurate reconstruction of gene regulatory networks from large scale molecular profile datasets represents one of the grand challenges of Systems Biology. The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) represents one of the most effective tools to accomplish this goal. However, the initial Fixed Bandwidth (FB) implementation is both inefficient and unable to deal with sample sets providing largely uneven coverage of the probability density space.

  2. Transcriptional delay stabilizes bistable gene networks

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R.

    2014-01-01

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner. PMID:23952450

  3. Reconstructability analysis as a tool for identifying gene-gene interactions in studies of human diseases.

    Science.gov (United States)

    Shervais, Stephen; Kramer, Patricia L; Westaway, Shawn K; Cox, Nancy J; Zwick, Martin

    2010-01-01

    There are a number of common human diseases for which the genetic component may include an epistatic interaction of multiple genes. Detecting these interactions with standard statistical tools is difficult because there may be an interaction effect, but minimal or no main effect. Reconstructability analysis (RA) uses Shannon's information theory to detect relationships between variables in categorical datasets. We applied RA to simulated data for five different models of gene-gene interaction, and find that even with heritability levels as low as 0.008, and with the inclusion of 50 non-associated genes in the dataset, we can identify the interacting gene pairs with an accuracy of > or =80%. We applied RA to a real dataset of type 2 non-insulin-dependent diabetes (NIDDM) cases and controls, and closely approximated the results of more conventional single SNP disease association studies. In addition, we replicated prior evidence for epistatic interactions between SNPs on chromosomes 2 and 15.

  4. Prediction of disease-gene-drug relationships following a differential network analysis.

    Science.gov (United States)

    Zickenrott, S; Angarica, V E; Upadhyaya, B B; del Sol, A

    2016-01-01

    Great efforts are being devoted to get a deeper understanding of disease-related dysregulations, which is central for introducing novel and more effective therapeutics in the clinics. However, most human diseases are highly multifactorial at the molecular level, involving dysregulation of multiple genes and interactions in gene regulatory networks. This issue hinders the elucidation of disease mechanism, including the identification of disease-causing genes and regulatory interactions. Most of current network-based approaches for the study of disease mechanisms do not take into account significant differences in gene regulatory network topology between healthy and disease phenotypes. Moreover, these approaches are not able to efficiently guide database search for connections between drugs, genes and diseases. We propose a differential network-based methodology for identifying candidate target genes and chemical compounds for reverting disease phenotypes. Our method relies on transcriptomics data to reconstruct gene regulatory networks corresponding to healthy and disease states separately. Further, it identifies candidate genes essential for triggering the reversion of the disease phenotype based on network stability determinants underlying differential gene expression. In addition, our method selects and ranks chemical compounds targeting these genes, which could be used as therapeutic interventions for complex diseases.

  5. Comparative Genome-Scale Reconstruction of Gapless Metabolic Networks for Present and Ancestral Species

    Science.gov (United States)

    Pitkänen, Esa; Jouhten, Paula; Hou, Jian; Syed, Muhammad Fahad; Blomberg, Peter; Kludas, Jana; Oja, Merja; Holm, Liisa; Penttilä, Merja; Rousu, Juho; Arvas, Mikko

    2014-01-01

    We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/. PMID:24516375

  6. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species.

    Directory of Open Access Journals (Sweden)

    Esa Pitkänen

    2014-02-01

    Full Text Available We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/.

  7. Compressed Adjacency Matrices: Untangling Gene Regulatory Networks.

    Science.gov (United States)

    Dinkla, K; Westenberg, M A; van Wijk, J J

    2012-12-01

    We present a novel technique-Compressed Adjacency Matrices-for visualizing gene regulatory networks. These directed networks have strong structural characteristics: out-degrees with a scale-free distribution, in-degrees bound by a low maximum, and few and small cycles. Standard visualization techniques, such as node-link diagrams and adjacency matrices, are impeded by these network characteristics. The scale-free distribution of out-degrees causes a high number of intersecting edges in node-link diagrams. Adjacency matrices become space-inefficient due to the low in-degrees and the resulting sparse network. Compressed adjacency matrices, however, exploit these structural characteristics. By cutting open and rearranging an adjacency matrix, we achieve a compact and neatly-arranged visualization. Compressed adjacency matrices allow for easy detection of subnetworks with a specific structure, so-called motifs, which provide important knowledge about gene regulatory networks to domain experts. We summarize motifs commonly referred to in the literature, and relate them to network analysis tasks common to the visualization domain. We show that a user can easily find the important motifs in compressed adjacency matrices, and that this is hard in standard adjacency matrix and node-link diagrams. We also demonstrate that interaction techniques for standard adjacency matrices can be used for our compressed variant. These techniques include rearrangement clustering, highlighting, and filtering.

  8. Glucocorticoid receptor-dependent gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Phillip Phuc Le

    2005-08-01

    Full Text Available While the molecular mechanisms of glucocorticoid regulation of transcription have been studied in detail, the global networks regulated by the glucocorticoid receptor (GR remain unknown. To address this question, we performed an orthogonal analysis to identify direct targets of the GR. First, we analyzed the expression profile of mouse livers in the presence or absence of exogenous glucocorticoid, resulting in over 1,300 differentially expressed genes. We then executed genome-wide location analysis on chromatin from the same livers, identifying more than 300 promoters that are bound by the GR. Intersecting the two lists yielded 53 genes whose expression is functionally dependent upon the ligand-bound GR. Further network and sequence analysis of the functional targets enabled us to suggest interactions between the GR and other transcription factors at specific target genes. Together, our results further our understanding of the GR and its targets, and provide the basis for more targeted glucocorticoid therapies.

  9. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.

    Science.gov (United States)

    Chow, Chi-Nga; Zheng, Han-Qin; Wu, Nai-Yun; Chien, Chia-Hung; Huang, Hsien-Da; Lee, Tzong-Yi; Chiang-Hsieh, Yi-Fan; Hou, Ping-Fu; Yang, Tien-Yi; Chang, Wen-Chi

    2016-01-01

    Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks.

  10. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Sinisa Pajevic

    2009-01-01

    Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

  11. Inference of Cancer-specific Gene Regulatory Networks Using Soft Computing Rules

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wang

    2010-03-01

    Full Text Available Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer.

  12. Ab-initio reconstruction of complex Euclidean networks in two dimensions.

    Science.gov (United States)

    Gujarathi, S R; Farrow, C L; Glosser, C; Granlund, L; Duxbury, P M

    2014-05-01

    Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. We cast this problem as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. We present a method for reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network. The theoretical foundations of the method are based on rigidity theory, which enables derivation of a polynomial bound on its efficiency. An efficient implementation of the method is discussed and timing results indicate that the run time of the algorithm is polynomial in the number of nodes in the network. We have reconstructed Euclidean networks of about 1000 nodes in approximately 24 h on a desktop computer using this implementation. We also reconstruct Euclidean networks corresponding to polymer chains in two dimensions and planar graphene nanoparticles. We have also modified our base algorithm so that it can successfully solve random point sets when the input data are less precise.

  13. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the ... in People with Serious Mental Illness Clues for Schizophrenia in Rare Gene Glitch Recognizing Schizophrenia: Seeking Clues to a Difficult ...

  14. CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Baumbach Jan

    2007-11-01

    Full Text Available Abstract Background Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum. Results Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user can be analyzed in the context of known

  15. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    Science.gov (United States)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  16. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction

    Directory of Open Access Journals (Sweden)

    Panda Gurudutta

    2011-05-01

    Full Text Available Abstract Background Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. Results We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. Conclusions As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.

  17. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    Science.gov (United States)

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-11-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.

  18. Engineering stability in gene networks by autoregulation

    Science.gov (United States)

    Becskei, Attila; Serrano, Luis

    2000-06-01

    The genetic and biochemical networks which underlie such things as homeostasis in metabolism and the developmental programs of living cells, must withstand considerable variations and random perturbations of biochemical parameters. These occur as transient changes in, for example, transcription, translation, and RNA and protein degradation. The intensity and duration of these perturbations differ between cells in a population. The unique state of cells, and thus the diversity in a population, is owing to the different environmental stimuli the individual cells experience and the inherent stochastic nature of biochemical processes (for example, refs 5 and 6). It has been proposed, but not demonstrated, that autoregulatory, negative feedback loops in gene circuits provide stability, thereby limiting the range over which the concentrations of network components fluctuate. Here we have designed and constructed simple gene circuits consisting of a regulator and transcriptional repressor modules in Escherichia coli and we show the gain of stability produced by negative feedback.

  19. Reconstruction of neutron spectra through neural networks; Reconstruccion de espectros de neutrones mediante redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Cuerpo Academico de Radiobiologia, Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)] e-mail: rvega@cantera.reduaz.mx [and others

    2003-07-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  20. Orthotropic conductivity reconstruction with virtual-resistive network and Faraday's law

    KAUST Repository

    Lee, Min-Gi

    2015-06-01

    We obtain the existence and the uniqueness at the same time in the reconstruction of orthotropic conductivity in two-space dimensions by using two sets of internal current densities and boundary conductivity. The curl-free equation of Faraday\\'s law is taken instead of the elliptic equation in a divergence form that is typically used in electrical impedance tomography. A reconstruction method based on layered bricks-type virtual-resistive network is developed to reconstruct orthotropic conductivity with up to 40% multiplicative noise.

  1. Discovering Study-Specific Gene Regulatory Networks

    OpenAIRE

    2014-01-01

    This article has been made available through the Brunel Open Access Publishing Fund. This article has been made available through the Brunel Open Access Publishing Fund. Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus appro...

  2. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus.

    Directory of Open Access Journals (Sweden)

    Thomas Ulas

    Full Text Available We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2-4 (optimum 3.5 and a temperature of 75-80°C (optimum 80°C. The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose. Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA, which predicted that 18% of all possible single gene deletions would be lethal for the organism.

  3. Inference of gene regulatory networks with the strong-inhibition Boolean model

    Energy Technology Data Exchange (ETDEWEB)

    Xia Qinzhi; Liu Lulu; Ye Weiming; Hu Gang, E-mail: ganghu@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2011-08-15

    The inference of gene regulatory networks (GRNs) is an important topic in biology. In this paper, a logic-based algorithm that infers the strong-inhibition Boolean genetic regulatory networks (where regulation by any single repressor can definitely suppress the expression of the gene regulated) from time series is discussed. By properly ordering various computation steps, we derive for the first time explicit formulae for the probabilities at which different interactions can be inferred given a certain number of data. With the formulae, we can predict the precision of reconstructions of regulation networks when the data are insufficient. Numerical simulations coincide well with the analytical results. The method and results are expected to be applicable to a wide range of general dynamic networks, where logic algorithms play essential roles in the network dynamics and the probabilities of various logics can be estimated well.

  4. Reverse engineering gene regulatory networks related to quorum sensing in the plant pathogen Pectobacterium atrosepticum.

    Science.gov (United States)

    Lin, Kuang; Husmeier, Dirk; Dondelinger, Frank; Mayer, Claus D; Liu, Hui; Prichard, Leighton; Salmond, George P C; Toth, Ian K; Birch, Paul R J

    2010-01-01

    The objective of the project reported in the present chapter was the reverse engineering of gene regulatory networks related to quorum sensing in the plant pathogen Pectobacterium atrosepticum from micorarray gene expression profiles, obtained from the wild-type and eight knockout strains. To this end, we have applied various recent methods from multivariate statistics and machine learning: graphical Gaussian models, sparse Bayesian regression, LASSO (least absolute shrinkage and selection operator), Bayesian networks, and nested effects models. We have investigated the degree of similarity between the predictions obtained with the different approaches, and we have assessed the consistency of the reconstructed networks in terms of global topological network properties, based on the node degree distribution. The chapter concludes with a biological evaluation of the predicted network structures.

  5. Disease Gene Prioritization Using Network and Feature

    Science.gov (United States)

    Agam, Gady; Balasubramanian, Sandhya; Xu, Jinbo; Gilliam, T. Conrad; Maltsev, Natalia; Börnigen, Daniela

    2015-01-01

    Abstract Identifying high-confidence candidate genes that are causative for disease phenotypes, from the large lists of variations produced by high-throughput genomics, can be both time-consuming and costly. The development of novel computational approaches, utilizing existing biological knowledge for the prioritization of such candidate genes, can improve the efficiency and accuracy of the biomedical data analysis. It can also reduce the cost of such studies by avoiding experimental validations of irrelevant candidates. In this study, we address this challenge by proposing a novel gene prioritization approach that ranks promising candidate genes that are likely to be involved in a disease or phenotype under study. This algorithm is based on the modified conditional random field (CRF) model that simultaneously makes use of both gene annotations and gene interactions, while preserving their original representation. We validated our approach on two independent disease benchmark studies by ranking candidate genes using network and feature information. Our results showed both high area under the curve (AUC) value (0.86), and more importantly high partial AUC (pAUC) value (0.1296), and revealed higher accuracy and precision at the top predictions as compared with other well-performed gene prioritization tools, such as Endeavour (AUC-0.82, pAUC-0.083) and PINTA (AUC-0.76, pAUC-0.066). We were able to detect more target genes (9/18/19/27) on top positions (1/5/10/20) compared to Endeavour (3/11/14/23) and PINTA (6/10/13/18). To demonstrate its usability, we applied our method to a case study for the prediction of molecular mechanisms contributing to intellectual disability and autism. Our approach was able to correctly recover genes related to both disorders and provide suggestions for possible additional candidates based on their rankings and functional annotations. PMID:25844670

  6. Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Science.gov (United States)

    Martinelli, Federico; Reagan, Russell L; Uratsu, Sandra L; Phu, My L; Albrecht, Ute; Zhao, Weixiang; Davis, Cristina E; Bowman, Kim D; Dandekar, Abhaya M

    2013-01-01

    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur.

  7. Improving gene regulatory network inference using network topology information.

    Science.gov (United States)

    Nair, Ajay; Chetty, Madhu; Wangikar, Pramod P

    2015-09-01

    Inferring the gene regulatory network (GRN) structure from data is an important problem in computational biology. However, it is a computationally complex problem and approximate methods such as heuristic search techniques, restriction of the maximum-number-of-parents (maxP) for a gene, or an optimal search under special conditions are required. The limitations of a heuristic search are well known but literature on the detailed analysis of the widely used maxP technique is lacking. The optimal search methods require large computational time. We report the theoretical analysis and experimental results of the strengths and limitations of the maxP technique. Further, using an optimal search method, we combine the strengths of the maxP technique and the known GRN topology to propose two novel algorithms. These algorithms are implemented in a Bayesian network framework and tested on biological, realistic, and in silico networks of different sizes and topologies. They overcome the limitations of the maxP technique and show superior computational speed when compared to the current optimal search algorithms.

  8. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  9. A network view on Schizophrenia related genes

    Directory of Open Access Journals (Sweden)

    Sreedevi Chandrasekaran

    2012-03-01

    Full Text Available This study is a part of a project investigating the molecular determinants of neurological diseases. To account for the systemic nature of these diseases we proceeded from a well established list of 38 schizophrenia-related genes (Allen et al., 2008; Ross et al., 2006 and investigated their closest network environment. The created networks were compared to recently proposed list of 173 schizophrenia related genes (Sun et al., 2009. 115 genes were predicted as potentially related to schizophrenia and subjected to GSEA. The enriched groups of proteins included neuromodulators, neurotransmitters and lipid transport. Over 100 signaling pathways were found significantly involved, signal transduction emerging as the most highly significant biological process. Next, we analyzed two microarray expression datasets derived from olfactory mucosa biopsies of schizophrenic patients and postmortem brain tissue samples from SMRIDB. The systems biology analysis resulted in a number of other genes predicted to be potentially related to schizophrenia, as well as in additional information of interest for elucidating molecular mechanisms of schizophrenia.

  10. Reconstruction of biological networks based on life science data integration

    OpenAIRE

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-01-01

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and V...

  11. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  12. Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple 'Omic' Layers.

    Science.gov (United States)

    Yugi, Katsuyuki; Kubota, Hiroyuki; Hatano, Atsushi; Kuroda, Shinya

    2016-04-01

    We propose 'trans-omic' analysis for reconstructing global biochemical networks across multiple omic layers by use of both multi-omic measurements and computational data integration. We introduce technologies for connecting multi-omic data based on prior knowledge of biochemical interactions and characterize a biochemical trans-omic network by concepts of a static and dynamic nature. We introduce case studies of metabolism-centric trans-omic studies to show how to reconstruct a biochemical trans-omic network by connecting multi-omic data and how to analyze it in terms of the static and dynamic nature. We propose a trans-ome-wide association study (trans-OWAS) connecting phenotypes with trans-omic networks that reflect both genetic and environmental factors, which can characterize several complex lifestyle diseases as breakdowns in the trans-omic system.

  13. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    Science.gov (United States)

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  14. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    Science.gov (United States)

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel

  15. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Christopher S. [Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne Illinois; Computation Institute, University of Chicago, Chicago Illinois; Bernstein, Hans C. [Biodetection Sciences, National Security Directorate, Pacific Northwest National Laboratory Richland Washington; Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Weisenhorn, Pamela [Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne Illinois; Division of Biosciences, Argonne National Laboratory, Argonne Illinois; Taylor, Ronald C. [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Lee, Joon-Yong [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Zucker, Jeremy [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Song, Hyun-Seob [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington

    2016-06-02

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.

  16. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  17. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-12-31

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  18. Reconstruction of a real world social network using the Potts model and Loopy Belief Propagation

    Directory of Open Access Journals (Sweden)

    Cristian eBisconti

    2015-11-01

    Full Text Available The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, aiming at the reconstruction of a networked structure from observations of the states of the nodes in the network.The inverse Potts model, normally applied to observations of quantum states, is here addressed to observations of the node states in a network and their (anticorrelations, thus inferring interactions as links connecting the nodes. Adopting the Bethe approximation, such an inverse problem is known to be tractable.Within this operational framework, we discuss and apply this network-reconstruction method to a small real-world social network, where it is easy to track statuses of its members: the Italian parliament, adopted as a case study. The dataset is made of (cosponsorships of law proposals by parliament members. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with standard methods, outlining discrepancies and advantages.

  19. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  20. Signal agnostic compressive sensing for Body Area Networks: comparison of signal reconstructions.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2012-01-01

    Compressive sensing is a lossy compression technique that is potentially very suitable for use in power constrained sensor nodes and Body Area Networks as the compression process has a low computational complexity. This paper investigates the reconstruction performance of compressive sensing when applied to EEG, ECG, EOG and EMG signals; establishing the performance of a signal agnostic compressive sensing strategy that could be used in a Body Area Network monitoring all of these. The results demonstrate that the EEG, ECG and EOG can all be reconstructed satisfactorily, although large inter- and intra- subject variations are present. EMG signals are not well reconstructed. Compressive sensing may therefore also find use as a novel method for the identification of EMG artefacts in other electro-physiological signals.

  1. Chaotic motifs in gene regulatory networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  2. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an ...... and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape....... of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules...

  3. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    Science.gov (United States)

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  4. Efficient content-based low-altitude images correlated network and strips reconstruction

    Science.gov (United States)

    He, Haiqing; You, Qi; Chen, Xiaoyong

    2017-01-01

    The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.

  5. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    Science.gov (United States)

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], pgenes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Inferring slowly-changing dynamic gene-regulatory networks

    NARCIS (Netherlands)

    Wit, Ernst C.; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a cla

  7. Modular composition of gene transcription networks.

    Directory of Open Access Journals (Sweden)

    Andras Gyorgy

    2014-03-01

    Full Text Available Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

  8. Modular composition of gene transcription networks.

    Science.gov (United States)

    Gyorgy, Andras; Del Vecchio, Domitilla

    2014-03-01

    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

  9. Synthetic gene networks in plant systems.

    Science.gov (United States)

    Junker, Astrid; Junker, Björn H

    2012-01-01

    Synthetic biology methods are routinely applied in the plant field as in other eukaryotic model systems. Several synthetic components have been developed in plants and an increasing number of studies report on the assembly into functional synthetic genetic circuits. This chapter gives an overview of the existing plant genetic networks and describes in detail the application of two systems for inducible gene expression. The ethanol-inducible system relies on the ethanol-responsive interaction of the AlcA transcriptional activator and the AlcR receptor resulting in the transcription of the gene of interest (GOI). In comparison, the translational fusion of GOI and the glucocorticoid receptor (GR) domain leads to the dexamethasone-dependent nuclear translocation of the GOI::GR protein. This chapter contains detailed protocols for the application of both systems in the model plants potato and Arabidopsis, respectively.

  10. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.J.; Gu, F.; Ball, A.D. [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1997-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  11. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  12. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states

    DEFF Research Database (Denmark)

    Cho, Byung-Kwan; Kim, Donghyuk; Knight, Eric M.

    2014-01-01

    to transcription units (TUs), representing an increase of more than 300% over what has been previously reported. The reconstructed network was used to investigate competition between alternative sigma-factors (the sigma(70) and sigma(38) regulons), confirming the competition model of sigma substitution......Background: At the beginning of the transcription process, the RNA polymerase (RNAP) core enzyme requires a sigma-factor to recognize the genomic location at which the process initiates. Although the crucial role of sigma-factors has long been appreciated and characterized for many individual...... promoters, we do not yet have a genome-scale assessment of their function. Results: Using multiple genome-scale measurements, we elucidated the network of s-factor and promoter interactions in Escherichia coli. The reconstructed network includes 4,724 sigma-factor-specific promoters corresponding...

  13. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    CERN Document Server

    Wang, Yaming; Woessner, Jochen; Sornette, Didier; Husen, Stephan

    2013-01-01

    We introduce the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, we apply six different validation procedures in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC) process the fit residuals, while the four others look for solutions that provide the best agreement with independently observed focal mechanisms. Tests on synthetic catalogs allow us to qualify the performance of the fitting method and of the various validation procedures. The ACLUD method is able to provide solutions that are close to the expected ones, especially for the BIC and focal mechanismbased techniques. The clustering method complemented by the validation step based on focal mechanisms provides good solu...

  14. Vertex Reconstructing Neural Network at the ZEUS Central Tracking Detector

    CERN Document Server

    Dror, G; Dror, Gideon; Etzion, Erez

    2001-01-01

    An unconventional solution for finding the location of event creation is presented. It is based on two feed-forward neural networks with fixed architecture, whose parameters are chosen so as to reach a high accuracy. The interaction point location is a parameter that can be used to select events of interest from the very high rate of events created at the current experiments in High Energy Physics. The system suggested here is tested on simulated data sets of the ZEUS Central Tracking Detector, and is shown to perform better than conventional algorithms.

  15. Gene Networks Underlying Chronic Sleep Deprivation in Drosophila

    Science.gov (United States)

    2014-06-15

    SECURITY CLASSIFICATION OF: Studies of the gene network affected by sleep deprivation and stress in the fruit fly Drosophila have revealed the...15-Apr-2009 14-Apr-2013 Approved for Public Release; Distribution Unlimited Gene Networks Underlying Chronic Sleep Deprivation in Drosophila The...Chronic Sleep Deprivation in Drosophila Report Title Studies of the gene network affected by sleep deprivation and stress in the fruit fly Drosophila have

  16. Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach.

    Science.gov (United States)

    Shi, Ming; Shen, Weiming; Wang, Hong-Qiang; Chong, Yanwen

    2016-12-01

    Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)-guided sparse regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the l1-norm regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting regulation coordination for a given target gene. Experimental results on both simulation data and real-world microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.

  17. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  18. Automatic reconstruction of molecular and genetic networks from discrete time series data.

    Science.gov (United States)

    Durzinsky, Markus; Wagler, Annegret; Weismantel, Robert; Marwan, Wolfgang

    2008-09-01

    We apply a mathematical algorithm which processes discrete time series data to generate a complete list of Petri net structures containing the minimal number of nodes required to reproduce the data set. The completeness of the list as guaranteed by a mathematical proof allows to define a minimal set of experiments required to discriminate between alternative network structures. This in principle allows to prove all possible minimal network structures by disproving all alternative candidate structures. The dynamic behaviour of the networks in terms of a switching rule for the transitions of the Petri net is part of the result. In addition to network reconstruction, the algorithm can be used to determine how many yet undetected components at least must be involved in a certain process. The algorithm also reveals all alternative structural modifications of a network that are required to generate a predefined behaviour.

  19. Reconstruction

    Directory of Open Access Journals (Sweden)

    Stefano Zurrida

    2011-01-01

    Full Text Available Breast cancer is the most common cancer in women. Primary treatment is surgery, with mastectomy as the main treatment for most of the twentieth century. However, over that time, the extent of the procedure varied, and less extensive mastectomies are employed today compared to those used in the past, as excessively mutilating procedures did not improve survival. Today, many women receive breast-conserving surgery, usually with radiotherapy to the residual breast, instead of mastectomy, as it has been shown to be as effective as mastectomy in early disease. The relatively new skin-sparing mastectomy, often with immediate breast reconstruction, improves aesthetic outcomes and is oncologically safe. Nipple-sparing mastectomy is newer and used increasingly, with better acceptance by patients, and again appears to be oncologically safe. Breast reconstruction is an important adjunct to mastectomy, as it has a positive psychological impact on the patient, contributing to improved quality of life.

  20. Reconstructing Genome-Wide Protein–Protein Interaction Networks Using Multiple Strategies with Homologous Mapping

    Science.gov (United States)

    Lo, Yu-Shu; Huang, Sing-Han; Luo, Yong-Chun; Lin, Chun-Yu; Yang, Jinn-Moon

    2015-01-01

    Background One of the crucial steps toward understanding the biological functions of a cellular system is to investigate protein–protein interaction (PPI) networks. As an increasing number of reliable PPIs become available, there is a growing need for discovering PPIs to reconstruct PPI networks of interesting organisms. Some interolog-based methods and homologous PPI families have been proposed for predicting PPIs from the known PPIs of source organisms. Results Here, we propose a multiple-strategy scoring method to identify reliable PPIs for reconstructing the mouse PPI network from two well-known organisms: human and fly. We firstly identified the PPI candidates of target organisms based on homologous PPIs, sharing significant sequence similarities (joint E-value ≤ 1 × 10−40), from source organisms using generalized interolog mapping. These PPI candidates were evaluated by our multiple-strategy scoring method, combining sequence similarities, normalized ranks, and conservation scores across multiple organisms. According to 106,825 PPI candidates in yeast derived from human and fly, our scoring method can achieve high prediction accuracy and outperform generalized interolog mapping. Experiment results show that our multiple-strategy score can avoid the influence of the protein family size and length to significantly improve PPI prediction accuracy and reflect the biological functions. In addition, the top-ranked and conserved PPIs are often orthologous/essential interactions and share the functional similarity. Based on these reliable predicted PPIs, we reconstructed a comprehensive mouse PPI network, which is a scale-free network and can reflect the biological functions and high connectivity of 292 KEGG modules, including 216 pathways and 76 structural complexes. Conclusions Experimental results show that our scoring method can improve the predicting accuracy based on the normalized rank and evolutionary conservation from multiple organisms. Our predicted

  1. Reconstructing regional climate networks from irregularly sampled satellite data

    Science.gov (United States)

    Wiedermann, Marc; Donner, Reik V.; Sykioti, Olga; Papadimitriou, Constantinos; Kurths, Jürgen

    2015-04-01

    With the increasing availability of remote sensing data Earth System Analysis has taken a great step forward. Satellite data with high resolution in time and space allow for an in-depth analysis of small-scale processes in the climate as well as ecosystems. This data type, however, also harbors crucial conceptual complications. First, depending on whether the satellite is orbiting on an ascending or descending path systematic biases are induced into the dataset and both measurements can not be evaluated simultaneously without an appropriate preprocessing. Second, remote sensing data are usually not produced with equidistant temporal sampling, but might contain huge gaps, due to cloud cover or maintenance work and irregular time steps, due to the orbiting time of the satellite. In this work, we utilize sea surface temperature (SST) data obtained from the SMOS satellite as part of ESA's Earth Explorer Mission to study small-scale regional interactions between different parts of the Mediterranean, Aegean and Black Sea. In a first step, we create homogeneous time series for each grid point by combining data from ascending and descending satellite paths by utilizing principal component and singular spectrum analysis. To address the issue of irregular temporal sampling we utilize a kernel weighted version of the linear cross-correlation function to compute lagged correlations between all pairs of grid points in the dataset. By setting a threshold to the thus obtained correlation matrix we obtain a binary matrix which can be interpreted as the adjacency matrix of a complex network. We then use tools from complex network theory to study regional interdependencies in the study area for different time lags of up to forty days. We find that the obtained networks represent well the observed average wind directions and speeds and display interaction structures between small regions in the Aegean Sea, which are in good agreement with earlier observations. The methods presented

  2. Reconstruction of a Real World Social Network using the Potts Model and Loopy Belief Propagation.

    Science.gov (United States)

    Bisconti, Cristian; Corallo, Angelo; Fortunato, Laura; Gentile, Antonio A; Massafra, Andrea; Pellè, Piergiuseppe

    2015-01-01

    The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here addressed to observations of the members' states in an organization and their (anti)correlations, thus inferring interactions as links among the members. Adopting proper (Bethe) approximations, such an inverse problem is showed to be tractable. Within an operational framework, this network-reconstruction method is tested for a small real-world social network, the Italian parliament. In this study case, it is easy to track statuses of the parliament members, using (co)sponsorships of law proposals as the initial dataset. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with such standard methods, outlining discrepancies and advantages.

  3. Gene coexpression network analysis as a source of functional annotation for rice genes.

    Directory of Open Access Journals (Sweden)

    Kevin L Childs

    Full Text Available With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional

  4. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling

    Science.gov (United States)

    Tegnér, Jesper; Yeung, M. K. Stephen; Hasty, Jeff; Collins, James J.

    2003-01-01

    While the fundamental building blocks of biology are being tabulated by the various genome projects, microarray technology is setting the stage for the task of deducing the connectivity of large-scale gene networks. We show how the perturbation of carefully chosen genes in a microarray experiment can be used in conjunction with a reverse engineering algorithm to reveal the architecture of an underlying gene regulatory network. Our iterative scheme identifies the network topology by analyzing the steady-state changes in gene expression resulting from the systematic perturbation of a particular node in the network. We highlight the validity of our reverse engineering approach through the successful deduction of the topology of a linear in numero gene network and a recently reported model for the segmentation polarity network in Drosophila melanogaster. Our method may prove useful in identifying and validating specific drug targets and in deconvolving the effects of chemical compounds. PMID:12730377

  5. Photogrammetric Network for Evaluation of Human Faces for Face Reconstruction Purpose

    Science.gov (United States)

    Schrott, P.; Detrekői, Á.; Fekete, K.

    2012-08-01

    Facial reconstruction is the process of reconstructing the geometry of faces of persons from skeletal remains. A research group (BME Cooperation Research Center for Biomechanics) was formed representing several organisations to combine knowledgebases of different disciplines like anthropology, medical, mechanical, archaeological sciences etc. to computerize the face reconstruction process based on a large dataset of 3D face and skull models gathered from living persons: cranial data from CT scans and face models from photogrammetric evaluations. The BUTE Dept. of Photogrammetry and Geoinformatics works on the method and technology of the 3D data acquisition for the face models. In this paper we will present the research and results of the photogrammetric network design, the modelling to deal with visibility constraints, and the investigation of the developed basic photogrammetric configuration to specify the result characteristics to be expected using the device built for the photogrammetric face measurements.

  6. Application of generalized regression neural network on fast 3D reconstruction

    Institute of Scientific and Technical Information of China (English)

    Babakhani Asad; DU Zhi-jiang; SUN Li-ning; Kardan Reza; Mianji A. Fereidoun

    2007-01-01

    In robot-assisted surgery projects,researchers should be able to make fast 3 D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction.

  7. Reconstruction based approach to sensor fault diagnosis using auto-associative neural networks

    Institute of Scientific and Technical Information of China (English)

    Mousavi Hamidreza; Shahbazian Mehdi; Jazayeri-Rad Hooshang; Nekounam Aliakbar

    2014-01-01

    Fault diagnostics is an important research area including different techniques. Principal component analysis (PCA) is a linear technique which has been widely used. For nonlinear processes, however, the nonlinear principal component analysis (NLPCA) should be applied. In this work, NLPCA based on auto-associative neural network (AANN) was applied to model a chemical process using historical data. First, the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN (E-AANN) was presented to isolate and reconstruct the faulty sensor simultaneously. The proposed method was implemented on a continuous stirred tank heater (CSTH) and used to detect and isolate two types of faults (drift and offset) for a sensor. The results show that the proposed method can detect, isolate and reconstruct the occurred fault properly.

  8. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors

    Science.gov (United States)

    Klimenko, S.; Vedovato, G.; Drago, M.; Salemi, F.; Tiwari, V.; Prodi, G. A.; Lazzaro, C.; Ackley, K.; Tiwari, S.; Da Silva, C. F.; Mitselmakher, G.

    2016-02-01

    We present a method for detection and reconstruction of the gravitational wave (GW) transients with the networks of advanced detectors. Originally designed to search for transients with the initial GW detectors, it uses significantly improved algorithms, which enhance both the low-latency searches with rapid localization of GW events for the electromagnetic follow-up and high confidence detection of a broad range of the transient GW sources. In this paper, we present the analytic framework of the method. Following a short description of the core analysis algorithms, we introduce a novel approach to the reconstruction of the GW polarization from a pattern of detector responses to a GW signal. This polarization pattern is a unique signature of an arbitrary GW signal that can be measured independently from the other source parameters. The polarization measurements enable rapid reconstruction of the GW waveforms, sky localization, and helps identification of the source origin.

  9. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors

    CERN Document Server

    Klimenko, S; Drago, M; Salemi, F; Tiwari, V; Prodi, G A; Lazzaro, C; Tiwari, S; Da Silva, F; Mitselmakher, G

    2015-01-01

    We present a method for detection and reconstruction of the gravitational wave (GW) transients with the networks of advanced detectors. Originally designed to search for the transients with the initial GW detectors, it uses significantly improved algorithms, which enable both the low-latency searches with rapid localization of GW events for the electro-magnetic followup and high confidence detection of a broad range of the transient GW sources. In the paper we present the analytic framework of the method. Following a short description of the core analysis algorithms, we introduce a novel approach to the reconstruction of the GW polarization from a pattern of detector responses to a GW signal. This polarization pattern is a unique signature of an arbitrary GW signal that can be measured independent from the other source parameters. The polarization measurements enable rapid reconstruction of the GW waveforms, sky localization and helps identification of the source origin.

  10. Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu

    2017-09-01

    In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.

  11. EcoliNet: a database of cofunctional gene network for Escherichia coli.

    Science.gov (United States)

    Kim, Hanhae; Shim, Jung Eun; Shin, Junha; Lee, Insuk

    2015-01-01

    During the past several decades, Escherichia coli has been a treasure chest for molecular biology. The molecular mechanisms of many fundamental cellular processes have been discovered through research on this bacterium. Although much basic research now focuses on more complex model organisms, E. coli still remains important in metabolic engineering and synthetic biology. Despite its long history as a subject of molecular investigation, more than one-third of the E. coli genome has no pathway annotation supported by either experimental evidence or manual curation. Recently, a network-assisted genetics approach to the efficient identification of novel gene functions has increased in popularity. To accelerate the speed of pathway annotation for the remaining uncharacterized part of the E. coli genome, we have constructed a database of cofunctional gene network with near-complete genome coverage of the organism, dubbed EcoliNet. We find that EcoliNet is highly predictive for diverse bacterial phenotypes, including antibiotic response, indicating that it will be useful in prioritizing novel candidate genes for a wide spectrum of bacterial phenotypes. We have implemented a web server where biologists can easily run network algorithms over EcoliNet to predict novel genes involved in a pathway or novel functions for a gene. All integrated cofunctional associations can be downloaded, enabling orthology-based reconstruction of gene networks for other bacterial species as well. Database URL: http://www.inetbio.org/ecolinet.

  12. Neural network forecasting model based on phase space re-construction in water yield of mine

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-lin; DONG Zeng-chuan; CHEN Nan-xiang; CAO Lian-hai

    2007-01-01

    The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi- dimension series which included the ergodic information and more rich information could be excavated. Then, on the basis of the embedding dimension of the time series, the structure form of neutral network was constructed, of which the node number in input layer was the embedding dimension of the time series minus 1, and the node number in output layers was 1. Finally, as an example,the model was applied for water yield of mine forecasting. The result shows that the model has good fitting accuracy and forecasting precision.

  13. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  14. Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks.

    Science.gov (United States)

    Tan, Chris Soon Heng; Linding, Rune

    2009-12-01

    The explosion of site- and context-specific in vivo phosphorylation events presents a potentially rich source of biological knowledge and calls for novel data analysis and modeling paradigms. Perhaps the most immediate challenge is delineating detected phosphorylation sites to their effector kinases. This is important for (re)constructing transient kinase-substrate interaction networks that are essential for mechanistic understanding of cellular behaviors and therapeutic intervention, but has largely eluded high-throughput protein-interaction studies due to their transient nature and strong dependencies on cellular context. Here, we surveyed some of the computational approaches developed to dissect phosphorylation data detected in systematic proteomic experiments and reviewed some experimental and computational approaches used to map phosphorylation sites to their effector kinases in efforts aimed at reconstructing biological signaling networks.

  15. Quantum state reconstruction of an oscillator network in an optomechanical setting

    Science.gov (United States)

    Moore, Darren W.; Tufarelli, Tommaso; Paternostro, Mauro; Ferraro, Alessandro

    2016-11-01

    We introduce a scheme to reconstruct an arbitrary quantum state of a mechanical oscillator network. We assume that a single element of the network is coupled to a cavity field via a linearized optomechanical interaction, the time dependence of which is controlled by a classical driving field. By designing a suitable interaction profile, we show how the statistics of an arbitrary mechanical quadrature can be encoded in the cavity field, which can then be measured. We discuss the important special case of Gaussian state reconstruction and study numerically the effectiveness of our scheme for a finite number of measurements. Finally, we speculate on possible routes to extend our ideas to the regime of single-photon optomechanics.

  16. In silico network topology-based prediction of gene essentiality

    CERN Document Server

    da Silva, Joao Paulo Muller; Mombach, Jose Carlos Merino; Vieira, Renata; da Silva, Jose Guliherme Camargo; Lemke, Ney; Sinigaglia, Marialva

    2007-01-01

    The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision tree-based machine learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes...

  17. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks

    Science.gov (United States)

    Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.

    2017-02-01

    A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.

  18. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    Science.gov (United States)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  19. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks.

    Science.gov (United States)

    Zhu, Shijia; Wang, Yadong

    2015-12-18

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is 'stationarity', and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  20. Reconstructing topological properties of complex networks from partial information using the Fitness Model

    Science.gov (United States)

    Gabrielli, Andrea; Battiston, Stefano; Caldarelli, Guido; Musmeci, Nicoló; Puliga, Michelangelo

    2014-03-01

    We present a new method to reconstruct global topological properties of complex networks starting from limited information. We assume to know for all nodes a non-topological quantity that we interpret as fitness, while the degree is known only for a subset of the nodes. We then use a fitness model, calibrated on the subset of nodes for which degrees are known, to generate ensembles of networks. We focus on topological properties relevant for processes of contagion and distress propagation in networks, i.e. network density and k-core structure. We study how well these properties can be estimated as a function of the size of the subset of nodes utilized for the calibration. We perform a first test on ensembles of synthetic networks generated with the Exponential Random Graph model. We then perform a second test on empirical networks taken from economic and financial contexts (World Trade Web and e-mid interbank network). In both cases, we find that a subset as small as 10% of nodes can be enough to estimate the properties of the network with an error of 5%.

  1. SCENERY: a web application for (causal) network reconstruction from cytometry data

    KAUST Repository

    Papoutsoglou, Georgios

    2017-05-08

    Flow and mass cytometry technologies can probe proteins as biological markers in thousands of individual cells simultaneously, providing unprecedented opportunities for reconstructing networks of protein interactions through machine learning algorithms. The network reconstruction (NR) problem has been well-studied by the machine learning community. However, the potentials of available methods remain largely unknown to the cytometry community, mainly due to their intrinsic complexity and the lack of comprehensive, powerful and easy-to-use NR software implementations specific for cytometry data. To bridge this gap, we present Single CEll NEtwork Reconstruction sYstem (SCENERY), a web server featuring several standard and advanced cytometry data analysis methods coupled with NR algorithms in a user-friendly, on-line environment. In SCENERY, users may upload their data and set their own study design. The server offers several data analysis options categorized into three classes of methods: data (pre)processing, statistical analysis and NR. The server also provides interactive visualization and download of results as ready-to-publish images or multimedia reports. Its core is modular and based on the widely-used and robust R platform allowing power users to extend its functionalities by submitting their own NR methods. SCENERY is available at scenery.csd.uoc.gr or http://mensxmachina.org/en/software/.

  2. Exhaustive Search for Fuzzy Gene Networks from Microarray Data

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Fitch, J P; Quong, J N; Quong, A A

    2003-07-07

    Recent technological advances in high-throughput data collection allow for the study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are required to interpret large and complex data sets. Rationally designed system perturbations (e.g. gene knock-outs, metabolite removal, etc) can be used to iteratively refine hypothetical models, leading to a modeling-experiment cycle for high-throughput biological system analysis. We use fuzzy logic gene network models because they have greater resolution than Boolean logic models and do not require the precise parameter measurement needed for chemical kinetics-based modeling. The fuzzy gene network approach is tested by exhaustive search for network models describing cyclin gene interactions in yeast cell cycle microarray data, with preliminary success in recovering interactions predicted by previous biological knowledge and other analysis techniques. Our goal is to further develop this method in combination with experiments we are performing on bacterial regulatory networks.

  3. Identifying disease-specific genes based on their topological significance in protein networks

    Directory of Open Access Journals (Sweden)

    Cherba David

    2009-03-01

    Full Text Available Abstract Background The identification of key target nodes within complex molecular networks remains a common objective in scientific research. The results of pathway analyses are usually sets of fairly complex networks or functional processes that are deemed relevant to the condition represented by the molecular profile. To be useful in a research or clinical laboratory, the results need to be translated to the level of testable hypotheses about individual genes and proteins within the condition of interest. Results In this paper we describe novel computational methodology capable of predicting key regulatory genes and proteins in disease- and condition-specific biological networks. The algorithm builds shortest path network connecting condition-specific genes (e.g. differentially expressed genes using global database of protein interactions from MetaCore. We evaluate the number of all paths traversing each node in the shortest path network in relation to the total number of paths going via the same node in the global network. Using these numbers and the relative size of the initial data set, we determine the statistical significance of the network connectivity provided through each node. We applied this method to gene expression data from psoriasis patients and identified many confirmed biological targets of psoriasis and suggested several new targets. Using predicted regulatory nodes we were able to reconstruct disease pathways that are in excellent agreement with the current knowledge on the pathogenesis of psoriasis. Conclusion The systematic and automated approach described in this paper is readily applicable to uncovering high-quality therapeutic targets, and holds great promise for developing network-based combinational treatment strategies for a wide range of diseases.

  4. PROVIDING OF SAFETY AT WORKS IMPLEMENTATION ON RECONSTRUCTION OF PLUMBINGS NETWORKS IN THE STRAITENED TERMS

    Directory of Open Access Journals (Sweden)

    DIDENKO L. M.

    2016-07-01

    Full Text Available Summary. Raising of problem. In all regions of our country plumbings networks have a considerable physical and moral wear, because in the majority they were laid in the middle of the last century. It is known that more than 50 % on-the-road pipelines are made from steel, here middle tenure of employment of metallic pipes for plumbings networks makes 30. [1]. Statistical data testify that more than 34 % plumbings and sewage networks are in the emergency state. Thus, a large enough stake in building industry of Ukraine is on works on the reconstruction of this type of engineering networks. Thus complete replacement of all pipes requires heavy material tolls, a reconstruction and major repairs of separate emergency areas are mainly produced on this account. Logically to assert that providing of safe production of the examined type of works becomes complicated by the presence of harmful and dangerous productive factors arising up due to the complex factor of straitened. This factor is stipulated by that plumbings networks are laid within the limits of folded municipal building and on territory of operating industrial enterprises. About the danger of production of works on a reconstruction the high level of traumatism testifies at their production. According to the law of Ukraine "On a labour (item 13 protection", an employer is under an obligation to create in the workplace the terms of labour accordingly normatively - to the legal acts, requirements of legislation on the observance of rights of workers in area of labour protection. [2] Providing of safety at implementation of works on the reconstruction of plumbings networks, maybe only at the complex going near the study of this problem, that plugs in itself: research of influence of factors of straitened; exposure of features of technology of production building, assembling, breaking-down, earthen and other types of works executable on a site area at a reconstruction; perfection of existent

  5. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  6. Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity.

    Science.gov (United States)

    De, Rishika; Hu, Ting; Moore, Jason H; Gilbert-Diamond, Diane

    2015-01-01

    Recent findings have reemphasized the importance of epistasis, or gene-gene interactions, as a contributing factor to the unexplained heritability of obesity. Network-based methods such as statistical epistasis networks (SEN), present an intuitive framework to address the computational challenge of studying pairwise interactions between thousands of genetic variants. In this study, we aimed to analyze pairwise interactions that are associated with Body Mass Index (BMI) between SNPs from twelve genes robustly associated with obesity (BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, MC4R, MTCH2, NEGR1, SEC16B, SH2B1, and TMEM18). We used information gain measures to identify all SNP-SNP interactions among and between these genes that were related to obesity (BMI > 30 kg/m(2)) within the Framingham Heart Study Cohort; interactions exceeding a certain threshold were used to build an SEN. We also quantified whether interactions tend to occur more between SNPs from the same gene (dyadicity) or between SNPs from different genes (heterophilicity). We identified a highly connected SEN of 709 SNPs and 1241 SNP-SNP interactions. Combining the SEN framework with dyadicity and heterophilicity analyses, we found 1 dyadic gene (TMEM18, P-value = 0.047) and 3 heterophilic genes (KCTD15, P-value = 0.045; SH2B1, P-value = 0.003; and TMEM18, P-value = 0.001). We also identified a lncRNA SNP (rs4358154) as a key node within the SEN using multiple network measures. This study presents an analytical framework to characterize the global landscape of genetic interactions from genome-wide arrays and also to discover nodes of potential biological significance within the identified network.

  7. Reconstruction of the temporal signaling network in Salmonella-infected human cells

    Directory of Open Access Journals (Sweden)

    Gungor eBudak

    2015-07-01

    Full Text Available Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Using high-throughput ‘omic’ technologies, changes in the signaling components can be quantified at different levels; however, experimental hits are usually incomplete to represent the whole signaling system as some driver proteins stay hidden within the experimental data. Given that the bacterial infection modifies the response network of the host, more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles in which a confident region from the protein interactome is found by inferring hits from the omic experiments. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic datasets. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF approach and the Integer Linear Programming (ILP based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches have a high potential for the identification of clinical targets in infectious diseases, especially in the

  8. High-performance computing and networking as tools for accurate emission computed tomography reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, A. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Formiconi, A.R. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); De Cristofaro, M.T.E.R. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Pupi, A. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Meldolesi, U. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy)

    1997-04-01

    It is well known that the quantitative potential of emission computed tomography (ECT) relies on the ability to compensate for resolution, attenuation and scatter effects. Reconstruction algorithms which are able to take these effects into account are highly demanding in terms of computing resources. The reported work aimed to investigate the use of a parallel high-performance computing platform for ECT reconstruction taking into account an accurate model of the acquisition of single-photon emission tomographic (SPET) data. An iterative algorithm with an accurate model of the variable system response was ported on the MIMD (Multiple Instruction Multiple Data) parallel architecture of a 64-node Cray T3D massively parallel computer. The system was organized to make it easily accessible even from low-cost PC-based workstations through standard TCP/IP networking. A complete brain study of 30 (64 x 64) slices could be reconstructed from a set of 90 (64 x 64) projections with ten iterations of the conjugate gradients algorithm in 9 s, corresponding to an actual speed-up factor of 135. This work demonstrated the possibility of exploiting remote high-performance computing and networking resources from hospital sites by means of low-cost workstations using standard communication protocols without particular problems for routine use. The achievable speed-up factors allow the assessment of the clinical benefit of advanced reconstruction techniques which require a heavy computational burden for the compensation effects such as variable spatial resolution, scatter and attenuation. The possibility of using the same software on the same hardware platform with data acquired in different laboratories with various kinds of SPET instrumentation is appealing for software quality control and for the evaluation of the clinical impact of the reconstruction methods. (orig.). With 4 figs., 1 tab.

  9. Noise reduction facilitated by dosage compensation in gene networks

    Science.gov (United States)

    Peng, Weilin; Song, Ruijie; Acar, Murat

    2016-01-01

    Genetic noise together with genome duplication and volume changes during cell cycle are significant contributors to cell-to-cell heterogeneity. How can cells buffer the effects of these unavoidable epigenetic and genetic variations on phenotypes that are sensitive to such variations? Here we show that a simple network motif that is essential for network-dosage compensation can reduce the effects of extrinsic noise on the network output. Using natural and synthetic gene networks with and without the network motif, we measure gene network activity in single yeast cells and find that the activity of the compensated network is significantly lower in noise compared with the non-compensated network. A mathematical analysis provides intuitive insights into these results and a novel stochastic model tracking cell-volume and cell-cycle predicts the experimental results. Our work implies that noise is a selectable trait tunable by evolution. PMID:27694830

  10. Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Yun-Xia Zhang

    2016-01-01

    Full Text Available Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC using a network-based strategy and to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic genes (seed genes and differentially expressed genes (DEGs between CC and normal controls. Subsequently, cluster analysis was performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal controls. From the pathogenic network, 2 intensely connected clusters were extracted, and a total of 52 candidate genes were detected under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate genes MMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion. Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe that our results can provide theoretical guidelines for future clinical application.

  11. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

    Directory of Open Access Journals (Sweden)

    Jacek Puchałka

    2008-10-01

    Full Text Available A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile

  12. Using effective subnetworks to predict selected properties of gene networks.

    Directory of Open Access Journals (Sweden)

    Gemunu H Gunaratne

    Full Text Available BACKGROUND: Difficulties associated with implementing gene therapy are caused by the complexity of the underlying regulatory networks. The forms of interactions between the hundreds of genes, proteins, and metabolites in these networks are not known very accurately. An alternative approach is to limit consideration to genes on the network. Steady state measurements of these influence networks can be obtained from DNA microarray experiments. However, since they contain a large number of nodes, the computation of influence networks requires a prohibitively large set of microarray experiments. Furthermore, error estimates of the network make verifiable predictions impossible. METHODOLOGY/PRINCIPAL FINDINGS: Here, we propose an alternative approach. Rather than attempting to derive an accurate model of the network, we ask what questions can be addressed using lower dimensional, highly simplified models. More importantly, is it possible to use such robust features in applications? We first identify a small group of genes that can be used to affect changes in other nodes of the network. The reduced effective empirical subnetwork (EES can be computed using steady state measurements on a small number of genetically perturbed systems. We show that the EES can be used to make predictions on expression profiles of other mutants, and to compute how to implement pre-specified changes in the steady state of the underlying biological process. These assertions are verified in a synthetic influence network. We also use previously published experimental data to compute the EES associated with an oxygen deprivation network of E.coli, and use it to predict gene expression levels on a double mutant. The predictions are significantly different from the experimental results for less than of genes. CONCLUSIONS/SIGNIFICANCE: The constraints imposed by gene expression levels of mutants can be used to address a selected set of questions about a gene network.

  13. Identification of putative orthologous genes for the phylogenetic reconstruction of temperate woody bamboos (Poaceae: Bambusoideae).

    Science.gov (United States)

    Zhang, Li-Na; Zhang, Xian-Zhi; Zhang, Yu-Xiao; Zeng, Chun-Xia; Ma, Peng-Fei; Zhao, Lei; Guo, Zhen-Hua; Li, De-Zhu

    2014-09-01

    The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next-generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra-individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos. © 2014 John Wiley & Sons Ltd.

  14. Reconstructing the Evolutionary History of Paralogous APETALA1/FRUITFULL-Like Genes in Grasses (Poaceae)

    Science.gov (United States)

    Preston, Jill C.; Kellogg, Elizabeth A.

    2006-01-01

    Gene duplication is an important mechanism for the generation of evolutionary novelty. Paralogous genes that are not silenced may evolve new functions (neofunctionalization) that will alter the developmental outcome of preexisting genetic pathways, partition ancestral functions (subfunctionalization) into divergent developmental modules, or function redundantly. Functional divergence can occur by changes in the spatio-temporal patterns of gene expression and/or by changes in the activities of their protein products. We reconstructed the evolutionary history of two paralogous monocot MADS-box transcription factors, FUL1 and FUL2, and determined the evolution of sequence and gene expression in grass AP1/FUL-like genes. Monocot AP1/FUL-like genes duplicated at the base of Poaceae and codon substitutions occurred under relaxed selection mostly along the branch leading to FUL2. Following the duplication, FUL1 was apparently lost from early diverging taxa, a pattern consistent with major changes in grass floral morphology. Overlapping gene expression patterns in leaves and spikelets indicate that FUL1 and FUL2 probably share some redundant functions, but that FUL2 may have become temporally restricted under partial subfunctionalization to particular stages of floret development. These data have allowed us to reconstruct the history of AP1/FUL-like genes in Poaceae and to hypothesize a role for this gene duplication in the evolution of the grass spikelet. PMID:16816429

  15. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    Science.gov (United States)

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  16. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.

    Science.gov (United States)

    Tian, Xue W; Lim, Joon S

    2015-01-01

    Naive Bayesian (NB) network classifier is a simple and well-known type of classifier, which can be easily induced from a DNA microarray data set. However, a strong conditional independence assumption of NB network sometimes can lead to weak classification performance. In this paper, we propose a new approach of interactive naive Bayesian (INB) network to weaken the conditional independence of NB network and classify cancers using DNA microarray data set. We selected the differently expressed genes (DEGs) to reduce the dimension of the microarray data set. Then, an interactive parent which has the biggest influence among all DEGs is searched for each DEG. And then we calculate a weight to represent the interactive relationship between a DEG and its parent. Finally, the gene-gene interaction network is constructed. We experimentally test the INB network in terms of classification accuracy using leukemia and colon DNA microarray data sets, then we compare it with the NB network. The INB network can get higher classification accuracies than NB network. And INB network can show the gene-gene interactions visually.

  17. Evolvability and hierarchy in rewired bacterial gene networks

    Science.gov (United States)

    Isalan, Mark; Lemerle, Caroline; Michalodimitrakis, Konstantinos; Beltrao, Pedro; Horn, Carsten; Raineri, Emanuele; Garriga-Canut, Mireia; Serrano, Luis

    2009-01-01

    Sequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily molded the contents of a given genome. Though the effect of knocking out or over-expressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To explore network evolvability, we constructed 598 recombinations of promoters (including regulatory regions) with different transcription or σ-factor genes in Escherichia coli, added over a wild-type genetic background. Here we show that ~95% of new networks are tolerated by the bacteria, that very few alter growth, and that expression level correlates with factor position in the wild-type network hierarchy. Most importantly, we find that certain networks consistently survive over the wild-type under various selection pressures. Therefore new links in the network are rarely a barrier for evolution and can even confer a fitness advantage. PMID:18421347

  18. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data

    Science.gov (United States)

    2013-01-01

    Background High-throughput RNA sequencing (RNA-Seq) is a revolutionary technique to study the transcriptome of a cell under various conditions at a systems level. Despite the wide application of RNA-Seq techniques to generate experimental data in the last few years, few computational methods are available to analyze this huge amount of transcription data. The computational methods for constructing gene regulatory networks from RNA-Seq expression data of hundreds or even thousands of genes are particularly lacking and urgently needed. Results We developed an automated bioinformatics method to predict gene regulatory networks from the quantitative expression values of differentially expressed genes based on RNA-Seq transcriptome data of a cell in different stages and conditions, integrating transcriptional, genomic and gene function data. We applied the method to the RNA-Seq transcriptome data generated for soybean root hair cells in three different development stages of nodulation after rhizobium infection. The method predicted a soybean nodulation-related gene regulatory network consisting of 10 regulatory modules common for all three stages, and 24, 49 and 70 modules separately for the first, second and third stage, each containing both a group of co-expressed genes and several transcription factors collaboratively controlling their expression under different conditions. 8 of 10 common regulatory modules were validated by at least two kinds of validations, such as independent DNA binding motif analysis, gene function enrichment test, and previous experimental data in the literature. Conclusions We developed a computational method to reliably reconstruct gene regulatory networks from RNA-Seq transcriptome data. The method can generate valuable hypotheses for interpreting biological data and designing biological experiments such as ChIP-Seq, RNA interference, and yeast two hybrid experiments. PMID:24053776

  19. Inferring slowly-changing dynamic gene-regulatory networks.

    Science.gov (United States)

    Wit, Ernst C; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with l1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset.

  20. Bayesian History Reconstruction of Complex Human Gene Clusters on a Phylogeny

    CERN Document Server

    Vinař, Tomáš; Song, Giltae; Siepel, Adam

    2009-01-01

    Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. Improved understanding of these clusters is of utmost importance, since they have been shown to be the source of evolutionary innovation, and have been linked to multiple diseases, including HIV and a variety of cancers. Previously, Zhang et al. (2008) developed an algorithm for reconstructing parsimonious evolutionary histories of such gene clusters, using only human genomic sequence data. In this paper, we propose a probabilistic model for the evolution of gene clusters on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate that our method will be useful in analyzing these valuable new data sets.

  1. Field Reconstruction in Sensor Networks with Coverage Holes and Packet Losses

    CERN Document Server

    Nordio, Alessandro

    2010-01-01

    Environmental monitoring is often performed through a wireless sensor network, whose nodes are randomly deployed over the geographical region of interest. Sensors sample a physical phenomenon (the so-called field) and send their measurements to a {\\em sink} node, which is in charge of reconstructing the field from such irregular samples. In this work, we focus on scenarios of practical interest where the sensor deployment is unfeasible in certain areas of the geographical region, e.g., due to terrain asperities, and the delivery of sensor measurements to the sink may fail due to fading or to transmission collisions among sensors simultaneously accessing the wireless medium. Under these conditions, we carry out an asymptotic analysis and evaluate the quality of the estimation of a d-dimensional field when the sink uses linear filtering as a reconstruction technique. Specifically, given the matrix representing the sampling system, V, we derive both the moments and an expression of the limiting spectral distribu...

  2. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN

    Directory of Open Access Journals (Sweden)

    U. Feister

    2008-01-01

    Full Text Available Artificial Neural Networks (ANN are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980–1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  3. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    Science.gov (United States)

    Feister, U.; Junk, J.; Woldt, M.

    2008-01-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  4. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.

    Science.gov (United States)

    Luo, Jiawei; Liang, Shiyu

    2015-02-01

    Identifying candidate disease genes is important to improve medical care. However, this task is challenging in the post-genomic era. Several computational approaches have been proposed to prioritize potential candidate genes relying on protein-protein interaction (PPI) networks. However, the experimental PPI network is usually liable to contain a number of spurious interactions. In this paper, we construct a reliable heterogeneous network by fusing multiple networks, a PPI network reconstructed by topological similarity, a phenotype similarity network and known associations between diseases and genes. We then devise a random walk-based algorithm on the reliable heterogeneous network called RWRHN to prioritize potential candidate genes for inherited diseases. The results of leave-one-out cross-validation experiments show that the RWRHN algorithm has better performance than the RWRH and CIPHER methods in inferring disease genes. Furthermore, RWRHN is used to predict novel causal genes for 16 diseases, including breast cancer, diabetes mellitus type 2, and prostate cancer, as well as to detect disease-related protein complexes. The top predictions are supported by literature evidence.

  5. Effects of a silenced gene in Boolean network models

    Directory of Open Access Journals (Sweden)

    Emir Haliki

    2017-03-01

    Full Text Available Gene regulation and their regulatory networks are one of the most challenging research problems of computational biology and complexity sciences. Gene regulation is formed by indirect interaction between DNA segments which are protein coding genes to configure the expression level of one another. Prevention of expression of any genes in gene regulation at the levels of transcription or translation indicates the gene silencing event. The present study examined what types of results in gene silencing would bring about in the dynamics of Boolean genetic regulatory mechanisms. The analytical study was performed in gene expression variations of Boolean dynamics first, then the related numerical analysis was simulated in real networks in the literature.

  6. High-resolution Image Reconstruction by Neural Network and Its Application in Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; JIN Wei-qi; SU Bing-hua

    2005-01-01

    As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.

  7. Identifying gene regulatory network rewiring using latent differential graphical models.

    Science.gov (United States)

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  8. Differentially expressed genes in major depression reside on the periphery of resilient gene coexpression networks

    Directory of Open Access Journals (Sweden)

    Chris eGaiteri

    2011-08-01

    Full Text Available The structure of gene coexpression networks reflects the activation and interaction of multiple cellular systems. Since the pathology of neuropsychiatric disorders is influenced by diverse cellular systems and pathways, we investigated gene coexpression networks in major depression, and searched for putative unifying themes in network connectivity across neuropsychiatric disorders. Specifically, based on the prevalence of the lethality-centrality relationship in disease-related networks, we hypothesized that network changes between control and major depression-related networks would be centered around coexpression hubs, and secondly, that differentially expressed (DE genes would have a characteristic position and connectivity level in those networks. Mathematically, the first hypothesis tests the relationship of differential coexpression to network connectivity, while the second hybrid expression-and-network hypothesis tests the relationship of differential expression to network connectivity. To answer these questions about the potential interaction of coexpression network structure with differential expression, we utilized all available human post-mortem depression-related datasets appropriate for coexpression analysis, which spanned different microarray platforms, cohorts, and brain regions. Similar studies were also performed in an animal model of depression and in schizophrenia and bipolar disorder microarray datasets. We now provide results which consistently support (1 that genes assemble into small-world and scale-free networks in control subjects, (2 that this efficient network topology is largely resilient to changes in depressed subjects, and (3 that DE genes are positioned on the periphery of coexpression networks. Similar results were observed in a mouse model of depression, and in selected bipolar- and schizophrenia-related networks. Finally, we show that baseline expression variability contributes to the propensity of genes to be

  9. Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling

    Directory of Open Access Journals (Sweden)

    Hessner Martin J

    2010-12-01

    Full Text Available Abstract Background In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also common in transcription regulation. Results In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle data, we show that significant phase locking exists between transcription factors and their targets, between gene pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with simple correlation we found that the phase locking metric can identify gene pairs that interact with each other more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these findings we propose a new phase locking metric for network reconstruction using time course gene expression data. We show that it is efficient at identifying network modules of focused biological themes that are important to cell cycle regulation. Conclusions Our result demonstrates the potential of phase locking analysis in transcription network modeling. It also suggests the importance of understanding the dynamics underlying the gene expression patterns.

  10. Gene duplication models for directed networks with limits on growth

    Science.gov (United States)

    Enemark, Jakob; Sneppen, Kim

    2007-11-01

    Background: Duplication of genes is important for evolution of molecular networks. Many authors have therefore considered gene duplication as a driving force in shaping the topology of molecular networks. In particular it has been noted that growth via duplication would act as an implicit means of preferential attachment, and thereby provide the observed broad degree distributions of molecular networks. Results: We extend current models of gene duplication and rewiring by including directions and the fact that molecular networks are not a result of unidirectional growth. We introduce upstream sites and downstream shapes to quantify potential links during duplication and rewiring. We find that this in itself generates the observed scaling of transcription factors for genome sites in prokaryotes. The dynamical model can generate a scale-free degree distribution, p(k)\\propto 1/k^{\\gamma } , with exponent γ = 1 in the non-growing case, and with γ>1 when the network is growing. Conclusions: We find that duplication of genes followed by substantial recombination of upstream regions could generate features of genetic regulatory networks. Our steady state degree distribution is however too broad to be consistent with data, thereby suggesting that selective pruning acts as a main additional constraint on duplicated genes. Our analysis shows that gene duplication can only be a main cause for the observed broad degree distributions if there are also substantial recombinations between upstream regions of genes.

  11. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome.

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle.

  12. Gene regulatory network inference using out of equilibrium statistical mechanics.

    Science.gov (United States)

    Benecke, Arndt

    2008-08-01

    Spatiotemporal control of gene expression is fundamental to multicellular life. Despite prodigious efforts, the encoding of gene expression regulation in eukaryotes is not understood. Gene expression analyses nourish the hope to reverse engineer effector-target gene networks using inference techniques. Inference from noisy and circumstantial data relies on using robust models with few parameters for the underlying mechanisms. However, a systematic path to gene regulatory network reverse engineering from functional genomics data is still impeded by fundamental problems. Recently, Johannes Berg from the Theoretical Physics Institute of Cologne University has made two remarkable contributions that significantly advance the gene regulatory network inference problem. Berg, who uses gene expression data from yeast, has demonstrated a nonequilibrium regime for mRNA concentration dynamics and was able to map the gene regulatory process upon simple stochastic systems driven out of equilibrium. The impact of his demonstration is twofold, affecting both the understanding of the operational constraints under which transcription occurs and the capacity to extract relevant information from highly time-resolved expression data. Berg has used his observation to predict target genes of selected transcription factors, and thereby, in principle, demonstrated applicability of his out of equilibrium statistical mechanics approach to the gene network inference problem.

  13. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    Science.gov (United States)

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  14. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus.

    Science.gov (United States)

    Vakirlis, Nikolaos; Sarilar, Véronique; Drillon, Guénola; Fleiss, Aubin; Agier, Nicolas; Meyniel, Jean-Philippe; Blanpain, Lou; Carbone, Alessandra; Devillers, Hugo; Dubois, Kenny; Gillet-Markowska, Alexandre; Graziani, Stéphane; Huu-Vang, Nguyen; Poirel, Marion; Reisser, Cyrielle; Schott, Jonathan; Schacherer, Joseph; Lafontaine, Ingrid; Llorente, Bertrand; Neuvéglise, Cécile; Fischer, Gilles

    2016-07-01

    Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.

  15. Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kaas, Christian Schrøder; Brandl, Julian

    2017-01-01

    of the literature on the yeast, human, and mouse secretory pathway, we have compiled a comprehensive catalogue of characterized proteins with functional annotation and their interconnectivity. Thus we have established the most elaborate reconstruction (RECON) of the functional secretion pathway network to date...... regulation of protein secretion than healthy mouse cells.  Conclusions: The RECON of the secretory pathway represents a strong tool for interpretation of data related to protein secretion as illustrated with transcriptomic data of Chinese Hamster Ovary (CHO) cells, the main platform for mammalian protein...

  16. Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Linding, Rune

    2009-01-01

    The explosion of site- and context-specific in vivo phosphorylation events presents a potentially rich source of biological knowledge and calls for novel data analysis and modeling paradigms. Perhaps the most immediate challenge is delineating detected phosphorylation sites to their effector...... kinases. This is important for (re)constructing transient kinase-substrate interaction networks that are essential for mechanistic understanding of cellular behaviors and therapeutic intervention, but has largely eluded high-throughput protein-interaction studies due to their transient nature and strong...

  17. Discovering cancer genes by integrating network and functional properties

    Directory of Open Access Journals (Sweden)

    Davis David P

    2009-09-01

    Full Text Available Abstract Background Identification of novel cancer-causing genes is one of the main goals in cancer research. The rapid accumulation of genome-wide protein-protein interaction (PPI data in humans has provided a new basis for studying the topological features of cancer genes in cellular networks. It is important to integrate multiple genomic data sources, including PPI networks, protein domains and Gene Ontology (GO annotations, to facilitate the identification of cancer genes. Methods Topological features of the PPI network, as well as protein domain compositions, enrichment of gene ontology categories, sequence and evolutionary conservation features were extracted and compared between cancer genes and other genes. The predictive power of various classifiers for identification of cancer genes was evaluated by cross validation. Experimental validation of a subset of the prediction results was conducted using siRNA knockdown and viability assays in human colon cancer cell line DLD-1. Results Cross validation demonstrated advantageous performance of classifiers based on support vector machines (SVMs with the inclusion of the topological features from the PPI network, protein domain compositions and GO annotations. We then applied the trained SVM classifier to human genes to prioritize putative cancer genes. siRNA knock-down of several SVM predicted cancer genes displayed greatly reduced cell viability in human colon cancer cell line DLD-1. Conclusion Topological features of PPI networks, protein domain compositions and GO annotations are good predictors of cancer genes. The SVM classifier integrates multiple features and as such is useful for prioritizing candidate cancer genes for experimental validations.

  18. Dimensionality Reduction and Reconstruction using Mirroring Neural Networks and Object Recognition based on Reduced Dimension Characteristic Vector

    CERN Document Server

    Deepthi, Dasika Ratna; Eswaran, K

    2007-01-01

    In this paper, we present a Mirroring Neural Network architecture to perform non-linear dimensionality reduction and Object Recognition using a reduced lowdimensional characteristic vector. In addition to dimensionality reduction, the network also reconstructs (mirrors) the original high-dimensional input vector from the reduced low-dimensional data. The Mirroring Neural Network architecture has more number of processing elements (adalines) in the outer layers and the least number of elements in the central layer to form a converging-diverging shape in its configuration. Since this network is able to reconstruct the original image from the output of the innermost layer (which contains all the information about the input pattern), these outputs can be used as object signature to classify patterns. The network is trained to minimize the discrepancy between actual output and the input by back propagating the mean squared error from the output layer to the input layer. After successfully training the network, it ...

  19. BisoGenet: a new tool for gene network building, visualization and analysis

    Directory of Open Access Journals (Sweden)

    Miranda Jamilet

    2010-02-01

    Full Text Available Abstract Background The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics. Results BisoGenet is a multi-tier application for visualization and analysis of biomolecular relationships. The system consists of three tiers. In the data tier, an in-house database stores genomics information, protein-protein interactions, protein-DNA interactions, gene ontology and metabolic pathways. In the middle tier, a global network is created at server startup, representing the whole data on bioentities and their relationships retrieved from the database. The client tier is a Cytoscape plugin, which manages user input, communication with the Web Service, visualization and analysis of the resulting network. Conclusion BisoGenet is able to build and visualize biological networks in a fast and user-friendly manner. A feature of Bisogenet is the possibility to include coding relations to distinguish between genes and their products. This feature could be instrumental to achieve a finer grain representation of the bioentities and their relationships. The client application includes network analysis tools and interactive network expansion capabilities. In addition, an option is provided to allow other networks to be converted to BisoGenet. This feature facilitates the integration of our software with other tools available in the Cytoscape platform. BisoGenet is available at http://bio.cigb.edu.cu/bisogenet-cytoscape/.

  20. EGN: a wizard for construction of gene and genome similarity networks.

    Science.gov (United States)

    Halary, Sébastien; McInerney, James O; Lopez, Philippe; Bapteste, Eric

    2013-07-11

    Increasingly, similarity networks are being used for evolutionary analyses of molecular datasets. These networks are very useful, in particular for the analysis of gene sharing, lateral gene transfer and for the detection of distant homologs. Currently, such analyses require some computer programming skills due to the limited availability of user-friendly freely distributed software. Consequently, although appealing, the construction and analyses of these networks remain less familiar to biologists than do phylogenetic approaches. In order to ease the use of similarity networks in the community of evolutionary biologists, we introduce a software program, EGN, that runs under Linux or MacOSX. EGN automates the reconstruction of gene and genome networks from nucleic and proteic sequences. EGN also implements statistics describing genetic diversity in these samples, for various user-defined thresholds of similarities. In the interest of studying the complexity of evolutionary processes affecting microbial evolution, we applied EGN to a dataset of 571,044 proteic sequences from the three domains of life and from mobile elements. We observed that, in Borrelia, plasmids play a different role than in most other eubacteria. Rather than being genetic couriers involved in lateral gene transfer, Borrelia's plasmids and their genes act as private genetic goods, that contribute to the creation of genetic diversity within their parasitic hosts. EGN can be used for constructing, analyzing, and mining molecular datasets in evolutionary studies. The program can help increase our knowledge of the processes through which genes from distinct sources and/or from multiple genomes co-evolve in lineages of cellular organisms.

  1. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.

    Science.gov (United States)

    Wang, Zhuo; Danziger, Samuel A; Heavner, Benjamin D; Ma, Shuyi; Smith, Jennifer J; Li, Song; Herricks, Thurston; Simeonidis, Evangelos; Baliga, Nitin S; Aitchison, John D; Price, Nathan D

    2017-05-01

    Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

  2. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.

    Science.gov (United States)

    Knapp, Bettina; Kaderali, Lars

    2013-01-01

    Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4(+) T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.

  3. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  4. An Algorithm For Training Multilayer Perceptron MLP For Image Reconstruction Using Neural Network Without Overfitting.

    Directory of Open Access Journals (Sweden)

    Mohammad Mahmudul Alam Mia

    2015-02-01

    Full Text Available Abstract Recently back propagation neural network BPNN has been applied successfully in many areas with excellent generalization results for example rule extraction classification and evaluation. In this paper the Levenberg-Marquardt back-propagation algorithm is used for training the network and reconstructs the image. It is found that Marquardt algorithm is significantly more proficient. A practical problem with MLPs is to select the correct complexity for the model i.e. the right number of hidden units or correct regularization parameters. In this paper a study is made to determine the issue of number of neurons in every hidden layer and the quantity of hidden layers needed for getting the high accuracy. We performed regression R analysis to measure the correlation between outputs and targets.

  5. Numerical Simulation of Two Phase Flow in Reconstructed Pore Network Based on Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Song Rui

    2013-01-01

    Full Text Available Accurate prediction and understanding of the disorder microstructures in the porous media contribute to acquiring the macroscopic physical properties such as conductivity, permeability, formation factor, elastic moduli etc. Based on the rock serial sectioning images of Berea sandstone acquired by the core scanning system developed by our research group, the reconstructed rock model is established in the Mimics software and the extracted pore network of the porous rock is accomplished by the self-programming software in C++ programming language based on the revised Medial axis based algorithm and the Maximal ball algorithm. Using a lattice Boltzmann method, the single and two C phase flow are accomplished. Both of the pore-scale networks and the seepage mechanism of the single- and two Cphase flow are identical with the benchmark experimental data.

  6. Reconstruction of an infrared band of meteorological satellite imagery with abductive networks

    Science.gov (United States)

    Singer, Harvey A.; Cockayne, John E.; Versteegen, Peter L.

    1995-01-01

    As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a spectral channel of the image scanning system is continually and progressively degraded by noise. In time, that data may even become unusable. We describe a novel approach to the reconstruction of the noisy satellite imagery according to empirical functional relationships that tie the spectral channels together. Abductive networks are applied to automatically learn the empirical functional relationships between the data sensed on the other spectral channels to calculate the data that should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is demonstrated that abductive networks correctly predict the noise-free observed data.

  7. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    Science.gov (United States)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  8. Reconstruction and signal propagation analysis of the Syk signaling network in breast cancer cells

    Science.gov (United States)

    Urbach, Serge; Montcourrier, Philippe; Roy, Christian; Solassol, Jérôme; Freiss, Gilles; Radulescu, Ovidiu

    2017-01-01

    The ability to build in-depth cell signaling networks from vast experimental data is a key objective of computational biology. The spleen tyrosine kinase (Syk) protein, a well-characterized key player in immune cell signaling, was surprisingly first shown by our group to exhibit an onco-suppressive function in mammary epithelial cells and corroborated by many other studies, but the molecular mechanisms of this function remain largely unsolved. Based on existing proteomic data, we report here the generation of an interaction-based network of signaling pathways controlled by Syk in breast cancer cells. Pathway enrichment of the Syk targets previously identified by quantitative phospho-proteomics indicated that Syk is engaged in cell adhesion, motility, growth and death. Using the components and interactions of these pathways, we bootstrapped the reconstruction of a comprehensive network covering Syk signaling in breast cancer cells. To generate in silico hypotheses on Syk signaling propagation, we developed a method allowing to rank paths between Syk and its targets. We first annotated the network according to experimental datasets. We then combined shortest path computation with random walk processes to estimate the importance of individual interactions and selected biologically relevant pathways in the network. Molecular and cell biology experiments allowed to distinguish candidate mechanisms that underlie the impact of Syk on the regulation of cortactin and ezrin, both involved in actin-mediated cell adhesion and motility. The Syk network was further completed with the results of our biological validation experiments. The resulting Syk signaling sub-networks can be explored via an online visualization platform. PMID:28306714

  9. Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms

    Directory of Open Access Journals (Sweden)

    Tauch Andreas

    2009-01-01

    Full Text Available Abstract Background Transcriptional regulation of gene activity is essential for any living organism. Transcription factors therefore recognize specific binding sites within the DNA to regulate the expression of particular target genes. The genome-scale reconstruction of the emerging regulatory networks is important for biotechnology and human medicine but cost-intensive, time-consuming, and impossible to perform for any species separately. By using bioinformatics methods one can partially transfer networks from well-studied model organisms to closely related species. However, the prediction quality is limited by the low level of evolutionary conservation of the transcription factor binding sites, even within organisms of the same genus. Results Here we present an integrated bioinformatics workflow that assures the reliability of transferred gene regulatory networks. Our approach combines three methods that can be applied on a large-scale: re-assessment of annotated binding sites, subsequent binding site prediction, and homology detection. A gene regulatory interaction is considered to be conserved if (1 the transcription factor, (2 the adjusted binding site, and (3 the target gene are conserved. The power of the approach is demonstrated by transferring gene regulations from the model organism Corynebacterium glutamicum to the human pathogens C. diphtheriae, C. jeikeium, and the biotechnologically relevant C. efficiens. For these three organisms we identified reliable transcriptional regulations for ~40% of the common transcription factors, compared to ~5% for which knowledge was available before. Conclusion Our results suggest that trustworthy genome-scale transfer of gene regulatory networks between organisms is feasible in general but still limited by the level of evolutionary conservation.

  10. Skeletal camera network embedded structure-from-motion for 3D scene reconstruction from UAV images

    Science.gov (United States)

    Xu, Zhihua; Wu, Lixin; Gerke, Markus; Wang, Ran; Yang, Huachao

    2016-11-01

    Structure-from-Motion (SfM) techniques have been widely used for 3D scene reconstruction from multi-view images. However, due to the large computational costs of SfM methods there is a major challenge in processing highly overlapping images, e.g. images from unmanned aerial vehicles (UAV). This paper embeds a novel skeletal camera network (SCN) into SfM to enable efficient 3D scene reconstruction from a large set of UAV images. First, the flight control data are used within a weighted graph to construct a topologically connected camera network (TCN) to determine the spatial connections between UAV images. Second, the TCN is refined using a novel hierarchical degree bounded maximum spanning tree to generate a SCN, which contains a subset of edges from the TCN and ensures that each image is involved in at least a 3-view configuration. Third, the SCN is embedded into the SfM to produce a novel SCN-SfM method, which allows performing tie-point matching only for the actually connected image pairs. The proposed method was applied in three experiments with images from two fixed-wing UAVs and an octocopter UAV, respectively. In addition, the SCN-SfM method was compared to three other methods for image connectivity determination. The comparison shows a significant reduction in the number of matched images if our method is used, which leads to less computational costs. At the same time the achieved scene completeness and geometric accuracy are comparable.

  11. Spring temperature variability over Turkey since 1800 CE reconstructed from a broad network of tree-ring data

    Science.gov (United States)

    Köse, Nesibe; Tuncay Güner, H.; Harley, Grant L.; Guiot, Joel

    2017-01-01

    The meteorological observational period in Turkey, which starts ca. 1930 CE, is too short for understanding long-term climatic variability. Tree rings have been used intensively as proxy records to understand summer precipitation history of the region, primarily because they have a dominant precipitation signal. Yet, the historical context of temperature variability is unclear. Here, we used higher-order principle components of a network of 23 tree-ring chronologies to provide a high-resolution spring (March-April) temperature reconstruction over Turkey during the period 1800-2002. The reconstruction model accounted for 67 % (Adj. R2 = 0.64, p tree-ring network (first principle component) showed highly significant correlations with gridded summer drought index reconstruction over Turkey and Mediterranean countries. Our results showed that, beside the dominant precipitation signal, a temperature signal can be extracted from tree-ring series and they can be useful proxies in reconstructing past temperature variability.

  12. Optimal finite horizon control in gene regulatory networks

    Science.gov (United States)

    Liu, Qiuli

    2013-06-01

    As a paradigm for modeling gene regulatory networks, probabilistic Boolean networks (PBNs) form a subclass of Markov genetic regulatory networks. To date, many different stochastic optimal control approaches have been developed to find therapeutic intervention strategies for PBNs. A PBN is essentially a collection of constituent Boolean networks via a probability structure. Most of the existing works assume that the probability structure for Boolean networks selection is known. Such an assumption cannot be satisfied in practice since the presence of noise prevents the probability structure from being accurately determined. In this paper, we treat a case in which we lack the governing probability structure for Boolean network selection. Specifically, in the framework of PBNs, the theory of finite horizon Markov decision process is employed to find optimal constituent Boolean networks with respect to the defined objective functions. In order to illustrate the validity of our proposed approach, an example is also displayed.

  13. Gene regulation: hacking the network on a sugar high.

    Science.gov (United States)

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  14. Material depth reconstruction method of multi-energy X-ray images using neural network.

    Science.gov (United States)

    Lee, Woo-Jin; Kim, Dae-Seung; Kang, Sung-Won; Yi, Won-Jin

    2012-01-01

    With the advent of technology, multi-energy X-ray imaging is promising technique that can reduce the patient's dose and provide functional imaging. Two-dimensional photon-counting detector to provide multi-energy imaging is under development. In this work, we present a material decomposition method using multi-energy images. To acquire multi-energy images, Monte Carlo simulation was performed. The X-ray spectrum was modeled and ripple effect was considered. Using the dissimilar characteristics in energy-dependent X-ray attenuation of each material, multiple energy X-ray images were decomposed into material depth images. Feedforward neural network was used to fit multi-energy images to material depth images. In order to use the neural network, step wedge phantom images were used for training neuron. Finally, neural network decomposed multi-energy X-ray images into material depth image. To demonstrate the concept of this method, we applied it to simulated images of a 3D head phantom. The results show that neural network method performed effectively material depth reconstruction.

  15. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  16. Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings

    Science.gov (United States)

    Ravindranath, A.; Devineni, N.

    2016-12-01

    Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.

  17. Indeterminacy of reverse engineering of Gene Regulatory Networks: the curse of gene elasticity.

    Directory of Open Access Journals (Sweden)

    Arun Krishnan

    Full Text Available BACKGROUND: Gene Regulatory Networks (GRNs have become a major focus of interest in recent years. A number of reverse engineering approaches have been developed to help uncover the regulatory networks giving rise to the observed gene expression profiles. However, this is an overspecified problem due to the fact that more than one genotype (network wiring can give rise to the same phenotype. We refer to this phenomenon as "gene elasticity." In this work, we study the effect of this particular problem on the pure, data-driven inference of gene regulatory networks. METHODOLOGY: We simulated a four-gene network in order to produce "data" (protein levels that we use in lieu of real experimental data. We then optimized the network connections between the four genes with a view to obtain the original network that gave rise to the data. We did this for two different cases: one in which only the network connections were optimized and the other in which both the network connections as well as the kinetic parameters (given as reaction probabilities in our case were estimated. We observed that multiple genotypes gave rise to very similar protein levels. Statistical experimentation indicates that it is impossible to differentiate between the different networks on the basis of both equilibrium as well as dynamic data. CONCLUSIONS: We show explicitly that reverse engineering of GRNs from pure expression data is an indeterminate problem. Our results suggest the unsuitability of an inferential, purely data-driven approach for the reverse engineering transcriptional networks in the case of gene regulatory networks displaying a certain level of complexity.

  18. Linear control theory for gene network modeling.

    Science.gov (United States)

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  19. Validation of Gene Regulatory Network Inference Based on Controllability

    Directory of Open Access Journals (Sweden)

    Edward eDougherty

    2013-12-01

    Full Text Available There are two distinct issues regarding network validation: (1 Does an inferred network provide good predictions relative to experimental data? (2 Does a network inference algorithm applied within a certain network model framework yield networks that are accurate relative to some criterion of goodness? The first issue concerns scientific validation and the second concerns algorithm validation. In this paper we consider inferential validation relative to controllability; that is, if an inference procedure is applied to synthetic data generated from a gene regulatory network and an intervention procedure is designed on the inferred network, how well does it perform on the true network? The reasoning behind such a criterion is that, if our purpose is to use gene regulatory networks to design therapeutic intervention strategies, then we are not concerned with network fidelity, per se, but only with our ability to design effective interventions based on the inferred network. We will consider the problem from the perspectives of stationary control, which involves designing a control policy to be applied over time based on the current state of the network, with the decision procedure itself being time independent. {The objective of a control policy is to optimally reduce the total steady-state probability mass of the undesirable states (phenotypes, which is equivalent to optimally increasing the total steady-state mass of the desirable states. Based on this criterion we compare several proposed network inference procedures. We will see that inference procedure psi may perform poorer than inference procedure xi relative to inferring the full network structure but perform better than xi relative to controllability. Hence, when one is aiming at a specific application, it may be wise to use an objective-based measure of inference validity.

  20. Gene-based and semantic structure of the Gene Ontology as a complex network

    Science.gov (United States)

    Coronnello, Claudia; Tumminello, Michele; Miccichè, Salvatore

    2016-09-01

    The last decade has seen the advent and consolidation of ontology based tools for the identification and biological interpretation of classes of genes, such as the Gene Ontology. The Gene Ontology (GO) is constantly evolving over time. The information accumulated time-by-time and included in the GO is encoded in the definition of terms and in the setting up of semantic relations amongst terms. Here we investigate the Gene Ontology from a complex network perspective. We consider the semantic network of terms naturally associated with the semantic relationships provided by the Gene Ontology consortium. Moreover, the GO is a natural example of bipartite network of terms and genes. Here we are interested in studying the properties of the projected network of terms, i.e. a gene-based weighted network of GO terms, in which a link between any two terms is set if at least one gene is annotated in both terms. One aim of the present paper is to compare the structural properties of the semantic and the gene-based network. The relative importance of terms is very similar in the two networks, but the community structure changes. We show that in some cases GO terms that appear to be distinct from a semantic point of view are instead connected, and appear in the same community when considering their gene content. The identification of such gene-based communities of terms might therefore be the basis of a simple protocol aiming at improving the semantic structure of GO. Information about terms that share large gene content might also be important from a biomedical point of view, as it might reveal how genes over-expressed in a certain term also affect other biological processes, molecular functions and cellular components not directly linked according to GO semantics.

  1. New insights into Dehalococcoides mccartyi metabolism from a reconstructed metabolic network-based systems-level analysis of D. mccartyi transcriptomes.

    Directory of Open Access Journals (Sweden)

    M Ahsanul Islam

    Full Text Available Organohalide respiration, mediated by Dehalococcoides mccartyi, is a useful bioremediation process that transforms ground water pollutants and known human carcinogens such as trichloroethene and vinyl chloride into benign ethenes. Successful application of this process depends on the fundamental understanding of the respiration and metabolism of D. mccartyi. Reductive dehalogenases, encoded by rdhA genes of these anaerobic bacteria, exclusively catalyze organohalide respiration and drive metabolism. To better elucidate D. mccartyi metabolism and physiology, we analyzed available transcriptomic data for a pure isolate (Dehalococcoides mccartyi strain 195 and a mixed microbial consortium (KB-1 using the previously developed pan-genome-scale reconstructed metabolic network of D. mccartyi. The transcriptomic data, together with available proteomic data helped confirm transcription and expression of the majority genes in D. mccartyi genomes. A composite genome of two highly similar D. mccartyi strains (KB-1 Dhc from the KB-1 metagenome sequence was constructed, and operon prediction was conducted for this composite genome and other single genomes. This operon analysis, together with the quality threshold clustering analysis of transcriptomic data helped generate experimentally testable hypotheses regarding the function of a number of hypothetical proteins and the poorly understood mechanism of energy conservation in D. mccartyi. We also identified functionally enriched important clusters (13 for strain 195 and 11 for KB-1 Dhc of co-expressed metabolic genes using information from the reconstructed metabolic network. This analysis highlighted some metabolic genes and processes, including lipid metabolism, energy metabolism, and transport that potentially play important roles in organohalide respiration. Overall, this study shows the importance of an organism's metabolic reconstruction in analyzing various "omics" data to obtain improved understanding

  2. A complex network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  3. The incorporation of epigenetics in artificial gene regulatory networks.

    Science.gov (United States)

    Turner, Alexander P; Lones, Michael A; Fuente, Luis A; Stepney, Susan; Caves, Leo S D; Tyrrell, Andy M

    2013-05-01

    Artificial gene regulatory networks are computational models that draw inspiration from biological networks of gene regulation. Since their inception they have been used to infer knowledge about gene regulation and as methods of computation. These computational models have been shown to possess properties typically found in the biological world, such as robustness and self organisation. Recently, it has become apparent that epigenetic mechanisms play an important role in gene regulation. This paper describes a new model, the Artificial Epigenetic Regulatory Network (AERN) which builds upon existing models by adding an epigenetic control layer. Our results demonstrate that AERNs are more adept at controlling multiple opposing trajectories when applied to a chaos control task within a conservative dynamical system, suggesting that AERNs are an interesting area for further investigation.

  4. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data

    National Research Council Canada - National Science Library

    Giorgos Minas; Hiroshi Momiji; Dafyd J Jenkins; Maria J Costa; David A Rand; Barbel Finkenstadt

    2017-01-01

    ...) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA...

  5. Insights gained from the reverse engineering of gene networks in keloid fibroblasts

    Directory of Open Access Journals (Sweden)

    Phan Toan

    2011-05-01

    Full Text Available Abstract Background Keloids are protrusive claw-like scars that have a propensity to recur even after surgery, and its molecular etiology remains elusive. The goal of reverse engineering is to infer gene networks from observational data, thus providing insight into the inner workings of a cell. However, most attempts at modeling biological networks have been done using simulated data. This study aims to highlight some of the issues involved in working with experimental data, and at the same time gain some insights into the transcriptional regulatory mechanism present in keloid fibroblasts. Methods Microarray data from our previous study was combined with microarray data obtained from the literature as well as new microarray data generated by our group. For the physical approach, we used the fREDUCE algorithm for correlating expression values to binding motifs. For the influence approach, we compared the Bayesian algorithm BANJO with the information theoretic method ARACNE in terms of performance in recovering known influence networks obtained from the KEGG database. In addition, we also compared the performance of different normalization methods as well as different types of gene networks. Results Using the physical approach, we found consensus sequences that were active in the keloid condition, as well as some sequences that were responsive to steroids, a commonly used treatment for keloids. From the influence approach, we found that BANJO was better at recovering the gene networks compared to ARACNE and that transcriptional networks were better suited for network recovery compared to cytokine-receptor interaction networks and intracellular signaling networks. We also found that the NFKB transcriptional network that was inferred from normal fibroblast data was more accurate compared to that inferred from keloid data, suggesting a more robust network in the keloid condition. Conclusions Consensus sequences that were found from this study are

  6. A Preliminary List of Horizontally Transferred Genes in Prokaryotes Determined by Tree Reconstruction and Reconciliation

    Directory of Open Access Journals (Sweden)

    Hyeonsoo Jeong

    2017-08-01

    Full Text Available Genome-wide global detection of genes involved in horizontal gene transfer (HGT remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA “reference” trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.

  7. Solution of the quasispecies model for an arbitrary gene network

    Science.gov (United States)

    Tannenbaum, Emmanuel; Shakhnovich, Eugene I.

    2004-08-01

    In this paper, we study the equilibrium behavior of Eigen’s quasispecies equations for an arbitrary gene network. We consider a genome consisting of N genes, so that the full genome sequence σ may be written as σ=σ1σ2⋯σN , where σi are sequences of individual genes. We assume a single fitness peak model for each gene, so that gene i has some “master” sequence σi,0 for which it is functioning. The fitness landscape is then determined by which genes in the genome are functioning and which are not. The equilibrium behavior of this model may be solved in the limit of infinite sequence length. The central result is that, instead of a single error catastrophe, the model exhibits a series of localization to delocalization transitions, which we term an “error cascade.” As the mutation rate is increased, the selective advantage for maintaining functional copies of certain genes in the network disappears, and the population distribution delocalizes over the corresponding sequence spaces. The network goes through a series of such transitions, as more and more genes become inactivated, until eventually delocalization occurs over the entire genome space, resulting in a final error catastrophe. This model provides a criterion for determining the conditions under which certain genes in a genome will lose functionality due to genetic drift. It also provides insight into the response of gene networks to mutagens. In particular, it suggests an approach for determining the relative importance of various genes to the fitness of an organism, in a more accurate manner than the standard “deletion set” method. The results in this paper also have implications for mutational robustness and what C.O. Wilke termed “survival of the flattest.”

  8. Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks

    Science.gov (United States)

    Pinho, Ricardo; Garcia, Victor; Irimia, Manuel; Feldman, Marcus W.

    2014-01-01

    Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. PMID:25375153

  9. Stability depends on positive autoregulation in Boolean gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Ricardo Pinho

    2014-11-01

    Full Text Available Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs. The most basic motif, autoregulation, has been associated with bistability (when positive and with homeostasis and robustness to noise (when negative, but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals.

  10. A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network.

    Science.gov (United States)

    Ignatieva, Elena V; Afonnikov, Dmitry A; Saik, Olga V; Rogaev, Evgeny I; Kolchanov, Nikolay A

    2016-12-22

    Obesity is heritable. It predisposes to many diseases. The objectives of this study were to create a compendium of genes relevant to feeding behavior (FB) and/or body weight (BW) regulation; to construct and to analyze networks formed by associations between genes/proteins; and to identify the most significant genes, biological processes/pathways, and tissues/organs involved in BW regulation. The compendium of genes controlling FB or BW includes 578 human genes. Candidate genes were identified from various sources, including previously published original research and review articles, GWAS meta-analyses, and OMIM (Online Mendelian Inheritance in Man). All genes were ranked according to knowledge about their biological role in body weight regulation and classified according to expression patterns or functional characteristics. Substantial and overrepresented numbers of genes from the compendium encoded cell surface receptors, signaling molecules (hormones, neuropeptides, cytokines), transcription factors, signal transduction proteins, cilium and BBSome components, and lipid binding proteins or were present in the brain-specific list of tissue-enriched genes identified with TSEA tool. We identified 27 pathways from KEGG, REACTOME and BIOCARTA whose genes were overrepresented in the compendium. Networks formed by physical interactions or homological relationships between proteins or interactions between proteins involved in biochemical/signaling pathways were reconstructed and analyzed. Subnetworks and clusters identified by the MCODE tool included genes/proteins associated with cilium morphogenesis, signal transduction proteins (particularly, G protein-coupled receptors, kinases or proteins involved in response to insulin stimulus) and transcription regulation (particularly nuclear receptors). We ranked GWAS genes according to the number of neighbors in three networks and revealed 22 GWAS genes involved in the brain-specific PPI network. On the base of the most

  11. Associating genes and protein complexes with disease via network propagation.

    Directory of Open Access Journals (Sweden)

    Oron Vanunu

    2010-01-01

    Full Text Available A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.

  12. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau

    Science.gov (United States)

    Cui, Yaokui; Long, Di; Hong, Yang; Zeng, Chao; Zhou, Jie; Han, Zhongying; Liu, Ronghua; Wan, Wei

    2016-12-01

    Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the Earth's 'third pole'. Large-scale spatially consistent and temporally continuous soil moisture datasets are of great importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is a relatively new passive microwave product, with the satellite being launched on November 5, 2010. This study validates and reconstructs FY-3B/MWRI soil moisture across the TP. First, the validation is performed using in situ measurements within two in situ soil moisture measurement networks (1° × 1° and 0.25° × 0.25°), and also compared with the Essential Climate Variable (ECV) soil moisture product from multiple active and passive satellite soil moisture products using new merging procedures. Results show that the ascending FY-3B/MWRI product outperforms the descending product. The ascending FY-3B/MWRI product has almost the same correlation as the ECV product with the in situ measurements. The ascending FY-3B/MWRI product has better performance than the ECV product in the frozen season and under the lower NDVI condition. When the NDVI is higher in the unfrozen season, uncertainty in the ascending FY-3B/MWRI product increases with increasing NDVI, but it could still capture the variability in soil moisture. Second, the FY-3B/MWRI soil moisture product is subsequently reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and NDVI, LST, and albedo, but also the relationship between the soil moisture and four-dimensional variations using the

  13. Stable Gene Regulatory Network Modeling From Steady-State Data

    Directory of Open Access Journals (Sweden)

    Joy Edward Larvie

    2016-04-01

    Full Text Available Gene regulatory networks represent an abstract mapping of gene regulations in living cells. They aim to capture dependencies among molecular entities such as transcription factors, proteins and metabolites. In most applications, the regulatory network structure is unknown, and has to be reverse engineered from experimental data consisting of expression levels of the genes usually measured as messenger RNA concentrations in microarray experiments. Steady-state gene expression data are obtained from measurements of the variations in expression activity following the application of small perturbations to equilibrium states in genetic perturbation experiments. In this paper, the least absolute shrinkage and selection operator-vector autoregressive (LASSO-VAR originally proposed for the analysis of economic time series data is adapted to include a stability constraint for the recovery of a sparse and stable regulatory network that describes data obtained from noisy perturbation experiments. The approach is applied to real experimental data obtained for the SOS pathway in Escherichia coli and the cell cycle pathway for yeast Saccharomyces cerevisiae. Significant features of this method are the ability to recover networks without inputting prior knowledge of the network topology, and the ability to be efficiently applied to large scale networks due to the convex nature of the method.

  14. A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions.

    Science.gov (United States)

    Kotze, Helen L; Armitage, Emily G; Sharkey, Kieran J; Allwood, James W; Dunn, Warwick B; Williams, Kaye J; Goodacre, Royston

    2013-10-23

    Metabolomics has become increasingly popular in the study of disease phenotypes and molecular pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells; this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that are associated with normoxic or hypoxic oxygen environments. Correlation analysis has revealed statistically significant connections between metabolites, where differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network (EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen. This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen. Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not previously linked, or less well recognised, with respect to hypoxia before. Lactate

  15. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  16. Identifying gene networks underlying the neurobiology of ethanol and alcoholism.

    Science.gov (United States)

    Wolen, Aaron R; Miles, Michael F

    2012-01-01

    For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.

  17. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    Directory of Open Access Journals (Sweden)

    Songchao Xue

    Full Text Available The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  18. The transformation of trust in China's alternative food networks: disruption, reconstruction, and development

    Directory of Open Access Journals (Sweden)

    Raymond Yu. Wang

    2015-06-01

    Full Text Available Food safety issues in China have received much scholarly attention, yet few studies systematically examined this matter through the lens of trust. More importantly, little is known about the transformation of different types of trust in the dynamic process of food production, provision, and consumption. We consider trust as an evolving interdependent relationship between different actors. We used the Beijing County Fair, a prominent ecological farmers' market in China, as an example to examine the transformation of trust in China's alternative food networks. We argue that although there has been a disruption of institutional trust among the general public since 2008 when the melamine-tainted milk scandal broke out, reconstruction of individual trust and development of organizational trust have been observed, along with the emergence and increasing popularity of alternative food networks. Based on more than six months of fieldwork on the emerging ecological agriculture sector in 13 provinces across China as well as monitoring of online discussions and posts, we analyze how various social factors - including but not limited to direct and indirect reciprocity, information, endogenous institutions, and altruism - have simultaneously contributed to the transformation of trust in China's alternative food networks. The findings not only complement current social theories of trust, but also highlight an important yet understudied phenomenon whereby informal social mechanisms have been partially substituting for formal institutions and gradually have been building trust against the backdrop of the food safety crisis in China.

  19. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Xiaofei; Li, Lei; Zola, Jaroslaw; Aluru, Maneesha; Ye, Huaxun; Foudree, Andrew; Guo, Hongqing; Anderson, Sarah; Aluru, Srinivas; Liu, Peng; Rodermel, Steve; Yin, Yanhai

    2011-02-01

    Brassinosteroids (BRs) are important regulators for plant growth and development. BRs signal to control the activities of the BES1 and BZR1 family transcription factors. The transcriptional network through which BES1 and BZR regulate large number of target genes is mostly unknown. By combining chromatin immunoprecipitation coupled with Arabidopsis tiling arrays (ChIP-chip) and gene expression studies, we have identified 1609 putative BES1 target genes, 404 of which are regulated by BRs and/or in gain-of-function bes1-D mutant. BES1 targets contribute to BR responses and interactions with other hormonal or light signaling pathways. Computational modeling of gene expression data using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals that BES1-targeted transcriptional factors form a gene regulatory network (GRN). Mutants of many genes in the network displayed defects in BR responses. Moreover, we found that BES1 functions to inhibit chloroplast development by repressing the expression of GLK1 and GLK2 transcription factors, confirming a hypothesis generated from the GRN. Our results thus provide a global view of BR regulated gene expression and a GRN that guides future studies in understanding BR-regulated plant growth.

  1. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Jouhten, Paula; Nielsen, Jens

    2010-01-01

    proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. RESULTS: Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient......-sensing and metabolic regulatory signal transduction pathways (STP) operating in Saccharomyces cerevisiae. The reconstructed STP network includes a full protein-protein interaction network including the key nodes Snf1, Tor1, Hog1 and Pka1. The network includes a total of 623 structural open reading frames (ORFs......) and for all the interactions between them (edges). The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner. CONCLUSIONS: The reported fully annotated interaction model serves as a platform for integrated systems biology studies...

  2. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    Science.gov (United States)

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. A bayesian framework that integrates heterogeneous data for inferring gene regulatory networks.

    Science.gov (United States)

    Santra, Tapesh

    2014-01-01

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein-protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  4. A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Tapesh eSantra

    2014-05-01

    Full Text Available Reconstruction of gene regulatory networks (GRNs from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein protein interactions with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS and physical protein interactions (PPI among transcription factors (TFs in a Bayesian Variable Selection (BVS algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of LASSO regression based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression based method in some circumstances.

  5. Neuropeptide Y gene transfection inhibits post-epileptic hippocampal synaptic reconstruction

    Institute of Scientific and Technical Information of China (English)

    Fan Zhang; Wenqing Zhao; Wenling Li; Changzheng Dong; Xinying Zhang; Jiang Wu; Na Li; Chuandong Liang

    2013-01-01

    Exogenous neuropeptide Y has antiepileptic effects; however, the underlying mechanism and optimal administration method for neuropeptide Y are still unresolved. Previous studies have used intracerebroventricular injection of neuropeptide Y into animal models of epilepsy. In this study, a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene was injected into the lateral ventricle of rats, while the ipsilateral hippocampus was injected with kainic acid to establish the epileptic model. After transfection of neuropeptide Y gene, mossy fiber sprouting in the hippocampal CA3 region of epileptic rats was significantly suppressed, hippocampal synaptophysin (p38) mRNA and protein expression were inhibited, and epileptic seizures were reduced. These experimental findings indicate that a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene reduces mossy fiber sprouting and inhibits abnormal synaptophysin expression, thereby suppressing post-epileptic synaptic reconstruction.

  6. Neural Network Based Reconstruction of a 3D Object from a 2D Wireframe

    CERN Document Server

    Johnson, Kyle; Lipson, Hod

    2010-01-01

    We propose a new approach for constructing a 3D representation from a 2D wireframe drawing. A drawing is simply a parallel projection of a 3D object onto a 2D surface; humans are able to recreate mental 3D models from 2D representations very easily, yet the process is very difficult to emulate computationally. We hypothesize that our ability to perform this construction relies on the angles in the 2D scene, among other geometric properties. Being able to reproduce this reconstruction process automatically would allow for efficient and robust 3D sketch interfaces. Our research focuses on the relationship between 2D geometry observable in the sketch and 3D geometry derived from a potential 3D construction. We present a fully automated system that constructs 3D representations from 2D wireframes using a neural network in conjunction with a genetic search algorithm.

  7. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yulin Zhang

    2015-01-01

    Full Text Available Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function.

  8. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks.

    Science.gov (United States)

    Han, Hyun Wook; Ohn, Jung Hun; Moon, Jisook; Kim, Ju Han

    2013-11-01

    Biological networks often show a scale-free topology with node degree following a power-law distribution. Lethal genes tend to form functional hubs, whereas non-lethal disease genes are located at the periphery. Uni-dimensional analyses, however, are flawed. We created and investigated two distinct scale-free networks; a protein-protein interaction (PPI) and a perturbation sensitivity network (PSN). The hubs of both networks exhibit a low molecular evolutionary rate (P genes but not with disease genes, whereas PSN hubs are highly enriched with disease genes and drug targets but not with lethal genes. PPI hub genes are enriched with essential cellular processes, but PSN hub genes are enriched with environmental interaction processes, having more TATA boxes and transcription factor binding sites. It is concluded that biological systems may balance internal growth signaling and external stress signaling by unifying the two opposite scale-free networks that are seemingly opposite to each other but work in concert between death and disease.

  9. Spatiotemporal monthly rainfall reconstruction via artificial neural network – case study: south of Brazil

    Directory of Open Access Journals (Sweden)

    A. O. Cardoso

    2007-04-01

    Full Text Available Climatological records users, frequently, request time series for geographical locations where there is no observed meteorological attributes. Climatological conditions of the areas or points of interest have to be calculated interpolating observations in the time of neighboring stations and climate proxy. The aim of the present work is the application of reliable and robust procedures for monthly reconstruction of precipitation time series. Time series is a special case of symbolic regression and we can use Artificial Neural Network (ANN to explore the spatiotemporal dependence of meteorological attributes. The ANN seems to be an important tool for the propagation of the related weather information to provide practical solution of uncertainties associated with interpolation, capturing the spatiotemporal structure of the data. In practice, one determines the embedding dimension of the time series attractor (delay time that determine how data are processed and uses these numbers to define the network's architecture. Meteorological attributes can be accurately predicted by the ANN model architecture: designing, training, validation and testing; the best generalization of new data is obtained when the mapping represents the systematic aspects of the data, rather capturing the specific details of the particular training set. As illustration one takes monthly total rainfall series recorded in the period 1961–2005 in the Rio Grande do Sul – Brazil. This reliable and robust reconstruction method has good performance and in particular, they were able to capture the intrinsic dynamic of atmospheric activities. The regional rainfall has been related to high-frequency atmospheric phenomena, such as El Niño and La Niña events, and low frequency phenomena, such as the Pacific Decadal Oscillation.

  10. Visualizing Gene - Interactions within the Rice and Maize Network

    Science.gov (United States)

    Sampong, A.; Feltus, A.; Smith, M.

    2014-12-01

    The purpose of this research was to design a simpler visualization tool for comparing or viewing gene interaction graphs in systems biology. This visualization tool makes it possible and easier for a researcher to visualize the biological metadata of a plant and interact with the graph on a webpage. Currently available visualization software like Cytoscape and Walrus are difficult to interact with and do not scale effectively for large data sets, limiting the ability to visualize interactions within a biological system. The visualization tool developed is useful for viewing and interpreting the dataset of a gene interaction network. The graph layout drawn by this visualization tool is an improvement from the previous method of comparing lines of genes in two separate data files to, now having the ability to visually see the layout of the gene networks and how the two systems are related. The graph layout presented by the visualization tool draws a graph of the sample rice and maize gene networks, linking the common genes found in both plants and highlighting the functions served by common genes from each plant. The success of this visualization tool will enable Dr. Feltus to continue his investigations and draw conclusions on the biological evolution of the sorghum plant as well. REU Funded by NSF ACI Award 1359223 Vetria L. Byrd, PI

  11. Transcriptional control in the segmentation gene network of Drosophila.

    Directory of Open Access Journals (Sweden)

    Mark D Schroeder

    2004-09-01

    Full Text Available The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross- regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a

  12. Pore Structure Characterization of Indiana Limestone and Pink Dolomite from Pore Network Reconstructions

    Directory of Open Access Journals (Sweden)

    Freire-Gormaly Marina

    2016-05-01

    Full Text Available Carbon sequestration in deep underground saline aquifers holds significant promise for reducing atmospheric carbon dioxide emissions (CO2. However, challenges remain in predicting the long term migration of injected CO2. Addressing these challenges requires an understanding of pore-scale transport of CO2 within existing brine-filled geological reservoirs. Studies on the transport of fluids through geological porous media have predominantly focused on oil-bearing formations such as sandstone. However, few studies have considered pore-scale transport within limestone and other carbonate formations, which are found in potential storage sites. In this work, high-resolution micro-Computed Tomography (microCT was used to obtain pore-scale structural information of two model carbonates: Indiana Limestone and Pink Dolomite. A modified watershed algorithm was applied to extract pore network from the reconstructed microCT volumetric images of rock samples and compile a list of pore-scale characteristics from the extracted networks. These include statistical distributions of pore size and radius, pore-pore separation, throat radius, and network coordination. Finally, invasion percolation algorithms were applied to determine saturation-pressure curves for the rock samples. The statistical distributions were comparable to literature values for the Indiana Limestone. This served as validation for the network extraction approach for Pink Dolomite, which has not been considered previously. Based on the connectivity and the pore-pore separation, formations such as Pink Dolomite may present suitable storage sites for carbon storage. The pore structural distributions and saturation curves obtained in this study can be used to inform core- and reservoir-scale modeling and experimental studies of sequestration feasibility.

  13. Boolean networks using the chi-square test for inferring large-scale gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Lee Jae K

    2007-02-01

    Full Text Available Abstract Background Boolean network (BN modeling is a commonly used method for constructing gene regulatory networks from time series microarray data. However, its major drawback is that its computation time is very high or often impractical to construct large-scale gene networks. We propose a variable selection method that are not only reduces BN computation times significantly but also obtains optimal network constructions by using chi-square statistics for testing the independence in contingency tables. Results Both the computation time and accuracy of the network structures estimated by the proposed method are compared with those of the original BN methods on simulated and real yeast cell cycle microarray gene expression data sets. Our results reveal that the proposed chi-square testing (CST-based BN method significantly improves the computation time, while its ability to identify all the true network mechanisms was effectively the same as that of full-search BN methods. The proposed BN algorithm is approximately 70.8 and 7.6 times faster than the original BN algorithm when the error sizes of the Best-Fit Extension problem are 0 and 1, respectively. Further, the false positive error rate of the proposed CST-based BN algorithm tends to be less than that of the original BN. Conclusion The CST-based BN method dramatically improves the computation time of the original BN algorithm. Therefore, it can efficiently infer large-scale gene regulatory network mechanisms.

  14. Listening to the noise: random fluctuations reveal gene network parameters

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory; Khammash, Mustafa [UCSB

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.

  15. Using gene expression programming to infer gene regulatory networks from time-series data.

    Science.gov (United States)

    Zhang, Yongqing; Pu, Yifei; Zhang, Haisen; Su, Yabo; Zhang, Lifang; Zhou, Jiliu

    2013-12-01

    Gene regulatory networks inference is currently a topic under heavy research in the systems biology field. In this paper, gene regulatory networks are inferred via evolutionary model based on time-series microarray data. A non-linear differential equation model is adopted. Gene expression programming (GEP) is applied to identify the structure of the model and least mean square (LMS) is used to optimize the parameters in ordinary differential equations (ODEs). The proposed work has been first verified by synthetic data with noise-free and noisy time-series data, respectively, and then its effectiveness is confirmed by three real time-series expression datasets. Finally, a gene regulatory network was constructed with 12 Yeast genes. Experimental results demonstrate that our model can improve the prediction accuracy of microarray time-series data effectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+ breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.

  17. Learning Gene Regulatory Networks Computationally from Gene Expression Data Using Weighted Consensus

    KAUST Repository

    Fujii, Chisato

    2015-04-16

    Gene regulatory networks analyze the relationships between genes allowing us to un- derstand the gene regulatory interactions in systems biology. Gene expression data from the microarray experiments is used to obtain the gene regulatory networks. How- ever, the microarray data is discrete, noisy and non-linear which makes learning the networks a challenging problem and existing gene network inference methods do not give consistent results. Current state-of-the-art study uses the average-ranking-based consensus method to combine and average the ranked predictions from individual methods. However each individual method has an equal contribution to the consen- sus prediction. We have developed a linear programming-based consensus approach which uses learned weights from linear programming among individual methods such that the methods have di↵erent weights depending on their performance. Our result reveals that assigning di↵erent weights to individual methods rather than giving them equal weights improves the performance of the consensus. The linear programming- based consensus method is evaluated and it had the best performance on in silico and Saccharomyces cerevisiae networks, and the second best on the Escherichia coli network outperformed by Inferelator Pipeline method which gives inconsistent results across a wide range of microarray data sets.

  18. The underlying molecular and network level mechanisms in the evolution of robustness in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Mario Pujato

    Full Text Available Gene regulatory networks show robustness to perturbations. Previous works identified robustness as an emergent property of gene network evolution but the underlying molecular mechanisms are poorly understood. We used a multi-tier modeling approach that integrates molecular sequence and structure information with network architecture and population dynamics. Structural models of transcription factor-DNA complexes are used to estimate relative binding specificities. In this model, mutations in the DNA cause changes on two levels: (a at the sequence level in individual binding sites (modulating binding specificity, and (b at the network level (creating and destroying binding sites. We used this model to dissect the underlying mechanisms responsible for the evolution of robustness in gene regulatory networks. Results suggest that in sparse architectures (represented by short promoters, a mixture of local-sequence and network-architecture level changes are exploited. At the local-sequence level, robustness evolves by decreasing the probabilities of both the destruction of existent and generation of new binding sites. Meanwhile, in highly interconnected architectures (represented by long promoters, robustness evolves almost entirely via network level changes, deleting and creating binding sites that modify the network architecture.

  19. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

    Directory of Open Access Journals (Sweden)

    Ettie M Lipner

    Full Text Available Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.

  20. Transcriptomic network analysis of micronuclei-related genes: a case study

    DEFF Research Database (Denmark)

    van Leeuwen, D. M.; Pedersen, Marie; Knudsen, Lisbeth E.

    2011-01-01

    on the network. Six genes from the network, i.e. BAX, DMNT1, PCNA, HIC1, p21 and CDC20, were retrieved. Based on these six genes and in combination with p53 and IL-6, a dedicated network was created. This dedicated network is possibly suited for the development of a reporter gene assay that could be used...

  1. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo

    2017-01-03

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  2. Random matrix analysis of localization properties of gene coexpression network.

    Science.gov (United States)

    Jalan, Sarika; Solymosi, Norbert; Vattay, Gábor; Li, Baowen

    2010-04-01

    We analyze gene coexpression network under the random matrix theory framework. The nearest-neighbor spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random matrix theory (RMT). Spectral rigidity test follows random matrix prediction for a certain range and deviates afterwards. Eigenvector analysis of the network using inverse participation ratio suggests that the statistics of bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets: (a) The nondegenerate part that follows RMT. (b) The nondegenerate part, at both ends and at intermediate eigenvalues, which deviates from RMT and expected to contain information about important nodes in the network. (c) The degenerate part with zero eigenvalue, which fluctuates around RMT-predicted value. We identify nodes corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties.

  3. Propagation of genetic variation in gene regulatory networks.

    Science.gov (United States)

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  4. The Impact of the Multicenter Orthopaedic Outcomes Network (MOON) Research on Anterior Cruciate Ligament Reconstruction and Orthopaedic Practice.

    Science.gov (United States)

    Lynch, T Sean; Parker, Richard D; Patel, Ronak M; Andrish, Jack T; Spindler, Kurt P; Amendola, Annunziata; Brophy, Robert H; Dunn, Warren R; Flanigan, David C; Huston, Laura J; Jones, Morgan H; Kaeding, Christopher C; Marx, Robert G; Matava, Matthew J; McCarty, Eric C; Pedroza, Angela D; Reinke, Emily K; Wolf, Brian R; Wright, Rick W

    2015-03-01

    With an estimated 200,000 anterior cruciate ligament reconstructions performed annually in the United States, there is an emphasis on determining patient-specific information to help educate patients on expected clinically relevant outcomes. The Multicenter Orthopaedic Outcomes Network consortium was created in 2002 to enroll and longitudinally follow a large population cohort of anterior cruciate ligament reconstructions. The study group has enrolled >4,400 anterior cruciate ligament reconstructions from seven institutions to establish the large level I prospective anterior cruciate ligament reconstruction outcomes cohort. The group has become more than a database with information regarding anterior cruciate ligament injuries; it has helped to establish a new benchmark for conducting multicenter, multisurgeon orthopaedic research. The changes in anterior cruciate ligament reconstruction practice resulting from the group include the use of autograft for high school, college, and competitive athletes in their primary anterior cruciate ligament reconstructions. Other modifications include treatment options for meniscus and cartilage injuries, as well as lifestyle choices made after anterior cruciate ligament reconstruction.

  5. Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology.

    Science.gov (United States)

    Clemente, José C; Satou, Kenji; Valiente, Gabriel

    2005-01-01

    There has been much interest in the structural comparison and alignment of metabolic pathways. Several techniques have been conceived to assess the similarity of metabolic pathways of different organisms. In this paper, we show that the combination of a new heuristic algorithm for the comparison of metabolic pathways together with any of three enzyme similarity measures (hierarchical, information content, and gene ontology) can be used to derive a metabolic pathway similarity measure that is suitable for reconstructing phylogenetic relationships from metabolic pathways. Experimental results on the Glycolysis pathway of 73 organisms representing the three domains of life show that our method outperforms previous techniques.

  6. Internal signal stochastic resonance of a synthetic gene network

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhiwei; HOU; Zhonghuai; XIN; Houwen

    2005-01-01

    The dynamics behavior of a synthetic gene network controlled by random noise is investigated using a model proposed recently. The phenomena of noise induced oscillation (NIO) of the protein concentrations and internal signal stochastic resonance (SR) are studied by computer simulation. We also find that there exists an optimal noise intensity that can most favor the occurrence of effective oscillation (EO). Finally we discuss the potential constructive roles of SR on gene expression systems.

  7. An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92

    Directory of Open Access Journals (Sweden)

    Motin Vladimir L

    2011-10-01

    Full Text Available Abstract Background Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas. Results Here we report a genome-scale reconstruction and mathematical model of metabolism for Y. pestis CO92 and supporting experimental growth and metabolite measurements. The model contains 815 genes, 678 proteins, 963 unique metabolites and 1678 reactions, accurately simulates growth on a range of carbon sources both qualitatively and quantitatively, and identifies gaps in several key biosynthetic pathways and suggests how those gaps might be filled. Furthermore, our model presents hypotheses to explain certain known nutritional requirements characteristic of this strain. Conclusions Y. pestis continues to be a dangerous threat to human health during modern times. The Y. pestis genome-scale metabolic reconstruction presented here, which has been benchmarked against experimental data and correctly reproduces known phenotypes, provides an in silico platform with which to investigate the metabolism of this important human pathogen.

  8. An Experimentally-Supported Genome-Scale Metabolic Network Reconstruction for Yersinia pestis CO92

    Energy Technology Data Exchange (ETDEWEB)

    Charusanti, Pep; Chauhan, Sadhana; Mcateer, Kathleen; Lerman, Joshua A.; Hyduke, Daniel R.; Motin, Vladimir L.; Ansong, Charles; Adkins, Joshua N.; Palsson, Bernhard O.

    2011-10-13

    Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas. Here we report a genome-scale reconstruction and mathematical model of metabolism for Y. pestis CO92 and supporting experimental growth and metabolite measurements. The model contains 815 genes, 678 proteins, 963 unique metabolites and 1678 reactions, accurately simulates growth on a range of carbon sources both qualitatively and quantitatively, and identifies gaps in several key biosynthetic pathways and suggests how those gaps might be filled. Furthermore, our model presents hypotheses to explain certain known nutritional requirements characteristic of this strain. Y. pestis continues to be a dangerous threat to human health during modern times. The Y. pestis genome-scale metabolic reconstruction presented here, which has been benchmarked against experimental data and correctly reproduces known phenotypes, thus provides an in silico platform with which to investigate the metabolism of this important human pathogen.

  9. MiRTargetLink--miRNAs, Genes and Interaction Networks.

    Science.gov (United States)

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-04-14

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink.

  10. Identifying glioblastoma gene networks based on hypergeometric test analysis.

    Directory of Open Access Journals (Sweden)

    Vasileios Stathias

    Full Text Available Patient specific therapy is emerging as an important possibility for many cancer patients. However, to identify such therapies it is essential to determine the genomic and transcriptional alterations present in one tumor relative to control samples. This presents a challenge since use of a single sample precludes many standard statistical analysis techniques. We reasoned that one means of addressing this issue is by comparing transcriptional changes in one tumor with those observed in a large cohort of patients analyzed by The Cancer Genome Atlas (TCGA. To test this directly, we devised a bioinformatics pipeline to identify differentially expressed genes in tumors resected from patients suffering from the most common malignant adult brain tumor, glioblastoma (GBM. We performed RNA sequencing on tumors from individual GBM patients and filtered the results through the TCGA database in order to identify possible gene networks that are overrepresented in GBM samples relative to controls. Importantly, we demonstrate that hypergeometric-based analysis of gene pairs identifies gene networks that validate experimentally. These studies identify a putative workflow for uncovering differentially expressed patient specific genes and gene networks for GBM and other cancers.

  11. Deep Convolutional Networks for Event Reconstruction and Particle Tagging on NOvA and DUNE

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Deep Convolutional Neural Networks (CNNs) have been widely applied in computer vision to solve complex problems in image recognition and analysis. In recent years many efforts have emerged to extend the use of this technology to HEP applications, including the Convolutional Visual Network (CVN), our implementation for identification of neutrino events. In this presentation I will describe the core concepts of CNNs, the details of our particular implementation in the Caffe framework and our application to identify NOvA events. NOvA is a long baseline neutrino experiment whose main goal is the measurement of neutrino oscillations. This relies on the accurate identification and reconstruction of the neutrino flavor in the interactions we observe. In 2016 the NOvA experiment released results for the observation of oscillations in the ν μ → ν e channel, the first HEP result employing CNNs. I will also discuss our approach at event identification on NOvA as well as recent developments in the application of CNN...

  12. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    Science.gov (United States)

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  13. Lists2Networks: Integrated analysis of gene/protein lists

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2010-02-01

    Full Text Available Abstract Background Systems biologists are faced with the difficultly of analyzing results from large-scale studies that profile the activity of many genes, RNAs and proteins, applied in different experiments, under different conditions, and reported in different publications. To address this challenge it is desirable to compare the results from different related studies such as mRNA expression microarrays, genome-wide ChIP-X, RNAi screens, proteomics and phosphoproteomics experiments in a coherent global framework. In addition, linking high-content multilayered experimental results with prior biological knowledge can be useful for identifying functional themes and form novel hypotheses. Results We present Lists2Networks, a web-based system that allows users to upload lists of mammalian genes/proteins onto a server-based program for integrated analysis. The system includes web-based tools to manipulate lists with different set operations, to expand lists using existing mammalian networks of protein-protein interactions, co-expression correlation, or background knowledge co-annotation correlation, as well as to apply gene-list enrichment analyses against many gene-list libraries of prior biological knowledge such as pathways, gene ontology terms, kinase-substrate, microRNA-mRAN, and protein-protein interactions, metabolites, and protein domains. Such analyses can be applied to several lists at once against many prior knowledge libraries of gene-lists associated with specific annotations. The system also contains features that allow users to export networks and share lists with other users of the system. Conclusions Lists2Networks is a user friendly web-based software system expected to significantly ease the computational analysis process for experimental systems biologists employing high-throughput experiments at multiple layers of regulation. The system is freely available at http://www.lists2networks.org.

  14. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  15. A Network Approach to Predict Pathogenic Genes for Fusarium graminearum

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-01-01

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  16. A relative variation-based method to unraveling gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Yali Wang

    Full Text Available Gene regulatory network (GRN reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called Z-score, usually perform better. A fundamental problem with the Z-score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the Z-score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be

  17. Evolution of paralogous genes: Reconstruction of genome rearrangements through comparison of multiple genomes within Staphylococcus aureus.

    Science.gov (United States)

    Tsuru, Takeshi; Kawai, Mikihiko; Mizutani-Ui, Yoko; Uchiyama, Ikuo; Kobayashi, Ichizo

    2006-06-01

    Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.

  18. Gene regulatory network modeling via global optimization of high-order dynamic Bayesian network

    Directory of Open Access Journals (Sweden)

    Xuan Nguyen

    2012-06-01

    Full Text Available Abstract Background Dynamic Bayesian network (DBN is among the mainstream approaches for modeling various biological networks, including the gene regulatory network (GRN. Most current methods for learning DBN employ either local search such as hill-climbing, or a meta stochastic global optimization framework such as genetic algorithm or simulated annealing, which are only able to locate sub-optimal solutions. Further, current DBN applications have essentially been limited to small sized networks. Results To overcome the above difficulties, we introduce here a deterministic global optimization based DBN approach for reverse engineering genetic networks from time course gene expression data. For such DBN models that consist only of inter time slice arcs, we show that there exists a polynomial time algorithm for learning the globally optimal network structure. The proposed approach, named GlobalMIT+, employs the recently proposed information theoretic scoring metric named mutual information test (MIT. GlobalMIT+ is able to learn high-order time delayed genetic interactions, which are common to most biological systems. Evaluation of the approach using both synthetic and real data sets, including a 733 cyanobacterial gene expression data set, shows significantly improved performance over other techniques. Conclusions Our studies demonstrate that deterministic global optimization approaches can infer large scale genetic networks.

  19. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    Science.gov (United States)

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  20. Network analysis of genes and their association with diseases.

    Science.gov (United States)

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-15

    A plethora of network-based approaches within the Systems Biology universe have been applied, to date, to investigate the underlying molecular mechanisms of various human diseases. In the present study, we perform a bipartite, topological and clustering graph analysis in order to gain a better understanding of the relationships between human genetic diseases and the relationships between the genes that are implicated in them. For this purpose, disease-disease and gene-gene networks were constructed from combined gene-disease association networks. The latter, were created by collecting and integrating data from three diverse resources, each one with different content covering from rare monogenic disorders to common complex diseases. This data pluralism enabled us to uncover important associations between diseases with unrelated phenotypic manifestations but with common genetic origin. For our analysis, the topological attributes and the functional implications of the individual networks were taken into account and are shortly discussed. We believe that some observations of this study could advance our understanding regarding the etiology of a disease with distinct pathological manifestations, and simultaneously provide the springboard for the development of preventive and therapeutic strategies and its underlying genetic mechanisms.

  1. GeneNetwork: framework for web-based genetics

    NARCIS (Netherlands)

    Sloan, Zachary; Arends, Danny; Broman, Karl W.; Centeno, Arthur; Furlotte, Nicholas; Nijveen, H.; Yan, Lei; Zhou, Xiang; Williams, Robert W.; Prins, Pjotr

    2016-01-01

    GeneNetwork (GN) is a free and open source (FOSS) framework for web-based genetics that can be deployed anywhere. GN allows biologists to upload high-throughput experimental data, such as expression data from microarrays and RNA-seq, and also `classic' phenotypes, such as disease phenotypes. These p

  2. A gene network engineering platform for lactic acid bacteria.

    Science.gov (United States)

    Kong, Wentao; Kapuganti, Venkata S; Lu, Ting

    2016-02-29

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas.

  3. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M.

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  4. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M.

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  5. A soft self-repairing for FBG sensor network in SHM system based on PSO-SVR model reconstruction

    Science.gov (United States)

    Zhang, Xiaoli; Wang, Peng; Liang, Dakai; Fan, Chunfeng; Li, Cailing

    2015-05-01

    Structural health monitoring (SHM) system takes advantage of an array of sensors to continuously monitor a structure and provide an early prediction such as the damage position and damage degree etc. Such a system requires monitoring the structure in any conditions including bad condition. Therefore, it must be robust and survivable, even has the self-repairing ability. In this study, a model reconstruction predicting algorithm based on particle swarm optimization-support vector regression (PSO-SVR) is proposed to achieve the self-repairing of the Fiber Bragg Grating (FBG) sensor network in SHM system. Furthermore, an eight-point FBG sensor SHM system is experimented in an aircraft wing box. For the damage loading position prediction on the aircraft wing box, six kinds of disabled modes are experimentally studied to verify the self-repairing ability of the FBG sensor network in the SHM system, and the predicting performance are compared with non-reconstruction based on PSO-SVR model. The research results indicate that the model reconstruction algorithm has more excellence than that of non-reconstruction model, if partial sensors are invalid in the FBG-based SHM system, the predicting performance of the model reconstruction algorithm is almost consistent with that no sensor is invalid in the SHM system. In this way, the self-repairing ability of the FBG sensor is achieved for the SHM system, such the reliability and survivability of the FBG-based SHM system is enhanced if partial FBG sensors are invalid.

  6. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape.

    Directory of Open Access Journals (Sweden)

    Elena R Alvarez-Buylla

    Full Text Available In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5-10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of

  7. Learning gene regulatory networks from gene expression data using weighted consensus

    KAUST Repository

    Fujii, Chisato

    2016-08-25

    An accurate determination of the network structure of gene regulatory systems from high-throughput gene expression data is an essential yet challenging step in studying how the expression of endogenous genes is controlled through a complex interaction of gene products and DNA. While numerous methods have been proposed to infer the structure of gene regulatory networks, none of them seem to work consistently over different data sets with high accuracy. A recent study to compare gene network inference methods showed that an average-ranking-based consensus method consistently performs well under various settings. Here, we propose a linear programming-based consensus method for the inference of gene regulatory networks. Unlike the average-ranking-based one, which treats the contribution of each individual method equally, our new consensus method assigns a weight to each method based on its credibility. As a case study, we applied the proposed consensus method on synthetic and real microarray data sets, and compared its performance to that of the average-ranking-based consensus and individual inference methods. Our results show that our weighted consensus method achieves superior performance over the unweighted one, suggesting that assigning weights to different individual methods rather than giving them equal weights improves the accuracy. © 2016 Elsevier B.V.

  8. Construction of coffee transcriptome networks based on gene annotation semantics.

    Science.gov (United States)

    Castillo, Luis F; Galeano, Narmer; Isaza, Gustavo A; Gaitán, Alvaro

    2012-07-24

    Gene annotation is a process that encompasses multiple approaches on the analysis of nucleic acids or protein sequences in order to assign structural and functional characteristics to gene models. When thousands of gene models are being described in an organism genome, construction and visualization of gene networks impose novel challenges in the understanding of complex expression patterns and the generation of new knowledge in genomics research. In order to take advantage of accumulated text data after conventional gene sequence analysis, this work applied semantics in combination with visualization tools to build transcriptome networks from a set of coffee gene annotations. A set of selected coffee transcriptome sequences, chosen by the quality of the sequence comparison reported by Basic Local Alignment Search Tool (BLAST) and Interproscan, were filtered out by coverage, identity, length of the query, and e-values. Meanwhile, term descriptors for molecular biology and biochemistry were obtained along the Wordnet dictionary in order to construct a Resource Description Framework (RDF) using Ruby scripts and Methontology to find associations between concepts. Relationships between sequence annotations and semantic concepts were graphically represented through a total of 6845 oriented vectors, which were reduced to 745 non-redundant associations. A large gene network connecting transcripts by way of relational concepts was created where detailed connections remain to be validated for biological significance based on current biochemical and genetics frameworks. Besides reusing text information in the generation of gene connections and for data mining purposes, this tool development opens the possibility to visualize complex and abundant transcriptome data, and triggers the formulation of new hypotheses in metabolic pathways analysis.

  9. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Directory of Open Access Journals (Sweden)

    Kaul Rajinder

    2009-11-01

    Full Text Available Abstract Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia

  10. Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii.

    Science.gov (United States)

    Anitha, P; Anbarasu, Anand; Ramaiah, Sudha

    2014-05-01

    Multi Drug Resistance (MDR) in Acinetobacter baumannii is one of the major threats for emerging nosocomial infections in hospital environment. Multidrug-resistance in A. baumannii may be due to the implementation of multi-combination resistance mechanisms such as β-lactamase synthesis, Penicillin-Binding Proteins (PBPs) changes, alteration in porin proteins and in efflux pumps against various existing classes of antibiotics. Multiple antibiotic resistance genes are involved in MDR. These resistance genes are transferred through plasmids, which are responsible for the dissemination of antibiotic resistance among Acinetobacter spp. In addition, these resistance genes may also have a tendency to interact with each other or with their gene products. Therefore, it becomes necessary to understand the impact of these interactions in antibiotic resistance mechanism. Hence, our study focuses on protein and gene network analysis on various resistance genes, to elucidate the role of the interacting proteins and to study their functional contribution towards antibiotic resistance. From the search tool for the retrieval of interacting gene/protein (STRING), a total of 168 functional partners for 15 resistance genes were extracted based on the confidence scoring system. The network study was then followed up with functional clustering of associated partners using molecular complex detection (MCODE). Later, we selected eight efficient clusters based on score. Interestingly, the associated protein we identified from the network possessed greater functional similarity with known resistance genes. This network-based approach on resistance genes of A. baumannii could help in identifying new genes/proteins and provide clues on their association in antibiotic resistance.

  11. Application of Bayesian Neural Networks to Energy Reconstruction in EAS Experiments for ground-based TeV Astrophysics

    CERN Document Server

    Bai, Ying; Lan, JieQin; Gao, WeiWei

    2016-01-01

    A toy detector array has been designed to simulate the detection of cosmic rays in Extended Air Shower(EAS) Experiments for ground-based TeV Astrophysics. The primary energies of protons from the Monte-Carlo simulation have been reconstructed by the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment\\cite{lhaaso-ma}, respectively. The result of the energy reconstruction using BNNs has been compared with the one using the standard method. Compared to the standard method, the energy resolutions are significantly improved using BNNs. And the improvement is more obvious for the high energy protons than the low energy ones.

  12. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  13. Multi-edge gene set networks reveal novel insights into global relationships between biological themes.

    Directory of Open Access Journals (Sweden)

    Jignesh R Parikh

    Full Text Available Curated gene sets from databases such as KEGG Pathway and Gene Ontology are often used to systematically organize lists of genes or proteins derived from high-throughput data. However, the information content inherent to some relationships between the interrogated gene sets, such as pathway crosstalk, is often underutilized. A gene set network, where nodes representing individual gene sets such as KEGG pathways are connected to indicate a functional dependency, is well suited to visualize and analyze global gene set relationships. Here we introduce a novel gene set network construction algorithm that integrates gene lists derived from high-throughput experiments with curated gene sets to construct co-enrichment gene set networks. Along with previously described co-membership and linkage algorithms, we apply the co-enrichment algorithm to eight gene set collections to construct integrated multi-evidence gene set networks with multiple edge types connecting gene sets. We demonstrate the utility of approach through examples of novel gene set networks such as the chromosome map co-differential expression gene set network. A total of twenty-four gene set networks are exposed via a web tool called MetaNet, where context-specific multi-edge gene set networks are constructed from enriched gene sets within user-defined gene lists. MetaNet is freely available at http://blaispathways.dfci.harvard.edu/metanet/.

  14. Multi-edge gene set networks reveal novel insights into global relationships between biological themes.

    Science.gov (United States)

    Parikh, Jignesh R; Xia, Yu; Marto, Jarrod A

    2012-01-01

    Curated gene sets from databases such as KEGG Pathway and Gene Ontology are often used to systematically organize lists of genes or proteins derived from high-throughput data. However, the information content inherent to some relationships between the interrogated gene sets, such as pathway crosstalk, is often underutilized. A gene set network, where nodes representing individual gene sets such as KEGG pathways are connected to indicate a functional dependency, is well suited to visualize and analyze global gene set relationships. Here we introduce a novel gene set network construction algorithm that integrates gene lists derived from high-throughput experiments with curated gene sets to construct co-enrichment gene set networks. Along with previously described co-membership and linkage algorithms, we apply the co-enrichment algorithm to eight gene set collections to construct integrated multi-evidence gene set networks with multiple edge types connecting gene sets. We demonstrate the utility of approach through examples of novel gene set networks such as the chromosome map co-differential expression gene set network. A total of twenty-four gene set networks are exposed via a web tool called MetaNet, where context-specific multi-edge gene set networks are constructed from enriched gene sets within user-defined gene lists. MetaNet is freely available at http://blaispathways.dfci.harvard.edu/metanet/.

  15. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Xiangyun Xiao

    Full Text Available The reconstruction of gene regulatory networks (GRNs from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM, experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  16. Stoichiometric network reconstruction and analysis of yeast sphingolipid metabolism incorporating different states of hydroxylation.

    Science.gov (United States)

    Kavun Ozbayraktar, Fatma Betul; Ulgen, Kutlu O

    2011-04-01

    The first elaborate metabolic model of Saccharomyces cerevisiae sphingolipid metabolism was reconstructed in silico. The model considers five different states of sphingolipid hydroxylation, rendering it unique among other models. It is aimed to clarify the significance of hydroxylation on sphingolipids and hence to interpret the preferences of the cell between different metabolic pathway branches under different stress conditions. The newly constructed model was validated by single, double and triple gene deletions with experimentally verified phenotypes. Calcium sensitivity and deletion mutations that may suppress calcium sensitivity were examined by CSG1 and CSG2 related deletions. The model enabled the analysis of complex sphingolipid content of the plasma membrane coupled with diacylglycerol and phosphatidic acid biosynthesis and ATP consumption in in silico cell. The flux data belonging to these critically important key metabolites are integrated with the fact of phytoceramide induced cell death to propose novel potential drug targets for cancer therapeutics. In conclusion, we propose that IPT1, GDA1, CSG and AUR1 gene deletions may be novel candidates of drug targets for cancer therapy according to the results of flux balance and variability analyses coupled with robustness analysis.

  17. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a

  18. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes.

    Science.gov (United States)

    McDaniel, Jonathan R; Mackay, J Andrew; Quiroz, Felipe García; Chilkoti, Ashutosh

    2010-04-12

    This paper reports a new strategy, recursive directional ligation by plasmid reconstruction (PRe-RDL), to rapidly clone highly repetitive polypeptides of any sequence and specified length over a large range of molecular weights. In a single cycle of PRe-RDL, two halves of a parent plasmid, each containing a copy of an oligomer, are ligated together, thereby dimerizing the oligomer and reconstituting a functional plasmid. This process is carried out recursively to assemble an oligomeric gene with the desired number of repeats. PRe-RDL has several unique features that stem from the use of type IIs restriction endonucleases: first, PRe-RDL is a seamless cloning method that leaves no extraneous nucleotides at the ligation junction. Because it uses type IIs endonucleases to ligate the two halves of the plasmid, PRe-RDL also addresses the major limitation of RDL in that it abolishes any restriction on the gene sequence that can be oligomerized. The reconstitution of a functional plasmid only upon successful ligation in PRe-RDL also addresses two other limitations of RDL: the significant background from self-ligation of the vector observed in RDL, and the decreased efficiency of ligation due to nonproductive circularization of the insert. PRe-RDL can also be used to assemble genes that encode different sequences in a predetermined order to encode block copolymers or append leader and trailer peptide sequences to the oligomerized gene.

  19. Learning a Markov Logic network for supervised gene regulatory network inference.

    Science.gov (United States)

    Brouard, Céline; Vrain, Christel; Dubois, Julie; Castel, David; Debily, Marie-Anne; d'Alché-Buc, Florence

    2013-09-12

    Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate "regulates", starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a

  20. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.

    Science.gov (United States)

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y; Chen, Jin

    2015-02-14

    Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited. Supplementary information and software are available at http://www.msu.edu/~jinchen/NETSIM .

  1. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  2. Characterization of Genes for Beef Marbling Based on Applying Gene Coexpression Network

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2014-01-01

    Full Text Available Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7 using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60 and dihydropyrimidine dehydrogenase (DPYD are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.

  3. Vitamin D and gene networks in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Jeroen evan de Peppel

    2014-04-01

    Full Text Available Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3 through the stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct effects on osteoblasts and bone formation have also been established. The vitamin D receptor (VDR is expressed in osteoblasts and 1,25D3 modifies gene expression of various osteoblast differentiation and mineralization-related genes, such as alkaline phosphatase (ALPL, osteocalcin (BGLAP and osteopontin (SPP1. 1,25D3 is known to stimulate mineralization of human osteoblasts in vitro, and recently it was shown that 1,25D3 induces mineralization via effects in the period preceding mineralization during the pre-mineralization period. For a full understanding of the action of 1,25D3 in osteoblasts it is important to get an integrated network view of the 1,25D3-regulated genes during osteoblast differentiation and mineralization. The current data will be presented and discussed alluding to future studies to fully delineate the 1,25D3 action in osteoblast. Describing and understanding the vitamin D regulatory networks and identifying the dominant players in these networks may help develop novel (personalized vitamin D-based treatments. The following topics will be discussed in this overview: 1 Bone metabolism and osteoblasts, 2 Vitamin D, bone metabolism and osteoblast function, 3 Vitamin D induced transcriptional networks in the context of osteoblast differentiation and bone formation.

  4. Translational cross talk in gene networks.

    Science.gov (United States)

    Mather, William H; Hasty, Jeff; Tsimring, Lev S; Williams, Ruth J

    2013-06-04

    It has been shown experimentally that competition for limited translational resources by upstream mRNAs can lead to an anticorrelation between protein counts. Here, we investigate a stochastic model for this phenomenon, in which gene transcripts of different types compete for a finite pool of ribosomes. Throughout, we utilize concepts from the theory of multiclass queues to describe a qualitative shift in protein count statistics as the system transitions from being underloaded (ribosomes exceed transcripts in number) to being overloaded (transcripts exceed ribosomes in number). The exact analytical solution of a simplified stochastic model, in which the numbers of competing mRNAs and ribosomes are fixed, exhibits weak positive correlations between steady-state protein counts when total transcript count slightly exceeds ribosome count, whereas the solution can exhibit strong negative correlations when total transcript count significantly exceeds ribosome count. Extending this analysis, we find approximate but reasonably accurate solutions for a more realistic model, in which abundances of mRNAs and ribosomes are allowed to fluctuate randomly. Here, ribosomal fluctuations contribute positively and mRNA fluctuations contribute negatively to correlations, and when mRNA fluctuations dominate ribosomal fluctuations, a strong anticorrelation extremum reliably occurs near the transition from the underloaded to the overloaded regime. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Toward an orofacial gene regulatory network.

    Science.gov (United States)

    Kousa, Youssef A; Schutte, Brian C

    2016-03-01

    Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in interferon regulatory factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude syndrome (1/35,000 live births) and popliteal pterygium syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world's population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (branchio-oculo-facial syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting.

  6. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    Directory of Open Access Journals (Sweden)

    Elena Vinay-Lara

    Full Text Available Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  7. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    Science.gov (United States)

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  8. Evolution of the mammalian embryonic pluripotency gene regulatory network

    Science.gov (United States)

    Fernandez-Tresguerres, Beatriz; Cañon, Susana; Rayon, Teresa; Pernaute, Barbara; Crespo, Miguel; Torroja, Carlos; Manzanares, Miguel

    2010-01-01

    Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events. PMID:21048080

  9. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory

    Directory of Open Access Journals (Sweden)

    Gao Haichun

    2007-08-01

    Full Text Available Abstract Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT, which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under

  10. Historical reconstruction of floodplain inundation in the Pantanal (Brazil) using neural networks

    Science.gov (United States)

    Fantin-Cruz, Ibraim; Pedrollo, Olavo; Castro, Nilza M. R.; Girard, Pierre; Zeilhofer, Peter; Hamilton, Stephen K.

    2011-03-01

    SummaryThe relations between hydrology, geomorphology and vegetation provide the basis for understanding the ecological processes in the floodplains of rivers. In this paper, long-term (1969-2009) local flood characteristics (magnitude, duration, frequency, return period) are quantified for the floodplain of the Cuiabá River (Pantanal wetland in Brazil), using a predictive model based on artificial neural networks (ANNs) with input given by the historic river-level record. Morphological features were then described and their relation to vegetation analyzed and used to reconstruct floods. In addition to the river-level data used to train and validate a three-layer ANN, data were also used from 11 floodplain gauges across a 12 km transect lateral to the river, which were monitored during the annual floods of 2004-2007. The resulting neural network gave satisfactory estimates of water depth over the floodplain, with an absolute error of 0.09 m not exceeded in 95% of occurrences. The ANN showed that in almost all years, the level reached by the river was high enough to flood the profile completely: the exceptions were 1971 and 2001 when only 50% and 58% was flooded, to mean depths of 0.34 and 0.48 m, respectively. The highest flood was that of 1995 when the floodplain was flooded to a mean depth of 2.56 m. The median flood event (return period 2 years) produced a mean flood depth 1.80 m and lasted 119 days. Among the most important morphological features is the presence of palaeo-channels which provide hydrological connectivity between the river and the floodplain. The distribution of phytophysiognomic units is significantly influenced by local geomorphology, which determines spatial variation in the magnitude, duration, and frequency of flooding.

  11. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches

    Science.gov (United States)

    Sivakumar, B.; Jayawardena, A. W.; Fernando, T. M. K. G.

    2002-08-01

    The use of two non-linear black-box approaches, phase-space reconstruction (PSR) and artificial neural networks (ANN), for forecasting river flow dynamics is studied and a comparison of their performances is made. This is done by attempting 1-day and 7-day ahead forecasts of the daily river flow from the Nakhon Sawan station at the Chao Phraya River basin in Thailand. The results indicate a reasonably good performance of both approaches for both 1-day and 7-day ahead forecasts. However, the performance of the PSR approach is found to be consistently better than that of ANN. One reason for this could be that in the PSR approach the flow series in the phase-space is represented step by step in local neighborhoods, rather than a global approximation as is done in ANN. Another reason could be the use of the multi-layer perceptron (MLP) in ANN, since MLPs may not be most appropriate for forecasting at longer lead times. The selection of training set for the ANN may also contribute to such results. A comparison of the optimal number of variables for capturing the flow dynamics, as identified by the two approaches, indicates a large discrepancy in the case of 7-day ahead forecasts (1 and 7 variables, respectively), though for 1-day ahead forecasts it is found to be consistent (3 variables). A possible explanation for this could be the influence of noise in the data, an observation also made from the 1-day ahead forecast results using the PSR approach. The present results lead to observation on: (1) the use of other neural networks for runoff forecasting, particularly at longer lead times; (2) the influence of training set used in the ANN; and (3) the effect of noise on forecast accuracy, particularly in the PSR approach.

  12. Literature Mining and Ontology based Analysis of Host-Brucella Gene-Gene Interaction Network.

    Science.gov (United States)

    Karadeniz, İlknur; Hur, Junguk; He, Yongqun; Özgür, Arzucan

    2015-01-01

    Brucella is an intracellular bacterium that causes chronic brucellosis in humans and various mammals. The identification of host-Brucella interaction is crucial to understand host immunity against Brucella infection and Brucella pathogenesis against host immune responses. Most of the information about the inter-species interactions between host and Brucella genes is only available in the text of the scientific publications. Many text-mining systems for extracting gene and protein interactions have been proposed. However, only a few of them have been designed by considering the peculiarities of host-pathogen interactions. In this paper, we used a text mining approach for extracting host-Brucella gene-gene interactions from the abstracts of articles in PubMed. The gene-gene interactions here represent the interactions between genes and/or gene products (e.g., proteins). The SciMiner tool, originally designed for detecting mammalian gene/protein names in text, was extended to identify host and Brucella gene/protein names in the abstracts. Next, sentence-level and abstract-level co-occurrence based approaches, as well as sentence-level machine learning based methods, originally designed for extracting intra-species gene interactions, were utilized to extract the interactions among the identified host and Brucella genes. The extracted interactions were manually evaluated. A total of 46 host-Brucella gene interactions were identified and represented as an interaction network. Twenty four of these interactions were identified from sentence-level processing. Twenty two additional interactions were identified when abstract-level processing was performed. The Interaction Network Ontology (INO) was used to represent the identified interaction types at a hierarchical ontology structure. Ontological modeling of specific gene-gene interactions demonstrates that host-pathogen gene-gene interactions occur at experimental conditions which can be ontologically represented. Our

  13. Prioritization of Susceptibility Genes for Ectopic Pregnancy by Gene Network Analysis.

    Science.gov (United States)

    Liu, Ji-Long; Zhao, Miao

    2016-02-01

    Ectopic pregnancy is a very dangerous complication of pregnancy, affecting 1%-2% of all reported pregnancies. Due to ethical constraints on human biopsies and the lack of suitable animal models, there has been little success in identifying functionally important genes in the pathogenesis of ectopic pregnancy. In the present study, we developed a random walk-based computational method named TM-rank to prioritize ectopic pregnancy-related genes based on text mining data and gene network information. Using a defined threshold value, we identified five top-ranked genes: VEGFA (vascular endothelial growth factor A), IL8 (interleukin 8), IL6 (interleukin 6), ESR1 (estrogen receptor 1) and EGFR (epidermal growth factor receptor). These genes are promising candidate genes that can serve as useful diagnostic biomarkers and therapeutic targets. Our approach represents a novel strategy for prioritizing disease susceptibility genes.

  14. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  15. Optimal Control of Gene Regulatory Networks with Effectiveness of Multiple Drugs: A Boolean Network Approach

    Science.gov (United States)

    Kobayashi, Koichi; Hiraishi, Kunihiko

    2013-01-01

    Developing control theory of gene regulatory networks is one of the significant topics in the field of systems biology, and it is expected to apply the obtained results to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of gene regulatory networks, and gene expression is expressed by a binary value (0 or 1). In the control problem, we assume that the concentration level of a part of genes is arbitrarily determined as the control input. However, there are cases that no gene satisfying this assumption exists, and it is important to consider structural control via external stimuli. Furthermore, these controls are realized by multiple drugs, and it is also important to consider multiple effects such as duration of effect and side effects. In this paper, we propose a BN model with two types of the control inputs and an optimal control method with duration of drug effectiveness. First, a BN model and duration of drug effectiveness are discussed. Next, the optimal control problem is formulated and is reduced to an integer linear programming problem. Finally, numerical simulations are shown. PMID:24058904

  16. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation.

    Science.gov (United States)

    Tsuji, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2011-02-01

    Photoperiodic control of flowering time consists of a complicated network that converges into the generation of a mobile flowering signal called florigen. Recent advances identifying the protein FT/Hd3a as the molecular nature responsible for florigen activity have focused current research on florigen genes as the important output of this complex signaling network. Rice is a model system for short-day plants and recent progress in elucidating the flowering network from rice and Arabidopsis, a long-day plant, provides an evolutionarily comparative view of the photoperiodic flowering pathway. This review summarizes photoperiodic flowering control in rice, including the interaction of complex layers of gene networks contributed from evolutionarily unique factors and the regulatory adaptation of conserved factors.

  17. Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    CERN Document Server

    Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier

    2007-01-01

    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...

  18. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Science.gov (United States)

    Alvarez-Silva, María Camila; Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  19. 3D reconstruction method and connectivity rules of fracture networks generated under different mining layouts

    Institute of Scientific and Technical Information of China (English)

    Zhang Ru; Ai Ting; Li Hegui; Zhang Zetian; Liu Jianfeng

    2013-01-01

    In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.

  20. Identifying Tmem59 related gene regulatory network of mouse neural stem cell from a compendium of expression profiles

    Directory of Open Access Journals (Sweden)

    Guo Xiuyun

    2011-09-01

    Full Text Available Abstract Background Neural stem cells offer potential treatment for neurodegenerative disorders, such like Alzheimer's disease (AD. While much progress has been made in understanding neural stem cell function, a precise description of the molecular mechanisms regulating neural stem cells is not yet established. This lack of knowledge is a major barrier holding back the discovery of therapeutic uses of neural stem cells. In this paper, the regulatory mechanism of mouse neural stem cell (NSC differentiation by tmem59 is explored on the genome-level. Results We identified regulators of tmem59 during the differentiation of mouse NSCs from a compendium of expression profiles. Based on the microarray experiment, we developed the parallelized SWNI algorithm to reconstruct gene regulatory networks of mouse neural stem cells. From the inferred tmem59 related gene network including 36 genes, pou6f1 was identified to regulate tmem59 significantly and might play an important role in the differentiation of NSCs in mouse brain. There are four pathways shown in the gene network, indicating that tmem59 locates in the downstream of the signalling pathway. The real-time RT-PCR results shown that the over-expression of pou6f1 could significantly up-regulate tmem59 expression in C17.2 NSC line. 16 out of 36 predicted genes in our constructed network have been reported to be AD-related, including Ace, aqp1, arrdc3, cd14, cd59a, cds1, cldn1, cox8b, defb11, folr1, gdi2, mmp3, mgp, myrip, Ripk4, rnd3, and sncg. The localization of tmem59 related genes and functional-related gene groups based on the Gene Ontology (GO annotation was also identified. Conclusions Our findings suggest that the expression of tmem59 is an important factor contributing to AD. The parallelized SWNI algorithm increased the efficiency of network reconstruction significantly. This study enables us to highlight novel genes that may be involved in NSC differentiation and provides a shortcut to

  1. Modifier genes and the plasticity of genetic networks in mice.

    Directory of Open Access Journals (Sweden)

    Bruce A Hamilton

    Full Text Available Modifier genes are an integral part of the genetic landscape in both humans and experimental organisms, but have been less well explored in mammals than other systems. A growing number of modifier genes in mouse models of disease nonetheless illustrate the potential for novel findings, while new technical advances promise many more to come. Modifier genes in mouse models include induced mutations and spontaneous or wild-derived variations captured in inbred strains. Identification of modifiers among wild-derived variants in particular should detect disease modifiers that have been shaped by selection and might therefore be compatible with high fitness and function. Here we review selected examples and argue that modifier genes derived from natural variation may provide a bias for nodes in genetic networks that have greater intrinsic plasticity and whose therapeutic manipulation may therefore be more resilient to side effects than conventional targets.

  2. The use of gene interaction networks to improve the identification of cancer driver genes

    Directory of Open Access Journals (Sweden)

    Emilie Ramsahai

    2017-01-01

    Full Text Available Bioinformaticians have implemented different strategies to distinguish cancer driver genes from passenger genes. One of the more recent advances uses a pathway-oriented approach. Methods that employ this strategy are highly dependent on the quality and size of the pathway interaction network employed, and require a powerful statistical environment for analyses. A number of genomic libraries are available in R. DriverNet and DawnRank employ pathway-based methods that use gene interaction graphs in matrix form. We investigated the benefit of combining data from 3 different sources on the prediction outcome of cancer driver genes by DriverNet and DawnRank. An enriched dataset was derived comprising 13,862 genes with 372,250 interactions, which increased its accuracy by 17% and 28%, respectively, compared to their original networks. The study identified 33 new candidate driver genes. Our study highlights the potential of combining networks and weighting edges to provide greater accuracy in the identification of cancer driver genes.

  3. Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    Full Text Available BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana ×P. tomentosa leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.

  4. Ethanol modulation of gene networks: implications for alcoholism.

    Science.gov (United States)

    Farris, Sean P; Miles, Michael F

    2012-01-01

    Alcoholism is a complex disease caused by a confluence of environmental and genetic factors influencing multiple brain pathways to produce a variety of behavioral sequelae, including addiction. Genetic factors contribute to over 50% of the risk for alcoholism and recent evidence points to a large number of genes with small effect sizes as the likely molecular basis for this disease. Recent progress in genomics (microarrays or RNA-Seq) and genetics has led to the identification of a large number of potential candidate genes influencing ethanol behaviors or alcoholism itself. To organize this complex information, investigators have begun to focus on the contribution of gene networks, rather than individual genes, for various ethanol-induced behaviors in animal models or behavioral endophenotypes comprising alcoholism. This chapter reviews some of the methods used for constructing gene networks from genomic data and some of the recent progress made in applying such approaches to the study of the neurobiology of ethanol. We show that rapid technology development in gathering genomic data, together with sophisticated experimental design and a growing collection of analysis tools are producing novel insights for understanding the molecular basis of alcoholism and that such approaches promise new opportunities for therapeutic development.

  5. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  6. Optimal Constrained Stationary Intervention in Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Golnaz Vahedi

    2008-05-01

    Full Text Available A key objective of gene network modeling is to develop intervention strategies to alter regulatory dynamics in such a way as to reduce the likelihood of undesirable phenotypes. Optimal stationary intervention policies have been developed for gene regulation in the framework of probabilistic Boolean networks in a number of settings. To mitigate the possibility of detrimental side effects, for instance, in the treatment of cancer, it may be desirable to limit the expected number of treatments beneath some bound. This paper formulates a general constraint approach for optimal therapeutic intervention by suitably adapting the reward function and then applies this formulation to bound the expected number of treatments. A mutated mammalian cell cycle is considered as a case study.

  7. Optimal Constrained Stationary Intervention in Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Faryabi Babak

    2008-01-01

    Full Text Available A key objective of gene network modeling is to develop intervention strategies to alter regulatory dynamics in such a way as to reduce the likelihood of undesirable phenotypes. Optimal stationary intervention policies have been developed for gene regulation in the framework of probabilistic Boolean networks in a number of settings. To mitigate the possibility of detrimental side effects, for instance, in the treatment of cancer, it may be desirable to limit the expected number of treatments beneath some bound. This paper formulates a general constraint approach for optimal therapeutic intervention by suitably adapting the reward function and then applies this formulation to bound the expected number of treatments. A mutated mammalian cell cycle is considered as a case study.

  8. Noise Control in Gene Regulatory Networks with Negative Feedback.

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  9. Successful Reconstruction of Tooth Germ with Cell Lines Requires Coordinated Gene Expressions from the Initiation Stage

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tomooka

    2012-10-01

    Full Text Available Tooth morphogenesis is carried out by a series of reciprocal interactions between the epithelium and mesenchyme in embryonic germs. Previously clonal dental epithelial cell (epithelium of molar tooth germ (emtg lines were established from an embryonic germ. They were odontogenic when combined with a dental mesenchymal tissue, although the odontogenesis was quantitatively imperfect. To improve the microenvironment in the germs, freshly isolated dental epithelial cells were mixed with cells of lines, and germs were reconstructed in various combinations. The results demonstrated that successful tooth construction depends on the mixing ratio, the age of dental epithelial cells and the combination with cell lines. Analyses of gene expression in these germs suggest that some signal(s from dental epithelial cells makes emtg cells competent to communicate with mesenchymal cells and the epithelial and mesenchymal compartments are able to progress  odontogenesis from the initiation stage.

  10. A new algorithm for $H\\rightarrow\\tau\\bar{\\tau}$ invariant mass reconstruction using Deep Neural Networks

    CERN Document Server

    Dietrich, Felix

    2017-01-01

    Reconstructing the invariant mass in a Higgs boson decay event containing tau leptons turns out to be a challenging endeavour. The aim of this summer student project is to implement a new algorithm for this task, using deep neural networks and machine learning. The results are compared to SVFit, an existing algorithm that uses dynamical likelihood techniques. A neural network is found that reaches the accuracy of SVFit at low masses and even surpasses it at higher masses, while at the same time providing results a thousand times faster.

  11. Gene network interconnectedness and the generalized topological overlap measure

    Directory of Open Access Journals (Sweden)

    Horvath Steve

    2007-01-01

    Full Text Available Abstract Background Network methods are increasingly used to represent the interactions of genes and/or proteins. Genes or proteins that are directly linked may have a similar biological function or may be part of the same biological pathway. Since the information on the connection (adjacency between 2 nodes may be noisy or incomplete, it can be desirable to consider alternative measures of pairwise interconnectedness. Here we study a class of measures that are proportional to the number of neighbors that a pair of nodes share in common. For example, the topological overlap measure by Ravasz et al. 1 can be interpreted as a measure of agreement between the m = 1 step neighborhoods of 2 nodes. Several studies have shown that two proteins having a higher topological overlap are more likely to belong to the same functional class than proteins having a lower topological overlap. Here we address the question whether a measure of topological overlap based on higher-order neighborhoods could give rise to a more robust and sensitive measure of interconnectedness. Results We generalize the topological overlap measure from m = 1 step neighborhoods to m ≥ 2 step neighborhoods. This allows us to define the m-th order generalized topological overlap measure (GTOM by (i counting the number of m-step neighbors that a pair of nodes share and (ii normalizing it to take a value between 0 and 1. Using theoretical arguments, a yeast co-expression network application, and a fly protein network application, we illustrate the usefulness of the proposed measure for module detection and gene neighborhood analysis. Conclusion Topological overlap can serve as an important filter to counter the effects of spurious or missing connections between network nodes. The m-th order topological overlap measure allows one to trade-off sensitivity versus specificity when it comes to defining pairwise interconnectedness and network modules.

  12. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism.

    Science.gov (United States)

    Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W

    2016-01-01

    Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses. © 2015 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  13. Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks.

    Directory of Open Access Journals (Sweden)

    Nolan Priedigkeit

    2015-02-01

    Full Text Available Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC, is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.

  14. Topological effects of data incompleteness of gene regulatory networks

    CERN Document Server

    Sanz, J; Borge-Holthoefer, J; Moreno, Y

    2012-01-01

    The topological analysis of biological networks has been a prolific topic in network science during the last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of the cases in which this situation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked. Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases constantly. In this work we capitalize on these advances to point out the influence of data (in)completeness and quality on some classical results on topological analysis of TRNs, specially regarding modularity at different level...

  15. Dose response relationship in anti-stress gene regulatory networks.

    OpenAIRE

    Qiang Zhang; Andersen, Melvin E.

    2007-01-01

    To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misf...

  16. Prioritisation and network analysis of Crohn's disease susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Daniele Muraro

    Full Text Available Recent Genome-Wide Association Studies (GWAS have revealed numerous Crohn's disease susceptibility genes and a key challenge now is in understanding how risk polymorphisms in associated genes might contribute to development of this disease. For a gene to contribute to disease phenotype, its risk variant will likely adversely communicate with a variety of other gene products to result in dysregulation of common signaling pathways. A vital challenge is to elucidate pathways of potentially greatest influence on pathological behaviour, in a manner recognizing how multiple relevant genes may yield integrative effect. In this work we apply mathematical analysis of networks involving the list of recently described Crohn's susceptibility genes, to prioritise pathways in relation to their potential development of this disease. Prioritisation was performed by applying a text mining and a diffusion based method (GRAIL, GPEC. Prospective biological significance of the resulting prioritised list of proteins is highlighted by changes in their gene expression levels in Crohn's patients intestinal tissue in comparison with healthy donors.

  17. Phase transitions in the evolution of gene regulatory networks

    Science.gov (United States)

    Skanata, Antun; Kussell, Edo

    The role of gene regulatory networks is to respond to environmental conditions and optimize growth of the cell. A typical example is found in bacteria, where metabolic genes are activated in response to nutrient availability, and are subsequently turned off to conserve energy when their specific substrates are depleted. However, in fluctuating environmental conditions, regulatory networks could experience strong evolutionary pressures not only to turn the right genes on and off, but also to respond optimally under a wide spectrum of fluctuation timescales. The outcome of evolution is predicted by the long-term growth rate, which differentiates between optimal strategies. Here we present an analytic computation of the long-term growth rate in randomly fluctuating environments, by using mean-field and higher order expansion in the environmental history. We find that optimal strategies correspond to distinct regions in the phase space of fluctuations, separated by first and second order phase transitions. The statistics of environmental randomness are shown to dictate the possible evolutionary modes, which either change the structure of the regulatory network abruptly, or gradually modify and tune the interactions between its components.

  18. Annotation of gene function in citrus using gene expression information and co-expression networks.

    Science.gov (United States)

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  19. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  20. Probabilistic Reconstruction of Orthodox Churches from Precision Point Clouds Using Bayesian Networks and Cellular Automata

    Science.gov (United States)

    Chizhova, M.; Korovin, D.; Gurianov, A.; Brodovskii, M.; Brunn, A.; Stilla, U.; Luhmann, T.

    2017-02-01

    The point cloud interpretation and reconstruction of 3d-buildings from point clouds has already been treated for a few decades. There are many articles which consider the different methods and workows of the automatic detection and reconstruction of geometrical objects from point clouds. Each method is suitable for the special geometry type of object or sensor. General approaches are rare. In our work we present an algorithm which develops the optimal process sequence of the automatic search, detection and reconstruction of buildings and building components from a point cloud. It can be used for the detection of the set of geometric objects to be reconstructed, independent of its destruction. In a simulated example we reconstruct a complete Russian-orthodox church starting from the set of detected structural components and reconstruct missing components with high probability.

  1. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins.

    Science.gov (United States)

    Mansfeldt, Cresten B; Heavner, Gretchen W; Rowe, Annette R; Hayete, Boris; Church, Bruce W; Richardson, Ruth E

    2016-01-01

    strains, and the network inference engine was able to reconstruct gene networks in the distinct strain populations.

  2. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins

    Science.gov (United States)

    Mansfeldt, Cresten B.; Heavner, Gretchen W.; Rowe, Annette R.; Hayete, Boris; Church, Bruce W.; Richardson, Ruth E.

    2016-01-01

    multiple strains, and the network inference engine was able to reconstruct gene networks in the distinct strain populations. PMID:27829029

  3. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation

    Science.gov (United States)

    Goode, Debbie K.; Obier, Nadine; Vijayabaskar, M.S.; Lie-A-Ling, Michael; Lilly, Andrew J.; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A.; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R.; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-01-01

    Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  4. Network Security via Biometric Recognition of Patterns of Gene Expression

    Science.gov (United States)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  5. Gene network analysis in a pediatric cohort identifies novel lung function genes.

    Directory of Open Access Journals (Sweden)

    Bruce A Ong

    Full Text Available Lung function is a heritable trait and serves as an important clinical predictor of morbidity and mortality for pulmonary conditions in adults, however, despite its importance, no studies have focused on uncovering pediatric-specific loci influencing lung function. To identify novel genetic determinants of pediatric lung function, we conducted a genome-wide association study (GWAS of four pulmonary function traits, including FVC, FEV1, FEV1/FVC and FEF25-75% in 1556 children. Further, we carried out gene network analyses for each trait including all SNPs with a P-value of <1.0 × 10(-3 from the individual GWAS. The GWAS identified SNPs with notable trends towards association with the pulmonary function measures, including the previously described INTS12 locus association with FEV1 (pmeta=1.41 × 10(-7. The gene network analyses identified 34 networks of genes associated with pulmonary function variables in Caucasians. Of those, the glycoprotein gene network reached genome-wide significance for all four variables. P-value range pmeta=6.29 × 10(-4 - 2.80 × 10(-8 on meta-analysis. In this study, we report on specific pathways that are significantly associated with pediatric lung function at genome-wide significance. In addition, we report the first loci associated with lung function in both pediatric Caucasian and African American populations.

  6. Suwannee River flow variability 1550-2005 CE reconstructed from a multispecies tree-ring network

    Science.gov (United States)

    Harley, Grant L.; Maxwell, Justin T.; Larson, Evan; Grissino-Mayer, Henri D.; Henderson, Joseph; Huffman, Jean

    2017-01-01

    Understanding the long-term natural flow regime of rivers enables resource managers to more accurately model water level variability. Models for managing water resources are important in Florida where population increase is escalating demand on water resources and infrastructure. The Suwannee River is the second largest river system in Florida and the least impacted by anthropogenic disturbance. We used new and existing tree-ring chronologies from multiple species to reconstruct mean March-October discharge for the Suwannee River during the period 1550-2005 CE and place the short period of instrumental flows (since 1927 CE) into historical context. We used a nested principal components regression method to maximize the use of chronologies with varying time coverage in the network. Modeled streamflow estimates indicated that instrumental period flow conditions do not adequately capture the full range of Suwannee River flow variability beyond the observational period. Although extreme dry and wet events occurred in the gage record, pluvials and droughts that eclipse the intensity and duration of instrumental events occurred during the 16-19th centuries. The most prolonged and severe dry conditions during the past 450 years occurred during the 1560s CE. In this prolonged drought period mean flow was estimated at 17% of the mean instrumental period flow. Significant peaks in spectral density at 2-7, 10, 45, and 85-year periodicities indicated the important influence of coupled oceanic-atmospheric processes on Suwannee River streamflow over the past four centuries, though the strength of these periodicities varied over time. Future water planning based on current flow expectations could prove devastating to natural and human systems if a prolonged and severe drought mirroring the 16th and 18th century events occurred. Future work in the region will focus on updating existing tree-ring chronologies and developing new collections from moisture-sensitive sites to improve

  7. Tropical plant-herbivore networks: reconstructing species interactions using DNA barcodes.

    Directory of Open Access Journals (Sweden)

    Carlos García-Robledo

    Full Text Available Plants and their associated insect herbivores, represent more than 50% of all known species on earth. The first step in understanding the mechanisms generating and maintaining this important component of biodiversity is to identify plant-herbivore associations. In this study we determined insect-host plant associations for an entire guild of insect herbivores using plant DNA extracted from insect gut contents. Over two years, in a tropical rain forest in Costa Rica (La Selva Biological Station, we recorded the full diet breadth of rolled-leaf beetles, a group of herbivores that feed on plants in the order Zingiberales. Field observations were used to determine the accuracy of diet identifications using a three-locus DNA barcode (rbcL, trnH-psbA and ITS2. Using extraction techniques for ancient DNA, we obtained high-quality sequences for two of these loci from gut contents (rbcL and ITS2. Sequences were then compared to a comprehensive DNA barcode library of the Zingiberales. The rbcL locus identified host plants to family (success/sequence = 58.8% and genus (success/sequence = 47%. For all Zingiberales except Heliconiaceae, ITS2 successfully identified host plants to genus (success/sequence = 67.1% and species (success/sequence = 61.6%. Kindt's sampling estimates suggest that by collecting ca. four individuals representing each plant-herbivore interaction, 99% of all host associations included in this study can be identified to genus. For plants that amplified ITS2, 99% of the hosts can be identified to species after collecting at least four individuals representing each interaction. Our study demonstrates that host plant identifications at the species-level using DNA barcodes are feasible, cost-effective, and reliable, and that reconstructing plant-herbivore networks with these methods will become the standard for a detailed understanding of these interactions.

  8. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    Science.gov (United States)

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  9. How molecular competition influences fluxes in gene expression networks.

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    Full Text Available Often, in living cells different molecular species compete for binding to the same molecular target. Typical examples are the competition of genes for the transcription machinery or the competition of mRNAs for the translation machinery. Here we show that such systems have specific regulatory features and how they can be analysed. We derive a theory for molecular competition in parallel reaction networks. Analytical expressions for the response of network fluxes to changes in the total competitor and common target pools indicate the precise conditions for ultrasensitivity and intuitive rules for competitor strength. The calculations are based on measurable concentrations of the competitor-target complexes. We show that kinetic parameters, which are usually tedious to determine, are not required in the calculations. Given their simplicity, the obtained equations are easily applied to networks of any dimension. The new theory is illustrated for competing sigma factors in bacterial transcription and for a genome-wide network of yeast mRNAs competing for ribosomes. We conclude that molecular competition can drastically influence the network fluxes and lead to negative response coefficients and ultrasensitivity. Competitors that bind a large fraction of the target, like bacterial σ(70, tend to influence competing pathways strongly. The less a competitor is saturated by the target, the more sensitive it is to changes in the concentration of the target, as well as to other competitors. As a consequence, most of the mRNAs in yeast turn out to respond ultrasensitively to changes in ribosome concentration. Finally, applying the theory to a genome-wide dataset we observe that high and low response mRNAs exhibit distinct Gene Ontology profiles.

  10. Topology association analysis in weighted protein interaction network for gene prioritization

    Science.gov (United States)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  11. Enhanced Route Re-Construction Method for Associativity Based Routing Protocol for Mobile Ad hoc NETworks (MANET

    Directory of Open Access Journals (Sweden)

    Fawaz A.M. Masoud

    2006-01-01

    Full Text Available A mobile Ad-hoc NETwork (MANET is wireless network composed of mobile nodes that are dynamically and randomly located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad-hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction and maintenance should be done with a minimum of overhead and bandwidth consumption. The ABR is a source-initiated protocol and is working on the assumption of stable route from the source to the destination node. Maintenance for the route when the destination node moves will be performed in backtracking scheme starting from the immediate upstream node from the destination. If this process results in backtracking more than halfway to the source, it will discontinue and a new route request will be initiated from the source. In the case if the Source Node moves, then the Source Node will invoke a route reconstruction because the ABR is source-initiated protocol. This study presents an enhanced method for the route re-construction in case the source, the intermediate, or the destination node changes its location by giving more active role to the moving node in maintaining the established route.

  12. Netter: re-ranking gene network inference predictions using structural network properties.

    Science.gov (United States)

    Ruyssinck, Joeri; Demeester, Piet; Dhaene, Tom; Saeys, Yvan

    2016-02-09

    Many algorithms have been developed to infer the topology of gene regulatory networks from gene expression data. These methods typically produce a ranking of links between genes with associated confidence scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take into account connections found in the data and do not include known graph properties in their inference process. This lowers the prediction accuracy of these methods, limiting their usability in practice. We propose a post-processing algorithm which is applicable to any confidence ranking of regulatory interactions obtained from a network inference method which can use, inter alia, graphlets and several graph-invariant properties to re-rank the links into a more accurate prediction. To demonstrate the potential of our approach, we re-rank predictions of six different state-of-the-art algorithms using three simple network properties as optimization criteria and show that Netter can improve the predictions made on both artificially generated data as well as the DREAM4 and DREAM5 benchmarks. Additionally, the DREAM5 E.coli. community prediction inferred from real expression data is further improved. Furthermore, Netter compares favorably to other post-processing algorithms and is not restricted to correlation-like predictions. Lastly, we demonstrate that the performance increase is robust for a wide range of parameter settings. Netter is available at http://bioinformatics.intec.ugent.be. Network inference from high-throughput data is a long-standing challenge. In this work, we present Netter, which can further refine network predictions based on a set of user-defined graph properties. Netter is a flexible system which can be applied in unison with any method producing a ranking from omics data. It can be tailored to specific prior

  13. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    Science.gov (United States)

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  14. [Epigenetics: gene and epigene networks in ontogeny and phylogeny].

    Science.gov (United States)

    Churaev, R N

    2006-09-01

    An attempt was made to systematize theoretical and experimental epigenetic data in the framework of genetics as a science on laws of preservation, coding, transfer, and transformation of heritable information in the living systems. The structure of the total hereditary memory is discussed in context of the theory of epigenes, hereditary units of the next to genes level of complexity. In epigenes as cells of functional hereditary memory, part of the hereditary information is stored, coded, and transmitted to the progeny irrespective of the primary structure of the genomic DNA molecules. The principles of the structure and the general laws of functioning of cellular governing gene networks are presented. The ontogenetic and phylogenetic role of epigene networks as the second level of the hereditary system is considered. Arguments for inheritance of somatic epimutations are presented, as well as the results of in silico and in vivo experiments showing the possibility of an epigenetic mechanism of primary biochemical divergent determination (autodetermination). A network hypothesis on material carriers of the common heterotary memory is formulated.

  15. Cerebellar network plasticity: from genes to fast oscillation.

    Science.gov (United States)

    Cheron, G; Servais, L; Dan, B

    2008-04-22

    The role of the cerebellum has been increasingly recognized not only in motor control but in sensory, cognitive and emotional learning and regulation. Purkinje cells, being the sole output from the cerebellar cortex, occupy an integrative position in this network. Plasticity at this level is known to critically involve calcium signaling. In the last few years, electrophysiological study of genetically engineered mice has demonstrated the topical role of several genes encoding calcium-binding proteins (calretinin, calbindin, parvalbumin). Specific inactivation of these genes results in the emergence of a fast network oscillation (ca. 160 Hz) throughout the cerebellar cortex in alert animals, associated with ataxia. This oscillation is produced by synchronization of Purkinje cells along the parallel fiber beam. It behaves as an electrophysiological arrest rhythm, being blocked by sensorimotor stimulation. Pharmacological manipulations showed that the oscillation is blocked by GABA(A) and NMDA antagonists as well as gap junction blockers. This cerebellar network oscillation has also been documented in mouse models of human conditions with complex developmental cerebellar dysfunction, such as Angelman syndrome and fetal alcohol syndrome. Recent evidence suggests a relationship between fast oscillation and cerebellar long term depression (LTD). This may have major implications for future therapeutic targeting.

  16. Systematically characterizing and prioritizing chemosensitivity related gene based on Gene Ontology and protein interaction network

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2012-10-01

    Full Text Available Abstract Background The identification of genes that predict in vitro cellular chemosensitivity of cancer cells is of great importance. Chemosensitivity related genes (CRGs have been widely utilized to guide clinical and cancer chemotherapy decisions. In addition, CRGs potentially share functional characteristics and network features in protein interaction networks (PPIN. Methods In this study, we proposed a method to identify CRGs based on Gene Ontology (GO and PPIN. Firstly, we documented 150 pairs of drug-CCRG (curated chemosensitivity related gene from 492 published papers. Secondly, we characterized CCRGs from the perspective of GO and PPIN. Thirdly, we prioritized CRGs based on CCRGs’ GO and network characteristics. Lastly, we evaluated the performance of the proposed method. Results We found that CCRG enriched GO terms were most often related to chemosensitivity and exhibited higher similarity scores compared to randomly selected genes. Moreover, CCRGs played key roles in maintaining the connectivity and controlling the information flow of PPINs. We then prioritized CRGs using CCRG enriched GO terms and CCRG network characteristics in order to obtain a database of predicted drug-CRGs that included 53 CRGs, 32 of which have been reported to affect susceptibility to drugs. Our proposed method identifies a greater number of drug-CCRGs, and drug-CCRGs are much more significantly enriched in predicted drug-CRGs, compared to a method based on the correlation of gene expression and drug activity. The mean area under ROC curve (AUC for our method is 65.2%, whereas that for the traditional method is 55.2%. Conclusions Our method not only identifies CRGs with expression patterns strongly correlated with drug activity, but also identifies CRGs in which expression is weakly correlated with drug activity. This study provides the framework for the identification of signatures that predict in vitro cellular chemosensitivity and offers a valuable

  17. A method for developing regulatory gene set networks to characterize complex biological systems.

    Science.gov (United States)

    Suphavilai, Chayaporn; Zhu, Liugen; Chen, Jake Y

    2015-01-01

    Traditional approaches to studying molecular networks are based on linking genes or proteins. Higher-level networks linking gene sets or pathways have been proposed recently. Several types of gene set networks have been used to study complex molecular networks such as co-membership gene set networks (M-GSNs) and co-enrichment gene set networks (E-GSNs). Gene set networks are useful for studying biological mechanism of diseases and drug perturbations. In this study, we proposed a new approach for constructing directed, regulatory gene set networks (R-GSNs) to reveal novel relationships among gene sets or pathways. We collected several gene set collections and high-quality gene regulation data in order to construct R-GSNs in a comparative study with co-membership gene set networks (M-GSNs). We described a method for constructing both global and disease-specific R-GSNs and determining their significance. To demonstrate the potential applications to disease biology studies, we constructed and analysed an R-GSN specifically built for Alzheimer's disease. R-GSNs can provide new biological insights complementary to those derived at the protein regulatory network level or M-GSNs. When integrated properly to functional genomics data, R-GSNs can help enable future research on systems biology and translational bioinformatics.

  18. Gene Networks in Plant Ozone Stress Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    Agnieszka Ludwikow; Jan Sadowski

    2008-01-01

    For many plant species ozone stress has become much more severe in the last decade. The accumulating evidence for the significant effects of ozone pollutant on crop and forest yield situate ozone as one of the most important environmental stress factors that limits plant productivity woddwide. Today, transcdptomic approaches seem to give the best coverage of genome level responses. Therefore, microarray serves as an invaluable tool for global gene expression analyses, unravelling new information about gene pathways, in-species and crose-species gene expression comparison, and for the characterization of unknown relationships between genes. In this review we summadze the recent progress in the transcdptomics of ozone to demonstrate the benefits that can be harvested from the application of integrative and systematic analytical approaches to study ozone stress response. We focused our consideration on microarray analyses identifying gene networks responsible for response and tolerance to elevated ozone concentration. From these analyses it is now possible to notice how plant ozone defense responses depend on the interplay between many complex signaling pathways and metabolite signals.

  19. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  20. Autonomous Boolean modelling of developmental gene regulatory networks

    Science.gov (United States)

    Cheng, Xianrui; Sun, Mengyang; Socolar, Joshua E. S.

    2013-01-01

    During early embryonic development, a network of regulatory interactions among genes dynamically determines a pattern of differentiated tissues. We show that important timing information associated with the interactions can be faithfully represented in autonomous Boolean models in which binary variables representing expression levels are updated in continuous time, and that such models can provide a direct insight into features that are difficult to extract from ordinary differential equation (ODE) models. As an application, we model the experimentally well-studied network controlling fly body segmentation. The Boolean model successfully generates the patterns formed in normal and genetically perturbed fly embryos, permits the derivation of constraints on the time delay parameters, clarifies the logic associated with different ODE parameter sets and provides a platform for studying connectivity and robustness in parameter space. By elucidating the role of regulatory time delays in pattern formation, the results suggest new types of experimental measurements in early embryonic development. PMID:23034351

  1. Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.

    Directory of Open Access Journals (Sweden)

    Sidhartha Chaudhury

    Full Text Available In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of

  2. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    Science.gov (United States)

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  3. Relative stability of network states in Boolean network models of gene regulation in development.

    Science.gov (United States)

    Zhou, Joseph Xu; Samal, Areejit; d'Hérouël, Aymeric Fouquier; Price, Nathan D; Huang, Sui

    2016-01-01

    Progress in cell type reprogramming has revived the interest in Waddington's concept of the epigenetic landscape. Recently researchers developed the quasi-potential theory to represent the Waddington's landscape. The Quasi-potential U(x), derived from interactions in the gene regulatory network (GRN) of a cell, quantifies the relative stability of network states, which determine the effort required for state transitions in a multi-stable dynamical system. However, quasi-potential landscapes, originally developed for continuous systems, are not suitable for discrete-valued networks which are important tools to study complex systems. In this paper, we provide a framework to quantify the landscape for discrete Boolean networks (BNs). We apply our framework to study pancreas cell differentiation where an ensemble of BN models is considered based on the structure of a minimal GRN for pancreas development. We impose biologically motivated structural constraints (corresponding to specific type of Boolean functions) and dynamical constraints (corresponding to stable attractor states) to limit the space of BN models for pancreas development. In addition, we enforce a novel functional constraint corresponding to the relative ordering of attractor states in BN models to restrict the space of BN models to the biological relevant class. We find that BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics of pancreas cell differentiation. This framework can also determine the genes' influence on cell state transitions, and thus can facilitate the rational design of cell reprogramming protocols.

  4. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining.

    Science.gov (United States)

    Hur, Junguk; Ozgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2012-12-20

    Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since

  5. A Network Partition Algorithm for Mining Gene Functional Modules of Colon Cancer from DNA Microarray Data

    Institute of Scientific and Technical Information of China (English)

    Xiao-Gang Ruan; Jin-Lian Wang; Jian-Geng Li

    2006-01-01

    Computational analysis is essential for transforming the masses of microarray data into a mechanistic understanding of cancer. Here we present a method for finding gene functional modules of cancer from microarray data and have applied it to colon cancer. First, a colon cancer gene network and a normal colon tissue gene network were constructed using correlations between the genes. Then the modules that tended to have a homogeneous functional composition were identified by splitting up the network. Analysis of both networks revealed that they are scale-free.Comparison of the gene functional modules for colon cancer and normal tissues showed that the modules' functions changed with their structures.

  6. Computational studies of gene regulatory networks: in numero molecular biology.

    Science.gov (United States)

    Hasty, J; McMillen, D; Isaacs, F; Collins, J J

    2001-04-01

    Remarkable progress in genomic research is leading to a complete map of the building blocks of biology. Knowledge of this map is, in turn, setting the stage for a fundamental description of cellular function at the DNA level. Such a description will entail an understanding of gene regulation, in which proteins often regulate their own production or that of other proteins in a complex web of interactions. The implications of the underlying logic of genetic networks are difficult to deduce through experimental techniques alone, and successful approaches will probably involve the union of new experiments and computational modelling techniques.

  7. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    Directory of Open Access Journals (Sweden)

    Chang Yu-Te

    2008-11-01

    Full Text Available Abstract Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugen