WorldWideScience

Sample records for gene negatively regulates

  1. Transcription dynamics of inducible genes modulated by negative regulations.

    Science.gov (United States)

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  2. A Novel Approach to Revealing Positive and Negative Co-Regulated Genes

    Institute of Scientific and Technical Information of China (English)

    Yu-Hai Zhao; Guo-Ren Wang; Ying Yin; Guang-Yu Xu

    2007-01-01

    As explored by biologists, there is a real and emerging need to identify co-regulated gene clusters, which includeboth positive and negative regulated gene clusters. However, the existing pattern-based and tendency-based clusteringapproaches are only designed for finding positive regulated gene clusters. In this paper, a new subspace clustering modelcalled g-Cluster is proposed for gene expression data. The proposed model has the following advantages: 1) find both positiveand negative co-regulated genes in a shot, 2) get away from the restriction of magnitude transformation relationship amongco-regulated genes, and 3) guarantee quality of clusters and significance of regulations using a novel similarity measurementgCode and a user-specified regulation threshold 5, respectively. No previous work measures up to the task which has been set.Moreover, MDL technique is introduced to avoid insignificant g-Clusters generated. A tree structure, namely GS-tree, is alsodesigned, and two algorithms combined with efficient pruning and optimization strategies to identify all qualified g-Clusters.Extensive experiments are conducted on real and synthetic datasets. The experimental results show that 1) the algorithmis able to find an amount of co-regulated gene clusters missed by previous models, which are potentially of high biologicalsignificance, and 2) the algorithms are effective and efficient, and outperform the existing approaches.

  3. ExsE Is a Negative Regulator for T3SS Gene Expression in Vibrio alginolyticus

    Science.gov (United States)

    Liu, Jinxin; Lu, Shao-Yeh; Orfe, Lisa H.; Ren, Chun-Hua; Hu, Chao-Qun; Call, Douglas R.; Avillan, Johannetsy J.; Zhao, Zhe

    2016-01-01

    Type III secretion systems (T3SSs) contribute to microbial pathogenesis of Vibrio species, but the regulatory mechanisms are complex. We determined if the classic ExsACDE protein-protein regulatory model from Pseudomonas aeruginosa applies to Vibrio alginolyticus. Deletion mutants in V. alginolyticus demonstrated that, as expected, the T3SS is positively regulated by ExsA and ExsC and negatively regulated by ExsD and ExsE. Interestingly, deletion of exsE enhanced the ability of V. alginolyticus to induce host-cell death while cytotoxicity was inhibited by in trans complementation of this gene in a wild-type strain, a result that differs from a similar experiment with Vibrio parahaemolyticus ExsE. We further showed that ExsE is a secreted protein that does not contribute to adhesion to Fathead minnow epithelial cells. An in vitro co-immunoprecipitation assay confirmed that ExsE binds to ExsC to exert negative regulatory effect on T3SS genes. T3SS in V. alginolyticus can be activated in the absence of physical contact with host cells and a separate regulatory pathway appears to contribute to the regulation of ExsA. Consequently, like ExsE from P. aeruginosa, ExsE is a negative regulator for T3SS gene expression in V. alginolyticus. Unlike the V. parahaemolyticus orthologue, however, deletion of exsE from V. alginolyticus enhanced in vitro cytotoxicity. PMID:27999769

  4. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo, E-mail: innks@khu.ac.kr

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  5. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation.

    Science.gov (United States)

    Wang, Xiaojing; Zeng, Rui; Xu, Haiyang; Xu, Zaiyan; Zuo, Bo

    2017-09-20

    Muscle fiber formation is a complex process and subject to fine regulation of a variety of protein-coding genes and non-coding RNA. In this study, we identified a nuclear protein-coding gene ANKRD23 which was highly expressed in muscle. Quantitative real-time PCR, western blotting and immunofluorescence were used to detect the expression change of myoblast differentiation marker genes after knockdown and overexpression of ANKRD23. The results showed that the expression of myoblast differentiation marker genes were increased by interference and reduced by ANKRD23 overexpression, indicating that ANKRD23 played a negative role in the myoblast differentiation. Interestingly, we discovered a long non-coding RNA-AK004293 which was overlapped with the 3'UTR of ANKRD23 gene. Then we detected the effect of AK004293 on the expression of ANKRD23 and myoblast differentiation marker genes in C2C12 myoblasts. The results showed that AK004293 had no significant effect on the expression of myoblast differentiation maker genes and ANKRD23. In conclusion, our results established the foundation for further studies about the regulation mechanism of ANKRD23 in muscle development. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evolution of gene network activity by tuning the strength of negative-feedback regulation.

    Science.gov (United States)

    Peng, Weilin; Liu, Ping; Xue, Yuan; Acar, Murat

    2015-02-11

    Despite the examples of protein evolution via mutations in coding sequences, we have very limited understanding on gene network evolution via changes in cis-regulatory elements. Using the galactose network as a model, here we show how the regulatory promoters of the network contribute to the evolved network activity between two yeast species. In Saccharomyces cerevisiae, we combinatorially replace all regulatory network promoters by their counterparts from Saccharomyces paradoxus, measure the resulting network inducibility profiles, and model the results. Lowering relative strength of GAL80-mediated negative feedback by replacing GAL80 promoter is necessary and sufficient to have high network inducibility levels as in S. paradoxus. This is achieved by increasing OFF-to-ON phenotypic switching rates. Competitions performed among strains with or without the GAL80 promoter replacement show strong relationships between network inducibility and fitness. Our results support the hypothesis that gene network activity can evolve by optimizing the strength of negative-feedback regulation.

  7. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor.

    Science.gov (United States)

    Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle

    2016-01-01

    Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP.

  8. Positive and negative regulation of the human heme oxygenase-1 gene expression in cultured cells.

    Science.gov (United States)

    Takahashi, S; Takahashi, Y; Ito, K; Nagano, T; Shibahara, S; Miura, T

    1999-10-28

    To elucidate the regulation of the human heme oxygenase-1 (hHO-1) gene expression, we assessed approximately 4 kb of the 5'-flanking region of the hHO-1 gene for basal promoter activity and sequenced approximately 2 kb of the 5'-flanking region. A series of deletion mutants of the 5'-flanking region linked to the luciferase gene was constructed. Basal level expression of these constructs was tested in HepG2 human hepatoma cells and HeLa cervical cancer cells. By measuring luciferase activity, which was transiently expressed in the transfected cells, we found a positive regulatory region at position -1976 to -1655 bp. This region functions in HepG2 cells but not in HeLa cells. A negative regulatory region was also found at position -981 to -412 bp that functions in both HepG2 cells and HeLa cells.

  9. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer.

    Directory of Open Access Journals (Sweden)

    Rachel Haviland

    Full Text Available Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down-regulating

  10. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression

    Science.gov (United States)

    2014-01-01

    Background A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. Results APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3′ untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3′ UTR. Conclusions These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3′ UTRs. PMID:24666827

  11. Models of Aire-dependent gene regulation for thymic negative selection

    Directory of Open Access Journals (Sweden)

    Dina eDanso-Abeam

    2011-05-01

    Full Text Available Mutations in the Autoimmune Regulator (AIRE gene lead to Autoimmune Polyendocrinopathy Syndrome type 1 (APS1, characterized by the development of multi-organ autoimmune damage. The mechanism by which defects in AIRE result in autoimmunity has been the subject of intense scrutiny. At the cellular level, the working model explains most of the clinical and immunological characteristics of APS1, with AIRE driving the expression of tissue restricted antigens (TRAs in the epithelial cells of the thymic medulla. This TRA expression results in effective negative selection of TRA-reactive thymocytes, preventing autoimmune disease. At the molecular level, the mechanism by which AIRE initiates TRA expression in the thymic medulla remains unclear. Multiple different models for the molecular mechanism have been proposed, ranging from classical transcriptional activity, to random induction of gene expression, to epigenetic tag recognition effect, to altered cell biology. In this review, we evaluate each of these models and discuss their relative strengths and weaknesses.

  12. miR-27 negatively regulates pluripotency-associated genes in human embryonal carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Heiko Fuchs

    Full Text Available Human embryonic stem cells and human embryonal carcinoma cells have been studied extensively with respect to the transcription factors (OCT4, SOX2 and NANOG, epigenetic modulators and associated signalling pathways that either promote self-renewal or induce differentiation in these cells. The ACTIVIN/NODAL axis (SMAD2/3 of the TGFß signalling pathway coupled with FGF signalling maintains self-renewal in these cells, whilst the BMP (SMAD1,5,8 axis promotes differentiation. Here we show that miR-27, a somatic-enriched miRNA, is activated upon RNAi-mediated suppression of OCT4 function in human embryonic stem cells. We further demonstrate that miR-27 negatively regulates the expression of the pluripotency-associated ACTIVIN/NODAL axis (SMAD2/3 of the TGFß signalling pathway by targeting ACVR2A, TGFßR1 and SMAD2. Additionally, we have identified a number of pluripotency-associated genes such as NANOG, LIN28, POLR3G and NR5A2 as novel miR-27 targets. Transcriptome analysis revealed that miR-27 over-expression in human embryonal carcinoma cells leads indeed to a significant up-regulation of genes involved in developmental pathways such as TGFß- and WNT-signalling.

  13. Mitochondrial transcription termination factor 2 binds to entire mitochondrial DNA and negatively regulates mitochondrial gene expression

    Institute of Scientific and Technical Information of China (English)

    Weiwei Huang; Min Yu; Yang Jiao; Jie Ma; Mingxing Ma; Zehua Wang; Hong Wu; Deyong Tan

    2011-01-01

    Mitochondrial transcription termination factor 2 (mTERF2) is a mitochondriai matrix protein that binds to the mitochondriai DNA.Previous studies have shown that overexpression of mTERF2 can inhibit cell proliferation, but the mechanism has not been well defined so far.This study aimed to present the binding pattern of mTERF2 to the mitochondrial DNA (mtDNA) in vivo, and investigated the biological function of mTERF2 on the replication of mtDNA, mRNA transcription, and protein translation.The mTERF2 binding to entire mtDNA was identified via the chromatin immunoprecipitation analysis.The mtDNA replication efficiency and expression levels of mitochondria genes were significantly inhibited when the mTERF2 was overexpressed in HeLa cells.The inhibition level of mtDNA content was the same with the decreased levels of mRNA and mitochondrial protein expression.Overall, the mTERF2 might be a cell growth inhibitor based on its negative effect on mtDNA replication, which eventually own-regulated all of the oxidative phosphorylation components in the mitochondria that were essential for the cell's energy metabolism.

  14. Negative Regulation of DsbA-L Gene Expression by the Transcription Factor Sp1

    OpenAIRE

    Fang, Qichen; Yang, Wenjing; Li, Huating; Hu, Wenxiu; Chen, Lihui; Jiang, Shan; Dong, Kun; Song, Qianqian; Wang, Chen; Chen, Shuo; LIU, FENG; Jia, Weiping

    2014-01-01

    Disulfide-bond A oxidoreductase-like protein (DsbA-L) possesses beneficial effects such as promoting adiponectin multimerization and stability, increasing insulin sensitivity, and enhancing energy metabolism. The expression level of DsbA-L is negatively correlated with obesity in mice and humans, but the underlying mechanisms remain unknown. To address this question, we generated reporter gene constructs containing the promoter sequence of the mouse DsbA-L gene. Deletion analysis showed that ...

  15. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates.

    Science.gov (United States)

    Ikebe, Tadayoshi; Ato, Manabu; Matsumura, Takayuki; Hasegawa, Hideki; Sata, Tetsutaro; Kobayashi, Kazuo; Watanabe, Haruo

    2010-04-01

    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors.

  16. Eos negatively regulates human γ-globin gene transcription during erythroid differentiation.

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Yu

    Full Text Available BACKGROUND: Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4, a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs. DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3 of the β-globin locus control region (LCR, the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation.

  17. Negative regulation of hepatic fat mass and obesity associated (Fto) gene expression by insulin.

    Science.gov (United States)

    Mizuno, Tooru M; Lew, Pei San; Luo, Yanming; Leckstrom, Arnold

    2017-02-01

    To investigate the role of glucose and insulin in the regulation of hepatic fat mass and obesity associated (Fto) gene expression and the role of hepatic Fto in the regulation of gluconeogenic gene expression. To determine the effect of hyperglycemia on hepatic Fto expression, levels of Fto mRNA in liver were compared between normoglycemic/normoinsulinemic, hypereglycemic/hyperinsulinemic, and hyperglycemic/hypoinsulinemic mice. To determine the direct effect of insulin on Fto expression, levels of Fto, glucose-6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (Pepck) mRNA levels were compared between control and insulin-treated mouse liver tissues cultured ex vivo and immortalized mouse hepatocytes AML12. To determine the role of Fto in the regulation of gluconeogenic gene expression, we examined the effect of enhanced Fto expression on G6pase and Pepck mRNA levels in AML12 cells. Fto mRNA levels were significantly reduced in hyperglycemic/hyperinsulinemic mice compared to normoglycemic/normoinsulinemic mice, while they were indistinguishable between hyperglycemic/hypoinsulinemic mice and normoglycemic/normoinsulinemic mice. Insulin treatment reduced Fto, G6pase, and Pepck mRNA levels compared to control vehicle treatment in both ex vivo cultured mouse liver tissues and AML12 cells. Enhanced Fto expression significantly increased G6pase and Pepck mRNA level in AML12 cells. Our findings support the hypothesis that hepatic Fto participates in the maintenance of glucose homeostasis possibly by mediating the inhibitory effect of glucose and insulin on gluconeogenic gene expression in liver. It is further suggested that impairments in nutritional and hormonal regulation of hepatic Fto expression may lead to impairments in glycemic control in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    Directory of Open Access Journals (Sweden)

    Mary N Burtnick

    Full Text Available Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1 expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G or minimal media plus casamino acids (M9CG facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  19. Fat mass and obesity associated gene (FTO expression is regulated negatively by the transcription factor Foxa2.

    Directory of Open Access Journals (Sweden)

    Jianjin Guo

    Full Text Available Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β binding site and an upstream stimulatory factor (USF-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS. Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14 as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.

  20. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates.

    Directory of Open Access Journals (Sweden)

    Tadayoshi Ikebe

    2010-04-01

    Full Text Available Streptococcal toxic shock syndrome (STSS is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates and non-invasive infections (59 isolates, 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%. The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors.

  1. SAZ, a new SUPERMAN-like protein, negatively regulates a subset of ABA-responsive genes in Arabidopsis.

    Science.gov (United States)

    Jiang, Chang-Jie; Aono, Mitsuko; Tamaoki, Masanori; Maeda, Satoru; Sugano, Shoji; Mori, Masaki; Takatsuji, Hiroshi

    2008-02-01

    Arabidopsis SUPERMAN (SUP) and members of its family are plant-unique C(2)H(2)-type zinc finger genes that have been implicated in plant growth and development. In this paper, we report that a new SUP-family gene, designated as S A- and A BA-downregulated z inc finger gene (SAZ), is involved in the negative regulation of ABA-mediated signaling. SAZ-GUS fusion proteins were predominantly localized in the nuclei when they were transiently expressed in onion epidermal cells. SAZ transcripts were expressed in the leaves and pistils of very young flower buds. In young seedlings, SAZ expression was downregulated in response to environmental stresses such as drought, salt, ozone and ultraviolet-B irradiation. This downregulation was also observed in response to the phytohormones salicylic acid (SA) and abscisic acid (ABA). SA-responsive downregulation of SAZ was not observed in the npr1-1 mutant, indicating that this regulation is NPR1 dependent. RNAi-mediated knockdown of SAZ (SAZ-kd) resulted in elevated expression of the drought- and ABA-responsive genes rd29B and rab18 under unstressed conditions, and it enhanced the response of these genes to drought and ABA treatment. The expression of several other drought- and/or ABA-responsive genes was not affected by SAZ-kd. Based on these results, we propose that SAZ plays a role in repressing a subset of the ABA-mediated stress-responsive genes in unstressed conditions.

  2. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Lijun Yang; Hong Cui; Ting Cao

    2014-01-01

    Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioin-formatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups:control group;oxygen-glucose deprivation group (treatment with 8% O2+ 92%N2 and sugar-free medium for 60 minutes);transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligoden-drocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage.

  3. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  4. Phosphodiesterase 2 negatively regulates adenosine-induced transcription of the tyrosine hydroxylase gene in PC12 rat pheochromocytoma cells.

    Science.gov (United States)

    Makuch, Edyta; Kuropatwa, Marianna; Kurowska, Ewa; Ciekot, Jaroslaw; Klopotowska, Dagmara; Matuszyk, Janusz

    2014-07-05

    Adenosine induces expression of the tyrosine hydroxylase (TH) gene in PC12 cells. However, it is suggested that atrial natriuretic peptide (ANP) inhibits expression of this gene. Using real-time PCR and luciferase reporter assays we found that ANP significantly decreases the adenosine-induced transcription of the TH gene. Results of measurements of cyclic nucleotide concentrations indicated that ANP-induced accumulation of cGMP inhibits the adenosine-induced increase in cAMP level. Using selective phosphodiesterase 2 (PDE2) inhibitors and a synthetic cGMP analog activating PDE2, we found that PDE2 is involved in coupling the ANP-triggered signal to the cAMP metabolism. We have established that ANP-induced elevated levels of cGMP as well as cGMP analog stimulate hydrolytic activity of PDE2, leading to inhibition of adenosine-induced transcription of the TH gene. We conclude that ANP mediates negative regulation of TH gene expression via stimulation of PDE2-dependent cAMP breakdown in PC12 cells.

  5. MicroRNA (miR396) negatively regulates expression of ceramidase-like genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Dongmei Liu; Diqiu Yu

    2009-01-01

    MicroRNAs (miRNAs) are 21-23 nucleotide (nt), endogenous RNAs that regulate gene expression by targeting mRNAs for direct cleavage or translational repression in plants. In Arabidopsis, miR396 is encoded by two different loci (MIR396a and M1R396b) and sequence analysis suggests it may target three ceramidase-like genes (Atceramidase-like 1, Atceramidase-like 2 and Atceramidase-like 3). To demonstrate the biological function of miR396, we inserted the synthetic precursors, MIR396a or MIR396b, under the control of the enhanced cauliflower mosaic virus (CaMV) 35S promoter, into a plant transformation vector (pOCA30) and transformed the con-structs into Arabidopsis. The promoter increased miR396 levels by more than 2-fold, indicating appropriate maturation of the synthetic precursor MIR396a or MIR396b transcript in transgenic plants. Microarray analysis showed that the transcript levels of two ceramidase-like genes (Atceramidase-like 1, Atceramidase-like 2) were decreased by more than 2-fold and lactosylceramide 4-α-galactosyltransferase increased by more than 2-fold in transgenic plants compared with the empty vector-transformed plants. Northern blot analysis showed that the mRNA levels of the two ceramidase-like genes were significantly reduced in transgenic plants. These results indicated that miR396 probably plays a crucial role in the ceramide metabolism pathway by negatively regulating the expression of ceramidase-like genes in Arabidopsis.

  6. Positive and negative regulation of basal expression of a yeast HSP70 gene.

    OpenAIRE

    Park, H O; Craig, E A

    1989-01-01

    The SSA1 gene, one of the heat-inducible HSP70 genes in the yeast Saccharomyces cerevisiae, also displays a basal level of expression during logarithmic growth. Multiple sites related to the heat shock element (HSE) consensus sequence are present in the SSA1 promoter region (Slater and Craig, Mol. Cell. Biol. 7:1906-1916, 1987). One of the HSEs, HSE2, is important in the basal expression of SSA1 as well as in heat-inducible expression. A promoter containing a mutant HSE2 showed a fivefold-low...

  7. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer

    DEFF Research Database (Denmark)

    Lu, Z; Luo, R Z; Peng, H;

    2006-01-01

    to the P2 region of the ARHI promoter and regulate its activity. Sequence analysis and oligonucleotide competition in electrophoretic mobility shift assays identified an A2 fragment containing an E2F-binding site. Using specific antibodies in supershift assays, we have shown that anti-E2F1 and 4 antibodies...... and increased E2F DNA-binding activity. Moreover, chromatin immunoprecipitation experiments revealed that both E2F1 and 4 bind to the ARHI promoter in breast cancer cells in vivo. This binding was reduced when the cells were treated with the histone deacetylase (HDAC) inhibitor--trichostatin A (TSA). When SKBr3...

  8. Negative Regulation of Ectoine Uptake and Catabolism in Sinorhizobium meliloti: Characterization of the EhuR Gene.

    Science.gov (United States)

    Yu, Qinli; Cai, Hanlin; Zhang, Yanfeng; He, Yongzhi; Chen, Lincai; Merritt, Justin; Zhang, Shan; Dong, Zhiyang

    2017-01-01

    Ectoine has osmoprotective effects on Sinorhizobium meliloti that differ from its effects in other bacteria. Ectoine does not accumulate in S. meliloti cells; instead, it is degraded. The products of the ehuABCD-eutABCDE operon were previously discovered to be responsible for the uptake and catabolism of ectoine in S. meliloti However, the mechanism by which ectoine is involved in the regulation of the ehuABCD-eutABCDE operon remains unclear. The ehuR gene, which is upstream of and oriented in the same direction as the ehuABCD-eutABCDE operon, encodes a member of the MocR/GntR family of transcriptional regulators. Quantitative reverse transcription-PCR and promoter-lacZ reporter fusion experiments revealed that EhuR represses transcription of the ehuABCD-eutABCDE operon, but this repression is inhibited in the presence of ectoine. Electrophoretic mobility shift assays and DNase I footprinting assays revealed that EhuR bound specifically to the DNA regions overlapping the -35 region of the ehuA promoter and the +1 region of the ehuR promoter. Surface plasmon resonance assays further demonstrated direct interactions between EhuR and the two promoters, although EhuR was found to have higher affinity for the ehuA promoter than for the ehuR promoter. In vitro, DNA binding by EhuR could be directly inhibited by a degradation product of ectoine. Our work demonstrates that EhuR is an important negative transcriptional regulator involved in the regulation of ectoine uptake and catabolism and is likely regulated by one or more end products of ectoine catabolism.

  9. Lymphocyte Activation Gene-3 (LAG-3 negatively regulates environmentally-induced autoimmunity.

    Directory of Open Access Journals (Sweden)

    Vibha Jha

    Full Text Available Environmental factors including drugs, mineral oils and heavy metals such as lead, gold and mercury are triggers of autoimmune diseases in animal models or even in occupationally exposed humans. After exposure to subtoxic levels of mercury (Hg, genetically susceptible strains of mice develop an autoimmune disease characterized by the production of highly specific anti-nucleolar autoantibodies, hyperglobulinemia and nephritis. However, mice can be tolerized to the disease by a single low dose administration of Hg. Lymphocyte Activation Gene-3 (LAG-3 is a CD4-related, MHC-class II binding molecule expressed on activated T cells and NK cells which maintains lymphocyte homeostatic balance via various inhibitory mechanisms. In our model, administration of anti-LAG-3 monoclonal antibody broke tolerance to Hg resulting in autoantibody production and an increase in serum IgE level. In addition, LAG-3-deficient B6.SJL mice not only had increased susceptibility to Hg-induced autoimmunity but were also unresponsive to tolerance induction. Conversely, adoptive transfer of wild-type CD4(+ T cells was able to partially rescue LAG-3-deficient mice from the autoimmune disease. Further, in LAG-3-deficient mice, mercury elicited higher amounts of IL-6, IL-4 and IFN-γ, cytokines known to play a critical role in mercury-induced autoimmunity. Therefore, we conclude that LAG-3 exerts an important regulatory effect on autoimmunity elicited by a common environmental pollutant.

  10. GS6, A Member of the GRAS Gene Family, Negatively Regulates Grain Size in Rice

    Institute of Scientific and Technical Information of China (English)

    Lianjun Sun; Xiaojiao Li; Yongcai Fu; Zuofeng Zhu; Lubin Tan; Fengxia Liu; Xianyou Sun; Xuewen Sun; Chuanqing Sun

    2013-01-01

    Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today’s cultivars compared with their wild relatives. However, the molecular genetic control of rice grain size is still not well characterized. Here, we report the identification and cloning of Grain Size 6 (GS6), which plays an important role in reducing grain size in rice. A premature stop at the þ348 position in the coding sequence (CDS) of GS6 increased grain width and weight significantly. Alignment of the CDS regions of GS6 in 90 rice materials revealed three GS6 alleles. Most japonica varieties (95%) harbor the Type I haplotype, and 62.9%of indica varieties harbor the Type II haplotype. Association analysis revealed that the Type I haplotype tends to increase the width and weight of grains more than either of the Type II or Type III haplotypes. Further investigation of genetic diversity and the evolutionary mechanisms of GS6 showed that the GS6 gene was strongly selected in japonica cultivars. In addition, a “ggc” repeat region identified in the region that encodes the GRAS domain of GS6 played an important historic role in the domestication of grain size in rice. Knowledge of the function of GS6 might aid efforts to elucidate the molecular mechanisms that control grain development and evolution in rice plants, and could facilitate the genetic improvement of rice yield.

  11. Caenorhabditis elegans lin-35/Rb, efl-1/E2F and other synthetic multivulva genes negatively regulate the anaphase-promoting complex gene mat-3/APC8.

    Science.gov (United States)

    Garbe, David; Doto, Jeffrey B; Sundaram, Meera V

    2004-06-01

    Retinoblastoma (Rb)/E2F complexes repress expression of many genes important for G(1)-to-S transition, but also appear to regulate gene expression at other stages of the cell cycle. In C. elegans, lin-35/Rb and other synthetic Multivulva (SynMuv) group B genes function redundantly with other sets of genes to regulate G(1)/S progression, vulval and pharyngeal differentiation, and other unknown processes required for viability. Here we show that lin-35/Rb, efl-1/E2F, and other SynMuv B genes negatively regulate a component of the anaphase-promoting complex or cyclosome (APC/C). The APC/C is a multisubunit complex that promotes metaphase-to-anaphase progression and G(1) arrest by targeting different substrates for ubiquitination and proteasome-mediated destruction. The C. elegans APC/C gene mat-3/APC8 has been defined by temperature-sensitive embryonic lethal alleles that strongly affect germline meiosis and mitosis but only weakly affect somatic development. We describe severe nonconditional mat-3 alleles and a hypomorphic viable allele (ku233), all of which affect postembryonic cell divisions including those of the vulval lineage. The ku233 lesion is located outside of the mat-3 coding region and reduces mat-3 mRNA expression. Loss-of-function alleles of lin-35/Rb and other SynMuv B genes suppress mat-3(ku233) defects by restoring mat-3 mRNA to wild-type levels. Therefore, Rb/E2F complexes appear to repress mat-3 expression.

  12. cvhA Gene of Streptomyces hygroscopicus 10-22 Encodes a Negative Regulator for Mycelia Development

    Institute of Scientific and Technical Information of China (English)

    Heng-An WANG; Lei QIN; Ping LU; Zhi-Xuan PANG; Zi-Xin DENG; Guo-Ping ZHAO

    2006-01-01

    A five-gene cluster cvhABCDE was identified from Streptomyces hygroscopicus 10-22. As the first gene of this cluster, cvhA encoded a putative sensor histidine kinase with a predicted sensor domain consisting of two trans-membrane segments at the N-terminus and a conserved HATPase_c domain at the Cterminus. The C-terminus polypeptide of CvhA expressed in Escherichia coli was purified and shown to be autophosphorylated with [γ-32p]ATP in vitro. The phosphoryl group was acid-labile and basic-stable, which supported histidine as the phosphorylation residue. No obvious difference of mycelia development was observed between the null mutant of cvhA generated by targeted gene replacement and the wild-type parental strain 10-22 grown on solid soya flour medium with 2%-8% glucose or sucrose, but the cvhA mutant could form much more abundant aerial mycelia and spores than the wild-type strain on solid soya flour medium supplemented with 6%-8% mannitol, 6%-8% sorbitol, 4%-6% mannose, or 4%-6% fructose. This phenotype was complemented by the cloned wild-type cvhA gene, and no difference was observed for growth curves of the cvhA mutant and the wild strain in liquid minimal medium with the tested sugars at a concentration of 4%, 6% and 8%. We thus propose that CvhA is likely a sensor histidine kinase and negatively regulates the morphological differentiation in a sugar-dependent manner in S. hygroscopicus 10-22.

  13. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression.

    Science.gov (United States)

    Exline, C M; Feng, Z; Stoltzfus, C M

    2008-04-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5' splice site (5'ss) downstream of exon 2 (5'ss D2). Here we show that the mutations within 5'ss D2 that are predicted to lower or increase the affinity of the 5'ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5'ss D2 was not necessary for the effect of 5'ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5'ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5'-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5'ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication.

  14. Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT gene.

    Directory of Open Access Journals (Sweden)

    Lynda Li Song

    Full Text Available BACKGROUND: Increased levels of interferon (IFN-inducible IFI16 protein (encoded by the IFI16 gene located at 1q22 in human normal prostate epithelial cells and diploid fibroblasts (HDFs are associated with the onset of cellular senescence. However, the molecular mechanisms by which the IFI16 protein contributes to cellular senescence-associated cell growth arrest remain to be elucidated. Here, we report that increased levels of IFI16 protein in normal HDFs and in HeLa cells negatively regulate the expression of human telomerase reverse transcriptase (hTERT gene. METHODOLOGY/PRINCIPAL FINDINGS: We optimized conditions for real-time PCR, immunoblotting, and telomere repeat amplification protocol (TRAP assays to detect relatively low levels of hTERT mRNA, protein, and telomerase activity that are found in HDFs. Using the optimized conditions, we report that treatment of HDFs with inhibitors of cell cycle progression, such as aphidicolin or CGK1026, which resulted in reduced steady-state levels of IFI16 mRNA and protein, was associated with increases in hTERT mRNA and protein levels and telomerase activity. In contrast, knockdown of IFI16 expression in cells increased the expression of c-Myc, a positive regulator of hTERT expression. Additionally, over-expression of IFI16 protein in cells inhibited the c-Myc-mediated stimulation of the activity of hTERT-luc-reporter and reduced the steady-state levels of c-Myc and hTERT. CONCLUSIONS/SIGNIFICANCE: These data demonstrated that increased levels of IFI16 protein in HDFs down-regulate the expression of hTERT gene. Our observations will serve basis to understand how increased cellular levels of the IFI16 protein may contribute to certain aging-dependent diseases.

  15. Interferon-Inducible IFI16, a Negative Regulator of Cell Growth, Down-Regulates Expression of Human Telomerase Reverse Transcriptase (hTERT) Gene

    Science.gov (United States)

    Shen, Hui; Duan, Xin; Alimirah, Fatouma; Choubey, Divaker

    2010-01-01

    Background Increased levels of interferon (IFN)-inducible IFI16 protein (encoded by the IFI16 gene located at 1q22) in human normal prostate epithelial cells and diploid fibroblasts (HDFs) are associated with the onset of cellular senescence. However, the molecular mechanisms by which the IFI16 protein contributes to cellular senescence-associated cell growth arrest remain to be elucidated. Here, we report that increased levels of IFI16 protein in normal HDFs and in HeLa cells negatively regulate the expression of human telomerase reverse transcriptase (hTERT) gene. Methodology/Principal Findings We optimized conditions for real-time PCR, immunoblotting, and telomere repeat amplification protocol (TRAP) assays to detect relatively low levels of hTERT mRNA, protein, and telomerase activity that are found in HDFs. Using the optimized conditions, we report that treatment of HDFs with inhibitors of cell cycle progression, such as aphidicolin or CGK1026, which resulted in reduced steady-state levels of IFI16 mRNA and protein, was associated with increases in hTERT mRNA and protein levels and telomerase activity. In contrast, knockdown of IFI16 expression in cells increased the expression of c-Myc, a positive regulator of hTERT expression. Additionally, over-expression of IFI16 protein in cells inhibited the c-Myc-mediated stimulation of the activity of hTERT-luc-reporter and reduced the steady-state levels of c-Myc and hTERT. Conclusions/Significance These data demonstrated that increased levels of IFI16 protein in HDFs down-regulate the expression of hTERT gene. Our observations will serve basis to understand how increased cellular levels of the IFI16 protein may contribute to certain aging-dependent diseases. PMID:20052289

  16. Negative and Positive mRNA Splicing Elements Act Competitively To Regulate Human Immunodeficiency Virus Type 1 Vif Gene Expression▿

    Science.gov (United States)

    Exline, C. M.; Feng, Z.; Stoltzfus, C. M.

    2008-01-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3′ splice sites (3′ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3′ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5′ splice site (5′ss) downstream of exon 2 (5′ss D2). Here we show that the mutations within 5′ss D2 that are predicted to lower or increase the affinity of the 5′ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5′ss D2 was not necessary for the effect of 5′ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5′ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5′-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5′ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication. PMID:18272582

  17. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  18. The CKH1/EER4 gene encoding a TAF12-like protein negatively regulates cytokinin sensitivity in Arabidopsis thaliana.

    Science.gov (United States)

    Kubo, Minoru; Furuta, Kaori; Demura, Taku; Fukuda, Hiroo; Liu, Yao-Guang; Shibata, Daisuke; Kakimoto, Tatsuo

    2011-04-01

    The recessive ckh1 (cytokinin hypersensitive 1) mutant of Arabidopsis thaliana shows hypersensitivity to cytokinins, which promote proliferation and greening of calli. The CKH1 gene encodes a protein resembling TAF12 (TATA BOX BINDING PROTEIN ASSOCIATED FACTOR 12), which is a component of transcription factor IID (TFIID)- and histone acetyltransferase-containing complexes in yeast and animals. Microarray analyses revealed that a substantially greater number of genes responded to a low level of cytokinins in the ckh1 mutant than in the wild type. However, expression of cytokinin primary response genes was not significantly affected by the ckh1 mutation. These results suggest that the CKH1 protein regulates a set of genes involved in late signaling processes governing a range of cytokinin responses, including cell proliferation and differentiation.

  19. Essential role of TEA domain transcription factors in the negative regulation of the MYH 7 gene by thyroid hormone and its receptors.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Iwaki

    Full Text Available MYH7 (also referred to as cardiac myosin heavy chain β gene expression is known to be repressed by thyroid hormone (T3. However, the molecular mechanism by which T3 inhibits the transcription of its target genes (negative regulation remains to be clarified, whereas those of transcriptional activation by T3 (positive regulation have been elucidated in detail. Two MCAT (muscle C, A, and T sites and an A/T-rich region in the MYH7 gene have been shown to play a critical role in the expression of this gene and are known to be recognized by the TEAD/TEF family of transcription factors (TEADs. Using a reconstitution system with CV-1 cells, which has been utilized in the analysis of positive as well as negative regulation, we demonstrate that both T3 receptor (TR β1 and α1 inhibit TEAD-dependent activation of the MYH7 promoter in a T3 dose-dependent manner. TRβ1 bound with GC-1, a TRβ-selective T3 analog, also repressed TEAD-induced activity. Although T3-dependent inhibition required the DNA-binding domain (DBD of TRβ1, it remained after the putative negative T3-responsive elements were mutated. A co-immunoprecipitation study demonstrated the in vivo association of TRβ1 with TEAD-1, and the interaction surfaces were mapped to the DBD of the TRβ1 and TEA domains of TEAD-1, both of which are highly conserved among TRs and TEADs, respectively. The importance of TEADs in MYH7 expression was also validated with RNA interference using rat embryonic cardiomyocyte H9c2 cells. These results indicate that T3-bound TRs interfere with transactivation by TEADs via protein-protein interactions, resulting in the negative regulation of MYH7 promoter activity.

  20. Essential role of TEA domain transcription factors in the negative regulation of the MYH 7 gene by thyroid hormone and its receptors.

    Science.gov (United States)

    Iwaki, Hiroyuki; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Matsunaga, Hideyuki; Misawa, Hiroko; Oki, Yutaka; Ishizuka, Keiko; Nakamura, Hirotoshi; Suda, Takafumi

    2014-01-01

    MYH7 (also referred to as cardiac myosin heavy chain β) gene expression is known to be repressed by thyroid hormone (T3). However, the molecular mechanism by which T3 inhibits the transcription of its target genes (negative regulation) remains to be clarified, whereas those of transcriptional activation by T3 (positive regulation) have been elucidated in detail. Two MCAT (muscle C, A, and T) sites and an A/T-rich region in the MYH7 gene have been shown to play a critical role in the expression of this gene and are known to be recognized by the TEAD/TEF family of transcription factors (TEADs). Using a reconstitution system with CV-1 cells, which has been utilized in the analysis of positive as well as negative regulation, we demonstrate that both T3 receptor (TR) β1 and α1 inhibit TEAD-dependent activation of the MYH7 promoter in a T3 dose-dependent manner. TRβ1 bound with GC-1, a TRβ-selective T3 analog, also repressed TEAD-induced activity. Although T3-dependent inhibition required the DNA-binding domain (DBD) of TRβ1, it remained after the putative negative T3-responsive elements were mutated. A co-immunoprecipitation study demonstrated the in vivo association of TRβ1 with TEAD-1, and the interaction surfaces were mapped to the DBD of the TRβ1 and TEA domains of TEAD-1, both of which are highly conserved among TRs and TEADs, respectively. The importance of TEADs in MYH7 expression was also validated with RNA interference using rat embryonic cardiomyocyte H9c2 cells. These results indicate that T3-bound TRs interfere with transactivation by TEADs via protein-protein interactions, resulting in the negative regulation of MYH7 promoter activity.

  1. Genetic polymorphisms in circadian negative feedback regulation genes predict overall survival and response to chemotherapy in gastric cancer patients.

    Science.gov (United States)

    Qu, Falin; Qiao, Qing; Wang, Nan; Ji, Gang; Zhao, Huadong; He, Li; Wang, Haichao; Bao, Guoqiang

    2016-03-01

    Circadian negative feedback loop (CNFL) genes play important roles in cancer development and progression. To evaluate the effects of single nucleotide polymorphisms (SNPs) in CNFL genes on the survival of GC patients, 13 functional SNPs from 5 CNFL genes were genotyped in a cohort of 1030 resected GC patients (704 in the training set, 326 in the validation set) to explore the association of SNPs with overall survival (OS). Among the 13 SNPs, three SNPs (rs1056560 in CRY1, rs3027178 in PER1 and rs228729 in PER3) were significantly associated with OS of GC in the training set, and verified in the validation set and pooled analysis. Furthermore, a dose-dependent cumulative effect of these SNPs on GC survival was observed, and survival tree analysis showed higher order interactions between these SNPs. In addition, protective effect conferred by adjuvant chemotherapy (ACT) on GC was observed in patients with variant alleles (TG/GG) of rs1056560, but not in those with homozygous wild (TT) genotype. Functional assay suggested rs1056560 genotypes significantly affect CRY1 expression in cancer cells. Our study presents that SNPs in the CNFL genes may be associated with GC prognosis, and provides the guidance in selecting potential GC patients most likely responsive to ACT.

  2. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Zhu, Tong; Rothstein, Steven J

    2009-10-01

    The phytohormone auxin plays a critical role for plant growth by regulating the expression of a set of genes. One large auxin-responsive gene family of this type is the small auxin-up RNA (SAUR) genes, although their function is largely unknown. The expression of the rice (Oryza sativa) SAUR39 gene showed rapid induction by transient change in different environmental factors, including auxin, nitrogen, salinity, cytokinin, and anoxia. Transgenic rice plants overexpressing the SAUR39 gene resulted in lower shoot and root growth, altered shoot morphology, smaller vascular tissue, and lower yield compared with wild-type plants. The SAUR39 gene was expressed at higher levels in older leaves, unlike auxin biosynthesis, which occurs largely in the meristematic region. The transgenic plants had a lower auxin level and a reduced polar auxin transport as well as the down-regulation of some putative auxin biosynthesis and transporter genes. Biochemical analysis also revealed that transgenic plants had lower chlorophyll content, higher levels of anthocyanin, abscisic acid, sugar, and starch, and faster leaf senescence compared with wild-type plants at the vegetative stage. Most of these phenomena have been shown to be negatively correlated with auxin level and transport. Transcript profiling revealed that metabolic perturbations in overexpresser plants were largely due to transcriptional changes of genes involved in photosynthesis, senescence, chlorophyll production, anthocyanin accumulation, sugar synthesis, and transport. The lower growth and yield of overexpresser plants was largely recovered by exogenous auxin application. Taken together, the results suggest that SAUR39 acts as a negative regulator for auxin synthesis and transport.

  3. TWEAK Negatively Regulates Human Dicer

    OpenAIRE

    2016-01-01

    The ribonuclease Dicer plays a central role in the microRNA pathway by processing microRNA precursors (pre-microRNAs) into microRNAs, a class of 19- to 24-nucleotide non-coding RNAs that regulate expression of ≈60% of the genes in humans. To gain further insights into the function and regulation of Dicer in human cells, we performed a yeast two-hybrid (Y2HB) screen using human Dicer double-stranded RNA-binding domain (dsRBD) as bait. This approach identified tumor necrosis factor (TNF)-like w...

  4. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes.

    Science.gov (United States)

    Ponente, Manfredi; Campanini, Letizia; Cuttano, Roberto; Piunti, Andrea; Delledonne, Giacomo A; Coltella, Nadia; Valsecchi, Roberta; Villa, Alessandra; Cavallaro, Ugo; Pattini, Linda; Doglioni, Claudio; Bernardi, Rosa

    2017-02-23

    Elucidating the molecular basis of tumor metastasis is pivotal for eradicating cancer-related mortality. Triple-negative breast cancer (TNBC) encompasses a class of aggressive tumors characterized by high rates of recurrence and metastasis, as well as poor overall survival. Here, we find that the promyelocytic leukemia protein PML exerts a prometastatic function in TNBC that can be targeted by arsenic trioxide. We found that, in TNBC patients, constitutive HIF1A activity induces high expression of PML, along with a number of HIF1A target genes that promote metastasis at multiple levels. Intriguingly, PML controls the expression of these genes by binding to their regulatory regions along with HIF1A. This mechanism is specific to TNBC cells and does not occur in other subtypes of breast cancer where PML and prometastatic HIF1A target genes are underexpressed. As a consequence, PML promotes cell migration, invasion, and metastasis in TNBC cell and mouse models. Notably, pharmacological inhibition of PML with arsenic trioxide, a PML-degrading agent used to treat promyelocytic leukemia patients, delays tumor growth, impairs TNBC metastasis, and cooperates with chemotherapy by preventing metastatic dissemination. In conclusion, we report identification of a prometastatic pathway in TNBC and suggest clinical development toward the use of arsenic trioxide for TNBC patients.

  5. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes

    Science.gov (United States)

    Ponente, Manfredi; Campanini, Letizia; Cuttano, Roberto; Piunti, Andrea; Delledonne, Giacomo A.; Coltella, Nadia; Valsecchi, Roberta; Villa, Alessandra

    2017-01-01

    Elucidating the molecular basis of tumor metastasis is pivotal for eradicating cancer-related mortality. Triple-negative breast cancer (TNBC) encompasses a class of aggressive tumors characterized by high rates of recurrence and metastasis, as well as poor overall survival. Here, we find that the promyelocytic leukemia protein PML exerts a prometastatic function in TNBC that can be targeted by arsenic trioxide. We found that, in TNBC patients, constitutive HIF1A activity induces high expression of PML, along with a number of HIF1A target genes that promote metastasis at multiple levels. Intriguingly, PML controls the expression of these genes by binding to their regulatory regions along with HIF1A. This mechanism is specific to TNBC cells and does not occur in other subtypes of breast cancer where PML and prometastatic HIF1A target genes are underexpressed. As a consequence, PML promotes cell migration, invasion, and metastasis in TNBC cell and mouse models. Notably, pharmacological inhibition of PML with arsenic trioxide, a PML-degrading agent used to treat promyelocytic leukemia patients, delays tumor growth, impairs TNBC metastasis, and cooperates with chemotherapy by preventing metastatic dissemination. In conclusion, we report identification of a prometastatic pathway in TNBC and suggest clinical development toward the use of arsenic trioxide for TNBC patients. PMID:28239645

  6. Computational Analysis of mRNA Expression Profiles Identifies the ITG Family and PIK3R3 as Crucial Genes for Regulating Triple Negative Breast Cancer Cell Migration

    Directory of Open Access Journals (Sweden)

    Sukhontip Klahan

    2014-01-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive type of breast cancer that does not express estrogen receptor (ER, progesterone receptor (PR, and human epidermal growth factor receptor (Her2/neu. TNBC has worse clinical outcomes than other breast cancer subtypes. However, the key molecules and mechanisms of TNBC migration remain unclear. In this study, we compared two normalized microarray datasets from GEO database between Asian (GSE33926 and non-Asian populations (GSE46581 to determine the molecules and common pathways in TNBC migration. We demonstrated that 16 genes in non-Asian samples and 9 genes in Asian samples are related to TNBC migration. In addition, our analytic results showed that 4 genes, PIK3R3, ITGB1, ITGAL, and ITGA6, were involved in the regulation of actin cytoskeleton. Our results indicated potential genes that link to TNBC migration. This study may help identify novel therapeutic targets for drug development in cancer therapy.

  7. Identification of repressor element 1 in cytochrome P450 genes and their negative regulation by RE1 silencing transcription factor/neuron-restrictive silencer factor.

    Science.gov (United States)

    García-Sánchez, Rubén; Ayala-Luján, Jorge; Hernández-Peréz, Ascensión; Mendoza-Figueroa, Tomás; Tapia-Ramírez, José

    2003-03-17

    RE1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) mediates transcriptional repression in many neuron-specific genes by interaction with the repressor element 1/neuron-restrictive silencing element (RE1/NRSE). This element has been identified at least in 20 neuron specific genes. REST/NRSF is highly expressed in non-neuronal tissues, where it is thought to repress gene transcription. We performed a BLAST search to look for the presence of RE1/NRSE elements in the rat cytochrome P450 genes. We identified the presence of RE1/NRSE element in the cytochrome P450 genes CYP1A1, 2A2, 2E1 and 3A2. Electrophoretic mobility shift assay and supershift assays were carried out to prove functionality of these sites and detect the interaction of REST/NRSF with this sequence. Cotransfection studies in PC12 cells with a plasmid containing the RE1 element of the CYP genes, cloned upstream of the minimal type II sodium channel promoter, in the presence of REST/NRSF, showed a marked expression inhibition of the CAT reporter gene. These data suggest that the RE1 elements that exist in these four CYP genes might be a target for the REST/NRSF transcription factor and such an interaction might play a role in the negative regulation of these genes.

  8. Gene expression regulation by the Curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion.

    Science.gov (United States)

    Brombacher, Eva; Baratto, Andrea; Dorel, Corinne; Landini, Paolo

    2006-03-01

    Curli fibers, encoded by the csgBAC genes, promote biofilm formation in Escherichia coli and other enterobacteria. Curli production is dependent on the CsgD transcription activator, which also promotes cellulose biosynthesis. In this study, we investigated the effects of CsgD expression from a weak constitutive promoter in the biofilm formation-deficient PHL565 strain of E. coli. We found that despite its function as a transcription activator, the CsgD protein is localized in the cytoplasmic membrane. Constitutive CsgD expression promotes biofilm formation by PHL565 and activates transcription from the csgBAC promoter; however, csgBAC expression remains dependent on temperature and the growth medium. Constitutive expression of the CsgD protein results in altered transcription patterns for at least 24 novel genes, in addition to the previously identified CsgD-dependent genes. The cspA and fecR genes, encoding regulatory proteins responding to cold shock and to iron, respectively, and yoaD, encoding a putative negative regulator of cellulose biosynthesis, were found to be some of the novel CsgD-regulated genes. Consistent with the predicted functional role, increased expression of the yoaD gene negatively affects cell aggregation, while yoaD inactivation results in stimulation of cell aggregation and leads to increased cellulose production. Inactivation of fecR results in significant increases in both cell aggregation and biofilm formation, while the effects of cspA are not as strong in the conditions tested. Our results indicate that CsgD can modulate cellulose biosynthesis through activation of the yoaD gene. In addition, the positive effect of CsgD on biofilm formation might be enhanced by repression of the fecR gene.

  9. WUSCHEL-RELATED HOMEOBOX4 Is Involved in Meristem Maintenance and Is Negatively Regulated by the CLE Gene FCP1 in Rice[W

    Science.gov (United States)

    Ohmori, Yoshihiro; Tanaka, Wakana; Kojima, Mikiko; Sakakibara, Hitoshi; Hirano, Hiro-Yuki

    2013-01-01

    The shoot apical meristem is the ultimate source of the cells that constitute the entire aboveground portion of the plant body. In Arabidopsis thaliana, meristem maintenance is regulated by the negative feedback loop of WUSCHEL-CLAVATA (WUS-CLV). Although CLV-like genes, such as FLORAL ORGAN NUMBER1 (FON1) and FON2, have been shown to be involved in maintenance of the reproductive meristems in rice (Oryza sativa), current understanding of meristem maintenance remains insufficient. In this article, we demonstrate that the FON2-LIKE CLE PROTEIN1 (FCP1) and FCP2 genes encoding proteins with similar CLE domains are involved in negative regulation of meristem maintenance in the vegetative phase. In addition, we found that WUSCHEL-RELATED HOMEOBOX4 (WOX4) promotes the undifferentiated state of the meristem in rice and that WOX4 function is associated with cytokinin action. Consistent with similarities in the shoot apical meristem phenotypes caused by overexpression of FCP1 and downregulation of WOX4, expression of WOX4 was negatively regulated by FCP1 (FCP2). Thus, FCP1/2 and WOX4 are likely to be involved in maintenance of the vegetative meristem in rice. PMID:23371950

  10. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice.

    Science.gov (United States)

    Ohmori, Yoshihiro; Tanaka, Wakana; Kojima, Mikiko; Sakakibara, Hitoshi; Hirano, Hiro-Yuki

    2013-01-01

    The shoot apical meristem is the ultimate source of the cells that constitute the entire aboveground portion of the plant body. In Arabidopsis thaliana, meristem maintenance is regulated by the negative feedback loop of WUSCHEL-CLAVATA (WUS-CLV). Although CLV-like genes, such as FLORAL ORGAN NUMBER1 (FON1) and FON2, have been shown to be involved in maintenance of the reproductive meristems in rice (Oryza sativa), current understanding of meristem maintenance remains insufficient. In this article, we demonstrate that the FON2-LIKE CLE PROTEIN1 (FCP1) and FCP2 genes encoding proteins with similar CLE domains are involved in negative regulation of meristem maintenance in the vegetative phase. In addition, we found that WUSCHEL-RELATED HOMEOBOX4 (WOX4) promotes the undifferentiated state of the meristem in rice and that WOX4 function is associated with cytokinin action. Consistent with similarities in the shoot apical meristem phenotypes caused by overexpression of FCP1 and downregulation of WOX4, expression of WOX4 was negatively regulated by FCP1 (FCP2). Thus, FCP1/2 and WOX4 are likely to be involved in maintenance of the vegetative meristem in rice.

  11. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.

  12. Expression of Intratumoral IGF-II Is Regulated by the Gene Imprinting Status in Triple Negative Breast Cancer from Vietnamese Patients

    Directory of Open Access Journals (Sweden)

    Vinodh Kumar Radhakrishnan

    2015-01-01

    Full Text Available African American women suffer higher incidence and mortality of triple negative breast cancer (TNBC than Caucasian women. TNBC is very aggressive, causing the worst clinical outcome. We previously demonstrated that tumors from these patients express high IGF-II and exhibit high activation of the IGF signaling pathways. IGF-II gene expression is imprinted (monoallelic, promotes tumor progression, and metastasis and regulates Survivin, a TNBC prognostic marker. Since BC mortality has increased among young Vietnamese women, we analyzed 48 (paired TNBC samples from Vietnamese patients to assess IGF-II expression. We analyzed all samples by qrtPCR for identification of IGF-II heterozygosity and to determine allelic expression of the IGF-II gene. We also analyzed the tissues for proIGF-II and Survivin by RT-PCR and Western blotting. A total of 28 samples displayed IGF-II heterozygosity of which 78% were biallelic. Tumors with biallelic IGF-II gene expression exhibited the highest levels of proIGF-II and Survivin. Although 100% of these tissues corresponding normal samples were biallelic, they expressed significantly lower levels of or no proIGF-II and Survivin. Thus, IGF-II biallelic gene expression is differentially regulated in normal versus tumor tissues. We propose that intratumoral proIGF-II is dependent on the IGF-II gene imprinting status and it will promote a more aggressive TNBC.

  13. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening

    National Research Council Canada - National Science Library

    Chung, Mi‐Young; Vrebalov, Julia; Alba, Rob; Lee, JeMin; McQuinn, Ryan; Chung, Jae‐Dong; Klein, Patricia; Giovannoni, James

    2010-01-01

    .... Tomato is a model for biology and genetics regulating specific ripening pathways including ethylene, carotenoids and cell wall metabolism in addition to upstream signaling and transcriptional regulators. Ripening...

  14. Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1

    Energy Technology Data Exchange (ETDEWEB)

    Sugi, Yutaka [College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880 (Japan); Takahashi, Kyoko, E-mail: ktaka@brs.nihon-u.ac.jp [College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880 (Japan); Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi [College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880 (Japan)

    2011-09-09

    Highlights: {yields} Transcriptional activation of the Tollitip gene is higher in IECs than in monocytes. {yields} Nt -194/-186 region acts as a cis-element and is recognized by Elf-1. {yields} Elf-1 suppresses Tollip gene transcription in monocytes but not in IECs. {yields} O-GlcNAc modification is necessary for nuclear translocation of Elf-1. {yields} O-GlcNAcylation-dependent nuclear translocation of Elf-1 is impaired in IECs. -- Abstract: Intestinal epithelial cells (IECs) must be tolerant of the large number of commensal bacteria inhabiting the intestinal tract to avoid excessive inflammatory reactions. Toll-interacting protein (Tollip), a negative regulator of Toll-like receptor signaling, is known to be expressed at high levels in IECs, and to thereby contribute to the hyporesponsiveness of IECs to commensals. In this study, we analyzed the underlying mechanisms for elevated transcription of the Tollip gene in IECs using a human IEC line, Caco-2, and a human monocyte line, THP-1, as a control. Elf-1 was identified as a transcription factor that negatively regulates Tollip gene expression. The transcription factor Elf-1 was localized in the nucleus by O-linked N-acetylglucosamine (O-GlcNAc) modification, whereas the unmodified form was detected only in the cytoplasm. Comparison of Caco-2 and THP-1 cells revealed that O-GlcNAc modification of Elf-1 was significantly lower in IECs than in monocytes. Collectively, the results indicate that insufficient O-GlcNAc modification prevents Elf-1-mediated transcriptional repression and thereby upregulates Tollip gene expression in IECs.

  15. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    Science.gov (United States)

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.

  16. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.

    Science.gov (United States)

    Patrizio, Mario; Vago, Valerio; Musumeci, Marco; Fecchi, Katia; Sposi, Nadia Maria; Mattei, Elisabetta; Catalano, Liviana; Stati, Tonino; Marano, Giuseppe

    2008-12-01

    negatively regulates Gq cascade activation-induced fetal gene expression in cultured cardiomyocytes and that this inhibitory regulation is already operative in the mouse heart under physiological conditions.

  17. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening

    Science.gov (United States)

    The transition of fleshy fruit maturation to ripening is regulated by exogenous and endogenous signals which coordinate the transition of the fruit to a final state of attractiveness to seed dispersing organisms. Tomato is a model for biology and genetics regulating specific ripening pathways includ...

  18. TRIM68 negatively regulates IFN-β production by degrading TRK fused gene, a novel driver of IFN-β downstream of anti-viral detection systems.

    Directory of Open Access Journals (Sweden)

    Claire Wynne

    Full Text Available In recent years members of the tripartite motif-containing (TRIM family of E3 ubiquitin ligases have been shown to both positively and negatively regulate viral defence and as such are emerging as compelling targets for modulating the anti-viral immune response. In this study we identify TRIM68, a close homologue of TRIM21, as a novel regulator of Toll-like receptor (TLR- and RIG-I-like receptor (RLR-driven type I IFN production. Proteomic analysis of TRIM68-containing complexes identified TRK-fused gene (TFG as a potential TRIM68 target. Overexpression of TRIM68 and TFG confirmed their ability to associate, with TLR3 stimulation appearing to enhance the interaction. TFG is a known activator of NF-κB via its ability to interact with inhibitor of NF-κB kinase subunit gamma (IKK-γ and TRAF family member-associated NF-κB activator (TANK. Our data identifies a novel role for TFG as a positive regulator of type I IFN production and suggests that TRIM68 targets TFG for lysosomal degradation, thus turning off TFG-mediated IFN-β production. Knockdown of TRIM68 in primary human monocytes resulted in enhanced levels of type I IFN and TFG following poly(I:C treatment. Thus TRIM68 targets TFG, a novel regulator of IFN production, and in doing so turns off and limits type I IFN production in response to anti-viral detection systems.

  19. Retinoic acid-induced gene-I (RIG-I) associates with nucleotide-binding oligomerization domain-2 (NOD2) to negatively regulate inflammatory signaling.

    Science.gov (United States)

    Morosky, Stefanie A; Zhu, Jianzhong; Mukherjee, Amitava; Sarkar, Saumendra N; Coyne, Carolyn B

    2011-08-12

    Cytoplasmic caspase recruiting domain (CARD)-containing molecules often function in the induction of potent antimicrobial responses in order to protect mammalian cells from invading pathogens. Retinoic acid-induced gene-I (RIG-I) and nucleotide binding oligomerization domain 2 (NOD2) serve as key factors in the detection of viral and bacterial pathogens, and in the subsequent initiation of innate immune signals to combat infection. RIG-I and NOD2 share striking similarities in their cellular localization, both localize to membrane ruffles in non-polarized epithelial cells and both exhibit a close association with the junctional complex of polarized epithelia. Here we show that RIG-I and NOD2 not only colocalize to cellular ruffles and cell-cell junctions, but that they also form a direct interaction that is mediated by the CARDs of RIG-I and multiple regions of NOD2. Moreover, we show that RIG-I negatively regulates ligand-induced nuclear factor-κB (NF-κB) signaling mediated by NOD2, and that NOD2 negatively regulates type I interferon induction by RIG-I. We also show that the three main Crohn disease-associated mutants of NOD2 (1007fs, R702W, G908R) form an interaction with RIG-I and negatively regulate its signaling to a greater extent than wild-type NOD2. Our results show that in addition to their role in innate immune recognition, RIG-I and NOD2 form a direct interaction at actin-enriched sites within cells and suggest that this interaction may impact RIG-I- and NOD2-dependent innate immune signaling.

  20. A proposed conserved role for an avocado FW2.2-like gene as a negative regulator of fruit cell division.

    Science.gov (United States)

    Dahan, Yardena; Rosenfeld, Revital; Zadiranov, Victor; Irihimovitch, Vered

    2010-08-01

    Previous studies using 'Hass' avocado and its small fruit (SF) phenotype as a model showed that SF is limited by cell number, not by cell size. In an attempt to explore the molecular mechanisms regulating avocado fruit cell division, we isolated four distinct avocado cell proliferation-related genes and investigated their expression characteristics, comparing normal fruit (NF) and SF developmental patterns. Three cDNAs termed PaCYCA1, PaCYCB1 and PaPCNA, encoding two mitotic cyclins and a proliferating cell nuclear antigen (PCNA), were first isolated from young NF tissues. The accumulation of their transcripts was predominant in mitotically active organs, including young fruitlets, leaves and roots. Furthermore, a fourth full-length cDNA, designated Pafw2.2-like, encoding a FW2.2 (fruit-weight)-like protein, was isolated from SF tissues. FW2.2 is postulated to function as a negative regulator of cell division in tomato fruit. Remarkably, northern analysis revealed that the accumulation of the mitotic cyclins and of PCNA transcripts gradually decreased in NF tissues during growth, whereas in SF, their levels had already decreased at earlier stages of fruit development, concomitant with an earlier arrest of fruit cell division activity. In contrast, parallel sq-RT-PCR analysis showed that Pafw2.2-like mRNA accumulation was considerably higher in SF tissues than in the same NF tissues essentially at all examined stages of fruit growth. Together, our data suggest essential roles for the two mitotic cyclins genes and the PCNA gene in regulating avocado fruit development. Furthermore, the possibility that Pafw2.2-like acts as does fw2.2 in tomato, is discussed.

  1. The rice OsSAG12-2 gene codes for a functional protease that negatively regulates stress-induced cell death

    Indian Academy of Sciences (India)

    SUBARAN SINGH; ANUPRIYA SINGH; ASHIS KUMAR NANDI

    2016-09-01

    Senescence is the final stage of plant development. Although expression of most of the genes is suppressed duringsenescence, a set of genes referred as senescence-associated genes (SAGs) is induced. Arabidopsis thaliana SAG12(AtSAG12) is one such gene that has been mostly studied for its strict association with senescence. AtSAG12 encodes apapain-like cysteine protease, expressed predominantly in senescence-associated vacuoles. Rice genome containsmultiple AtSAG12 homologues (OsSAGs). OsSAG12-1, the closest structural homologue of AtSAG12, is a negativeregulator of developmental and stress-induced cell death. Proteolytic activity has not been established for any SAG12homologues in vitro. Here, we report that OsSAG12-2, the second structural homologue of AtSAG12 from rice, codesfor a functional proteolytic enzyme. The recombinant OsSAG12-2 protein produced in Escherichia coli undergoesautolysis to generate a functional protease. The matured OsSAG12-2 protein shows 27% trypsin-equivalent proteolyticactivity on azocasein substrate. Dark-induced senescence activates OsSAG12-2 expression. Down-regulation of OsSAG12-2 in the transgenic artificial miRNA lines results in enhanced salt- and UV-induced cell death, even thoughit does not affect cell viability in the stress-free condition. Our results show that OsSAG12-2 codes for a functionalprotease that negatively regulates stress-induced cell death in rice.

  2. Lhx6 and Lhx8 promote palate development through negative regulation of a cell cycle inhibitor gene, p57Kip2.

    Science.gov (United States)

    Cesario, Jeffry M; Landin Malt, Andre; Deacon, Lindsay J; Sandberg, Magnus; Vogt, Daniel; Tang, Zuojian; Zhao, Yangu; Brown, Stuart; Rubenstein, John L; Jeong, Juhee

    2015-09-01

    Cleft palate is a common birth defect in humans. Therefore, understanding the molecular genetics of palate development is important from both scientific and medical perspectives. Lhx6 and Lhx8 encode LIM homeodomain transcription factors, and inactivation of both genes in mice resulted in profound craniofacial defects including cleft secondary palate. The initial outgrowth of the palate was severely impaired in the mutant embryos, due to decreased cell proliferation. Through genome-wide transcriptional profiling, we discovered that p57(Kip2) (Cdkn1c), encoding a cell cycle inhibitor, was up-regulated in the prospective palate of Lhx6(-/-);Lhx8(-/-) mutants. p57(Kip2) has been linked to Beckwith-Wiedemann syndrome and IMAGe syndrome in humans, which are developmental disorders with increased incidents of palate defects among the patients. To determine the molecular mechanism underlying the regulation of p57(Kip2) by the Lhx genes, we combined chromatin immunoprecipitation, in silico search for transcription factor-binding motifs, and in vitro reporter assays with putative cis-regulatory elements. The results of these experiments indicated that LHX6 and LHX8 regulated p57(Kip2) via both direct and indirect mechanisms, with the latter mediated by Forkhead box (FOX) family transcription factors. Together, our findings uncovered a novel connection between the initiation of palate development and a cell cycle inhibitor via LHX. We propose a model in which Lhx6 and Lhx8 negatively regulate p57(Kip2) expression in the prospective palate area to allow adequate levels of cell proliferation and thereby promote normal palate development. This is the first report elucidating a molecular genetic pathway downstream of Lhx in palate development.

  3. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer

    Science.gov (United States)

    Kuo, Wei-Ying; Hwu, Luen; Wu, Chun-Yi; Lee, Jhih-Shian; Chang, Chi-Wei; Liu, Ren-Shyan

    2017-01-01

    Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV

  4. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer.

    Science.gov (United States)

    Kuo, Wei-Ying; Hwu, Luen; Wu, Chun-Yi; Lee, Jhih-Shian; Chang, Chi-Wei; Liu, Ren-Shyan

    2017-01-01

    Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by (3)H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher (3)H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [(18)F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV

  5. Negative regulation of human growth hormone gene expression by insulin is dependent on hypoxia-inducible factor binding in primary non-tumor pituitary cells.

    Science.gov (United States)

    Vakili, Hana; Jin, Yan; Cattini, Peter A

    2012-09-28

    Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides -496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides -308/-235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (-264/-259) and investigated whether HIF-1 is associated with insulin regulation of "endogenous" hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.

  6. Staphylococcal superantigen-like genes, ssl5 and ssl8, are positively regulated by Sae and negatively by Agr in the Newman strain.

    Science.gov (United States)

    Pantrangi, Madhulatha; Singh, Vineet K; Wolz, Christiane; Shukla, Sanjay K

    2010-07-01

    Some of the staphylococcal superantigen-like (SSL) proteins SSL5, SSL7, SSL9, and SSL11 act as immunomodulatory proteins in Staphylococcus aureus. However, little is known about their regulatory mechanisms. We determined the expression levels of ssl5 and ssl8 in seven clinically important S. aureus strains and their regulatory mechanisms in the Newman strain, which had the highest ssl5 and ssl8 expression. Independent comparisons of ssl5 or ssl8 coding and upstream sequences in these strains identified multiple haplotypes that did not correlate with the differential expression of ssl5 and ssl8, suggesting the role of additional regulatory elements. Using knockout mutant strains of known S. aureus global regulators such as Agr, Sae, and SigB in the Newman strain, we showed that both ssl5 and ssl8 were induced by Sae and repressed by Agr, suggesting that Sae and Agr are the positive and the negative regulators, respectively, of these two ssl genes. Moreover, we observed upregulation of sae in the agr mutant and upregulation of agr in the sae mutant compared with the isogenic Newman strain, suggesting that the Agr and Sae may be inhibiting each other. The SigB mutation did not affect ssl5 and ssl8 expression, but they were downregulated in the agr/sigB double mutant, indicating that SigB probably acts synergistically with Agr in their upregulation.

  7. Regulated Gene Therapy.

    Science.gov (United States)

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  8. Triple Negative Breast Cancer and Metabolic Regulation

    Science.gov (United States)

    2015-08-01

    Lactate Dehydrogenase A is an isoform of lactate dehydrogenase, which catalyzes the conversion of pyruvate to lactate . LDHA is expressed in cancer ...AWARD NUMBER: W81XWH-13-1-0167 TITLE: Triple Negative Breast Cancer and Metabolic Regulation PRINCIPAL INVESTIGATOR: Amy S. Yee, Ph.D...Negative Breast Cancer and Metabolic Regulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0167 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amy S

  9. The effect of negative autoregulation on eukaryotic gene expression

    Science.gov (United States)

    Nevozhay, Dmitry; Adams, Rhys; Murphy, Kevin; Josic, Kresimir; Balázsi, G. Ábor

    2009-03-01

    Negative autoregulation is a frequent motif in gene regulatory networks, which has been studied extensively in prokaryotes. Nevertheless, some effects of negative feedback on gene expression in eukaryotic transcriptional networks remain unknown. We studied how the strength of negative feedback regulation affects the characteristics of gene expression in yeast cells carrying synthetic transcriptional cascades. We observed a drastic reduction of gene expression noise and a change in the shape of the dose-response curve. We explained these experimentally observed effects by stochastic simulations and a simple set of algebraic equations.

  10. Identification of the SLAM Adapter Molecule EAT-2 as a Lupus-Susceptibility Gene That Acts through Impaired Negative Regulation of Dendritic Cell Signaling.

    Science.gov (United States)

    Talaei, Nafiseh; Yu, Tao; Manion, Kieran; Bremner, Rod; Wither, Joan E

    2015-11-15

    We showed previously that C57BL/6 congenic mice with an introgressed homozygous 70 cM (125.6 Mb) to 100 cM (179.8 Mb) interval on c1 from the lupus-prone New Zealand Black (NZB) mouse develop high titers of antinuclear Abs and severe glomerulonephritis. Using subcongenic mice, we found that a genetic locus in the 88-96 cM region was associated with altered dendritic cell (DC) function and synergized with T cell functional defects to promote expansion of pathogenic proinflammatory T cell subsets. In this article, we show that the promoter region of the NZB gene encoding the SLAM signaling pathway adapter molecule EWS-activated transcript 2 (EAT-2) is polymorphic, which results in an ∼ 70% reduction in EAT-2 in DC. Silencing of the EAT-2 gene in DC that lacked this polymorphism led to increased production of IL-12 and enhanced differentiation of T cells to a Th1 phenotype in T cell-DC cocultures, reproducing the phenotype observed for DC from congenic mice with the NZB c1 70-100 cM interval. SLAM signaling was shown to inhibit production of IL-12 by CD40L-activated DCs. Consistent with a role for EAT-2 in this inhibition, knockdown of EAT-2 resulted in increased production of IL-12 by CD40-stimulated DC. Assessment of downstream signaling following CD40 cross-linking in the presence or absence of SLAM cross-linking revealed that SLAM coengagement blocked activation of p38 MAPK and JNK signaling pathways in DC, which was reversed in DC with the NZB EAT-2 allele. We conclude that EAT-2 negatively regulates cytokine production in DC downstream of SLAM engagement and that a genetic polymorphism that disturbs this process promotes the development of lupus.

  11. Pacific white shrimp (Litopenaeus vannamei) vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression.

    Science.gov (United States)

    Chen, Ting; Zhang, Lv-Ping; Wong, Nai-Kei; Zhong, Ming; Ren, Chun-Hua; Hu, Chao-Qun

    2014-03-01

    Ovarian maturation in crustaceans is temporally orchestrated by two processes: oogenesis and vitellogenesis. The peptide hormone vitellogenesis-inhibiting hormone (VIH), by far the most potent negative regulator of crustacean reproduction known, critically modulates crustacean ovarian maturation by suppressing vitellogenin (VTG) synthesis. In this study, cDNA encoding VIH was cloned from the eyestalk of Pacific white shrimp, Litopenaeus vannamei, a highly significant commercial culture species. Phylogenetic analysis suggests that L. vannamei VIH (lvVIH) can be classified as a member of the type II crustacean hyperglycemic hormone family. Northern blot and RT-PCR results reveal that both the brain and eyestalk were the major sources for lvVIH mRNA expression. In in vitro experiments on primary culture of shrimp hepatopancreatic cells, it was confirmed that some endogenous inhibitory factors existed in L. vannamei hemolymph, brain, and eyestalk that suppressed hepatopancreatic VTG gene expression. Purified recombinant lvVIH protein was effective in inhibiting VTG mRNA expression in both in vitro primary hepatopancreatic cell culture and in vivo injection experiments. Injection of recombinant VIH could also reverse ovarian growth induced by eyestalk ablation. Furthermore, unilateral eyestalk ablation reduced the mRNA level of lvVIH in the brain but not in the remaining contralateral eyestalk. Our study, as a whole, provides new insights on VIH regulation of shrimp reproduction: 1) the brain and eyestalk are both important sites of VIH expression and therefore possible coregulators of hepatopancreatic VTG mRNA expression and 2) eyestalk ablation could increase hepatopancreatic VTG expression by transcriptionally abolishing eyestalk-derived VIH and diminishing brain-derived VIH.

  12. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length.

    Science.gov (United States)

    Nakazawa, M; Yabe, N; Ichikawa, T; Yamamoto, Y Y; Yoshizumi, T; Hasunuma, K; Matsui, M

    2001-01-01

    A novel dominant mutant designated 'dwarf in light 1' (dfl1-D) was isolated from screening around 1200 Arabidopsis activation-tagged lines. dfl1-D has a shorter hypocotyl under blue, red and far-red light, but not in darkness. Inhibition of cell elongation in shoots caused an exaggerated dwarf phenotype in the adult plant. The lateral root growth of dfl1-D was inhibited without any reduction of primary root length. The genomic DNA adjacent to the right border of T-DNA was cloned by plasmid rescue. The rescued genomic DNA contained a gene encoding a GH3 homologue. The transcript was highly accumulated in the dfl1-D. The dfl1-D phenotype was confirmed by over-expression of the gene in the wild-type plant. The dfl1-D showed resistance to exogenous auxin treatment. Moreover, over-expression of antisense DFL1 resulted in larger shoots and an increase in the number of lateral roots. These results indicate that the gene product of DFL1 is involved in auxin signal transduction, and inhibits shoot and hypocotyl cell elongation and lateral root cell differentiation in light.

  13. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression.

    Science.gov (United States)

    Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang

    2014-01-01

    The C-terminal domain (CTD, aa 686-741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ.

  14. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression.

    Directory of Open Access Journals (Sweden)

    Yiguo Zhang

    Full Text Available The C-terminal domain (CTD, aa 686-741 of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1 shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein and its shorter isoform LCR-F1/Nrf1β (55-kDa. Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST domain and acidic domain 2 (AD2. Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ.

  15. βig-h3 potentiates the profibrogenic effect of TGFβ signaling on connective tissue progenitor cells through the negative regulation of master chondrogenic genes.

    Science.gov (United States)

    Lorda-Diez, Carlos I; Montero, Juan A; Diaz-Mendoza, Manuel J; Garcia-Porrero, Juan A; Hurle, Juan M

    2013-02-01

    Tendons and cartilage are specialized forms of connective tissues originated from common progenitor cells. Initial stages of differentiation of these tissues are characterized by the formation of cell aggregates, which share many molecular markers. Once differentiated, these cells retain considerable plasticity, and chondral metaplasia of tendon and fibrous connective tissues and eventual ossification often accompany degenerative diseases in the adult musculoskeletal system. While this fact is of great relevance for regenerative medicine and aging biology, its molecular basis remains to be elucidated. Gene expression analysis in several physiological and experimental paradigms suggests that differentiation of tendon and cartilage is regulated by a balance in the expression of chondrogenic versus tenogenic genes in the connective tissue cell precursors. Transforming growth factor β (TGFβ) may function both as a profibrogenic or as a prochondrogenic factor for embryonic limb mesoderm and mesenchymal stem cell cultures, but mice that are null for TGFβ 2 and 3 lack tendons. Here, we identify βig-h3 as a factor downstream TGFβ signaling regulated by Smad 2 and 3, which is highly expressed in the differentiating tendons and joint capsules. Furthermore, gain- and loss-of-function experiments using limb mesoderm micromass cultures show that βig-h3 downregulates the expression of cartilage master genes, including Sox9, type II collagen, and Hif-1α. Positive regulation of Sox9 and type II Collagen observed in micromass cultures grown under hypoxic conditions is prevented by exogenous administration of βIG-H3, and the antichondrogenic influence of βIG-H3 is lost after Hif-1α silencing with shRNA. Collectively, our findings indicate that βig-h3 promotes the fibrogenic influence of TGFβ signaling, neutralizing the prochondrogenic influence of the hypoxic-inducible factor 1 activated by the hypoxic microenvironment characteristic of limb mesenchymal aggregates.

  16. βig-h3 Potentiates the Profibrogenic Effect of TGFβ Signaling on Connective Tissue Progenitor Cells Through the Negative Regulation of Master Chondrogenic Genes

    Science.gov (United States)

    Lorda-Diez, Carlos I.; Montero, Juan A.; Diaz-Mendoza, Manuel J.; Garcia-Porrero, Juan A.

    2013-01-01

    Tendons and cartilage are specialized forms of connective tissues originated from common progenitor cells. Initial stages of differentiation of these tissues are characterized by the formation of cell aggregates, which share many molecular markers. Once differentiated, these cells retain considerable plasticity, and chondral metaplasia of tendon and fibrous connective tissues and eventual ossification often accompany degenerative diseases in the adult musculoskeletal system. While this fact is of great relevance for regenerative medicine and aging biology, its molecular basis remains to be elucidated. Gene expression analysis in several physiological and experimental paradigms suggests that differentiation of tendon and cartilage is regulated by a balance in the expression of chondrogenic versus tenogenic genes in the connective tissue cell precursors. Transforming growth factor β (TGFβ) may function both as a profibrogenic or as a prochondrogenic factor for embryonic limb mesoderm and mesenchymal stem cell cultures, but mice that are null for TGFβ 2 and 3 lack tendons. Here, we identify βig-h3 as a factor downstream TGFβ signaling regulated by Smad 2 and 3, which is highly expressed in the differentiating tendons and joint capsules. Furthermore, gain- and loss-of-function experiments using limb mesoderm micromass cultures show that βig-h3 downregulates the expression of cartilage master genes, including Sox9, type II collagen, and Hif-1α. Positive regulation of Sox9 and type II Collagen observed in micromass cultures grown under hypoxic conditions is prevented by exogenous administration of βIG-H3, and the antichondrogenic influence of βIG-H3 is lost after Hif-1α silencing with shRNA. Collectively, our findings indicate that βig-h3 promotes the fibrogenic influence of TGFβ signaling, neutralizing the prochondrogenic influence of the hypoxic-inducible factor 1 activated by the hypoxic microenvironment characteristic of limb mesenchymal aggregates. PMID

  17. COCHLEATA controls leaf size and secondary inflorescence architecture via negative regulation of UNIFOLIATA (LEAFY ortholog) gene in garden pea Pisum sativum

    Indian Academy of Sciences (India)

    Vishakha Sharma; Swati Chaudhary; Arvind Kumar; Sushil Kumar

    2012-12-01

    UNIFOLIATA [(UNI) or UNIFOLIATA-TENDRILLED ACACIA (UNI-TAC)] expression is known to be negatively regulated by COCHLEATA (COCH) in the differentiating stipules and flowers of Pisum sativum. In this study, additional roles of UNI and COCH in P. sativum were investigated. Comparative phenotyping revealed pleiotropic differences between COCH (UNI-TAC and uni-tac) and coch (UNI-TAC and uni-tac) genotypes of common genetic background. Secondary inflorescences were bracteole-less and bracteolated in COCH and coch genotypes, respectively. In comparison to the leaves and corresponding sub-organs and tissues produced on COCH plants, coch plants produced leaves of 1.5-fold higher biomass, 1.5-fold broader petioles and leaflets that were 1.8-fold larger in span and 1.2-fold dorso-ventrally thicker. coch leaflets possessed epidermal cells 1.3-fold larger in number and size, 1.4-fold larger spongy parenchyma cells and primary vascular bundles with 1.2-fold larger diameter . The transcript levels of UNI were at least 2-fold higher in coch leaves and secondary inflorescences than the corresponding COCH organs. It was concluded that COCH negatively regulated UNI in the differentiating leaves and secondary inflorescences and thereby controlled their sizes and/or structures. It was also surmised that COCH and UNI (LFY homolog) occur together widely in stipulate flowering plants.

  18. FRNK negatively regulates IL-4-mediated inflammation.

    Science.gov (United States)

    Sharma, Ritu; Colarusso, Pina; Zhang, Hong; Stevens, Katarzyna M; Patel, Kamala D

    2015-02-15

    Focal adhesion kinase (FAK)-related nonkinase (PTK2 isoform 6 in humans, hereafter referred to as FRNK) is a cytoskeletal regulatory protein that has recently been shown to dampen lung fibrosis, yet its role in inflammation is unknown. Here, we show for the first time that expression of FRNK negatively regulates IL-4-mediated inflammation in a human model of eosinophil recruitment. Mechanistically, FRNK blocks eosinophil accumulation, firm adhesion and transmigration by preventing transcription and protein expression of VCAM-1 and CCL26. IL-4 activates STAT6 to induce VCAM-1 and CCL26 transcription. We now show that IL-4 also increases GATA6 to induce VCAM-1 expression. FRNK blocks IL-4-induced GATA6 transcription but has little effect on GATA6 protein expression and no effect on STAT6 activation. FRNK can block FAK or Pyk2 signaling and we, thus, downregulated these proteins using siRNA to determine whether signaling from either protein is involved in the regulation of VCAM-1 and CCL26. Knockdown of FAK, Pyk2 or both had no effect on VCAM-1 or CCL26 expression, which suggests that FRNK acts independently of FAK and Pyk2 signaling. Finally, we found that IL-4 induces the late expression of endogenous FRNK. In summary, FRNK represents a novel mechanism to negatively regulate IL-4-mediated inflammation.

  19. Nitric oxide negatively regulates mammalian adult neurogenesis

    Science.gov (United States)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  20. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death

    Directory of Open Access Journals (Sweden)

    Wei-Kung Chen

    2015-11-01

    Full Text Available During hypoxia, gene expression is altered by various transcription factors. Insulin-like growth factor-II (IGF2 is known to be induced by hypoxia, which binds to IGF2 receptor IGF2R that acts like a G protein-coupled receptor, might cause pathological hypertrophy or activation of the mitochondria-mediated apoptosis pathway. Cyclic adenosine monophosphate (cAMP responsive element-binding protein (CREB is central to second messenger-regulated transcription and plays a critical role in the cardiomyocyte survival pathway. In this study, we found that IGF2R level was enhanced in H9c2 cardiomyoblasts exposed to hypoxia in a time-dependent manner but was down-regulated by CREB expression. The over-expression of CREB in H9c2 cardiomyoblasts suppressed the induction of hypoxia-induced IGF2R expression levels and reduced cell apoptosis. Gel shift assay results further indicated that CREB binds to the promoter sequence of IGF2R. With a luciferase assay method, we further observed that CREB represses IGF2R promoter activity. These results suggest that CREB plays an important role in the inhibition of IGF2R expression by binding to the IGF2R promoter and further suppresses H9c2 cardiomyoblast cell apoptosis induced by IGF2R signaling under hypoxic conditions.

  1. LINGO-1 negatively regulates myelination by oligodendrocytes.

    Science.gov (United States)

    Mi, Sha; Miller, Robert H; Lee, Xinhua; Scott, Martin L; Shulag-Morskaya, Svetlane; Shao, Zhaohui; Chang, Jufang; Thill, Greg; Levesque, Melissa; Zhang, Mingdi; Hession, Cathy; Sah, Dinah; Trapp, Bruce; He, Zhigang; Jung, Vincent; McCoy, John M; Pepinsky, R Blake

    2005-06-01

    The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.

  2. The trpE gene negatively regulates differentiation of heterocysts at the level of induction in Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Videau, Patrick; Cozy, Loralyn M; Young, Jasmine E; Ushijima, Blake; Oshiro, Reid T; Rivers, Orion S; Burger, Andrew H; Callahan, Sean M

    2015-01-01

    Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream of trpE bound a central regulator of differentiation, HetR, in vitro and was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotype in vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in the trpE mutant.

  3. Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae.

    Science.gov (United States)

    Matsuno, Kiyoshi; Yamada, Yasuhiro; Lee, Chang-Kwon; Nihira, Takuya

    2004-01-01

    The Streptomyces virginiae gamma-butyrolactone autoregulator virginiae butanolide is a low-molecular-weight Streptomyces hormone eliciting virginiamycin biosynthesis through its binding to the specific receptor protein, BarA. Immediately downstream of barA lies barB, the transcription of which is tightly repressed by BarA in the absence of virginiae butanolide and derepressed in its presence. Thus, BarB is next to BarA on the virginiae butanolide-BarA signaling cascade. An in-frame 279-bp deletion was introduced into the barB allele, which rendered it inactive by eliminating the majority of the coding region, including the helix-turn-helix DNA-binding motif. No significant change was observed with the Delta barB mutant with respect to the timing or amount of virginiae butanolide production, or the morphological differentiation on solid media, indicating that barB neither participates in virginiae butanolide biosynthesis nor in cytodifferentiation. In contrast, analysis of virginiamycin production in the Delta barB mutant revealed that production of both virginiamycin M(1) and virginiamycin S occurred immediately after virginiae butanolide production, 2-3 h earlier than in the wild-type strain, indicating that BarB participates in the temporal retardation of virginiamycin production after virginiae butanolide inactivates the repressor function of BarA. RT-PCR analysis of the transcription of several genes surrounding barA-barB by the Delta barB mutant indicated that BarB plays a negative regulatory role, directly or indirectly, in the transcription of barZ, vmsR, and orf5 located upstream of barB.

  4. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  5. The Long Intron 1 of Growth Hormone Gene from Reeves' Turtle (Chinemys reevesii) Correlates with Negatively Regulated GH Expression in Four Cell Lines.

    Science.gov (United States)

    Liu, Wen-Sheng; Ma, Jing-E; Li, Wei-Xia; Zhang, Jin-Ge; Wang, Juan; Nie, Qing-Hua; Qiu, Feng-Fang; Fang, Mei-Xia; Zeng, Fang; Wang, Xing; Lin, Xi-Ran; Zhang, Li; Chen, Shao-Hao; Zhang, Xi-Quan

    2016-04-12

    Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves' turtle (Chinemys reevesii) have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH) cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp), comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS) of the turtle's GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO) cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH) gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves' turtle might correlate with downregulated gene expression.

  6. The Long Intron 1 of Growth Hormone Gene from Reeves’ Turtle (Chinemys reevesii Correlates with Negatively Regulated GH Expression in Four Cell Lines

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Liu

    2016-04-01

    Full Text Available Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp, comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.

  7. Noise Control in Gene Regulatory Networks with Negative Feedback.

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  8. Wolbachia-induced aae-miR-12 miRNA negatively regulates the expression of MCT1 and MCM6 genes in Wolbachia-infected mosquito cell line.

    Directory of Open Access Journals (Sweden)

    Solomon Osei-Amo

    Full Text Available BACKGROUND: Best recognized for its role in manipulating host reproduction, the parasitic gram-negative Wolbachia pipientis is known to colonize a wide range of invertebrates. The endosymbiotic bacterium has recently been shown to cause a life-shortening effect as well as inhibiting replication of arboviruses in Aedes aegypti; although the molecular mechanisms behind these effects are largely unknown. MicroRNAs (miRNAs have been determined to have a wide range of roles in regulating gene expression in eukaryotes. A recent study showed that several A. aegypti mosquito miRNAs are differentially expressed when infected with Wolbachia. METHODOLOGY/PRINCIPAL FINDINGS: Based on the prior knowledge that one of these miRNAs, aae-miR-12, is differentially expressed in mosquitoes infected with Wolbachia, we aimed to determine any significance of this mediation. We also set out to characterize the target genes of this miRNA in the A. aegpyti genome. Bioinformatic approaches predicted a list of potential target genes and subsequent functional analyses confirmed that two of these, DNA replication licensing (MCM6 and monocarboxylate transporter (MCT1, are under the regulative control of aae-miR-12. We also demonstrated that aae-miR-12 is critical in the persistence of Wolbachia in the host cell. CONCLUSIONS/SIGNIFICANCE: Our study has identified two target genes of aae-miR-12, a differentially expressed mosquito miRNA in Wolbachia-infected cells, and determined that the miRNA affects Wolbachia density in the host cells.

  9. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2 and TcJAMYC4

    Directory of Open Access Journals (Sweden)

    Sangram Keshari Lenka

    2015-02-01

    Full Text Available Taxus cell suspension culture is a sustainable technology for the industrial production of paclitaxel (Taxol®, a highly modified diterpene anti-cancer agent. The methyl jasmonate (MJ-mediated paclitaxel biosynthetic pathway is not fully characterized, making metabolic engineering efforts difficult. Here, promoters of seven genes (TASY, T5αH, DBAT, DBBT, PAM, BAPT and DBTNBT, encoding enzymes of the paclitaxel biosynthetic pathway were isolated and used to drive MJ-inducible expression of a GUS reporter construct in transiently transformed Taxus cells, showing that elicitation of paclitaxel production by MJ is regulated at least in part at the level of transcription. The paclitaxel biosynthetic pathway promoters contained a large number of E-box sites (CANNTG, similar to the binding sites for the key MJ-inducible transcription factor AtMYC2 from Arabidopsis thaliana. Three MJ-inducible MYC transcription factors similar to AtMYC2 (TcJAMYC1, TcJAMYC2 and TcJAMYC4 were identified in Taxus. Transcriptional regulation of paclitaxel biosynthetic pathway promoters by transient over expression of TcJAMYC transcription factors indicated a negative rather than positive regulatory role of TcJAMYCs on paclitaxel biosynthetic gene expression.

  10. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  11. Cultural differences in hedonic emotion regulation after a negative event.

    Science.gov (United States)

    Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G

    2014-08-01

    Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.

  12. Combinatorial Gene Regulation Using Auto-Regulation

    Science.gov (United States)

    Hermsen, Rutger; Ursem, Bas; ten Wolde, Pieter Rein

    2010-01-01

    As many as 59% of the transcription factors in Escherichia coli regulate the transcription rate of their own genes. This suggests that auto-regulation has one or more important functions. Here, one possible function is studied. Often the transcription rate of an auto-regulator is also controlled by additional transcription factors. In these cases, the way the expression of the auto-regulator responds to changes in the concentrations of the “input” regulators (the response function) is obviously affected by the auto-regulation. We suggest that, conversely, auto-regulation may be used to optimize this response function. To test this hypothesis, we use an evolutionary algorithm and a chemical–physical model of transcription regulation to design model cis-regulatory constructs with predefined response functions. In these simulations, auto-regulation can evolve if this provides a functional benefit. When selecting for a series of elementary response functions—Boolean logic gates and linear responses—the cis-regulatory regions resulting from the simulations indeed often exploit auto-regulation. Surprisingly, the resulting constructs use auto-activation rather than auto-repression. Several design principles show up repeatedly in the simulation results. They demonstrate how auto-activation can be used to generate sharp, switch-like activation and repression circuits and how linearly decreasing response functions can be obtained. Auto-repression, on the other hand, resulted only when a high response speed or a suppression of intrinsic noise was also selected for. The results suggest that, while auto-repression may primarily be valuable to improve the dynamical properties of regulatory circuits, auto-activation is likely to evolve even when selection acts on the shape of response function only. PMID:20548950

  13. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    Science.gov (United States)

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  14. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  15. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bren Anat

    2011-07-01

    Full Text Available Abstract Background Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of the most common network motifs is negative auto-regulation, in which a transcription factor represses its own production. Negative auto-regulation has several potential functions: it can shorten the response time (time to reach halfway to steady-state, stabilize expression against noise, and linearize the gene's input-output response curve. This latter function of negative auto-regulation, which increases the range of input signals over which downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether negative auto-regulation preserves this function also in the context of a natural system, where it is embedded within many additional interactions. To address this, we studied the negative auto-regulation motif in the arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory network. Results We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted. We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range, by coupling the transcription factor protein level to the input signal. Conclusions Here we demonstrate that the negative auto-regulation motif in the native arabinose system of Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative regulatory systems. This function may contribute to explaining the common occurrence of negative auto-regulation

  16. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli.

    Science.gov (United States)

    Madar, Daniel; Dekel, Erez; Bren, Anat; Alon, Uri

    2011-07-12

    Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of the most common network motifs is negative auto-regulation, in which a transcription factor represses its own production. Negative auto-regulation has several potential functions: it can shorten the response time (time to reach halfway to steady-state), stabilize expression against noise, and linearize the gene's input-output response curve. This latter function of negative auto-regulation, which increases the range of input signals over which downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether negative auto-regulation preserves this function also in the context of a natural system, where it is embedded within many additional interactions. To address this, we studied the negative auto-regulation motif in the arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory network. We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted. We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range, by coupling the transcription factor protein level to the input signal. Here we demonstrate that the negative auto-regulation motif in the native arabinose system of Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative regulatory systems. This function may contribute to explaining the common occurrence of negative auto-regulation in biological systems.

  17. Drosophila RSK negatively regulates bouton number at the neuromuscular junction.

    Science.gov (United States)

    Fischer, Matthias; Raabe, Thomas; Heisenberg, Martin; Sendtner, Michael

    2009-03-01

    Ribosomal S6 kinases (RSKs) are growth factor-regulated serine-threonine kinases participating in the RAS-ERK signaling pathway. RSKs have been implicated in memory formation in mammals and flies. To characterize the function of RSK at the synapse level, we investigated the effect of mutations in the rsk gene on the neuromuscular junction (NMJ) in Drosophila larvae. Immunostaining revealed transgenic expressed RSK in presynaptic regions. In mutants with a full deletion or an N-terminal partial deletion of rsk, an increased bouton number was found. Restoring the wild-type rsk function in the null mutant with a genomic rescue construct reverted the synaptic phenotype, and overexpression of the rsk-cDNA in motoneurons reduced bouton numbers. Based on previous observations that RSK interacts with the Drosophila ERK homologue Rolled, genetic epistasis experiments were performed with loss- and gain-of-function mutations in Rolled. These experiments provided evidence that RSK mediates its negative effect on bouton formation at the Drosophila NMJ by inhibition of ERK signaling.

  18. Pharmacogenomics genes show varying perceptibility to microRNA regulation

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Vinther, Jeppe; Shomron, Noam

    2011-01-01

    The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug...

  19. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of activ

  20. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  1. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  2. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    Science.gov (United States)

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis.

  3. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  4. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  5. Negative Regulation of Tumor Suppressor p53 by microRNA miR-504

    OpenAIRE

    2010-01-01

    Tumor suppressor p53 plays a central role in tumor prevention. p53 protein levels and activity are under a tight and complex regulation in cells to maintain the proper function of p53. microRNAs play a key role in the regulation of gene expression. Here we report the regulation of p53 through microRNA miR-504. miR-504 acts as a negative regulator of human p53 through its direct binding to two sites in p53 3′-UTR. Overexpression of miR-504 decreases p53 protein levels and functions in cells, i...

  6. How Novice EFL Teachers Regulate Their Negative Emotions

    Science.gov (United States)

    Arizmendi Tejeda, Silvia; Gillings de González, Barbara Scholes; López Martínez, Cecilio Luis de Jesús

    2016-01-01

    This research report shares the findings that emerged from a qualitative study in which the main objective was to discover whether or not novice English as a foreign language teachers regulate their negative emotions during their initial teaching practice, and if so, how they do this. The data were collected by semi-structured interviews and…

  7. The power of extraverts: testing positive and negative mood regulation

    Directory of Open Access Journals (Sweden)

    Gonzalo Hervas

    Full Text Available Extraversion is a personality trait which has been systematically related to positive affect and well-being. One of the mechanisms that may account for these positive outcomes is the ability to regulate the responses to positive, as well as negative, moods. Prior research has found that extraverts' higher positive mood maintenance could explain their higher levels of positive affect. However, research exploring differences between extraverts and introverts in negative mood regulation has yielded mixed results. The aim of the current study was explore the role of different facets of mood regulation displayed by extraverts, ambiverts, and introverts. After been exposed to a sad vs. happy mood induction, participants underwent a mood regulation task. Extraverts and ambiverts exhibited higher positive mood regulation than introverts, but similar mood repair. Thus, this research highlights the importance of positive mood regulation in the psychological functioning of extraverts, and opens new conceptualizations for developing interventions for introverts to improve their positive mood regulation and, hence, overall positive affect and well-being.

  8. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  9. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  10. Susi, a negative regulator of Drosophila PI3-kinase.

    Science.gov (United States)

    Wittwer, Franz; Jaquenoud, Malika; Brogiolo, Walter; Zarske, Marcel; Wüstemann, Philipp; Fernandez, Rafael; Stocker, Hugo; Wymann, Matthias P; Hafen, Ernst

    2005-06-01

    The Phosphatidylinositol-3 kinase/Protein Kinase B (PI3K/PKB) signaling pathway controls growth, metabolism, and lifespan in animals, and deregulation of its activity is associated with diabetes and cancer in humans. Here, we describe Susi, a coiled-coil domain protein that acts as a negative regulator of insulin signaling in Drosophila. Whereas loss of Susi function increases body size, overexpression of Susi reduces growth. We provide genetic evidence that Susi negatively regulates dPI3K activity. Susi directly binds to dP60, the regulatory subunit of dPI3K. Since Susi has no overt similarity to known inhibitors of PI3K/PKB signaling, it defines a novel mechanism by which this signaling cascade is kept in check. The fact that Susi is expressed in a circadian rhythm, with highest levels during the night, suggests that Susi attenuates insulin signaling during the fasting period.

  11. Akt is negatively regulated by the MULAN E3 ligase

    Institute of Scientific and Technical Information of China (English)

    Seunghee Bae; Jongdoo Kim; Hong-Duck Um; In-Chul Park; Su-Jae Lee; Seon Young Nam; Young-Woo Jin; Jae Ho Lee; Sungkwan An; Sun-Yong Kim; Jin Hyuk Jung; Yeongmin Yoon; Hwa Jun Cha; Hyunjin Lee; Karam Kim; Jongran Kim; In-Sook An

    2012-01-01

    The serine/threonine kinase Akt functions in multiple cellular processes,including cell survival and tumor development.Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation.In this study,we identified a negative regulator of Akt,MULAN,which possesses both a RING finger domain and E3 ubiquitin ligase activity.Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo.Other molecular assays demonstrated that phosphorylated Akt is a substantive target for both interaction with MULAN and ubiquitination by MULAN.The results of the functional studies suggest that the degradation of Akt by MULAN suppresses cell proliferation and viability.These data provide insight into the Akt ubiquitination signaling network.

  12. How Novice EFL Teachers Regulate Their Negative Emotions

    Directory of Open Access Journals (Sweden)

    Silvia Arizmendi Tejeda

    2016-04-01

    Full Text Available This research report shares the findings that emerged from a qualitative study in which the main objective was to discover whether or not novice English as a foreign language teachers regulate their negative emotions during their initial teaching practice, and if so, how they do this. The data were collected by semi-structured interviews and observations, and analyzed by microanalysis and constant comparative analysis. The participants were five novice teachers who study English at the same university, and who were giving classes as part of their internship. The results from this research revealed that these particular novice English as a foreign language teachers use different emotional strategies to regulate their negative emotions.

  13. Regulation of positive and negative emotion: Effects of sociocultural context

    Directory of Open Access Journals (Sweden)

    Sara A. Snyder

    2013-07-01

    Full Text Available Previous research has demonstrated that the use of emotion regulation strategies can vary by sociocultural context. In a previous study, we reported changes in the use of two different emotion regulation strategies at an annual alternative cultural event, Burning Man (McRae, Heller, John, & Gross, 2011. In this sociocultural context, as compared to home, participants reported less use of expressive suppression (a strategy generally associated with maladaptive outcomes, and greater use of cognitive reappraisal (a strategy associated with adaptive outcomes. What remained unclear was whether these changes in self-reported emotion regulation strategy use were characterized by changes in the regulation of positive emotion, negative emotion, or both. We addressed this issue in the current study by asking Burning Man participants separate questions about positive and negative emotion. Using multiple datasets, we not only replicated our previous findings, but also found that the decreased use of suppression is primarily driven by reports of decreased suppression of positive emotion at Burning Man. By contrast, the reported increased use of reappraisal is not characterized by differential reappraisal of positive and negative emotion at Burning Man. Moreover, we observed novel individual differences in the magnitude of these effects. The contextual changes in self-reported suppression that we report are strongest for men and younger participants. For those who had previously attended Burning Man, we observed lower levels of self-reported suppression in both sociocultural contexts: Burning Man and home. These findings have implications for understanding the ways in which certain sociocultural contexts may decrease suppression, and possibly minimize its associated maladaptive effects.

  14. Detection of the common resistance genes in Gram-negative bacteria using gene chip technology

    Directory of Open Access Journals (Sweden)

    C Ting

    2013-01-01

    Full Text Available Objective: To design a resistance gene detection chip that could, in parallel, detect common clinical drug resistance genes of Gram-negative bacteria. Materials and Methods: Seventy clinically significant Gram-negative bacilli (Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, Acinetobacter baumannii were collected. According to the known resistance gene sequences, we designed and synthesized primers and probes, which were used to prepare resistance gene detection chips, and finally we hybridized and scanned the gene detection chips. Results: The results between the gene chip and polymerase chain reaction (PCR were compared. The rate was consistently 100% in the eight kinds of resistance genes tested (TEM, SHV, CTX-M, DHA, CIT, VIM, KPC, OXA-23. One strain of Pseudomonas aeruginosa had the IMP, but it was not found by gene chip. Conclusion: The design of Gram-negative bacteria-resistant gene detection chip had better application value.

  15. RHD gene polymorphism among RhD-negative Han Chinese

    Institute of Scientific and Technical Information of China (English)

    徐群; 张建业; 王勤友; 张世训; 司桂玲

    2003-01-01

    Objective To evaluate the status of eight RHD specific exons in 131 Han Chinese blood donors who were classified as RhD-negative by serological methods and explore the genomic structure of RHD gene among the Han Chinese. The Rh blood group system has the highest prevalence of polymorphisms among human blood group systems and is clinically significant in transfusion medicine. The Rh antigens are expressed on polypeptides encoded by two highly homologous genes, RHD and RHCE. Recent molecular studies have shown that the RhD-negative trait could be generated by multiple genetic mechanisms and is ethnic group-dependent.Methods The polymerase chain reaction using-sequence specific primers (PCR-SSP) was used to amplify exons 2, 3, 4, 5, 6, 7, 9 and 10 of RHD gene and exons 1, 2 and 5 of RHCE gene, as well as intron 4 in each of them.Results The 131 cases of RhD-negative phenotypes consisted of 60 ccee, 58 Ccee, 5 ccEe, 5 CcEe and 3 CCee. Among them, 83 with the Rh ccee or ccEe phenotypes (63.4%) lacked the eight RHD exons indicated above, while 26 cases with the Rh Ccee, CCee, CcEe phenotypes (19.9%) had all the RHD exons examined. Twenty-two individuals with the Ccee, CCee, CcEe phenotypes (16.8%) carried at least one RHD exon. The phenotypes of the RhD negative individuals carrying the RHD gene were Rh CC or Cc, but not cc. Conclusions Three classes of RhD-negative polymorphisms among a population of Han Chinese were observed. Antigen association analysis suggested the existence of a novel class of RhD-negative associated haplotype in Han Chinese. This haplotype consisted of a normal RHCE allele and a nonfunctional RHD gene. It may be beneficial to redefine the RhD-negative blood group among Chinese populations upon clarification of the mechanisms of RHD gene expression and RhD antigen immunization.

  16. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  17. Negative regulation of bacterial quorum sensing tunes public goods cooperation.

    Science.gov (United States)

    Gupta, Rashmi; Schuster, Martin

    2013-11-01

    Bacterial quorum sensing (QS) often coordinates the expression of other, generally more costly public goods involved in virulence and nutrient acquisition. In many Proteobacteria, the basic QS circuitry consists of a synthase that produces a diffusible acyl-homoserine lactone and a cognate receptor that activates public goods expression. In some species, the circuitry also contains negative regulators that have the potential to modulate the timing and magnitude of activation. In this study, we experimentally investigated the contribution of this regulatory function to the evolutionary stability of public goods cooperation in the opportunistic pathogen Pseudomonas aeruginosa. We compared fitness and public goods expression rates of strains lacking either qteE or qscR, each encoding a distinct negative regulator, with those of the wild-type parent and a signal-blind receptor mutant under defined growth conditions. We found that (1) qteE and qscR mutations behave virtually identically and have a stronger effect on the magnitude than on the timing of expression, (2) high expression in qteE and qscR mutants imposes a metabolic burden under nutrient conditions that advance induction and (3) high expression in qteE and qscR mutants increases population growth when QS is required, but also permits invasion by both wild-type and receptor mutant strains. Our data indicate that negative regulation of QS balances the costs and benefits of public goods by attenuating expression after transition to the induced state. As the cells cannot accurately assess the amount of cooperation needed, such bet-hedging would be advantageous in changing parasitic and nonparasitic environments.

  18. RAGE, Receptor of Advanced Glycation Endoproducts, Negatively Regulates Chondrocytes Differentiation

    Science.gov (United States)

    Kurosaka, Yuko; Nishimura, Haruka; Tanabe, Motoki; Takakura, Yuuki; Iwai, Keisuke; Waki, Takuya; Fujita, Takashi

    2014-01-01

    RAGE, receptor for advanced glycation endoproducts (AGE), has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE) demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA) partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms. PMID:25275461

  19. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Won Hee Jung

    Full Text Available The fungal pathogen Cryptococcus neoformans is a major cause of illness in immunocompromised individuals such as AIDS patients. The ability of the fungus to acquire nutrients during proliferation in host tissue and the ability to elaborate a polysaccharide capsule are critical determinants of disease outcome. We previously showed that the GATA factor, Cir1, is a major regulator both of the iron uptake functions needed for growth in host tissue and the key virulence factors such as capsule, melanin and growth at 37°C. We are interested in further defining the mechanisms of iron acquisition from inorganic and host-derived iron sources with the goal of understanding the nutritional adaptation of C. neoformans to the host environment. In this study, we investigated the roles of the HAP3 and HAPX genes in iron utilization and virulence. As in other fungi, the C. neoformans Hap proteins negatively influence the expression of genes encoding respiratory and TCA cycle functions under low-iron conditions. However, we also found that HapX plays both positive and negative roles in the regulation of gene expression, including a positive regulatory role in siderophore transporter expression. In addition, HapX also positively regulated the expression of the CIR1 transcript. This situation is in contrast to the negative regulation by HapX of genes encoding GATA iron regulatory factors in Aspergillus nidulans and Schizosaccharomyces pombe. Although both hapX and hap3 mutants were defective in heme utilization in culture, only HapX made a contribution to virulence, and loss of HapX in a strain lacking the high-affinity iron uptake system did not cause further attenuation of disease. Therefore, HapX appears to have a minimal role during infection of mammalian hosts and instead may be an important regulator of environmental iron uptake functions. Overall, these results indicated that C. neoformans employs multiple strategies for iron acquisition during infection.

  20. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Won Hee Jung

    2010-11-01

    Full Text Available The fungal pathogen Cryptococcus neoformans is a major cause of illness in immunocompromised individuals such as AIDS patients. The ability of the fungus to acquire nutrients during proliferation in host tissue and the ability to elaborate a polysaccharide capsule are critical determinants of disease outcome. We previously showed that the GATA factor, Cir1, is a major regulator both of the iron uptake functions needed for growth in host tissue and the key virulence factors such as capsule, melanin and growth at 37°C. We are interested in further defining the mechanisms of iron acquisition from inorganic and host-derived iron sources with the goal of understanding the nutritional adaptation of C. neoformans to the host environment. In this study, we investigated the roles of the HAP3 and HAPX genes in iron utilization and virulence. As in other fungi, the C. neoformans Hap proteins negatively influence the expression of genes encoding respiratory and TCA cycle functions under low-iron conditions. However, we also found that HapX plays both positive and negative roles in the regulation of gene expression, including a positive regulatory role in siderophore transporter expression. In addition, HapX also positively regulated the expression of the CIR1 transcript. This situation is in contrast to the negative regulation by HapX of genes encoding GATA iron regulatory factors in Aspergillus nidulans and Schizosaccharomyces pombe. Although both hapX and hap3 mutants were defective in heme utilization in culture, only HapX made a contribution to virulence, and loss of HapX in a strain lacking the high-affinity iron uptake system did not cause further attenuation of disease. Therefore, HapX appears to have a minimal role during infection of mammalian hosts and instead may be an important regulator of environmental iron uptake functions. Overall, these results indicated that C. neoformans employs multiple strategies for iron acquisition during infection.

  1. INTERFEROME: the database of interferon regulated genes

    OpenAIRE

    Samarajiwa, Shamith A.; Forster, Sam; Auchettl, Katie; Hertzog, Paul J.

    2008-01-01

    INTERFEROME is an open access database of types I, II and III Interferon regulated genes (http://www.interferome.org) collected from analysing expression data sets of cells treated with IFNs. This database of interferon regulated genes integrates information from high-throughput experiments with annotation, ontology, orthologue sequences from 37 species, tissue expression patterns and gene regulatory information to enable a detailed investigation of the molecular mechanisms underlying IFN bio...

  2. MEIS1 functions as a potential AR negative regulator

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Liang [Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing 100853 (China); Department of Urology, Civil Aviation General Hospital/Civil Aviation Medical College of Peking University, Beijing 100123 (China); Li, Mingyang [Department of Gastroenterology, Nan Lou Division, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing 100853 (China); Feng, Fan [Department of Pharmacy, General Hospital of Shenyang Military Command, Shenyang 110016 (China); Yang, Yutao [Beijing Institute for Neuroscience, Capital Medical University, Beijing 100069 (China); Hang, Xingyi [National Scientific Data Sharing Platform for Population and Health, Beijing 100730 (China); Cui, Jiajun, E-mail: cuijn@ucmail.uc.edu [Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States); Gao, Jiangping, E-mail: jpgao@163.com [Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing 100853 (China)

    2014-10-15

    The androgen receptor (AR) plays critical roles in human prostate carcinoma progression and transformation. However, the activation of AR is regulated by co-regulators. MEIS1 protein, the homeodomain transcription factor, exhibited a decreased level in poor-prognosis prostate tumors. In this study, we investigated a potential interaction between MEIS1 and AR. We found that overexpression of MEIS1 inhibited the AR transcriptional activity and reduced the expression of AR target gene. A potential protein–protein interaction between AR and MEIS1 was identified by the immunoprecipitation and GST pull-down assays. Furthermore, MEIS1 modulated AR cytoplasm/nucleus translocation and the recruitment to androgen response element in prostate specific antigen (PSA) gene promoter sequences. In addition, MEIS1 promoted the recruitment of NCoR and SMRT in the presence of R1881. Finally, MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells. Taken together, our data suggests that MEIS1 functions as a novel AR co-repressor. - Highlights: • A potential interaction was identified between MEIS1 and AR signaling. • Overexpression of MEIS1 reduced the expression of AR target gene. • MEIS1 modulated AR cytoplasm/nucleus translocation. • MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells.

  3. Positive and Negative Regulation of Poly(A) Nuclease

    Science.gov (United States)

    Mangus, David A.; Evans, Matthew C.; Agrin, Nathan S.; Smith, Mandy; Gongidi, Preetam; Jacobson, Allan

    2004-01-01

    PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1p's carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo. PMID:15169912

  4. Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module.

    Science.gov (United States)

    Baima, Simona; Forte, Valentina; Possenti, Marco; Peñalosa, Andrés; Leoni, Guido; Salvi, Sergio; Felici, Barbara; Ruberti, Ida; Morelli, Giorgio

    2014-06-01

    The role of auxin as main regulator of vascular differentiation is well established, and a direct correlation between the rate of xylem differentiation and the amount of auxin reaching the (pro)cambial cells has been proposed. It has been suggested that thermospermine produced by ACAULIS5 (ACL5) and bushy and dwarf2 (BUD2) is one of the factors downstream to auxin contributing to the regulation of this process in Arabidopsis. Here, we provide an in-depth characterization of the mechanism through which ACL5 modulates xylem differentiation. We show that an increased level of ACL5 slows down xylem differentiation by negatively affecting the expression of homeodomain-leucine zipper (HD-ZIP) III and key auxin signaling genes. This mechanism involves the positive regulation of thermospermine biosynthesis by the HD-ZIP III protein Arabidopsis thaliana homeobox8 tightly controlling the expression of ACL5 and BUD2. In addition, we show that the HD-ZIP III protein REVOLUTA contributes to the increased leaf vascularization and long hypocotyl phenotype of acl5 likely by a direct regulation of auxin signaling genes such as like auxin resistant2 (LAX2) and LAX3. We propose that proper formation and differentiation of xylem depend on a balance between positive and negative feedback loops operating through HD-ZIP III genes.

  5. Gene-level integrated metric of negative selection (GIMS prioritizes candidate genes for nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Matthew G Sampson

    Full Text Available Nephrotic syndrome (NS gene discovery efforts are now occurring in small kindreds and cohorts of sporadic cases. Power to identify causal variants in these groups beyond a statistical significance threshold is challenging due to small sample size and/or lack of family information. There is a need to develop novel methods to identify NS-associated variants. One way to determine putative functional relevance of a gene is to measure its strength of negative selection, as variants in genes under strong negative selection are more likely to be deleterious. We created a gene-level, integrated metric of negative selection (GIMS score for 20,079 genes by combining multiple comparative genomics and population genetics measures. To understand the utility of GIMS for NS gene discovery, we examined this score in a diverse set of NS-relevant gene sets. These included genes known to cause monogenic forms of NS in humans as well as genes expressed in the cells of the glomerulus and, particularly, the podocyte. We found strong negative selection in the following NS-relevant gene sets: (1 autosomal-dominant Mendelian focal segmental glomerulosclerosis (FSGS genes (p = 0.03 compared to reference, (2 glomerular expressed genes (p = 4×10(-23, and (3 predicted podocyte genes (p = 3×10(-9. Eight genes causing autosomal dominant forms of FSGS had a stronger combined score of negative selection and podocyte enrichment as compared to all other genes (p = 1 x 10(-3. As a whole, recessive FSGS genes were not enriched for negative selection. Thus, we also created a transcript-level, integrated metric of negative selection (TIMS to quantify negative selection on an isoform level. These revealed transcripts of known autosomal recessive disease-causing genes that were nonetheless under strong selection. We suggest that a filtering strategy that includes measuring negative selection on a gene or isoform level could aid in identifying NS-related genes. Our GIMS and TIMS

  6. Gene-level integrated metric of negative selection (GIMS) prioritizes candidate genes for nephrotic syndrome.

    Science.gov (United States)

    Sampson, Matthew G; Gillies, Christopher E; Ju, Wenjun; Kretzler, Matthias; Kang, Hyun Min

    2013-01-01

    Nephrotic syndrome (NS) gene discovery efforts are now occurring in small kindreds and cohorts of sporadic cases. Power to identify causal variants in these groups beyond a statistical significance threshold is challenging due to small sample size and/or lack of family information. There is a need to develop novel methods to identify NS-associated variants. One way to determine putative functional relevance of a gene is to measure its strength of negative selection, as variants in genes under strong negative selection are more likely to be deleterious. We created a gene-level, integrated metric of negative selection (GIMS) score for 20,079 genes by combining multiple comparative genomics and population genetics measures. To understand the utility of GIMS for NS gene discovery, we examined this score in a diverse set of NS-relevant gene sets. These included genes known to cause monogenic forms of NS in humans as well as genes expressed in the cells of the glomerulus and, particularly, the podocyte. We found strong negative selection in the following NS-relevant gene sets: (1) autosomal-dominant Mendelian focal segmental glomerulosclerosis (FSGS) genes (p = 0.03 compared to reference), (2) glomerular expressed genes (p = 4×10(-23)), and (3) predicted podocyte genes (p = 3×10(-9)). Eight genes causing autosomal dominant forms of FSGS had a stronger combined score of negative selection and podocyte enrichment as compared to all other genes (p = 1 x 10(-3)). As a whole, recessive FSGS genes were not enriched for negative selection. Thus, we also created a transcript-level, integrated metric of negative selection (TIMS) to quantify negative selection on an isoform level. These revealed transcripts of known autosomal recessive disease-causing genes that were nonetheless under strong selection. We suggest that a filtering strategy that includes measuring negative selection on a gene or isoform level could aid in identifying NS-related genes. Our GIMS and TIMS scores are

  7. Gibberellins negatively regulate light-induced nitrate reductase activity in Arabidopsis seedlings.

    Science.gov (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Rongzhi; Wang, Liguang; Bi, Yurong

    2011-12-15

    In the present study, the role of phytohormone gibberellins (GAs) on regulating the nitrate reductase (NR) activity was tested in Arabidopsis seedlings. The NR activity in light-grown Col-0 seedlings was reduced by exogenous GA₃ (an active form of GAs), but enhanced by exogenous paclobutrazol (PAC, a gibberellin biosynthesis inhibitor), suggesting that GAs negatively regulate the NR activity in light-grown seedlings. Light is known to influence the NR activity through both photosynthesis and phytochromes. When etiolated seedlings were transferred to white or red light, both exogenously applied GA₃ and PAC were found to function on the NR activity only in the presence of sucrose, implying that GAs are not involved in light signaling-induced but negatively regulate photoproducts-induced NR activity. NR is regulated by light mainly at two levels: transcript level and post-translational level. Our reverse transcription (RT)-PCR assays showed that GAs did not affect the transcript levels of NIA1 and NIA2, two genes that encode NR proteins. But the divalent cations (especially Mg²⁺) were required for GAs negative regulation of NR activity, in view of the importance of divalent cations during the process of post-translational regulation of NR activity, which indicates that GAs very likely regulate the NR activity at the post-translational level. In the following dark-light shift analyses, GAs were found to accelerate dark-induced decrease, but retard light-induced increase of the NR activity. Furthermore, it was observed that application of G₃ or PAC could impair diurnal variation of the NR activity. These results collectively indicate that GAs play a negative role during light regulation of NR activity in nature.

  8. Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling.

    Directory of Open Access Journals (Sweden)

    Yu-Chen Tsai

    Full Text Available Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.

  9. Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling.

    Science.gov (United States)

    Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y Henry; Pflugfelder, Gert O

    2015-01-01

    Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.

  10. TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis

    Directory of Open Access Journals (Sweden)

    Valentina Pileczki

    2012-12-01

    Full Text Available Tumor necrosis factor alpha (TNF-α is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death.

  11. Bacterial nitrate assimilation: gene distribution and regulation.

    Science.gov (United States)

    Luque-Almagro, Víctor M; Gates, Andrew J; Moreno-Vivián, Conrado; Ferguson, Stuart J; Richardson, David J; Roldán, M Dolores

    2011-12-01

    In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism.

  12. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT and alanine dehydrogenase (AlaDH in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.

  13. Cif is negatively regulated by the TetR family repressor CifR.

    Science.gov (United States)

    MacEachran, Daniel P; Stanton, Bruce A; O'Toole, George A

    2008-07-01

    We previously reported that the novel Pseudomonas aeruginosa toxin Cif is capable of decreasing apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR). We further demonstrated that Cif is capable of degrading the synthetic epoxide hydrolase (EH) substrate S-NEPC [(2S,3S)-trans-3-phenyl-2-oxiranylmethyl 4-nitrophenol carbonate], suggesting that Cif may be reducing apical membrane expression of CFTR via its EH activity. Here we report that Cif is capable of degrading the xenobiotic epoxide epibromohydrin (EBH) to its vicinal diol 3-bromo-1,2-propanediol. We also demonstrate that this epoxide is a potent inducer of cif gene expression. We show that the predicted TetR family transcriptional repressor encoded by the PA2931 gene, which is immediately adjacent to and divergently transcribed from the cif-containing, three-gene operon, negatively regulates cif gene expression by binding to the promoter region immediately upstream of the cif-containing operon. Furthermore, this protein-DNA interaction is disrupted by the epoxide EBH in vitro, suggesting that the binding of EBH by the PA2931 protein product drives the disassociation from its DNA-binding site. Given its role as a repressor of cif gene expression, we have renamed PA2931 as CifR. Finally, we demonstrate that P. aeruginosa strains isolated from cystic fibrosis patient sputum with increased cif gene expression are impaired for the expression of the cifR gene.

  14. Cif Is Negatively Regulated by the TetR Family Repressor CifR▿

    Science.gov (United States)

    MacEachran, Daniel P.; Stanton, Bruce A.; O'Toole, George A.

    2008-01-01

    We previously reported that the novel Pseudomonas aeruginosa toxin Cif is capable of decreasing apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR). We further demonstrated that Cif is capable of degrading the synthetic epoxide hydrolase (EH) substrate S-NEPC [(2S,3S)-trans-3-phenyl-2-oxiranylmethyl 4-nitrophenol carbonate], suggesting that Cif may be reducing apical membrane expression of CFTR via its EH activity. Here we report that Cif is capable of degrading the xenobiotic epoxide epibromohydrin (EBH) to its vicinal diol 3-bromo-1,2-propanediol. We also demonstrate that this epoxide is a potent inducer of cif gene expression. We show that the predicted TetR family transcriptional repressor encoded by the PA2931 gene, which is immediately adjacent to and divergently transcribed from the cif-containing, three-gene operon, negatively regulates cif gene expression by binding to the promoter region immediately upstream of the cif-containing operon. Furthermore, this protein-DNA interaction is disrupted by the epoxide EBH in vitro, suggesting that the binding of EBH by the PA2931 protein product drives the disassociation from its DNA-binding site. Given its role as a repressor of cif gene expression, we have renamed PA2931 as CifR. Finally, we demonstrate that P. aeruginosa strains isolated from cystic fibrosis patient sputum with increased cif gene expression are impaired for the expression of the cifR gene. PMID:18458065

  15. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling.

    Science.gov (United States)

    Meabon, James S; de Laat, Rian; Ieguchi, Katsuaki; Serbzhinsky, Dmitry; Hudson, Mark P; Huber, B Russel; Wiley, Jesse C; Bothwell, Mark

    2016-01-01

    Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.

  16. Negative regulation of DSS-induced experimental colitis by PILRα.

    Science.gov (United States)

    Kishida, Kazuki; Kohyama, Masako; Kurashima, Yosuke; Kogure, Yuta; Wang, Jing; Hirayasu, Kouyuki; Suenaga, Tadahiro; Kiyono, Hiroshi; Kunisawa, Jun; Arase, Hisashi

    2015-06-01

    Inflammatory bowel disease is thought to be a complex multifactorial disease, in which an increased inflammatory response plays an important role. Paired immunoglobulin-like type 2 receptor α (PILRα), well conserved in almost all mammals, is an inhibitory receptor containing immunoreceptor tyrosine-based inhibitory motifs in the cytoplasmic domain. PILRα is mainly expressed on myeloid cells and plays an important role in the regulation of inflammation. In the present study, we investigated the function of PILRα in inflammatory bowel disease using PILRα-deficient mice. When mice were orally administered dextran sulfate sodium (DSS), colonic mucosal injury and inflammation were significantly exacerbated in DSS-treated PILRα-deficient mice compared with wild-type (WT) mice. Flow cytometric analysis revealed that neutrophil and macrophage cell numbers were higher in the colons of DSS-treated PILRα-deficient mice than in those of WT mice. Blockade of CXCR2 expressed on neutrophils using a CXCR2 inhibitor decreased the severity of colitis observed in PILRα-deficient mice. These results suggest that PILRα negatively regulates inflammatory colitis by regulating the infiltration of inflammatory cells such as neutrophils and macrophages.

  17. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  18. Prediction of epigenetically regulated genes in breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lu Yontao

    2010-06-01

    Full Text Available Abstract Background Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP. The pipeline (i reduces the dimensionality of the methylation data, (ii associates the reduced methylation data with gene expression data, and (iii ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i methylation sites are grouped across the genome to identify regions of interest, and (ii methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Results Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between

  19. INTERFEROME: the database of interferon regulated genes.

    Science.gov (United States)

    Samarajiwa, Shamith A; Forster, Sam; Auchettl, Katie; Hertzog, Paul J

    2009-01-01

    INTERFEROME is an open access database of types I, II and III Interferon regulated genes (http://www.interferome.org) collected from analysing expression data sets of cells treated with IFNs. This database of interferon regulated genes integrates information from high-throughput experiments with annotation, ontology, orthologue sequences from 37 species, tissue expression patterns and gene regulatory information to enable a detailed investigation of the molecular mechanisms underlying IFN biology. INTERFEROME fulfils a need in infection, immunity, development and cancer research by providing computational tools to assist in identifying interferon signatures in gene lists generated by high-throughput expression technologies, and their potential molecular and biological consequences.

  20. Osa-miR169 Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Li, Yan; Zhao, Sheng-Li; Li, Jin-Lu; Hu, Xiao-Hong; Wang, He; Cao, Xiao-Long; Xu, Yong-Ju; Zhao, Zhi-Xue; Xiao, Zhi-Yuan; Yang, Nan; Fan, Jing; Huang, Fu; Wang, Wen-Ming

    2017-01-01

    miR169 is a conserved microRNA (miRNA) family involved in plant development and stress-induced responses. However, how miR169 functions in rice immunity remains unclear. Here, we show that miR169 acts as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae by repressing the expression of nuclear factor Y-A (NF-YA) genes. The accumulation of miR169 was significantly increased in a susceptible accession but slightly fluctuated in a resistant accession upon M. oryzae infection. Consistently, the transgenic lines overexpressing miR169a became hyper-susceptible to different M. oryzae strains associated with reduced expression of defense-related genes and lack of hydrogen peroxide accumulation at the infection site. Consequently, the expression of its target genes, the NF-YA family members, was down-regulated by the overexpression of miR169a at either transcriptional or translational level. On the contrary, overexpression of a target mimicry that acts as a sponge to trap miR169a led to enhanced resistance to M. oryzae. In addition, three of miR169’s target genes were also differentially up-regulated in the resistant accession upon M. oryzae infection. Taken together, our data indicate that miR169 negatively regulates rice immunity against M. oryzae by differentially repressing its target genes and provide the potential to engineer rice blast resistance via a miRNA. PMID:28144248

  1. Vitamin a is a negative regulator of osteoblast mineralization.

    Directory of Open Access Journals (Sweden)

    Thomas Lind

    Full Text Available An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1 with the active metabolite of vitamin A; retinoic acid (RA, a retinoic acid receptor (RAR antagonist (AGN194310, and a Cyp26 inhibitor (R115866 which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.

  2. Vitamin a is a negative regulator of osteoblast mineralization.

    Science.gov (United States)

    Lind, Thomas; Sundqvist, Anders; Hu, Lijuan; Pejler, Gunnar; Andersson, Göran; Jacobson, Annica; Melhus, Håkan

    2013-01-01

    An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s) behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1) with the active metabolite of vitamin A; retinoic acid (RA), a retinoic acid receptor (RAR) antagonist (AGN194310), and a Cyp26 inhibitor (R115866) which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin) were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.

  3. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    Science.gov (United States)

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  4. Negative auto-regulators trap p53 in their web.

    Science.gov (United States)

    Zhou, Xiang; Cao, Bo; Lu, Hua

    2017-01-09

    The transcriptional factor p53 activates the expression of a myriad of target genes involving a complicated signalling network, resulting in various cellular outcomes, such as growth arrest, senescence, apoptosis, and metabolic changes, and leading to consequent suppression of tumour growth and progression. Because of the profoundly adverse effect of p53 on growth and proliferation of cancer cells, several feedback mechanisms have been employed by the cells to constrain p53 activity. Two major antagonists MDM2 and MDMX (the long forms) are transcriptionally induced by p53, but in return block p53 activity, forming a negative feedback circuit and rendering chemoresistance of several cancer cells. However, they are not alone, as cancer cells also employ other proteins encoded by p53 target genes to inhibit p53 activity at transcriptional, translational, and posttranslational levels. This essay is thus composed to review a recent progress in understanding the mechanisms for how cancer cells hijack the p53 autoregulation by these proteins for their growth advantage and to discuss the clinical implications of these autoregulatory loops.

  5. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  6. Phosphofructokinase-1 Negatively Regulates Neurogenesis from Neural Stem Cells.

    Science.gov (United States)

    Zhang, Fengyun; Qian, Xiaodan; Qin, Cheng; Lin, Yuhui; Wu, Haiyin; Chang, Lei; Luo, Chunxia; Zhu, Dongya

    2016-06-01

    Phosphofructokinase-1 (PFK-1), a major regulatory glycolytic enzyme, has been implicated in the functions of astrocytes and neurons. Here, we report that PFK-1 negatively regulates neurogenesis from neural stem cells (NSCs) by targeting pro-neural transcriptional factors. Using in vitro assays, we found that PFK-1 knockdown enhanced, and PFK-1 overexpression inhibited the neuronal differentiation of NSCs, which was consistent with the findings from NSCs subjected to 5 h of hypoxia. Meanwhile, the neurogenesis induced by PFK-1 knockdown was attributed to the increased proliferation of neural progenitors and the commitment of NSCs to the neuronal lineage. Similarly, in vivo knockdown of PFK-1 also increased neurogenesis in the dentate gyrus of the hippocampus. Finally, we demonstrated that the neurogenesis mediated by PFK-1 was likely achieved by targeting mammalian achaete-scute homologue-1 (Mash 1), neuronal differentiation factor (NeuroD), and sex-determining region Y (SRY)-related HMG box 2 (Sox2). All together, our results reveal PFK-1 as an important regulator of neurogenesis.

  7. Annexin A3 as a negative regulator of adipocyte differentiation.

    Science.gov (United States)

    Watanabe, Takenori; Ito, Yoshimasa; Sato, Asuka; Hosono, Takashi; Niimi, Shingo; Ariga, Toyohiko; Seki, Taiichiro

    2012-10-01

    Annexin A3 is a protein belonging to the annexin family, and it is mainly present in cellular membranes as a phospholipid-binding protein that binds via the calcium ion. However, its physiological function remains to be clarified. We examined the expression of annexin A3 in mouse tissues and found for the first time that annexin A3 mRNA and its protein were expressed more strongly in adipose tissues than in other tissues. In adipose tissues, annexin A3-expressing cells were present in the stromal vascular fraction, and precisely identical to Pref-1-positive preadipocytes, Pref-1 being an epidermal growth factor repeat-containing transmembrane protein that inhibits adipogenesis. In 3T3-L1 cells, used as a model of adipogenesis, annexin A3 was down-regulated at an early phase of adipocyte differentiation, and this pattern paralleled that of Pref-1. Suppression of annexin A3 in these cells with siRNA caused elevation of the PPARγ2 mRNA level and lipid droplet accumulation. In conclusion, our data suggest that annexin A3 is a negative regulator of adipocyte differentiation.

  8. Arfaptin-1 negatively regulates Arl1-mediated retrograde transport.

    Directory of Open Access Journals (Sweden)

    Lien-Hung Huang

    Full Text Available The small GTPase Arf-like protein 1 (Arl1 is well known for its role in intracellular vesicular transport at the trans-Golgi network (TGN. In this study, we used differential affinity chromatography combined with mass spectrometry to identify Arf-interacting protein 1b (arfaptin-1b as an Arl1-interacting protein and characterized a novel function for arfaptin-1 (including the arfaptin-1a and 1b isoforms in Arl1-mediated retrograde transport. Using a Shiga-toxin subunit B (STxB transportation assay, we demonstrated that knockdown of arfaptin-1 accelerated the retrograde transport of STxB from the endosome to the Golgi apparatus, whereas Arl1 knockdown inhibited STxB transport compared with control cells. Arfaptin-1 overexpression, but not an Arl1 binding-defective mutant (arfaptin-1b-F317A, consistently inhibited STxB transport. Exogenous arfaptin-1 expression did not interfere with the localization of the Arl1-interacting proteins golgin-97 and golgin-245 to the TGN and vice versa. Moreover, we found that the N-terminal region of arfaptin-1 was involved in the regulation of retrograde transport. Our results show that arfaptin-1 acts as a negative regulator in Arl1-mediated retrograde transport and suggest that different functional complexes containing Arl1 form in distinct microdomains and are responsible for different functions.

  9. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide.

    Science.gov (United States)

    Józefowski, Szczepan; Czerkies, Maciej; Łukasik, Anna; Bielawska, Alicja; Bielawski, Jacek; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2010-12-01

    LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.

  10. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  11. DMPD: PI3K and negative regulation of TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12860525 PI3K and negative regulation of TLR signaling. Fukao T, Koyasu S. Trends I...mmunol. 2003 Jul;24(7):358-63. (.png) (.svg) (.html) (.csml) Show PI3K and negative regulation of TLR signal...ing. PubmedID 12860525 Title PI3K and negative regulation of TLR signaling. Authors Fukao T, Koyasu S. Publi

  12. Feedback-Regulation of Strigolactone Biosynthetic Genes and Strigolactone-Regulated Genes in Arabidopsis

    National Research Council Canada - National Science Library

    MASHIGUCHI, Kiyoshi; SASAKI, Eriko; SHIMADA, Yukihisa; NAGAE, Miyu; UENO, Kotomi; NAKANO, Takeshi; YONEYAMA, Koichi; SUZUKI, Yoshihito; ASAMI, Tadao

    2009-01-01

    Strigolactones (SLs) have recently been found to regulate shoot branching, but the functions of SLs at other stages of development and the regulation of SL-related gene expression are mostly unknown in Arabidopsis...

  13. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Xun-wei Xie

    Full Text Available FOXO genes are involved in many aspects of development and vascular homeostasis by regulating cell apoptosis, proliferation, and the control of oxidative stress. In addition, FOXO genes have been showed to inhibit Wnt/β-catenin signaling by competing with T cell factor to bind to β-catenin. However, how important of this inhibition in vivo, particularly in embryogenesis is still unknown. To demonstrate the roles of FOXO genes in embryogenesis will help us to further understand their relevant physiological functions. Zebrafish foxo3b gene, an orthologue of mammalian FOXO3, was expressed maternally and distributed ubiquitously during early embryogenesis and later restricted to brain. After morpholino-mediated knockdown of foxo3b, the zebrafish embryos exhibited defects in axis and neuroectoderm formation, suggesting its critical role in early embryogenesis. The embryo-developmental marker gene staining at different stages, phenotype analysis and rescue assays revealed that foxo3b acted its role through negatively regulating both maternal and zygotic Wnt/β-catenin signaling. Moreover, we found that foxo3b could interact with zebrafish β-catenin1 and β-catenin2 to suppress their transactivation in vitro and in vivo, further confirming its role relevant to the inhibition of Wnt/β-catenin signaling. Taken together, we revealed that foxo3b played a very important role in embryogenesis and negatively regulated maternal and zygotic Wnt/β-catenin signaling by directly interacting with both β-catenin1 and β-catenin2. Our studies provide an in vivo model for illustrating function of FOXO transcription factors in embryogenesis.

  14. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    Science.gov (United States)

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  15. Characterization of a negative regulator AveI for avermectin biosynthesis in Streptomyces avermitilis NRRL8165.

    Science.gov (United States)

    Chen, Lei; Lu, Yinhua; Chen, Jun; Zhang, Weiwen; Shu, Dan; Qin, Zhongjun; Yang, Sheng; Jiang, Weihong

    2008-08-01

    A transcriptional activator for actinorhodin biosynthesis, AtrA, was previously characterized in Streptomyces coelicolor A3(2), and an orthologue of atrA, named aveI, is identified in the Streptomyces avermitilis NRRL8165 genome (Uguru et al., Mol Microbiol, 58:131-150, 2005). In this study, genetic and functional characterization of aveI gene was reported. Deletion of aveI gene led to increased biosynthesis of avermectin B1a by about 16-fold. The increased synthesis of avermectin B1a was suppressed by complementation with either aveI gene or its orthologue gene atrA from S. coelicolor, suggesting AveI and AtrA shared the similar functionality and were negative regulators for avermectin biosynthesis in S. avermitilis. However, when aveI was introduced into S. coelicolor on a multi-copy plasmid, the production of actinorhodin was significantly increased, indicating that aveI had a positive effect on actinorhodin biosynthesis in S. coelicolor, the same as its orthologue atrA. Electrophoretic mobility shift assays revealed AveI can bind specifically to the promoter region of actII-ORF4 in vitro but not that of aveR. Although its mechanism still needs to be defined, the species-differential regulation by the same regulator may represent an example of the evolutional strategy that enables bacteria to adapt the existing molecular machinery to a variety of functionalities for growth and survival.

  16. Polyamine analogues targeting epigenetic gene regulation.

    Science.gov (United States)

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  17. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    Directory of Open Access Journals (Sweden)

    Zhen-Xing Wan

    2014-02-01

    Full Text Available PA28γ (also called REGγ, 11Sγ or PSME3 negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  18. Organelle acidification negatively regulates vacuole membrane fusion in vivo

    Science.gov (United States)

    Desfougères, Yann; Vavassori, Stefano; Rompf, Maria; Gerasimaite, Ruta; Mayer, Andreas

    2016-01-01

    The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector. PMID:27363625

  19. Negative regulation of NF-κB by the ING4 tumor suppressor in breast cancer.

    Directory of Open Access Journals (Sweden)

    Sara A Byron

    Full Text Available Nuclear Factor kappa B (NF-κB is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4 tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227. Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65, an activated form of NF-κB (p = 0.018. Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in

  20. Regulation of gene expression by Goodwin's loop with many genes

    Science.gov (United States)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2012-01-01

    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  1. Identification of the NAC1-regulated genes in ovarian cancer.

    Science.gov (United States)

    Gao, Min; Wu, Ren-Chin; Herlinger, Alice L; Yap, Kailee; Kim, Jung-Won; Wang, Tian-Li; Shih, Ie-Ming

    2014-01-01

    Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.

  2. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    Science.gov (United States)

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  3. Negative regulation of the innate antiviral immune response by TRIM62 from orange spotted grouper.

    Science.gov (United States)

    Yang, Ying; Huang, Youhua; Yu, Yepin; Zhou, Sheng; Wang, Shaowen; Yang, Min; Qin, Qiwei; Huang, Xiaohong

    2016-10-01

    Increased reports uncovered that mammalian tripartite motif-containing 62 (TRIM62) exerts crucial roles in cancer and innate immune response. However, the roles of fish TRIM62 in antiviral immune response remained uncertain. In this study, a TRIM62 gene was cloned from orange spotted grouper (EcTRIM62) and its roles in grouper RNA virus infection was elucidated in vitro. EcTRIM62 shared 99% and 83% identity to bicolor damselfish (Stegastes partitus) and human (Homo sapiens), respectively. Sequence alignment indicated that EcTRIM62 contained three domains, including a RING-finger domain, a B-box domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM62 was predominantly detected in brain and liver, followed by heart, skin, spleen, fin, gill, intestine, and stomach. Subcellular localization analysis indicated that bright fluorescence spots were observed in the cytoplasm of EcTRIM62-transfected grouper spleen (GS) cells. During red-spotted grouper nervous necrosis (RGNNV) infection, overexpression of EcTRIM62 significantly enhanced the severity of CPE and increased viral gene transcriptions. Furthermore, the ectopic expression of EcTRIM62 significantly decreased the transcription level of interferon signaling molecules, including interferon regulatory factor 3 (IRF3), IRF7, interferon-stimulated gene 15 (ISG15), melanoma differentiation-associated protein 5 (MDA5), myxovirus resistance gene MXI, and MXII, suggesting that the negative regulation of interferon immune response by EcTRIM62 might directly contributed to its enhancing effect on RGNNV replication. Furthermore, our results also demonstrated that overexpression of EcTRIM62 was able to differently regulate the expression levels of pro-inflammation cytokines. In addition, we found the ectopic expression of EcTIRM62 negatively regulated MDA5-, but not mediator of IRF3 activation (MITA)-induced interferon immune response. Further studies showed that the deletion of RING domain and SPRY domain

  4. Regulation of noise in gene expression.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-01-01

    The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.

  5. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim, E-mail: ykpak@khu.ac.kr

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  6. Negative regulators of insulin signaling revealed in a genome-wide functional screen.

    Directory of Open Access Journals (Sweden)

    Shih-Min A Huang

    Full Text Available BACKGROUND: Type 2 diabetes develops due to a combination of insulin resistance and beta-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention. METHODOLOGY: An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action. CONCLUSION/SIGNIFICANCE: Among the novel hits was PALD (KIAA1274, paladin, a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome.

  7. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  8. TRIM65 negatively regulates p53 through ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Ma, Chengyuan [Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021 (China); Zhou, Tong [Department of Endocrinology, The First Hospital of Jilin University, Changchun 130021 (China); Liu, Ying [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Sun, Luyao [Department of Infectious Diseases, The First Hospital of Jilin University, Changchun 130021 (China); Yu, Zhenxiang, E-mail: zhenxiangyu2015@gmail.com [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China)

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.

  9. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  10. The TRANSFAC system on gene expression regulation.

    Science.gov (United States)

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  11. amiA is a negative regulator of acetamidase expression in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Turner Jane

    2001-08-01

    Full Text Available Abstract Background The acetamidase of Mycobacterium smegmatis is a highly inducible enzyme. Expression of this enzyme is increased 100-fold when the substrate acetamide is present. The acetamidase gene is found immediately downstream of three open reading frames. Two of these are proposed to be involved in regulation. Results We constructed a deletion mutant in one of the upstream ORFs (amiA. This mutant (Mad1 showed a constitutively high level of acetamidase expression. We identified four promoters in the upstream region using a β-galactosidase reporter gene. One of these (P2 was inducible in the wild-type, but was constitutively active in Mad1. Conclusions These results demonstrate that amiA encodes a negative regulatory protein which interacts with P2. Since amiA has homology to DNA-binding proteins, it is likely that it exerts the regulatory effect by binding to the promoter to prevent transcription.

  12. Anaplastic Lymphoma Kinase Acts in the Drosophila Mushroom Body to Negatively Regulate Sleep.

    Directory of Open Access Journals (Sweden)

    Lei Bai

    2015-11-01

    Full Text Available Though evidence is mounting that a major function of sleep is to maintain brain plasticity and consolidate memory, little is known about the molecular pathways by which learning and sleep processes intercept. Anaplastic lymphoma kinase (Alk, the gene encoding a tyrosine receptor kinase whose inadvertent activation is the cause of many cancers, is implicated in synapse formation and cognitive functions. In particular, Alk genetically interacts with Neurofibromatosis 1 (Nf1 to regulate growth and associative learning in flies. We show that Alk mutants have increased sleep. Using a targeted RNAi screen we localized the negative effects of Alk on sleep to the mushroom body, a structure important for both sleep and memory. We also report that mutations in Nf1 produce a sexually dimorphic short sleep phenotype, and suppress the long sleep phenotype of Alk. Thus Alk and Nf1 interact in both learning and sleep regulation, highlighting a common pathway in these two processes.

  13. The effect of negative feedback on noise propagation in transcriptional gene networks

    Science.gov (United States)

    Hooshangi, Sara; Weiss, Ron

    2006-06-01

    This paper analyzes how the delay and repression strength of negative feedback in single-gene and multigene transcriptional networks influences intrinsic noise propagation and oscillatory behavior. We simulate a variety of transcriptional networks using a stochastic model and report two main findings. First, intrinsic noise is not attenuated by the addition of negative or positive feedback to transcriptional cascades. Second, for multigene negative feedback networks, synchrony in oscillations among a cell population can be improved by increasing network depth and tightening the regulation at one of the repression stages. Our long term goal is to understand how the noise characteristics of complex networks can be derived from the properties of modules that are used to compose these networks.

  14. Molecular characteristics and metastasis predictor genes of triple-negative breast cancer: a clinical study of triple-negative breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Wen-Hung Kuo

    Full Text Available BACKGROUND: Triple-negative breast cancer is a subtype of breast cancer with aggressive tumor behavior and distinct disease etiology. Due to the lack of an effective targeted medicine, treatment options for triple-negative breast cancer are few and recurrence rates are high. Although various multi-gene prognostic markers have been proposed for the prediction of breast cancer outcome, most of them were proven clinically useful only for estrogen receptor-positive breast cancers. Reliable identification of triple-negative patients with a favorable prognosis is not yet possible. METHODOLOGY/PRINCIPAL FINDINGS: Clinicopathological information and microarray data from 157 invasive breast carcinomas were collected at National Taiwan University Hospital from 1995 to 2008. Gene expression data of 51 triple-negative and 106 luminal breast cancers were generated by oligonucleotide microarrays. Hierarchical clustering analysis revealed that the majority (94% of triple-negative breast cancers were tightly clustered together carrying strong basal-like characteristics. A 45-gene prognostic signature giving 98% predictive accuracy in distant recurrence of our triple-negative patients was determined using the receiver operating characteristic analysis and leave-one-out cross validation. External validation of the prognostic signature in an independent microarray dataset of 59 early-stage triple-negative patients also obtained statistical significance (hazard ratio 2.29, 95% confidence interval (CI 1.04-5.06, Cox P=0.04, outperforming five other published breast cancer prognostic signatures. The 45-gene signature identified in this study revealed that TGF-β signaling of immune/inflammatory regulation may play an important role in distant metastatic invasion of triple-negative breast cancer. CONCLUSIONS/SIGNIFICANCE: Gene expression data and recurrence information of triple-negative breast cancer were collected and analyzed in this study. A novel set of 45-gene

  15. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran.

    Science.gov (United States)

    Fisher, Katherine H; Stec, Wojciech; Brown, Stephen; Zeidler, Martin P

    2016-02-01

    Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.

  16. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Brodersen, P; Johansen, Bo; Petersen, M;

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  17. Zac1 functions through TGFβII to negatively regulate cell number in the developing retina

    Directory of Open Access Journals (Sweden)

    Götz Magdalena

    2007-06-01

    Full Text Available Abstract Background Organs are programmed to acquire a particular size during development, but the regulatory mechanisms that dictate when dividing progenitor cells should permanently exit the cell cycle and stop producing additional daughter cells are poorly understood. In differentiated tissues, tumor suppressor genes maintain a constant cell number and intact tissue architecture by controlling proliferation, apoptosis and cell dispersal. Here we report a similar role for two tumor suppressor genes, the Zac1 zinc finger transcription factor and that encoding the cytokine TGFβII, in the developing retina. Results Using loss and gain-of-function approaches, we show that Zac1 is an essential negative regulator of retinal size. Zac1 mutants develop hypercellular retinae due to increased progenitor cell proliferation and reduced apoptosis at late developmental stages. Consequently, supernumerary rod photoreceptors and amacrine cells are generated, the latter of which form an ectopic cellular layer, while other retinal cells are present in their normal number and location. Strikingly, Zac1 functions as a direct negative regulator of a rod fate, while acting cell non-autonomously to modulate amacrine cell number. We implicate TGFβII, another tumor suppressor and cytokine, as a Zac1-dependent amacrine cell negative feedback signal. TGFβII and phospho-Smad2/3, its downstream effector, are expressed at reduced levels in Zac1 mutant retinae, and exogenous TGFβII relieves the mutant amacrine cell phenotype. Moreover, treatment of wild-type retinae with a soluble TGFβ inhibitor and TGFβ receptor II (TGFβRII conditional mutants generate excess amacrine cells, phenocopying the Zac1 mutant phenotype. Conclusion We show here that Zac1 has an essential role in cell number control during retinal development, akin to its role in tumor surveillance in mature tissues. Furthermore, we demonstrate that Zac1 employs a novel cell non-autonomous strategy to

  18. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shashank Gupta

    Full Text Available Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity.

  19. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought.

    Science.gov (United States)

    Nguyen, Kien Huu; Ha, Chien Van; Nishiyama, Rie; Watanabe, Yasuko; Leyva-González, Marco Antonio; Fujita, Yasunari; Tran, Uven Thi; Li, Weiqiang; Tanaka, Maho; Seki, Motoaki; Schaller, G Eric; Herrera-Estrella, Luis; Tran, L S

    2016-03-15

    In this study, we used a loss-of-function approach to elucidate the functions of three Arabidopsis type B response regulators (ARRs)--namely ARR1, ARR10, and ARR12--in regulating the Arabidopsis plant responses to drought. The arr1,10,12 triple mutant showed a significant increase in drought tolerance versus WT plants, as indicated by its higher relative water content and survival rate on drying soil. This enhanced drought tolerance of arr1,10,12 plants can be attributed to enhanced cell membrane integrity, increased anthocyanin biosynthesis, abscisic acid (ABA) hypersensitivity, and reduced stomatal aperture, but not to altered stomatal density. Further drought-tolerance tests of lower-order double and single mutants indicated that ARR1, ARR10, and ARR12 negatively and redundantly control plant responses to drought, with ARR1 appearing to bear the most critical function among the three proteins. In agreement with these findings, a comparative genome-wide analysis of the leaves of arr1,10,12 and WT plants under both normal and dehydration conditions suggested a cytokinin (CK) signaling-mediated network controlling plant adaptation to drought via many dehydration/drought- and/or ABA-responsive genes that can provide osmotic adjustment and protection to cellular and membrane structures. Expression of all three ARR genes was repressed by dehydration and ABA treatments, inferring that plants down-regulate these genes as an adaptive mechanism to survive drought. Collectively, our results demonstrate that repression of CK response, and thus CK signaling, is one of the strategies plants use to cope with water deficit, providing novel insight for the design of drought-tolerant plants by genetic engineering.

  20. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Los Alamos National Laboratory

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  1. The Change-Over of Yin-yang and Gene Regulation in Kidney Deficiency Syndromes

    Institute of Scientific and Technical Information of China (English)

    DONG Fei-xia; HE Li-qun

    2009-01-01

    The present paper studies gene regulation in kidney deficiency syndromes from the simple Nephrotic Syndrome and with the principle of positive-negative regulation to control the change-over ofyin-yang, the modern molecular biological techniques can be used, such as gene chip, representational difference analysis (RDA) and gene sequence analysis, so as to investigate the inner relationship between the genes and kidney deficiency syndromes and prove the effect given by these genes on the pathophysiological status of change-over ofyin-yang in kidney deficiency syndromes.This philosophical approach and method can also be adopted for studies of the related genes in other TCM syndromes.

  2. SREBP-2 negatively regulates FXR-dependent transcription of FGF19 in human intestinal cells.

    Science.gov (United States)

    Miyata, Masaaki; Hata, Tatsuya; Yamazoe, Yasushi; Yoshinari, Kouichi

    2014-01-10

    Sterol regulatory element-binding protein-2 (SREBP-2) is a basic helix-loop-helix-leucine zipper transcription factor that positively regulates transcription of target genes involved in cholesterol metabolism. In the present study, we have investigated a possible involvement of SREBP-2 in human intestinal expression of fibroblast growth factor (FGF)19, which is an endocrine hormone involved in the regulation of lipid and glucose metabolism. Overexpression of constitutively active SREBP-2 decreased FGF19 mRNA levels in human colon-derived LS174T cells. In reporter assays, active SREBP-2 overexpression suppressed GW4064/FXR-mediated increase in reporter activities in regions containing the IR-1 motif (+848 to +5200) in the FGF19 gene. The suppressive effect disappeared in reporter activities in the region containing the IR-1 motif when the mutation was introduced into the IR-1 motif. In electrophoretic mobility shift assays, binding of the FXR/retinoid X receptor α heterodimer to the IR-1 motif was attenuated by adding active SREBP-2, but SREBP-2 binding to the IR-1 motif was not observed. In chromatin immunoprecipitation assays, specific binding of FXR to the IR-1-containing region of the FGF19 gene (+3214 to +3404) was increased in LS174T cells by treatment with cholesterol and 25-hydroxycholesterol. Specific binding of SREBP-2 to FXR was observed in glutathione-S-transferase (GST) pull-down assays. These results suggest that SREBP-2 negatively regulates the FXR-mediated transcriptional activation of the FGF19 gene in human intestinal cells.

  3. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  4. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice.

    Directory of Open Access Journals (Sweden)

    Cui Zhang

    Full Text Available Brassinosteroids (BRs regulate rice plant architecture, including leaf bending, which affects grain yield. Although BR signaling has been investigated in Arabidopsis thaliana, the components negatively regulating this pathway are less well understood. Here, we demonstrate that Oryza sativa LEAF and TILLER ANGLE INCREASED CONTROLLER (LIC acts as an antagonistic transcription factor of BRASSINAZOLE-RESISTANT 1 (BZR1 to attenuate the BR signaling pathway. The gain-of-function mutant lic-1 and LIC-overexpressing lines showed erect leaves, similar to BZR1-depleted lines, which indicates the opposite roles of LIC and BZR1 in regulating leaf bending. Quantitative PCR revealed LIC transcription rapidly induced by BR treatment. Image analysis and immunoblotting showed that upon BR treatment LIC proteins translocate from the cytoplasm to the nucleus in a phosphorylation-dependent fashion. Phosphorylation assay in vitro revealed LIC phosphorylated by GSK3-like kinases. For negative feedback, LIC bound to the core element CTCGC in the BZR1 promoter on gel-shift and chromatin immunoprecipitation assay and repressed its transcription on transient transformation assay. LIC directly regulated target genes such as INCREASED LEAF INCLINATION 1 (ILI1 to oppose the action of BZR1. Repression of LIC in ILI1 transcription in protoplasts was partially rescued by BZR1. Phenotypic analysis of the crossed lines depleted in both LIC and BZR1 suggested that BZR1 functionally depends on LIC. Molecular and physiology assays revealed that LIC plays a dominant role at high BR levels, whereas BZR1 is dominant at low levels. Thus, LIC regulates rice leaf bending as an antagonistic transcription factor of BZR1. The phenotypes of lic-1 and LIC-overexpressing lines in erect leaves contribute to ideal plant architecture. Improving this phenotype may be a potential approach to molecular breeding for high yield in rice.

  5. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  6. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  7. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas

    2014-06-30

    Background Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. Results In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. Conclusions These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.

  8. Linker histones in hormonal gene regulation.

    Science.gov (United States)

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  9. F-spondin negatively regulates dental follicle differentiation through the inhibition of TGF-β activity.

    Science.gov (United States)

    Orimoto, Ai; Kurokawa, Misaki; Handa, Keisuke; Ishikawa, Masaki; Nishida, Eisaku; Aino, Makoto; Mitani, Akio; Ogawa, Miho; Tsuji, Takashi; Saito, Masahiro

    2017-07-01

    F-spondin is an extracellular matrix (ECM) protein that belongs to the thrombospondin type I repeat superfamily and is a negative regulator of bone mass. We have previously shown that f-spondin is specifically expressed in the dental follicle (DF), which gives rise to the periodontal ligament (PDL) during the tooth root formation stage. To investigate the molecular mechanism of PDL formation, we investigated the function of f-spondin in DF differentiation. The expression patterning of f-spondin in the developing tooth germ was compared with that of periodontal ligament-related genes, including runx2, type I collagen and periostin, by in situ hybridization analysis. To investigate the function of f-spondin during periodontal ligament formation, an f-spondin adenovirus was infected into the bell stage of the developing tooth germ, and the effect on dental differentiation was analyzed. F-spondin was specifically expressed in the DF of the developing tooth germ; by contrast, type I collagen, runx2 and periostin were expressed in the DF and in the alveolar bone. F-spondin-overexpresssing tooth germ exhibited a reduction in gene expression of periostin and type I collagen in the DF. By contrast, the knockdown of f-spondin in primary DF cells increased the expression of these genes. Treatment with recombinant f-spondin protein functionally inhibited periostin expression induced by transforming growth factor-β (TGF-β). Our data indicated that f-spondin inhibits the differentiation of DF cells into periodontal ligament cells by inhibiting TGF-β. These data suggested that f-spondin negatively regulates PDL differentiation which may play an important role in the immature phenotype of DF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Lexical Framework for Semantic Annotation of Positive and Negative Regulation Relations in Biomedical Pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Lassen, Tine

    presented here, we analyze 6 frequently used verbs denoting the regulation relations regulates, positively regulates and negatively regulates through corpus analysis, and propose a formal representation of the acquired knowledge as domain speci¯c semantic frames. The acquired knowledge patterns can thus...

  11. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...

  12. Gene Regulation System of Vasopressin and Corticotoropin-Releasing Hormone

    Directory of Open Access Journals (Sweden)

    Masanori Yoshida

    2008-01-01

    Full Text Available The neurohypophyseal hormones, arginine vasopressin and corticotropin-releasing hormone (CRH, play a crucial role in the physiological and behavioral response to various kinds of stresses. Both neuropeptides activate the hypophysialpituitary-adrenal (HPA axis, which is a central mediator of the stress response in the body. Conversely, they receive the negative regulation by glucocorticoid, which is an end product of the HPA axis. Vasopressin and CRH are closely linked to immune response; they also interact with pro-inflammatory cytokines. Moreover, as for vasopressin, it has another important role, which is the regulation of water balance through its potent antidiuretic effect. Hence, it is conceivable that vasopressin and CRH mediate the homeostatic responses for survival and protect organisms from the external world. A tight and elaborate regulation system of the vasopressin and CRH gene is required for the rapid and flexible response to the alteration of the surrounding environments. Several important regulatory elements have been identified in the proximal promoter region in the vasopressin and CRH gene. Many transcription factors and intracellular signaling cascades are involved in the complicated gene regulation system. This review focuses on the current status of the basic research of vasopressin and CRH. In addition to the numerous known facts about their divergent physiological roles, the recent topics of promoter analyses will be discussed.

  13. Dynamical Processes in Ageing, Gene Regulation and Communication

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss

    project we constructed a mathematical model and showed that if DNA damage is primarily caused by geno-toxic agents, it would be advantageous for cells to have a fragile DNA repair mechanism. The second part of my Ph.D. thesis covers gene regulation. In the first project we show how RNA polymerase can...... be used as a transcription factor. This requires that promoter regions overlap, which 15% of promoters in E.coli do. In the second project I analyse a negative auto regulated transcription motif coupled to a positive auto regulation transcription motif. I find that a general feature of this motif...... players develop favourite communication partners. We observed how this dynamic caused a communication network to form. By quantifying the information flow in this network, we were able to shown how that the network functions as an anti-exploration mechanism against "information leeches"....

  14. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  15. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  16. The population genetics of cooperative gene regulation

    Directory of Open Access Journals (Sweden)

    Stewart Alexander J

    2012-09-01

    Full Text Available Abstract Background Changes in gene regulatory networks drive the evolution of phenotypic diversity both within and between species. Rewiring of transcriptional networks is achieved either by changes to transcription factor binding sites or by changes to the physical interactions among transcription factor proteins. It has been suggested that the evolution of cooperative binding among factors can facilitate the adaptive rewiring of a regulatory network. Results We use a population-genetic model to explore when cooperative binding of transcription factors is favored by evolution, and what effects cooperativity then has on the adaptive re-writing of regulatory networks. We consider a pair of transcription factors that regulate multiple targets and overlap in the sets of target genes they regulate. We show that, under stabilising selection, cooperative binding between the transcription factors is favoured provided the amount of overlap between their target genes exceeds a threshold. The value of this threshold depends on several population-genetic factors: strength of selection on binding sites, cost of pleiotropy associated with protein-protein interactions, rates of mutation and population size. Once it is established, we find that cooperative binding of transcription factors significantly accelerates the adaptive rewiring of transcriptional networks under positive selection. We compare our qualitative predictions to systematic data on Saccharomyces cerevisiae transcription factors, their binding sites, and their protein-protein interactions. Conclusions Our study reveals a rich set of evolutionary dynamics driven by a tradeoff between the beneficial effects of cooperative binding at targets shared by a pair of factors, and the detrimental effects of cooperative binding for non-shared targets. We find that cooperative regulation will evolve when transcription factors share a sufficient proportion of their target genes. These findings help to

  17. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  18. Osteopontin negatively regulates parathyroid hormone receptor signaling in osteoblasts.

    Science.gov (United States)

    Ono, Noriaki; Nakashima, Kazuhisa; Rittling, Susan R; Schipani, Ernestina; Hayata, Tadayoshi; Soma, Kunimichi; Denhardt, David T; Kronenberg, Henry M; Ezura, Yoichi; Noda, Masaki

    2008-07-11

    Systemic hormonal control exerts its effect through the regulation of local target tissues, which in turn regulate upstream signals in a feedback loop. The parathyroid hormone (PTH) axis is a well defined hormonal signaling system that regulates calcium levels and bone metabolism. To understand the interplay between systemic and local signaling in bone, we examined the effects of deficiency of the bone matrix protein osteopontin (OPN) on the systemic effects of PTH specifically within osteoblastic cell lineages. Parathyroid hormone receptor (PPR) transgenic mice expressing a constitutively active form of the receptor (caPPR) specifically in cells of the osteoblast lineage have a high bone mass phenotype. In these mice, OPN deficiency further increased bone mass. This increase was associated with conversion of the major intertrabecular cell population from hematopoietic cells to stromal/osteoblastic cells and parallel elevations in histomorphometric and biochemical parameters of bone formation and resorption. Treatment with small interfering RNA (siRNA) for osteopontin enhanced H223R mutant caPPR-induced cAMP-response element (CRE) activity levels by about 10-fold. Thus, in addition to the well known calcemic feedback system for PTH, local feedback regulation by the bone matrix protein OPN also plays a significant role in the regulation of PTH actions.

  19. HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sandeep N Shah

    Full Text Available Emerging evidence suggests that tumor cells metastasize by co-opting stem cell transcriptional networks, although the molecular underpinnings of this process are poorly understood. Here, we show for the first time that the high mobility group A1 (HMGA1 gene drives metastatic progression in triple negative breast cancer cells (MDA-MB-231, Hs578T by reprogramming cancer cells to a stem-like state. Silencing HMGA1 expression in invasive, aggressive breast cancer cells dramatically halts cell growth and results in striking morphologic changes from mesenchymal-like, spindle-shaped cells to cuboidal, epithelial-like cells. Mesenchymal genes (Vimentin, Snail are repressed, while E-cadherin is induced in the knock-down cells. Silencing HMGA1 also blocks oncogenic properties, including proliferation, migration, invasion, and orthotopic tumorigenesis. Metastatic progression following mammary implantation is almost completely abrogated in the HMGA1 knock-down cells. Moreover, silencing HMGA1 inhibits the stem cell property of three-dimensional mammosphere formation, including primary, secondary, and tertiary spheres. In addition, knock-down of HMGA1 depletes cancer initiator/cancer stem cells and prevents tumorigenesis at limiting dilutions. We also discovered an HMGA1 signature in triple negative breast cancer cells that is highly enriched in embryonic stem cells. Together, these findings indicate that HMGA1 is a master regulator of tumor progression in breast cancer by reprogramming cancer cells through stem cell transcriptional networks. Future studies are needed to determine how to target HMGA1 in therapy.

  20. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport.

    Directory of Open Access Journals (Sweden)

    Mariah Rayl

    Full Text Available Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES. The penta-EF-hand (PEF protein apoptosis-linked gene 2 (ALG-2 stabilizes sec31A at ER exit sites (ERES and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport-peflin is a negative regulator of transport.

  1. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.

    Directory of Open Access Journals (Sweden)

    Amélie Avet-Rochex

    2014-09-01

    Full Text Available Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk, which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem

  2. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    IP-seq and small RNA-seq, we delineated the landscape of the promoters with bidirectional transcriptions that yield steady-state RNA in only one directions (Paper III). A subsequent motif analysis enabled us to uncover specific DNA signals – early polyA sites – that make RNA on the reverse strand sensitive...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V......). Gene enrichment analysis on the detected NMD substrates revealed an unappreciated NMD-based regulatory mechanism of the genes hosting multiple intronic snoRNAs, which can facilitate differential expression of individual snoRNAs from a single host gene locus. Finally, supported by RNA-seq and small RNA-seq...

  3. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  4. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    Science.gov (United States)

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  5. An shRNA-Based Screen of Splicing Regulators Identifies SFRS3 as a Negative Regulator of IL-1β Secretion

    Science.gov (United States)

    Pacheco, Teresa Raquel; D'Almeida, Bruno; Rodrigues, Raquel; Cadima-Couto, Iris; Chora, Ângelo; Oliveira, Mariana; Gama-Carvalho, Margarida; Hacohen, Nir; Moita, Luis F.

    2011-01-01

    The generation of diversity and plasticity of transcriptional programs are key components of effective vertebrate immune responses. The role of Alternative Splicing has been recognized, but it is underappreciated and poorly understood as a critical mechanism for the regulation and fine-tuning of physiological immune responses. Here we report the generation of loss-of-function phenotypes for a large collection of genes known or predicted to be involved in the splicing reaction and the identification of 19 novel regulators of IL-1β secretion in response to E. coli challenge of THP-1 cells. Twelve of these genes are required for IL-1β secretion, while seven are negative regulators of this process. Silencing of SFRS3 increased IL-1β secretion due to elevation of IL-1β and caspase-1 mRNA in addition to active caspase-1 levels. This study points to the relevance of splicing in the regulation of auto-inflammatory diseases. PMID:21611201

  6. Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish

    Science.gov (United States)

    Chen, Nai-Yu; Nagarajan, Govindarajulu; Chiou, Pinwen Peter

    2015-01-01

    Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated Cʹ-terminal signal transducing domain), whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides), whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN), gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish. PMID:25955250

  7. Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish.

    Directory of Open Access Journals (Sweden)

    Frank Fang-Yao Lee

    Full Text Available Toll-like receptor 9 (TLR9 recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length and gTLR9B (with a truncated C'-terminal signal transducing domain, whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides, whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN, gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish.

  8. Gene therapy on demand: site specific regulation of gene therapy.

    Science.gov (United States)

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  9. Marburgvirus Hijacks Nrf2-Dependent Pathway by Targeting Nrf2-Negative Regulator Keap1

    Directory of Open Access Journals (Sweden)

    Audrey Page

    2014-03-01

    Full Text Available Marburg virus (MARV has a high fatality rate in humans, causing hemorrhagic fever characterized by massive viral replication and dysregulated inflammation. Here, we demonstrate that VP24 of MARV binds Kelch-like ECH-associated protein 1 (Keap1, a negative regulator of nuclear transcription factor erythroid-derived 2 (Nrf2. Binding of VP24 to Keap1 Kelch domain releases Nrf2 from Keap1-mediated inhibition promoting persistent activation of a panoply of cytoprotective genes implicated in cellular responses to oxidative stress and regulation of inflammatory responses. Increased expression of Nrf2-dependent genes was demonstrated both during MARV infection and upon ectopic expression of MARV VP24. We also show that Nrf2-deficient mice can control MARV infection when compared to lethal infection in wild-type animals, indicating that Nrf2 is critical for MARV infection. We conclude that VP24-driven activation of the Nrf2-dependent pathway is likely to contribute to dysregulation of host antiviral inflammatory responses and that it ensures survival of MARV-infected cells despite these responses.

  10. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  11. Redox regulation, gene expression and longevity.

    Science.gov (United States)

    Honda, Yoko; Tanaka, Masashi; Honda, Shuji

    2010-07-01

    Lifespan can be lengthened by genetic and environmental modifications. Study of these might provide valuable insights into the mechanism of aging. Low doses of radiation and short-term exposure to heat and high concentrations of oxygen prolong the lifespan of the nematode Caenorhabditis elegans. These might be caused by adaptive responses to harmful environmental conditions. Single-gene mutations have been found to extend lifespan in C. elegans, Drosophila and mice. So far, the best-characterized system is the C. elegans mutant in the daf-2, insulin/IGF-I receptor gene that is the component of the insulin/IGF-I signaling pathway. The mutant animals live twice as long as the wild type. The insulin/IGF-I signaling pathway regulates the activity of DAF-16, a FOXO transcription factor. However, the unified explanation for the function of DAF-16 transcription targets in the lifespan extension is not yet fully established. As both of the Mn superoxide dismutase (MnSOD) isoforms (sod-2 and sod-3) are found to be targets of DAF-16, we attempted to assess their functions in regulating lifespan and oxidative stress responsivity. We show that the double deletions of sod-2 and sod-3 genes induced oxidative-stress sensitivity but do not shorten lifespan in the daf-2 mutant background, indicating that oxidative stress is not necessarily a limiting factor for longevity. Furthermore, the deletion in the sod-3 gene lengthens lifespan in the daf-2 mutant. We conclude that the MnSOD systems in C. elegans fine-tune the insulin/IGF-I-signaling based regulation of longevity by acting not as anti-oxidants but as physiological-redox-signaling modulators.

  12. CRTAM is negatively regulated by ZEB1 in T cells.

    Science.gov (United States)

    Rojas-Marquez, C; Valle-Rios, R; Lopez-Bayghen, E; Ortiz-Navarrete, V

    2015-08-01

    T cell activation leads to the induction of genes that are required for appropriate immune responses. This includes CRTAM (Class-I MHC-restricted T cell associated molecule), a protein that plays a key role in T cell development, proliferation, and generating cell polarity during activation. We previously characterized the CRTAM promoter and described how AP-1 family members are important for inducing CRTAM expression upon antigenic activation. Here, we show that CRTAM is a molecular target for ZEB1 (zinc finger E-box-binding protein), a homeodomain/Zn finger transcription factor. Overexpression of ZEB1 repressed CRTAM promoter activity, as well as endogenous CRTAM levels in human T cells. ZEB1-mediated transcriptional repression was abolished when E-box-like elements in the CRTAM promoter are mutated. In summary, ZEB1 functions as a transcriptional repressor for the CRTAM gene in both non-stimulated and stimulated T cells, thereby modulating adaptive immune responses.

  13. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  14. Intrinsic and extrinsic negative regulators of nuclear protein transport processes

    OpenAIRE

    Sekimoto, Toshihiro; Yoneda, Yoshihiro

    2012-01-01

    The nuclear–cytoplasmic protein transport is a critical process in cellular events. The identification of transport signals (nuclear localization signal and nuclear export signal) and their receptors has facilitated our understanding of this expanding field. Nuclear transport must be appropriately regulated to deliver proteins through the nuclear pore when their functions are required in the nucleus, and to export them into the cytoplasm when they are not needed in the nucleus. Altered nuclea...

  15. Identification and functional characterization of Bet protein as a negative regulator of BFV3026 replication.

    Science.gov (United States)

    Bing, Tiejun; Wu, Kai; Cui, Xiaoxu; Shao, Peng; Zhang, Qicheng; Bai, Xiaobo; Tan, Juan; Qiao, Wentao

    2014-06-01

    Foamy virus (FV) establishes persistent infection in the host without causing apparent disease. Besides the transactivator Tas protein, another auxiliary protein--Bet--has been reported in prototype foamy virus, equine foamy virus, and feline foamy virus. Here, we found the putative bbet gene in clone C74 from a cDNA library of bovine foamy virus strain 3026 (BFV3026) by comparison of gene localization, composition, and splicing features with other known bet genes. Subsequently, BBet protein was detected in BFV3026-infected cells by Western blot and immunofluorescence analyses. Analysis of the BBet mutant infectious clone (pBS-BFVdelBBet) revealed that BBet could inhibit BFV3026 replication. Consistent with this result, overexpression of BBet in Cf2Th cells reduced BFV replication by approximately threefold. Furthermore, virus replication levels similarly were reduced by approximately threefold in pBS-BFV-transfected and BFV3026-infected Cf2Th cells stably expressing BBet compared with control cells. After three passages, BFV3026 replicated more slowly in BBet-expressing cells. This study implicates BBet as a negative regulator of BFV replication and provides a resource for future studies on the function of this protein in the virus lifecycle.

  16. PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana

    Science.gov (United States)

    Humphrey, Tania V.; Haasen, Katrina E.; Aldea-Brydges, May Grace; Sun, He; Zayed, Yara; Indriolo, Emily; Goring, Daphne R.

    2015-01-01

    The Arabidopsis proline-rich, extensin-like receptor-like kinases (PERKs) are a small group of receptor-like kinases that are thought to act as sensors at the cell wall through their predicted proline-rich extracellular domains. In this study, we focused on the characterization of a subclade of three Arabidopsis predicted PERK genes, PERK8, -9, and -10, for which no functions were known. Yeast two-hybrid interaction studies were conducted with the PERK8,- 9, and -10 cytosolic kinase domains, and two members of the Arabidopsis AGC VIII kinase family were identified as interacting proteins: AGC1-9 and the closely related kinesin-like calmodulin-binding protein (KCBP)-interacting protein kinase (KIPK). As KIPK has been identified previously as an interactor of KCBP, these interactions were also examined further and confirmed in this study. Finally, T-DNA mutants for each gene were screened for altered phenotypes under different conditions, and from these screens, a role for the PERK, KIPK, and KCBP genes in negatively regulating root growth was uncovered. PMID:25262228

  17. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region.

    Science.gov (United States)

    Sharma, Tapan; Bansal, Ritu; Haokip, Dominic Thangminlen; Goel, Isha; Muthuswami, Rohini

    2015-12-09

    SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.

  18. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed......To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  19. MicroRNA-1299 is a negative regulator of STAT3 in colon cancer.

    Science.gov (United States)

    Wang, Yong; Lu, Zhi; Wang, Ningning; Zhang, Man; Zeng, Xiandong; Zhao, Wei

    2017-06-01

    Signal transducers and activators of transcription (STAT) is a family of transcription factors which regulate cell proliferation, differentiation, apoptosis, metastasis, immune and inflammatory responses, and angiogenesis. STAT3 is a latent cytoplasmic transcription factor that belongs to STATs. STAT3 has been reported be regulates genes involved with cellular growth, proliferation and metastasis. Worldwide, colon cancer is one of the leading causes of cancer-related deaths. Cumulative evidence has established that STAT3 is essential for colon cancer progression to advanced malignancy. In our study, we showed that microRNA-1299 (miR-1299) was closely related to the TNM stage of colon cancer, and that the expression of miR-1299 was negatively correlated with the expression of STAT3 in colon cancer which means that miR-1299 can be a negative regulator of STAT3 in colon cancer. A total of 60 cases of different grades of colon samples were used to detect the expression of miR-1299. Results showed that miR-1299 was significantly lower in high-grade colons both in mRNA and protein levels. Furthermore, Overall survival (OS) in patients with low miR-1299 is shorter than 25.6 months, as compared with an OS of 28.4 months in patients with high level of miR-1299. We also confirmed that the overexpression of miR-1299 can not only downregulate the STAT3 pathway, but also inhibited colon cancer cell growth. Our findings could provide new insights into the molecular therapeutic of colon cancer.

  20. Phytophthora sojae TatD nuclease positively regulates sporulation and negatively regulates pathogenesis.

    Science.gov (United States)

    Chen, Linlin; Shen, Danyu; Sun, Nannan; Xu, Jing; Wang, Wen; Dou, Daolong

    2014-10-01

    During pathogenic interactions, both the host and pathogen are exposed to conditions that induce programmed cell death (PCD). Certain aspects of PCD have been recently examined in eukaryotic microbes but not in oomycetes. Here, we identified conserved TatD proteins in Phytophthora sojae; the proteins are key components of DNA degradation in apoptosis. We selected PsTatD4 for further investigation because the enzyme is unique to the oomycete branch of the phylogenetic tree. The purified protein exhibited DNase activity in vitro. Its expression was upregulated in sporangia and later infective stages but downregulated in cysts and during early infection. Functional analysis revealed that the gene was required for sporulation and zoospore production, and the expression levels were associated with the numbers of hydrogen-peroxide-induced terminal dUTP nick end-labeling-positive cells. Furthermore, overexpression of PsTatD4 gene reduced the virulence in a susceptible soybean cultivar. Together, these data suggest that apoptosis may play different roles in the early and late infective stages of P. sojae, and that PsTatD4 is a key regulator of infection. The association of PsTatD4 and apoptosis will lay a foundation to understanding the basic biology of apoptosis and its roles in P. sojae disease cycle.

  1. Cbl negatively regulates JNK activation and cell death

    Institute of Scientific and Technical Information of China (English)

    Andrew A Sproul; Zhiheng Xu; Michael Wilhelm; Stephen Gire; Lloyd A Greene

    2009-01-01

    Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apopto-sis--nerve growth factor (NGF) deprivation and DNA damage--cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activa-tion) of c-Cbl. Targeting e-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl pro-teins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK acti-vation and on cell death.

  2. Parental reactions to children's negative emotions: relationships with emotion regulation in children with an anxiety disorder.

    Science.gov (United States)

    Hurrell, Katherine E; Hudson, Jennifer L; Schniering, Carolyn A

    2015-01-01

    Research has demonstrated that parental reactions to children's emotions play a significant role in the development of children's emotion regulation (ER) and adjustment. This study compared parent reactions to children's negative emotions between families of anxious and non-anxious children (aged 7-12) and examined associations between parent reactions and children's ER. Results indicated that children diagnosed with an anxiety disorder had significantly greater difficulty regulating a range of negative emotions and were regarded as more emotionally negative and labile by their parents. Results also suggested that mothers of anxious children espoused less supportive parental emotional styles when responding to their children's negative emotions. Supportive and non-supportive parenting reactions to children's negative emotions related to children's emotion regulation skills, with father's non-supportive parenting showing a unique relationship to children's negativity/lability.

  3. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  4. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Science.gov (United States)

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  5. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  6. Somatostatin Negatively Regulates Parasite Burden and Granulomatous Responses in Cysticercosis

    Directory of Open Access Journals (Sweden)

    Mitra Khumbatta

    2014-01-01

    Full Text Available Cysticercosis is an infection of tissues with the larval cysts of the cestode, Taenia  solium. While live parasites elicit little or no inflammation, dying parasites initiate a granulomatous reaction presenting as painful muscle nodules or seizures when cysts are located in the brain. We previously showed in the T. crassiceps murine model of cysticercosis that substance P (SP, a neuropeptide, was detected in early granulomas and was responsible for promoting granuloma formation, while somatostatin (SOM, another neuropeptide and immunomodulatory hormone, was detected in late granulomas; SOM’s contribution to granuloma formation was not examined. In the current studies, we used somatostatin knockout (SOM−/− mice to examine the hypothesis that SOM downmodulates granulomatous inflammation in cysticercosis, thereby promoting parasite growth. Our results demonstrated that parasite burden was reduced 5.9-fold in SOM−/− mice compared to WT mice (P<0.05. This reduction in parasite burden in SOM−/− mice was accompanied by a 95% increase in size of their granulomas (P<0.05, which contained a 1.5-fold increase in levels of IFN-γ and a 26-fold decrease in levels of IL-1β (P<0.05 for both compared to granulomas from WT mice. Thus, SOM regulates both parasite burden and granulomatous inflammation perhaps through modulating granuloma production of IFN-γ and IL-1β.

  7. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    Science.gov (United States)

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.

  8. N-cadherin negatively regulates collective Drosophila glial migration through actin cytoskeleton remodeling.

    Science.gov (United States)

    Kumar, Arun; Gupta, Tripti; Berzsenyi, Sara; Giangrande, Angela

    2015-03-01

    Cell migration is an essential and highly regulated process. During development, glia cells and neurons migrate over long distances - in most cases collectively - to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence, the real challenge is to analyze it in the entire organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration, by using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage-dependent manner, by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.

  9. Mood regulation and quality of life in social anxiety disorder: An examination of generalized expectancies for negative mood regulation

    Science.gov (United States)

    Sung, Sharon C.; Porter, Eliora; Robinaugh, Donald J.; Marks, Elizabeth H.; Marques, Luana M.; Otto, Michael W.; Pollack, Mark H.; Simon, Naomi M.

    2014-01-01

    The present study examined negative mood regulation expectancies, anxiety symptom severity, and quality of life in a sample of 167 patients with social anxiety disorder (SAD) and 165 healthy controls with no DSM-IV Axis I disorders. Participants completed the Generalized Expectancies for Negative Mood Regulation Scale (NMR), the Beck Anxiety Inventory, and the Quality of Life Enjoyment and Satisfaction Questionnaire. SAD symptom severity was assessed using the Liebowitz Social Anxiety Scale. Individuals with SAD scored significantly lower than controls on the NMR. Among SAD participants, NMR scores were negatively correlated with anxiety symptoms and SAD severity, and positively correlated with quality of life. NMR expectancies positively predicted quality of life even after controlling for demographic variables, comorbid diagnoses, anxiety symptoms, and SAD severity. Individuals with SAD may be less likely to engage in emotion regulating strategies due to negative beliefs regarding their effectiveness, thereby contributing to poorer quality of life. PMID:22343166

  10. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  11. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  12. ERK8 is a negative regulator of O-GalNAc glycosylation and cell migration.

    Science.gov (United States)

    Chia, Joanne; Tham, Keit Min; Gill, David James; Bard-Chapeau, Emilie Anne; Bard, Frederic A

    2014-03-11

    ER O-glycosylation can be induced through relocalisation GalNAc-Transferases from the Golgi. This process markedly stimulates cell migration and is constitutively activated in more than 60% of breast carcinomas. How this activation is achieved remains unclear. Here, we screened 948 signalling genes using RNAi and imaging. We identified 12 negative regulators of O-glycosylation that all control GalNAc-T sub-cellular localisation. ERK8, an atypical MAPK with high basal kinase activity, is a strong hit and is partially localised at the Golgi. Its inhibition induces the relocation of GalNAc-Ts, but not of KDEL receptors, revealing the existence of two separate COPI-dependent pathways. ERK8 down-regulation, in turn, activates cell motility. In human breast and lung carcinomas, ERK8 expression is reduced while ER O-glycosylation initiation is hyperactivated. In sum, ERK8 appears as a constitutive brake on GalNAc-T relocalisation, and the loss of its expression could drive cancer aggressivity through increased cell motility. DOI: http://dx.doi.org/10.7554/eLife.01828.001.

  13. AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation.

    Science.gov (United States)

    Bandow, Kenjiro; Kusuyama, Joji; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2015-05-01

    Chondrocytes are derived from mesenchymal stem cells, and play an important role in cartilage formation. Sex determining region Y box (Sox) family transcription factors are essential for chondrogenic differentiation, whereas the intracellular signal pathways of Sox activation have not been clearly elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis. It is known that the catalytic alpha subunit of AMPK is activated by upstream AMPK kinases (AMPKKs) including liver kinase B1 (LKB1). We have previously reported that AMPK is a negative regulator of osteoblastic differentiation. Here, we have explored the role of AMPK in chondrogenic differentiation using in vitro culture models. The phosphorylation level of the catalytic AMPK alpha subunit significantly decreased during chondrogenic differentiation of primary chondrocyte precursors as well as ATDC-5, a well-characterized chondrogenic cell line. Treatment with metformin, an activator of AMPK, significantly reduced cartilage matrix formation and inhibited gene expression of sox6, sox9, col2a1 and aggrecan core protein (acp). Thus, chondrocyte differentiation is functionally associated with decreased AMPK activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The PhoP transcription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis.

    Science.gov (United States)

    Yang, Renjun; Liu, Xingchao; Wen, Ying; Song, Yuan; Chen, Zhi; Li, Jilun

    2015-12-01

    Bacteria sense and respond to the stress of phosphate limitation, anticipating Pi deletion/starvation via the two-component PhoR-PhoP system. The role of the response regulator PhoP in primary metabolism and avermectin biosynthesis in Streptomyces avermitilis was investigated. In response to phosphate starvation, S. avermitilis PhoP, like Streptomyces coelicolor and Streptomyces lividans PhoP, activates the expression of phoRP, phoU, and pstS by binding to the PHO boxes in their promoter regions. Avermectin biosynthesis was significantly increased in ΔphoP deletion mutants. Electrophoretic mobility gel shift assay (EMSA) and DNase I footprinting assays showed that PhoP can bind to a PHO box formed by two direct repeat units of 11 nucleotides located downstream of the transcriptional start site of aveR. By negatively regulating the transcription of aveR, PhoP directly affects avermectin biosynthesis in S. avermitilis. PhoP indirectly affects melanogenesis on Casaminoacids Minimal Medium (MMC) lacking supplemental phosphate. Nitrogen metabolism and some key genes involved in morphological differentiation and antibiotic production in S. avermitilis are also under the control of PhoP.

  15. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer.

    Science.gov (United States)

    Qiao, Y; Lin, S J; Chen, Y; Voon, D C-C; Zhu, F; Chuang, L S H; Wang, T; Tan, P; Lee, S C; Yeoh, K G; Sudol, M; Ito, Y

    2016-05-19

    Runt-related transcription factor 3 (RUNX3) is a well-documented tumour suppressor that is frequently inactivated in gastric cancer. Here, we define a novel mechanism by which RUNX3 exerts its tumour suppressor activity involving the TEAD-YAP complex, a potent positive regulator of proliferative genes. We report that the TEAD-YAP complex is not only frequently hyperactivated in liver and breast cancer, but also confers a strong oncogenic activity in gastric epithelial cells. The increased expression of TEAD-YAP in tumour tissues significantly correlates with poorer overall survival of gastric cancer patients. Strikingly, RUNX3 physically interacts with the N-terminal region of TEAD through its Runt domain. This interaction markedly reduces the DNA-binding ability of TEAD that attenuates the downstream signalling of TEAD-YAP complex. Mutation of RUNX3 at Arginine 122 to Cysteine, which was previously identified in gastric cancer, impairs the interaction between RUNX3 and TEAD. Our data reveal that RUNX3 acts as a tumour suppressor by negatively regulating the TEAD-YAP oncogenic complex in gastric carcinogenesis.

  16. SOCS1 mimetics and antagonists: a complementary approach to positive and negative regulation of immune function

    Directory of Open Access Journals (Sweden)

    Chulbul M. Ahmed

    2015-04-01

    Full Text Available Suppressors of cytokine signaling (SOCS are inducible intracellular proteins that play essential regulatory roles in both immune and non-immune function. Of the eight known members, SOCS1 and SOCS3 in conjunction with regulatory T cells play key roles in regulation of the immune system. Molecular tools such as gene transfections and siRNA have played a major role in our functional understanding of the SOCS proteins where a key functional domain of 12 amino acid residues called the kinase inhibitory region (KIR has been identified on SOCS1 and SOCS3. KIR plays a key role in inhibition of the JAK2 tyrosine kinase which in turn plays a key role in cytokine signaling. A peptide corresponding to KIR (SOCS1-KIR bound to the activation loop of JAK2 and inhibited tyrosine phosphorylation of STAT1α transcription factor by JAK2. Cell internalized SOCS1-KIR is a potent therapeutic in the experimental allergic encephalomyelitis (EAE mouse model of multiple sclerosis and showed promise in a psoriasis model and a model of diabetes associated cardiovascular disease. By contrast, a peptide, pJAK2(1001-1013, that corresponds to the activation loop of JAK2 is a SOCS1 antagonist. The antagonist enhanced innate and adaptive immune response against a broad range of viruses including herpes simplex virus, vaccinia virus, and an EMC picornavirus. SOCS mimetics and antagonists are thus potential therapeutics for negative and positive regulation of the immune system.

  17. Arabidopsis MSI1 Is Required for Negative Regulation of the Response to Drought Stress

    Institute of Scientific and Technical Information of China (English)

    Cristina Alexandre; Yvonne M(o)ller-Steinbach; Nicole Sch(o)nrock; Wilhelm Gruissem; Lars Hennig

    2009-01-01

    Arabidopsis MSI1 has fundamental functions in plant development.MSI1 is a subunit of Polycomb group protein complexes and Chromatin assembly factor 1,and it interacts with the Retinoblastoma-related protein 1.Altered levels of MSI1 result in pleiotropic phenotypes,reflecting the complexity of MSI1 protein functions.In order to uncover additional functions of MSI1,we performed transcriptional profiling of wild-type and plants with highly reduced MSI1 levels (msil-cs).Surprisingly,the known functions of MSI1 could only account for a minor part of the transcriptional changes in msi1-cs plants.One of the most striking unexpected observations was the up-regulation of a subset of ABA-responsive genes eliciting the response to drought and salt stress.We report that MSI1 can bind to the chromatin of the drought-inducible downstream target RD20 and suggest a new role for MSI1 in the negative regulation of the Arabidopsis drought-stress response.

  18. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... Key words: Cyclin G2, gastric cancer, negative regulator, mutation screen. ... has been reported in thyroid cancer, breast cancer, oral cancer and acute ..... transformation of papillary carcinoma of the thyroid. Anticancer. Res.

  19. Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis.

    Science.gov (United States)

    Mellin, J R; McClure, Ryan; Lopez, Delia; Green, Olivia; Reinhard, Bjorn; Genco, Caroline

    2010-08-01

    In Neisseria meningitidis, iron-responsive gene regulation is mediated primarily by the ferric uptake regulator (Fur) protein. When complexed with iron, Fur represses gene expression by preventing transcription initiation. Fur can also indirectly activate gene expression via the repression of regulatory small RNAs (sRNA). One such Fur- and iron-regulated sRNA, NrrF, was previously identified in N. meningitidis and shown to repress expression of the sdhA and sdhC genes encoding subunits of the succinate dehydrogenase complex. In the majority of Gram-negative bacteria, sRNA-mediated regulation requires a cofactor RNA-binding protein (Hfq) for proper gene regulation and stabilization. In this study, we examined the role of Hfq in NrrF-mediated regulation of the succinate dehydrogenase genes in N. meningitidis and the effect of an hfq mutation on iron-responsive gene regulation more broadly. We first demonstrated that the stability of NrrF, as well as the regulation of sdhC and sdhA in vivo, was unaltered in the hfq mutant. Secondly, we established that iron-responsive gene regulation of the Fur-regulated sodB gene was dependent on Hfq. Finally, we demonstrated that in N. meningitidis, Hfq functions in a global manner to control expression of many ORFs and intergenic regions via iron-independent mechanisms. Collectively these studies demonstrate that in N. meningitidis, iron- and NrrF-mediated regulation of sdhC and sdhA can occur independently of Hfq, although Hfq functions more globally to control regulation of other N. meningitidis genes primarily by iron-independent mechanisms.

  20. 大豆microRNA基因GmMIR160A负调控植物叶片衰老进程%GmMIR1 60A,a class of soybean microRNA gene, negatively regulates progress of leaf senescence

    Institute of Scientific and Technical Information of China (English)

    李小平; 曾庆发; 张根生; 赵娟

    2015-01-01

    -type soybean through Agrobacterium-medi-ated method with cotyledon node as the explants.Using the time order screening approaches including the antibiotic screen,the genome PCR identification and the phenotypic analysis,we finally generated four transgenic lines (Line OX-3,5,7 and 8)with stable integrated insertion T-DNA.Compared with wild types control,these transgenic plants, successful expressing the transgene showed normal morphological characteristics in respect to roots,stem,leaves, flowers,fruits and seeds but exhibited the increased chlorophyll content and higher maximum quantum efficiency (Fv/Fm)for the first trifoliage leaves during the mature stage.Moreover,GmARFs and GmCYSP 1 ,in which the former are targets ofGmMIR160 and the latter is thought as a soybean senescence marker,were down-regulated dra-matically in the transgenic trifoliage leaves.Taking together,these data indicated that Gma-miR160 might negatively regulate leaf senescence by repression of its targets in soybean.This report uncovered a novel pathway that the plant hormone auxin could modify the processes of leaf senescence by regulating the transcriptional expression of microR-NA gene Gma-miR160 and then repressing the messenger RNA level of auxin responsive factors GmARFs and also provided the new clues for investigating how the plant hormones control the progress of leaf senescence.%叶片衰老是受内外多种因子影响的遗传发育进程.生长素、细胞分裂素和乙烯等多种植物激素是调控叶片衰老的重要内部因子,它们通过长或短距离运输形成叶片组织内特定的区域分布和浓度梯度,从而直接或间接参与植物叶片衰老过程.分子遗传学表明,细胞分裂素和乙烯分别是叶片衰老的抑制子和正调节子,而生长素如何参与叶片衰老的分子机制目前还不清晰.植物体内成熟小分子 RNA 由小 RNA 基因转录并通过特定酶加工形成的21~23 bp的双链RNA分子.这些小分子通过不完全配对方

  1. Down Regulation of Gene Expression by the Vaccinia Virus D10 Protein

    OpenAIRE

    Shors, Teri; Keck, James G.; Moss, Bernard

    1999-01-01

    Vaccinia virus genes are expressed in a sequential fashion, suggesting a role for negative as well as positive regulatory mechanisms. A potential down regulator of gene expression was mapped by transfection assays to vaccinia virus open reading frame D10, which encodes a protein with no previously known function. Inhibition was independent of the promoter type used for the reporter gene, indicating that the mechanism did not involve promoter sequence recognition. The inhibition was overcome, ...

  2. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Yufeng Huang

    2015-08-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution in ZFHX3, rs2200733 (C/T substitution near PITX2c, and rs3807989 (A/G substitution in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43, P=8.00×10-24. The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4 or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4. The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02. Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  3. CPC,a Single-Repeat R3 MYB,Is a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Hui-Fen Zhu; Karen Fitzsimmons; Abha Khandelwal; Robert G.Kranz

    2009-01-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation.However,none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis.We show here that CPC is a negative regulator of anthocyanin biosynthesis.In the process of using CPC to test GAL4-dependent driver lines,we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression,We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs.Rather,CPC expression level tightly controls anthocyanin accumulation.Microarray analysis on the whole genome showed that,of 37 000 features tested,85 genes are repressed greater than three-fold by CPC overexpression.Of these 85,seven are late anthocyanin biosynthesis genes.Also,anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants.Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2,which is an activator of anthocyanin biosynthesis genes.This report adds anthocyanin biosynthesis to the set of programs that are under CPC control,indicating that this regulator is not only for developmental programs (e.g.root hairs,trichomes),but can influence anthocyanin pigment synthesis.

  4. 胰腺癌细胞PANC-1中LSD1负向调控抑癌基因SIRT3的实验研究%LSD1 negatively regulates the expression of tumor suppressor gene SIRT3 in pancreatic cancer cell line PANC-1

    Institute of Scientific and Technical Information of China (English)

    徐近; 秦毅; 张波; 吉顺荣; 许文彦; 施思; 刘江; 虞先濬

    2014-01-01

    transformation and oxidative stress. The correlation between LSD1 and SIRT3 has never been reported before. This study aimed to elucidate the correlation between LSD1 and SIRT3 with gene transcriptional regulation methods. Methods: RNA interference technique, co-immunoprecipitation assay(CoIP), chromatin immune-precipitation assay(ChIP) and ifrelfy luciferase activity assay were employed to elucidate the correlation between LSD1 and SIRT3 in pancreatic cancer. Results:mRNA and protein levels of SIRT3 were signiifcantly elevated in LSD1 knock-down PANC-1 cells. LSD1 interacts with PGC-1α, an important regulator of SIRT3 gene expression. LSD1 and PGC-1αoccupied the same region in SIRT3 promoter region through ChIP analysis. Luciferase activity assay validated LSD1 as a negative regulator of PGC-1αin SIRT3 gene transcriptional regulation. Conclusion:LSD1, as an important tumor promoter, negatively regulates the expression of tumor suppressor gene SIRT3, these results provide important clues for the role that LSD1 plays in aberrant metabolism and oxidative stress.

  5. MK3 controls Polycomb target gene expression via negative feedback on ERK

    Directory of Open Access Journals (Sweden)

    Prickaerts Peggy

    2012-08-01

    Full Text Available Abstract Background Gene-environment interactions are mediated by epigenetic mechanisms. Polycomb Group proteins constitute part of an epigenetic cellular transcriptional memory system that is subject to dynamic modulation during differentiation. Molecular insight in processes that control dynamic chromatin association and dissociation of Polycomb repressive complexes during and beyond development is limited. We recently showed that MK3 interacts with Polycomb repressive complex 1 (PRC1. The functional relevance of this interaction, however, remained poorly understood. MK3 is activated downstream of mitogen- and stress-activated protein kinases (M/SAPKs, all of which fulfill crucial roles during development. We here use activation of the immediate-early response gene ATF3, a bona fide PRC1 target gene, as a model to study how MK3 and its effector kinases MAPK/ERK and SAPK/P38 are involved in regulation of PRC1-dependent ATF3 transcription. Results Our current data show that mitogenic signaling through ERK, P38 and MK3 regulates ATF3 expression by PRC1/chromatin dissociation and epigenetic modulation. Mitogenic stimulation results in transient P38-dependent H3S28 phosphorylation and ERK-driven PRC1/chromatin dissociation at PRC1 targets. H3S28 phosphorylation by itself appears not sufficient to induce PRC1/chromatin dissociation, nor ATF3 transcription, as inhibition of MEK/ERK signaling blocks BMI1/chromatin dissociation and ATF3 expression, despite induced H3S28 phosphorylation. In addition, we establish that concomitant loss of local H3K27me3 promoter marking is not required for ATF3 activation. We identify pERK as a novel signaling-induced binding partner of PRC1, and provide evidence that MK3 controls ATF3 expression in cultured cells via negative regulatory feedback on M/SAPKs. Dramatically increased ectopic wing vein formation in the absence of Drosophila MK in a Drosophila ERK gain-of-function wing vein patterning model, supports the

  6. The Role of Depression and Negative Affect Regulation Expectancies in Tobacco Smoking among College Students

    Science.gov (United States)

    Schleicher, Holly E.; Harris, Kari Jo; Catley, Delwyn; Nazir, Niaman

    2009-01-01

    Objective: Expectancies about nicotine's ability to alleviate negative mood states may play a role in the relationship between smoking and depression. The authors examined the role of negative affect regulation expectancies as a potential mediator of depression (history of depression and depressive symptoms) and smoking among college students.…

  7. ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in Arabidopsis.

    Science.gov (United States)

    Liu, Xiao-Min; An, Jonguk; Han, Hay Ju; Kim, Sun Ho; Lim, Chae Oh; Yun, Dae-Jin; Chung, Woo Sik

    2014-12-01

    ZAT11, a Zinc Finger of Arabidopsis Thaliana 11, is a dual-function transcriptional regulator that positively regulates primary root growth but negatively regulates Ni (2+) tolerance. Zinc Finger of Arabidopsis Thaliana 11 (ZAT11) is a C2H2-type zinc finger protein that has been reported to function as an active transcriptional repressor. However, the biological function of ZAT11 remains unknown. Here we show that GFP-tagged ZAT11 is targeted to the nucleus. Analysis of plants expressing ZAT11 promoter-GUS showed that ZAT11 is highly expressed in roots and particularly in root tips. To identify the biological function of ZAT11, we constructed three independent lines of ZAT11 overexpressing transgenic plant (ZAT11 OE). ZAT11 OE enhanced the elongation of primary root but reduced the metal tolerance against nickel ion (Ni(2+)). The reduced Ni(2+) tolerance of ZAT11 OE was correlated with decreased accumulation of Ni(2+) in plants. The decreased accumulation of Ni(2+) in ZAT11 OE was caused by the reduced transcription of a vacuolar Ni(2+) transporter gene. Taken together, our results suggest that ZAT11 is a dual function transcriptional regulator that positively regulates primary root growth but negatively regulates Ni(2+) tolerance.

  8. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.

    Science.gov (United States)

    Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs

    2015-06-01

    Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways.

  9. Mothers' Socialization of Emotion Regulation: The Moderating Role of Children's Negative Emotional Reactivity

    Science.gov (United States)

    Mirabile, Scott P.; Scaramella, Laura V.; Sohr-Preston, Sara L.; Robison, Sarah D.

    2009-01-01

    During the toddler period, children begin to shift from being primarily dependent on parents to regulate their emotions to managing their emotions independently. The present study considers how children's propensity towards negative emotional arousal interacts with mothers' efforts to socialize emotion regulation. Fifty-five low income mothers and…

  10. A Computational Model of the Relation Between Regulation of Negative Emotions and Mood

    NARCIS (Netherlands)

    Abro, A.H.; Klein, M.C.A.; Manzoor, A.R.; Tabatabaei, S.A.; Treur, J.

    2014-01-01

    In this paper a computational model is presented that describes the role of emotion regulation to reduce the influences of negative events on long term mood. The model incorporates an earlier model of mood dynamics and a model for the dynamics of emotion generation and regulation. Example model simu

  11. The Potato ERF Transcription Factor StERF3 Negatively Regulates Resistance to Phytophthora infestans and Salt Tolerance in Potato.

    Science.gov (United States)

    Tian, Zhendong; He, Qin; Wang, Haixia; Liu, Ying; Zhang, Ying; Shao, Fang; Xie, Conghua

    2015-05-01

    Ethylene response factors (ERFs) are unique to the plant kingdom and play crucial roles in plant response to various biotic and abiotic stresses. We show here that a potato StERF3, which contains an ERF-associated amphiphilic repression (EAR) motif in its C-terminal region, negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. The StERF3 promoter responds to induction by salicylic acid, ABA ethylene and NaCl, as well as P. infestans, the causal agent of potato late blight disease. StERF3 could bind to the GCC box element of the HIS3 promoter and activate transcription of HIS3 in yeast cells. Importantly, silencing of StERF3 in potato produced an enhanced foliage resistance to P. infestans and elevated plant tolerance to NaCl stress accompanied by the activation of defense-related genes (PR1, NPR1 and WRKY1). In contrast, StERF3-overexpressing plants showed reduced expression of these defense-related genes and enhanced susceptibility to P. infestans, suggesting that StERF3 functions as a negative regulator of downstream defense- and/or stress-related genes in potato. StERF3 is localized to the nucleus. Interestingly, yeast two-hybrid assay and a bimolecular fluorescence complementation (BiFC) test clarified that StERF3 could interact with other proteins in the cytoplasm which may lead to its re-localization between the nucleus and cytoplasm, revealing a novel means of StERF3 regulation. Taken together, these data provide new insights into the mechanism underlying how StERF3 negatively regulates late blight resistance and abiotic tolerance in potato and may have a potential use in engineering late blight resistance in potato.

  12. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Chui Sun; Sinha, Rohit Anthony [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore); Ota, Sho; Katsuki, Masahito [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Yen, Paul Michael, E-mail: paul.yen@duke-nus.edu.sg [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore)

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  13. sli-3 negatively regulates the LET-23/epidermal growth factor receptor-mediated vulval induction pathway in Caenorhabditis elegans.

    Science.gov (United States)

    Gupta, Bhagwati P; Liu, Jing; Hwang, Byung J; Moghal, Nadeem; Sternberg, Paul W

    2006-11-01

    The LIN-3-LET-23-mediated inductive signaling pathway plays a major role during vulval development in C. elegans. Studies on the components of this pathway have revealed positive as well as negative regulators that function to modulate the strength and specificity of the signal transduction cascade. We have carried out genetic screens to identify new regulators of this pathway by screening for suppressors of lin-3 vulvaless phenotype. The screens recovered three loci including alleles of gap-1 and a new gene represented by sli-3. Our genetic epistasis experiments suggest that sli-3 functions either downstream or in parallel to nuclear factors lin-1 and sur-2. sli-3 synergistically interacts with the previously identified negative regulators of the let-23 signaling pathway and causes excessive cell proliferation. However, in the absence of any other mutation sli-3 mutant animals display wild-type vulval induction and morphology. We propose that sli-3 functions as a negative regulator of vulval induction and defines a branch of the inductive signaling pathway. We provide evidence that sli-3 interacts with the EGF signaling pathway components during vulval induction but not during viability and ovulation processes. Thus, sli-3 helps define specificity of the EGF signaling to induce the vulva.

  14. Metacognitive emotion regulation: children's awareness that changing thoughts and goals can alleviate negative emotions.

    Science.gov (United States)

    Davis, Elizabeth L; Levine, Linda J; Lench, Heather C; Quas, Jodi A

    2010-08-01

    Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they use. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations.

  15. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from

  16. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    1993-01-01

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from cul

  17. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    1993-01-01

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from cul

  18. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.

    Science.gov (United States)

    Bowman, J L; Sakai, H; Jack, T; Weigel, D; Mayer, U; Meyerowitz, E M

    1992-03-01

    We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products.

  19. MicroRNA-370 suppresses proliferation and promotes endometrioid ovarian cancer chemosensitivity to cDDP by negatively regulating ENG.

    Science.gov (United States)

    Chen, Xiao-Ping; Chen, You-Guo; Lan, Jian-Yun; Shen, Zong-Ji

    2014-10-28

    MicroRNAs (miRNAs) are a class of non-coding RNAs that post-transcriptionally inhibit gene expression. In this study, we discovered that microRNA-370 (miR-370) was down-regulated in endometrioid ovarian cancer cells. In IGROV1 and TOV112D endometrioid ovarian cancer cells, miR-370 suppressed cellular viability and colony formation. miR-370 also enhanced endometrioid ovarian cancer cell chemosensitivity to cDDP. Endoglin (ENG) was directly and negatively regulated by miR-370. In addition, hypermethylation was a potential mechanism of miR-370 epigenetic silencing. We conclude that miR-370 acts as a tumor suppressor in endometrioid ovarian cancer via ENG regulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. The neural correlates of regulating positive and negative emotions in medication-free major depression.

    Science.gov (United States)

    Greening, Steven G; Osuch, Elizabeth A; Williamson, Peter C; Mitchell, Derek G V

    2014-05-01

    Depressive cognitive schemas play an important role in the emergence and persistence of major depressive disorder (MDD). The current study adapted emotion regulation techniques to reflect elements of cognitive behavioural therapy (CBT) and related psychotherapies to delineate neurocognitive abnormalities associated with modulating the negative cognitive style in MDD. Nineteen non-medicated patients with MDD and 19 matched controls reduced negative or enhanced positive feelings elicited by emotional scenes while undergoing functional magnetic resonance imaging. Although both groups showed significant emotion regulation success as measured by subjective ratings of affect, the controls were significantly better at modulating both negative and positive emotion. Both groups recruited regions of dorsolateral prefrontal cortex and ventrolateral prefrontal cortex (VLPFC) when regulating negative emotions. Only in controls was this accompanied by reduced activity in sensory cortices and amygdala. Similarly, both groups showed enhanced activity in VLPFC and ventral striatum when enhancing positive affect; however, only in controls was ventral striatum activity correlated with regulation efficacy. The results suggest that depression is associated with both a reduced capacity to achieve relief from negative affect despite recruitment of ventral and dorsal prefrontal cortical regions implicated in emotion regulation, coupled with a disconnect between activity in reward-related regions and subjective positive affect.

  1. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Rong Yin

    Full Text Available Bisphenol A (BPA is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  2. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Science.gov (United States)

    Yin, Rong; Gu, Liang; Li, Min; Jiang, Cizhong; Cao, Tongcheng; Zhang, Xiaobai

    2014-01-01

    Bisphenol A (BPA) is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER)-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  3. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  4. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Science.gov (United States)

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D; Yepuru, Muralimohan; Miller, Duane D; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER)-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  5. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  6. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer

    Science.gov (United States)

    Ha, Ngoc-Han; Long, Jirong; Cai, Qiuyin; Shu, Xiao Ou

    2016-01-01

    Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies. PMID:27656887

  7. Negative regulation of TLR-signaling pathways by activating transcription factor-3.

    Science.gov (United States)

    Whitmore, Mark M; Iparraguirre, Amaya; Kubelka, Lindsey; Weninger, Wolfgang; Hai, Tsonwin; Williams, Bryan R G

    2007-09-15

    Activating transcription factor-3 (ATF3) is rapidly induced by LPS in mouse macrophages and regulates TLR4 responses. We show that ATF3 is rapidly induced by various TLRs in mouse macrophages and plasmacytoid dendritic cells (DCs), as well as plasmacytoid and myeloid subsets of human DCs. In primary macrophages from mice with a targeted deletion of the atf3 gene (ATF3-knockout (KO)), TLR-stimulated levels of IL-12 and IL-6 were elevated relative to responses in wild-type macrophages. Similarly, targeted deletion of atf3 correlated with enhanced responsiveness of myeloid DCs to TLR activation as measured by IL-12 secretion. Ectopic expression of ATF3 antagonized TLR-stimulated IL-12p40 activation in a reporter assay. In vivo, CpG-oligodeoxynucleotide, a TLR9 agonist, given i.p. to ATF3-KO mice resulted in enhanced cytokine production from splenocytes. Furthermore, while ATF3-KO mice challenged with a sublethal dose of PR8 influenza virus were delayed in body weight recovery in comparison to wild type, the ATF3-KO mice showed higher titers of serum neutralizing Ab against PR8 5 mo postinfection. Thus, ATF3 behaves as a negative regulatory transcription factor in TLR pathways and, accordingly, deficiency in atf3 alters responses to immunological challenges in vivo. ATF3 dysregulation merits further exploration in diseases such as type I diabetes and cancer, where altered innate immunity has been implicated in their pathogenesis.

  8. The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development.

    Science.gov (United States)

    Huang, L S; Tzou, P; Sternberg, P W

    1994-01-01

    During Caenorhabditis elegans vulval development, an inductive signal from the anchor cell stimulates three of the six vulval precursor cells (VPCs) to adopt vulval rather than nonvulval epidermal fates. Genes necessary for this induction include the lin-3 growth factor, the let-23 receptor tyrosine kinase, and let-60 ras. lin-15 is a negative regulator of this inductive pathway. In lin-15 mutant animals, all six VPCs adopt vulval fates, even in the absence of inductive signal. Previous genetic studies suggested that lin-15 is a complex locus with two independently mutable activities, A and B. We have cloned the lin-15 locus by germline transformation and find that it encodes two nonoverlapping transcripts that are transcribed in the same direction. The downstream transcript encodes the lin-15A function; the upstream transcript encodes the lin-15B function. The predicted lin-15A and lin-15B proteins are novel and hydrophilic. We have identified a molecular null allele of lin-15 and have used it to analyze the role of lin-15 in the signaling pathway. We find that lin-15 acts upstream of let-23 and in parallel to the inductive signal. Images PMID:8054684

  9. BP1, an Isoform of DLX4 Homeoprotein, Negatively Regulates BRCA1 in Sporadic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Brian J. Kluk, Yebo Fu, Trina A. Formolo, Lei Zhang, Anne K. Hindle, Yan-gao Man, Robert S. Siegel, Patricia E. Berg, Chuxia Deng, Timothy A. McCaffrey, Sidney W. Fu

    2010-01-01

    Full Text Available Introduction: Several lines of evidence point to an important role for BP1, an isoform of DLX4 homeobox gene, in breast carcinogenesis and progression. BRCA1 is a well-known player in the etiology of breast cancer. While familial breast cancer is often marked by BRCA1 mutation and subsequent loss of heterozygosity, sporadic breast cancers exhibit reduced expression of wild type BRCA1, and loss of BRCA1 expression may result in tumor development and progression.Methods: The Cister algorithm and Genomatix program were used to identify potential BP1 binding sites in BRCA1 gene. Real-time PCR, Western blot and immunohistochemistry analysis were performed to verify the expression of BRCA1 and BP1 in cell lines and breast cancer tissues. Double-stranded siRNA transfection was carried out for silencing BP1 expression. ChIP and EMSA were used to confirm that BP1 specifically binds to BRCA1.Results: A putative BP1 binding site was identified in the first intron of BRCA1, which was confirmed by chromatin immunoprecipiation and electrophoresis mobility shift assay. BP1 and BRCA1 expression were inversely correlated in breast cancer cell lines and tissues, suggesting that BP1 may suppress BRCA1 transcription through consensus sequence binding.Conclusions: BP1 homeoprotein represses BRCA1 expression through direct binding to its first intron, which is consistent with a previous study which identified a novel transcriptional repressor element located more than 500 base pairs into the first intron of BRCA1, suggesting that the first intron plays an important role in the negative regulation of BRCA1. Although further functional studies are necessary to confirm its repressor activity towards BRCA1, the elucidation of the role of BP1 in breast tumorigenesis holds great promise in establishing BP1 as a novel target for drug therapy.

  10. Negative regulation of active zone assembly by a newly identified SR protein kinase.

    Directory of Open Access Journals (Sweden)

    Ervin L Johnson

    2009-09-01

    Full Text Available Presynaptic, electron-dense, cytoplasmic protrusions such as the T-bar (Drosophila or ribbon (vertebrates are believed to facilitate vesicle movement to the active zone (AZ of synapses throughout the nervous system. The molecular composition of these structures including the T-bar and ribbon are largely unknown, as are the mechanisms that specify their synapse-specific assembly and distribution. In a large-scale, forward genetic screen, we have identified a mutation termed air traffic controller (atc that causes T-bar-like protein aggregates to form abnormally in motoneuron axons. This mutation disrupts a gene that encodes for a serine-arginine protein kinase (SRPK79D. This mutant phenotype is specific to SRPK79D and is not secondary to impaired kinesin-dependent axonal transport. The srpk79D gene is neuronally expressed, and transgenic rescue experiments are consistent with SRPK79D kinase activity being necessary in neurons. The SRPK79D protein colocalizes with the T-bar-associated protein Bruchpilot (Brp in both the axon and synapse. We propose that SRPK79D is a novel T-bar-associated protein kinase that represses T-bar assembly in peripheral axons, and that SRPK79D-dependent repression must be relieved to facilitate site-specific AZ assembly. Consistent with this model, overexpression of SRPK79D disrupts AZ-specific Brp organization and significantly impairs presynaptic neurotransmitter release. These data identify a novel AZ-associated protein kinase and reveal a new mechanism of negative regulation involved in AZ assembly. This mechanism could contribute to the speed and specificity with which AZs are assembled throughout the nervous system.

  11. Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6.

    Science.gov (United States)

    Min, Yoon; Wi, Sae Mi; Kang, Jung-Ah; Yang, Taewoo; Park, Chul-Seung; Park, Sung-Gyoo; Chung, Sungkwon; Shim, Jae-Hyuck; Chun, Eunyoung; Lee, Ki-Young

    2016-07-28

    Cereblon (CRBN) is a substrate receptor protein for the CRL4A E3 ubiquitin ligase complex. In this study, we report on a new regulatory role of CRBN in TLR4 signaling. CRBN overexpression leads to suppression of NF-κB activation and production of pro-inflammatory cytokines including IL-6 and IL-1β in response to TLR4 stimulation. Biochemical studies revealed interactions between CRBN and TAK1, and TRAF6 proteins. The interaction between CRBN and TAK1 did not affect the association of the TAB1 and TAB2 proteins, which have pivotal roles in the activation of TAK1, whereas the CRBN-TRAF6 interaction critically affected ubiquitination of TRAF6 and TAB2. Binding mapping results revealed that CRBN interacts with the Zinc finger domain of TRAF6, which contains the ubiquitination site of TRAF6, leading to attenuation of ubiquitination of TRAF6 and TAB2. Functional studies revealed that CRBN-knockdown THP-1 cells show enhanced NF-κB activation and p65- or p50-DNA binding activities, leading to up-regulation of NF-κB-dependent gene expression and increased pro-inflammatory cytokine levels in response to TLR4 stimulation. Furthermore, Crbn(-/-) mice exhibit decreased survival in response to LPS challenge, accompanied with marked enhancement of pro-inflammatory cytokines, such as TNF-α and IL-6. Taken together, our data demonstrate that CRBN negatively regulates TLR4 signaling via attenuation of TRAF6 and TAB2 ubiquitination.

  12. TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1.

    Directory of Open Access Journals (Sweden)

    Younglang Lee

    Full Text Available The innate immune response is a host defense mechanism against infection by viruses and bacteria. Type I interferons (IFNα/β play a crucial role in innate immunity. If not tightly regulated under normal conditions and during immune responses, IFN production can become aberrant, leading to inflammatory and autoimmune diseases. In this study, we identified TRIM11 (tripartite motif containing 11 as a novel negative regulator of IFNβ production. Ectopic expression of TRIM11 decreased IFNβ promoter activity induced by poly (I:C stimulation or overexpression of RIG-I (retinoic acid-inducible gene-I signaling cascade components RIG-IN (constitutively active form of RIG-I, MAVS (mitochondrial antiviral signaling protein, or TBK1 (TANK-binding kinase-1. Conversely, TRIM11 knockdown enhanced IFNβ promoter activity induced by these stimuli. Moreover, TRIM11 overexpression inhibited the phosphorylation and dimerization of IRF3 and expression of IFNβ mRNA. By contrast, TRIM11 knockdown increased the IRF3 phosphorylation and IFNβ mRNA expression. We also found that TRIM11 and TBK1, a key kinase that phosphorylates IRF3 in the RIG-I pathway, interacted with each other through CC and CC2 domain, respectively. This interaction was enhanced in the presence of the TBK1 adaptor proteins, NAP1 (NF-κB activating kinase-associated protein-1, SINTBAD (similar to NAP1 TBK1 adaptor or TANK (TRAF family member-associated NF-κB activator. Consistent with its inhibitory role in RIG-I-mediated IFNβ signaling, TRIM11 overexpression enhanced viral infectivity, whereas TRIM11 knockdown produced the opposite effect. Collectively, our results suggest that TRIM11 inhibits RIG-I-mediated IFNβ production by targeting the TBK1 signaling complex.

  13. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.

    Science.gov (United States)

    Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  14. Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation.

    Science.gov (United States)

    Bui, Yen Kim; Sternberg, Paul W

    2002-05-01

    Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP(3)) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP(3) signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23-mediated IP(3) signaling pathway genes. We infer that IPP-5 negatively regulates IP(3) signaling to ensure proper spermathecal contraction.

  15. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  16. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  17. Pluralistic and stochastic gene regulation: examples, models and consistent theory.

    Science.gov (United States)

    Salas, Elisa N; Shu, Jiang; Cserhati, Matyas F; Weeks, Donald P; Ladunga, Istvan

    2016-06-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution.

  18. Mechanisms of mammalian zinc-regulated gene expression.

    Science.gov (United States)

    Jackson, Kelly A; Valentine, Ruth A; Coneyworth, Lisa J; Mathers, John C; Ford, Dianne

    2008-12-01

    Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.

  19. Histone Deacetylase 1 (HDAC1) Negatively Regulates Thermogenic Program in Brown Adipocytes via Coordinated Regulation of Histone H3 Lysine 27 (H3K27) Deacetylation and Methylation.

    Science.gov (United States)

    Li, Fenfen; Wu, Rui; Cui, Xin; Zha, Lin; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-02-26

    Inhibiting class I histone deacetylases (HDACs) increases energy expenditure, reduces adiposity, and improves insulin sensitivity in obese mice. However, the precise mechanism is poorly understood. Here, we demonstrate that HDAC1 is a negative regulator of the brown adipocyte thermogenic program. The Hdac1 level is lower in mouse brown fat (BAT) than white fat, is suppressed in mouse BAT during cold exposure or β3-adrenergic stimulation, and is down-regulated during brown adipocyte differentiation. Remarkably, overexpressing Hdac1 profoundly blocks, whereas deleting Hdac1 significantly enhances, β-adrenergic activation-induced BAT-specific gene expression in brown adipocytes. β-Adrenergic activation in brown adipocytes results in a dissociation of HDAC1 from promoters of BAT-specific genes, including uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ co-activator 1α (Pgc1α), leading to increased acetylation of histone H3 lysine 27 (H3K27), an epigenetic mark of gene activation. This is followed by dissociation of the polycomb repressive complexes, including the H3K27 methyltransferase enhancer of zeste homologue (EZH2), suppressor of zeste 12 (SUZ12), and ring finger protein 2 (RNF2) from (and concomitant recruitment of H3K27 demethylase ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) to) Ucp1 and Pgc1α promoters, leading to decreased H3K27 trimethylation, a histone transcriptional repression mark. Thus, HDAC1 negatively regulates the brown adipocyte thermogenic program, and inhibiting Hdac1 promotes BAT-specific gene expression through a coordinated control of increased acetylation and decreased methylation of H3K27, thereby switching the transcriptional repressive state to the active state at the promoters of Ucp1 and Pgc1α. Targeting HDAC1 may be beneficial in prevention and treatment of obesity by enhancing BAT thermogenesis.

  20. Metacognitive beliefs and emotion regulation strategies: obese women with negative and positive body images

    Directory of Open Access Journals (Sweden)

    Somayeh Nejati

    2017-07-01

    Full Text Available Women have higher vulnerability regarding to increase prevalence of obesity and its effect on people’s body image and women’s health on the society and future generations’ health is unquestionable role , negative body image influence on women’s eating habits and mental health, so aim of present research is to compare metacognitive beliefs and emotional regulation strategies in obese women with positive and negative body image. This study was a causal-comparative. The statistical population of this study consisted of 100 obese women with a BMI>30 who had referred to five nutritional clinics in Tehran. The clinics and the participants were selected by using the convenience sampling method. The data collection tools were the Structured Clinical Interview for DSM (SCID-I/II, Body Mass Index (BMI, the Metacognitions Questionnaire (MCQ-30, the cognitive emotion regulation questionnaire, and fisher’s body image scale. The multivariate hoteling t-test was used to compare the difference between the two groups. Results indicated that obese women with negative body image had higher mean scores in inefficient emotion regulation strategies including self-blame or focus on thought, catastrophizing and other-blame compared with obese women with positive body image. Moreover, the mean scores of obese women with positive body images was higher in efficient emotional regulation strategies include acceptance, positive refocusing, refocusing on planning, perspective taking and positive reappraisal. Metacognitive beliefs and emotion regulation strategies are significant variables in obese woman with positive and negative body images.

  1. Emotion regulation in broadly defined anorexia nervosa: association with negative affective memory bias.

    Science.gov (United States)

    Manuel, Amy; Wade, Tracey D

    2013-08-01

    Theoretical models in anorexia nervosa (AN) implicate difficulties with emotion regulation as a maintaining factor. To date little is known about how different factors might maintain these difficulties. Forty eight women were recruited, 24 receiving treatment for AN (called broadly defined AN) and 24 healthy controls. Self-report measures of difficulties with emotion regulation and current depression were used in addition to computerized tasks which provided measures of social attentional bias and anger-threat bias, as well negative affective memory and recognition bias. Compared to controls, women with AN had significantly higher levels of difficulties with emotion regulation, depression, and negative affective memory bias, as well as lower bias for anger-threat. Simultaneous examination of the two variables that met pre-conditions for mediation of the relationship between group membership and difficulties with emotion regulation (anger-threat bias and negative affective memory) indicated negative affective memory bias to be a mediator, accounting for around one-third of the total effect a diagnosis of AN has on difficulties with emotion regulation. The association of these variables with AN may indicate shared risk factors with depression, and the variety of therapeutic approaches found to be effective with depression may be useful to further incorporate into treatments for AN.

  2. Insulin regulation of the glucagon gene is mediated by an insulin-responsive DNA element.

    OpenAIRE

    1991-01-01

    Diabetes mellitus is characterized by insulin deficiency and high plasma glucagon levels, which can be normalized by insulin replacement. It has previously been reported that glucagon gene expression is negatively regulated by insulin at the transcriptional level. By transfection studies, I have now localized a DNA control element that mediates insulin effects on glucagon gene transcription. This element also confers insulin responsiveness to a heterologous promoter. DNA-binding proteins that...

  3. Polymorphic cis- and trans-regulation of human gene expression.

    Directory of Open Access Journals (Sweden)

    Vivian G Cheung

    Full Text Available Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with sequencing of transcriptomes (RNA-Seq and the trans-regulators by gene knockdown, metabolic assays, and chromosome conformation capture analysis. The majority of the regulators act in trans to the target (regulated genes. Most of these trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.

  4. Regulated genes in mesenchymal stem cells and gastriccancer

    Institute of Scientific and Technical Information of China (English)

    Shihori Tanabe; Kazuhiko Aoyagi; Hiroshi Yokozaki; Hiroki Sasaki

    2015-01-01

    AIM To investigate the genes regulated in mesenchymalstem cells (MSCs) and diffuse-type gastric cancer (GC),gene expression was analyzed.METHODS: Gene expression of MSCs and diffuse-typeGC cells were analyzed by microarray. Genes relatedto stem cells, cancer and the epithelial-mesenchymaltransition (EMT) were extracted from human genelists using Gene Ontology and reference information.Gene panels were generated, and messenger RNAgene expression in MSCs and diffuse-type GC cells wasanalyzed. Cluster analysis was performed using the NCSSsoftware.RESULTS: The gene expression of regulator of G-proteinsignaling 1 (RGS1) was up-regulated in diffuse-type GCcells compared with MSCs. A panel of stem-cell relatedgenes and genes involved in cancer or the EMT wereexamined. Stem-cell related genes, such as growtharrest-specific 6, musashi RNA-binding protein 2 andhairy and enhancer of split 1 (Drosophila), NOTCHfamily genes and Notch ligands, such as delta-like 1(Drosophila) and Jagged 2, were regulated.CONCLUSION: Expression of RGS1 is up-regulated,and genes related to stem cells and NOTCH signalingare altered in diffuse-type GC compared with MSCs.

  5. CML20, an Arabidopsis Calmodulin-like Protein, Negatively Regulates Guard Cell ABA Signaling and Drought Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Xiaomeng Wu

    2017-05-01

    Full Text Available Guard cells shrink in response to drought and abscisic acid (ABA, which is caused by efflux of ions that in turn reduces stomatal aperture and improves the plant’s ability to retain moisture. Cytosolic free calcium is an essential secondary messenger in guard cell ABA signaling, but the details of this regulatory pathway remain sketchy. Here, the calmodulin-like protein CML20, which has four EF-hand domains and calcium-binding activity in vitro, was found to be a negative regulator of ABA-induced stomatal movement in Arabidopsis. The guard cells of cml20 loss-of-function mutant plants were hypersensitive to both ABA-activated S-type anion currents, and ABA inhibited inward K+ currents than those of wild type. Additional, due to smaller stomatal aperture, cml20 showed less water loss from the leaves than wild type. These phenotypes of CML20 overexpressing plants contrasted with wild type in the opposite direction. In the cml20 mutant, the transcripts of stress responsive genes, such as MYB2, RAB18, ERD10, COR47, and RD29A were up-regulated in response to drought and ABA, while down-regulated of APX2 transcription and higher reactive oxygen species (ROS accumulation. These observations support the CML20, a functional Ca2+ sensor, is a negative regulator in guard cell ABA signaling.

  6. No fear, no panic: probing negation as a means for emotion regulation.

    Science.gov (United States)

    Herbert, Cornelia; Deutsch, Roland; Platte, Petra; Pauli, Paul

    2013-08-01

    This electroencephalographic study investigated if negating one's emotion results in paradoxical effects or leads to effective emotional downregulation. Healthy participants were asked to downregulate their emotions to happy and fearful faces by using negated emotional cue words (e.g., no fun, no fear). Cue words were congruent with the emotion depicted in the face and presented prior to each face. Stimuli were presented in blocks of happy and fearful faces. Blocks of passive stimulus viewing served as control condition. Active regulation reduced amplitudes of early event-related brain potentials (early posterior negativity, but not N170) and the late positive potential for fearful faces. A fronto-central negativity peaking at about 250 ms after target face onset showed larger amplitude modulations during downregulation of fearful and happy faces. Behaviorally, negating was more associated with reappraisal than with suppression. Our results suggest that in an emotional context, negation processing could be quite effective for emotional downregulation but that its effects depend on the type of the negated emotion (pleasant vs unpleasant). Results are discussed in the context of dual process models of cognition and emotion regulation.

  7. Negative Regulatory Role of TWIST1 on SNAIL Gene Expression.

    Science.gov (United States)

    Forghanifard, Mohammad Mahdi; Ardalan Khales, Sima; Farshchian, Moein; Rad, Abolfazl; Homayouni-Tabrizi, Masoud; Abbaszadegan, Mohammad Reza

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is crucial for specific morphogenetic movements during embryonic development as well as pathological processes of tumor cell invasion and metastasis. TWIST and SNAIL play vital roles in both developmental and pathological EMT. Our aim in this study was to investigate the functional correlation between TWIST1 and SNAIL in human ESCC cell line (KYSE-30). The packaging cell line GP293T was cotransfected with either control retroviral pruf-IRES-GFP plasmid or pruf-IRES-GFP-hTWIST1 and pGP plasmid. The KYSE-30 ESCC cells were transduced with produced viral particles and examined with inverted fluorescence microscope. DNA was extracted from transduced KYSE-30 cells and analyzed for copy number of integrated retroviral sequences in the target cell genome. The concentration of retroviral particles was determined by Real-time PCR. After RNA extraction and cDNA synthesis, the mRNA expression of TWIST1 and SNAIL was assessed by comparative real-time PCR amplification. Ectopic expression of TWIST1 in KYSE-30, dramatically reduces SNAIL expression. Retroviral transduction enforced TWIST1 overexpression in GFP-hTWIST1 nearly 9 folds in comparison with GFP control cells, and interestingly, this TWIST1 enforced expression caused a - 7 fold decrease of SNAIL mRNA expression in GFP-hTWIST1 compared to GFP control cells. Inverse correlation of TWIST1 and SNAIL mRNA levels may introduce novel molecular gene expression pathway controlling EMT process during ESCC aggressiveness and tumorigenesis. Consequently, these data extend the spectrum of biological activities of TWIST1 and propose that therapeutic repression of TWIST1 may be an effective strategy to inhibit cancer cell invasion and metastasis.

  8. dRYBP contributes to the negative regulation of the Drosophila Imd pathway.

    Directory of Open Access Journals (Sweden)

    Ricardo Aparicio

    Full Text Available The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response.

  9. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor.

    Science.gov (United States)

    Valencia-Sama, Ivette; Zhao, Yulei; Lai, Dulcie; Janse van Rensburg, Helena J; Hao, Yawei; Yang, Xiaolong

    2015-07-01

    Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes.

  10. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor*

    Science.gov (United States)

    Valencia-Sama, Ivette; Zhao, Yulei; Lai, Dulcie; Janse van Rensburg, Helena J.; Hao, Yawei; Yang, Xiaolong

    2015-01-01

    Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes. PMID:25995450

  11. SIRT1 is regulated by a PPARγ–SIRT1 negative feedback loop associated with senescence

    Science.gov (United States)

    Zhou, Rui; Niu, Jing; McNutt, Michael A.; Wang, Pan; Tong, Tanjun

    2010-01-01

    Human Silent Information Regulator Type 1 (SIRT1) is an NAD+-dependent deacetylase protein which is an intermediary of cellular metabolism in gene silencing and aging. SIRT1 has been extensively investigated and shown to delay senescence; however, less is known about the regulation of SIRT1 during aging. In this study, we show that the peroxisome proliferator-activated receptor-γ (PPARγ), which is a ligand-regulated modular nuclear receptor that governs adipocyte differentiation and inhibits cellular proliferation, inhibits SIRT1 expression at the transcriptional level. Moreover, both PPARγ and SIRT1 can bind the SIRT1 promoter. PPARγ directly interacts with SIRT1 and inhibits SIRT1 activity, forming a negative feedback and self-regulation loop. In addition, our data show that acetylation of PPARγ increased with increasing cell passage number. We propose that PPARγ is subject to regulation by acetylation and deacetylation via p300 and SIRT1 in cellular senescence. These results demonstrate a mutual regulation between PPARγ and SIRT1 and identify a new posttranslational modification that affects cellular senescence. PMID:20660480

  12. Strong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expression.

    Science.gov (United States)

    Stekel, Dov J; Jenkins, Dafyd J

    2008-01-18

    Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors.

  13. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  14. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  15. A negative regulatory loop between microRNA and Hox gene controls posterior identities in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Zhongying Zhao

    2010-09-01

    Full Text Available MicroRNAs (miRNAs have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes.

  16. Emc, a negative HLH regulator with multiple functions in Drosophila development.

    Science.gov (United States)

    Campuzano, S

    2001-12-20

    Expression and functional analyses of Emc have demonstrated that it is a prototype for a protein required for multiple processes in development. Initially characterized as a negative regulator of sensory organ development, it was later found to regulate many other developmental processes and cell proliferation. Its ability to block the function of bHLH proteins by forming heterodimers, which are ineffective in DNA binding, accounts for the role of Emc in preventing the acquisition of several cell fates which are under the control of bHLH proteins. However, while maintaining this repressive molecular mechanism, emc also appears to act as a positive regulator of differentiation.

  17. MLK4β functions as a negative regulator of MAPK signaling and cell invasion

    OpenAIRE

    Abi Saab, W F; Brown, M S; Chadee, D N

    2012-01-01

    Mixed lineage kinase (MLK) 4, or MLK4, is a member of the MLK family of mitogen-activated protein kinase kinase kinases (MAP3Ks). Typically, MAP3Ks function to activate the mitogen-activated protein kinase (MAPK)-signaling pathways and regulate different cellular responses. However, here we report that MLK4β, unlike the other MLKs, negatively regulates the activities of the MAPKs, p38, c-Jun N-terminal kinase and extracellular signal-regulated kinase, and the MAP2Ks, MEK3 and 6. Our results s...

  18. Conflict Management with Friends and Romantic Partners: The Role of Attachment and Negative Mood Regulation Expectancies.

    Science.gov (United States)

    Creasey, Gary; Kershaw, Kathy; Boston, Ada

    1999-01-01

    Studied the degree to which attachment orientations were related to negative mood regulation expectancies and conflict management strategies with best friends and romantic partners in a sample of 140 female college students. Discusses results in relation to previous research on attachment theory and implications for interventions. (SLD)

  19. Relationships among Burnout, Social Support, and Negative Mood Regulation Expectancies of Elementary School Teachers in Korea

    Science.gov (United States)

    Kim, Mi Y.; Lee, Jee Y.; Kim, Jinsook

    2009-01-01

    The purposes of this study are as follows: (1) to determine whether burnout among elementary school teachers in Korea differs on selected demographic variables, (2) to investigate the relationship between burnout and negative mood regulation expectancies, as an internal variable, and social support, as an external variable, and (3) to examine the…

  20. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    Science.gov (United States)

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  1. Threshold-dominated regulation hides genetic variation in gene expression networks

    Directory of Open Access Journals (Sweden)

    Plahte Erik

    2007-12-01

    the feedback loop that the regulator necessarily takes part in and also is regulated by. In the present study all feedback loops are negative, and our results suggest that threshold robustness is maintained by negative feedback which necessarily exists in the homeostatic state. Conclusion Threshold robustness of a variable can be seen as its ability to maintain an active regulation around its threshold in a homeostatic state despite external perturbations. The feedback loop that the system necessarily possesses in this state, ensures that the robust variable is itself regulated and kept close to its threshold. Our results suggest that threshold regulation is a generic phenomenon in feedback-regulated networks with sigmoidal response functions, at least when there is no positive feedback. Threshold robustness in gene regulatory networks illustrates that hidden genetic variation can be explained by systemic properties of the genotype-phenotype map.

  2. Impaired down-regulation of negative emotion in self-referent social situations in bipolar disorder

    DEFF Research Database (Denmark)

    Kjærstad, Hanne L; Vinberg, Maj; Goldin, Philippe R

    2016-01-01

    Emotion dysregulation is a core feature of bipolar disorder (BD) that persists into periods of remission. Neuroimaging studies show aberrant neural responses during emotion regulation (ER) in patients with BD relative to healthy controls, but behavioural evidence for ER deficits is sparse...... naturally or dampen their emotional response to positive and negative social scenarios and associated self-beliefs. They were also given an established experimental task for comparison, involving reappraisal of negative affective picture stimuli, as well as a questionnaire of habitual ER strategies. BD...... patients showed reduced ability to down-regulate emotional responses in negative, but not positive, social scenarios relative to healthy controls and UD patients. In contrast, there were no between-group differences in the established ER task or in self-reported habitual reappraisal strategies. Findings...

  3. Epigenetic Regulation of microRNA Expression: Targeting the Triple-Negative Breast Cancer Phenotype

    Science.gov (United States)

    2011-10-01

    CTCE-9908 inhibits breast cancer metastasis to lung and bone, Oncol. Rep. 21 (2009) 761–767. [36] N.T. Holm, F. Abreo, L.W. Johnson, B.D. Li, Q.D. Chu...Kawai, T. Inoue, H. Ito, M. Oshimura, T. Ochiya, MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13...cancers with increased potential for metastasis and recurrence (2). Basal-like breast carcinomas express genes associated with an EMT phenotype and

  4. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment

    Directory of Open Access Journals (Sweden)

    Moris Topaz

    2012-01-01

    Full Text Available Regulated negative pressure-assisted wound therapy (RNPT should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound′s environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.

  5. Regulation of male fertility by X-linked genes.

    Science.gov (United States)

    Zheng, Ke; Yang, Fang; Wang, Peijing Jeremy

    2010-01-01

    Infertility is a worldwide reproductive health problem, affecting men and women about equally. Mouse genetic studies demonstrate that more than 200 genes specifically or predominantly regulate fertility. However, few genetic causes of infertility in humans have been identified. Here, we focus on the regulation of male fertility by X-linked, germ cell-specific genes. Previous genomic studies reveal that the mammalian X chromosome is enriched for genes expressed in early spermatogenesis. Recent genetic studies in mice show that X-linked, germ cell-specific genes, such as A-kinase anchor protein 4 (Akap4), nuclear RNA export factor 2 (Nxf2), TBP-associated factor 7l (Taf7l), and testis-expressed gene 11 (Tex11), indeed play important roles in the regulation of male fertility. Moreover, we find that the Taf7l Tex11 double-mutant males exhibit much more severe defects in meiosis than either single mutant, suggesting that these 2 X-linked genes regulate male meiosis synergistically. The X-linked, germ cell-specific genes are particularly attractive in the study of male infertility in humans. Because males are hemizygous for X-linked genes, loss-of-function mutations in the single-copy X-linked genes, unlike in autosomal genes, would not be masked by a normal allele. The genetic studies of X-linked, germ cell-specific genes in mice have laid a foundation for mutational analysis of their human orthologues in infertile men.

  6. Delineating transcriptional networks of prognostic gene signatures refines treatment recommendations for lymph node-negative breast cancer patients.

    Science.gov (United States)

    Lanigan, Fiona; Brien, Gerard L; Fan, Yue; Madden, Stephen F; Jerman, Emilia; Maratha, Ashwini; Aloraifi, Fatima; Hokamp, Karsten; Dunne, Eiseart J; Lohan, Amanda J; Flanagan, Louise; Garbe, James C; Stampfer, Martha R; Fridberg, Marie; Jirstrom, Karin; Quinn, Cecily M; Loftus, Brendan; Gallagher, William M; Geraghty, James; Bracken, Adrian P

    2015-09-01

    The majority of women diagnosed with lymph node-negative breast cancer are unnecessarily treated with damaging chemotherapeutics after surgical resection. This highlights the importance of understanding and more accurately predicting patient prognosis. In the present study, we define the transcriptional networks regulating well-established prognostic gene expression signatures. We find that the same set of transcriptional regulators consistently lie upstream of both 'prognosis' and 'proliferation' gene signatures, suggesting that a central transcriptional network underpins a shared phenotype within these signatures. Strikingly, the master transcriptional regulators within this network predict recurrence risk for lymph node-negative breast cancer better than currently used multigene prognostic assays, particularly in estrogen receptor-positive patients. Simultaneous examination of p16(INK4A) expression, which predicts tumours that have bypassed cellular senescence, revealed that intermediate levels of p16(INK4A) correlate with an intact pRB pathway and improved survival. A combination of these master transcriptional regulators and p16(INK4A), termed the OncoMasTR score, stratifies tumours based on their proliferative and senescence capacity, facilitating a clearer delineation of lymph node-negative breast cancer patients at high risk of recurrence, and thus requiring chemotherapy. Furthermore, OncoMasTR accurately classifies over 60% of patients as 'low risk', an improvement on existing prognostic assays, which has the potential to reduce overtreatment in early-stage patients. Taken together, the present study provides new insights into the transcriptional regulation of cellular proliferation in breast cancer and provides an opportunity to enhance and streamline methods of predicting breast cancer prognosis.

  7. miR-340 and ZEB1 negative feedback loop regulates TGF-β- mediated breast cancer progression

    Science.gov (United States)

    Xie, Ye-Gong; Wang, Jie; Mao, Jie-Fei; Zhang, Bin; Wang, Xin; Cao, Xu-Chen

    2016-01-01

    MicroRNAs act as key regulators in carcinogenesis and progression in various cancers. In present study, we explored the role of miR-340 in the breast cancer progression. Our results showed that overexpression of miR-340 inhibits breast cancer cell proliferation and invasion, whereas depletion of miR-340 promotes breast cancer progression. Molecularly, ZEB1 was identified as a target gene of miR-340 and miR-340 suppressed the expression of ZEB1 by directly binding to the 3′-UTR of ZEB1. Furthermore, ZEB1 transcriptionally suppresses miR-340 expression. The negative feedback loop regulated TGF-β-mediated breast cancer progression. In conclusion, our data suggested that miR-340 acted as a tumor suppressor in breast cancer progression. PMID:27036021

  8. Cut! That’s a wrap: Regulating negative emotion by ending emotion-eliciting situations

    Directory of Open Access Journals (Sweden)

    Lara eVujovic

    2014-02-01

    Full Text Available Little is known about the potentially powerful set of emotion regulation (ER processes that target emotion-eliciting situations. We thus studied the decision to end emotion-eliciting situations in the laboratory. We hypothesized that people would try to end negative situations more frequently than neutral situations to regulate distress. In addition, motivated by the Selection, Optimization, and Compensation with Emotion Regulation framework, we hypothesized that failed attempts to end the situation would prompt either a greater negative emotion or b compensatory use of a different ER process, attentional deployment (AD. Fifty-eight participants (18-26 years old, 67% women viewed negative and neutral pictures and pressed a key whenever they wished to stop viewing them. After key press, the picture disappeared (‘success’ or stayed (‘failure’ on screen. To index emotion, we measured corrugator and electrodermal activity, heart rate, and self-reported arousal. To index overt AD, we measured eye gaze. As their reason for ending the situation, participants more frequently reported being upset by high- than low-arousal negative pictures; they more frequently reported being bored by low- than high-arousal neutral pictures. Nevertheless, participants’ negative emotional responding did not increase in the context of ER failure nor did they use overt AD as a compensatory ER strategy. We conclude that situation-targeted ER processes are used to regulate emotional responses to high-arousal negative and low-arousal neutral situations; ER processes other than overt AD may be used to compensate for ER failure in this context.

  9. LINGO-1 negatively regulates TrkB phosphorylation after ocular hypertension.

    Science.gov (United States)

    Fu, Qing-Ling; Hu, Bing; Li, Xin; Shao, Zhaohui; Shi, Jian-Bo; Wu, Wutian; So, Kwok-Fai; Mi, Sha

    2010-03-01

    The antagonism of LINGO-1, a CNS-specific negative regulator of neuronal survival, was shown to promote short-term survival of retinal ganglion cell (RGC) in an ocular hypertension model. LINGO-1 antagonists, combined with brain-derived neurotrophic factor (BDNF), can increase the length of neuron survival through an unclear molecular mechanism. To determine the relationship between LINGO-1 and BDNF/TrkB receptor in neuronal protection, we show here that LINGO-1 forms a receptor complex with TrkB and negatively regulates its activation in the retina after ocular hypertension injury. LINGO-1 antagonist antibody 1A7 or soluble LINGO-1 (LINGO-1-Fc) treatment upregulates phospho-TrkB phosphorylation and leads to RGC survival after high intraocular pressure injury. This neuronal protective effect was blocked by anti-BDNF antibody. LINGO-1 antagonism therefore promotes RGC survival by regulating the BDNF and TrkB signaling pathway after ocular hypertension.

  10. Federal Regulation of Gene Therapy: Who Will Save our Germline?

    OpenAIRE

    2003-01-01

    This paper will attempt to address some of these more complex issues involving human gene therapy and the encompassing regulations. The first section will deal with the science of gene therapy and will briefly touch upon the scientific hurdles that remain for scientists in this field, as this is important to understanding many of the ethical issues. This section will be divided into a basic genetic overview, a description of somatic gene therapy, and a summary of germline gene therapy. The se...

  11. Tctex1d2 Is a Negative Regulator of GLUT4 Translocation and Glucose Uptake.

    Science.gov (United States)

    Shimoda, Yoko; Okada, Shuichi; Yamada, Eijiro; Pessin, Jeffrey E; Yamada, Masanobu

    2015-10-01

    Tctex1d2 (Tctex1 domain containing 2) is an open reading frame that encodes for a functionally unknown protein that contains a Tctex1 domain found in dynein light chain family members. Examination of gene expression during adipogenesis demonstrated a marked increase in Tctex1d2 protein expression that was essentially undetectable in preadipocytes and markedly induced during 3T3-L1 adipocyte differentiation. Tctex1d2 overexpression significantly inhibited insulin-stimulated glucose transporter 4 (GLUT4) translocation and 2-deoxyglucose uptake. In contrast, Tctex1d2 knockdown significantly increased insulin-stimulated GLUT4 translocation and 2-deoxyglucose uptake. However, acute insulin stimulation (up to 30 min) in 3T3-L1 adipocytes with overexpression or knockdown of Tctex1d2 had no effect on Akt phosphorylation, a critical signal transduction target required for GLUT4 translocation. Although overexpression of Tctex1d2 had no significant effect on GLUT4 internalization, Tctex1d2 was found to associate with syntaxin 4 in an insulin-dependent manner and inhibit Doc2b binding to syntaxin 4. In addition, glucose-dependent insulinotropic polypeptide rescued the Tctex1d2 inhibition of insulin-stimulated GLUT4 translocation by suppressing the Tctex1d2-syntaxin 4 interaction and increasing Doc2b-Synatxin4 interactions. Taking these results together, we hypothesized that Tctex1d2 is a novel syntaxin 4 binding protein that functions as a negative regulator of GLUT4 plasma membrane translocation through inhibition of the Doc2b-syntaxin 4 interaction.

  12. When death is not a problem: Regulating implicit negative affect under mortality salience.

    Science.gov (United States)

    Lüdecke, Christina; Baumann, Nicola

    2015-12-01

    Terror management theory assumes that death arouses existential anxiety in humans which is suppressed in focal attention. Whereas most studies provide indirect evidence for negative affect under mortality salience by showing cultural worldview defenses and self-esteem strivings, there is only little direct evidence for implicit negative affect under mortality salience. In the present study, we assume that this implicit affective reaction towards death depends on people's ability to self-regulate negative affect as assessed by the personality dimension of action versus state orientation. Consistent with our expectations, action-oriented participants judged artificial words to express less negative affect under mortality salience compared to control conditions whereas state-oriented participants showed the reversed pattern.

  13. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli.

    Science.gov (United States)

    Furuta, Kaori; Kubo, Minoru; Sano, Kiyomi; Demura, Taku; Fukuda, Hiroo; Liu, Yao-Guang; Shibata, Daisuke; Kakimoto, Tatsuo

    2011-04-01

    Cytokinins promote cell division and chloroplast development in tissue culture. We previously isolated two mutants of Arabidopsis thaliana, ckh1 (cytokinin-hypersensitive 1) and ckh2, which produce rapidly growing green calli in response to lower levels of cytokinins than those found in the wild type. Here we report that the product of the CKH2 gene is PICKLE, a protein resembling the CHD3 class of SWI/SNF chromatin remodeling factors. We also show that inhibition of histone deacetylase by trichostatin A (TSA) partially substituted for cytokinins, but not for auxin, in the promotion of callus growth, indicating that chromatin remodeling and histone deacetylation are intimately related to cytokinin-induced callus growth. A microarray experiment revealed that either the ckh1 mutation or the ckh2 mutation caused hypersensitivity to cytokinins in terms of gene expression, especially of photosynthesis-related genes. The ckh1 and ckh2 mutations up-regulated nuclear-encoded genes, but not plastid-encoded genes, whereas TSA deregulated both nuclear- and plastid-encoded genes. The ckh1 ckh2 double mutant showed synergistic phenotypes: the callus grew with a green color independently of exogenous cytokinins. A yeast two-hybrid experiment showed protein interaction between CKH1/EER4/AtTAF12b and CKH2/PKL. These results suggest that CKH1/EER4/AtTAF12b and CKH2/PKL may act together on cytokinin-regulated genes.

  14. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100.

    Science.gov (United States)

    Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E

    2015-06-15

    The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.

  15. Negative regulation of the antiviral response by grouper LGP2 against fish viruses.

    Science.gov (United States)

    Yu, Yepin; Huang, Youhua; Yang, Ying; Wang, Shaowen; Yang, Min; Huang, Xiaohong; Qin, Qiwei

    2016-09-01

    Laboratory of genetics and physiology 2 (LGP2), a member of RIG-I like receptor (RLR) family, plays crucial roles in modulating cellular antiviral response during viral infection. However, the detailed roles of LGP2 in different virus infection were controversial up to now. Here, we cloned a LGP2 gene from orange-spotted grouper (EcLGP2) and investigated its roles in response to grouper virus infection. EcLGP2 encoded a 678-aa protein which shared 83% identity to sea perch (Lateolabrax japonicas). Amino acid alignment showed that EcLGP2 contained three conserved domains, including a DEAD/DEAH box helicase domain, a helicase superfamily C-terminal domain and a C-terminal domain of RIG-I. In healthy grouper, the transcript of EcLGP2 could be predominantly detected in kidney, gill, fin, spleen and skin. Subcellular localization analysis showed that EcLGP2 distributed throughout the cytoplasm in grouper cells. Notably, the intracellular distribution of EcLGP2 was altered at the late stage of Singapore grouper iridovirus (SGIV) infection, but remained unchanged during red-spotted grouper nervous necrosis virus (RGNNV) infection. Moreover, overexpression of EcLGP2 in vitro significantly enhanced the viral replication of SGIV and RGNNV, evidenced by the acceleration of CPE occurrence and the up-regulation of the viral gene transcription or protein synthesis. Further studies indicated that overexpression of EcLGP2 decreased the expression level of interferon related molecules or effectors, including IRF3, IRF7, ISG15, IFP35, MXI, MXII, and MDA5, suggesting that the negative feedback of interferon immune response by EcLGP2 might contribute to the enhancement of RGNNV infection. Moreover, the expression levels of pro-inflammation cytokines, including IL-8 and TNFα were significantly decreased, but that of IL-6 was increased by the ectopic expression of EcLGP2. Thus, our results will contribute greatly to understanding the roles of fish LGP2 in innate immune response during

  16. The receptor tyrosine kinase FGFR4 negatively regulates NF-kappaB signaling.

    Directory of Open Access Journals (Sweden)

    Kristine A Drafahl

    Full Text Available BACKGROUND: NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs, including the Fibroblast Growth Factor Receptors (FGFRs are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate an interaction between FGFR4 and IKKβ (Inhibitor of NFκB Kinase β subunit, an essential component in the NFκB pathway. This novel interaction was identified utilizing a yeast two-hybrid screen [1] and confirmed by coimmunoprecipitation and mass spectrometry analysis. We demonstrate tyrosine phosphorylation of IKKβ in the presence of activated FGFR4, but not kinase-dead FGFR4. Following stimulation by TNFα (Tumor Necrosis Factor α to activate NFκB pathways, FGFR4 activation results in significant inhibition of NFκB signaling as measured by decreased nuclear NFκB localization, by reduced NFκB transcriptional activation in electophoretic mobility shift assays, and by inhibition of IKKβ kinase activity towards the substrate GST-IκBα in in vitro assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling. CONCLUSIONS/SIGNIFICANCE: These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling

  17. [Regulation of Positive and Negative Emotions as Mediator between Maternal Emotion Socialization and Child Problem Behavior].

    Science.gov (United States)

    Fäsche, Anika; Gunzenhauser, Catherine; Friedlmeier, Wolfgang; von Suchodoletz, Antje

    2015-01-01

    The present study investigated five to six year old children's ability to regulate negative and positive emotions in relation to psychosocial problem behavior (N=53). It was explored, whether mothers' supportive and nonsupportive strategies of emotion socialization influence children's problem behavior by shaping their emotion regulation ability. Mothers reported on children's emotion regulation and internalizing and externalizing problem behavior via questionnaire, and were interviewed about their preferences for socialization strategies in response to children's expression of negative affect. Results showed that children with more adaptive expression of adequate positive emotions had less internalizing behavior problems. When children showed more control of inadequate negative emotions, children were less internalizing as well as externalizing in their behavior. Furthermore, results indicated indirect relations of mothers' socialization strategies with children's problem behavior. Control of inadequate negative emotions mediated the link between non-supportive strategies on externalizing problem behavior. Results suggest that emotion regulatory processes should be part of interventions to reduce the development of problematic behavior in young children. Parents should be trained in dealing with children's emotions in a constructive way.

  18. Instrumental Motives in Negative Emotion Regulation in Daily Life: Frequency, Consistency, and Predictors.

    Science.gov (United States)

    Kalokerinos, Elise K; Tamir, Maya; Kuppens, Peter

    2016-12-19

    People regulate their emotions not only for hedonic reasons but also for instrumental reasons, to attain the potential benefits of emotions beyond pleasure and pain. However, such instrumental motives have rarely been examined outside the laboratory as they naturally unfold in daily life. To assess whether and how instrumental motives operate outside the laboratory, it is necessary to examine them in response to real and personally relevant stimuli in ecologically valid contexts. In this research, we assessed the frequency, consistency, and predictors of instrumental motives in negative emotion regulation in daily life. Participants (N = 114) recalled the most negative event of their day each evening for 7 days and reported their instrumental motives and negative emotion goals in that event. Participants endorsed performance motives in approximately 1 in 3 events and social, eudaimonic, and epistemic motives in approximately 1 in 10 events. Instrumental motives had substantially higher within- than between-person variance, indicating that they were context-dependent. Indeed, although we found few associations between instrumental motives and personality traits, relationships between instrumental motives and contextual variables were more extensive. Performance, social, and eudaimonic motives were each predicted by a unique pattern of contextual appraisals. Our data demonstrate that instrumental motives play a role in daily negative emotion regulation as people encounter situations that pose unique regulatory demands. (PsycINFO Database Record

  19. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora.

    Science.gov (United States)

    Wang, Dongping; Qi, Mingsheng; Calla, Bernarda; Korban, Schuyler S; Clough, Steven J; Cock, Peter J A; Sundin, George W; Toth, Ian; Zhao, Youfu

    2012-01-01

    The exopolysaccharide amylovoran is one of the major pathogenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also found that the hybrid sensor kinase RcsC differentially regulates amylovoran production in vitro and in vivo. To further understand how the Rcs system regulates E. amylovora virulence gene expression, we conducted genome-wide microarray analyses to determine the regulons of RcsB and RcsC in liquid medium and on immature pear fruit. Array analyses identified a total of 648 genes differentially regulated by RcsCB in vitro and in vivo. Consistent with our previous findings, RcsB acts as a positive regulator in both conditions, while RcsC positively controls expression of amylovoran biosynthetic genes in vivo but negatively controls expression in vitro. Besides amylovoran biosynthesis and regulatory genes, cell-wall and cell-envelope (membrane) as well as regulatory genes were identified as the major components of the RcsBC regulon, including many novel genes. We have also demonstrated that transcripts of rcsA, rcsC, and rcsD genes but not the rcsB gene were up-regulated when bacterial cells were grown in minimal medium or following infection of pear fruits compared with those grown in Luria Bertani medium. Furthermore, using the genome of E. amylovora ATCC 49946, a hidden Markov model predicted 60 genes with a candidate RcsB binding site in the intergenic region, 28 of which were identified in the microarray assay. Based on these findings as well as previous reported data, a working model has been proposed to illustrate how the Rcs phosphorelay system regulates virulence gene expression in E. amylovora.

  20. DMPD: A novel negative regulator for IL-1 receptor and Toll-like receptor 4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15585304 A novel negative regulator for IL-1 receptor and Toll-like receptor 4. Lie...w FY, Liu H, Xu D. Immunol Lett. 2005 Jan 15;96(1):27-31. (.png) (.svg) (.html) (.csml) Show A novel negative... regulator for IL-1 receptor and Toll-like receptor 4. PubmedID 15585304 Title A novel negative regulator f

  1. HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner.

    Science.gov (United States)

    Koh, Dawn X P; Sng, Judy C G

    2016-11-01

    During early postnatal development, neuronal circuits are sculpted by sensory experience provided by the external environment. This experience-dependent regulation of circuitry development consolidates the balance of excitatory-inhibitory (E/I) neurons in the brain. The cortical barrel-column that innervates a single principal whisker is used to provide a clear reference frame for studying the consolidation of E/I circuitry. Sensory deprivation of S1 at birth disrupts the consolidation of excitatory-inhibitory balance by decreasing inhibitory transmission of parvalbumin interneurons. The molecular mechanisms underlying this decrease in inhibition are not completely understood. Our findings show that epigenetic mechanisms, in particular histone deacetylation by histone deacetylases, negatively regulate the expression of brain-derived neurotrophic factor (Bdnf) and parvalbumin (Pvalb) genes during development, which are required for the maturation of parvalbumin interneurons. After whisker deprivation, increased histone deacetylase 1 expression and activity led to increased histone deacetylase 1 binding and decreased histone acetylation at Bdnf promoters I-IV and Pvalb promoter, resulting in the repression of Bdnf and Pvalb gene transcription. The decrease in Bdnf expression further affected parvalbumin interneuron maturation at layer II/III in S1, demonstrated by decreased parvalbumin expression, a marker for parvalbumin interneuron maturation. Knockdown of HDAC1 recovered Bdnf and Pvalb gene transcription and also prevented the decrease of inhibitory synapses accompanying whisker deprivation.

  2. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans.

    Science.gov (United States)

    Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio

    2016-03-15

    T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4(+) naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments.

  3. Negative Regulation of Anthocynanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor

    Energy Technology Data Exchange (ETDEWEB)

    Gou, J.Y.; Liu, C.; Felippes, F. F.; Weigel, D.; Wang, J.-W.

    2011-04-01

    Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.

  4. Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli

    DEFF Research Database (Denmark)

    Boysen, Anders; Møller-Jensen, Jakob; Kallipolitis, Birgitte H.

    2010-01-01

    . Furthermore, in previous work most of the potential target genes have been shown to be repressed by FNR through an undetermined mechanism. Collectively, our results provide insight into the mechanism by which FNR negatively regulates genes such as sodA, sodB, cydDC, and metE, thereby demonstrating...

  5. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  6. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  7. Amino acids as regulators of gene expression

    Directory of Open Access Journals (Sweden)

    Kimball SR

    2004-08-01

    Full Text Available The role of amino acids as substrates for protein synthesis is well documented. However, a function for amino acids in modulating the signal transduction pathways that regulate mRNA translation has only recently been described. Interesting, some of the signaling pathways regulated by amino acids overlap with those classically associated with the cellular response to hormones such as insulin and insulin-like growth factors. The focus of this review is on the signaling pathways regulated by amino acids, with a particular emphasis on the branched-chain amino acid leucine, and the steps in mRNA translation controlled by the signaling pathways.

  8. Individual differences in positivity offset and negativity bias: Gender-specific associations with two serotonin receptor genes.

    Science.gov (United States)

    Ashare, Rebecca L; Norris, Catherine J; Wileyto, E Paul; Cacioppo, John T; Strasser, Andrew A

    2013-09-01

    Individual differences in the evaluation of affective stimuli, such as the positivity offset and negativity bias may have a biological basis. We tested whether two SNPs (HTR2A; 102T>C and HTR1A; 1019C>G) related to serotonin receptor function, a biological pathway associated with affective regulation, were differentially related to positivity offset and negativity bias for males and females. Participants were 109 cigarette smokers who rated a series of affective stimuli to assess reactions to positive and negative pictures. Gender × genotype interactions were found for both SNPs. Males with the 102T allele showed a greater positivity offset than males with the 102C allele. For females, in contrast, the 1019C allele was associated with a greater positivity offset than the 1019G allele, whereas the 102T allele was associated with a greater negativity bias than the 102C allele. Identifying how gender differences may moderate the effect of serotonin receptor genes on affective information processing may provide insight into their role in guiding behavior and regulating affect.

  9. AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora.

    Directory of Open Access Journals (Sweden)

    Dongping Wang

    Full Text Available In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora.

  10. AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora.

    Science.gov (United States)

    Wang, Dongping; Korban, Schuyler S; Pusey, P Lawrence; Zhao, Youfu

    2012-01-01

    In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT) strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora.

  11. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Science.gov (United States)

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  12. Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis.

    Science.gov (United States)

    Hu, Chi-Kuo; Ozlü, Nurhan; Coughlin, Margaret; Steen, Judith J; Mitchison, Timothy J

    2012-07-01

    To achieve mitosis and cytokinesis, microtubules must assemble into distinct structures at different stages of cell division-mitotic spindles to segregate the chromosomes before anaphase and midzones to keep sister genomes apart and guide the cleavage furrow after anaphase. This temporal regulation is believed to involve Cdk1 kinase, which is inactivated in a switch-like way after anaphase. We found that inhibiting Plk1 caused premature assembly of midzones in cells still in metaphase, breaking the temporal regulation of microtubules. The antiparallel microtubule-bundling protein PRC1 plays a key role in organizing the midzone complex. We found that Plk1 negatively regulates PRC1 through phosphorylation of a single site, Thr-602, near the C-terminus of PRC1. We also found that microtubules stimulated Thr-602 phosphorylation by Plk1. This creates a potential negative feedback loop controlling PRC1 activity. It also made the extent of Thr-602 phosphorylation during mitotic arrest dependent on the mechanism of the arresting drug. Unexpectedly, we could not detect a preanaphase regulatory role for Cdk1 sites on PRC1. We suggest that PRC1 is regulated by Plk1, rather than Cdk1 as previously proposed, because its activity must be spatiotemporally regulated both preanaphase and postanaphase, and Cdk1 activity is too binary for this purpose.

  13. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes.

    Science.gov (United States)

    Rosario, Christopher J; Tan, Ming

    2012-06-01

    The obligate intracellular bacterium Chlamydia has an unusual developmental cycle in which there is conversion between two forms that are specialized for either intracellular replication or propagation of the infection to a new host cell. Expression of late chlamydial genes is upregulated during conversion from the replicating to the infectious form, but the mechanism for this temporal regulation is unknown. We found that EUO, which is expressed from an early gene, binds to two sites upstream of the late operon omcAB, but only the downstream site was necessary for transcriptional repression. Using gel shift and in vitro transcription assays we showed that EUO specifically bound and repressed promoters of Chlamydia trachomatis late genes, but not early or mid genes. These findings support a role for EUO as a temporal repressor that negatively regulates late chlamydial genes and prevents their premature expression. The basis of this specificity is the ability of EUO to selectively bind promoter regions of late genes, which would prevent their transcription by RNA polymerase. Thus, we propose that EUO is a master regulator that prevents the terminal differentiation of the replicating form of chlamydiae into the infectious form until sufficient rounds of replication have occurred.

  14. Early Growth Response gene 1 (Egr-1) regulates HSV-1 ICP4 and ICP22 gene expression

    Institute of Scientific and Technical Information of China (English)

    Gautam R Bedadala; Rajeswara C Pinnoji; Shao-Chung V Hsia

    2007-01-01

    The molecular mechanisms mediating herpes simplex virus type 1 (HSV-1) gene silencing during latent infection are not clear. Five copies of early growth response gene 1 (Egr-1) binding elements were identified in the intron of HSV-1 ICP22 (infected cell protein No. 22) gene, leading to the hypothesis that Egr-1 binds to the viral genome and regulates the viral gene expression. Transient co-transfection assays indicated that Egr-1 negatively regulated the transcription of both full-length and intron-removed ICP22 promoters. The same assays also revealed that Egr-1 repressed ICP4 (infected cell protein No. 4) promoter activity in a dose-dependent manner but showed less inhibition when the intron was removed.Histone deacetylation was not involved in this regulation since histone deacetylase inhibitor trichostatin A did not exhibit any effect on Egr-1-mediated repression. Chromatin immunoprecipitation assays showed that Egr-1 reduced the binding of Sp1 to the promoters and that the co-repressor Nab2 (NGFI-A/EGR1-binding protein) was recruited to the proximity of ICP4 in the presence of Egr-1. These results suggested that the multi functional transcription factor Egr-1 can repress HSV-1 immediate-early gene expression through the recruitment of co-repressor Nab2 and reduction of Sp1 occupancy,and thus may play a critical role in HSV-1 gene silencing during latency.

  15. Tissue Specific and Hormonal Regulation of Gene Expression

    Science.gov (United States)

    1998-07-01

    cAMP responsive region located at -200 to -99 bp in CRH. 14. SUBJECT TERMS 15. NUMfER OF PAGES Breast Cancer gene regulation, transcription, placenta...known mediators of labor, and it may also the stress response. The peptide sequence and expression of potentiate the effect of oxytocin on uterine...regulation of other rodent trophoblast genes has 220 not yet been investigated. 2. Robinson BG, Arbiser JL, Emanuel RL, Majzoub JA 1989 Species- 3008

  16. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages.

    Science.gov (United States)

    Pereira, Milton; Tourlomousis, Panagiotis; Wright, John; P Monie, Tom; Bryant, Clare E

    2016-09-27

    Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response.

  17. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages

    Science.gov (United States)

    Pereira, Milton; Tourlomousis, Panagiotis; Wright, John; P. Monie, Tom; Bryant, Clare E.

    2016-01-01

    Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response. PMID:27670879

  18. De-regulation of common housekeeping genes in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Wurmbach Elisa

    2007-07-01

    Full Text Available Abstract Background Tumorigenesis is associated with changes in gene expression and involves many pathways. Dysregulated genes include "housekeeping" genes that are often used for normalization for quantitative real-time RT-PCR (qPCR, which may lead to unreliable results. This study assessed eight stages of hepatitis C virus (HCV induced hepatocellular carcinoma (HCC to search for appropriate genes for normalization. Results Gene expression profiles using microarrays revealed differential expression of most "housekeeping" genes during the course of HCV-HCC, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH and beta-actin (ACTB, genes frequently used for normalization. QPCR reactions confirmed the regulation of these genes. Using them for normalization had strong effects on the extent of differential expressed genes, leading to misinterpretation of the results. Conclusion As shown here in the case of HCV-induced HCC, the most constantly expressed gene is the arginine/serine-rich splicing factor 4 (SFRS4. The utilization of at least two genes for normalization is robust and advantageous, because they can compensate for slight differences of their expression when not co-regulated. The combination of ribosomal protein large 41 (RPL41 and SFRS4 used for normalization led to very similar results as SFRS4 alone and is a very good choice for reference in this disease as shown on four differentially expressed genes.

  19. Detailed analysis of Helicobacter pylori Fur-regulated promoters reveals a Fur box core sequence and novel Fur-regulated genes.

    Science.gov (United States)

    Pich, Oscar Q; Carpenter, Beth M; Gilbreath, Jeremy J; Merrell, D Scott

    2012-06-01

    In Helicobacter pylori, iron balance is controlled by the Ferric uptake regulator (Fur), an iron-sensing repressor protein that typically regulates expression of genes implicated in iron transport and storage. Herein, we carried out extensive analysis of Fur-regulated promoters and identified a 7-1-7 motif with dyad symmetry (5'-TAATAATnATTATTA-3'), which functions as the Fur box core sequence of H. pylori. Addition of this sequence to the promoter region of a typically non-Fur regulated gene was sufficient to impose Fur-dependent regulation in vivo. Moreover, mutation of this sequence within Fur-controlled promoters negated regulation. Analysis of the H. pylori chromosome for the occurrence of the Fur box established the existence of well-conserved Fur boxes in the promoters of numerous known Fur-regulated genes, and revealed novel putative Fur targets. Transcriptional analysis of the new candidate genes demonstrated Fur-dependent repression of HPG27_51, HPG27_52, HPG27_199, HPG27_445, HPG27_825 and HPG27_1063, as well as Fur-mediated activation of the cytotoxin associated gene A, cagA (HPG27_507). Furthermore, electrophoretic mobility shift assays confirmed specific binding of Fur to the promoters of each of these genes. Future experiments will determine whether loss of Fur regulation of any of these particular genes contributes to the defects in colonization exhibited by the H. pylori fur mutant.

  20. A novel branched chain amino acids responsive transcriptional regulator, BCARR, negatively acts on the proteolytic system in Lactobacillus helveticus.

    Directory of Open Access Journals (Sweden)

    Taketo Wakai

    Full Text Available Transcriptional negative regulation of the proteolytic system of Lactobacillus helveticus CM4 in response to amino acids seems to be very important for the control of antihypertensive peptide production; however, it remains poorly understood. A 26-kDa protein with N-terminal cystathionine β-synthase domains (CBS domain protein, which seems to be involved in the regulatory system, was purified by using a DNA-sepharose bound 300-bp DNA fragment corresponding to the upstream regions of the six proteolytic genes that are down-regulated by amino acids. The CBS domain protein bound to a DNA fragment corresponding to the region upstream of the pepV gene in response to branched chain amino acids (BCAAs. The expression of the pepV gene in Escherichia coli grown in BCAA-enriched medium was repressed when the CBS domain protein was co-expressed. These results reveal that the CBS domain protein acts as a novel type of BCAA-responsive transcriptional regulator (BCARR in L. helveticus. From comparative analysis of the promoter regions of the six proteolysis genes, a palindromic AT-rich motif, 5'-AAAAANNCTWTTATT-3', was predicted as the consensus DNA motif for the BCARR protein binding. Footprint analysis using the pepV promotor region and gel shift analyses with the corresponding short DNA fragments strongly suggested that the BCARR protein binds adjacent to the pepV promoter region and affects the transcription level of the pepV gene in the presence of BCAAs. Homology search analysis of the C-terminal region of the BCARR protein suggested the existence of a unique βαββαβ fold structure that has been reported in a variety of ACT (aspartate kinase-chorismate mutase-tyrA domain proteins for sensing amino acids. These results also suggest that the sensing of BCAAs by the ACT domain might promote the binding of the BCARR to DNA sequences upstream of proteolysis genes, which affects the gene expression of the proteolytic system in L. helveticus.

  1. Gene regulation by mRNA editing

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenas, J. [Univ. of Washington, Seattle, WA (United States)

    1997-02-01

    The commonly cited figure of 10{sup 5} genes in the human genome represents a tremendous underestimate of our capacity to generate distinct gene products with unique functions. Our cells possess an impressive collection of tools for altering the products of a single gene to create a variety of proteins. The different gene products may have related but distinct functions, allowing cells of different types or at different developmental stages to fine-tune their patterns of gene expression. These tools may act in the cytoplasm, as when proteins undergo post-translational modifications, or in the nucleus, in the processing of pre-mRNA. Two forms of intranuclear fine-tuning are well established and widely studied: alternative splicing of pre-mRNAs and alternative polyadenylation site selection. In recent years it has become clear that cells possess yet another tool to create RNA sequence diversity, mRNA editing. The term {open_quotes}editing{close_quotes} is applied to posttranscriptional modifications of a purine or pyrimidine, which alter an mRNA sequence as it is read, for example, by ribosomes. Covalent changes to the structure of nucleotide bases are well known to occur on tRNA and rRNA molecules, but such changes in mRNA sequence are novel in that they have the capacity to change specific protein sequences. 43 refs., 1 fig.

  2. PTEN, a widely known negative regulator of insulin/PI3K signaling, positively regulates neuronal insulin resistance

    Science.gov (United States)

    Gupta, Amit; Dey, Chinmoy Sankar

    2012-01-01

    Lipid and protein tyrosine phosphatase, phosphatase and tension homologue (PTEN), is a widely known negative regulator of insulin/phosphoinositide 3-kinase signaling. Down-regulation of PTEN is thus widely documented to ameliorate insulin resistance in peripheral tissues such as skeletal muscle and adipose. However, not much is known about its exact role in neuronal insulin signaling and insulin resistance. Moreover, alterations of PTEN in neuronal systems have led to discovery of several unexpected outcomes, including in the neurodegenerative disorder Alzheimer's disease (AD), which is increasingly being recognized as a brain-specific form of diabetes. In addition, contrary to expectations, its neuron-specific deletion in mice resulted in development of diet-sensitive obesity. The present study shows that PTEN, paradoxically, positively regulates neuronal insulin signaling and glucose uptake. Its down-regulation exacerbates neuronal insulin resistance. The positive role of PTEN in neuronal insulin signaling is likely due to its protein phosphatase actions, which prevents the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), the kinases critically involved in neuronal energy impairment and neurodegeneration. Results suggest that PTEN acting through FAK, the direct protein substrate of PTEN, prevents ERK activation. Our findings provide an explanation for unexpected outcomes reported earlier with PTEN alterations in neuronal systems and also suggest a novel molecular pathway linking neuronal insulin resistance and AD, the two pathophysiological states demonstrated to be closely linked. PMID:22875989

  3. The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor signaling

    OpenAIRE

    Carty, Michael; Goodbody, Rory; Schröder, Michael; Stack, Julianne; Moynagh, Paul N.; Bowie, Andrew G.

    2006-01-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll–interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signalin...

  4. The LIN-15A and LIN-56 transcriptional regulators interact to negatively regulate EGF/Ras signaling in Caenorhabditis elegans vulval cell-fate determination.

    Science.gov (United States)

    Davison, Ewa M; Saffer, Adam M; Huang, Linda S; DeModena, John; Sternberg, Paul W; Horvitz, H Robert

    2011-03-01

    The restricted expression of epidermal growth factor (EGF) family ligands is important for proper development and for preventing cancerous growth in mammals. In Caenorhabditis elegans, the class A and B synthetic multivulva (synMuv) genes redundantly repress expression of lin-3 EGF to negatively regulate Ras-mediated vulval development. The class B synMuv genes encode proteins homologous to components of the NuRD and Myb-MuvB/dREAM transcriptional repressor complexes, indicating that they likely silence lin-3 EGF through chromatin remodeling. The two class A synMuv genes cloned thus far, lin-8 and lin-15A, both encode novel proteins. The LIN-8 protein is nuclear. We have characterized the class A synMuv gene lin-56 and found it to encode a novel protein that shares a THAP-like C(2)CH motif with LIN-15A. Both the LIN-56 and LIN-15A proteins localize to nuclei. Wild-type levels of LIN-56 require LIN-15A, and wild-type levels and/or localization of LIN-15A requires LIN-56. Furthermore, LIN-56 and LIN-15A interact in the yeast two-hybrid system. We propose that LIN-56 and LIN-15A associate in a nuclear complex that inhibits vulval specification by repressing lin-3 EGF expression.

  5. Modeling the role of negative cooperativity in metabolic regulation and homeostasis.

    Directory of Open Access Journals (Sweden)

    Eliot C Bush

    Full Text Available A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.

  6. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  7. Gene regulation: hacking the network on a sugar high.

    Science.gov (United States)

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  8. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity.

    Science.gov (United States)

    Figueiro-Silva, Joana; Gruart, Agnès; Clayton, Kevin Bernard; Podlesniy, Petar; Abad, Maria Alba; Gasull, Xavier; Delgado-García, José María; Trullas, Ramon

    2015-04-08

    In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity. Copyright © 2015 the authors 0270-6474/15/355504-18$15.00/0.

  9. Mindfulness in schizophrenia: Associations with self-reported motivation, emotion regulation, dysfunctional attitudes, and negative symptoms.

    Science.gov (United States)

    Tabak, Naomi T; Horan, William P; Green, Michael F

    2015-10-01

    Mindfulness-based interventions are gaining empirical support as alternative or adjunctive treatments for a variety of mental health conditions, including anxiety, depression, and substance use disorders. Emerging evidence now suggests that mindfulness-based treatments may also improve clinical features of schizophrenia, including negative symptoms. However, no research has examined the construct of mindfulness and its correlates in schizophrenia. In this study, we examined self-reported mindfulness in patients (n=35) and controls (n=25) using the Five-Facet Mindfulness Questionnaire. We examined correlations among mindfulness, negative symptoms, and psychological constructs associated with negative symptoms and adaptive functioning, including motivation, emotion regulation, and dysfunctional attitudes. As hypothesized, patients endorsed lower levels of mindfulness than controls. In patients, mindfulness was unrelated to negative symptoms, but it was associated with more adaptive emotion regulation (greater reappraisal) and beliefs (lower dysfunctional attitudes). Some facets of mindfulness were also associated with self-reported motivation (behavioral activation and inhibition). These patterns of correlations were similar in patients and controls. Findings from this initial study suggest that schizophrenia patients may benefit from mindfulness-based interventions because they (a) have lower self-reported mindfulness than controls and (b) demonstrate strong relationships between mindfulness and psychological constructs related to adaptive functioning.

  10. IGF-Regulated Genes in Prostate Cancer

    Science.gov (United States)

    2006-02-01

    Burgess, A.W., and Ward, C.W. (2002) Cell 110(6), 763-773 53. Sambrook, J., Maniatis , T., and Fritsch, E.F. (1989) Molecular cloning : a laboratory...triplicate arrays that each contain >12,000 sequence-verified, non-redundant human cDNA clones . Data were analyzed by accepted means of normalization...this award. Review of the field-published in Genes, Chromosomes, and Cancer 36: 113-120 (2003) The IGFI Receptor Gene: A Molecular Target for

  11. Identification and functional characterization of the miRNA-gene regulatory network in chronic myeloid leukemia lineage negative cells

    Science.gov (United States)

    Agatheeswaran, S.; Pattnayak, N. C.; Chakraborty, S.

    2016-09-01

    Chronic myeloid leukemia (CML) is maintained by leukemic stem cells (LSCs) which are resistant to the existing TKI therapy. Hence a better understanding of the CML LSCs is necessary to eradicate these cells and achieve complete cure. Using the miRNA-gene interaction networks from the CML lin(-) cells we identified a set of up/down-regulated miRNAs and corresponding target genes. Association studies (Pearson correlation) from the miRNA and gene expression data showed that miR-1469 and miR-1972 have significantly higher number of target genes, 75 and 50 respectively. We observed that miR-1972 induces G2-M cell cycle arrest and miR-1469 moderately arrested G1 cell cycle when overexpressed in KCL22 cells. We have earlier shown that a combination of imatinib and JAK inhibitor I can significantly bring down the proliferation of CML lineage negative cells. Here we observed that imatinib and JAK inhibitor I combination restored the expression pattern of the down-regulated miRNAs in primary CML lin(-) cells. Thus effective manipulation of the deregulated miRNAs can restore the miRNA-mRNA networks that can efficiently inhibit CML stem and progenitor cells and alleviate the disease.

  12. 9 CFR 85.6 - Interstate movement of pseudorabies vaccinate swine, except swine from qualified negative gene...

    Science.gov (United States)

    2010-01-01

    ... vaccinate swine, except swine from qualified negative gene-altered vaccinated herds, not known to be..., except swine from qualified negative gene-altered vaccinated herds, not known to be infected with or exposed to pseudorabies. Pseudorabies vaccinate swine, except swine from qualified negative...

  13. Negative and positive auto-regulation of BMP expression in early eye development.

    Science.gov (United States)

    Huang, Jie; Liu, Ying; Filas, Benjamen; Gunhaga, Lena; Beebe, David C

    2015-11-15

    Previous results have shown that Bone Morphogenetic Protein (BMP) signaling is essential for lens specification and differentiation. How BMP signals are regulated in the prospective lens ectoderm is not well defined. To address this issue we have modulated BMP activity in a chicken embryo pre-lens ectoderm explant assay, and also studied transgenic mice, in which the type I BMP receptors, Bmpr1a and Acvr1, are deleted from the prospective lens ectoderm. Our results show that chicken embryo pre-lens ectoderm cells express BMPs and require BMP signaling for lens specification in vitro, and that in vivo inhibition of BMP signals in the mouse prospective lens ectoderm interrupts lens placode formation and prevents lens invagination. Furthermore, our results provide evidence that BMP expression is negatively auto-regulated in the lens-forming ectoderm, decreasing when the tissue is exposed to exogenous BMPs and increasing when BMP signaling is prevented. In addition, eyes lacking BMP receptors in the prospective lens placode develop coloboma in the adjacent wild type optic cup. In these eyes, Bmp7 expression increases in the ventral optic cup and the normal dorsal-ventral gradient of BMP signaling in the optic cup is disrupted. Pax2 becomes undetectable and expression of Sfrp2 increases in the ventral optic cup, suggesting that increased BMP signaling alter their expression, resulting in failure to close the optic fissure. In summary, our results suggest that negative and positive auto-regulation of BMP expression is important to regulate early eye development.

  14. Gene regulation by MAP kinase cascades

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  15. HIP-55 negatively regulates myocardial contractility at the single-cell level.

    Science.gov (United States)

    Xing, Rui; Li, Shanshan; Liu, Kai; Yuan, Yuan; Li, Qing; Deng, Hao; Yang, Chengzhi; Huang, Jianyong; Zhang, Youyi; Fang, Jing; Xiong, Chunyang; Li, Zijian

    2014-08-22

    Myocardial contractility is crucial for cardiac output and heart function. But the detailed mechanisms of regulation remain unclear. In the present study, we found that HIP-55, an actin binding protein, negatively regulates myocardial contractility at the single-cell level. HIP-55 was overexpressed and knocked down in cardiomyocytes with an adenovirus infection. The traction forces exerted by single cardiomyocyte were measured using cell traction force microscopy. The results showed that HIP-55 knockdown significantly increased the contractility of the cardiomyocytes and HIP-55 overexpression could markedly reverse this process. Furthermore, HIP-55 was obviously co-localized with F-actin in cardiomyocytes, suggesting that HIP-55 regulated cardiac contractile function through the interaction between HIP-55 and F-actin. This study reveals the regulatory mechanisms of myocardial contractility and provides a new target for preventing and treating cardiovascular disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock

    Science.gov (United States)

    Rawat, Reetika; Jones, Matthew A.; Schwartz, Jacob; Salemi, Michelle R.; Phinney, Brett S.; Harmer, Stacey L.

    2011-01-01

    Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE) in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE–binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms) is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE–containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms. PMID:21483796

  17. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock.

    Directory of Open Access Journals (Sweden)

    Reetika Rawat

    2011-03-01

    Full Text Available Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE-binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE-containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms.

  18. Identification of prognostic genes for recurrent risk prediction in triple negative breast cancer patients in Taiwan.

    Directory of Open Access Journals (Sweden)

    Lee H Chen

    Full Text Available Discrepancies in the prognosis of triple negative breast cancer exist between Caucasian and Asian populations. Yet, the gene signature of triple negative breast cancer specifically for Asians has not become available. Therefore, the purpose of this study is to construct a prediction model for recurrence of triple negative breast cancer in Taiwanese patients. Whole genome expression profiling of breast cancers from 185 patients in Taiwan from 1995 to 2008 was performed, and the results were compared to the previously published literature to detect differences between Asian and Western patients. Pathway analysis and Cox proportional hazard models were applied to construct a prediction model for the recurrence of triple negative breast cancer. Hierarchical cluster analysis showed that triple negative breast cancers from different races were in separate sub-clusters but grouped in a bigger cluster. Two pathways, cAMP-mediated signaling and ephrin receptor signaling, were significantly associated with the recurrence of triple negative breast cancer. After using stepwise model selection from the combination of the initial filtered genes, we developed a prediction model based on the genes SLC22A23, PRKAG3, DPEP3, MORC2, GRB7, and FAM43A. The model had 91.7% accuracy, 81.8% sensitivity, and 94.6% specificity under leave-one-out support vector regression. In this study, we identified pathways related to triple negative breast cancer and developed a model to predict its recurrence. These results could be used for assisting with clinical prognosis and warrant further investigation into the possibility of targeted therapy of triple negative breast cancer in Taiwanese patients.

  19. MiR-21 promoted proliferation and migration in hepatocellular carcinoma through negative regulation of Navigator-3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhipeng, E-mail: dr_zpwang@163.com [The Digestive and Vascural Surgery Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region (China); Yang, Huan [The Department of Liver and Biliary Pancreatic Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region (China); Ren, Lei [The Department of General Surgery, Branching Hospital of the First People' s Hospital of Urumqi, 830000, Xinjiang Uygur Autonomous Region (China)

    2015-09-04

    MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCC cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. - Highlights: • Navigator-3 (NAV-3) suppresses proliferation, migration and tumorigenesis of HCC cells. • NAV-3 was a novel target of miR-21. • MiR-21 negatively regulates NAV-3 in HCC.

  20. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    OpenAIRE

    M. Ananda Chitra; Jayanthy, C.; Nagarajan, B.

    2015-01-01

    Background: Staphylococcus pseudintermedius (SP) is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr) locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objecti...

  1. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development

    Institute of Scientific and Technical Information of China (English)

    Yu Xin HU; Yong Hong WANG; Xin Fang LIU; Jia Yang LI

    2004-01-01

    RAV1 is a novel DNA-binding protein with two distinct DNA-binding domains unique in higher plants,but its role in plant growth and development remains unknown. Using cDNA array,we found that transcription of RAV1 is downregulated by epibrassinolide (epiBL) in Arabidopsis suspension cells. RNA gel blot analysis revealed that epiBL-regulated RAV1 transcription involves neither protein phosphorylation/dephosphorylation nor newly synthesized protein,and does not require the functional BRI1,suggesting that this regulation might be through a new BR signaling pathway.Overexpressing RAV1 in Arabidopsis results in a retardation of lateral root and rosette leaf development,and the underexpression causes an earlier flowering phenotype,implying that RAV1 may function as a negative regulatory component of growth and development.

  2. Cost benefit theory and optimal design of gene regulation functions

    Science.gov (United States)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  3. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  4. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  5. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg

  6. DMPD: The negative regulation of Toll-like receptor and associated pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17621314 The negative regulation of Toll-like receptor and associated pathways. Lan...g T, Mansell A. Immunol Cell Biol. 2007 Aug-Sep;85(6):425-34. Epub 2007 Jul 10. (.png) (.svg) (.html) (.csml) Show The... negative regulation of Toll-like receptor and associated pathways. PubmedID 17621314 Title The ne

  7. Mechanism of Gene Regulation by a Staphylococcus aureus Toxin

    Directory of Open Access Journals (Sweden)

    Hwang-Soo Joo

    2016-10-01

    Full Text Available The virulence of many bacterial pathogens, including the important human pathogen Staphylococcus aureus, depends on the secretion of frequently large amounts of toxins. Toxin production involves the need for the bacteria to make physiological adjustments for energy conservation. While toxins are primarily targets of gene regulation, such changes may be accomplished by regulatory functions of the toxins themselves. However, mechanisms by which toxins regulate gene expression have remained poorly understood. We show here that the staphylococcal phenol-soluble modulin (PSM toxins have gene regulatory functions that, in particular, include inducing expression of their own transport system by direct interference with a GntR-type repressor protein. This capacity was most pronounced in PSMs with low cytolytic capacity, demonstrating functional specification among closely related members of that toxin family during evolution. Our study presents a molecular mechanism of gene regulation by a bacterial toxin that adapts bacterial physiology to enhanced toxin production.

  8. Hypoxia-regulated target genes implicated in tumor metastasis

    Directory of Open Access Journals (Sweden)

    Tsai Ya-Ping

    2012-12-01

    Full Text Available Abstract Hypoxia is an important microenvironmental factor that induces cancer metastasis. Hypoxia/hypoxia-inducible factor-1α (HIF-1α regulates many important steps of the metastatic processes, especially epithelial-mesenchymal transition (EMT that is one of the crucial mechanisms to cause early stage of tumor metastasis. To have a better understanding of the mechanism of hypoxia-regulated metastasis, various hypoxia/HIF-1α-regulated target genes are categorized into different classes including transcription factors, histone modifiers, enzymes, receptors, kinases, small GTPases, transporters, adhesion molecules, surface molecules, membrane proteins, and microRNAs. Different roles of these target genes are described with regards to their relationship to hypoxia-induced metastasis. We hope that this review will provide a framework for further exploration of hypoxia/HIF-1α-regulated target genes and a comprehensive view of the metastatic picture induced by hypoxia.

  9. ZFP36L1 negatively regulates plasmacytoid differentiation of BCL1 cells by targeting BLIMP1 mRNA.

    Directory of Open Access Journals (Sweden)

    Asghar Nasir

    Full Text Available The ZFP36/Tis11 family of zinc-finger proteins regulate cellular processes by binding to adenine uridine rich elements in the 3' untranslated regions of various mRNAs and promoting their degradation. We show here that ZFP36L1 expression is largely extinguished during the transition from B cells to plasma cells, in a reciprocal pattern to that of ZFP36 and the plasma cell transcription factor, BLIMP1. Enforced expression of ZFP36L1 in the mouse BCL1 cell line blocked cytokine-induced differentiation while shRNA-mediated knock-down enhanced differentiation. Reconstruction of regulatory networks from microarray gene expression data using the ARACNe algorithm identified candidate mRNA targets for ZFP36L1 including BLIMP1. Genes that displayed down-regulation in plasma cells were significantly over-represented (P = <0.0001 in a set of previously validated ZFP36 targets suggesting that ZFP36L1 and ZFP36 target distinct sets of mRNAs during plasmacytoid differentiation. ShRNA-mediated knock-down of ZFP36L1 in BCL1 cells led to an increase in levels of BLIMP1 mRNA and protein, but not for mRNAs of other transcription factors that regulate plasmacytoid differentiation (xbp1, irf4, bcl6. Finally, ZFP36L1 significantly reduced the activity of a BLIMP1 3' untranslated region-driven luciferase reporter. Taken together, these findings suggest that ZFP36L1 negatively regulates plasmacytoid differentiation, at least in part, by targeting the expression of BLIMP1.

  10. Regulation of immunoglobulin gene rearrangement and expression.

    Science.gov (United States)

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching.

  11. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance.

    Science.gov (United States)

    Yang, Dong-Lei; Li, Qun; Deng, Yi-Wen; Lou, Yong-Gen; Wang, Mu-Yang; Zhou, Guo-Xing; Zhang, Ying-Ying; He, Zu-Hua

    2008-05-01

    Gibberellins (GAs) form a group of important plant tetracyclic diterpenoid hormones that are involved in many aspects of plant growth and development. Emerging evidence implicates that GAs also play roles in stress responses. However, the role of GAs in biotic stress is largely unknown. Here, we report that knockout or overexpression of the Elongated uppermost internode (Eui) gene encoding a GA deactivating enzyme compromises or increases, respectively, disease resistance to bacterial blight (Xanthomonas oryzae pv. oyrzae) and rice blast (Magnaporthe oryzae). Exogenous application of GA(3) and the inhibitor of GA synthesis (uniconazol) could increase disease susceptibility and resistance, respectively, to bacterial blight. Similarly, uniconazol restored disease resistance of the eui mutant and GA(3) decreased disease resistance of the Eui overexpressors to bacterial blight. Therefore, the change of resistance attributes to GA levels. In consistency with this, the GA metabolism genes OsGA20ox2 and OsGA2ox1 were down-regulated during pathogen challenge. We also found that PR1a induction was enhanced but the SA level was decreased in the Eui overexpressor, while the JA level was reduced in the eui mutant. Together, our current study indicates that GAs play a negative role in rice basal disease resistance, with EUI as a positive modulator through regulating the level of bioactive GAs.

  12. Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance

    Institute of Scientific and Technical Information of China (English)

    Dong-Lei Yang; Qun Li; Yi-Wen Deng; Yong-Gen Lou; Mu-Yang Wang; Guo-Xing Zhou; Ying-Ying Zhang; Zu-Hua He

    2008-01-01

    Gibberellins (GAs) form a group of important plant tetracyclic diterpenoid hormones that are involved in many aspects of plant growth and development. Emerging evidence implicates that GAs also play roles in stress responses. However, the role of GAs in biotic stress is largely unknown. Here, we report that knockout or overexpression of the Elongated uppermost internode (Eui) gene encoding a GA deactivating enzyme compromises or increases, respectively, disease resistance to bacterial blight (Xanthomonas oryzae pv. oyrzae) and rice blast (Magnaporthe oryzae). Exogenous application of GA and the inhibitor of GA synthesis (uniconazol) could increase disease susceptibility and resistance, respectively, to bacterial blight. Similarly, uniconazol restored disease resistance of the eui mutant and GA3 decreased disease resistance of the Eui overexpressors to bacterial blight. Therefore, the change of resistance attributes to GA levels. In consistency with this, the GA metabolism genes OsGA2Oox2 and OsGA2oxl were down-regulated during pathogen challenge. We also found that PR1a induction was enhanced but the SA level was decreased in the Eui overexpressor, while the JA level was reduced in the eui mutant. Together, our current study indicates that GAs play a negative role in rice basal disease resistance, with EUI as a positive modulator through regulating the level of bioactive GAs.

  13. HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation

    Directory of Open Access Journals (Sweden)

    Valencia-Hernández Armando

    2011-05-01

    Full Text Available Abstract Background Human Papillomavirus (HPV E2 plays several important roles in the viral cycle, including the transcriptional regulation of the oncogenes E6 and E7, the regulation of the viral genome replication by its association with E1 helicase and participates in the viral genome segregation during mitosis by its association with the cellular protein Brd4. It has been shown that E2 protein can regulate negative or positively the activity of several cellular promoters, although the precise mechanism of this regulation is uncertain. In this work we constructed a recombinant adenoviral vector to overexpress HPV16 E2 and evaluated the global pattern of biological processes regulated by E2 using microarrays expression analysis. Results The gene expression profile was strongly modified in cells expressing HPV16 E2, finding 1048 down-regulated genes, and 581 up-regulated. The main cellular pathway modified was WNT since we found 28 genes down-regulated and 15 up-regulated. Interestingly, this pathway is a convergence point for regulating the expression of genes involved in several cellular processes, including apoptosis, proliferation and cell differentiation; MYCN, JAG1 and MAPK13 genes were selected to validate by RT-qPCR the microarray data as these genes in an altered level of expression, modify very important cellular processes. Additionally, we found that a large number of genes from pathways such as PDGF, angiogenesis and cytokines and chemokines mediated inflammation, were also modified in their expression. Conclusions Our results demonstrate that HPV16 E2 has regulatory effects on cellular gene expression in HPV negative cells, independent of the other HPV proteins, and the gene profile observed indicates that these effects could be mediated by interactions with cellular proteins. The cellular processes affected suggest that E2 expression leads to the cells in to a convenient environment for a replicative cycle of the virus.

  14. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  15. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mayi, Therese Hervee; Rigamonti, Elena [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Pattou, Francois [Univ Lille Nord de France, F-59000 Lille (France); Department of Endocrine Surgery, University Hospital, Lille (France); U859 Biotherapies for Diabetes, INSERM, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  16. Caenorhabditis elegans Inositol 5-Phosphatase Homolog Negatively Regulates Inositol 1,4,5-Triphosphate Signaling in Ovulation V⃞

    Science.gov (United States)

    Bui, Yen Kim; Sternberg, Paul W.

    2002-01-01

    Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP3) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP3 signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23–mediated IP3 signaling pathway genes. We infer that IPP-5 negatively regulates IP3 signaling to ensure proper spermathecal contraction. PMID:12006659

  17. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  18. Characterization of Adapter Protein NRBP as a Negative Regulator of T Cell Activation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIN Zhi-xin; WU Jun

    2008-01-01

    Adapter proteins can regulate the gene transcriptions in disparate signaling pathway by interacting with multiple signaling molecules, including T cell activation signaling. Nuclear receptor binding protein (NRBP), a novel adapter protein, represents a small family of evolutionarily conserved proteins with homologs in Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D.melanogaster), mouse and human. Here, we demonstrated that overexpression of NRBP in Jurkat TAg cells specifically impairs T cell receptor (TCR) or phorbol myristate acetate (PMA)/ionomycin-mediated signaling leading to nuclear factor of activated T cells (NFAT) promoter activation. Furthermore, the N-terminal of NRBP is necessary for its regulation of NFAT activation. Finally, we showed that NRBP has minimal effect on both TCR- and PMA-induced CD69 up-regulation in Jurkat TAg cells, which suggests that NRBP may function downstream of protein kinase C (PKC)/Ras pathway.

  19. The NSL complex regulates housekeeping genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kin Chung Lam

    Full Text Available MOF is the major histone H4 lysine 16-specific (H4K16 acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2 throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5% of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE. Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.

  20. The NSL Complex Regulates Housekeeping Genes in Drosophila

    Science.gov (United States)

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  1. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  2. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis.

    Science.gov (United States)

    Ferreira, Tânia; Prudêncio, Pedro; Martinho, Rui Gonçalo

    2014-10-15

    Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.

  3. Identification of Genes Regulated by Proteolysis

    Science.gov (United States)

    2005-07-01

    phase entry, M., Kanai, F., Zhou, B.B., Chung, J.H., and Rathbun, G.A. histone gene expression, and Cajal Body maintenance in hu- 2002. Determination...substrates of ubiquitin ligases. 6 Body Development of a library of F-box proteins We previously reported the identification of 33 human F-box proteins...FLAG anti- effect of the T62A mutation on cyclin E degradation through bodies , and immune complexes were immunoblotted with anti-Myc the Thr35 ° degron

  4. Divergence of gene regulation through chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. Results Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. Conclusions Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity

  5. Pancreatic regeneration: basic research and gene regulation.

    Science.gov (United States)

    Okita, Kenji; Mizuguchi, Toru; Shigenori, Ota; Ishii, Masayuki; Nishidate, Toshihiko; Ueki, Tomomi; Meguro, Makoto; Kimura, Yasutoshi; Tanimizu, Naoki; Ichinohe, Norihisa; Torigoe, Toshihiko; Kojima, Takashi; Mitaka, Toshihiro; Sato, Noriyuki; Sawada, Norimasa; Hirata, Koichi

    2016-06-01

    Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development.

  6. Social anxiety and emotion regulation in daily life: spillover effects on positive and negative social events.

    Science.gov (United States)

    Farmer, Antonina Savostyanova; Kashdan, Todd B

    2012-01-01

    To minimize the possibility of scrutiny, people with social anxiety difficulties exert great effort to manage their emotions, particularly during social interactions. We examined how the use of two emotion regulation strategies, emotion suppression and cognitive reappraisal, predict the generation of emotions and social events in daily life. Over 14 consecutive days, 89 participants completed daily diary entries on emotions, positive and negative social events, and their regulation of emotions. Using multilevel modeling, we found that when people high in social anxiety relied more on positive emotion suppression, they reported fewer positive social events and less positive emotion on the subsequent day. In contrast, people low in social anxiety reported fewer negative social events on days subsequent to using cognitive reappraisal to reduce distress; the use of cognitive reappraisal did not influence the daily lives of people high in social anxiety. Our findings support theories of emotion regulation difficulties associated with social anxiety. In particular, for people high in social anxiety, maladaptive strategy use contributed to diminished reward responsiveness.

  7. Suppressor of IKKɛ is an essential negative regulator of pathological cardiac hypertrophy

    Science.gov (United States)

    Deng, Ke-Qiong; Wang, Aibing; Ji, Yan-Xiao; Zhang, Xiao-Jing; Fang, Jing; Zhang, Yan; Zhang, Peng; Jiang, Xi; Gao, Lu; Zhu, Xue-Yong; Zhao, Yichao; Gao, Lingchen; Yang, Qinglin; Zhu, Xue-Hai; Wei, Xiang; Pu, Jun; Li, Hongliang

    2016-01-01

    Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1 (TBK1)/AKT-dependent manner. Sike-deficient mice develop cardiac hypertrophy and heart failure, whereas Sike-overexpressing transgenic (Sike-TG) mice are protected from hypertrophic stimuli. Mechanistically, SIKE directly interacts with TBK1 to inhibit the TBK1-AKT signalling pathway, thereby achieving its anti-hypertrophic action. The suppression of cardiac remodelling by SIKE is further validated in rats and monkeys. Collectively, these findings identify SIKE as a negative regulator of cardiac remodelling in multiple animal species due to its inhibitory regulation of the TBK1/AKT axis, suggesting that SIKE may represent a therapeutic target for the treatment of cardiac hypertrophy and heart failure. PMID:27249321

  8. Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression.

    Science.gov (United States)

    Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A; Barrett, Timothy G

    2015-02-01

    Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca(2+) imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca(2+) concentration ([Ca(2+)]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis.

  9. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    Science.gov (United States)

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  10. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  11. Os2 MAP kinase-mediated osmostress tolerance in Penicillium digitatum is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis.

    Science.gov (United States)

    Wang, Mingshuang; Chen, Changsheng; Zhu, Congyi; Sun, Xuepeng; Ruan, Ruoxin; Li, Hongye

    2014-01-01

    High osmolarity glycerol (HOG) pathway is ubiquitously distributed among eukaryotic organisms and plays an important role in adaptation to changes in the environment. In this study, the Hog1 ortholog in Penicillium digitatum, designated Pdos2, was identified and characterized using a gene knock-out strategy. The ΔPdos2 mutant showed a considerably increased sensitivity to salt stress and cell wall-disturbing agents and a slightly increased resistance to fungicides iprodione and fludioxonil, indicating that Pdos2 is involved in response to hyperosmotic stress, regulation of cell wall integrity and sensitivity to fungicides iprodione and fludioxonil. Surprisingly, the mutant was not affected in response to oxidative stress caused by H2O2. The average lesion size in citrus fruits caused by ΔPdos2 mutant was smaller (approximately 25.0% reduction) than that caused by the wild-type strain of P. digitatum at 4 days post inoculation, which suggests that Pdos2 is needed for full virulence of P. digitatum. Interestingly, in the presence of 0.7 M NaCl, the glycerol content was remarkably increased and the ergosterol was decreased in mycelia of the wide-type P. digitatum, whereas the glycerol content was only slightly increased and the ergosterol content remained stable in the ΔPdos2 mutant, suggesting that Pdos2-mediated osmotic adaption is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis.

  12. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Directory of Open Access Journals (Sweden)

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  13. MEK kinase 1 is a negative regulator of virus-specific CD8(+) T cells

    DEFF Research Database (Denmark)

    Labuda, Tord; Christensen, Jan Pravsgaard; Rasmussen, Susanne;

    2006-01-01

    MEK kinase 1 (MEKK1) is a potent JNK-activating kinase, a regulator of T helper cell differentiation, cytokine production and proliferation in vitro. Using mice deficient for MEKK1 activity (Mekk1(DeltaKD)) exclusively in their hematopoietic system, we show that MEKK1 has a negative regulatory role...... in the generation of a virus-specific immune response. Mekk1(DeltaKD) mice challenged with vesicular stomatitis virus (VSV) showed a fourfold increase in splenic CD8(+) T cell numbers. In contrast, the number of splenic T cells in infected WT mice was only marginally increased. The CD8(+) T cell expansion in Mekk1...... suggest that MEKK1 plays a negative regulatory role in the expansion of virus-specific CD8(+) T cells in vivo....

  14. Regulation of negative affect in schizophrenia: the effectiveness of acceptance versus reappraisal and suppression.

    Science.gov (United States)

    Perry, Yael; Henry, Julie D; Nangle, Matthew R; Grisham, Jessica R

    2012-01-01

    Although general emotion coping difficulties are well documented in schizophrenia, there has been limited study of specific regulatory strategies such as suppression, reappraisal, and acceptance. In the present study, clinical and control participants were asked to watch video clips selected to elicit negative affect while engaging in one of these three different emotion regulation strategies (counterbalanced), versus a passive viewing condition. The experiential and expressive components of emotion were quantified using self-report and facial electromyography, respectively. A major finding was that, in contrast to control participants, individuals with schizophrenia did not report a greater willingness to reexperience negative emotion after engaging in acceptance. These data are discussed in the context of evidence highlighting the potentially important role of acceptance in understanding affective abnormalities in clinical conditions such as schizophrenia.

  15. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  16. Quantitative characteristics of gene regulation by small RNA.

    Directory of Open Access Journals (Sweden)

    Erel Levine

    2007-09-01

    Full Text Available An increasing number of small RNAs (sRNAs have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone.

  17. TGIF1 is a negative regulator of MLL-rearranged acute myeloid leukemia

    DEFF Research Database (Denmark)

    Willer, Anton; Jakobsen, Janus Schou; Ohlsson, E

    2015-01-01

    Members of the TALE (three-amino-acid loop extension) family of atypical homeodomain-containing transcription factors are important downstream effectors of oncogenic fusion proteins involving the mixed lineage leukemia (MLL) gene. A well-characterized member of this protein family is MEIS1, which...... orchestrates a transcriptional program required for the maintenance of MLL-rearranged acute myeloid leukemia (AML). TGIF1/TGIF2 are relatively uncharacterized TALE transcription factors, which, in contrast to the remaining family, have been shown to act as transcriptional repressors. Given the general...... influence the clinical outcome. Collectively, these findings demonstrate that TALE family members can act both positively and negatively on transcriptional programs responsible for leukemic maintenance and provide novel insights into the regulatory gene expression circuitries in MLL-rearranged AML.Leukemia...

  18. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  19. MDM2/MDMX: Master negative regulators for p53 and RB.

    Science.gov (United States)

    Hu, Linshan; Zhang, Haibo; Bergholz, Johann; Sun, Shengnan; Xiao, Zhi-Xiong Jim

    2016-03-01

    MDM2 (mouse double minute 2 homolog) and MDMX (double minute X human homolog, also known as MDM4) are critical negative regulators of tumor protein p53. Our recent work shows that MDMX binds to and promotes degradation of retinoblastoma protein (RB) in an MDM2-dependent manner. In a xenograft tumor growth mouse model, silencing of MDMX results in inhibition of p53-deficient tumor growth, which can be effectively reversed by concomitant RB silencing. Thus, MDMX exerts its oncogenic activity via suppression of RB.

  20. Hormonal regulation of gluconeogenic gene transcription in the liver

    Indian Academy of Sciences (India)

    Nirmala Yabaluri; Murali D Bashyam

    2010-09-01

    Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.

  1. Information Integration and Energy Expenditure in Gene Regulation.

    Science.gov (United States)

    Estrada, Javier; Wong, Felix; DePace, Angela; Gunawardena, Jeremy

    2016-06-30

    The quantitative concepts used to reason about gene regulation largely derive from bacterial studies. We show that this bacterial paradigm cannot explain the sharp expression of a canonical developmental gene in response to a regulating transcription factor (TF). In the absence of energy expenditure, with regulatory DNA at thermodynamic equilibrium, information integration across multiple TF binding sites can generate the required sharpness, but with strong constraints on the resultant "higher-order cooperativities." Even with such integration, there is a "Hopfield barrier" to sharpness; for n TF binding sites, this barrier is represented by the Hill function with the Hill coefficient n. If, however, energy is expended to maintain regulatory DNA away from thermodynamic equilibrium, as in kinetic proofreading, this barrier can be breached and greater sharpness achieved. Our approach is grounded in fundamental physics, leads to testable experimental predictions, and suggests how a quantitative paradigm for eukaryotic gene regulation can be formulated.

  2. Different Polycomb group complexes regulate common target genes in Arabidopsis.

    Science.gov (United States)

    Makarevich, Grigory; Leroy, Olivier; Akinci, Umut; Schubert, Daniel; Clarenz, Oliver; Goodrich, Justin; Grossniklaus, Ueli; Köhler, Claudia

    2006-09-01

    Polycomb group (PcG) proteins convey epigenetic inheritance of repressed transcriptional states. Although the mechanism of the action of PcG is not completely understood, methylation of histone H3 lysine 27 (H3K27) is important in establishing PcG-mediated transcriptional repression. We show that the plant PcG target gene PHERES1 is regulated by histone trimethylation on H3K27 residues mediated by at least two different PcG complexes in plants, containing the SET domain proteins MEDEA or CURLY LEAF/SWINGER. Furthermore, we identify FUSCA3 as a potential PcG target gene and show that FUSCA3 is regulated by MEDEA and CURLY LEAF/SWINGER. We propose that different PcG complexes regulate a common set of target genes during the different stages of plant development.

  3. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  4. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  5. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis.

    Science.gov (United States)

    Hardie, D Grahame

    2015-04-01

    The AMP-activated protein kinase (AMPK) is a sensor of energy status that, when activated by metabolic stress, maintains cellular energy homeostasis by switching on catabolic pathways and switching off ATP-consuming processes. Recent results suggest that activation of AMPK by the upstream kinase LKB1 in response to nutrient lack occurs at the surface of the lysosome. AMPK is also crucial in regulation of whole body energy balance, particularly by mediating effects of hormones acting on the hypothalamus. Recent crystal structures of complete AMPK heterotrimers have illuminated its complex mechanisms of activation, involving both allosteric activation and increased net phosphorylation mediated by effects on phosphorylation and dephosphorylation. Finally, AMPK is negatively regulated by phosphorylation of the 'ST loop' within the catalytic subunit.

  6. Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria.

    Science.gov (United States)

    Liu, Huiqin; Dong, Chunling; Zhao, Tingchang; Han, Jucai; Wang, Tieling; Wen, Xiangzhen; Huang, Qi

    2016-01-01

    Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.

  7. Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria.

    Directory of Open Access Journals (Sweden)

    Huiqin Liu

    Full Text Available Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv, we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.

  8. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    Science.gov (United States)

    Kaur, Simranjeet; Pociot, Flemming

    2015-07-13

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.

  9. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly.

    Science.gov (United States)

    Harel, Amnon; Chan, Rene C; Lachish-Zalait, Aurelie; Zimmerman, Ella; Elbaum, Michael; Forbes, Douglass J

    2003-11-01

    Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.

  10. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression.

    Science.gov (United States)

    Kim, Sang Yun; Kim, A Young; Lee, Hyun Woo; Son, You Hwa; Lee, Gha Young; Lee, Joo-Won; Lee, Yun Sok; Kim, Jae Bum

    2010-02-12

    microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARgamma 3'-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARgamma and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARgamma expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARgamma and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.

  11. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  12. Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium.

    Science.gov (United States)

    Merino-Puerto, Victoria; Herrero, Antonia; Flores, Enrique

    2013-09-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria.

  13. An Epigenetic Perspective on Developmental Regulation of Seed Genes

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Joe Ogas

    2009-01-01

    The developmental program of seeds is promoted by master regulators that are expressed in a seed-specific manner.Ectopic expression studies reveal that expression of these master regulators and other transcriptional regulators is sufficient to promote seed-associated traits,including generation of somatic embryos.Recent work highlights the importance of chromatin-associated factors in restricting expression of seed-specific genes,in particular PcG proteins and ATP-dependent remodelers.This review summarizes what is known regarding factors that promote zygotic and/or somatic embryogenesis and the chromatin machinery that represses their expression.Characterization of the regulation of seedspecific genes reveals that plant chromatin-based repression systems exhibit broad conservation with and surprising differences from animal repression systems.

  14. Differential regulation of genes by retrotransposons in rice promoters.

    Science.gov (United States)

    Dhadi, Surendar Reddy; Xu, Zijun; Shaik, Rafi; Driscoll, Kyle; Ramakrishna, Wusirika

    2015-04-01

    Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.

  15. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    Science.gov (United States)

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  16. Regulating gene-expression by mechanical force

    Science.gov (United States)

    Visscher, Koen

    2008-10-01

    Initiation of transcription is an attractive target for controlling gene expression. Initiation typically involves binding of RNA polymerase to the DNA, followed by a rapid transition into a ``closed'' complex, and a subsequent transition into the ``open'' complex in which the DNA is locally melted. Nature makes good use of this target, for example in the form of repressor proteins that bind DNA and inhibit transcription. Here we will show that initiation of transcription is also dependent upon DNA tension and thus may be controlled by force alone, without the need for any accessory proteins. Using a three-bead assay in conjunction with optical tweezers we have shown that transient interactions of T7 RNA polymerase with the DNA promoter site shorten significantly, by up to a factor of ˜20, when DNA tension is increased. Experiments in the presence and absence of nucleotides have allowed us to conclude that force is likely to affect the rate constants into and/or out of the open complex, rather than the off-rate from the closed complex.

  17. Every which way--nanos gene regulation in echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way.

  18. Regulation of Insulin Gene Transcription by Multiple Histone Acetyltransferases

    OpenAIRE

    2012-01-01

    Glucose-stimulated insulin gene transcription is mainly regulated by a 340-bp promoter region upstream of the transcription start site by beta-cell-enriched transcription factors Pdx-1, MafA, and NeuroD1. Previous studies have shown that histone H4 hyperacetylation is important for acute up-regulation of insulin gene transcription. Until now, only the histone acetyltransferase (HAT) protein p300 has been shown to be involved in this histone H4 acetylation event. In this report we investigated...

  19. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2015-08-01

    Full Text Available In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM. During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E and the Ecdysone-Receptor (EcR. Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH and its receptor Methoprene-Tolerant (Met are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the

  20. Down-regulated genes in mouse dental papillae and pulp.

    Science.gov (United States)

    Sasaki, H; Muramatsu, T; Kwon, H-J; Yamamoto, H; Hashimoto, S; Jung, H-S; Shimono, M

    2010-07-01

    Important factors involved in odontogenesis in mouse dental papillae disappear between the pre- and post-natal stages of development. Therefore, we hypothesized that certain genes involved in odontogenesis in dental papillae were subject to pre-/post-natal down-regulation. Our goal was to identify, by microarray analysis, which genes were down-regulated. Dental papillae were isolated from embryonic 16-day-, 18-day- (E16, E18), and post-natal 3-day-old (P3) murine first mandibular molar germs and analyzed by microarray. The number of down-regulated genes was 2269 between E16 and E18, and 3130 between E18 and P3. Drastic down-regulation (fold change > 10.0) of Adamts4, Aldha1a2, and Lef1 was observed at both E16 and E18, and quantitative RT-PCR revealed a post-natal reduction in their expression (Adamts4, 1/3; Aldh1a2, 1/13; and Lef1, 1/37). These results suggest that down-regulation of these three genes is an important factor in normal odontogenesis in dental papillae.

  1. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  2. Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer

    Directory of Open Access Journals (Sweden)

    Karlsson Per

    2008-09-01

    Full Text Available Abstract Background It is of great significance to find better markers to correctly distinguish between high-risk and low-risk breast cancer patients since the majority of breast cancer cases are at present being overtreated. Methods 46 tumours from node-negative breast cancer patients were studied with gene expression microarrays. A t-test was carried out in order to find a set of genes where the expression might predict clinical outcome. Two classifiers were used for evaluation of the gene lists, a correlation-based classifier and a Voting Features Interval (VFI classifier. We then evaluated the predictive accuracy of this expression signature on tumour sets from two similar studies on lymph-node negative patients. They had both developed gene expression signatures superior to current methods in classifying node-negative breast tumours. These two signatures were also tested on our material. Results A list of 51 genes whose expression profiles could predict clinical outcome with high accuracy in our material (96% or 89% accuracy in cross-validation, depending on type of classifier was developed. When tested on two independent data sets, the expression signature based on the 51 identified genes had good predictive qualities in one of the data sets (74% accuracy, whereas their predictive value on the other data set were poor, presumably due to the fact that only 23 of the 51 genes were found in that material. We also found that previously developed expression signatures could predict clinical outcome well to moderately well in our material (72% and 61%, respectively. Conclusion The list of 51 genes derived in this study might have potential for clinical utility as a prognostic gene set, and may include candidate genes of potential relevance for clinical outcome in breast cancer. According to the predictions by this expression signature, 30 of the 46 patients may have benefited from different adjuvant treatment than they recieved. Trial

  3. Dominant-Negative Proteins in Herpesviruses – From Assigning Gene Function to Intracellular Immunization

    Directory of Open Access Journals (Sweden)

    Zsolt Ruzsics

    2009-10-01

    Full Text Available Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.

  4. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  5. Daily rhythm and regulation of clock gene expression in the rat pineal gland.

    Science.gov (United States)

    Simonneaux, V; Poirel, V-J; Garidou, M-L; Nguyen, D; Diaz-Rodriguez, E; Pévet, P

    2004-01-05

    Rhythms in pineal melatonin synthesis are controlled by the biological clock located in the suprachiasmatic nuclei. The endogenous clock oscillations rely upon genetic mechanisms involving clock genes coding for transcription factors working in negative and positive feedback loops. Most of these clock genes are expressed rhythmically in other tissues. Because of the peculiar role of the pineal gland in the photoneuroendocrine axis regulating biological rhythms, we studied whether clock genes are expressed in the rat pineal gland and how their expression is regulated.Per1, Per3, Cry2 and Cry1 clock genes are expressed in the pineal gland and their transcription is increased during the night. Analysis of the regulation of these pineal clock genes indicates that they may be categorized into two groups. Expression of Per1 and Cry2 genes shows the following features: (1) the 24 h rhythm persists, although damped, in constant darkness; (2) the nocturnal increase is abolished following light exposure or injection with a beta-adrenergic antagonist; and (3) the expression during daytime is stimulated by an injection with a beta-adrenergic agonist. In contrast, Per3 and Cry1 day and night mRNA levels are not responsive to adrenergic ligands (as previously reported for Per2) and daily expression of Per3 and Cry1 appears strongly damped or abolished in constant darkness. These data show that the expression of Per1 and Cry2 in the rat pineal gland is regulated by the clock-driven changes in norepinephrine, in a similar manner to the melatonin rhythm-generating enzyme arylalkylamine N-acetyltransferase. The expression of Per3 and Cry1 displays a daily rhythm not regulated by norepinephrine, suggesting the involvement of another day/night regulated transmitter(s).

  6. Two transcription factors, CabA and CabR, are independently involved in multilevel regulation of the biosynthetic gene cluster encoding the novel aminocoumarin, cacibiocin.

    Science.gov (United States)

    Wolański, Marcin; Łebkowski, Tomasz; Kois-Ostrowska, Agnieszka; Zettler, Judith; Apel, Alexander K; Jakimowicz, Dagmara; Zakrzewska-Czerwińska, Jolanta

    2016-04-01

    Aminocoumarins are potent antibiotics belonging to a relatively small group of secondary metabolites produced by actinomycetes. Genome mining of Catenulispora acidiphila has recently led to the discovery of a gene cluster responsible for biosynthesis of novel aminocoumarins, cacibiocins. However, regulation of the expression of this novel gene cluster has not yet been analyzed. In this study, we identify transcriptional regulators of the cacibiocin gene cluster. Using a heterologous expression system, we show that the CabA and CabR proteins encoded by cabA and cabR genes in the cacibiocin gene cluster control the expression of genes involved in the biosynthesis, modification, regulation, and potentially, efflux/resistance of cacibiocins. CabA positively regulates the expression of cabH (the first gene in the cabHIYJKL operon) and cabhal genes encoding key enzymes responsible for the biosynthesis and halogenation of the aminocoumarin moiety, respectively. We provide evidence that CabA is a direct inducer of cacibiocin production, whereas the second transcriptional factor, CabR, is involved in the negative regulation of its own gene and cabT-the latter of which encodes a putative cacibiocin transporter. We also demonstrate that CabR activity is negatively regulated in vitro by aminocoumarin compounds, suggesting the existence of analogous regulation in vivo. Finally, we propose a model of multilevel regulation of gene transcription in the cacibiocin gene cluster by CabA and CabR.

  7. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Directory of Open Access Journals (Sweden)

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  8. Transcriptomic analysis of the GCN5 gene reveals mechanisms of the epigenetic regulation of virulence and morphogenesis in Ustilago maydis.

    Science.gov (United States)

    Martínez-Soto, Domingo; González-Prieto, Juan Manuel; Ruiz-Herrera, José

    2015-09-01

    Chromatin in the eukaryotic nucleus is highly organized in the form of nucleosomes where histones wrap DNA. This structure may be altered by some chemical modifications of histones, one of them, acetylation by histone acetyltransferases (HATs) that originates relaxation of the nucleosome structure, providing access to different transcription factors and other effectors. In this way, HATs regulate cellular processes including DNA replication, and gene transcription. Previously, we isolated Ustilago maydis mutants deficient in the GCN5 HAT that are avirulent, and grow constitutively as mycelium. In this work, we proceeded to identify the genes differentially regulated by GCN5, comparing the transcriptomes of the mutant and the wild type using microarrays, to analyse the epigenetic control of virulence and morphogenesis. We identified 1203 genes, 574 positively and 629 negatively regulated in the wild type. We found that genes belonging to different categories involved in pathogenesis were downregulated in the mutant, and that genes involved in mycelial growth were negatively regulated in the wild type, offering a working hypothesis on the epigenetic control of virulence and morphogenesis of U. maydis. Interestingly, several differentially regulated genes appeared in clusters, suggesting a common regulation. Some of these belonged to pathogenesis or secondary metabolism.

  9. Carbapenemase Genes among Multidrug Resistant Gram Negative Clinical Isolates from a Tertiary Hospital in Mwanza, Tanzania

    Directory of Open Access Journals (Sweden)

    Martha F. Mushi

    2014-01-01

    Full Text Available The burden of antimicrobial resistance (AMR is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35% were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59% and 28 (12% isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%, followed by P. aeruginosa 23 (10%, and E. coli with 19 isolates (8%. We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.

  10. Carbapenemase Genes among Multidrug Resistant Gram Negative Clinical Isolates from a Tertiary Hospital in Mwanza, Tanzania

    Science.gov (United States)

    Mushi, Martha F.; Mshana, Stephen E.; Imirzalioglu, Can; Bwanga, Freddie

    2014-01-01

    The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections. PMID:24707481

  11. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  12. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

    Science.gov (United States)

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang; Choi, Kang-Yell

    2015-06-29

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. © 2015 Lee et al.

  13. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing

    Science.gov (United States)

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang

    2015-01-01

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  14. Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-κB

    Directory of Open Access Journals (Sweden)

    Wang-Jian Zha

    2013-01-01

    Full Text Available Persistent activation of nuclear factor κB (NF-κB has been associated with the development of asthma. Galangin, the active pharmacological ingredient from Alpinia galanga, is reported to have a variety of anti-inflammatory properties in vitro via negative regulation of NF-κB. This study aimed to investigate whether galangin can abrogate ovalbumin- (OVA- induced airway inflammation by negative regulation of NF-κB. BALB/c mice sensitized and challenged with OVA developed airway hyperresponsiveness (AHR and inflammation. Galangin dose dependently inhibited OVA-induced increases in total cell counts, eosinophil counts, and interleukin-(IL- 4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and reduced serum level of OVA-specific IgE. Galangin also attenuated AHR, reduced eosinophil infiltration and goblet cell hyperplasia, and reduced expression of inducible nitric oxide synthase and vascular cell adhesion protein-1 (VCAM-1 levels in lung tissue. Additionally, galangin blocked inhibitor of κB degradation, phosphorylation of the p65 subunit of NF-κB, and p65 nuclear translocation from lung tissues of OVA-sensitized mice. Similarly, in normal human airway smooth muscle cells, galangin blocked tumor necrosis factor-α induced p65 nuclear translocation and expression of monocyte chemoattractant protein-1, eotaxin, CXCL10, and VCAM-1. These results suggest that galangin can attenuate ovalbumin-induced airway inflammation by inhibiting the NF-κB pathway.

  15. Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation

    Institute of Scientific and Technical Information of China (English)

    Chanan RUBIN; Gal GUR; Yosef YARDEN

    2005-01-01

    Intracellular signals mediated by the family of receptor tyrosine kinases play pivotal roles in morphogenesis, cell fate determination and pathogenesis. Precise control of signal amplitude and duration is critical for the fidelity and robustness of these processes. Activation of receptor tyrosine kinases by their cognate growth factors not only leads to propagation of the signal through various biochemical cascades, but also sets in motion multiple attenuation mechanisms that ultimately terminate the active state. Early attenuators pre-exist prior to receptor activation and they act to limit signal propagation. Subsequently, late attenuators, such as Lrig and Sprouty, are transcriptionally induced and further act to dampen the signal. Central to the process of signaling attenuation is the role of the E3 ubiquitin ligase c-Cbl. While Cblmediated processes of receptor ubiquitylation and endocytosis are relatively well understood, the links of Cbl to other negative regulators are just now beginning to be appreciated. Here we review some emerging interfaces between Cbl and the transcriptionally induced negative regulators Lrig and Sprouty.

  16. Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry.

    Science.gov (United States)

    Roelants, Françoise M; Su, Brooke M; von Wulffen, Joachim; Ramachandran, Subramaniam; Sartorel, Elodie; Trott, Amy E; Thorner, Jeremy

    2015-02-02

    Plasma membrane function requires distinct leaflet lipid compositions. Two of the P-type ATPases (flippases) in yeast, Dnf1 and Dnf2, translocate aminoglycerophospholipids from the outer to the inner leaflet, stimulated via phosphorylation by cortically localized protein kinase Fpk1. By monitoring Fpk1 activity in vivo, we found that Fpk1 was hyperactive in cells lacking Gin4, a protein kinase previously implicated in septin collar assembly. Gin4 colocalized with Fpk1 at the cortical site of future bud emergence and phosphorylated Fpk1 at multiple sites, which we mapped. As judged by biochemical and phenotypic criteria, a mutant (Fpk1(11A)), in which 11 sites were mutated to Ala, was hyperactive, causing increased inward transport of phosphatidylethanolamine. Thus, Gin4 is a negative regulator of Fpk1 and therefore an indirect negative regulator of flippase function. Moreover, we found that decreasing flippase function rescued the growth deficiency of four different cytokinesis mutants, which suggests that the primary function of Gin4 is highly localized control of membrane lipid asymmetry and is necessary for optimal cytokinesis. © 2015 Roelants et al.

  17. BMX Negatively Regulates BAK Function, Thereby Increasing Apoptotic Resistance to Chemotherapeutic Drugs.

    Science.gov (United States)

    Fox, Joanna L; Storey, Alan

    2015-04-01

    The ability of chemotherapeutic agents to induce apoptosis, predominantly via the mitochondrial (intrinsic) apoptotic pathway, is thought to be a major determinant of the sensitivity of a given cancer to treatment. Intrinsic apoptosis, regulated by the BCL2 family, integrates diverse apoptotic signals to determine cell death commitment and then activates the nodal effector protein BAK to initiate the apoptotic cascade. In this study, we identified the tyrosine kinase BMX as a direct negative regulator of BAK function. BMX associates with BAK in viable cells and is the first kinase to phosphorylate the key tyrosine residue needed to maintain BAK in an inactive conformation. Importantly, elevated BMX expression prevents BAK activation in tumor cells treated with chemotherapeutic agents and is associated with increased resistance to apoptosis and decreased patient survival. Accordingly, BMX expression was elevated in prostate, breast, and colon cancers compared with normal tissue, including in aggressive triple-negative breast cancers where BMX overexpression may be a novel biomarker. Furthermore, BMX silencing potentiated BAK activation, rendering tumor cells hypersensitive to otherwise sublethal doses of clinically relevant chemotherapeutic agents. Our finding that BMX directly inhibits a core component of the intrinsic apoptosis machinery opens opportunities to improve the efficacy of existing chemotherapy by potentiating BAK-driven cell death in cancer cells.

  18. GSK3beta is a negative regulator of the transcriptional coactivator MAML1.

    Science.gov (United States)

    Saint Just Ribeiro, Mariana; Hansson, Magnus L; Lindberg, Mikael J; Popko-Scibor, Anita E; Wallberg, Annika E

    2009-11-01

    Glycogen synthase kinase 3beta (GSK3beta) is involved in several cellular signaling systems through regulation of the activity of diverse transcription factors such as Notch, p53 and beta-catenin. Mastermind-like 1 (MAML1) was originally identified as a Notch coactivator, but has also been reported to function as a transcriptional coregulator of p53, beta-catenin and MEF2C. In this report, we show that active GSK3beta directly interacts with the MAML1 N-terminus and decreases MAML1 transcriptional activity, suggesting that GSK3beta might target a coactivator in its regulation of gene expression. We have previously shown that MAML1 increases global acetylation of histones, and here we show that the GSK3 inhibitor SB41, further enhances MAML1-dependent histone acetylation in cells. Finally, MAML1 translocates GSK3beta to nuclear bodies; this function requires full-length MAML1 protein.

  19. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein

    DEFF Research Database (Denmark)

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro;

    2011-01-01

    In mammals, the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) is regulated by the deacetylase SIRT1. However, whether the newly described nongenomic actions of STAT3 toward mitochondrial oxidative phosphorylation are dependent on SIRT1 is unclear....... In this study, Sirt1 gene knock-out murine embryonic fibroblast (MEF) cells were used to delineate the role of SIRT1 in the regulation of STAT3 mitochondrial function. Here, we show that STAT3 mRNA and protein levels and the accumulation of serine-phosphorylated STAT3 in mitochondria were increased...... significantly in Sirt1-KO cells as compared with wild-type MEFs. Various mitochondrial bioenergetic parameters, such as the oxygen consumption rate in cell cultures, enzyme activities of the electron transport chain complexes in isolated mitochondria, and production of ATP and lactate, indicated that Sirt1-KO...

  20. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  1. The nicotinic acetylcholine receptor gene CHRNA4 is associated with negative emotionality.

    Science.gov (United States)

    Markett, Sebastian; Montag, Christian; Reuter, Martin

    2011-04-01

    Knock-out studies in mice suggest a role of the CHRNA4 gene in anxiety. In the present study we extend this finding to humans by means of a genetic association study. In a sample of N = 574 healthy White participants, the CHRNA4 rs1044396 polymorphism is related to the common variance of several conceptualizations of negative emotionality. Compared to carriers of at least one T-allele, carriers of the homozygous C/C genotype described themselves as more anxious and emotionally unstable on various psychometric personality questionnaires. The scope of the genetic effect is remarkable because other prominent genetic markers for anxiety show specificity for the diagnostic tool used. The present study is the first study that demonstrates the relevance of the CHRNA4 gene for negative emotionality in humans and sets a starting point for further investigations that could inform on the treatment of various affective psychiatric disorders.

  2. Minimising Immunohistochemical False Negative ER Classification Using a Complementary 23 Gene Expression Signature of ER Status

    DEFF Research Database (Denmark)

    Li, Qiyuan; Eklund, Aron Charles; Birkbak, Nicolai Juul;

    2010-01-01

    subtypes as compared to IHC-based determination has not been systematically evaluated. Here we attempt to reduce the frequency of false negative ER status classification using two gene expression approaches and compare these methods to IHC based ER status in terms of predictive and prognostic concordance......BACKGROUND: Expression of the oestrogen receptor (ER) in breast cancer predicts benefit from endocrine therapy. Minimising the frequency of false negative ER status classification is essential to identify all patients with ER positive breast cancers who should be offered endocrine therapies...... in order to improve clinical outcome. In routine oncological practice ER status is determined by semi-quantitative methods such as immunohistochemistry (IHC) or other immunoassays in which the ER expression level is compared to an empirical threshold. The clinical relevance of gene expression-based ER...

  3. Ubiquitin-Specific Peptidase USP22 Negatively Regulates the STAT Signaling Pathway by Deubiquitinating SIRT1

    Directory of Open Access Journals (Sweden)

    Ning Ao

    2014-06-01

    Full Text Available Background/Aims: The ubiquitin-specific peptidase USP22 mediates various cellular and organismal processes, such as cell growth, apoptosis, and tumor malignancy. However, the molecular mechanisms that regulate USP22 activity remain poorly understood. Here we identify STAT3 as a new USP22 interactor. Methods:· We used western blotting and RT-PCR to measure key protein, acetylated STAT3, and mRNA levels in HEK293 and colorectal cancer cell lines transfected with expression plasmids or specific siRNAs. Co-immunoprecipitation was used to demonstrate protein-protein interaction and protein complex composition. Results: USP22 overexpression down-regulated STAT3 acetylation by deubiquitinating SIRT1. The three proteins were found to be present in a single protein complex. SiRNA-mediated depletion of endogenous USP22 resulted in SIRT1 destabilization and elevated STAT3 acetylation. Consistent with this finding, USP22 also down-regulated the expression of two known STAT3 target genes, MMP9 and TWIST. Conclusion: We show that USP22 is a new regulator of the SIRT1-STAT3 signaling pathway and report a new mechanistic explanation for cross talk between USP22 and the SIRT1-STAT pathways.

  4. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Clark, Matthew P; Leaman, Douglas W; Hazelhurst, Lori A; Hwang, Eun S; Quinn, Anthony

    2016-02-01

    Previously we showed that BBR3378, a novel analog of the anticancer drug mitoxantrone, had the ability to ameliorate ascending paralysis in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis, without the drug-induced cardiotoxicity or lymphopenia associated with mitoxantrone therapy. Chemotherapeutic drugs like mitoxantrone, a topoisomerase inhibitor, are thought to provide protection in inflammatory autoimmune diseases like EAE by inducing apoptosis in rapidly proliferating autoreactive lymphocytes. Here, we show that while BR3378 blocked cell division, T cells were still able to respond to antigenic stimulation and upregulate surface molecules indicative of activation. However, in contrast to mitoxantrone, BBR3378 inhibited the production of the proinflammatory cytokine IFN-γ both in recently activated T cell blasts and established Th1 effectors, while sparing the activities of IL-13-producing Th2 cells. IFN-γ is known to be regulated by the transcription factor T-bet. In addition to IFN-γ, in vitro and in vivo exposure to BBR3378 suppressed the expression of other T-bet regulated proteins, including CXCR3 and IL-2Rβ. Microarray analysis revealed BBR3378-induced suppression of additional T-bet regulated genes, suggesting that the drug might disrupt global Th1 programming. Importantly, BBR3378 antagonized ongoing Th1 autoimmune responses in vivo, modulated clinical disease and CNS inflammation in acute and relapsing forms of EAE. Therefore, BBR3378 may be a unique inhibitor of T-bet regulated genes and may have potential as a therapeutic intervention in human autoimmune disease.

  5. Gene regulation by engineered CRISPR-Cas systems.

    Science.gov (United States)

    Fineran, Peter C; Dy, Ron L

    2014-04-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) arrays and their CRISPR associated (Cas) proteins constitute adaptive immune systems in bacteria and archaea that provide protection from bacteriophages, plasmids and other mobile genetic elements (MGEs). Recently, the ability to direct these systems to DNA in a sequence-specific manner has led to the emergence of new technologies for engineered gene regulation in bacteria and eukaryotes. These systems have the potential to enable facile high-throughput functional genomics studies aimed at identifying gene function and will be a crucial tool for synthetic biology. Here, we review the recent engineering of these systems for controlling gene expression.

  6. Approximation scheme based on effective interactions for stochastic gene regulation

    CERN Document Server

    Ohkubo, Jun

    2010-01-01

    Since gene regulatory systems contain sometimes only a small number of molecules, these systems are not described well by macroscopic rate equations; a master equation approach is needed for such cases. We develop an approximation scheme for dealing with the stochasticity of the gene regulatory systems. Using an effective interaction concept, original master equations can be reduced to simpler master equations, which can be solved analytically. We apply the approximation scheme to self-regulating systems with monomer or dimer interactions, and a two-gene system with an exclusive switch. The approximation scheme can recover bistability of the exclusive switch adequately.

  7. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes.

    Directory of Open Access Journals (Sweden)

    Candy Kumps

    Full Text Available Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17~92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17~92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17~92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1 target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2 serve as a resource for identifying new molecular targets for treatment.

  8. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  9. Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists.

    Science.gov (United States)

    Zhao, Guannan; Wojciechowski, Magdalena C; Jee, Seonah; Boros, Jessica; McAvoy, John W; Lovicu, Frank J

    2015-03-01

    An eclectic range of ocular growth factors with differing actions are present within the aqueous and vitreous humors that bathe the lens. Growth factors that exert their actions via receptor tyrosine kinases (RTKs), such as FGF, play a normal regulatory role in lens; whereas other factors, such as TGFβ, can lead to an epithelial to mesenchymal transition (EMT) that underlies several forms of cataract. The respective downstream intracellular signaling pathways of these factors are in turn tightly regulated. One level of negative regulation is thought to be through RTK-antagonists, namely, Sprouty (Spry), Sef and Spred that are all expressed in the lens. In this study, we tested these different negative regulators and compared their ability to block TGFβ-induced EMT in rat lens epithelial cells. Spred expression within the rodent eye was confirmed using RT-PCR, western blotting and immunofluorescence. Rat lens epithelial explants were used to examine the morphological changes associated with TGFβ-induced EMT over 3 days of culture, as well as α-smooth muscle actin (α-sma) immunolabeling. Cells in lens epithelial explants were transfected with either a reporter (EGFP) vector (pLXSG), or with plasmids also coding for different RTK-antagonists (i.e. pLSXG-Spry1, pLSXG-Spry2, pLXSG-Sef, pLSXG-Spred1, pLSXG-Spred2, pLSXG-Spred3), before treating with TGFβ for up to 3 days. The percentages of transfected cells that underwent TGFβ-induced morphological changes consistent with an EMT were determined using cell counts and validated with a paired two-tailed t-test. Explants transfected with pLXSG demonstrated a distinct transition in cell morphology after TGFβ treatment, with ∼60% of the cells undergoing fibrotic-like cell elongation. This percentage was significantly reduced in cells overexpressing the different antagonists, indicative of a block in lens EMT. Of the antagonists tested under these in vitro conditions, Spred1 was the most potent demonstrating the

  10. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    Science.gov (United States)

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.

  11. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    Science.gov (United States)

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  12. Oscillatory Gene Expression by the microRAN Mediating Delayed Negative Feedback Loop

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng-pan; LU Jin-rui; LIU Zhi-guang

    2013-01-01

    More and more experiments show that microRNAs can regulate gene expression by stimulating degradation of mRNA or repression of translation of mRNA.In this paper,we incorporate the microRNA into a previous mathematical model of gene expression through forming a microRNA-induced silencing complex(RISC).Our findings demonstrate the dynamical behavior of the constructed system.By Hopf theories,we derive the theoretical results of globally asymptotical stability and provide the sufficient conditions for the oscillation of the simple gene regulatory system,and by numerical simulation further demonstrate how the amplitudes against the change of delay in the gene regulatory network.

  13. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta, E-mail: etta@bgu.ac.il

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  14. Negative feedback regulation of Wnt4 signaling by EAF1 and EAF2/U19.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Wan

    Full Text Available Previous studies indicated that EAF (ELL-associated factor family members, EAF1 and EAF2/U19, play a role in cancer and embryogenesis. For example, EAF2/U19 may serve as a tumor suppressor in prostate cancer. At the same time, EAF2/U19 is a downstream factor in the non-canonical Wnt 4 signaling pathway required for eye development in Xenopus laevis, and along with EAF1, contributes to convergence and extension movements in zebrafish embryos through Wnt maintenance. Here, we used zebrafish embryos and mammalian cells to show that both EAF1 and EAF2/U19 were up-regulated by Wnt4 (Wnt4a. Furthermore, we found that EAF1 and EAF2/U19 suppressed Wnt4 expression by directly binding to the Wnt4 promoter as seen in chromatin immunoprecipitation assays. These findings indicate that an auto-regulatory negative feedback loop occurs between Wnt4 and the EAF family, which is conserved between zebrafish and mammalian. The rescue experiments in zebrafish embryos showed that early embryonic development required the maintenance of the appropriate levels of Wnt4a through the feedback loop. Others have demonstrated that the tumor suppressors p63, p73 and WT1 positively regulate