WorldWideScience

Sample records for gene module involved

  1. Gene expression modulation and the molecular mechanisms involved in Nelfinavir resistance in Leishmania donovani axenic amastigotes.

    Science.gov (United States)

    Kumar, Pranav; Lodge, Robert; Raymond, Frédéric; Ritt, Jean-François; Jalaguier, Pascal; Corbeil, Jacques; Ouellette, Marc; Tremblay, Michel J

    2013-08-01

    Drug resistance is a major public health challenge in leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV-1 co-infections. We have delineated the mechanism of cell death induced by the HIV-1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to further study Nelfinavir-Leishmania interactions, we selected Nelfinavir-resistant axenic amastigotes in vitro and characterized them. RNA expression profiling analyses and comparative genomic hybridizations of closely related Leishmania species were used as a screening tool to compare Nelfinavir-resistant and -sensitive parasites in order to identify candidate genes involved in drug resistance. Microarray analyses of Nelfinavir-resistant and -sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters. Transporter assays using radiolabelled Nelfinavir suggest a greater drug accumulation in the resistant parasites and in a time-dependent manner. Furthermore, high-resolution electron microscopy and measurements of intracellular polyphosphate levels showed an increased number of cytoplasmic vesicular compartments known as acidocalcisomes in Nelfinavir-resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in drug-induced intracellular vesicles.

  2. Identification of gene co-regulatory modules and associated cis-elements involved in degenerative heart disease

    Directory of Open Access Journals (Sweden)

    Danko Charles G

    2009-05-01

    Full Text Available Abstract Background Cardiomyopathies, degenerative diseases of cardiac muscle, are among the leading causes of death in the developed world. Microarray studies of cardiomyopathies have identified up to several hundred genes that significantly alter their expression patterns as the disease progresses. However, the regulatory mechanisms driving these changes, in particular the networks of transcription factors involved, remain poorly understood. Our goals are (A to identify modules of co-regulated genes that undergo similar changes in expression in various types of cardiomyopathies, and (B to reveal the specific pattern of transcription factor binding sites, cis-elements, in the proximal promoter region of genes comprising such modules. Methods We analyzed 149 microarray samples from human hypertrophic and dilated cardiomyopathies of various etiologies. Hierarchical clustering and Gene Ontology annotations were applied to identify modules enriched in genes with highly correlated expression and a similar physiological function. To discover motifs that may underly changes in expression, we used the promoter regions for genes in three of the most interesting modules as input to motif discovery algorithms. The resulting motifs were used to construct a probabilistic model predictive of changes in expression across different cardiomyopathies. Results We found that three modules with the highest degree of functional enrichment contain genes involved in myocardial contraction (n = 9, energy generation (n = 20, or protein translation (n = 20. Using motif discovery tools revealed that genes in the contractile module were found to contain a TATA-box followed by a CACC-box, and are depleted in other GC-rich motifs; whereas genes in the translation module contain a pyrimidine-rich initiator, Elk-1, SP-1, and a novel motif with a GCGC core. Using a naïve Bayes classifier revealed that patterns of motifs are statistically predictive of expression patterns, with

  3. Modulation of genes involved in inflammation and cell death in atherosclerosis-susceptible mice

    NARCIS (Netherlands)

    Zadelaar, Anna Susanne Maria

    2006-01-01

    In this thesis we focus on atherosclerosis as the main cause of cardiovascular disease. Since inflammation and cell death are important processes in the onset and progression of atherosclerosis, we investigate the role of several genes involved in inflammation and cell death in the vessel wall and

  4. Maternal Risk for Down Syndrome Is Modulated by Genes Involved in Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Bruna Lancia Zampieri

    2012-01-01

    Full Text Available Studies have shown that the maternal risk for Down syndrome (DS may be modulated by alterations in folate metabolism. The aim of this study was to evaluate the influence of 12 genetic polymorphisms involved in folate metabolism on maternal risk for DS. In addition, we evaluated the impact of these polymorphisms on serum folate and plasma methylmalonic acid (MMA, an indicator of vitamin B12 status concentrations. The polymorphisms transcobalamin II (TCN2 c.776C>G, betaine-homocysteine S-methyltransferase (BHMT c.742A>G, methylenetetrahydrofolate reductase (NAD(PH (MTHFR c.677 C>T and the MTHFR 677C-1298A-1317T haplotype modulate DS risk. The polymorphisms MTHFR c.677C>T and solute carrier family 19 (folate transporter, member 1 (SLC19A1 c.80 A>G modulate folate concentrations, whereas the 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR c.66A>G polymorphism affects the MMA concentration. These results are consistent with the modulation of the maternal risk for DS by these polymorphisms.

  5. Prostate-Specific Antigen Modulates the Expression of Genes Involved in Prostate Tumor Growth

    Directory of Open Access Journals (Sweden)

    B. Bindukumar

    2005-03-01

    Full Text Available Prostate-specific antigen (PSA is a serine protease that is widely used as a surrogate marker in the early diagnosis and management of prostate cancer. The physiological relevance of tissue PSA levels and their role in prostate tumor growth and metastasis are not known. Free-PSA (f-PSA was purified to homogeneity from human seminal plasma by column chromatography, eliminating hk2 and all known PSA complexes and retaining its protease activity. Confluent monolayers of prostate cancer cell lines, PC-3M and LNCaP, were treated with f-PSA in a series of in vitro experiments to determine the changes in expression of various genes that are known to regulate tumor growth and metastasis. Gene array, quantitative polymerase chain reaction (QPCR, enzyme-linked immunosorbent assay (ELISA results show significant changes in the expression of various cancer-related genes in PC-3M and LNCaP cells treated with f-PSA. In a gene array analysis of PC-3M cells treated with 10 4tM f-PSA, 136 genes were upregulated and 137 genes were downregulated. In LNCaP cells treated with an identical concentration of f-PSA, a total of 793 genes was regulated. QPCR analysis reveals that the genes for urokinase-type plasminogen activator (uPA, VEGF, Pim-1 oncogene, known to promote tumor growth, were significantly downregulated, whereas IFN-γ, known to be a tumor-suppressor gene, was significantly upregulated in f-PSA-treated PC-3M cells. The effect of f-PSA on VEGF and IFN-γ gene expression and on protein release in PC-3M cells was distinctly dose-dependent. In vivo studies showed a significant reduction (P = .03 in tumor load when fPSA was administered in the tumor vicinity of PC-3M tumor-bearing BALB/c nude mice. Our data support the hypothesis that f-PSA plays a significant role in prostate tumor growth by regulating various proangiogenic and antiangiogenic growth factors.

  6. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    Science.gov (United States)

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling. © 2014 AlphaMed Press.

  7. MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.

    Directory of Open Access Journals (Sweden)

    Mervi Toriseva

    Full Text Available Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13 in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13(-/- and wild type (WT mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42% at day 21 in Mmp13(-/- mice. Granulation tissue in Mmp13(-/- mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13(-/- mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13(-/- mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13(-/- granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13(-/- mice compared to WT mice. Mmp13(-/- mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis.

  8. Comparative Transcriptome Analysis of Genes Involved in GA-GID1-DELLA Regulatory Module in Symbiotic and Asymbiotic Seed Germination of Anoectochilus roxburghii (Wall. Lindl. (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Si-Si Liu

    2015-12-01

    Full Text Available Anoectochilus roxburghii (Wall. Lindl. (Orchidaceae is an endangered medicinal plant in China, also called “King Medicine”. Due to lacking of sufficient nutrients in dust-like seeds, orchid species depend on mycorrhizal fungi for seed germination in the wild. As part of a conservation plan for the species, research on seed germination is necessary. However, the molecular mechanism of seed germination and underlying orchid-fungus interactions during symbiotic germination are poorly understood. In this study, Illumina HiSeq 4000 transcriptome sequencing was performed to generate a substantial sequence dataset of germinating A. roxburghii seed. A mean of 44,214,845 clean reads were obtained from each sample. 173,781 unigenes with a mean length of 653 nt were obtained. A total of 51,514 (29.64% sequences were annotated, among these, 49 unigenes encoding proteins involved in GA-GID1-DELLA regulatory module, including 31 unigenes involved in GA metabolism pathway, 5 unigenes encoding GID1, 11 unigenes for DELLA and 2 unigenes for GID2. A total of 11,881 genes showed significant differential expression in the symbiotic germinating seed sample compared with the asymbiotic germinating seed sample, of which six were involved in the GA-GID1-DELLA regulatory module, and suggested that they might be induced or suppressed by fungi. These results will help us understand better the molecular mechanism of orchid seed germination and orchid-fungus symbiosis.

  9. Comparative Transcriptome Analysis of Genes Involved in GA-GID1-DELLA Regulatory Module in Symbiotic and Asymbiotic Seed Germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae).

    Science.gov (United States)

    Liu, Si-Si; Chen, Juan; Li, Shu-Chao; Zeng, Xu; Meng, Zhi-Xia; Guo, Shun-Xing

    2015-12-18

    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is an endangered medicinal plant in China, also called "King Medicine". Due to lacking of sufficient nutrients in dust-like seeds, orchid species depend on mycorrhizal fungi for seed germination in the wild. As part of a conservation plan for the species, research on seed germination is necessary. However, the molecular mechanism of seed germination and underlying orchid-fungus interactions during symbiotic germination are poorly understood. In this study, Illumina HiSeq 4000 transcriptome sequencing was performed to generate a substantial sequence dataset of germinating A. roxburghii seed. A mean of 44,214,845 clean reads were obtained from each sample. 173,781 unigenes with a mean length of 653 nt were obtained. A total of 51,514 (29.64%) sequences were annotated, among these, 49 unigenes encoding proteins involved in GA-GID1-DELLA regulatory module, including 31 unigenes involved in GA metabolism pathway, 5 unigenes encoding GID1, 11 unigenes for DELLA and 2 unigenes for GID2. A total of 11,881 genes showed significant differential expression in the symbiotic germinating seed sample compared with the asymbiotic germinating seed sample, of which six were involved in the GA-GID1-DELLA regulatory module, and suggested that they might be induced or suppressed by fungi. These results will help us understand better the molecular mechanism of orchid seed germination and orchid-fungus symbiosis.

  10. Investigation of genetic variants in ubiquitin enzyme genes involved in the modulation of neurodevelopmental processes: a role in schizophrenia susceptibility?

    Science.gov (United States)

    Andrews, Jessica L; Fernandez-Enright, Francesca

    2014-11-24

    Despite extensive research during the last few decades, the etiology of schizophrenia remains unclear. Evidence of both genetic and environmental influences in the developmental profile of schizophrenia has grown, and due to the complexity of this disorder, a polygenic aspect has been associated with this neuropsychiatric pathology. Unfortunately, no diagnostic strategies based on biological measurement or genetic testing is currently available for schizophrenia. Gene-expression profiling and recent protein studies have shown a decrease in the expression of ubiquitin pathway proteins in the prefrontal cortex of schizophrenia patients. We have examined single nucleotide polymorphisms (or SNPs) within three genes from the ubiquitin protein system: the ubiquitin conjugating enzyme E2D1 (UBE2D1) gene, the E3 SUMO-protein ligase protein inhibitor of activated STAT 2 (PIAS2) gene, and the E3 ubiquitin ligase F-box and leucine-rich repeat protein 21 (FBXL21) gene, in a Caucasian case-control population for schizophrenia. After Bonferroni correction for multiple testing was applied, no significant associations were reported for any of the tested SNPs. Additional genetic analyses will be necessary to fully explore the role of these three genes in schizophrenia. Regarding the rising interest in ubiquitin-related proteins as a therapeutic target in other pathologies such as cancer, further research into the role of ubiquitin pathways in schizophrenia seems topical and timely.

  11. A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression

    Directory of Open Access Journals (Sweden)

    Cigudosa Juan C

    2011-05-01

    Full Text Available Abstract Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs, will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents. With the extension of this analysis to an Array-CGH dataset (glioblastomas from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.

  12. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission.

    Science.gov (United States)

    Parra-Lobato, Maria C; Gomez-Jimenez, Maria C

    2011-08-01

    After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ-AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ-AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling. © 2011 The Author(s).

  13. RcRR1, a Rosa canina type-A response regulator gene, is involved in cytokinin-modulated rhizoid organogenesis.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.

  14. Low-Molecular-Weight Fucoidan Induces Endothelial Cell Migration via the PI3K/AKT Pathway and Modulates the Transcription of Genes Involved in Angiogenesis

    Directory of Open Access Journals (Sweden)

    Claire Bouvard

    2015-12-01

    Full Text Available Low-molecular-weight fucoidan (LMWF is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial colony forming cells. We observed that LMWF and vascular endothelial growth factor had synergistic effects on cell signaling, and more interestingly that LMWF by itself, in the absence of other growth factors, was able to trigger the activation of the PI3K/AKT pathway, which plays a crucial role in angiogenesis and vasculogenesis. We also observed that the effects of LMWF on cell migration were PI3K/AKT-dependent and that LMWF modulated the expression of genes involved at different levels of the neovessel formation process, such as cell migration and cytoskeleton organization, cell mobilization and homing. This provides a better understanding of LMWF’s mechanism of action and confirms that it could be an interesting therapeutic approach for vascular repair.

  15. Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics.

    Science.gov (United States)

    Veeriah, Selvaraju; Kautenburger, Tanja; Habermann, Nina; Sauer, Julia; Dietrich, Helmut; Will, Frank; Pool-Zobel, Beatrice Louise

    2006-03-01

    Flavonoids from fruits and vegetables probably reduce risks of diseases associated with oxidative stress, including cancer. Apples contain significant amounts of flavonoids with antioxidative potential. The objectives of this study were to investigate such compounds for properties associated with reduction of cancer risks. We report herein that apple flavonoids from an apple extract (AE) inhibit colon cancer cell growth and significantly modulate expression of genes related to xenobiotic metabolism. HT29 cells were treated with AE at concentrations delivering 5-50 microM of one of the major ingredients, phloridzin ("phloridzin-equivalents," Ph.E), to the cell culture medium, with a synthetic flavonoid mixture mimicking the composition of the AE or with 5-100 microM individual flavonoids. HT29 cell growth was inhibited by the complex extract and by the mixture. HT29 cells were treated with nontoxic doses of the AE (30 microM, Ph.E) and after 24 h total RNA was isolated to elucidate patterns of gene expression using a human cDNA-microarray (SuperArray) spotted with 96 genes of drug metabolism. Treatment with AE resulted in an upregulation of several genes (GSTP1, GSSTT2, MGST2, CYCP4F3, CHST5, CHST6, and CHST7) and downregulation of EPHX1, in comparison to the medium controls. The enhanced transcriptional activity of GSTP1 and GSTT2 genes was confirmed with real-time qRT-PCR. On the basis of the pattern of differential gene expression found here, we conclude that apple flavonoids modulate toxicological defense against colon cancer risk factors. In addition to the inhibition of tumor cell proliferation, this could be a mechanism of cancer risk reduction.

  16. Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD canine adenovirus type 2 vectors (CAV-2 are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.

  17. Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism

    NARCIS (Netherlands)

    Gilde, AJ; van der Lee, KAJM; Willemsen, PHM; Chinetti, G; van der Leij, FR; van der Vusse, GJ; Staels, B; van Bilsen, M

    2003-01-01

    Long-chain fatty acids ( FA) coordinately induce the expression of a panel of genes involved in cellular FA metabolism in cardiac muscle cells, thereby promoting their own metabolism. These effects are likely to be mediated by peroxisome proliferator-activated receptors (PPARs). Whereas the

  18. Genomic organization of the Neurospora crassa gsn gene: possible involvement of the STRE and HSE elements in the modulation of transcription during heat shock.

    Science.gov (United States)

    Freitas, F Zanolli; Bertolini, M C

    2004-12-01

    Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase ( gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30 degrees C to 45 degrees C). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans -acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.

  19. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE study.

    Directory of Open Access Journals (Sweden)

    Sara Hägg

    2009-12-01

    Full Text Available Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD. The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE study was to determine whether there are functionally associated genes (rather than individual genes important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue and atherosclerotic and unaffected arterial wall (n = 40/tissue isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n = 15,042/12,621 RefSeqs/genes in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes. In the second step (performed within tissue clusters, one atherosclerotic lesion (n = 49/48 and one visceral fat (n = 59 cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015. The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n = 55/54 relating to carotid stenosis (P = 0.04, 27 genes in the two clusters relating to coronary stenosis were confirmed (n = 16/17, P<10(-27 and-30. Genes in the transendothelial migration of leukocytes (TEML pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module. In a second validation step, using three independent cohorts, the A-module was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004. The transcription co-factor LIM domain binding 2 (LDB2 was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2

  20. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) study

    KAUST Repository

    Hägg, Sara

    2009-12-04

    Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n =66/tissue) and atherosclerotic and unaffected arterial wall (n =40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n =15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n= 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n =49/48) and one visceral fat (n =59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P=0.008 and P=0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n =55/54) relating to carotid stenosis (P =0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n= 16/17, P<10 -27and-30). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the Amodule was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the

  1. miR-92a Corrects CD34+ Cell Dysfunction in Diabetes by Modulating Core Circadian Genes Involved in Progenitor Differentiation.

    Science.gov (United States)

    Bhatwadekar, Ashay D; Yan, Yuanqing; Stepps, Valerie; Hazra, Sugata; Korah, Maria; Bartelmez, Stephen; Chaqour, Brahim; Grant, Maria B

    2015-12-01

    Autologous CD34(+) cells are widely used for vascular repair; however, in individuals with diabetes and microvascular disease these cells are dysfunctional. In this study, we examine expression of the clock genes Clock, Bmal, Per1, Per2, Cry1, and Cry2 in CD34(+) cells of diabetic and nondiabetic origin and determine the small encoding RNA (miRNA) profile of these cells. The degree of diabetic retinopathy (DR) was assessed. As CD34(+) cells acquired mature endothelial markers, they exhibit robust oscillations of clock genes. siRNA treatment of CD34(+) cells revealed Per2 as the only clock gene necessary to maintain the undifferentiated state of CD34(+) cells. Twenty-five miRNAs targeting clock genes were identified. Three of the miRNAs (miR-18b, miR-16, and miR-34c) were found only in diabetic progenitors. The expression of the Per2-regulatory miRNA, miR-92a, was markedly reduced in CD34(+) cells from individuals with DR compared with control subjects and patients with diabetes with no DR. Restoration of miR-92a levels in CD34(+) cells from patients with diabetes with DR reduced the inflammatory phenotype of these cells and the diabetes-induced propensity toward myeloid differentiation. Our studies suggest that restoring levels of miR-92a could enhance the usefulness of CD34(+) cells in autologous cell therapy.

  2. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wang Tao-Yeuan

    2011-09-01

    Full Text Available Abstract Background Mesenchymal stem cell (MSC found in bone marrow (BM-MSCs and the Wharton's jelly matrix of human umbilical cord (WJ-MSCs are able to transdifferentiate into neuronal lineage cells both in vitro and in vivo and therefore hold the potential to treat neural disorders such as stroke or Parkinson's disease. In bone marrow MSCs, miR-130a and miR-206 have been show to regulate the synthesis of neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. However, how neuronal differentiation is controlled in WJ-MSC remains unclear. Methods WJ-MSCs were isolated from human umbilical cords. We subjected WJ-MSCs into neurogenesis by a published protocol, and the miRNome patterns of WJ-MSCs and their neuronal progenitors (day 9 after differentiation were analyzed by the Agilent microRNA microarray. Results Five miRNAs were enriched in WJ-MSCs, including miR-345, miR-106a, miR-17-5p, miR-20a and miR-20b. Another 11 miRNAs (miR-206, miR-34a, miR-374, miR-424, miR-100, miR-101, miR-323, miR-368, miR-137, miR-138 and miR-377 were abundantly expressed in transdifferentiated neuronal progenitors. Among these miRNAs, miR-34a and miR-206 were the only 2 miRNAs been linked to BM-MSC neurogenesis. Overexpressing miR-34a in cells suppressed the expression of 136 neuronal progenitor genes, which all possess putative miR-34a binding sites. Gene enrichment analysis according to the Gene Ontology database showed that those 136 genes were associated with cell motility, energy production (including those with oxidative phosphorylation, electron transport and ATP synthesis and actin cytoskeleton organization, indicating that miR-34a plays a critical role in precursor cell migration. Knocking down endogenous miR-34a expression in WJ-MSCs resulted in the augment of WJ-MSC motility. Conclusions Our data suggest a critical role of miRNAs in MSC neuronal differentiation, and miR-34a contributes in neuronal precursor motility, which may

  3. Apolipoprotein gene involved in lipid metabolism

    Science.gov (United States)

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  4. In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: modulation of expression of genes involved in cell defence system using cDNA microarray.

    Science.gov (United States)

    Hayder, Nawel; Bouhlel, Ines; Skandrani, Ines; Kadri, Malika; Steiman, Régine; Guiraud, Pascale; Mariotte, Anne-Marie; Ghedira, Kamel; Dijoux-Franca, Marie-Geneviève; Chekir-Ghedira, Leila

    2008-04-01

    Antioxidant activity of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside, isolated from the leaves of Myrtus communis, was determined by the ability of each compound to inhibit xanthine oxidase activity, lipid peroxidation and to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl. Antimutagenic activity was assessed using the SOS chromotest and the Comet assay. The IC50 values of lipid peroxidation by myricetin-3-o-galactoside and myricetin-3-o-rhamnoside are respectively 160 microg/ml and 220 microg/ml. At a concentration of 100 microg/ml, the two compounds showed the most potent inhibitory effect of xanthine oxidase activity by respectively, 57% and 59%. Myricetin-3-o-rhamnoside was a very potent radical scavenger with an IC50 value of 1.4 microg/ml. Moreover, these two compounds induced an inhibitory activity against nifuroxazide, aflatoxine B1 and H2O2 induced mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress using a cDNA micro-array. Myricetin-3-o-galactoside and myricetin-3-o-rhamnoside modulated the expression patterns of cellular genes involved in oxidative stress, respectively (GPX1, TXN, AOE372, SEPW1, SHC1) and (TXNRD1, TXN, SOD1 AOE372, SEPW1), in DNA damaging repair, respectively (XPC, LIG4, RPA3, PCNA, DDIT3, POLD1, XRCC5, MPG) and (TDG, PCNA, LIG4, XRCC5, DDIT3, MSH2, ERCC5, RPA3, POLD1), and in apoptosis (PARP).

  5. A translational systems biology approach in both animals and humans identifies a functionally related module of accumbal genes involved in the regulation of reward processing and binge drinking in males

    Science.gov (United States)

    Stacey, David; Lourdusamy, Anbarasu; Ruggeri, Barbara; Maroteaux, Matthieu; Jia, Tianye; Cattrell, Anna; Nymberg, Charlotte; Banaschewski, Tobias; Bhattacharyya, Sohinee; Band, Hamid; Barker, Gareth; Bokde, Arun; Buchel, Christian; Carvalho, Fabiana; Conrod, Patricia; Desrivieres, Sylvane; Easton, Alanna; Fauth-Buehler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavanh, Hugh; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Rotter, Andrea; Santos, Eugenio; Smolka, Michael; Sommer, Wolfgang; Mameli, Manuel; Spanagel, Rainer; Girault, Jean-Antoine; Mueller, Christian; Schumann, Gunter

    2016-01-01

    Background The mesolimbic dopamine system, composed primarily of dopaminergic neurons in the ventral tegmental area that project to striatal structures, is considered to be the key mediator of reinforcement-related mechanisms in the brain. Prompted by a genome-wide association meta-analysis implicating the Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2) gene in the regulation of alcohol intake in men, we have recently shown that male Rasgrf2−/− mice exhibit reduced ethanol intake and preference accompanied by a perturbed mesolimbic dopamine system. We therefore propose that these mice represent a valid model to further elucidate the precise genes and mechanisms regulating mesolimbic dopamine functioning. Methods Transcriptomic data from the nucleus accumbens (NAcc) of male Rasgrf2−/− mice and wild-type controls were analyzed by weighted gene coexpression network analysis (WGCNA). We performed follow-up genetic association tests in humans using a sample of male adolescents from the IMAGEN study characterized for binge drinking (n = 905) and ventral striatal activation during an fMRI reward task (n = 608). Results The WGCNA analyses using accumbal transcriptomic data revealed 37 distinct “modules,” or functionally related groups of genes. Two of these modules were significantly associated with Rasgrf2 knockout status: M5 (p < 0.001) and M6 (p < 0.001). In follow-up translational analyses we found that human orthologues for the M5 module were significantly (p < 0.01) enriched with genetic association signals for binge drinking in male adolescents. Furthermore, the most significant locus, originating from the EH-domain containing 4 (EHD4) gene (p < 0.001), was also significantly associated with altered ventral striatal activity in male adolescents performing an fMRI reward task (pempirical < 0.001). Limitations It was not possible to determine the extent to which the M5 module was dysregulated in Rasgrf2−/− mice by perturbed mesolimbic

  6. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  7. Genes involved in cell division in mycoplasmas

    Directory of Open Access Journals (Sweden)

    Frank Alarcón

    2007-01-01

    Full Text Available Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

  8. Module network inference from a cancer gene expression data set identifies microRNA regulated modules.

    Directory of Open Access Journals (Sweden)

    Eric Bonnet

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small RNAs that recognize and regulate mRNA target genes. Multiple lines of evidence indicate that they are key regulators of numerous critical functions in development and disease, including cancer. However, defining the place and function of miRNAs in complex regulatory networks is not straightforward. Systems approaches, like the inference of a module network from expression data, can help to achieve this goal. METHODOLOGY/PRINCIPAL FINDINGS: During the last decade, much progress has been made in the development of robust and powerful module network inference algorithms. In this study, we analyze and assess experimentally a module network inferred from both miRNA and mRNA expression data, using our recently developed module network inference algorithm based on probabilistic optimization techniques. We show that several miRNAs are predicted as statistically significant regulators for various modules of tightly co-expressed genes. A detailed analysis of three of those modules demonstrates that the specific assignment of miRNAs is functionally coherent and supported by literature. We further designed a set of experiments to test the assignment of miR-200a as the top regulator of a small module of nine genes. The results strongly suggest that miR-200a is regulating the module genes via the transcription factor ZEB1. Interestingly, this module is most likely involved in epithelial homeostasis and its dysregulation might contribute to the malignant process in cancer cells. CONCLUSIONS/SIGNIFICANCE: Our results show that a robust module network analysis of expression data can provide novel insights of miRNA function in important cellular processes. Such a computational approach, starting from expression data alone, can be helpful in the process of identifying the function of miRNAs by suggesting modules of co-expressed genes in which they play a regulatory role. As shown in this study, those modules can then be

  9. Prospecting sugarcane genes involved in aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Rodrigo D. Drummond

    2001-12-01

    Full Text Available Aluminum is one of the major factors that affect plant development in acid soils, causing a substantial reduction in yield in many crops. In South America, about 66% of the land surface is made up of acid soils where high aluminum saturation is one of the main limiting factors for agriculture. The biochemical and molecular basis of aluminum tolerance in plants is far from being completely understood despite a growing number of studies, and in the specific case of sugarcane there are virtually no reports on the effects of gene regulation on aluminum stress. The objective of the work presented in this paper was to prospect the sugarcane expressed sequence tag (SUCEST data bank for sugarcane genes related to several biochemical pathways known to be involved in the responses to aluminum toxicity in other plant species and yeast. Sugarcane genes similar to most of these genes were found, including those coding for enzymes that alleviate oxidative stress or combat infection by pathogens and those which code for proteins responsible for the release of organic acids and signal transducers. The role of these genes in aluminum tolerance mechanisms is reviewed. Due to the high level of genomic conservation in related grasses such as maize, barley, sorghum and sugarcane, these genes may be valuable tools which will help us to better understand and to manipulate aluminum tolerance in these species.Alumínio (Al é um dos principais fatores que afetam o desenvolvimento de plantas em solos ácidos, reduzindo substancialmente a produtividade agrícola. Na América do Sul, cerca de 66% da superfície do solo apresenta acidez, onde a alta saturação de alumínio é uma das maiores limitações à prática agrícola. Apesar do crescente número de estudos, uma compreensão completa das bases bioquímicas e moleculares da tolerância ao alumínio em plantas está longe de ser alcançada. No caso da cana-de-açúcar, não há nada publicado sobre a regulação g

  10. Genes and translocations involved in POF.

    Science.gov (United States)

    Schlessinger, David; Herrera, Luisa; Crisponi, Laura; Mumm, Steven; Percesepe, Antonio; Pellegrini, Massimo; Pilia, Giuseppe; Forabosco, Antonino

    2002-08-15

    Changes at a single autosomal locus and many X-linked loci have been implicated in women with gonadal dysgenesis [premature ovarian failure (POF) with deficits in ovarian follicles]. For the chromosome 3 locus, a forkhead transcription factor gene (FOXL2) has been identified, in which lesions result in decreased follicles by haploinsufficiency. In contrast, sporadic X; autosomal translocations are distributed at many points on the X, but concentrate in a critical region on Xq. The association of the breakpoints with genes involved in ovarian function is thus far weak (in four analyzed cases) and has not been related to pathology in other POF patients. While many more translocations can be analyzed in detail as the human genome sequence is refined, it remains possible that translocations like X monosomy (Turner syndrome) lead to POF not by interrupting specific genes important in ovarian development, but by causing aberrations in pairing or X-inactivation during folliculogenesis. It is noted that the critical region has unusual features, neighboring the X-inactivation center and including an 18 Mb region of very low recombination. These suggest that chromosome dynamics in the region may be sensitive to structural changes, and when modified by translocations might provoke apoptosis at meiotic checkpoints. Choices among models for the etiology of POF should be feasible based on studies of ovarian follicle development and attrition in mouse models. Studies would prominently include gene expression profiling of developmental-specific pathways in nascent ovaries with controlled levels of Foxl2 and interacting proteins, or with defined changes in the X chromosome.

  11. Symbiont modulates expression of specific gene categories in Angomonas deanei

    Directory of Open Access Journals (Sweden)

    Luciana Loureiro Penha

    Full Text Available Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of the evolutionary process of vital cell functions such as respiration and photosynthesis. Angomonas deanei is an example of a symbiont-containing trypanosomatid. In this paper, we sought to investigate how symbionts influence host cells by characterising and comparing the transcriptomes of the symbiont-containing A. deanei (wild type and the symbiont-free aposymbiotic strains. The comparison revealed that the presence of the symbiont modulates several differentially expressed genes. Empirical analysis of differential gene expression showed that 216 of the 7625 modulated genes were significantly changed. Finally, gene set enrichment analysis revealed that the largest categories of genes that downregulated in the absence of the symbiont were those involved in oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis. In contrast, among the upregulated gene categories were those involved in proteolysis, microtubule-based movement, and cellular metabolic process. Our results provide valuable information for dissecting the mechanism of endosymbiosis in A. deanei.

  12. Modulation of imprinted gene expression following superovulation.

    Science.gov (United States)

    Fortier, Amanda L; McGraw, Serge; Lopes, Flavia L; Niles, Kirsten M; Landry, Mylène; Trasler, Jacquetta M

    2014-05-05

    Although assisted reproductive technologies increase the risk of low birth weight and genomic imprinting disorders, the precise underlying causes remain unclear. Using a mouse model, we previously showed that superovulation alters the expression of imprinted genes in the placenta at 9.5days (E9.5) of gestation. Here, we investigate whether effects of superovulation on genomic imprinting persisted at later stages of development and assess the surviving fetuses for growth and morphological abnormalities. Superovulation, followed by embryo transfer at E3.5, as compared to spontaneous ovulation (controls), resulted in embryos of normal size and weight at 14.5 and 18.5days of gestation. The normal monoallelic expression of the imprinted genes H19, Snrpn and Kcnq1ot1 was unaffected in either the placentae or the embryos from the superovulated females at E14.5 or E18.5. However, for the paternally expressed imprinted gene Igf2, superovulation generated placentae with reduced production of the mature protein at E9.5 and significantly more variable mRNA levels at E14.5. We propose that superovulation results in the ovulation of abnormal oocytes with altered expression of imprinted genes, but that the coregulated genes of the imprinted gene network result in modulated expression. Copyright © 2014. Published by Elsevier Ireland Ltd.

  13. Localization of genes modulating the predisposition to schizophrenia: a revision

    Directory of Open Access Journals (Sweden)

    Lopes-Machado E.Z.

    2000-01-01

    Full Text Available The genetics of schizophrenia or bipolar affective disorder has advanced greatly at the molecular level since the introduction of probes for the localization of specific genes. Research on gene candidates for susceptibility to schizophrenia can broadly be divided into two types, i.e., linkage studies, where a gene is found near a specific DNA marker on a specific chromosome, and association studies, when a condition is associated with a specific allele of a specific gene. This review covers a decade of publications in this area, from the 1988 works of Bassett et al. and Sherrington et al. on a gene localized on the long arm of chromosome 5 at the 5q11-13 loci, to the 1997 work of Lin et al. pointing to the 13q14.1-q32 loci of chromosome 13 and to the 1998 work of Wright et al. on an HLA DRB1 gene locus on chromosome 6 at 6p21-3. The most replicated loci were those in the long arm of chromosome 22 (22q12-q13.1 and on the short arm of chromosome 6 (6p24-22. In this critical review of the molecular genetic studies involved in the localization of genes which modulate the predisposition to schizophrenia the high variability in the results obtained by different workers suggests that multiple loci are involved in the predisposition to this illness.

  14. Fetal exposure to teratogens: evidence of genes involved in autism.

    Science.gov (United States)

    Dufour-Rainfray, Diane; Vourc'h, Patrick; Tourlet, Sébastien; Guilloteau, Denis; Chalon, Sylvie; Andres, Christian R

    2011-04-01

    Environmental challenges during the prenatal period can result in behavioral abnormalities and cognitive deficits that appear later in life such as autism. Prenatal exposure to valproic acid, ethanol, thalidomide and misoprostol has been shown to be associated with an increased incidence of autism. In addition, rodents exposed in utero to some of these drugs show autism-like abnormalities, including brain changes and lifelong behavior dysfunction. Our aim is to summarize current understanding of the relationship between in utero exposure to these drugs and autism in humans and in autism-like animal model phenotypes. It also highlights the importance of these models to understanding the neurobiology of autism, particularly in the identification of susceptibility genes. These drugs are able to modulate the expression of many genes involved in processes such as proliferation, apoptosis, neuronal differentiation and migration, synaptogenesis and synaptic activity. It seems essential to focus research on genes expressed during early neurodevelopment which may be the target of mutations or affected by drugs such as those included in this review.

  15. Hormonal Involvement in Breast Cancer Gene Amplification

    Science.gov (United States)

    2010-10-01

    and s ubsequently amp lified at the Yale University sequenc ing facility for Illumina sequencing. However, it required a lot of effort to obtain this...and Polyak K. (2008). Genome-wide functi onal synergy between amp lified and mutated genes in human breast cancer. Cancer Res. 68: 9532-9540...east cancer patient samples. Other co-amp lified genes, within the HER2 amplicon and/or at other regions, could serve as additional novel target s for

  16. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings.

    Science.gov (United States)

    Zanin, Laura; Venuti, Silvia; Tomasi, Nicola; Zamboni, Anita; De Brito Francisco, Rita M; Varanini, Zeno; Pinton, Roberto

    2016-01-01

    To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients.

  17. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings

    Science.gov (United States)

    Zanin, Laura; Venuti, Silvia; Tomasi, Nicola; Zamboni, Anita; De Brito Francisco, Rita M.; Varanini, Zeno; Pinton, Roberto

    2016-01-01

    To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients. PMID:27446099

  18. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-01-01

    Full Text Available Abstract Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17 and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between

  19. Precisely modulated pathogenicity island interference with late phage gene transcription.

    Science.gov (United States)

    Ram, Geeta; Chen, John; Ross, Hope F; Novick, Richard P

    2014-10-07

    Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.

  20. Modulating gene function with peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E.; Crooke, Stanley T.

    2008-01-01

    A review on peptide nucleic acid (PNA) oligomers as modulators of gene expression ranging from gene silencing at the mRNAor the dsDNA (antigene) level, and redirection of mRNA splicing to gene activation through transcription bubble mimicking. PNA chem., anti-infective agents, cellular delivery, ...

  1. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the

  2. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the w

  3. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  4. Reverse-engineering transcriptional modules from gene expression data

    OpenAIRE

    Michoel, Tom; De Smet, Riet; Joshi, Anagha; Marchal, Kathleen; de Peer, Yves Van

    2009-01-01

    "Module networks" are a framework to learn gene regulatory networks from expression data using a probabilistic model in which coregulated genes share the same parameters and conditional distributions. We present a method to infer ensembles of such networks and an averaging procedure to extract the statistically most significant modules and their regulators. We show that the inferred probabilistic models extend beyond the data set used to learn the models.

  5. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.

    Science.gov (United States)

    Hirose, Osamu; Yoshida, Ryo; Imoto, Seiya; Yamaguchi, Rui; Higuchi, Tomoyuki; Charnock-Jones, D Stephen; Print, Cristin; Miyano, Satoru

    2008-04-01

    Statistical inference of gene networks by using time-course microarray gene expression profiles is an essential step towards understanding the temporal structure of gene regulatory mechanisms. Unfortunately, most of the current studies have been limited to analysing a small number of genes because the length of time-course gene expression profiles is fairly short. One promising approach to overcome such a limitation is to infer gene networks by exploring the potential transcriptional modules which are sets of genes sharing a common function or involved in the same pathway. In this article, we present a novel approach based on the state space model to identify the transcriptional modules and module-based gene networks simultaneously. The state space model has the potential to infer large-scale gene networks, e.g. of order 10(3), from time-course gene expression profiles. Particularly, we succeeded in the identification of a cell cycle system by using the gene expression profiles of Saccharomyces cerevisiae in which the length of the time-course and number of genes were 24 and 4382, respectively. However, when analysing shorter time-course data, e.g. of length 10 or less, the parameter estimations of the state space model often fail due to overfitting. To extend the applicability of the state space model, we provide an approach to use the technical replicates of gene expression profiles, which are often measured in duplicate or triplicate. The use of technical replicates is important for achieving highly-efficient inferences of gene networks with short time-course data. The potential of the proposed method has been demonstrated through the time-course analysis of the gene expression profiles of human umbilical vein endothelial cells (HUVECs) undergoing growth factor deprivation-induced apoptosis. Supplementary Information and the software (TRANS-MNET) are available at http://daweb.ism.ac.jp/~yoshidar/software/ssm/.

  6. Genes involved in convergent evolution of eusociality in bees.

    Science.gov (United States)

    Woodard, S Hollis; Fischman, Brielle J; Venkat, Aarti; Hudson, Matt E; Varala, Kranthi; Cameron, Sydney A; Clark, Andrew G; Robinson, Gene E

    2011-05-03

    Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality.

  7. Niche-modulated and niche-modulating genes in bone marrow cells

    Science.gov (United States)

    Cohen, Y; Garach-Jehoshua, O; Bar-Chaim, A; Kornberg, A

    2012-01-01

    Bone marrow (BM) cells depend on their niche for growth and survival. However, the genes modulated by niche stimuli have not been discriminated yet. For this purpose, we investigated BM aspirations from patients with various hematological malignancies. Each aspirate was fractionated, and the various samples were fixed at different time points and analyzed by microarray. Identification of niche-modulated genes relied on sustained change in expression following loss of niche regulation. Compared with the reference (‘authentic') samples, which were fixed immediately following aspiration, the BM samples fixed after longer stay out-of-niche acquired numerous changes in gene-expression profile (GEP). The overall genes modulated included a common subset of functionally diverse genes displaying prompt and sustained ‘switch' in expression irrespective of the tumor type. Interestingly, the ‘switch' in GEP was reversible and turned ‘off-and-on' again in culture conditions, resuming cell–cell–matrix contact versus respread into suspension, respectively. Moreover, the resuming of contact prolonged the survival of tumor cells out-of-niche, and the regression of the ‘contactless switch' was followed by induction of a new set of genes, this time mainly encoding extracellular proteins including angiogenic factors and extracellular matrix proteins. Our data set, being unique in authentic expression design, uncovered niche-modulated and niche-modulating genes capable of controlling homing, expansion and angiogenesis. PMID:23241658

  8. [Obesity based on mutation of genes involved in energy balance].

    Science.gov (United States)

    Hainerová, I

    2007-01-01

    Within the last decade an intensive research led to an identification of several genes which are involved in a regulation of energy balance. In most cases, carriers of these gene mutations do not exhibit further characteristic phenotypic features except for a severe obesity. Obesity based on mutation of one gene product is called monogenic obesity. Mutations in genes for leptin, leptin receptor, proopiomelanocortin, prohormone convertase 1, melanocortin 4 and 3 receptor disrupt the physiological humoral signalization between peripheral signals and the hypothalamic centres of satiety and hunger. Defects of all above mentioned genes lead to phenotype of abnormal eating behaviour followed by a development of severe early-onset obesity. Mutations of melanocortin 4 receptor gene represent the most common cause of monogenic obesity because they are detected in almost 6 % children with early-onset severe obesity. Mutations of the other genes involved in energy homeostasis are very rare. Although these mutations are sporadic we assume that further research of monogenic forms of obesity might lead to our understanding of physiology and pathophysiology of regulation of the energy homeostasis and eating behaviour. Additionally, they may open new approach to the management of eating behaviour and to the treatment of obesity.

  9. Involvement of astrocyte and oligodendrocyte gene sets in migraine.

    Science.gov (United States)

    Eising, Else; de Leeuw, Christiaan; Min, Josine L; Anttila, Verneri; Verheijen, Mark Hg; Terwindt, Gisela M; Dichgans, Martin; Freilinger, Tobias; Kubisch, Christian; Ferrari, Michel D; Smit, August B; de Vries, Boukje; Palotie, Aarno; van den Maagdenberg, Arn Mjm; Posthuma, Danielle

    2016-06-01

    Migraine is a common episodic brain disorder characterized by recurrent attacks of severe unilateral headache and additional neurological symptoms. Two main migraine types can be distinguished based on the presence of aura symptoms that can accompany the headache: migraine with aura and migraine without aura. Multiple genetic and environmental factors confer disease susceptibility. Recent genome-wide association studies (GWAS) indicate that migraine susceptibility genes are involved in various pathways, including neurotransmission, which have already been implicated in genetic studies of monogenic familial hemiplegic migraine, a subtype of migraine with aura. To further explore the genetic background of migraine, we performed a gene set analysis of migraine GWAS data of 4954 clinic-based patients with migraine, as well as 13,390 controls. Curated sets of synaptic genes and sets of genes predominantly expressed in three glial cell types (astrocytes, microglia and oligodendrocytes) were investigated. Our results show that gene sets containing astrocyte- and oligodendrocyte-related genes are associated with migraine, which is especially true for gene sets involved in protein modification and signal transduction. Observed differences between migraine with aura and migraine without aura indicate that both migraine types, at least in part, seem to have a different genetic background. © International Headache Society 2015.

  10. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases

    DEFF Research Database (Denmark)

    Bergholdt, R.; Størling, Zenia, Marian; Hansen, Kasper Lage;

    2007-01-01

    identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.......We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We...

  11. Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.

    Directory of Open Access Journals (Sweden)

    Yuji Zhang

    Full Text Available BACKGROUND: Precise regulation of the cell cycle is crucial to the growth and development of all organisms. Understanding the regulatory mechanism of the cell cycle is crucial to unraveling many complicated diseases, most notably cancer. Multiple sources of biological data are available to study the dynamic interactions among many genes that are related to the cancer cell cycle. Integrating these informative and complementary data sources can help to infer a mutually consistent gene transcriptional regulatory network with strong similarity to the underlying gene regulatory relationships in cancer cells. RESULTS AND PRINCIPAL FINDINGS: We propose an integrative framework that infers gene regulatory modules from the cell cycle of cancer cells by incorporating multiple sources of biological data, including gene expression profiles, gene ontology, and molecular interaction. Among 846 human genes with putative roles in cell cycle regulation, we identified 46 transcription factors and 39 gene ontology groups. We reconstructed regulatory modules to infer the underlying regulatory relationships. Four regulatory network motifs were identified from the interaction network. The relationship between each transcription factor and predicted target gene groups was examined by training a recurrent neural network whose topology mimics the network motif(s to which the transcription factor was assigned. Inferred network motifs related to eight well-known cell cycle genes were confirmed by gene set enrichment analysis, binding site enrichment analysis, and comparison with previously published experimental results. CONCLUSIONS: We established a robust method that can accurately infer underlying relationships between a given transcription factor and its downstream target genes by integrating different layers of biological data. Our method could also be beneficial to biologists for predicting the components of regulatory modules in which any candidate gene is involved

  12. Characterization and Modulation of Proteins Involved in Sulfur Mustard Vesication

    Science.gov (United States)

    2000-06-01

    p53 may negatively regulate p53-mediated transcriptional activation of genes important in the cell cycle and apoptosis ( Malanga and Althaus, 1997...differentiation in vitro. J. Cell. Physiol. 163, 105-114. Malanga , M., and Althaus, F. (1997). Poly(ADP-ribose): a negative regulator of p53 functions. In The 12th...Aggarwal, B. (1996) J. Interferon ribosylation Reactions, Cancun, Mexico Cytokine Res. 16, 259-267 59. Malanga , M., and Althaus, F. (1997) in The

  13. A study of genes involved in adipocyte differentiation.

    Science.gov (United States)

    Zhu, Shunming; Cheng, Gong; Zhu, Huolan; Guan, Gongchang

    2015-01-01

    With the use of the microarray technique, genes expressed in the late phase of adipocyte differentiation were investigated. These genes play an important role in stimulating adipocyte growth and lipid droplet formation. Therefore, they contribute a great deal to the onset of obesity. With the use of SW872 adipocytes and the microarray technique, genes related to adipocyte differentiation were tested and compared with undifferentiated preadipocytes 14 days after induction. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used for confirmation. More than 21,329 transcriptors were expressed and determined, of which 1326 increased and 687 decreased undifferentiated adipocytes. Among them, 21 were highly expressed by more than 10-fold. With RT-PCR, 12 were confirmed, including apelin, CIDEC, PID1, LYRM1, ADD1, PPARγ2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Furthermore, genes involved in lipid metabolism, signal transduction, DNA replication, redox status and transcription factors were determined as well. Novel genes involved in adipogenesis (e.g., apelin) were detected. A variety of genes were discovered and validated with RT-PCR at the late phase of adipocyte differentiation. This may help us better understand the onset of obesity and the potential role of adipocytes in other organs.

  14. Studies of Genes Involved in Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Tushar K. Ghosh

    2014-05-01

    Full Text Available Congenital heart disease (CHD affects the intricate structure and function of the heart and is one of the leading causes of death in newborns. The genetic basis of CHD is beginning to emerge. Our laboratory has been engaged in identifying mutations in genes linked to CHD both in families and in sporadic cases. Over the last two decades, we have employed linkage analysis, targeted gene sequencing and genome wide association studies to identify genes involved in CHDs. Cardiac specific genes that encode transcription factors and sarcomeric proteins have been identified and linked to CHD. Functional analysis of the relevant mutant proteins has established the molecular mechanisms of CHDs in our studies.

  15. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation

    Directory of Open Access Journals (Sweden)

    Hartley Lauren E

    2009-06-01

    Full Text Available Abstract Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.

  16. Genes involved in translation of Mycoplasma hyopneumoniae and Mycoplasma synoviae

    Directory of Open Access Journals (Sweden)

    Mônica de Oliveira Santos

    2007-01-01

    Full Text Available This is a report on the analysis of genes involved in translation of the complete genomes of Mycoplasma hyopneumoniae strain J and 7448 and Mycoplasma synoviae. In both genomes 31 ORFs encoding large ribosomal subunit proteins and 19 ORFs encoding small ribosomal subunit proteins were found. Ten ribosomal protein gene clusters encoding 42 ribosomal proteins were found in M. synoviae, while 8 clusters encoding 39 ribosomal proteins were found in both M. hyopneumoniae strains. The L33 gene of the M. hyopneumoniae strain 7448 presented two copies in different locations. The genes encoding initiation factors (IF-1, IF-2 and IF-3, elongation factors (EF-G, EF-Tu, EF-Ts and EF-P, and the genes encoding the ribosome recycling factor (frr and one polypeptide release factor (prfA were present in the genomes of M. hyopneumoniae and M. synoviae. Nineteen aminoacyl-tRNA synthases had been previously identified in both mycoplasmas. In the two strains of M. hyopneumoniae, J and 7448, only one set of 5S, 16S and 23S rRNAs had been identified. Two sets of 16S and 23S rRNA genes and three sets of 5S rRNA genes had been identified in the M. synoviae genome.

  17. Repression of genes involved in melanocyte differentiation in uveal melanoma

    Science.gov (United States)

    Bergeron, Marjorie-Allison; Champagne, Sophie; Gaudreault, Manon; Deschambeault, Alexandre

    2012-01-01

    Purpose Uveal melanoma (UM) has been the subject of intense interest due to its distinctive metastatic pattern, which involves hematogenous dissemination of cancerous cells toward the liver in 50% of patients. To search for new UM prognostic markers, the Suppressive Subtractive Hybridization (SSH) technique was used to isolate genes that are differentially expressed between UM primary tumors and normal uveal melanocytes (UVM). Methods A subtracted cDNA library was prepared using cDNA from uncultured UM primary tumors and UVM. The expression level of selected genes was further validated by cDNA microarray, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence analyses. Results One hundred-fifteen genes were identified using the SSH technique. Microarray analyses comparing the gene expression profiles of UM primary tumors to UVM validated a significant differential expression for 48% of these genes. The expression pattern of selected genes was then analyzed by semi-quantitative RT–PCR and was found to be consistent with the SSH and cDNA microarray findings. A down-regulation of genes associated with melanocyte differentiation was confirmed in UM primary tumors. Presence of undifferentiated cells in the UM was demonstrated by the expression of stem cell markers ATP-binding cassette sub-family G member 2 (ABCG2) and octamer-binding protein 4 (OCT4). Conclusions We demonstrated that the SSH technique is efficient to detect differentially expressed genes between UM and UVM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor. In addition, deregulation of the melanocyte differentiation pathway revealed the presence of UM cells exhibiting a stem cell-like phenotype. PMID:22815634

  18. Opioid modulation of immunocompetence: Receptor characterization and second messenger involvement

    Energy Technology Data Exchange (ETDEWEB)

    Hemmick, L.M.

    1989-01-01

    The purpose of this thesis was to examine the effects of opioids on several indices of immunocompetence, determined the receptor specificity of these effects, and ascertain whether the actions of opioids on lymphocytes could be correlated with activation of second messenger systems. By measuring {sup 45}Ca{sup 2+} uptake into lymphocytes, it was demonstrated that {beta}-endorphin 1-31 ({beta}-END 1-31) enhanced rat thymocyte Ca{sup 2+} uptake in response to concanavalin A (Con A) but not phytohemagglutinin (PHA). Related opioid peptides and alkaloids were unable to mimic the effect, and naloxone did not block it, suggesting that {beta}-END 1-31 acted by binding to specific, non-opioid receptors on the thymocytes. Rat splenocyte Con A-stimulated Ca{sup 2+} uptake was not affected by {beta}-END 1-31. {beta}-END 1-31 did not affect basal Ca{sup 2+} uptake by either cell type. Using ({sup 3}H)thymidine uptake as an index of lymphocyte proliferation, {beta}-END 1-31 and several related opioid peptides reversed prostaglandin E{sub 1} (PGE{sub 1}) suppression of rat lymph node cell Con A- and PHA-stimulated proliferation. Naloxone did not block the reversal. {beta}-END 1-31 was unable to reverse forskolin and cholera toxin suppression of proliferation, indicating that the lowering of cyclic AMP levels was not the mechanism involved. Verapamil inhibition of proliferation was also not reversed by {beta}-END 1-31, suggesting that promotion of Ca{sup 2+} influx was not a major mechanism involved.

  19. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E

    2005-06-01

    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  20. Polymorphisms in genes involved in neurotransmission in relation to smoking.

    Science.gov (United States)

    Arinami, T; Ishiguro, H; Onaivi, E S

    2000-12-27

    Smoking behavior is influenced by both genetic and environmental factors. The genetic contribution to smoking behavior is at least as great as its contribution to alcoholism. Much progress has been achieved in genomic research related to cigarette-smoking within recent years. Linkage studies indicate that there are several loci linked to smoking, and candidate genes that are related to neurotransmission have been examined. Possible associated genes include cytochrome P450 subfamily polypeptide 6 (CYP2A6), dopamine D(1), D(2), and D(4) receptors, dopamine transporter, and serotonin transporter genes. There are other important candidate genes but studies evaluating the link with smoking have not been reported. These include genes encoding the dopamine D(3) and D(5) receptors, serotonin receptors, tyrosine hydroxylase, trytophan 2,3-dioxygenase, opioid receptors, and cannabinoid receptors. Since smoking-related factors are extremely complex, studies of diverse populations and of many aspects of smoking behavior including initiation, maintenance, cessation, relapse, and influence of environmental factors are needed to identify smoking-associated genes. We now review genetic polymorphisms reported to be involved in neurotransmission in relation to smoking.

  1. Plant Genes Involved in Symbiotic Sinal Perception/Signal Transduction

    DEFF Research Database (Denmark)

    Binder, A; Soyano, T; Hayashi, H

    2014-01-01

    to nodule primordia formation, and the infection thread initiation in the root hairs guiding bacteria towards dividing cortical cells. This chapter focuses on the plant genes involved in the recognition of the symbiotic signal produced by rhizobia, and the downstream genes, which are part of a complex......A host genetic programme that is initiated upon recognition of specific rhizobial Nod factors governs the symbiosis of legumes with nitrogen-fixing bacteria. This programme coordinates two major developmental processes that run in parallel in legume roots: de novo cortical cell division leading...... symbiotic signalling pathway that leads to the generation of calcium spiking in the nuclear regions and activation of transcription factors controlling symbiotic genes induction...

  2. Arabidopsis PLC2 is involved in auxin-modulated reproductive development.

    Science.gov (United States)

    Li, Lin; He, Yuqing; Wang, Yarui; Zhao, Shujuan; Chen, Xi; Ye, Tiantian; Wu, Yuxuan; Wu, Yan

    2015-11-01

    Phospholipase C (PLC) is an enzyme that plays crucial roles in various signal transduction pathways in mammalian cells. However, the role of PLC in plant development is poorly understood. Here we report involvement of PLC2 in auxin-mediated reproductive development in Arabidopsis. Disruption of PLC2 led to sterility, indicating a significant role for PLC2 in reproductive development. Development of both male and female gametophytes was severely perturbed in plc2 mutants. Moreover, elevated auxin levels were observed in plc2 floral tissues, suggesting that the infertility of plc2 plants may be associated with increased auxin concentrations in the reproductive organs. We show that expression levels of the auxin reporters DR5:GUS and DR5:GFP were elevated in plc2 anthers and ovules. In addition, we found that expression of the auxin biosynthetic YUCCA genes was increased in plc2 plants. We conclude that PLC2 is involved in auxin biosynthesis and signaling, thus modulating development of both male and female gametophytes in Arabidopsis.

  3. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes.

    Science.gov (United States)

    Damiani, Isabelle; Baldacci-Cresp, Fabien; Hopkins, Julie; Andrio, Emilie; Balzergue, Sandrine; Lecomte, Philippe; Puppo, Alain; Abad, Pierre; Favery, Bruno; Hérouart, Didier

    2012-04-01

    The establishment and development of plant-microorganism interactions involve impressive transcriptomic reprogramming of target plant genes. The symbiont (Sinorhizobium meliloti) and the root knot-nematode pathogen (Meloidogyne incognita) induce the formation of new root organs, the nodule and the gall, respectively. Using laser-assisted microdissection, we specifically monitored, at the cell level, Medicago gene expression in nodule zone II cells, which are preparing to receive rhizobia, and in gall giant and surrounding cells, which play an essential role in nematode feeding and constitute the typical root swollen structure, respectively. We revealed an important reprogramming of hormone pathways and C1 metabolism in both interactions, which may play key roles in nodule and gall neoformation, rhizobia endocytosis and nematode feeding. Common functions targeted by rhizobia and nematodes were mainly down-regulated, whereas the specificity of the interaction appeared to involve up-regulated genes. Our transcriptomic results provide powerful datasets to unravel the mechanisms involved in the accommodation of rhizobia and root-knot nematodes. Moreover, they raise the question of host specificity and the evolution of plant infection mechanisms by a symbiont and a pathogen.

  4. Sites and gene products involved in lambdoid phage DNA packaging.

    Science.gov (United States)

    Smith, M P; Feiss, M

    1993-04-01

    21 is a temperate lambdoid coliphage, and the genes that encode the head proteins of lambda and 21 are descended from a common ancestral bacteriophage. The sequencing of terminase genes 1 and 2 of 21 was completed, along with that of a segment at the right end of 21 DNA that includes the R4 sequence. The R4 sequence, a site that is likely involved in termination of DNA packaging, was found to be very similar to the R4 sequences of lambda and phi 80, suggesting that R4 is a recognition site that is not phage specific. DNA packaging by 21 is dependent on a host protein, integration host factor. A series of mutations in gene 1 (her mutations), which allow integration host factor-independent DNA packaging by 21, were found to be missense changes that affect predicted alpha-helixes in gp1. gp2, the large terminase subunit, is predicted to contain an ATP-binding domain and, perhaps, a second domain important for the cos-cutting activity of terminase. orf1, an open reading frame analogous in position to FI, a lambda gene involved in DNA packaging, shares some sequence identity with FI. orf1 was inactivated with nonsense and insertion mutations; these mutations were found not to affect phage growth. 21 was also not able to complement a lambda FI mutant.

  5. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.

    Science.gov (United States)

    Li, Hua; Wang, Lei; Yang, Zhi Min

    2015-01-01

    Iron (Fe) is an essential element for plant growth and development. Iron deficiency results in abnormal metabolisms from respiration to photosynthesis. Exploration of Fe-deficient responsive genes and their networks is critically important to understand molecular mechanisms leading to the plant adaptation to soil Fe-limitation. Co-expression genes are a cluster of genes that have a similar expression pattern to execute relatively biological functions at a stage of development or under a certain environmental condition. They may share a common regulatory mechanism. In this study, we investigated Fe-starved-related co-expression genes from Arabidopsis. From the biological process GO annotation of TAIR (The Arabidopsis Information Resource), 180 iron-deficient responsive genes were detected. Using ATTED-II database, we generated six gene co-expression networks. Among these, two modules of PYE and IRT1 were successfully constructed. There are 30 co-expression genes that are incorporated in the two modules (12 in PYE-module and 18 in IRT1-module). Sixteen of the co-expression genes were well characterized. The remaining genes (14) are poorly or not functionally identified with iron stress. Validation of the 14 genes using real-time PCR showed differential expression under iron-deficiency. Most of the co-expression genes (23/30) could be validated in pye and fit mutant plants with iron-deficiency. We further identified iron-responsive cis-elements upstream of the co-expression genes and found that 22 out of 30 genes contain the iron-responsive motif IDE1. Furthermore, some auxin and ethylene-responsive elements were detected in the promoters of the co-expression genes. These results suggest that some of the genes can be also involved in iron stress response through the phytohormone-responsive pathways.

  6. Effects of modulation of calcium levels and calcium fluxes on ABA- induced gene expression in barley aleurone

    NARCIS (Netherlands)

    Meulen, R.M. van der; Visser, K.; Wang, M.

    1996-01-01

    We present data to elucidate the involvement of calcium ions in abscisic acid (ABA)-induced gene expression. Modulation of external calcium concentrations was able to affect ABA-induced specific RAB gene expression. At a constant ABA level with increasing extracellular calcium level, an increasing R

  7. Effects of modulation of calcium levels and calcium fluxes on ABA- induced gene expression in barley aleurone

    NARCIS (Netherlands)

    Meulen, R.M. van der; Visser, K.; Wang, M.

    1996-01-01

    We present data to elucidate the involvement of calcium ions in abscisic acid (ABA)-induced gene expression. Modulation of external calcium concentrations was able to affect ABA-induced specific RAB gene expression. At a constant ABA level with increasing extracellular calcium level, an increasing R

  8. Cohesin modulates transcription of estrogen-responsive genes.

    Science.gov (United States)

    Antony, Jisha; Dasgupta, Tanushree; Rhodes, Jenny M; McEwan, Miranda V; Print, Cristin G; O'Sullivan, Justin M; Horsfield, Julia A

    2015-03-01

    The cohesin complex has essential roles in cell division, DNA damage repair and gene transcription. The transcriptional function of cohesin is thought to derive from its ability to connect distant regulatory elements with gene promoters. Genome-wide binding of cohesin in breast cancer cells frequently coincides with estrogen receptor alpha (ER), leading to the hypothesis that cohesin facilitates estrogen-dependent gene transcription. We found that cohesin modulates the expression of only a subset of genes in the ER transcription program, either activating or repressing transcription depending on the gene target. Estrogen-responsive genes most significantly influenced by cohesin were enriched in pathways associated with breast cancer progression such as PI3K and ErbB1. In MCF7 breast cancer cells, cohesin depletion enhanced transcription of TFF1 and TFF2, and was associated with increased ER binding and increased interaction between TFF1 and its distal enhancer situated within TMPRSS3. In contrast, cohesin depletion reduced c-MYC mRNA and was accompanied by reduced interaction between a distal enhancer of c-MYC and its promoters. Our data indicates that cohesin is not a universal facilitator of ER-induced transcription and can even restrict enhancer-promoter communication. We propose that cohesin modulates transcription of estrogen-dependent genes to achieve appropriate directionality and amplitude of expression.

  9. Strategies to identify long noncoding RNAs involved in gene regulation

    Directory of Open Access Journals (Sweden)

    Lee Catherine

    2012-11-01

    Full Text Available Abstract Long noncoding RNAs (lncRNAs have been detected in nearly every cell type and found to be fundamentally involved in many biological processes. The characterization of lncRNAs has immense potential to advance our comprehensive understanding of cellular processes and gene regulation, along with implications for the treatment of human disease. The recent ENCODE (Encyclopedia of DNA Elements study reported 9,640 lncRNA loci in the human genome, which corresponds to around half the number of protein-coding genes. Because of this sheer number and their functional diversity, it is crucial to identify a pool of potentially relevant lncRNAs early on in a given study. In this review, we evaluate the methods for isolating lncRNAs by immunoprecipitation and review the advantages, disadvantages, and applications of three widely used approaches – microarray, tiling array, and RNA-seq – for identifying lncRNAs involved in gene regulation. We also look at ways in which data from publicly available databases such as ENCODE can support the study of lncRNAs.

  10. Pneumococcal gene complex involved in resistance to extracellular oxidative stress.

    Science.gov (United States)

    Andisi, Vahid Farshchi; Hinojosa, Cecilia A; de Jong, Anne; Kuipers, Oscar P; Orihuela, Carlos J; Bijlsma, Jetta J E

    2012-03-01

    Streptococcus pneumoniae is a gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H(2)O(2)) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

  11. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    Science.gov (United States)

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The WSB1 gene is involved in pancreatic cancer progression.

    Directory of Open Access Journals (Sweden)

    Cendrine Archange

    Full Text Available BACKGROUND: Pancreatic cancer cells generate metastases because they can survive the stress imposed by the new environment of the host tissue. To mimic this process, pancreatic cancer cells which are not stressed in standard culture conditions are injected into nude mice. Because they develop xenografts, they should have developed adequate stress response. Characterizing that response might provide new strategies to interfere with pancreatic cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: In the human pancreatic cancer cell lines Panc-1, Mia-PaCa2, Capan-1, Capan-2 and BxPC3, we used Affymetrix DNA microarrays to compare the expressions of 22.000 genes in vitro and in the corresponding xenografts. We identified 228 genes overexpressed in xenografts and characterized the implication of one of them, WSB1, in the control of apoptosis and cell proliferation. WSB1 generates 3 alternatively spliced transcripts encoding distinct protein isoforms. In xenografts and in human pancreatic tumors, global expression of WSB1 mRNA is modestly increased whereas isoform 3 is strongly overexpressed and isoforms 1 and 2 are down-regulated. Treating Mia-PaCa2 cells with stress-inducing agents induced similar changes. Whereas retrovirus-forced expression of WSB1 isoforms 1 and 2 promoted cell growth and sensitized the cells to gemcitabine- and doxorubicin-induced apoptosis, WSB1 isoform 3 expression reduced cell proliferation and enhanced resistance to apoptosis, showing that stress-induced modulation of WSB1 alternative splicing increases resistance to apoptosis of pancreatic cancer cells. CONCLUSIONS/SIGNIFICANCE: Data on WSB1 regulation support the hypothesis that activation of stress-response mechanisms helps cancer cells establishing metastases and suggest relevance to cancer development of other genes overexpressed in xenografts.

  13. Involvement of mammalian RF-amide peptides and their receptors in the modulation of nociception in rodents

    Directory of Open Access Journals (Sweden)

    Safia eAyachi

    2014-10-01

    Full Text Available Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide (RFRP group binds to NPFFR1, neuropeptide FF (NPFF group to NPFFR2, pyroglutamylated RF-amide peptide (QRFP group to QRFPR, prolactin releasing peptide (PrRP group to PrRPR, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.

  14. Phylogeographic support for horizontal gene transfer involving sympatric bruchid species

    Directory of Open Access Journals (Sweden)

    Grill Andrea

    2006-07-01

    , hybridization, and pseudogenisation. However, none of these seem able to explain the patterns observed. A fourth hypothesis, involving recent horizontal gene transfer (HGT between A. obtectus and A. obvelatus, and from one of these species to Z. subfasciatus in the Mexican Altiplano, seems the only plausible explanation. The HGT between our study species seems to have occurred recently, and only in a zone where the three beetles are sympatric and share common host plants. This suggests that transfer could have been effected by some external vector such as a eukaryotic or viral parasite, which might still host the transferred fragment. Reviewers This article was reviewed by Eric Bapteste, Adam Eyre-Walker and Alexey Kondrashov.

  15. Identification of Phytophthora sojae genes involved in asexual sporogenesis

    Indian Academy of Sciences (India)

    Ziying Wang; Xhaoxia Wang; Jie Shen; Guangyue Wang; Xiaoxi Zhu; Hongxia Lu

    2009-08-01

    To explore the molecular mechanisms involved in asexual spore development in Phytophthora sojae, the zoospores of strain PS26 were treated with ultraviolet (UV) irradiation. After selection, a mutant progeny, termed PS26-U03, was obtained and demonstrated to exhibit no oospore production. A suppression subtractive hybridization (SSH) approach was developed to investigate differences in gene expression between PS26 and PS26-U03 during asexual sporogenesis. Of the 126 sequences chosen for examination, 39 putative unigenes were identified that exhibit high expression in PS26. These sequences are predicted to encode proteins involved in metabolism, cell cycle, protein biosynthesis, cell signalling, cell defence, and transcription regulation. Seven clones were selected for temporal expression analysis using RT-PCR based on the results of the dot-blot screens. Three of the selected genes, developmental protein DG1037 (UB88), glycoside hydrolase (UB149) and a hypothetical protein (UB145), were expressed only in PS26, whereas the transcripts of phosphatidylinositol-4-phosphate 5-kinase (UB36), FAD-dependent pyridine nucleotide-disulphide oxidoreductase (UB226) and sugar transporter (UB256) were expressed at very low levels in PS26-U03 but at high levels in PS26.

  16. Computational approach for identification of Anopheles gambiae miRNA involved in modulation of host immune response.

    Science.gov (United States)

    Thirugnanasambantham, Krishnaraj; Hairul-Islam, Villianur Ibrahim; Saravanan, Subramanian; Subasri, Subramaniyan; Subastri, Ariraman

    2013-05-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in regulating gene expression in animals, plants, and viruses, which involves in biological processes including development, cancer, immunity, and host-microorganism interactions. In this present study, we have used the computational approach to identify potent miRNAs involved in Anopheles gambiae immune response. Analysis of 217,261 A. gambiae ESTs and further study of RNA folding revealed six new miRNAs. The minimum free energy of the predicted miRNAs ranged from -27.2 to -62.63 kcal/mol with an average of -49.38 kcal/mol. While its A + U % ranges from 50 to 65 % with an average value of 57.37 %. Phylogenetic analysis of the predicted miRNAs revealed that aga-miR-277 was evolutionary highly conserved with more similarity with other mosquito species. Observing further the target identification of the predicted miRNA, it was noticed that the aga-miR-2304 and aga-miR-2390 are involved in modulation of immune response by targeting the gene encoding suppressin and protein prophenoloxidase. Further detailed studies of these miRNAs will help in revealing its function in modulation of A. gambiae immune response with respect to its parasite.

  17. Modulation of DNA binding by gene-specific transcription factors.

    Science.gov (United States)

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  18. Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid.

    Directory of Open Access Journals (Sweden)

    Abdul G Lone

    Full Text Available BACKGROUND: Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to cause disease. To better understand this process, the objective of this study was to identify genes that are differentially expressed in a medium that mimics the lung environment early in the infection process. METHODS AND PRINCIPAL FINDINGS: Since bronchoalveolar lavage fluid (BALF contains innate immune and other components found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been reported to be either expressed in vivo and/or involved in virulence. CONCLUSIONS: The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful medium for the discovery of novel vaccine or therapeutic targets.

  19. Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth.

    Science.gov (United States)

    Pelkmans, Jordi F; Patil, Mohini B; Gehrmann, Thies; Reinders, Marcel J T; Wösten, Han A B; Lugones, Luis G

    2017-03-22

    Mushrooms are the most conspicuous fungal structures. Transcription factors (TFs) Bri1 and Hom1 of the model fungus Schizophyllum commune are involved in late stages of mushroom development, while Wc-2, Hom2, and Fst4 function early in development. Here, it is shown that Bri1 and Hom1 also stimulate vegetative growth, while biomass formation is repressed by Wc-2, Hom2, and Fst4. The Δbri1Δbri1 and the Δhom1Δhom1 strains formed up to 0.6 fold less biomass when compared to wild-type, while Δwc-2Δwc-2, Δhom2Δhom2, and Δfst4Δfst4 strains formed up to 2.8 fold more biomass. Inactivation of TF gene tea1, which was downregulated in the Δwc-2Δwc-2, Δhom2Δhom2, and Δfst4Δfst4 strains, resulted in a strain that was severely affected in mushroom development and that produced 1.3 fold more biomass than the wild-type. In contrast, introducing a constitutive active version of hom2 that had 4 predicted phosphorylation motifs eliminated resulted in radial growth inhibition and prompt fructification in both Δhom2 and wild-type strains, even in sterile monokaryons. Together, it is concluded that TFs involved in mushroom formation also modulate vegetative growth. Among these TFs is the homeodomain protein Hom2, being the first time that this class of regulatory proteins is implicated in repression of vegetative growth in a eukaryote.

  20. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    OpenAIRE

    Anastasis Stephanou; Latchman, David S.

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  1. Transcriptional modulation of heat-shock protein gene expression.

    OpenAIRE

    A. Stephanou; Latchman, D S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  2. Extracting expression modules from perturbational gene expression compendia

    Directory of Open Access Journals (Sweden)

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  3. Gene modulation associated with inhibition of liver regeneration in hepatitis B virus X transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Malgorzata Sidorkiewicz; Jean-Philippe Jais; Guilherme Tralhao; Serban Morosan; Carlo Giannini; Nicolas Brezillon; Patrick Soussan; Oona Delpuech; Dina Kremsdorf

    2008-01-01

    AIM: To analyze the modulation of gene expression profile associated with inhibition of liver regeneration in hepatitis B X (HBx)-expressing transgenic mice.METHODS: Microarray technology was performed on liver tissue obtained from 4 control (LacZ) and 4 transgenic mice (HBx-LacZ), 48 h after partial hepatectomy. The significance of the normalized log-ratios was assessed for each gene, using robust Mests under an empirical Bayes approach. Microarray hybridization data was verified on selected genes by quantitative PCR.RESULTS: The comparison of gene expression patterns showed a consistent modulation of the expression of 26 genes, most of which are implicated in liver regeneration. Up-regulated genes included DNA repair proteins (Rad-52, MSH6) and transmembrane proteins (syndecan 4, tetraspanin), while down-regulated genes were connected to the regulation of transcription (histone deacetylase, Zfp90, MyoDl) and were involved in the cholesterol metabolic pathway and isoprenoidbiosynthesis (farnesyl diphosphate synthase, Cyp7b1, geranylgeranyl diphosphate synthase, SAA3).CONCLUSION: Our results provide a novel insight into the biological activities of HBx, implicated in the inhibition of liver regeneration.

  4. Transcription dynamics of inducible genes modulated by negative regulations.

    Science.gov (United States)

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  5. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation.

    Science.gov (United States)

    Zhang, Ke K; Xiang, Menglan; Zhou, Lun; Liu, Jielin; Curry, Nathan; Heine Suñer, Damian; Garcia-Pavia, Pablo; Zhang, Xiaohua; Wang, Qin; Xie, Linglin

    2016-03-15

    Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny.

  6. HLA genes and other candidate genes involved in susceptibility for (pre)neoplastic cervical disease

    NARCIS (Netherlands)

    Zoodsma, M; Nolte, IM; Meerman, GJT; De Vries, EGE; Van Der Zee, AGJ

    2005-01-01

    This review focuses on common and genetic risk factors such as HLA and other genes that may be involved in susceptibility for (pre)neoplastic cervical disease. The goal of this review is the evaluation of polymorphisms that are either associated with cervical intraepithelial neoplasia (CIN) and/or c

  7. HLA genes and other candidate genes involved in susceptibility for (pre)neoplastic cervical disease

    NARCIS (Netherlands)

    Zoodsma, M; Nolte, IM; Meerman, GJT; De Vries, EGE; Van Der Zee, AGJ

    2005-01-01

    This review focuses on common and genetic risk factors such as HLA and other genes that may be involved in susceptibility for (pre)neoplastic cervical disease. The goal of this review is the evaluation of polymorphisms that are either associated with cervical intraepithelial neoplasia (CIN) and/or c

  8. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2011-03-01

    Full Text Available Abstract Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3, which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.

  9. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  10. Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes

    Science.gov (United States)

    Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph

    2016-01-01

    Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatio-temporal control. Here, we present a novel and generalizable approach, referred to as ‘Chemo-Optical Modulation of Epigenetically-regulated Transcription’ (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may translate into novel therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814

  11. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing.

    Science.gov (United States)

    Nagamatsu, Atsushi; Masuta, Chikara; Senda, Mineo; Matsuura, Hideyuki; Kasai, Atsushi; Hong, Jin-Sung; Kitamura, Keisuke; Abe, Jun; Kanazawa, Akira

    2007-11-01

    Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase (CHS) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase (F3'H) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.

  12. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  13. Gene Regulation, Modulation, and Their Applications in Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Mario Flores

    2013-01-01

    Full Text Available Common microarray and next-generation sequencing data analysis concentrate on tumor subtype classification, marker detection, and transcriptional regulation discovery during biological processes by exploring the correlated gene expression patterns and their shared functions. Genetic regulatory network (GRN based approaches have been employed in many large studies in order to scrutinize for dysregulation and potential treatment controls. In addition to gene regulation and network construction, the concept of the network modulator that has significant systemic impact has been proposed, and detection algorithms have been developed in past years. Here we provide a unified mathematic description of these methods, followed with a brief survey of these modulator identification algorithms. As an early attempt to extend the concept to new RNA regulation mechanism, competitive endogenous RNA (ceRNA, into a modulator framework, we provide two applications to illustrate the network construction, modulation effect, and the preliminary finding from these networks. Those methods we surveyed and developed are used to dissect the regulated network under different modulators. Not limit to these, the concept of “modulation” can adapt to various biological mechanisms to discover the novel gene regulation mechanisms.

  14. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    Directory of Open Access Journals (Sweden)

    Anastasis Stephanou

    2011-01-01

    Full Text Available Heat-shock proteins (Hsps are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  15. Transcriptional modulation of heat-shock protein gene expression.

    Science.gov (United States)

    Stephanou, Anastasis; Latchman, David S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  16. Isolation and characterization of maize PMP3 genes involved in salt stress tolerance.

    Directory of Open Access Journals (Sweden)

    Jing Fu

    Full Text Available Plasma membrane protein 3 (PMP3, a class of small hydrophobic polypeptides with high sequence similarity, is responsible for salt, drought, cold, and abscisic acid. These small hydrophobic ploypeptides play important roles in maintenance of ion homeostasis. In this study, eight ZmPMP3 genes were cloned from maize and responsive to salt, drought, cold and abscisic acid. The eight ZmPMP3s were membrane proteins and their sequences in trans-membrane regions were highly conserved. Phylogenetic analysis showed that they were categorized into three groups. All members of group II were responsive to ABA. Functional complementation showed that with the exception of ZmPMP3-6, all were capable of maintaining membrane potential, which in turn allows for regulation of intracellular ion homeostasis. This process was independent of the presence of Ca(2+. Lastly, over-expression of ZmPMP3-1 enhanced growth of transgenic Arabidopsis under salt condition. Through expression analysis of deduced downstream genes in transgenic plants, expression levels of three ion transporter genes and four important antioxidant genes in ROS scavenging system were increased significantly in transgenic plants during salt stress. This tolerance was likely achieved through diminishing oxidative stress due to the possibility of ZmPMP3-1's involvement in regulation of ion homeostasis, and suggests that the modulation of these conserved small hydrophobic polypeptides could be an effective way to improve salt tolerance in plants.

  17. Gene expression correlation analysis predicts involvement of high- and low-confidence risk genes in different stages of prostate carcinogenesis.

    Science.gov (United States)

    Yano, Kojiro

    2010-12-01

    Whole genome association studies have identified many loci associated with the risk of prostate cancer (PC). However, very few of the genes associated with these loci have been related to specific processes of prostate carcinogenesis. Therefore I inferred biological functions associated with these risk genes using gene expression correlation analysis. PC risk genes reported in the literature were classified as having high (Plow (Phigh-confidence genes and other genes in the microarray dataset, whereas correlation between low-confidence genes and other genes in PC showed smaller decrease. Genes involved in developmental processes were significantly correlated with all risk gene categories. Ectoderm development genes, which may be related to squamous metaplasia, and genes enriched in fetal prostate stem cells (PSCs) showed strong association with the high-confidence genes. The association between the PSC genes and the low-confidence genes was weak, but genes related to neural system genes showed strong association with low-confidence genes. The high-confidence risk genes may be associated with an early stage of prostate carcinogenesis, possibly involving PSCs and squamous metaplasia. The low-confidence genes may be involved in a later stage of carcinogenesis. © 2010 Wiley-Liss, Inc.

  18. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  19. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lodi, T; Goffrini, P; Ferrero, I; Donnini, C

    1995-09-01

    Two mutants carrying different deletions of the IMP2 coding sequence of Saccharomyces cerevisiae, delta T1, which encodes a protein lacking the last 26 C-terminal amino acids, and delta T2, which completely lacks the coding region, were analysed for derepression of glucose-repressible maltose, galactose, raffinose and ethanol utilization pathways in response to glucose limitation. The role of the IMP2 gene product in the regulation of carbon catabolite repressible enzymes maltase, invertase, alcohol dehydrogenase, NAD-dependent glutamate dehydrogenase (NAD-GDH) and L-lactate:ferricytochrome-c oxidoreductase (L-LCR) was also analysed. The IMP2 gene product is required for the rapid glucose derepression of all above-mentioned carbon source utilization pathways and of all the enzymes except for L-LCR. NAD-GDH is regulated by IMP2 in the opposite way and, in fact, this enzyme was released at higher levels in both imp2 mutants than in the wild-type strain. Therefore, the product of IMP2 appears to be involved in positive and negative regulation. Both deletions result in growth and catalytic defects; in some cases partial modification of the gene product yielded more dramatic effects than its complete absence. Moreover, evidence is provided that the IMP2 gene product regulates galactose- and maltose-inducible genes at the transcriptional level and is a positive regulator of maltase, maltose permease and galactose permease gene expression.

  20. Motif-guided sparse decomposition of gene expression data for regulatory module identification

    Directory of Open Access Journals (Sweden)

    Hoffman Eric P

    2011-03-01

    Full Text Available Abstract Background Genes work coordinately as gene modules or gene networks. Various computational approaches have been proposed to find gene modules based on gene expression data; for example, gene clustering is a popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-expressed but not necessarily co-regulated. Results We propose a novel approach, motif-guided sparse decomposition (mSD, to identify gene regulatory modules by integrating gene expression data and DNA sequence motif information. The mSD approach is implemented as a two-step algorithm comprising estimates of (1 transcription factor activity and (2 the strength of the predicted gene regulation event(s. Specifically, a motif-guided clustering method is first developed to estimate the transcription factor activity of a gene module; sparse component analysis is then applied to estimate the regulation strength, and so predict the target genes of the transcription factors. The mSD approach was first tested for its improved performance in finding regulatory modules using simulated and real yeast data, revealing functionally distinct gene modules enriched with biologically validated transcription factors. We then demonstrated the efficacy of the mSD approach on breast cancer cell line data and uncovered several important gene regulatory modules related to endocrine therapy of breast cancer. Conclusion We have developed a new integrated strategy, namely motif-guided sparse decomposition (mSD of gene expression data, for regulatory module identification. The mSD method features a novel motif-guided clustering method for transcription factor activity estimation by finding a balance between co-regulation and co-expression. The mSD method further utilizes a sparse decomposition method for regulation strength estimation. The

  1. A Network Partition Algorithm for Mining Gene Functional Modules of Colon Cancer from DNA Microarray Data

    Institute of Scientific and Technical Information of China (English)

    Xiao-Gang Ruan; Jin-Lian Wang; Jian-Geng Li

    2006-01-01

    Computational analysis is essential for transforming the masses of microarray data into a mechanistic understanding of cancer. Here we present a method for finding gene functional modules of cancer from microarray data and have applied it to colon cancer. First, a colon cancer gene network and a normal colon tissue gene network were constructed using correlations between the genes. Then the modules that tended to have a homogeneous functional composition were identified by splitting up the network. Analysis of both networks revealed that they are scale-free.Comparison of the gene functional modules for colon cancer and normal tissues showed that the modules' functions changed with their structures.

  2. Differential expression of genes involved in entomopathogenicity of the fungi Metarhizium anisopliae var. anisopliae and M. anisopliae var. acridum (Clavicipitaceae).

    Science.gov (United States)

    Carneiro-Leão, M P; Andreote, F D; Araújo, W L; Oliveira, N T

    2011-05-03

    Expression analysis of the genes involved in germination, conidiogenisis and pathogenesis of Metarhizium anisopliae during its saprophytic and pathogenic life stages can help plan strategies to increase its efficacy as a biological control agent. We quantified relative expression levels of the nitrogen response regulator gene (nrr1) and a G-protein regulator of genes involved in conidiogenesis (cag8), using an RT-qPCR assay. Comparisons were made between M. anisopliae var. anisopliae and M. anisopliae var. acridum during germination and conidiogenesis and at different stages of pathogenesis. The cag8 gene was repressed during germination and induced during conidial development and the pathogenic phase, and the nrr1 gene was induced during germination, conidiogenesis and the pathogenic phase. Both genes were more expressed in M. anisopliae var. anisopliae, demonstrating that different varieties of M. anisopliae differ in activation of genes linked to virulence for certain environments and hosts. This suggests that differences among these varieties in the ability to adapt could be attributed not only to specific genomic regions and genes, but also to differential gene expression in this fungus, modulating its ability to respond to environmental stimuli.

  3. MFSD2A is a novel lung tumor suppressor gene modulating cell cycle and matrix attachment

    Directory of Open Access Journals (Sweden)

    Shames David S

    2010-03-01

    Full Text Available Abstract Background MFSD2A (major facilitator superfamily domain containing 2 gene maps on chromosome 1p34 within a linkage disequilibrium block containing genetic elements associated with progression of lung cancer. Results Here we show that MFSD2A expression is strongly downregulated in non-small cell lung cancer cell lines of different histotypes and in primary lung adenocarcinomas. Experimental modulation of MFSD2A in lung cancer cells is associated with alteration of mRNA levels of genes involved in cell cycle control and interaction with the extracellular matrix. Exogenous expression of MFSD2A in lung cancer cells induced a G1 block, impaired adhesion and migration in vitro, and significantly reduced tumor colony number in vitro (4- to 27-fold, P in vivo (~3-fold, P Conclusion Together these data suggest that MFSD2A is a novel lung cancer tumor suppressor gene that regulates cell cycle progression and matrix attachment.

  4. 5-HT receptors involved in initiation or modulation of motor patterns: opportunities for drug development.

    Science.gov (United States)

    Wallis, D I

    1994-08-01

    A clearer understanding of the role of descending systems in motor control can be achieved by using in vitro preparations of mammalian spinal cord that display patterned motor output, together with the use of selective pharmacological agents. It has been suggested that 5-HT is involved in either the initiation or the modulation of certain motor behaviours, and that it acts to enhance or regulate the motor pattern. Most attention has been paid to the locomotor rhythms underlying walking or swimming, and in respiratory pattern generation. In this article, David Wallis discusses the involvement of 5-HT1 and 5-HT2 receptors in these processes and the possible therapeutic relevance.

  5. Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.

    Directory of Open Access Journals (Sweden)

    Haipeng Ci

    Full Text Available BACKGROUND: The arginine vasopressin receptor (AVPR and oxytocin receptor (OXTR genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. METHODOLOGY/PRINCIPAL FINDINGS: This study assessed interactions between the clock gene (rs1801260, rs6832769 and the OXTR (rs1042778, rs237887 and AVPR1b (rs28373064 genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436. The Prosocial Tendencies Measure (PTM-R was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. CONCLUSIONS: The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.

  6. Transcriptional regulation of genes involved in retinoic acid metabolism in Senegalese sole larvae.

    Science.gov (United States)

    Boglino, Anaïs; Ponce, Marian; Cousin, Xavier; Gisbert, Enric; Manchado, Manuel

    2017-01-01

    The aim of this study was the characterization of transcriptional regulatory pathways mediated by retinoic acid (RA) in Senegalese sole larvae. For this purpose, pre-metamorphic larvae were treated with a low concentration of DEAB, an inhibitor of RALDH enzyme, until the end of metamorphosis. No differences in growth, eye migration or survival were observed. Nevertheless, gene expression analysis revealed a total of 20 transcripts differentially expressed during larval development and only six related with DEAB treatments directly involved in RA metabolism and actions (rdh10a, aldh1a2, crbp1, igf2r, rarg and cyp26a1) to adapt to a low-RA environment. In a second experiment, post-metamorphic larvae were exposed to the all-trans RA (atRA) observing an opposite regulation for those genes involved in RA synthesis and degradation (rdh10a, aldh1a2, crbp1 and cyp26a1) as well as other related with thyroid- (dio2) and IGF-axes (igfbp1, igf2r and igfbp5) to balance RA levels. In a third experiment, DEAB-pretreated post-metamorphic larvae were exposed to atRA and TTNPB (a specific RAR agonist). Both drugs down-regulated rdh10a and aldh1a2 and up-regulated cyp26a1 expression demonstrating their important role in RA homeostasis. Moreover, five retinoic receptors that mediate RA actions, the thyroid receptor thrb, and five IGF binding proteins changed differentially their expression. Overall, this study demonstrates that exogenous RA modulates the expression of some genes involved in the RA synthesis, degradation and cellular transport through RAR-mediated regulatory pathways establishing a negative feedback regulatory mechanism necessary to balance endogenous RA levels and gradients.

  7. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2017-08-01

    Full Text Available Silicon (Si, the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

  8. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Martin M. Herrmann

    2016-10-01

    Full Text Available After encounter with a central nervous system (CNS-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1 rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions.

  9. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  10. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    Science.gov (United States)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  11. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    Science.gov (United States)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  12. Identification of sugarcane genes involved in the purine synthesis pathway

    Directory of Open Access Journals (Sweden)

    Mario A. Jancso

    2001-12-01

    Full Text Available Nucleotide synthesis is of central importance to all cells. In most organisms, the purine nucleotides are synthesized de novo from non-nucleotide precursors such as amino acids, ammonia and carbon dioxide. An understanding of the enzymes involved in sugarcane purine synthesis opens the possibility of using these enzymes as targets for chemicals which may be effective in combating phytopathogen. Such an approach has already been applied to several parasites and types of cancer. The strategy described in this paper was applied to identify sugarcane clusters for each step of the de novo purine synthesis pathway. Representative sequences of this pathway were chosen from the National Center for Biotechnology Information (NCBI database and used to search the translated sugarcane expressed sequence tag (SUCEST database using the available basic local alignment search tool (BLAST facility. Retrieved clusters were further tested for the statistical significance of the alignment by an implementation (PRSS3 of the Monte Carlo shuffling algorithm calibrated using known protein sequences of divergent taxa along the phylogenetic tree. The sequences were compared to each other and to the sugarcane clusters selected using BLAST analysis, with the resulting table of p-values indicating the degree of divergence of each enzyme within different taxa and in relation to the sugarcane clusters. The results obtained by this strategy allowed us to identify the sugarcane proteins participating in the purine synthesis pathway.A via de síntese de purino nucleotídeos é considerada uma via de central importância para todas as células. Na maioria dos organismos, os purino nucleotídeos são sintetizados ''de novo'' a partir de precursores não-nucleotídicos como amino ácidos, amônia e dióxido de carbono. O conhecimento das enzimas envolvidas na via de síntese de purinas da cana-de-açúcar vai abrir a possibilidade do uso dessas enzimas como alvos no desenho

  13. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    Science.gov (United States)

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  14. The paf gene product modulates asexual development in Penicillium chrysogenum.

    Science.gov (United States)

    Hegedüs, Nikoletta; Sigl, Claudia; Zadra, Ivo; Pócsi, Istvan; Marx, Florentine

    2011-06-01

    Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum.

  15. Inhibition of corticosteroid-binding globulin gene expression by glucocorticoids involves C/EBPβ.

    Directory of Open Access Journals (Sweden)

    Nicolette Verhoog

    Full Text Available Corticosteroid-binding globulin (CBG, a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs. It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR, which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE are present in the Cbg promoter, putative binding sites for C/EBPβ, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPβ, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPβ protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPβ's involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP after DEX treatment indicated increased co-recruitment of C/EBPβ and GR to the Cbg promoter, while C/EBPβ knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPβ.

  16. Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.

    Directory of Open Access Journals (Sweden)

    Venkata Suresh Bonthala

    Full Text Available Bambara groundnut (Vigna subterranea (L. Verdc. is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01 under the sub-optimal (23°C and very sub-optimal (18°C temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.

  17. The PSE1 gene modulates lead tolerance in Arabidopsis

    Science.gov (United States)

    Fan, Tingting; Yang, Libo; Wu, Xi; Ni, Jiaojiao; Jiang, Haikun; Zhang, Qi’an; Fang, Ling; Sheng, Yibao; Ren, Yongbing; Cao, Shuqing

    2016-01-01

    Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40. PMID:27335453

  18. Sleeping Beauty mouse models identify candidate genes involved in gliomagenesis.

    Science.gov (United States)

    Vyazunova, Irina; Maklakova, Vilena I; Berman, Samuel; De, Ishani; Steffen, Megan D; Hong, Won; Lincoln, Hayley; Morrissy, A Sorana; Taylor, Michael D; Akagi, Keiko; Brennan, Cameron W; Rodriguez, Fausto J; Collier, Lara S

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.

  19. Irradiation at 660 nm modulates different genes central to wound healing in wounded and diabetic wounded cell models

    Science.gov (United States)

    Houreld, Nicolette N.

    2014-02-01

    Wound healing is a highly orchestrated process and involves a wide variety of cellular components, chemokines and growth factors. Laser irradiation has influenced gene expression and release of various growth factors, cytokines and extracellular matrix proteins involved in wound healing. This study aimed to determine the expression profile of genes involved in wound healing in wounded and diabetic wounded fibroblast cells in response to irradiation at a wavelength of 660 nm. Human skin fibroblast cells (WS1) were irradiated with a diode laser (wavelength 660 nm; fluence 5 J/cm2; power output 100 mW; power density 11 mW/cm2; spot size 9.1 cm2; exposure duration 7 min 35 s). Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used as a template in real-time qualitative polymerase chain reaction (qPCR). Eighty four genes involved in wound healing (extracellular matrix and cell adhesion; inflammatory cytokines and chemokines; growth factors; and signal transduction) were evaluated in wounded and diabetic wounded cell models. Forty eight hours post-irradiation, 6 genes were significantly upregulated and 8 genes were down-regulated in irradiated wounded cells, whereas 1 gene was up-regulated and 33 genes down-regulated in irradiated diabetic wounded cells. Irradiation of stressed fibroblast cells to a wavelength of 660 nm and a fluence of 5 J/cm2 modulated the expression of different genes involved in wound healing in different cell models. Modulation of these genes leads to the effects of laser irradiation seen both in vivo and in vitro, and facilitates the wound healing process.

  20. The microRNA (miRNA): overview of the RNA genes that modulate gene function.

    Science.gov (United States)

    Ying, Shao-Yao; Chang, Donald C; Lin, Shi-Lung

    2008-03-01

    MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted in the non-coding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, man-made intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented, hopefully providing a guideline for further miRNA and gene function studies.

  1. Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility

    Institute of Scientific and Technical Information of China (English)

    Anatoly SHMYGOL; Joanna GULLAM; Andrew BLANKS; Steven THORNTON

    2006-01-01

    Oxytocin is a small peptide hormone with multiple sites of action in human body.It regulates a large number of reproduction-related processes in all species.Particularly important is its ability to stimulate uterine contractility.This is achieved by multiple mechanisms involving sarcoplasmic reticulum Ca2+ release and sensitization of the contractile apparatus to Ca2+.In this paper,we review the data published by US and other groups on oxytocin-induced modulation of uterine contractility.We conclude that sensitization of contractile apparatus to Ca2+ is the most relevant physiological effect of oxytocin on human myometrium.

  2. Modulation of social behavior by the agouti pigmentation gene

    Directory of Open Access Journals (Sweden)

    Valeria eCarola

    2014-08-01

    Full Text Available Agouti is a secreted neuropeptide that acts as an endogenous antagonist of melanocortin receptors. Mice and rats lacking agouti (called non-agouti have dark fur due to a disinhibition of melanocortin signaling and pigment deposition in the hair follicle. Non-agouti animals have also been reported to exhibit altered behavior, despite no evidence for the expression of agouti outside the skin. Here we confirm that non-agouti mice show altered social behavior and uncover expression of agouti in the preputial gland, a sebaceous organ in the urinary tract that secretes molecules involved in social behavior. Non-agouti mice had enlarged preputial glands and altered levels of putative preputial pheromones and surgical removal of the gland reversed the behavioral phenotype. These findings demonstrate the existence of an autologous, out-of-skin pathway for the modulation of social behavior.

  3. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera)

    Science.gov (United States)

    Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling

    2017-01-01

    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3′-hydroxylase (NMCH), and 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This

  4. Functions of genes and enzymes involved in phenalinolactone biosynthesis.

    Science.gov (United States)

    Daum, Martina; Schnell, Hans-Jörg; Herrmann, Simone; Günther, Andreas; Murillo, Renato; Müller, Rolf; Bisel, Philippe; Müller, Michael; Bechthold, Andreas

    2010-07-05

    Phenalinolactones are novel terpene glycoside antibiotics produced by Streptomyces sp. Tü6071. Inactivation of three oxygenase genes (plaO2, plaO3 and plaO5), two dehydrogenase genes (plaU, plaZ) and one putative acetyltransferase gene (plaV) led to the production of novel phenalinolactone derivatives (PL HS6, PL HS7, PL HS2 and PL X1). Furthermore, the exact biosynthetic functions of two enzymes were determined, and their in vitro activities were demonstrated. PlaO1, an Fe(II)/alpha-ketoglutarate-dependent dioxygenase, is responsible for the key step in gamma-butyrolactone formation, whereas PlaO5, a cytochrome P450-dependent monooxygenase, catalyses the 1-C-hydroxylation of phenalinolactone D. In addition, stable isotope feeding experiments with biosynthetic precursors shed light on the origin of the carbons in the gamma-butyrolactone moiety.

  5. Bordetella pertussis modulates human macrophage defense gene expression.

    Science.gov (United States)

    Valdez, Hugo Alberto; Oviedo, Juan Marcos; Gorgojo, Juan Pablo; Lamberti, Yanina; Rodriguez, Maria Eugenia

    2016-08-01

    Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages.

  6. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    Science.gov (United States)

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  7. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore Cattle Are Modulators of Growth.

    Directory of Open Access Journals (Sweden)

    Anirene G T Pereira

    Full Text Available Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS, were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1 as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1, IGF2 (insulin like growth factor 2, GH1 (growth hormone 1, IGF1R (insulin like growth factor 1 receptor and GHR (growth hormone receptor, suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.

  8. Sleeping Beauty mouse models identify candidate genes involved in gliomagenesis.

    Directory of Open Access Journals (Sweden)

    Irina Vyazunova

    Full Text Available Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.

  9. Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis

    Science.gov (United States)

    Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  10. Genes involved in bovine milk-fat composition

    NARCIS (Netherlands)

    Schennink, A.

    2009-01-01

    The aim of the research described in this thesis was to identify genes that underlie the genetic variation in bovine milk-fat composition. The fat composition of milk samples from approximately 2,000 Dutch Holstein Friesian cows in their first lactation was measured by gas chromatography. Quantita

  11. Contextual modulation of pain in masochists: involvement of the parietal operculum and insula.

    Science.gov (United States)

    Kamping, Sandra; Andoh, Jamila; Bomba, Isabelle C; Diers, Martin; Diesch, Eugen; Flor, Herta

    2016-02-01

    Pain can be modulated by contextual stimuli, such as emotions, social factors, or specific bodily perceptions. We presented painful laser stimuli together with body-related masochistic visual stimuli to persons with and without preferred masochistic sexual behavior and used neutral, positive, and negative pictures with and without painful stimuli as control. Masochists reported substantially reduced pain intensity and unpleasantness in the masochistic context compared with controls but had unaltered pain perception in the other conditions. Functional magnetic resonance imaging revealed that masochists activated brain areas involved in sensory-discriminative processing rather than affective pain processing when they received painful stimuli on a masochistic background. The masochists compared with the controls displayed attenuated functional connectivity of the parietal operculum with the left and right insulae, the central operculum, and the supramarginal gyrus. Masochists additionally showed negative correlations between the duration of interest in masochistic activities and activation of areas involved in motor activity and affective processing. We propose that the parietal operculum serves as an important relay station that attenuates the affective-motivational aspects of pain in masochists. This novel mechanism of pain modulation might be related to multisensory integration and has important implications for the assessment and treatment of pain.

  12. Identification and validation of genes involved in cervical tumourigenesis

    Directory of Open Access Journals (Sweden)

    Bose Mayil

    2011-02-01

    Full Text Available Abstract Background Cervical cancer is the most common cancer among Indian women. This cancer has well defined pre-cancerous stages and evolves over 10-15 years or more. This study was undertaken to identify differentially expressed genes between normal, dysplastic and invasive cervical cancer. Materials and methods A total of 28 invasive cervical cancers, 4 CIN3/CIS, 4 CIN1/CIN2 and 5 Normal cervix samples were studied. We have used microarray technique followed by validation of the significant genes by relative quantitation using Taqman Low Density Array Real Time PCR. Immunohistochemistry was used to study the protein expression of MMP3, UBE2C and p16 in normal, dysplasia and cancers of the cervix. The effect of a dominant negative UBE2C on the growth of the SiHa cells was assessed using a MTT assay. Results Our study, for the first time, has identified 20 genes to be up-regulated and 14 down-regulated in cervical cancers and 5 up-regulated in CIN3. In addition, 26 genes identified by other studies, as to playing a role in cervical cancer, were also confirmed in our study. UBE2C, CCNB1, CCNB2, PLOD2, NUP210, MELK, CDC20 genes were overexpressed in tumours and in CIN3/CIS relative to both Normal and CIN1/CIN2, suggesting that they could have a role to play in the early phase of tumorigenesis. IL8, INDO, ISG15, ISG20, AGRN, DTXL, MMP1, MMP3, CCL18, TOP2A AND STAT1 were found to be upregulated in tumours. Using Immunohistochemistry, we showed over-expression of MMP3, UBE2C and p16 in cancers compared to normal cervical epithelium and varying grades of dysplasia. A dominant negative UBE2C was found to produce growth inhibition in SiHa cells, which over-expresses UBE2C 4 fold more than HEK293 cells. Conclusions Several novel genes were found to be differentially expressed in cervical cancer. MMP3, UBE2C and p16 protein overexpression in cervical cancers was confirmed by immunohistochemistry. These will need to be validated further in a larger

  13. Selection for tameness modulates the expression of heme related genes in silver foxes

    Directory of Open Access Journals (Sweden)

    Vilà Carles

    2007-04-01

    Full Text Available Abstract Background The genetic and molecular mechanisms of tameness are largely unknown. A line of silver foxes (Vulpes vulpes selected for non-aggressive behavior has been used in Russia since the 1960's to study the effect of domestication. We have previously compared descendants of these selected (S animals with a group of non-selected (NS silver foxes kept under identical conditions, and showed that changes in the brain transcriptome between the two groups are small. Unexpectedly, many of the genes showing evidence of differential expression between groups were related to hemoproteins. Results In this study, we use quantitative RT-PCR to demonstrate that the activity of heme related genes differ between S and NS foxes in three regions of the brain. Furthermore, our analyses also indicate that changes in mRNA levels of heme related genes can be well described by an additive polygenic effect. We also show that the difference in genetic background between the two lines of foxes is limited, as estimated by mitochondrial DNA divergence. Conclusion Our results indicate that selection for tameness can modify the expression of heme related genes in canid brain regions known to modulate emotions and behavior. The possible involvement of heme related genes in behavior is surprising. It is possible that hemoglobin modulates the behavior of canids by interaction with CO and NO signaling. Another possibility is that hemorphins, known to be produced after enzymatic cleavage of hemoglobin, are responsible for behavioral alterations. Thus, we hypothesize that hemoglobin metabolism can be a functionally relevant aspect of the domestic phenotype in foxes selected for tameness.

  14. Mouse models for genes involved in impaired spermatogenesis.

    Science.gov (United States)

    O'Bryan, M K; de Kretser, D

    2006-02-01

    Since the introduction of molecular biology and gene ablation technologies there have been substantial advances in our understanding of how sperm are made and fertilization occurs. There have been at least 150 different models of specifically altered gene function produced that have resulted in male infertility spanning virtually all aspects of the spermatogenic, sperm maturation and fertilization processes. While each has, or potentially will reveal, novel aspects of these processes, there is still much of which we have little knowledge. The current review is by no means a comprehensive list of these mouse models, rather it gives an overview of the potential for such models which up to this point have generally been 'knockouts'; it presents alternative strategies for the production of new models and emphasizes the importance of thorough phenotypic analysis in order to extract a maximum amount of information from each model.

  15. Involvement of distinct PKC gene products in T cell functions

    Directory of Open Access Journals (Sweden)

    Gottfried eBaier

    2012-08-01

    Full Text Available It is well established that members of the Protein kinase C(PKC family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the flavor of PKC in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.

  16. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes

    Science.gov (United States)

    Henneman, Peter; van der Sman-de Beer, Femke; Moghaddam, Payman Hanifi; Huijts, Petra; Stalenhoef, Anton FH; Kastelein, John JP; van Duijn, Cornelia M; Havekes, Louis M; Frants, Rune R; van Dijk, Ko Willems; Smelt, Augustinus HM

    2009-01-01

    Type III hyperlipoproteinemia (HLP) is mainly found in homozygous apolipoprotein (APO) E2 (R158C) carriers. Genetic factors contributing to the expression of type III HLP were investigated in 113 hyper- and 52 normolipidemic E2/2 subjects, by testing for polymorphisms in APOC3, APOA5, HL (hepatic lipase) and LPL (lipoprotein lipase) genes. In addition, 188 normolipidemic Dutch control panels (NDCP) and 141 hypertriglyceridemic (HTG) patients were genotyped as well. No associations were found for four HL gene polymorphisms and two LPL gene polymorphisms and type III HLP. The frequency of the rare allele of APOC3 3238 G>C and APOA5 −1131 T>C (in linkage disequilibrium) was significantly higher in type III HLP patients when compared with normolipidemic E2/2 subjects, 15.6 vs 6.9% and 15.1 vs 5.8%, respectively, (PC polymorphism and LPL c.27 G>A mutation were higher in type III HLP patients, though not significant. Some 58% of the type III HLP patients carried either the APOA5 −1131 T>C, c.56 G>C and/or LPL c.27 G>A mutation as compared to 27% of the normolipidemic APOE2/2 subjects (odds ratio 3.7, 95% confidence interval=1.8–7.5, PC/APOA5 −1131 T>C polymorphism showed a more severe hyperlipidemia than patients without this polymorphism. Polymorphisms in lipolysis genes associate with the expression and severity of type III HLP in APOE2/2. PMID:19034316

  17. Mining susceptibility gene modules and disease risk genes from SNP data by combining network topological properties with support vector regression.

    Science.gov (United States)

    Hua, Lin; Zhou, Ping; Liu, Hong; Li, Lin; Yang, Zheng; Liu, Zhi-cheng

    2011-11-21

    Genome-wide association study is a powerful approach to identify disease risk loci. However, the molecular regulatory mechanisms for most complex diseases are still not well understood. Therefore, further investigating the interplay between genetic factors and biological networks is important for elucidating the molecular mechanisms of complex diseases. Here, we proposed a novel framework to identify susceptibility gene modules and disease risk genes by combining network topological properties with support vector regression from single nucleotide polymorphism (SNP) level. We assigned risk SNPs to genes using the University of California at Santa Cruz (UCSC) genome database, and then mapped these genes to protein-protein interaction (PPI) networks. The gene modules implicated by hub genes were extracted using the PPI networks and the topological property was analyzed for these gene modules. For each gene module, risk feature genes were determined by topological property analysis and support vector regression. As a result, five shared risk feature genes, CD80, EGFR, FN1, GSK3B and TRAF6 were found and proven to be associated with rheumatoid arthritis by previous reports. Our approach showed a good performance in comparison with other approaches and can be used for prioritizing candidate genes associated with complex diseases.

  18. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Valero-Jiménez, Claudio A; Wiegers, Harm; Zwaan, Bas J; Koenraadt, Constantianus J M; van Kan, Jan A L

    2016-01-01

    Pest insects cause severe damage to global crop production and pose a threat to human health by transmitting diseases. Traditionally, chemical pesticides (insecticides) have been used to control such pests and have proven to be effective only for a limited amount of time because of the rapid spread of genetic insecticide resistance. The basis of this resistance is mostly caused by (co)dominant mutations in single genes, which explains why insecticide use alone is an unsustainable solution. Therefore, robust solutions for insect pest control need to be sought in alternative methods such as biological control agents for which single-gene resistance is less likely to evolve. The entomopathogenic fungus Beauveria bassiana has shown potential as a biological control agent of insects, and insight into the mechanisms of virulence is essential to show the robustness of its use. With the recent availability of the whole genome sequence of B. bassiana, progress in understanding the genetics that constitute virulence toward insects can be made more quickly. In this review we divide the infection process into distinct steps and provide an overview of what is currently known about genes and mechanisms influencing virulence in B. bassiana. We also discuss the need for novel strategies and experimental methods to better understand the infection mechanisms deployed by entomopathogenic fungi. Such knowledge can help improve biocontrol agents, not only by selecting the most virulent genotypes, but also by selecting the genotypes that use combinations of virulence mechanisms for which resistance in the insect host is least likely to develop.

  19. Modulated expression of genes associated with NO signal transduction contributes to the cholesterol-lowering effect of electro-acupuncture.

    Science.gov (United States)

    Li, Ling; Tan, Guang-Hong; Zhang, Yi-Zheng

    2012-07-01

    Electro-acupuncture (EA) at Fenglong acupoint (ST40) can lower the levels of serum cholesterol and triacylglycerols. To study the hepatic genes responsible for the cholesterol-lowering effect of EA, suppression subtractive hybridization combined with the switch mechanism at the 5'-end of RNA template cDNA synthesis and long-distance PCR were employed using hepatic tissues from hypercholesterolemia and EA-treated mice. 68 % of the identified genes are involved in metabolism, immune response, and signal transduction pathways. Real-time PCR and western blot indicate that EA at ST40 induces the expression of nNOS and Mt1, two genes involved in NO signal transduction. EA treatment for hypercholesterolemia thus involves the modulation of several biological pathways and provides a physiological link between NO signal transduction and the cholesterol-lowering effect of EA.

  20. Characterization of the Gene Cluster Involved in Isoprene Metabolism in Rhodococcus sp. Strain AD45

    NARCIS (Netherlands)

    van Hylckama Vlieg, Johan E.T.; Leemhuis, Hans; Lutje Spelberg, Jeffrey H.; Janssen, Dick B.

    2000-01-01

    The genes involved in isoprene (2-methyl-1,3-butadiene) utilization in Rhodococcus sp. strain AD45 were cloned and characterized. Sequence analysis of an 8.5-kb DNA fragment showed the presence of 10 genes of which 2 encoded enzymes which were previously found to be involved in isoprene degradation:

  1. Gene Expression Analysis for the Identification of Genes Involved in Early Tumour Development

    Science.gov (United States)

    Forte, Stefano; Scarpulla, Salvatore; Lagana, Alessandro; Memeo, Lorenzo; Gulisano, Massimo

    Prostatic tissues can undergo to cancer insurgence and prostate cancer is one of the most common types of malignancies affecting adult men in the United States. Primary adenocarcinoma of the seminal vesi-cles (SVCA) is a very rare neoplasm with only 48 histologically confirmed cases reported in the European and United States literature. Prostatic tissues, seminal vesicles and epididymis belongs all to the same microenvironment, shows a very close morphology and share the same embryological origin. Despite these common features the rate of cancer occurrence is very different. The understanding of molecular differences between non neoplastic prostatic tissues and non neoplastic epididymis or seminal vesicles may suggest potential mechanisms of resistance to tumour occurrence. The comparison of expression patterns of non neoplastic prostatic and seminal vesicles tissues to identify differentially expressed genes can help researchers in the identification of biological actors involved in the early stages of the tumour development.

  2. Teaching Earth Sciences as an interdisciplinary subject: Novel module design involving research literature

    Science.gov (United States)

    Tong, Vincent C. H.

    2010-05-01

    The study of Earth Sciences requires an interdisciplinary approach as it involves understanding scientific knowledge originating from a wide spectrum of research areas. Not only does it include subjects ranging from, for instance, hydrogeology to deep crustal seismology and from climate science to oceanography, but it also has many direct applications in closely related disciplines such as environmental engineering and natural resources management. While research crossing traditional disciplinary boundaries in geosciences is becoming increasingly common, there is only limited integration of interdisciplinary research in the teaching of the subject. Given that the transition from undergraduate education based on subject modules to postgraduate interdisciplinary research is never easy, such integration is a highly desirable pedagogical approach at both undergraduate and postgraduate levels. My presentation is based on a recent teaching project involving novel design of an undergraduate course. The course is implemented in order to address the synergy between research and teaching (Tong, 2009). This project has been shown to be effective and successful in teaching geosciences undergraduates at the University of London. The module consists of studying core geophysical principles and linking them directly to a selection of recently published research papers in a wide range of interdisciplinary applications. Research reviewing and reporting techniques are systematically developed, practised and fully integrated into teaching of the core scientific theories. A fully-aligned assignment with a feedback website invites the students to reflect on the scientific knowledge and the study skills related to research literature they have acquired in the course. This teaching project has been recognized by a teaching award (http://www.clpd.bbk.ac.uk/staff/BETA). In this presentation, I will discuss how undergraduate teaching with a focus on research literature in Earth Sciences can

  3. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  4. big bang gene modulates gut immune tolerance in Drosophila

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y.; Boulianne, Gabrielle L.; Hoffmann, Jules A.; Matt, Nicolas; Reichhart, Jean-Marc

    2013-01-01

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  5. Genes Involved in Human Ribosome Biogenesis areTranscriptionally Upregulated in Colorectal Cancer

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Lamy, Philippe; Ørntoft, Torben Falck

    2009-01-01

    Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p<10-3) when compared to normal mucosa. Overexpression was independent of microsate......Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p... of rRNA processing genes points towards a coordinated process enabling the overproduction of matured ribosomal structures....

  6. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  7. Identification of genes involved in radioresistance of nasopharyngeal carcinoma by integrating gene ontology and protein-protein interaction networks.

    Science.gov (United States)

    Guo, Ya; Zhu, Xiao-Dong; Qu, Song; Li, Ling; Su, Fang; Li, Ye; Huang, Shi-Ting; Li, Dan-Rong

    2012-01-01

    Radioresistance remains one of the important factors in relapse and metastasis of nasopharyngeal carcinoma. Thus, it is imperative to identify genes involved in radioresistance and explore the underlying biological processes in the development of radioresistance. In this study, we used cDNA microarrays to select differential genes between radioresistant CNE-2R and parental CNE-2 cell lines. One hundred and eighty-three significantly differentially expressed genes (pgenes were upregulated and 45 genes were downregulated in CNE-2R. We further employed publicly available bioinformatics related software, such as GOEAST and STRING to examine the relationship among differentially expressed genes. The results show that these genes were involved in type I interferon-mediated signaling pathway biological processes; the nodes tended to have high connectivity with the EGFR pathway, IFN-related pathways, NF-κB. The node STAT1 has high connectivity with other nodes in the protein-protein interaction (PPI) networks. Finally, the reliability of microarray data was validated for selected genes by semi-quantitative RT-PCR and Western blotting. The results were consistent with the microarray data. Our study suggests that microarrays combined with gene ontology and protein interaction networks have great value in the identification of genes of radioresistance in nasopharyngeal carcinoma; genes involved in several biological processes and protein interaction networks may be relevant to NPC radioresistance; in particular, the verified genes CCL5, STAT1-α, STAT2 and GSTP1 may become potential biomarkers for predicting NPC response to radiotherapy.

  8. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  9. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  10. Evidence suggesting possible SCA1 gene involvement in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, S.R.; Wange, S.; Sun, C. [NIDR, Bethesda, MD (United States)] [and others

    1994-09-01

    Several findings suggest a possible role for the SCA1 gene on chromosome 6p in some cases of schizophrenia. First, linkage analyses in Irish pedigrees provided LOD scores up to 3.0 for one model tested using microsatellites closely linked to SCA1. Reanalysis of these data using affected sibpair methods yielded a significant result (p = 0.01) for one marker. An attempt to replicate this linkage finding was made using 44 NIMH families (206 individuals, 80 affected) and 12 Utah families (120 individuals, 49 affected). LOD scores were negative in these new families, even allowing for heterogeneity, as were results using affected sibpair methods. However, one Utah family provided a LOD score of 1.3. We also screened the SCA1 trinucleotide repeat to search for expansions characteristic of this disorder in these families and in 38 additional unrelated schizophrenics. We found 1 schizophrenic with 41 repeats, which is substantially larger than the maximum size of 36 repeats observed in previous studies of several hundred controls. We are now assessing whether the distribution of SCA1 repeats differs significantly in schizophrenia versus controls. Recent reports suggest possible anticipation in schizophrenia (also characteristic of SCA1) and a few cases of psychiatric symptoms suggesting schizophrenia have been observed in the highly related disorder DRPLA (SCA2), which is also based on trinucleotide repeat expansion. These findings suggest that further investigations of this gene and chromosome region may be a priority.

  11. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  12. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression

    KAUST Repository

    Duc, Céline

    2017-07-07

    Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Altogether, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.

  13. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces

    Directory of Open Access Journals (Sweden)

    Chakrabarti Bhismadev

    2011-06-01

    Full Text Available Abstract Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC. However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1 gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking. Methods A total of 30 volunteers (13 males and 17 females from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380 were associated with differential gaze duration for happy (but not disgust faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing

  14. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis.

    Science.gov (United States)

    Rosner, Margit; Dolznig, Helmut; Schipany, Katharina; Mikula, Mario; Brandau, Oliver; Hengstschläger, Markus

    2011-09-01

    Besides their putative usage for therapies, stem cells are a promising tool for functional studies of genes involved in human genetic diseases or oncogenesis. For this purpose induced pluripotent stem (iPS) cells can be derived from patients harbouring specific mutations. In contrast to adult stem cells, iPS cells are pluripotent and can efficiently be grown in culture. However, iPS cells are modulated due to the ectopic induction of pluripotency, harbour other somatic mutations accumulated during the life span of the source cells, exhibit only imperfectly cleared epigenetic memory of the source cell, and are often genomically instable. In addition, iPS cells from patients only allow the investigation of mutations, which are not prenatally lethal. Embryonic stem (ES) cells have a high proliferation and differentiation potential, but raise ethical issues. Human embryos, which are not transferred in the course of in vitro fertilization, because of preimplantation genetic diagnosis of a genetic defect, are still rarely donated for the establishment of ES cell lines. In addition, their usage for studies on gene functions for oncogenesis is hampered by the fact the ES cells are already tumorigenic per se. In 2003 amniotic fluid stem (AFS) cells have been discovered, which meanwhile have been demonstrated to harbour the potential to differentiate into cells of all three germ layers. Monoclonal human AFS cell lines derived from amniocenteses have a high proliferative potential, are genomically stable and are not associated with ethical controversies. Worldwide amniocenteses are performed for routine human genetic diagnosis. We here discuss how generation and banking of monoclonal human AFS cell lines with specific chromosomal aberrations or monogenic disease mutations would allow to study the functional consequences of disease causing mutations. In addition, recently a protocol for efficient and highly reproducible siRNA-mediated long-term knockdown of endogenous gene

  15. Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved

    Science.gov (United States)

    Castañeda-Bueno, María; Cervantes-Perez, Luz Graciela; Rojas-Vega, Lorena; Arroyo-Garza, Isidora; Vázquez, Norma; Moreno, Erika

    2014-01-01

    Modulation of Na+-Cl− cotransporter (NCC) activity is essential to adjust K+ excretion in the face of changes in dietary K+ intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K+ diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K+-citrate diets for 4 days. The low-K+ diet decreased and high-K+ diet increased plasma aldosterone levels, but both diets were associated with increased phosphorylation of NCC (phospho-NCC, Thr44/Thr48/Thr53) and phosphorylation of SPAK/oxidative stress responsive kinase 1 (phospho-SPAK/OSR1, Ser383/Ser325). The effect of the low-K+ diet on SPAK phosphorylation persisted in WNK4 knockout and SPAK knockin mice, whereas the effects of ANG II on NCC and SPAK were lost in both mouse colonies. This suggests that for NCC activation by ANG II, integrity of the WNK4/SPAK pathway is required, whereas for the low-K+ diet, SPAK phosphorylation occurred despite the absence of WNK4, suggesting the involvement of another WNK (WNK1 or WNK3). Additionally, because NCC activation also occurred in SPAK knockin mice, it is possible that loss of SPAK was compensated by OSR1. The positive effect of the high-K+ diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K+-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K+ increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K+ diet. PMID:24761002

  16. Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.

    Science.gov (United States)

    Castañeda-Bueno, María; Cervantes-Perez, Luz Graciela; Rojas-Vega, Lorena; Arroyo-Garza, Isidora; Vázquez, Norma; Moreno, Erika; Gamba, Gerardo

    2014-06-15

    Modulation of Na(+)-Cl(-) cotransporter (NCC) activity is essential to adjust K(+) excretion in the face of changes in dietary K(+) intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K(+) diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K(+)-citrate diets for 4 days. The low-K(+) diet decreased and high-K(+) diet increased plasma aldosterone levels, but both diets were associated with increased phosphorylation of NCC (phospho-NCC, Thr(44)/Thr(48)/Thr(53)) and phosphorylation of SPAK/oxidative stress responsive kinase 1 (phospho-SPAK/OSR1, Ser(383)/Ser(325)). The effect of the low-K(+) diet on SPAK phosphorylation persisted in WNK4 knockout and SPAK knockin mice, whereas the effects of ANG II on NCC and SPAK were lost in both mouse colonies. This suggests that for NCC activation by ANG II, integrity of the WNK4/SPAK pathway is required, whereas for the low-K(+) diet, SPAK phosphorylation occurred despite the absence of WNK4, suggesting the involvement of another WNK (WNK1 or WNK3). Additionally, because NCC activation also occurred in SPAK knockin mice, it is possible that loss of SPAK was compensated by OSR1. The positive effect of the high-K(+) diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K(+)-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K(+) increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K(+) diet. Copyright © 2014 the American Physiological Society.

  17. Characterization of genes involved in ceramide metabolism in the Pacific oyster (Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Timmins-Schiffman Emma

    2012-09-01

    Full Text Available Abstract Background The lipid signaling molecule, ceramide, is a key component of the vertebrate stress response, however, there is limited information concerning its role in invertebrate species. In order to identify genes involved in ceramide metabolism in bivalve molluscs, Pacific oyster genomic resources were examined for genes associated with ceramide metabolism and signaling. Results Several genes were identified including full-length sequences characterized for serine palmitoyltransferase-1, 3-ketodihydrosphingosine reductase, acid ceramidase, and ceramide glucosyltransferase. Genes involved in ceramide synthesis and metabolism are conserved across taxa in both form and function. Expression analysis as assessed by quantitative PCR indicated all genes were expressed at high levels in gill tissue. The role of the ceramide pathway genes in the invertebrate stress response was also explored by measuring expression levels in adult oysters exposed to Vibrio vulnificus. Two genes demonstrated increased expression during the bacterial challenge: a gene involved in hydrolytic breakdown of ceramide (acid ceramidase and a gene involved in de novo generation of ceramide (3-ketodihydrosphingosine reductase, suggesting a possible role of ceramide in the invertebrate stress and immune responses. Conclusions In silico and laboratory results support that Pacific oysters have the basic components of the ceramide metabolism pathway. These results also indicate that ceramide may have analogous functions in vertebrates and invertebrates. The gene expression pattern of acid ceramidase and 3-kethodihydrosphingosine reductase in response to bacterial exposure especially supports that ceramide and sphingolipid metabolism may be involved in the oyster’s stress and/or immune responses.

  18. Characterization of genes involved in ceramide metabolism in the Pacific oyster (Crassostrea gigas).

    Science.gov (United States)

    Timmins-Schiffman, Emma; Roberts, Steven

    2012-09-13

    The lipid signaling molecule, ceramide, is a key component of the vertebrate stress response, however, there is limited information concerning its role in invertebrate species. In order to identify genes involved in ceramide metabolism in bivalve molluscs, Pacific oyster genomic resources were examined for genes associated with ceramide metabolism and signaling. Several genes were identified including full-length sequences characterized for serine palmitoyltransferase-1, 3-ketodihydrosphingosine reductase, acid ceramidase, and ceramide glucosyltransferase. Genes involved in ceramide synthesis and metabolism are conserved across taxa in both form and function. Expression analysis as assessed by quantitative PCR indicated all genes were expressed at high levels in gill tissue. The role of the ceramide pathway genes in the invertebrate stress response was also explored by measuring expression levels in adult oysters exposed to Vibrio vulnificus. Two genes demonstrated increased expression during the bacterial challenge: a gene involved in hydrolytic breakdown of ceramide (acid ceramidase) and a gene involved in de novo generation of ceramide (3-ketodihydrosphingosine reductase), suggesting a possible role of ceramide in the invertebrate stress and immune responses. In silico and laboratory results support that Pacific oysters have the basic components of the ceramide metabolism pathway. These results also indicate that ceramide may have analogous functions in vertebrates and invertebrates. The gene expression pattern of acid ceramidase and 3-kethodihydrosphingosine reductase in response to bacterial exposure especially supports that ceramide and sphingolipid metabolism may be involved in the oyster's stress and/or immune responses.

  19. Chloroquine mediated modulation of Anopheles gambiae gene expression.

    Directory of Open Access Journals (Sweden)

    Patrícia Abrantes

    Full Text Available BACKGROUND: Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.

  20. Identification and validation of genes involved in gastric tumorigenesis

    Directory of Open Access Journals (Sweden)

    Shirley Sundersingh

    2010-11-01

    Full Text Available Abstract Background Gastric cancer is one of the common cancers seen in south India. Unfortunately more than 90% are advanced by the time they report to a tertiary centre in the country. There is an urgent need to characterize these cancers and try to identify potential biomarkers and novel therapeutic targets. Materials and methods We used 24 gastric cancers, 20 Paired normal (PN and 5 apparently normal gastric tissues obtained from patients with non-gastric cancers (Apparently normal - AN for the microarray study followed by validation of the significant genes (n = 63 by relative quantitation using Taqman Low Density Array Real Time PCR. We then used a custom made Quantibody protein array to validate the expression of 15 proteins in gastric tissues (4 AN, 9 PN and 9 gastric cancers. The same array format was used to study the plasma levels of these proteins in 58 patients with gastric cancers and 18 from patients with normal/non-malignant gastric conditions. Results Seventeen genes (ASPN, CCL15/MIP-1δ, MMP3, SPON2, PRSS2, CCL3, TMEPAI/PMEPAI, SIX3, MFNG, SOSTDC1, SGNE1, SST, IGHA1, AKR1B10, FCGBP, ATP4B, NCAPH2 were shown to be differentially expressed between the tumours and the paired normal, for the first time. EpCAM (p = 0.0001, IL8 (p = 0.0003, CCL4/MIP-1β (p = 0.0026, CCL20/MIP-3α (p = 0.039 and TIMP1 (p = 0.0017 tissue protein levels were significantly different (Mann Whitney U test between tumours versus AN & PN. In addition, median plasma levels of IL8, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, PDGFR-B and TIMP1 proteins were significantly different between the non-malignant group and the gastric cancer group. The post-surgical levels of EpCAM, IGFBP3, IL8, CXCL10/IP10, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, SPP1/OPN and PDGFR-B showed a uniform drop in all the samples studied. Conclusions Our study has identified several genes differentially expressed in gastric cancers, some for the first time. Some of these have been confirmed at

  1. Salt-induced hydrogen peroxide is involved in modulation of antioxidant enzymes in cotton

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Xiangqian Li; Jinyao Li; Qian Bao; Fuchun Zhang; Gulinuer Tulaxi; Zhicai Wang

    2016-01-01

    Salt severely restricts cotton (Gossypium hirsutum) growth and production. The present study was undertaken to study the effect of salt-induced hydrogen peroxide (H2O2) on antioxidant enzymes in cotton. NaCl treatment or exogenous H2O2 was used to investigate the relationship between H2O2 content and levels of antioxidant enzymes including superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT), as well as the transcriptional levels of corresponding genes. H2O2 content increased within 24 h following 200 mmol L–1 NaCl treatment. Both NaCl-induced and exogenous H2O2 increased the activity of antioxidant enzymes including APX and SOD and upregulated the transcriptional levels of GhcAPX1, GhFeSOD, and GhchlCSD. These increased activities and upregulated transcriptional levels were inhibited when the salt-induced H2O2 was scavenged by NAC. These results indicate that salt-induced H2O2 as a second signaling messenger modulates APX and SOD activities by regulating the transcription levels of corresponding genes, alleviating oxidative stress, and increasing salt tolerance in cotton.

  2. Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs

    Science.gov (United States)

    Kumar, Niraj; Jia, Tao; Zarringhalam, Kourosh; Kulkarni, Rahul V.

    2016-10-01

    The sporadic nature of gene expression at the single-cell level—long periods of inactivity punctuated by bursts of mRNA or protein production—plays a critical role in diverse cellular processes. To elucidate the cellular role of bursting in gene expression, synthetic biology approaches have been used to design simple genetic circuits with bursty mRNA or protein production. Understanding how such genetic circuits can be designed with the ability to control burst-related parameters requires the development of quantitative stochastic models of gene expression. In this work, we analyze stochastic models for the regulation of gene expression bursts by strongly interacting small RNAs. For the parameter range considered, results based on mean-field approaches are significantly inaccurate and alternative analytical approaches are needed. Using simplifying approximations, we obtain analytical results for the corresponding steady-state distributions that are in agreement with results from stochastic simulations. These results indicate that regulation by small RNAs, in the strong interaction limit, can be used to effectively modulate the frequency of bursting. We explore the consequences of such regulation for simple genetic circuits involving feedback effects and switching between promoter states.

  3. Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs.

    Science.gov (United States)

    Kumar, Niraj; Jia, Tao; Zarringhalam, Kourosh; Kulkarni, Rahul V

    2016-10-01

    The sporadic nature of gene expression at the single-cell level-long periods of inactivity punctuated by bursts of mRNA or protein production-plays a critical role in diverse cellular processes. To elucidate the cellular role of bursting in gene expression, synthetic biology approaches have been used to design simple genetic circuits with bursty mRNA or protein production. Understanding how such genetic circuits can be designed with the ability to control burst-related parameters requires the development of quantitative stochastic models of gene expression. In this work, we analyze stochastic models for the regulation of gene expression bursts by strongly interacting small RNAs. For the parameter range considered, results based on mean-field approaches are significantly inaccurate and alternative analytical approaches are needed. Using simplifying approximations, we obtain analytical results for the corresponding steady-state distributions that are in agreement with results from stochastic simulations. These results indicate that regulation by small RNAs, in the strong interaction limit, can be used to effectively modulate the frequency of bursting. We explore the consequences of such regulation for simple genetic circuits involving feedback effects and switching between promoter states.

  4. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ariadna Amador

    Full Text Available The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression.

  5. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes.

    Science.gov (United States)

    Asan, Alparsan; Raiders, Stephan A; Priess, James R

    2016-04-01

    Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik's cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells.

  6. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes.

    Directory of Open Access Journals (Sweden)

    Alparsan Asan

    2016-04-01

    Full Text Available Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik's cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells.

  7. Cognitive involvement by negative modulation of histamine H2 receptors in passive avoidance task in mice.

    Science.gov (United States)

    Onodera, K; Miyazaki, S; Imaizumi, M

    1998-05-01

    In this study, the intracerebroventricular administration of 4-methylhistamine (3 and 10 micrograms/head), a histamine H2 receptor agonist, shortened the step-through latency in the retention trial using a step-through passive avoidance task in mice. This deteriorating effect of 4-methylhistamine (3 micrograms/head) was clearly antagonized by pretreatment with zolantidine (10 mg/kg, i.p.), a histamine H2 receptor antagonist, 20 min before an acquisition trial. Zolantidine alone at the dose tested had no effect. Thus, it is likely that activation of histamine H2 receptors has a deteriorating effect on avoidance learning in mice. The present results indicate the cognitive involvement by negative modulation of histamine H2 receptors in passive avoidance task in mice.

  8. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Directory of Open Access Journals (Sweden)

    Zongze eShao

    2013-05-01

    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  9. Involvement of calcitonin gene-related peptide in migraine

    DEFF Research Database (Denmark)

    Lassen, L H; Jacobsen, V B; Haderslev, P A

    2008-01-01

    mug/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V (mean)) in the middle cerebral artery (MCA), as well as the heart......Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (halphaCGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of halphaCGRP (2...

  10. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    Directory of Open Access Journals (Sweden)

    Villalobos David P

    2012-06-01

    Full Text Available Abstract Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait. that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood. Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes

  11. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-25

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

  12. Parents' Involvement in Their Children's Education. Tierra de Oportunidad Module 12. LAES: Latino Adult Education Services Project.

    Science.gov (United States)

    Kissam, Ed; Dorsey, Holda

    This module, which may be used as the basis for a workshop or as a special topic unit in adult basic education or English-as-a-Second-Language (ESL) courses, addresses how and why parents should become involved in their children's learning. Topics covered include the following: involvement opportunities; identifying the hierarchy of school…

  13. In silico Analysis of Candidate Genes Involved in Sanfilippo Syndrome

    Directory of Open Access Journals (Sweden)

    Mehreen Zaka

    2015-04-01

    Full Text Available Sanfilippo syndrome is an autosomal recessive lysosomal storage disorder, caused by the deficiency of enzymes that play an important role in degradation of glycosaminoglycans and also called mucopolysaccharidosis III. Mucopolysaccharidosis is genetic disorder. Here, we searched the candidate genes for Sanfilippo syndrome by using BLAST with the query sequence. As no suitable homology was found against the query sequence we moved towards threading approach. The threading approach was carried out by employing online CPH models and LOMETS tools. Through present research, domains of the proteins were predicted by utilizing the Domain Sweep tools, GNS and two domains were reported. Motif search reported the maximum number of motifs for Type D protein as compared to other types. All four proteins were totally soluble proteins and no transmembrane domains were found. In future, these results and predicted 3D structures can be used for the molecular docking studies, binding activities and protein-protein interactions for all the four types of Sanfilippo syndrome.

  14. Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress.

    Science.gov (United States)

    Rose, Noah H; Seneca, Francois O; Palumbi, Stephen R

    2015-12-28

    Organisms respond to environmental variation partly through changes in gene expression, which underlie both homeostatic and acclimatory responses to environmental stress. In some cases, so many genes change in expression in response to different influences that understanding expression patterns for all these individual genes becomes difficult. To reduce this problem, we use a systems genetics approach to show that variation in the expression of thousands of genes of reef-building corals can be explained as variation in the expression of a small number of coexpressed "modules." Modules were often enriched for specific cellular functions and varied predictably among individuals, experimental treatments, and physiological state. We describe two transcriptional modules for which expression levels immediately after heat stress predict bleaching a day later. One of these early "bleaching modules" is enriched for sequence-specific DNA-binding proteins, particularly E26 transformation-specific (ETS)-family transcription factors. The other module is enriched for extracellular matrix proteins. These classes of bleaching response genes are clear in the modular gene expression analysis we conduct but are much more difficult to discern in single gene analyses. Furthermore, the ETS-family module shows repeated differences in expression among coral colonies grown in the same common garden environment, suggesting a heritable genetic or epigenetic basis for these expression polymorphisms. This finding suggests that these corals harbor high levels of gene-network variation, which could facilitate rapid evolution in the face of environmental change.

  15. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mingxue Cui

    2006-05-01

    Full Text Available In Caenorhabditis elegans, vulval cell-fate specification involves the activities of multiple signal transduction and regulatory pathways that include a receptor tyrosine kinase/Ras/mitogen-activated protein kinase pathway and synthetic multivulva (SynMuv pathways. Many genes in the SynMuv pathways encode transcription factors including the homologs of mammalian Rb, E2F, and components of the nucleosome-remodeling deacetylase complex. To further elucidate the functions of the SynMuv genes, we performed a genome-wide RNA interference (RNAi screen to search for genes that antagonize the SynMuv gene activities. Among those that displayed a varying degree of suppression of the SynMuv phenotype, 32 genes are potentially involved in chromatin remodeling (called SynMuv suppressor genes herein. Genetic mutations of two representative genes (zfp-1 and mes-4 were used to further characterize their positive roles in vulval induction and relationships with Ras function. Our analysis revealed antagonistic roles of the SynMuv suppressor genes and the SynMuv B genes in germline-soma distinction, RNAi, somatic transgene silencing, and tissue specific expression of pgl-1 and the lag-2/Delta genes. The opposite roles of these SynMuv B and SynMuv suppressor genes on transcriptional regulation were confirmed in somatic transgene silencing. We also report the identifications of ten new genes in the RNAi pathway and six new genes in germline silencing. Among the ten new RNAi genes, three encode homologs of proteins involved in both protein degradation and chromatin remodeling. Our findings suggest that multiple chromatin remodeling complexes are involved in regulating the expression of specific genes that play critical roles in developmental decisions.

  16. Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation.

    Science.gov (United States)

    Vimolmangkang, Sornkanok; Zheng, Danman; Han, Yuepeng; Khan, M Awais; Soria-Guerra, Ruth Elena; Korban, Schuyler S

    2014-01-15

    Although the mechanism of light regulation of color pigmentation of apple fruit is not fully understood, it has been shown that light can regulate expression of genes in the anthocyanin biosynthesis pathway by inducing transcription factors (TFs). Moreover, expression of genes encoding enzymes involved in this pathway may be coordinately regulated by multiple TFs. In this study, fruits on trees of apple cv. Red Delicious were covered with paper bags during early stages of fruit development and then removed prior to maturation to analyze the transcriptome in the exocarp of apple fruit. Comparisons of gene expression profiles of fruit covered with paper bags (dark-grown treatment) and those subjected to 14 h light treatment, following removal of paper bags, were investigated using an apple microarray of 40,000 sequences. Expression profiles were investigated over three time points, at one week intervals, during fruit development. Overall, 736 genes with expression values greater than two-fold were found to be modulated by light treatment. Light-induced products were classified into 19 categories with highest scores in primary metabolism (17%) and transcription (12%). Based on the Arabidopsis gene ontology annotation, 18 genes were identified as TFs. To further confirm expression patterns of flavonoid-related genes, these were subjected to quantitative RT-PCR (qRT-PCR) using fruit of red-skinned apple cv. Red Delicious and yellow-skinned apple cv. Golden Delicious. Of these, two genes showed higher levels of expression in 'Red Delicious' than in 'Golden Delicious', and were likely involved in the regulation of fruit red color pigmentation.

  17. The hnRNP 2H9 gene, which is involved in the splicing reaction, is a multiply spliced gene

    DEFF Research Database (Denmark)

    Honoré, B

    2000-01-01

    The hnRNP 2H9 gene products are involved in the splicing process and participate in early heat shock-induced splicing arrest. By combining low/high stringency hybridisation, database search, Northern and Western blotting it is shown that the gene is alternatively spliced into at least six transcr...

  18. IL-37 Confers Protection against Mycobacterial Infection Involving Suppressing Inflammation and Modulating T Cell Activation

    Science.gov (United States)

    Yang, Hua; He, Xin; Ji, Qun; Bai, Wenjuan; Chen, Hao; Chen, Jianxia; Peng, Wenxia; Liu, Siyu; Liu, Zhonghua; Ge, Baoxue

    2017-01-01

    Interleukin-37 (IL-37), a novel member of the IL-1 family, plays fundamental immunosuppressive roles by broadly reducing both innate inflammation and acquired immunity, but whether it is involved in the pathogenesis of tuberculosis (TB) has not been clearly elucidated. In this study, single nucleotide polymorphism (SNP) analysis demonstrated an association of the genetic variant rs3811047 of IL-37 with TB susceptibility. In line with previous report, a significant elevated IL-37 abundance in the sera and increased expression of IL-37 protein in the peripheral blood mononuclear cells (PBMC) were observed in TB patients in comparison to healthy controls. Moreover, release of IL-37 were detected in either macrophages infected with Mycobacterium tuberculosis (Mtb) or the lung of BCG-infected mice, concurrent with reduced production of proinflammatory cytokines including IL-6 and TNF-α. Furthermore, in contrast to wild-type mice, BCG-infected IL-37-Tg mice manifested with reduced mycobacterial burden and tissue damage in the lung, accompanied by higher frequency of Th1 cell and less frequencies of regulatory T cells and Th17 cells in the spleen. Taken together, our findings demonstrated that IL-37 conferred resistance to Mtb infection possibly involving suppressing detrimental inflammation and modulating T cell responses. These findings implicated that IL-37 may be employed as a new molecular target for the therapy and diagnosis of TB. PMID:28076390

  19. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.

    Science.gov (United States)

    Okajima, Tetsuya; Matsuura, Aiko; Matsuda, Tsukasa

    2008-07-01

    Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.

  20. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  1. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    Tawa, Gregory J.; AbdulHameed, Mohamed Diwan M.; Yu, Xueping; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects. PMID:25226513

  2. Computational integration of homolog and pathway gene module expression reveals general stemness signatures.

    Directory of Open Access Journals (Sweden)

    Martina Koeva

    Full Text Available The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease.

  3. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae

    Science.gov (United States)

    Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quirós, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva

    2016-01-01

    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context. PMID:27733850

  4. The Drosophila gene brainiac encodes a glycosyltransferase putatively involved in glycosphingolipid synthesis

    DEFF Research Database (Denmark)

    Schwientek, Tilo; Keck, Birgit; Levery, Steven B

    2002-01-01

    The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function...

  5. Modulation of Aanat gene transcription in the rat pineal gland.

    Science.gov (United States)

    Ho, Anthony K; Chik, Constance L

    2010-01-01

    The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine-N-acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A. However, to accurately reflect the duration of darkness, additional signaling mechanisms also participate to fine-tune the temporal profile of adrenergic-induced Aanat transcription. Here, we reviewed some of these signaling mechanisms, with emphasis on the more recent findings. These signaling mechanisms can be divided into two groups: those involving modification of constitutively expressed proteins and those requiring synthesis of new proteins. This review highlights the pineal gland as an excellent model system for studying neurotransmitter-regulated rhythmic gene expression.

  6. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  7. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    Science.gov (United States)

    Li, Y.; Zhuang, S.; Wu, Y.; Ren, H.; Cheng, F.; Lin, X.; Wang, K.; Beardall, J.; Gao, K.

    2015-09-01

    Ocean Acidification (OA) is known to affect various aspects of the physiological performance of diatoms, but there is little information on the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum expression of the genes related to light harvesting, carbon acquisition and carboxylation, nitrite assimilation and ATP synthesis are modulated by OA. Growth and photosynthetic carbon fixation were enhanced by elevated CO2 (1000 μatm) under both constant indoor and fluctuating outdoor light regimes. The genetic expression of nitrite reductase (NiR) was up-regulated by OA regardless of light levels and/or regimes. The transcriptional expression of fucoxanthin chlorophyll a/c protein (lhcf type (FCP)) and mitochondrial ATP synthase (mtATP synthase) genes were also enhanced by OA, but only under high light intensity. OA treatment decreased the expression of β-carbonic anhydrase (β-CA) along with down-regulation of CO2 concentrating mechanisms (CCMs). Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expressions either under constant indoor light or fluctuating sunlight. Thus, OA enhanced photosynthetic and growth rates by stimulating nitrogen assimilation and indirectly by down-regulating the energy-costly inorganic carbon acquisition process.

  8. Genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid.

    Directory of Open Access Journals (Sweden)

    Jun-E Zhang

    Full Text Available BACKGROUND: In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. However, in higher plants, the extent of maternal control over zygote development and early embryogenesis is not fully understood yet. Nothing is known about the activity of the parental genomes during seed formation of interspecies hybrids. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that an interspecies hybridization system between SR1 (Nicotiana tabacum and Hamayan (N. rustica has been successfully established. Based on the system we selected 58 genes that have polymorphic sites between SR1 and Hamayan, and analyzed the allele-specific expression of 28 genes in their hybrid zygotes (Hamayan x SR1. Finally the allele-specific expressions of 8 genes in hybrid zygotes were repeatedly confirmed. Among them, 4 genes were of paternal origin, 1 gene was of maternal origin and 3 genes were of biparental origin. These results revealed obvious biparental involvement and differentially contribution of parental-origin genes to zygote development in the interspecies hybrid. We further detected the expression pattern of the genes at 8-celled embryo stage found that the involvement of the parental-origin genes may change at different stages of embryogenesis. CONCLUSIONS/SIGNIFICANCE: We reveal that genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid and functions in a developmental stage-dependent manner. This finding may open a window to seek for the possible molecular mechanism of hybrid vigor.

  9. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.

    Science.gov (United States)

    Plasencia, Anna; Soler, Marçal; Dupas, Annabelle; Ladouce, Nathalie; Silva-Martins, Guilherme; Martinez, Yves; Lapierre, Catherine; Franche, Claudine; Truchet, Isabelle; Grima-Pettenati, Jacqueline

    2016-06-01

    Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.

  10. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined D

  11. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined D

  12. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions.

    Science.gov (United States)

    Stukenbrock, Eva H; McDonald, Bruce A

    2009-04-01

    Antagonistic coevolution between plants and pathogens has generated a broad array of attack and defense mechanisms. In the classical avirulence (Avr) gene-for-gene model, the pathogen gene evolves to escape host recognition while the host resistance (R) gene evolves to track the evolving pathogen elicitor. In the case of host-specific toxins (HST), the evolutionary arms race may be inverted, with the gene encoding the pathogen toxin evolving to maintain recognition of the host sensitivity target while the host sensitivity gene evolves to escape binding with the toxin. Pathogen effector genes, including those encoding Avr elicitors and HST, often show elevated levels of polymorphism reflecting the coevolutionary arms race between host and pathogen. However, selection can also eliminate variation in the coevolved gene and its neighboring regions when advantageous alleles are swept to fixation. The distribution and diversity of corresponding host genes will have a major impact on the distribution and diversity of effectors in the pathogen population. Population genetic analyses including both hosts and their pathogens provide an essential tool to understand the diversity and dynamics of effector genes. Here, we summarize current knowledge about the population genetics of fungal and oomycete effector genes, focusing on recent studies that have used both spatial and temporal collections to assess the diversity and distribution of alleles and to monitor changes in allele frequencies over time. These studies illustrate that effector genes exhibit a significant degree of diversity at both small and large sampling scales, suggesting that local selection plays an important role in their evolution. They also illustrate that Avr elicitors and HST may be recognizing the same R genes in plants, leading to evolutionary outcomes that differ for necrotrophs and biotrophs while affecting the evolution of the corresponding R genes. Under this scenario, the optimal number of R genes

  13. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits.

    Science.gov (United States)

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.

  14. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Jiwei Zhang

    Full Text Available BACKGROUND: The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2(G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. CONCLUSIONS/SIGNIFICANCE: Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute

  15. From gene engineering to gene modulation and manipulation: can we prevent or detect gene doping in sports?

    Science.gov (United States)

    Fischetto, Giuseppe; Bermon, Stéphane

    2013-10-01

    During the last 2 decades, progress in deciphering the human gene map as well as the discovery of specific defective genes encoding particular proteins in some serious human diseases have resulted in attempts to treat sick patients with gene therapy. There has been considerable focus on human recombinant proteins which were gene-engineered and produced in vitro (insulin, growth hormone, insulin-like growth factor-1, erythropoietin). Unfortunately, these substances and methods also became improper tools for unscrupulous athletes. Biomedical research has focused on the possible direct insertion of gene material into the body, in order to replace some defective genes in vivo and/or to promote long-lasting endogenous synthesis of deficient proteins. Theoretically, diabetes, anaemia, muscular dystrophies, immune deficiency, cardiovascular diseases and numerous other illnesses could benefit from such innovative biomedical research, though much work remains to be done. Considering recent findings linking specific genotypes and physical performance, it is tempting to submit the young athletic population to genetic screening or, alternatively, to artificial gene expression modulation. Much research is already being conducted in order to achieve a safe transfer of genetic material to humans. This is of critical importance since uncontrolled production of the specifically coded protein, with serious secondary adverse effects (polycythaemia, acute cardiovascular problems, cancer, etc.), could occur. Other unpredictable reactions (immunogenicity of vectors or DNA-vector complex, autoimmune anaemia, production of wild genetic material) also remain possible at the individual level. Some new substances (myostatin blockers or anti-myostatin antibodies), although not gene material, might represent a useful and well-tolerated treatment to prevent progression of muscular dystrophies. Similarly, other molecules, in the roles of gene or metabolic activators [5-aminoimidazole-4

  16. Genes Involved in Initial Follicle Recruitment May Be Associated with Age at Menopause

    NARCIS (Netherlands)

    Voorhuis, Marlies; Broekmans, Frank J.; Fauser, Bart C. J. M.; Onland-Moret, N. Charlotte; van der Schouw, Yvonne T.

    2011-01-01

    Context: Timing of menopause is largely influenced by genetic factors. Because menopause occurs when the follicle pool in the ovaries has become exhausted, genes involved in primordial follicle recruitment can be considered as candidate genes for timing of menopause. Objective: The aim was to study

  17. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids

    Science.gov (United States)

    The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

  18. Genes Involved in Initial Follicle Recruitment May Be Associated with Age at Menopause

    NARCIS (Netherlands)

    Voorhuis, Marlies; Broekmans, Frank J.; Fauser, Bart C. J. M.; Onland-Moret, N. Charlotte; van der Schouw, Yvonne T.

    Context: Timing of menopause is largely influenced by genetic factors. Because menopause occurs when the follicle pool in the ovaries has become exhausted, genes involved in primordial follicle recruitment can be considered as candidate genes for timing of menopause. Objective: The aim was to study

  19. Modulation of adipocyte lipogenesis by octanoate: involvement of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Han Jianrong

    2006-07-01

    Full Text Available Abstract Background Octanoate is a medium-chain fatty acid (MCFA that is rich in milk and tropical dietary lipids. It also accounts for 70% of the fatty acids in commercial medium chain triglycerides (MCT. Use of MCT for weight control tracks back to early 1950s and is highlighted by recent clinical trials. The molecular mechanisms of the weight reduction effect remain not completely understood. The findings of significant amounts of MCFA in adipose tissue in MCT-fed animals and humans suggest a direct influence of MCFA on fat cell functions. Methods 3T3-L1 adipocytes were treated with octanoate in a high glucose culture medium supplemented with 10% fetal bovine serum and 170 nM insulin. The effects on lipogenesis, fatty acid oxidation, cellular concentration of reactive oxygen species (ROS, and the expression and activity of peroxisome proliferator receptor gamma (PPARγ and its associated lipogenic genes were assessed. In selected experiments, long-chain fatty acid oleate, PPARγ agonist troglitazone, and antioxidant N-acetylcysteine were used in parallel. Effects of insulin, L-carnitine, and etomoxir on β-oxidation were also measured. Results β-oxidation of octanoate was primarily independent of CPT-I. Treatment with octanoate was linked to an increase in ROS in adipocytes, a decrease in triglyceride synthesis, and reduction of lipogenic gene expression. Co-treatment with troglitazone, N-acetylcysteine, or over-expression of glutathione peroxidase largely reversed the effects of octanoate. Conclusion These findings suggest that octanoate-mediated inactivation of PPARγ might contribute to the down regulation of lipogenic genes in adipocytes, and ROS appears to be involved as a mediator in this process.

  20. Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley?

    Science.gov (United States)

    Marzin, Stephan; Hanemann, Anja; Sharma, Shailendra; Hensel, Götz; Kumlehn, Jochen; Schweizer, Günther; Röder, Marion S

    2016-01-01

    A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar 'Morex'. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar 'Morex' or the full resistance reaction requires the presence of several PEI genes.

  1. Characterization of genes involved in ceramide metabolism in the Pacific oyster (Crassostrea gigas)

    OpenAIRE

    Timmins-Schiffman Emma; Roberts Steven

    2012-01-01

    Abstract Background The lipid signaling molecule, ceramide, is a key component of the vertebrate stress response, however, there is limited information concerning its role in invertebrate species. In order to identify genes involved in ceramide metabolism in bivalve molluscs, Pacific oyster genomic resources were examined for genes associated with ceramide metabolism and signaling. Results Several genes were identified including full-length sequences characterized for serine palmitoyltransfer...

  2. Mu opioid modulation of oxytocin secretion in late pregnant and parturient rats. Involvement of noradrenergic neurotransmission.

    Science.gov (United States)

    Kutlu, Selim; Yilmaz, Bayram; Canpolat, Sinan; Sandal, Suleyman; Ozcan, Mete; Kumru, Selahattin; Kelestimur, Haluk

    2004-01-01

    We have investigated effects of micro- and kappa-opioid agonists and antagonists on plasma oxytocin levels and noradrenaline content in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of 20-day pregnant rats. beta-Endorphin, oxytocin, estrogen and progesterone profiles in late pregnant and parturient rats were also sought. Stage of estrous cycle was monitored by vaginal smear, and pro-estrous animals were left overnight with male. In the first set of experiments, pregnant rats were monitored and decapitated on days 20 and 21 and after the delivery of second pup. In the second set, 20-day pregnant rats were intracerebroventricularly infused with morphine (50 microg/10 microl), U50,488H (kappa-agonist; 50 microg/10 microl), clocinnamox (micro-antagonist; 50 microg/10 microl) and norbinaltorphimine (kappa-antagonist; 50 microg/10 microl). Controls received saline alone. Serum estrogen and progesterone levels were measured by enzyme immunoassay, and plasma oxytocin and beta-endorphin by radioimmunoassay. Noradrenaline and its metabolite (3,4-dihydroxyphenylglycol) were determined in micropunched hypothalamic nuclei by HPLC-ECD. In parturient rats, oxytocin levels were increased (p oxytocin levels (p oxytocin secretion. We suggest that noradrenaline may mediate the inhibitory effects of micro-opioids on oxytocin release. Our findings have also shown that kappa-opioid receptors are not involved in modulation of oxytocin neurons in late pregnant rats. Copyright 2004 S. Karger AG, Basel

  3. Noradrenergic mechanism involved in the nociceptive modulation of hippocampal CA3 region of normal rats.

    Science.gov (United States)

    Jin, Hua; Teng, Yueqiu; Zhang, Xuexin; Yang, Chunxiao; Xu, Manying; Yang, Lizhuang

    2014-06-27

    Norepinephrine (NE) is an important neurotransmitter in the brain, and regulates antinociception. However, the mechanism of action of NE on pain-related neurons in the hippocampal CA3 region is not clear. This study examines the effects of NE, phentolamine on the electrical activities of pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of rats. Trains of electric impulses applied to the right sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in the hippocampal CA3 region were recorded by using a glass microelectrode. Our results revealed that, in the hippocampal CA3 region, the intra-CA3 region microinjection of NE decreased the pain-evoked discharged frequency and prolonged the discharged latency of PEN, and increased the pain-evoked discharged frequency and shortened discharged inhibitory duration (ID) of PIN, exhibiting the specific analgesic effect of NE. While intra-CA3 region microinjection of phentolamine produced the opposite response. It implies that phentolamine can block the effect of endogenous NE to cause the enhanced response of PEN and PIN to noxious stimulation. On the basis of above findings we can deduce that NE, phentolamine and alpha-adrenoceptor are involved in the modulation of nociceptive information transmission in the hippocampal CA3 region.

  4. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  5. Gene set-based module discovery in the breast cancer transcriptome

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2009-02-01

    Full Text Available Abstract Background Although microarray-based studies have revealed global view of gene expression in cancer cells, we still have little knowledge about regulatory mechanisms underlying the transcriptome. Several computational methods applied to yeast data have recently succeeded in identifying expression modules, which is defined as co-expressed gene sets under common regulatory mechanisms. However, such module discovery methods are not applied cancer transcriptome data. Results In order to decode oncogenic regulatory programs in cancer cells, we developed a novel module discovery method termed EEM by extending a previously reported module discovery method, and applied it to breast cancer expression data. Starting from seed gene sets prepared based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10 principal expression modules in breast cancer based on their expression coherence. Moreover, EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast tumors. For example, our analysis revealed that the expression module regulated by the Polycomb repressive complex 2 (PRC2 is downregulated in triple negative breast cancers, suggesting similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We also found that the activity of the PRC2 expression module is negatively correlated to the expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-driven EZH2 overexpression may be responsible for the repression of the PRC2 expression modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits in breast cancer cells. Conclusion These results demonstrate that the gene set-based module discovery approach is a powerful tool to decode regulatory programs in cancer cells.

  6. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Yufeng Huang

    2015-08-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution in ZFHX3, rs2200733 (C/T substitution near PITX2c, and rs3807989 (A/G substitution in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43, P=8.00×10-24. The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4 or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4. The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02. Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  7. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells.

    Science.gov (United States)

    Arretxe, Enara; Armengol, Sandra; Mula, Sarai; Chico, Yolanda; Ochoa, Begoña; Martínez, María José

    2015-12-15

    The NF-κB-inducible Staphylococcal nuclease and tudor domain-containing 1 gene (SND1) encodes a coactivator involved in inflammatory responses and tumorigenesis. While SND1 is known to interact with certain transcription factors and activate client gene expression, no comprehensive mapping of SND1 target genes has been reported. Here, we have approached this question by performing ChIP-chip assays on human hepatoma HepG2 cells and analyzing SND1 binding modulation by proinflammatory TNFα. We show that SND1 binds 645 gene promoters in control cells and 281 additional genes in TNFα-treated cells. Transcription factor binding site analysis of bound probes identified motifs for established partners and for novel transcription factors including HSF, ATF, STAT3, MEIS1/AHOXA9, E2F and p300/CREB. Major target genes were involved in gene expression and RNA metabolism regulation, as well as development and cellular metabolism. We confirmed SND1 binding to 21 previously unrecognized genes, including a set of glycerolipid genes. Knocking-down experiments revealed that SND1 deficiency compromises the glycerolipid gene reprogramming and lipid phenotypic responses to TNFα. Overall, our findings uncover an unexpected large set of potential SND1 target genes and partners and reveal SND1 to be a determinant downstream effector of TNFα that contributes to support glycerophospholipid homeostasis in human hepatocellular carcinoma during inflammation.

  8. Coexpression Analysis Reveals Key Gene Modules and Pathway of Human Coronary Heart Disease.

    Science.gov (United States)

    Tang, Yu; Ke, Zun-Ping; Peng, Yi-Gen; Cai, Ping-Tai

    2017-08-31

    Coronary heart disease is a kind of disease which causes great injury to people world-widely. Although gene expression analyses had been performed previously, to our best knowledge, systemic co-expression analysis for this disease is still lacking to date. Microarray data of coronary heart disease was downloaded from NCBI with the accession number of GSE20681. Co-expression modules were constructed by WGCNA. Besides, the connectivity degree of eigengenes was analyzed. Furthermore, GO and KEGG enrichment analysis was performed on these eigengenes in these constructed modules. A total of 11 co-expression modules were constructed by the 3,000 up-regulated genes from the 99 samples with coronary heart disease. The average number of genes in these modules was 270. The interaction analysis indicated the relative independence of gene expression in these modules. The functional enrichment analysis showed that there was a significant difference in the enriched terms and degree among these 11 modules. The results showed that module 9 and module 10 played critical roles in the occurrence of coronary disease. Pathways of hsa00190(Oxidative phosphorylation)and (hsa01130: Biosynthesis of antibiotics) were thought to be closely related to the occurrence and development of coronary heart disease. Our result demonstrated that module 9 and module 10 were the most critical modules in the occurrence of coronary heart disease. Pathways as hsa00190(Oxidative phosphorylation) and (hsa01130: Biosynthesis of antibiotics) had the potential to serve as the prognostic and predictive marker of coronary heart disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Dong Fang

    Full Text Available Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1 was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.

  10. Modulation of R-gene expression across environments.

    Science.gov (United States)

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments.

  11. FUMET: A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    Priyakshi Mahanta; Hasin Afzal Ahmed; Dhruba Kumar Bhattacharyya; Ashish Ghosh

    2014-06-01

    Construction of co-expression network and extraction of network modules have been an appealing area of bioinformatics research. This article presents a co-expression network construction and a biologically relevant network module extraction technique based on fuzzy set theoretic approach. The technique is able to handle both positive and negative correlations among genes. The constructed network for some benchmark gene expression datasets have been validated using topological internal and external measures. The effectiveness of network module extraction technique has been established in terms of well-known p-value, Q-value and topological statistics.

  12. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state.

    Directory of Open Access Journals (Sweden)

    Dragan Milenkovic

    Full Text Available BACKGROUND: In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression profiles were determined using whole genome microarrays (Agilent and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina. MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found. CONCLUSION: Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans.

  13. Prioritization of gene regulatory interactions from large-scale modules in yeast

    Directory of Open Access Journals (Sweden)

    Bringas Ricardo

    2008-01-01

    Full Text Available Abstract Background The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources. Results Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes. Conclusion We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for

  14. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Woodin, Melanie A; Munno, David W; Syed, Naweed I

    2002-01-15

    Neurotrophic factors have well established roles in neuronal development, although their precise involvement in synapse formation and plasticity is yet to be fully determined. Using soma-soma synapses between identified Lymnaea neurons, we have shown recently that trophic factors are required for excitatory but not inhibitory synapse formation. However, neither the precise site (presynaptic versus postsynaptic cell) nor the underlying mechanisms have yet been defined. In the present study, synapse formation between the presynaptic cell visceral dorsal 4 (VD4) and its postsynaptic partner right pedal dorsal 1 (RPeD1) was examined to define the cellular mechanisms mediating trophic factor-induced excitatory synaptogenesis in cell culture. When paired in a soma-soma configuration in the presence of defined media (DM, nonproteinacious), mutually inhibitory synapses were appropriately reconstructed between VD4 and RPeD1. However, when cells were paired in the presence of increasing concentrations of Lymnaea brain-conditioned medium (CM), a biphasic synapse (initial excitatory synaptic component followed by inhibition) developed. The CM-induced excitatory synapse formation required trophic factor-mediated activation of receptor tyrosine kinases in the postsynaptic cell, RPeD1, and a concomitant modulation of existing postsynaptic nicotinic acetylcholine receptors (nAChRs). Specifically, when RPeD1 was isolated in DM, exogenously applied ACh induced a hyperpolarizing response that was sensitive to the AChR antagonist methyllycaconitine (MLA). In contrast, a single RPeD1 isolated in CM exhibited a biphasic response to exogenously applied ACh. The initial depolarizing phase of the biphasic response was sensitive to both mecamylamine and hexamethonium chloride, whereas the hyperpolarizing phase was blocked by MLA. In soma-soma-paired neurons, the VD4-induced synaptic responses in RPeD1 were sensitive to the cholinergic antagonists in a concentration range similar to that

  15. Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: potential involvement of adhesion genes.

    Science.gov (United States)

    Bouchut, A; Roger, E; Coustau, C; Gourbal, B; Mitta, G

    2006-02-01

    Because susceptibility or resistance of Biomphalaria glabrata to the trematode Echinostoma caproni correlates with differential hemocytic adhesive properties, we compared the expression of genes involved in adhesion processes between hemocytes from susceptible and resistant snails. Quantitative reverse transcriptase-PCR analysis revealed four genes whose transcripts were differentially represented between hemocytes from resistant and susceptible snails. These genes encode two dermatopontin-like, one matrilin-like and one cadherin-like proteins. Expression analyses performed following parasite exposure suggested that dermatopontins may be involved in the compatibility differences between these strains. We also investigated expression levels on whole snails of different genes potentially involved in extracellular matrix structure or coagulation. Our results support the hypothesis that susceptible snails possess a hemolymph coagulation-like system that is more potent than that of resistant snails. This system may prevent hemocyte migration towards the parasite larvae and therefore facilitate parasite settlement in susceptible snails.

  16. GO-2D: identifying 2-dimensional cellular-localized functional modules in Gene Ontology

    Directory of Open Access Journals (Sweden)

    Yang Da

    2007-01-01

    Full Text Available Abstract Background Rapid progress in high-throughput biotechnologies (e.g. microarrays and exponential accumulation of gene functional knowledge make it promising for systematic understanding of complex human diseases at functional modules level. Based on Gene Ontology, a large number of automatic tools have been developed for the functional analysis and biological interpretation of the high-throughput microarray data. Results Different from the existing tools such as Onto-Express and FatiGO, we develop a tool named GO-2D for identifying 2-dimensional functional modules based on combined GO categories. For example, it refines biological process categories by sorting their genes into different cellular component categories, and then extracts those combined categories enriched with the interesting genes (e.g., the differentially expressed genes for identifying the cellular-localized functional modules. Applications of GO-2D to the analyses of two human cancer datasets show that very specific disease-relevant processes can be identified by using cellular location information. Conclusion For studying complex human diseases, GO-2D can extract functionally compact and detailed modules such as the cellular-localized ones, characterizing disease-relevant modules in terms of both biological processes and cellular locations. The application results clearly demonstrate that 2-dimensional approach complementary to current 1-dimensional approach is powerful for finding modules highly relevant to diseases.

  17. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene.

    OpenAIRE

    Stillman, D J; Bankier, A T; Seddon, A; Groenhout, E G; Nasmyth, K A

    1988-01-01

    The yeast HO gene, which encodes an endonuclease involved in initiating mating type interconversion, is expressed in mother cells but not in daughters. It has been demonstrated that the SWI5 gene, which is an activator of HO expression, plays a critical role in this differential mother/daughter expression of HO. In this paper we describe the cloning and sequencing of the SWI5 gene. The predicted amino acid sequence derived from the cloned SWI5 gene shows homology with the repeated DNA-binding...

  18. Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina defense gene expression.

    Directory of Open Access Journals (Sweden)

    Janina Brakel

    Full Text Available Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype × genotype interactions of host and pathogen from different regions (10-100 km-scale through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist × eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70. Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence.

  19. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression.

    Science.gov (United States)

    Scott, M G; Rosenberger, C M; Gold, M R; Finlay, B B; Hancock, R E

    2000-09-15

    Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic alpha-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.

  20. Complex modulation of androgen responsive gene expression by methoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Stanley Kerri A

    2011-03-01

    Full Text Available Abstract Background Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA, the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. Methods A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. Results MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. Conclusions These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model.

  1. [Identification and cloning of a novel gene involved in EPS biosynthesis of Xanthomonas campestris pv. campestris].

    Science.gov (United States)

    Lu, Guang-Tao; Tang, Ji-Liang; He, Yong-Qiang; Chen, Bao-Shan; Tang, Dong-Jie

    2003-11-01

    Xanthomonas campestris pv. campestris ( Xcc), causative agent of the black rot disease of cruciferous crops worldwide, produces large amount of extracellular polysaccharide( EPS), which has found wide applications in industry. In order to clone genes involved in EPS biosynthesis, Xcc wild-type strain 8004 was mutagenized with transposon Tn5gus A5, and a number of EPS-defective mutants were isolated. The Tn5gusA5 insertion sites in the mutants were analyzed by using thermal asymmetric interlaced PCR(TAIL-PCR), and the corresponding genes were identified by homology blast to the completely sequenced genome of Xcc 8004 strain. A novel gene, waxE, identified from the EPS-defective mutant 151D09, was found to be disrupted by the insertion of Tn5gusA5 in the open reading frame(ORF) with genome coordinates 4478998bp to 4479819bp.This gene showed 52% similarity to the kdtX gene of Serratia marcescens and 50% to the waaE of Klebsiella pneumoniae at amino acid level, with characteristics of glycostransferase 2 family domain. In order to identify the function of waxE gene, waxE gene deletion mutant of Xcc 8004 was constructed by gene replacement strategy in which waxE gene of genome was replaced by kanamycin resistant gene kan. The waxE gene deletion mutant strain, named Xcc 8570, was confirmed by both PCR and southern analysis. The growth rate of the deletion mutant 8570 in rich medium was not affected, but the EPS yield reduced by 35% as compared with the wildtype strain 8004. The deletion mutant could be completmented in trans with plasmid pLATC8976 harboring an intact waxE gene, and the EPS yield of the mutant was restored. The combined data showed that waxE gene involved in EPS biosynthesis in Xcc.

  2. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Institute of Scientific and Technical Information of China (English)

    Yonglong Yu; Dong Zhu; Chaoying Ma; Hui Cao; Yaping Wang; Yanhao Xu; Wenying Zhang; Yueming Yan

    2016-01-01

    Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20) during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further informa-tion about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  3. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  4. Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs model.

    Directory of Open Access Journals (Sweden)

    Jonica Campolo

    Full Text Available To explore whether stent procedure may influence transcriptional response of endothelium, we applied different physical (flow changes and/or mechanical (stent application stimuli to human endothelial cells in a laminar flow bioreactor (LFB system. Gene expression analysis was then evaluated in each experimental condition. Human umbilical vein endothelial cells (HUVECs were submitted to low and physiological (1 and 10 dyne/cm(2 shear stress in absence (AS or presence (PS of stent positioning in a LFB system for 24 h. Different expressed genes, coming from Affymetrix results, were identified based on one-way ANOVA analysis with p values 3 in modulus. Low shear stress was compared with physiological one in AS and PS conditions. Two major groups include 32 probes commonly expressed in both 1AS versus 10AS and 1PS versus 10PS comparison, and 115 probes consisting of 83 in addition to the previous 32, expressed only in 1PS versus 10PS comparison. Genes related to cytoskeleton, extracellular matrix, and cholesterol transport/metabolism are differently regulated in 1PS versus 10PS condition. Inflammatory and apoptotic mediators seems to be, instead, closely modulated by changes in flow (1 versus 10, independently of stent application. Low shear stress together with stent procedure are the experimental conditions that mainly modulate the highest number of genes in our human endothelial model. Those genes belong to pathways specifically involved in the endothelial dysfunction.

  5. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  6. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    Science.gov (United States)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    Callus cultures of Arabidopsis thaliana (cv. Columbia) in Petri dishes / suspension cultures were exposed to altered g-forces by centrifugation (1 to 10 g), klinorotation, and μ g (sounding rocket flights). Using semi-quantitative RT-PCR, transcripts of genes coding for metabolic key enzymes (ADP-glucose pyrophosphorylase, ADPG-PP; ß-amylase, fructose-1,6-bisphosphatase, FBPase; glyceraldehyde-P dehydrogenase, GAPDH; hydroxymethylglutaryl-CoA reductase, HMG; phenylalanine-ammonium-lyase, PAL; PEP carboxylase, PEPC) were used to monitor threshold conditions for g-number (all) and time of exposure (ß-amylase) which led to altered amounts of the gene product. Exposure to approx. 5 g and higher for 1h resulted in altered transcript levels: transcripts of ß-amylase, PAL, and PEPC were increased, those of ADPG-PP decreased, while those of FBPase, GAPDH, and HMG were not affected. This probably indicates a shift from starch synthesis to starch degradation and increased rates of anaplerosis (PEPC: supply of ketoacids for amino acid synthesis). In order to get more information about g-related effects on gene expression, we used a 1h-exposure to 7 g for a microarray analysis. Transcripts of more than 200 genes were significantly increased in amount (ratio 7g / 1g control; 21.6 and larger). They fall into several categories. Transcripts coding for enzymes of major pathways form the largest group (25%), followed by gene products involved in cellular organisation and cell wall formation / rearrangement (17%), signalling, phosphorylation/dephosphorylation (12%), proteolysis and transport (10% each), hormone synthesis plus related events (8%), defense (4%), stress-response (2%), and gravisensing (2%). Many of the alterations are part of a general stress response, but some changes related to the synthesis / rearrangement of cell wall components could be more hyper-g-specific. Using macroarrays with selected genes according to our hypergravity study (metabolism / signalling

  7. Modules for C-terminal epitope tagging of Tetrahymena genes

    Science.gov (United States)

    Kataoka, Kensuke; Schoeberl, Ursula E.; Mochizuki, Kazufumi

    2010-01-01

    Although epitope tagging has been widely used for analyzing protein function in many organisms, there are few genetic tools for epitope tagging in Tetrahymena. In this study, we describe several C-terminal epitope tagging modules that can be used to express tagged proteins in Tetrahymena cells by both plasmid- and PCR-based strategies. PMID:20624430

  8. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  9. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle

    Directory of Open Access Journals (Sweden)

    Lehnert Sigrid A

    2010-06-01

    Full Text Available Abstract Background Two types of horns are evident in cattle - fixed horns attached to the skull and a variation called scurs, which refers to small loosely attached horns. Cattle lacking horns are referred to as polled. Although both the Poll and Scurs loci have been mapped to BTA1 and 19 respectively, the underlying genetic basis of these phenotypes is unknown, and so far, no candidate genes regulating these developmental processes have been described. This study is the first reported attempt at transcript profiling to identify genes and pathways contributing to horn and scurs development in Brahman cattle, relative to polled counterparts. Results Expression patterns in polled, horned and scurs tissues were obtained using the Agilent 44 k bovine array. The most notable feature when comparing transcriptional profiles of developing horn tissues against polled was the down regulation of genes coding for elements of the cadherin junction as well as those involved in epidermal development. We hypothesize this as a key event involved in keratinocyte migration and subsequent horn development. In the polled-scurs comparison, the most prevalent differentially expressed transcripts code for genes involved in extracellular matrix remodelling, which were up regulated in scurs tissues relative to polled. Conclusion For this first time we describe networks of genes involved in horn and scurs development. Interestingly, we did not observe differential expression in any of the genes present on the fine mapped region of BTA1 known to contain the Poll locus.

  10. Transcriptional modulation of squalene synthase genes in barley treated with PGPR

    OpenAIRE

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene squalene synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27 ± 3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analyzed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of SS. Results revealed that among four SS genes (i.e...

  11. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.

    Science.gov (United States)

    Matys, V; Kel-Margoulis, O V; Fricke, E; Liebich, I; Land, S; Barre-Dirrie, A; Reuter, I; Chekmenev, D; Krull, M; Hornischer, K; Voss, N; Stegmaier, P; Lewicki-Potapov, B; Saxel, H; Kel, A E; Wingender, E

    2006-01-01

    The TRANSFAC database on transcription factors, their binding sites, nucleotide distribution matrices and regulated genes as well as the complementing database TRANSCompel on composite elements have been further enhanced on various levels. A new web interface with different search options and integrated versions of Match and Patch provides increased functionality for TRANSFAC. The list of databases which are linked to the common GENE table of TRANSFAC and TRANSCompel has been extended by: Ensembl, UniGene, EntrezGene, HumanPSD and TRANSPRO. Standard gene names from HGNC, MGI and RGD, are included for human, mouse and rat genes, respectively. With the help of InterProScan, Pfam, SMART and PROSITE domains are assigned automatically to the protein sequences of the transcription factors. TRANSCompel contains now, in addition to the COMPEL table, a separate table for detailed information on the experimental EVIDENCE on which the composite elements are based. Finally, for TRANSFAC, in respect of data growth, in particular the gain of Drosophila transcription factor binding sites (by courtesy of the Drosophila DNase I footprint database) and of Arabidopsis factors (by courtesy of DATF, Database of Arabidopsis Transcription Factors) has to be stressed. The here described public releases, TRANSFAC 7.0 and TRANSCompel 7.0, are accessible under http://www.gene-regulation.com/pub/databases.html.

  12. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    Science.gov (United States)

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  13. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas.

    Science.gov (United States)

    Eising, Else; Huisman, Sjoerd M H; Mahfouz, Ahmed; Vijfhuizen, Lisanne S; Anttila, Verneri; Winsvold, Bendik S; Kurth, Tobias; Ikram, M Arfan; Freilinger, Tobias; Kaprio, Jaakko; Boomsma, Dorret I; van Duijn, Cornelia M; Järvelin, Marjo-Riitta R; Zwart, John-Anker; Quaye, Lydia; Strachan, David P; Kubisch, Christian; Dichgans, Martin; Davey Smith, George; Stefansson, Kari; Palotie, Aarno; Chasman, Daniel I; Ferrari, Michel D; Terwindt, Gisela M; de Vries, Boukje; Nyholt, Dale R; Lelieveldt, Boudewijn P F; van den Maagdenberg, Arn M J M; Reinders, Marcel J T

    2016-04-01

    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology.

  14. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    Science.gov (United States)

    2015-08-01

    dependent compound screen, aided by the University of Michigan Center for Chemical Genomics . Differential AR activation in transfected cells was assessed...WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D, Carver BS, Chen Y, Watson PA, Shah NP, Fujisawa S, Goglia...for known genes and genome -wide by ChIP-seq. Results will strengthen our overall hypothesis that genes with similar function (i.e

  15. The carboxy-terminal domain of Dictyostelium C-module-binding factor is an independent gene regulatory entity.

    Directory of Open Access Journals (Sweden)

    Jörg Lucas

    Full Text Available The C-module-binding factor (CbfA is a multidomain protein that belongs to the family of jumonji-type (JmjC transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD. An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.

  16. Microarray technology reveals potentially novel genes and pathways involved in non-functioning pituitary adenomas

    Science.gov (United States)

    Qiao, X; Wang, H; Wang, X; Zhao, B

    2016-01-01

    Abstract Microarray data of non-functioning pituitary adenomas (NFPAs) were analyzed to disclose novel genes and pathways involved in NFPA tumorigenesis. Raw microarray data were downloaded from Gene Expression Omnibus. Data pre-treatment and differential analysis were conducted using packages in R. Functional and pathway enrichment analyses were performed using package GOs-tats. A protein-protein interaction (PPI) network was constructed using server STRING and Cytoscape. Known genes involved in pituitary adenomas (PAs), were obtained from the Comparative Toxicogenomics Database. A total of 604 differentially expressed genes (DEGs) were identifed between NFPAs and controls, including 177 up- and 427 down-regulated genes. Jak-STAT and p53 signaling pathways were significantly enriched by DEGs. The PPI network of DEGs was constructed, containing 99 up- and 288 down-regulated known disease genes (e.g. EGFR and ESR1) as well as 16 up- and 17 down-regulated potential novel NFPAs-related genes (e.g. COL4A5, LHX3, MSN, and GHSR). Genes like COL4A5, LHX3, MSN, and GHSR and pathways such as p53 signaling and Jak-STAT signaling, might participate in NFPA development. Although further validations are required, these findings might provide guidance for future basic and therapy researches. PMID:28289583

  17. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis.

    Science.gov (United States)

    Zhou, Guo-An; Chang, Ru-Zhen; Qiu, Li-Juan

    2010-03-01

    Previous studies have shown that ubiquitination plays important roles in plant abiotic stress responses. In the present study, the ubiquitin-conjugating enzyme gene GmUBC2, a homologue of yeast RAD6, was cloned from soybean and functionally characterized. GmUBC2 was expressed in all tissues in soybean and was up-regulated by drought and salt stress. Arabidopsis plants overexpressing GmUBC2 were more tolerant to salinity and drought stresses compared with the control plants. Through expression analyses of putative downstream genes in the transgenic plants, we found that the expression levels of two ion antiporter genes AtNHX1 and AtCLCa, a key gene involved in the biosynthesis of proline, AtP5CS, and the copper chaperone for superoxide dismutase gene AtCCS, were all increased significantly in the transgenic plants. These results suggest that GmUBC2 is involved in the regulation of ion homeostasis, osmolyte synthesis, and oxidative stress responses. Our results also suggest that modulation of the ubiquitination pathway could be an effective means of improving salt and drought tolerance in plants through genetic engineering.

  18. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts.

    Science.gov (United States)

    Al Tanoury, Ziad; Piskunov, Aleksandr; Andriamoratsiresy, Dina; Gaouar, Samia; Lutzing, Régis; Ye, Tao; Jost, Bernard; Keime, Céline; Rochette-Egly, Cécile

    2014-02-01

    Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.

  19. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Adriano R. Lucheta

    2007-01-01

    Full Text Available Citrus species are known by their high content of phenolic compounds, including a wide range of flavonoids. In plants, these compounds are involved in protection against biotic and abiotic stresses, cell structure, UV protection, attraction of pollinators and seed dispersal. In humans, flavonoid consumption has been related to increasing overall health and fighting some important diseases. The goals of this study were to identify expressed sequence tags (EST in Citrus sinensis (L. Osbeck corresponding to genes involved in general phenylpropanoid biosynthesis and the key genes involved in the main flavonoids pathways (flavanones, flavones, flavonols, leucoanthocyanidins, anthocyanins and isoflavonoids. A thorough analysis of all related putative genes from the Citrus EST (CitEST database revealed several interesting aspects associated to these pathways and brought novel information with promising usefulness for both basic and biotechnological applications.

  20. EST analysis of Prorocentrum donghaiense with emphasis on genes involved in PCD

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiufang; Liu Yongjian; Yang Guanpin; Zhu Mingyuan; Li Ruixiang

    2009-01-01

    Prorocentrum donghaiense has caused large-scale red tides off the Chinese coast in recent years. Expressed sequence tag (EST) analysis was carried out for this dinoflagellate in order to identify the functional genes involved in its biological processes. A cDNA library was constructed for P. donghaiense at exponential growth phase, and 565 usable sequencing reads were obtained from 700 clones selected randomly. Messenger RNA corresponding reads were clustered into 36 contigs and 272 singletons (EST groups). Twenty-two EST groups were found to tag the genes involved in diverse biological processes including programmed cell death (PCD). Two EST groups showed significant homologies with the encoding genes of cysteine protease (caspase) and proliferating cell nuclear antigen, respectively, two key proteins involved in PCD.

  1. Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms.

    Science.gov (United States)

    Mas, S; Gassó, P; Boloc, D; Rodriguez, N; Mármol, F; Sánchez, J; Bernardo, M; Lafuente, A

    2016-06-01

    To identify potential candidate genes for future pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we used gene expression arrays to analyze changes induced by risperidone in mice strains with different susceptibility to EPS. We proposed a systems biology analytical approach that combined the identification of gene co-expression modules related to AP treatment, the construction of protein-protein interaction networks with genes included in identified modules and finally, gene set enrichment analysis of constructed networks. In response to risperidone, mice strain with susceptibility to develop EPS showed downregulation of genes involved in the mammalian target of rapamycin (mTOR) pathway and biological processes related to this pathway. Moreover, we also showed differences in the phosphorylation pattern of the ribosomal protein S6 (rpS6), which is a major downstream effector of mTOR. The present study provides new evidence of the involvement of the mTOR pathway in AP-induced EPS and offers new and valuable markers for pharmacogenetic studies.

  2. Investigation of yeast genes possibly involved in mtDNA stability ...

    African Journals Online (AJOL)

    Phelim Isichei

    function and structure on mtDNA stability in yeast, our results did not support those ... most studied model organism for acquisition of basic ... RNA interference of genes involved in mtDNA replication ... polymerase, results in reduced mtDNA copy number but .... found that RNAi of 4 genes (M01E5.2, T27F6.5, T26A5.6.

  3. Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Rosaliana Libro

    2016-12-01

    Full Text Available Mesenchymal stem cells (MSCs have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer’s disease (AD. The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ, and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD, at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs and control GMSCs (CTR-GMSCs, we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630 or for the vanilloid receptor 1 (TRPVI. Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.

  4. Cannabidiol Modulates the Expression of Alzheimer's Disease-Related Genes in Mesenchymal Stem Cells.

    Science.gov (United States)

    Libro, Rosaliana; Diomede, Francesca; Scionti, Domenico; Piattelli, Adriano; Grassi, Gianpaolo; Pollastro, Federica; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-12-23

    Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer's disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.

  5. Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells

    Science.gov (United States)

    Libro, Rosaliana; Diomede, Francesca; Scionti, Domenico; Piattelli, Adriano; Grassi, Gianpaolo; Pollastro, Federica; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-01-01

    Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer’s disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD. PMID:28025562

  6. Ethanol modulation of gene networks: implications for alcoholism.

    Science.gov (United States)

    Farris, Sean P; Miles, Michael F

    2012-01-01

    Alcoholism is a complex disease caused by a confluence of environmental and genetic factors influencing multiple brain pathways to produce a variety of behavioral sequelae, including addiction. Genetic factors contribute to over 50% of the risk for alcoholism and recent evidence points to a large number of genes with small effect sizes as the likely molecular basis for this disease. Recent progress in genomics (microarrays or RNA-Seq) and genetics has led to the identification of a large number of potential candidate genes influencing ethanol behaviors or alcoholism itself. To organize this complex information, investigators have begun to focus on the contribution of gene networks, rather than individual genes, for various ethanol-induced behaviors in animal models or behavioral endophenotypes comprising alcoholism. This chapter reviews some of the methods used for constructing gene networks from genomic data and some of the recent progress made in applying such approaches to the study of the neurobiology of ethanol. We show that rapid technology development in gathering genomic data, together with sophisticated experimental design and a growing collection of analysis tools are producing novel insights for understanding the molecular basis of alcoholism and that such approaches promise new opportunities for therapeutic development.

  7. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  8. sugE: A gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27.

    Science.gov (United States)

    Cruz, Andreia; Micaelo, Nuno; Félix, Vitor; Song, Jun-Young; Kitamura, Shin-Ichi; Suzuki, Satoru; Mendo, Sónia

    2013-01-01

    The mechanism of bacterial resistance to tributyltin (TBT) is still unclear. The results herein presented contribute to clarify that mechanism in the TBT-resistant bacterium Aeromonas molluscorum Av27. We have identified and cloned a new gene that is involved in TBT resistance in this strain. The gene is highly homologous (84%) to the Aeromonas hydrophila-sugE gene belonging to the small multidrug resistance gene family (SMR), which includes genes involved in the transport of lipophilic drugs. In Av27, expression of the Av27-sugE was observed at the early logarithmic growth phase in the presence of a high TBT concentration (500 μM), thus suggesting the contribution of this gene for TBT resistance. E. coli cells transformed with Av27-sugE become resistant to ethidium bromide (EtBr), chloramphenicol (CP) and tetracycline (TE), besides TBT. According to the Moriguchi logP (miLogP) values, EtBr, CP and TE have similar properties and are substrates for the sugE-efflux system. Despite the different miLogP of TBT, E. coli cells transformed with Av27-sugE become resistant to this compound. So it seems that TBT is also a substrate for the SugE protein. The modelling studies performed also support this hypothesis. The data herein presented clearly indicate that sugE is involved in TBT resistance of this bacterium.

  9. Involvement of group III metabotropic glutamate receptors in the modulation of spinal nociceptive signals

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Yang; Yu Zhang; Xin Zhao; Naihong Liu; Jiantian Qiao; Ce Zhang

    2009-01-01

    BACKGROUND:Previous morphological studies have demonstrated that group III metabotropic glutamate receptors (mGluRs) are commonly found in nociceptive pathways,particularly in the terminals of primary afferent fibers in the spinal dorsal horn.OBJECTIVE:To investigate the role of group III mGluRs in a rat model of spinal nociception by intrathecal administration of a selective agonist,L-Serine-O-phosphate (L-SOP).DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment.The study was performed at the Department of Physiology and Neurobiology,Shanxi Medical University,between March 2007 and May 2008.MATERIALS:L-SOP of group III mGluRs (Tocris Cookson Ltd,UK),formalin (Sigma,USA),rabbit anti-c-Fos polyclonal antibody and biotin-labeled goat anti-rabbit IgG (Cell Signaling Technology,USA) were used in this study.METHODS:A total of 26 healthy Wistar rats,aged 1 month and weighing 100-120 g,were subjected to intrathecal catheter implantation.After 5-8 days,10 rats were selected according to experimental requirements.L-SOP 250 nmol in 10 μL,or the equivalent volume of normal saline,was administered by intrathecal injection into the L3-5 region of the spinal cord in the experimental and control groups,respectively.After 15 minutes,formalin (5%,50 μL) was subcutaneously injected into the plantar of the left hindpaw of each rat to establish formalin-induced pain models.MAIN OUTCOME MEASURES:Nociceptive behavioral responses and immunohistochemical examination of Fos expression.RESULTS:Intrathecal injection of L-SOP significantly attenuated the second phase nociceptive response compared with the control group (P<0.05),and Fos expression in the spinal dorsal horn was significantly decreased along with the number of Fos-like immunoreactive neurons (P<0.05).CONCLUSION:Group III mGluRs are involved in the modulation of nociceptive signals,and their activation suppresses the transmission of nociceptive signals.

  10. GABA, Selank, and Olanzapine Affect the Expression of Genes Involved in GABAergic Neurotransmission in IMR-32 Cells

    Science.gov (United States)

    Filatova, Elena; Kasian, Anastasiya; Kolomin, Timur; Rybalkina, Ekaterina; Alieva, Anelya; Andreeva, Lyudmila; Limborska, Svetlana; Myasoedov, Nikolay; Pavlova, Galina; Slominsky, Petr; Shadrina, Maria

    2017-01-01

    Clinical studies have shown that Selank had an anxiolytic effect comparable to that of classical benzodiazepine drugs, which can enhance the inhibitory effect of GABA by allosteric modulation of GABAA receptors. These data suggest that the molecular mechanism of the effect of Selank may also be related to its ability to affect the performance of the GABAergic system. To test this hypothesis, we studied the changes in expression of 84 genes involved in the functioning of the GABAergic system and in the processes of neurotransmission in the culture of neuroblastoma IMR-32 cells using qPCR method. As test substances, in addition to Selank, we selected the major GABAA receptor ligand, GABA, the atypical antipsychotic, olanzapine, and combinations of these compounds (Selank and GABA; Selank and olanzapine). We found no changes in the mRNA levels of the genes studied under the effect of Selank. The combined effect of GABA and Selank led to nearly complete suppression of changes in expression of genes in which mRNA levels changed under the effect of GABA. When Selank was used in conjunction with olanzapine, the expression alterations of more genes were observed compared with olanzapine alone. The data obtained indicate that Selank has no direct effect on the mRNA levels of the GABAergic system genes in neuroblastoma IMR-32 cells. At the same time, our results partially confirm the hypothesis that the peptide may affect the interaction of GABA with GABAA receptors. Our data also suggest that Selank may enhance the effect of olanzapine on the expression of the genes studied. PMID:28293190

  11. Transcriptomic Profiling of Egg Quality in Sea Bass (Dicentrarchus labrax) Sheds Light on Genes Involved in Ubiquitination and Translation.

    Science.gov (United States)

    Żarski, Daniel; Nguyen, Thaovi; Le Cam, Aurélie; Montfort, Jérôme; Dutto, Gilbert; Vidal, Marie Odile; Fauvel, Christian; Bobe, Julien

    2017-02-01

    Variable and low egg quality is a major limiting factor for the development of efficient aquaculture production. This stems from limited knowledge on the mechanisms underlying egg quality in cultured fish. Molecular analyses, such as transcriptomic studies, are valuable tools to identify the most important processes modulating egg quality. However, very few studies have been devoted to this aspect so far. Within this study, the microarray-based transcriptomic analysis of eggs (of different quality) of sea bass (Dicentrarchus labrax) was performed. An Agilent oligo microarray experiment was performed on labelled mRNA extracted from 16 batches of eggs (each batch obtained from a different female) of sea bass, in which over 24,000 published probe arrays were used. We identified 39 differentially expressed genes exhibiting a differential expression between the groups of low (fertilization rate  60 %) quality. The mRNA levels of eight genes were further analyzed by quantitative PCR. Seven genes were confirmed by qPCR to be differentially expressed in eggs of low and high quality. This study confirmed the importance of some of the genes already reported to be potential molecular quality indicators (mainly rnf213 and irf7), but we also found new genes (mainly usp5, mem-prot, plec, cenpf), which had not yet been reported to be quality-dependent in fish. These results suggest the importance of genes involved in several important processes, such as protein ubiquitination, translation, DNA repair, and cell structure and architecture; these probably being the mechanisms that contribute to egg developmental competence in sea bass.

  12. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.

    Science.gov (United States)

    Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi

    2016-12-01

    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.

  13. Differential Expression of Genes Involved in Host Recognition, Attachment, and Degradation in the Mycoparasite Tolypocladium ophioglossoides

    Directory of Open Access Journals (Sweden)

    C. Alisha Quandt

    2016-03-01

    Full Text Available The ability of a fungus to infect novel hosts is dependent on changes in gene content, expression, or regulation. Examining gene expression under simulated host conditions can explore which genes may contribute to host jumping. Insect pathogenesis is the inferred ancestral character state for species of Tolypocladium, however several species are parasites of truffles, including Tolypocladium ophioglossoides. To identify potentially crucial genes in this interkingdom host switch, T. ophioglossoides was grown on four media conditions: media containing the inner and outer portions of its natural host (truffles of Elaphomyces, cuticles from an ancestral host (beetle, and a rich medium (Yeast Malt. Through high-throughput RNASeq of mRNA from these conditions, many differentially expressed genes were identified in the experiment. These included PTH11-related G-protein-coupled receptors (GPCRs hypothesized to be involved in host recognition, and also found to be upregulated in insect pathogens. A divergent chitinase with a signal peptide was also found to be highly upregulated on media containing truffle tissue, suggesting an exogenous degradative activity in the presence of the truffle host. The adhesin gene, Mad1, was highly expressed on truffle media as well. A BiNGO analysis of overrepresented GO terms from genes expressed during each growth condition found that genes involved in redox reactions and transmembrane transport were the most overrepresented during T. ophioglossoides growth on truffle media, suggesting their importance in growth on fungal tissue as compared to other hosts and environments. Genes involved in secondary metabolism were most highly expressed during growth on insect tissue, suggesting that their products may not be necessary during parasitism of Elaphomyces. This study provides clues into understanding genetic mechanisms underlying the transition from insect to truffle parasitism.

  14. Search for the genes involved in oocyte maturation and early embryo development in the hen

    Directory of Open Access Journals (Sweden)

    Blesbois Elisabeth

    2008-02-01

    Full Text Available Abstract Background The initial stages of development depend on mRNA and proteins accumulated in the oocyte, and during these stages, certain genes are essential for fertilization, first cleavage and embryonic genome activation. The aim of this study was first to search for avian oocyte-specific genes using an in silico and a microarray approaches, then to investigate the temporal and spatial dynamics of the expression of some of these genes during follicular maturation and early embryogenesis. Results The in silico approach allowed us to identify 18 chicken homologs of mouse potential oocyte genes found by digital differential display. Using the chicken Affymetrix microarray, we identified 461 genes overexpressed in granulosa cells (GCs and 250 genes overexpressed in the germinal disc (GD of the hen oocyte. Six genes were identified using both in silico and microarray approaches. Based on GO annotations, GC and GD genes were differentially involved in biological processes, reflecting different physiological destinations of these two cell layers. Finally we studied the spatial and temporal dynamics of the expression of 21 chicken genes. According to their expression patterns all these genes are involved in different stages of final follicular maturation and/or early embryogenesis in the chicken. Among them, 8 genes (btg4, chkmos, wee, zpA, dazL, cvh, zar1 and ktfn were preferentially expressed in the maturing occyte and cvh, zar1 and ktfn were also highly expressed in the early embryo. Conclusion We showed that in silico and Affymetrix microarray approaches were relevant and complementary in order to find new avian genes potentially involved in oocyte maturation and/or early embryo development, and allowed the discovery of new potential chicken mature oocyte and chicken granulosa cell markers for future studies. Moreover, detailed study of the expression of some of these genes revealed promising candidates for maternal effect genes in the

  15. Identification by Gene Coregulation Mapping of Novel Genes involved in Embryonic Stem Cell Differentiation

    NARCIS (Netherlands)

    Pennings, J.L.A.; Dartel, van D.A.M.; Pronk, T.E.; Hendriksen, P.J.M.; Piersma, A.H.

    2011-01-01

    A combined analysis of data from a series of literature studies can lead to more reliable results than that based on a single study. A common problem in performing combined analyses of literature microarray gene expression data is that the original raw data are not always available and not always ea

  16. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    Directory of Open Access Journals (Sweden)

    Regina Augustin

    2011-01-01

    Full Text Available The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

  17. Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates.

    Science.gov (United States)

    Rosic, Nedeljka N

    2012-04-01

    Mycosporine-like amino acids (MAAs) are multifunctional secondary metabolites involved in photoprotection in many marine organisms. As well as having broad ultraviolet (UV) absorption spectra (310-362 nm), these biological sunscreens are also involved in the prevention of oxidative stress. More than 20 different MAAs have been discovered so far, characterized by distinctive chemical structures and a broad ecological distribution. Additionally, UV-screening MAA metabolites have been investigated and used in biotechnology and cosmetics. The biosynthesis of MAAs has been suggested to occur via either the shikimate or pentose phosphate pathways. Despite their wide distribution in marine and freshwater species and also the commercial application in cosmetic products, there are still a number of uncertainties regarding the genetic, biochemical, and evolutionary origin of MAAs. Here, using a transcriptome-mining approach, we identify the gene counterparts from the shikimate or pentose phosphate pathway involved in MAA biosynthesis within the sequences of the reef-building coral symbiotic dinoflagellates (genus Symbiodinium). We also report the highly similar sequences of genes from the proposed MAA biosynthetic pathway involved in the metabolism of 4-deoxygadusol (direct MAA precursor) in various Symbiodinium strains confirming their algal origin and conserved nature. Finally, we reveal the separate identity of two O-methyltransferase genes, possibly involved in MAA biosynthesis, as well as nonribosomal peptide synthetase and adenosine triphosphate grasp homologs in symbiotic dinoflagellates. This study provides a biochemical and phylogenetic overview of the genes from the proposed MAA biosynthetic pathway with a focus on coral endosymbionts.

  18. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  19. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  20. Association analysis of schizophrenia on 18 genes involved in neuronal migration

    DEFF Research Database (Denmark)

    Kähler, Anna K; Djurovic, Srdjan; Kulle, Bettina

    2008-01-01

    Several lines of evidence support the theory of schizophrenia (SZ) being a neurodevelopmental disorder. The structural, cytoarchitectural and functional brain abnormalities reported in patients with SZ, might be due to aberrant neuronal migration, since the final position of neurons affects...... neuronal function, morphology, and formation of synaptic connections. We have investigated the putative association between SZ and gene variants engaged in the neuronal migration process, by performing an association study on 839 cases and 1,473 controls of Scandinavian origin. Using a gene-wide approach......, tagSNPs in 18 candidate genes have been genotyped, with gene products involved in the neuron-to-glial cell adhesion, interactions with the DISC1 protein and/or rearrangements of the cytoskeleton. Of the 289 markers tested, 19 markers located in genes MDGA1, RELN, ITGA3, DLX1, SPARCL1, and ASTN1...

  1. Prevalence of chromosomal rearrangements involving non-ETS genes in prostate cancer.

    Science.gov (United States)

    Kluth, Martina; Galal, Rami; Krohn, Antje; Weischenfeldt, Joachim; Tsourlakis, Christina; Paustian, Lisa; Ahrary, Ramin; Ahmed, Malik; Scherzai, Sekander; Meyer, Anne; Sirma, Hüseyin; Korbel, Jan; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Minner, Sarah

    2015-04-01

    Prostate cancer is characterized by structural rearrangements, most frequently including translocations between androgen-dependent genes and members of the ETS family of transcription factor like TMPRSS2:ERG. In a recent whole genome sequencing study we identified 140 gene fusions that were unrelated to ETS genes in 11 prostate cancers. The aim of the present study was to estimate the prevalence of non-ETS gene fusions. We randomly selected 27 of these rearrangements and analyzed them by fluorescence in situ hybridization (FISH) in a tissue microarray format containing 500 prostate cancers. Using break-apart FISH probes for one fusion partner each, we found rearrangements of 13 (48%) of the 27 analyzed genes in 300-400 analyzable cancers per gene. Recurrent breakage, often accompanied by partial deletion of the genes, was found for NCKAP5, SH3BGR and TTC3 in 3 (0.8%) tumors each, as well as for ARNTL2 and ENOX1 in 2 (0.5%) cancers each. One rearranged tumor sample was observed for each of VCL, ZNF578, IMMP2L, SLC16A12, PANK1, GPHN, LRP1 and ZHX2. Balanced rearrangements, indicating possible gene fusion, were found for ZNF578, SH3BGR, LPR12 and ZHX2 in individual cancers only. The results of the present study confirm that rearrangements involving non-ETS genes occur in prostate cancer, but demonstrate that they are highly individual and typically non-recurrent.

  2. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  3. Investigation of genes involved in nisin production in Enterococcus spp. strains isolated from raw goat milk.

    Science.gov (United States)

    Perin, Luana Martins; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto

    2016-09-01

    Different strains of Lactococcus lactis are capable of producing the bacteriocin nisin. However, genetic transfer mechanisms allow the natural occurrence of genes involved in nisin production in members of other bacterial genera, such as Enterococcus spp. In a previous study, nisA was identified in eight enterococci capable of producing antimicrobial substances. The aim of this study was to verify the presence of genes involved in nisin production in Enterococcus spp. strains, as well as nisin expression. The nisA genes from eight Enterococcus spp. strains were sequenced and the translated amino acid sequences were compared to nisin amino-acid sequences previously described in databases. Although containing nisin structural and maturation related genes, the enterococci strains tested in the present study did not present the immunity related genes (nisFEG and nisI). The translated sequences of nisA showed some point mutations, identical to those presented by Lactococcus strains isolated from goat milk. All enterococci were inhibited by nisin, indicating the absence of immunity and thus that nisin cannot be expressed. This study demonstrated for the first time the natural occurrence of nisin structural genes in Enterococcus strains and highlights the importance of providing evidence of a link between the presence of bacteriocin genes and their expression.

  4. Identification of genes involved in the response of banana to crown rot disease.

    Science.gov (United States)

    Lassois, Ludivine; Frettinger, Patrick; de Lapeyre de Bellaire, Luc; Lepoivre, Philippe; Jijakli, Haissam

    2011-01-01

    Variations in banana susceptibility to crown rot disease have been observed but the molecular mechanisms underlying these quantitative host-pathogen relationships are still unknown. This study was designed to compare gene expression between crowns of banana fruit showing a high susceptibility (S(+)) and crowns showing a low susceptibility (S(-)) to the disease. Comparisons were performed at two situation times: i) between crowns (S(+) and S(-)) collected 1 h before inoculation and ii) between crowns (S+ and S-) collected 13 days after inoculation. Gene expression comparisons were performed with cDNA-amplified fragment length polymorphism (AFLP) and results were confirmed by real-time reverse-transcription polymerase chain reaction. Among genes identified as differentially expressed between S(+) and S(-) crowns, two were involved in signal transduction, three in proteolytic machinery, two had similarity to pathogenesis-related protein 14, one to a CCR4-associated factor protein, and one to a cellulose synthase. Paradoxically, the overexpression of the cellulose synthase gene was associated with banana showing a high susceptibility in both pre- and post-inoculation situations. Finally, the cDNA-AFLP identified a gene that seems to be associated with the quantitative banana responses to crown rot disease; this gene encodes a dopamine-β-monooxygenase, which is involved in the catecholamine pathway. To our knowledge, this work is the first to address both pre- and post-infection gene expression with the same host-pathogen combination and distinct susceptibility levels.

  5. The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections.

    Science.gov (United States)

    Potter, Amina; Ceotto, Hilana; Giambiagi-Demarval, Marcia; dos Santos, Kátia Regina Netto; Nes, Ingolf F; Bastos, Maria do Carmo de Freire

    2009-06-01

    This study analyzed ten strains of coagulase-negative staphylococci (CNS) involved in nosocomial infections in three Brazilian hospitals. Their antibiotic susceptibility profile showed that most strains exhibited multiple antibiotic resistance and possessed the mecA gene. The ability of these strains to adhere to polystyrene microtiter plates was also tested and nine of them proved to be biofilm producers at least in one of the three conditions tested: growth in TSB, in TSB supplemented with NaCl, or in TSB supplemented with glucose. The presence of the bap gene, which codes for the biofilm-associated protein (Bap), was investigated in all ten strains by PCR. AU strains were bop-positive and DNA sequencing experiments confirmed that the fragments amplified were indeed part of a bap gene. The presence of the icaA gene, one of the genes involved in polysaccharide intercellular adhesin (PIA) formation, was also detected by PCR in eight of the ten strains tested. The two icaA-negative strains were either weak biofilm producer or no biofilm producer, although they were bop-positive. To our knowledge, this is the first report demonstrating the presence of the bap gene in nosocomial isolates of CNS, being also the first report on the presence of this gene in Staphylococcus haemolyticus and S. cohnii.

  6. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.

    Science.gov (United States)

    Hyun, Tae Kyung; Rim, Yeonggil; Jang, Hui-Jeong; Kim, Cheol Hong; Park, Jongsun; Kumar, Ritesh; Lee, Sunghoon; Kim, Byung Chul; Bhak, Jong; Nguyen-Quoc, Binh; Kim, Seon-Won; Lee, Sang Yeol; Kim, Jae-Yean

    2012-07-01

    The ripe fruit of Momordica cochinchinensis Spreng, known as gac, is featured by very high carotenoid content. Although this plant might be a good resource for carotenoid metabolic engineering, so far, the genes involved in the carotenoid metabolic pathways in gac were unidentified due to lack of genomic information in the public database. In order to expedite the process of gene discovery, we have undertaken Illumina deep sequencing of mRNA prepared from aril of gac fruit. From 51,446,670 high-quality reads, we obtained 81,404 assembled unigenes with average length of 388 base pairs. At the protein level, gac aril transcripts showed about 81.5% similarity with cucumber proteomes. In addition 17,104 unigenes have been assigned to specific metabolic pathways in Kyoto Encyclopedia of Genes and Genomes, and all of known enzymes involved in terpenoid backbones biosynthetic and carotenoid biosynthetic pathways were also identified in our library. To analyze the relationship between putative carotenoid biosynthesis genes and alteration of carotenoid content during fruit ripening, digital gene expression analysis was performed on three different ripening stages of aril. This study has revealed putative phytoene synthase, 15-cis-phytone desaturase, zeta-carotene desaturase, carotenoid isomerase and lycopene epsilon cyclase might be key factors for controlling carotenoid contents during aril ripening. Taken together, this study has also made availability of a large gene database. This unique information for gac gene discovery would be helpful to facilitate functional studies for improving carotenoid quantities.

  7. Involvement of Chromatin Remodeling Genes and the Rho GTPases RhoB and CDC42 in Ovarian Clear Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Nicolai Skovbjerg Arildsen

    2017-05-01

    Full Text Available ObjectiveOvarian clear cell carcinomas (OCCCs constitute a rare ovarian cancer subtype with distinct clinical features, but may nonetheless be difficult to distinguish morphologically from other subtypes. There is limited knowledge of genetic events driving OCCC tumorigenesis beyond ARID1A, which is reportedly mutated in 30–50% of OCCCs. We aimed to further characterize OCCCs by combined global transcriptional profiling and targeted deep sequencing of a panel of well-established cancer genes. Increased knowledge of OCCC-specific genetic aberrations may help in guiding development of targeted treatments and ultimately improve patient outcome.MethodsGene expression profiling of formalin-fixed, paraffin-embedded (FFPE tissue from a cohort of the major ovarian cancer subtypes (cohort 1; n = 67 was performed using whole-genome cDNA-mediated Annealing, Selection, extension and Ligation (WG-DASL bead arrays, followed by pathway, gene module score, and gene ontology analyses, respectively. A second FFPE cohort of 10 primary OCCCs was analyzed by targeted DNA sequencing of a panel of 60 cancer-related genes (cohort 2. Non-synonymous and non-sense variants affecting single-nucleotide variations and insertions or deletions were further analyzed. A tissue microarray of 43 OCCCs (cohort 3 was used for validation by immunohistochemistry and chromogenic in situ hybridization.ResultsGene expression analyses revealed a distinct OCCC profile compared to other histological subtypes, with, e.g., ERBB2, TFAP2A, and genes related to cytoskeletal actin regulation being overexpressed in OCCC. ERBB2 was, however, not overexpressed on the protein level and ERBB2 amplification was rare in the validation cohort. Targeted deep sequencing revealed non-synonymous variants or insertions/deletions in 11/60 cancer-related genes. Genes involved in chromatin remodeling, including ARID1A, SPOP, and KMT2D were frequently mutated across OCCC tumors.ConclusionOCCCs appear

  8. Identification of genes involved in Epstein-Barr virus-associated nasopharyngeal carcinoma

    Science.gov (United States)

    Wang, Junguo; Mei, Fang; Gao, Xia; Wang, Shoulin

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is the most common cancer originating from the nasopharynx, and can be induced by infection with Epstein-Barr virus (EBV). To study the mechanisms of EBV-associated NPC, a microarray of the GSE12452 dataset was analyzed. GSE12452 was downloaded from Gene Expression Omnibus and consisted of 31 NPC samples and 10 normal healthy nasopharyngeal tissue samples. The differentially-expressed genes (DEGs) were screened using the linear models for microarray data package in R. Using Database for Annotation, Visualization and Integrated Discovery software, potential functions of the DEGs were predicted by Gene Ontology and pathway enrichment analyses. With the information from the Search Tool for the Retrieval of Interacting Genes/Proteins database, the protein-protein interaction (PPI) network was visualized by Cytoscape. Furthermore, modules of the PPI network were searched using ClusterONE in Cytoscape. A total of 951 DEGs were screened in the NPC samples compared with the normal healthy nasopharyngeal tissue samples. Function enrichment indicated that the upregulated genes were associated with the cell cycle, cytoskeleton organization and DNA metabolism. Meanwhile, the downregulated genes were mainly associated with cell differentiation, hormone metabolism, inflammatory response and immune response. PPI networks for the DEGs suggested that upregulated mitotic arrest deficient 2-like 1 (MAD2L1; degree=133), proliferating cell nuclear antigen (PCNA; degree=125) and cyclin B1 (CCNB1; degree=115), and downregulated member A1 of aldehyde dehydrogenase 1 (ALDH1A1; degree=15) may be of great importance as they exhibited higher degrees on interaction. Mucin 1 (MUC1) was a key node of module 4. Overall, the study indicated that MAD2L1, CCNB1, PCNA, ALDH1A1 and MUC1 may have a correlation with EBV-associated NPC. PMID:27698802

  9. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity

    Directory of Open Access Journals (Sweden)

    Laercio R Porto-Neto

    2014-04-01

    Full Text Available We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2,112 and Tropical Composite (n = 2,550. We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases and 99 (chromatin remodelling factors genes. A total of 3,091 SNP mapped to positions within 3,000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2,738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10-5. A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r2 > 0.84. To further characterise the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05 enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterise the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes.

  10. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity

    Science.gov (United States)

    Porto-Neto, Laercio R.; Fortes, Marina R. S.; McWilliam, Sean M.; Lehnert, Sigrid A.; Reverter, Antonio

    2014-01-01

    We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2112) and Tropical Composite (n = 2550). We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases) and 99 (chromatin remodeling factors) genes. A total of 3091 SNP mapped to positions within 3000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10−5). A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r2 > 0.84). To further characterize the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05) enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterize the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes. PMID:24795751

  11. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.

    Science.gov (United States)

    Li, Yan-Ping; Tang, Xiao; Wu, Wei; Xu, Yang; Huang, Zhi-Bing; He, Qing-Hua

    2015-01-01

    Citrinin, a fungal secondary metabolite of polyketide origin, is moderately nephrotoxic to vertebrates, including humans. Citrinin is synthesised by condensation of acetyl-CoA and malonyl-CoA. Six genes involved in the citrinin biosynthesis, including pksCT, ctnA and ctnB, have been cloned in Monascus purpureus. The pksCT gene encodes a polyketide synthase; ctnA is a regulatory factor; and ctnB encodes an oxidoreductase. When the three genes were respectively disrupted, the disruption strains drastically decreased citrinin production or barely produced citrinin. Ten new genes have been discovered in Monascus aurantiacus besides the above six genes. One of these gene displayed the highest similarity to the β-carbonic anhydrase gene from Aspergillus oryzae (74% similarity) and was designated ctnG. To learn more about the citrinin biosynthetic pathway, a ctnG-replacement vector was constructed to disrupt ctnG with the hygromycin resistance gene as the selection marker, then transformed into M. aurantiacus Li AS3.4384 by a protoplast-PEG method. The citrinin content of three disruptants was reduced to about 50%, meanwhile pigment production decreased by 23%, respectively, over those of the wild-type strains. ctnG was deduced to be involved in the formation of malonyl-CoA as a common precursor of red pigments and citrinin. Therefore, the disruption of the ctnG gene decreased citrinin and pigment production. M. aurantiacus Li AS3.4384 can produce higher concentrations of citrinin than other strains such as M. purpureus and M. ruber. Establishing the function of citrinin biosynthetic genes in M. aurantiacus is helpful in understanding the citrinin synthetic pathway and adopting some strategies to control contamination.

  12. Gene Targeting and Expression Modulation by Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Peptide nucleic acids (PNA) are artificial structural mimics of nucleic acids capable of sequence specific hybridization to both RNA and DNA. Thus they have obvious potential as gene targeting agents for drug discovery approaches. An overview with emphasis on recent progress on RNA "interference"...

  13. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... Light is known to induce the expression of the NR genes. (Tischner, 2000; Lillo et .... diluted 1:10. The reactions were performed in a thermocycler model ..... Effects of long-term soil drought on photosynthesis and carbohydrate ...

  14. [The gene wxcA of Xanthomonas campestris pv. campestris 8004 strain involved in EPS yield].

    Science.gov (United States)

    Lu, Guang-Tao; Tang, Ji-Liang; Wei, Guang-Ning; He, Yong-Qiang; Chen, Bao-Shan

    2004-07-01

    Xanthomonas campestris pv. campestris (Xcc), the pathogenic agent of black rot disease in cruciferous plants, produces large amount of extracellular polysaccharide (EPS), which has found wide applications in industry. For the great commercial value of the xanthan gum, many of the genes involved in EPS biosynthesis have been cloned and the mechanism of EPS biosynthesis also has been studied. In order to clone genes involved in EPS biosynthesis, Xcc wild-type strain 8004 was mutagenized with transposon Tn5 gusA5, and a number of EPS-defective mutants were isolated in our previous work. The Tn5 gusA5 inserted sites of these mutants were located by using thermal asymmetric interlaced PCR, and results showed that two EPS-defective mutants were insertion mutants of the gene wxcA which involved in lipopolysaccharide (LPS) biosynthesis. The gene wxcA involved in lipopolysaccharide biosynthesis but dose not extracellular polysaccharide in others' report. wxcA::Tn5 gusA5 mutant 021C12, the polar mutant, was complemented with recombinant plasmid pLATC8570 harboring an intact wxcA gene in this work, but the yield of EPS of the wxcA::Tn5 gusA5 mutant was not restored. In order to identify the function of wxcA gene of Xcc 8004 strain, the gene wxcA was deleted by gene replacement strategy, and the no-polar mutant of wxcA was obtained. DeltawxcA mutant strain, named Xcc 8570, was confirmed by using both PCR and southern analysis. Beside the LPS biosynthesis of deltawxcA mutant was affected, The EPS yield of deltawxcA mutant strain reduced by 50% as compared with the wild-type strain 8004. DeltawxcA mutant could be complemented in trans with the intact wxcA gene, and the EPS yield of the mutant was restored. The combined data showed that wxcA gene not only involved in LPS biosynthesis but also EPS yield in Xcc 8004 strain.

  15. Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats.

    Science.gov (United States)

    Ju, Ling-sha; Jia, Min; Sun, Jie; Sun, Xiao-ru; Zhang, Hui; Ji, Mu-huo; Yang, Jian-jun; Wang, Zhong-yun

    2016-02-01

    General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.

  16. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Directory of Open Access Journals (Sweden)

    Ming-Ming Zhao

    Full Text Available Dendrobiumofficinale (Orchidaceae is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs were clustered to 1074 Unigenes (including 902 singletons and 172 contigs, which were searched against the NCBI non-redundant (NR protein database (E-value cutoff, e(-5. Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO, Clusters of orthologous Groups of proteins (COGs and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS. The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs, which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS, were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  17. RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells.

    Science.gov (United States)

    Wu, Mei; Wu, Zhi-Fen; Kumar-Sinha, Chandan; Chinnaiyan, Arul; Merajver, Sofia D

    2004-03-01

    Inflammatory breast cancer (IBC) is the most deadly form of breast cancer in humans presumably due to its ability to metastasize from its inception. In our laboratory, overexpression of RhoC GTPase was observed to be specific for IBC tumors, but not for stage-matched, non-IBC tumors. RhoC is known to contribute to an IBC-like phenotype in HPV-E6E7 immortalized breast cells. To further study the effect of RhoC overexpression on IBC metastasis, we generated stable transfectants of spontaneous immortalized mammary epithelial cells (MCF10A) overexpressing wild-type RhoC or a constitutively active RhoC mutant (G14V). Both the RhoC wild type and the G14V transfectants were highly invasive and proliferated more rapidly compared to vector-only control clones. Overexpression of RhoC led to an increase in actin stress fiber and focal adhesion contact formation. Comparative microarray analysis of these clones further revealed that RhoC overexpression upregulated 108 genes whereas seven genes were down-regulated. We have further verified by quantitative RT-PCR that genes involved in cell proliferation, invasion/adhesion, and angiogenesis were modulated by RhoC. This work suggests strong candidates for the downstream oncogenic functions of RhoC.

  18. Isolation of genes (nif/hup cosmids) involved in hydrogenase and nitrogenase activities in Rhizobium japonicum.

    Science.gov (United States)

    Hom, S S; Graham, L A; Maier, R J

    1985-03-01

    Recombinant cosmids containing a Rhizobium japonicum gene involved in both hydrogenase (Hup) and nitrogenase (Nif) activities were isolated. An R. japonicum gene bank utilizing broad-host-range cosmid pLAFR1 was conjugated into Hup- Nif- R. japonicum strain SR139. Transconjugants containing the nif/hup cosmid were identified by their resistance to tetracycline (Tcr) and ability to grow chemoautotrophically (Aut+) with hydrogen. All Tcr Aut+ transconjugants possessed high levels of H2 uptake activity, as determined amperometrically. Moreover, all Hup+ transconjugants tested possessed the ability to reduce acetylene (Nif+) in soybean nodules. Cosmid DNAs from 19 Hup+ transconjugants were transferred to Escherichia coli by transformation. When the cosmids were restricted with EcoRI, 15 of the 19 cosmids had a restriction pattern with 13.2-, 4.0-, 3.0-, and 2.5-kilobase DNA fragments. Six E. coli transformants containing the nif/hup cosmids were conjugated with strain SR139. All strain SR139 transconjugants were Hup+ Nif+. Moreover, one nif/hup cosmid was transferred to 15 other R. japonicum Hup- mutants. Hup+ transconjugants of six of the Hup- mutants appeared at a frequency of 1.0, whereas the transconjugants of the other nine mutants remained Hup-. These results indicate that the nif/hup gene cosmids contain a gene involved in both nitrogenase and hydrogenase activities and at least one and perhaps other hup genes which are exclusively involved in H2 uptake activity.

  19. Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes.

    NARCIS (Netherlands)

    Menko, F.H.; Kneepkens, C.M.; Leeuw, N. de; Peeters, E.A.; Maldergem, L Van; Kamsteeg, E.J.; Davidson, R.; Rozendaal, L.; Lasham, C.A.; Peeters-Scholte, C.M.; Jansweijer, M.C.E.; Hilhorst-Hofstee, Y.; Gille, J.J.P.; Heins, Y.M.; Nieuwint, A.W.; Sistermans, E.A.

    2008-01-01

    Infantile juvenile polyposis is a rare disease with severe gastrointestinal symptoms and a grave clinical course. Recently, 10q23 microdeletions involving the PTEN and BMPR1A genes were found in four patients with infantile juvenile polyposis. It was hypothesized that a combined and synergistic effe

  20. Proteomics of Wheat Endosperm: a Tool to Find Genes Involved in Kernel Composition and Quality

    Institute of Scientific and Technical Information of China (English)

    G. Branlard; E. Bancel; I. Nadaud

    2007-01-01

    @@ The composition of the wheat kernel is the result of the expression of thousands of genes translated in enzymes involved in all the biochemical pathways that are needed for endosperm cell functions and also for the accumulation of storage proteins and starch.

  1. Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data.

    Science.gov (United States)

    Farber, Charles R

    2010-11-01

    Bone mineral density (BMD) is influenced by a complex network of gene interactions; therefore, elucidating the relationships between genes and how those genes, in turn, influence BMD is critical for developing a comprehensive understanding of osteoporosis. To investigate the role of transcriptional networks in the regulation of BMD, we performed a weighted gene coexpression network analysis (WGCNA) using microarray expression data on monocytes from young individuals with low or high BMD. WGCNA groups genes into modules based on patterns of gene coexpression. and our analysis identified 11 gene modules. We observed that the overall expression of one module (referred to as module 9) was significantly higher in the low-BMD group (p = .03). Module 9 was highly enriched for genes belonging to the immune system-related gene ontology (GO) category "response to virus" (p = 7.6 × 10(-11)). Using publically available genome-wide association study data, we independently validated the importance of module 9 by demonstrating that highly connected module 9 hubs were more likely, relative to less highly connected genes, to be genetically associated with BMD. This study highlights the advantages of systems-level analyses to uncover coexpression modules associated with bone mass and suggests that particular monocyte expression patterns may mediate differences in BMD.

  2. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  3. Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes

    OpenAIRE

    Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, HongTao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph

    2016-01-01

    Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecule...

  4. Light modulation of human sleep depends on a polymorphism in the clock gene Period3.

    Science.gov (United States)

    Chellappa, Sarah L; Viola, Antoine U; Schmidt, Christina; Bachmann, Valérie; Gabel, Virginie; Maire, Micheline; Reichert, Carolin F; Valomon, Amandine; Landolt, Hans-Peter; Cajochen, Christian

    2014-09-01

    Non-image-forming (NIF) responses to light powerfully modulate human physiology. However, it remains scarcely understood how NIF responses to light modulate human sleep and its EEG hallmarks, and if there are differences across individuals. Here we investigated NIF responses to light on sleep in individuals genotyped for the PERIOD3 (PER3) variable-number tandem-repeat (VNTR) polymorphism. Eighteen healthy young men (20-28 years; mean ± SEM: 25.9 ± 1.2) homozygous for the PER3 polymorphism were matched by age, body-mass index, and ethnicity. The study protocol comprised a balanced cross-over design during the winter, during which participants were exposed to either light of 40 lx at 6,500 K (blue-enriched) or light at 2,500 K (non-blue enriched), during 2h in the evening. Compared to light at 2,500 K, light at 6,500 K induced a significant increase in all-night NREM sleep slow-wave activity (SWA: 1.0-4.5 Hz) in the occipital cortex for PER3(5/5) individuals, but not for PER3(4/4) volunteers. Dynamics of SWA across sleep cycles revealed increased occipital NREM sleep SWA for virtually all sleep episode only for PER3(5/5) individuals. Furthermore, they experienced light at 6,500 K as significantly brighter. Intriguingly, this subjective perception of brightness significantly predicted their increased occipital SWA throughout the sleep episode. Our data indicate that humans homozygous for the PER3(5/5) allele are more sensitive to NIF light effects, as indexed by specific changes in sleep EEG activity. Ultimately, individual differences in NIF light responses on sleep may depend on a clock gene polymorphism involved in sleep-wake regulation.

  5. Identification of novel genes involved in gastric carcinogenesis by suppression subtractive hybridization.

    Science.gov (United States)

    Mottaghi-Dastjerdi, N; Soltany-Rezaee-Rad, M; Sepehrizadeh, Z; Roshandel, G; Ebrahimifard, F; Setayesh, N

    2015-01-01

    Gastric cancer (GC) is one of the most common and life-threatening types of malignancies. Identification of the differentially expressed genes in GC is one of the best approaches for establishing new diagnostic and therapeutic targets. Furthermore, these investigations could advance our knowledge about molecular biology and the carcinogenesis of this cancer. To screen for the overexpressed genes in gastric adenocarcinoma, we performed suppression subtractive hybridization (SSH) on gastric adenocarcinoma tissue and the corresponding normal gastric tissue, and eight genes were found to be overexpressed in the tumor compared with those of the normal tissue. The genes were ribosomal protein L18A, RNase H2 subunit B, SEC13, eukaryotic translation initiation factor 4A1, tetraspanin 8, cytochrome c oxidase subunit 2, NADH dehydrogenase subunit 4, and mitochondrially encoded ATP synthase 6. The common functions among the identified genes include involvement in protein synthesis, involvement in genomic stability maintenance, metastasis, metabolic improvement, cell signaling pathways, and chemoresistance. Our results provide new insights into the molecular biology of GC and drug discovery: each of the identified genes could be further investigated as targets for prognosis evaluation, diagnosis, treatment, evaluation of the response to new anticancer drugs, and determination of the molecular pathogenesis of GC.

  6. Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Xianen Li

    2012-10-01

    Full Text Available Rehmannia glutinosa, one of the most widely used herbal medicines in the Orient, is rich in biologically active iridoids. Despite their medicinal importance, no molecular information about the iridoid biosynthesis in this plant is presently available. To explore the transcriptome of R. glutinosa and investigate genes involved in iridoid biosynthesis, we used massively parallel pyrosequencing on the 454 GS FLX Titanium platform to generate a substantial EST dataset. Based on sequence similarity searches against the public sequence databases, the sequences were first annotated and then subjected to Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG based analysis. Bioinformatic analysis indicated that the 454 assembly contained a set of genes putatively involved in iridoid biosynthesis. Significantly, homologues of the secoiridoid pathway genes that were only identified in terpenoid indole alkaloid producing plants were also identified, whose presence implied that route II iridoids and route I iridoids share common enzyme steps in the early stage of biosynthesis. The gene expression patterns of four prenyltransferase transcripts were analyzed using qRT-PCR, which shed light on their putative functions in tissues of R. glutinosa. The data explored in this study will provide valuable information for further studies concerning iridoid biosynthesis.

  7. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2013-02-01

    The cell wall is the structure that provides the shape to fungal cells and protects them from the difference in osmotic pressure existing between the cytosol and the external medium. Accordingly, changes in structure and composition of the fungal wall must occur during cell differentiation, including the dimorphic transition of fungi. We analyzed, by use of microarrays, the transcriptional regulation of the 639 genes identified to be involved in cell wall synthesis and structure plus the secretome of the Basidiomycota species Ustilago maydis during its dimorphic transition induced by a change in pH. Of these, 189 were differentially expressed during the process, and using as control two monomorphic mutants, one yeast like and the other mycelium constitutive, 66 genes specific of dimorphism were identified. Most of these genes were up-regulated in the mycelial phase. These included CHS genes, genes involved in β-1,6-glucan synthesis, N-glycosylation, and proteins containing a residue of glycosylphosphatidylinositol, and a number of genes from the secretome. The possible significance of these data on cell wall plasticity is discussed.

  8. Identification and characterization of nuclear genes involved in photosynthesis in Populus.

    Science.gov (United States)

    Wang, Bowen; Du, Qingzhang; Yang, Xiaohui; Zhang, Deqiang

    2014-03-27

    The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.

  9. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    Science.gov (United States)

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  10. Involvement of histone acetylation in the regulation of choline acetyltransferase gene in NG108-15 neuronal cells.

    Science.gov (United States)

    Aizawa, Shu; Yamamuro, Yutaka

    2010-03-01

    Post-translational modification of histone such as acetylation of N-terminal of lysine residues influences gene expression by modulating the accessibility of specific transcription factors to the promoter region, and is essential for a wide variety of cellular processes in the development of individual tissues, including the brain. However, few details concerning the acquisition of specific neurotransmitter phenotype have been obtained. In the present study, we investigated the possible involvement of histone acetylation in the gene expression of choline acetyltransferase (ChAT), a specific marker for cholinergic neuron and its function, in NG108-15 neuronal cells as an in vitro model of cholinergic neuron. Treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), which induces global histone hyper-acetylation of the cells, resulted in marked increase in the expression of ChAT gene in proliferating NG108-15 cells. Furthermore, RT-PCR analysis using primer pairs for individual variants of ChAT mRNA (R1-4, N1, and M type) revealed that M type, not R1-4 and N1 type, ChAT mRNA were mainly transcribed, and chromatin immunoprecipitation assay indicated that the promoter region of M type ChAT gene was highly acetylated, in the dibutyryl cyclic AMP-induced neuronal differentiation of NG108-15 cells. The present findings demonstrate that the acquisition of neurotransmitter phenotype is epigenetically, at least the hyper-acetylation on the core promoter region of ChAT gene, regulated in NG108-15 neuronal cells.

  11. De Novo RNA Sequencing and Transcriptome Analysis of Monascus purpureus and Analysis of Key Genes Involved in Monacolin K Biosynthesis

    Science.gov (United States)

    Zhang, Chan; Liang, Jian; Yang, Le; Sun, Baoguo; Wang, Chengtao

    2017-01-01

    Monascus purpureus is an important medicinal and edible microbial resource. To facilitate biological, biochemical, and molecular research on medicinal components of M. purpureus, we investigated the M. purpureus transcriptome by RNA sequencing (RNA-seq). An RNA-seq library was created using RNA extracted from a mixed sample of M. purpureus expressing different levels of monacolin K output. In total 29,713 unigenes were assembled from more than 60 million high-quality short reads. A BLAST search revealed hits for 21,331 unigenes in at least one of the protein or nucleotide databases used in this study. The 22,365 unigenes were categorized into 48 functional groups based on Gene Ontology classification. Owing to the economic and medicinal importance of M. purpureus, most studies on this organism have focused on the pharmacological activity of chemical components and the molecular function of genes involved in their biogenesis. In this study, we performed quantitative real-time PCR to detect the expression of genes related to monacolin K (mokA-mokI) at different phases (2, 5, 8, and 12 days) of M. purpureus M1 and M1-36. Our study found that mokF modulates monacolin K biogenesis in M. purpureus. Nine genes were suggested to be associated with the monacolin K biosynthesis. Studies on these genes could provide useful information on secondary metabolic processes in M. purpureus. These results indicate a detailed resource through genetic engineering of monacolin K biosynthesis in M. purpureus and related species. PMID:28114365

  12. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development.

    Science.gov (United States)

    Tsaniklidis, Georgios; Kotsiras, Anastasios; Tsafouros, Athanasios; Roussos, Peter A; Aivalakis, Georgios; Katinakis, Panagiotis; Delis, Costas

    2016-03-01

    Polyamines are organic compounds involved in various biological roles in plants, including cell growth and organ development. In the present study, the expression profile, the accumulation of free polyamines and the transcript localisation of the genes involved in Put metabolism, such as Ornithine decarboxylase (ODC), Arginine decarboxylase (ADC) and copper containing Amine oxidase (CuAO), were examined during Solanum lycopersicum cv. Chiou fruit development and maturation. Moreover, the expression of genes coding for enzymes involved in higher polyamine metabolism, including Spermidine synthase (SPDS), Spermine synthase (SPMS), S-adenosylmethionine decarboxylase (SAMDC) and Polyamine oxidase (PAO), were studied. Most genes participating in PAs biosynthesis and metabolism exhibited an increased accumulation of transcripts at the early stages of fruit development. In contrast, CuAO and SPMS were mostly expressed later, during the development stages of the fruits where a massive increase in fruit volume occurs, while the SPDS1 gene exhibited a rather constant expression with a peak at the red ripe stage. Although Put, Spd and Spm were all exhibited decreasing levels in developing immature fruits, Put levels maxed late during fruit ripening. In contrast to Put both Spd and Spm levels continue to decrease gradually until full ripening. It is worth noticing that in situ RNA-RNA hybridisation is reported for the first time in tomato fruits. The localisation of ADC2, ODC1 and CuAO gene transcripts at tissues such as the locular parenchyma and the vascular bundles fruits, supports the theory that all genes involved in Put biosynthesis and catabolism are mostly expressed in fast growing tissues. The relatively high expression levels of CuAO at the ImG4 stage of fruit development (fruits with a diameter of 3 cm), mature green and breaker stages could possibly be attributed to the implication of polyamines in physiological processes taking place during fruit ripening.

  13. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica

    Directory of Open Access Journals (Sweden)

    Yasuyuki Yamada

    2016-09-01

    Full Text Available The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs, a plant-specific WRKY-type transcription factor, CjWRKY1, and a basic helix-loop-helix (bHLH transcription factor, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4’OMT and CYP719A1 were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay (EMSA and by a chromatin immunoprecipitation (ChIP assay. In addition, CjbHLH1 also activated transcription from truncated 4’OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed.

  14. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    Science.gov (United States)

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in

  15. Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Rezaei

    2016-12-01

    Full Text Available Plant carotenoids have a key role in preventing various diseases in human because of their antioxidant and provitamin A properties. Chickpea is a good source of carotenoid among legumes and its diverse germplasm and genome accessibility makes it a good model for carotenogenesis studies. The structure, location and copy numbers of genes involved in carotenoid biosynthesis were retrieved from the chickpea genome. The majority of the single nucleotide polymorphism (SNPs within these genes across five diverse chickpea cultivars was synonymous mutation. We examined the expression of the carotenogenesis genes and their association with carotenoid concentration at different seed development stages of five chickpea cultivars. Total carotenoid concentration ranged from 22 μg g-1 in yellow cotyledon kabuli to 44 μg g-1 in green cotyledon desi at 32 days post anthesis (DPA. The majority of carotenoids in chickpea seeds consists of lutein and zeaxanthin. The expression of the selected 19 genes involved in carotenoid biosynthesis pathway showed common pattern across five cultivars with higher expression at 8 and/or 16 DPA then dropped considerably at 24 and 32 DPA. Almost all genes were up-regulated in CDC Jade cultivar. Correlation analysis between gene expression and carotenoid concentration showed that the genes involved in the primary step of carotenoid biosynthesis pathway including carotenoid desaturase and isomerase positively correlated with various carotenoid components in chickpea seeds. A negative correlation was found between hydroxylation activity and provitamin A concentration in the seeds. The highest provitamin A concentration including β-carotene and β-cryptoxanthin were found in green cotyledon chickpea cultivars.

  16. Involvement of plastid, mitochondrial and nuclear genomes in plant-to-plant horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Maria Virginia Sanchez-Puerta

    2014-12-01

    Full Text Available This review focuses on plant-to-plant horizontal gene transfer (HGT involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.

  17. Identification of new genes involved in human adipogenesis and fat storage.

    Directory of Open Access Journals (Sweden)

    Jörn Söhle

    Full Text Available Since the worldwide increase in obesity represents a growing challenge for health care systems, new approaches are needed to effectively treat obesity and its associated diseases. One prerequisite for advances in this field is the identification of genes involved in adipogenesis and/or lipid storage. To provide a systematic analysis of genes that regulate adipose tissue biology and to establish a target-oriented compound screening, we performed a high throughput siRNA screen with primary (preadipocytes, using a druggable siRNA library targeting 7,784 human genes. The primary screen showed that 459 genes affected adipogenesis and/or lipid accumulation after knock-down. Out of these hits, 333 could be validated in a secondary screen using independent siRNAs and 110 genes were further regulated on the gene expression level during adipogenesis. Assuming that these genes are involved in neutral lipid storage and/or adipocyte differentiation, we performed InCell-Western analysis for the most striking hits to distinguish between the two phenotypes. Beside well known regulators of adipogenesis and neutral lipid storage (i.e. PPARγ, RXR, Perilipin A the screening revealed a large number of genes which have not been previously described in the context of fatty tissue biology such as axonemal dyneins. Five out of ten axonemal dyneins were identified in our screen and quantitative RT-PCR-analysis revealed that these genes are expressed in preadipocytes and/or maturing adipocytes. Finally, to show that the genes identified in our screen are per se druggable we performed a proof of principle experiment using an antagonist for HTR2B. The results showed a very similar phenotype compared to knock-down experiments proofing the "druggability". Thus, we identified new adipogenesis-associated genes and those involved in neutral lipid storage. Moreover, by using a druggable siRNA library the screen data provides a very attractive starting point to identify anti

  18. Transcriptional Modulation of Squalene Synthase Genes in Barley Treated with PGPR

    OpenAIRE

    Anam eYousaf; Abdul eQadir; Tehmina eAnjum; Aqeel eAhmad

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene Squalene Synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27±3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analysed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of squalene synthase. Results revealed that among four ...

  19. Gene Network for Identifying the Entropy Changes of Different Modules in Pediatric Sepsis

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-12-01

    Full Text Available Background/Aims: Pediatric sepsis is a disease that threatens life of children. The incidence of pediatric sepsis is higher in developing countries due to various reasons, such as insufficient immunization and nutrition, water and air pollution, etc. Exploring the potential genes via different methods is of significance for the prevention and treatment of pediatric sepsis. This study aimed to identify potential genes associated with pediatric sepsis utilizing analysis of gene network and entropy. Methods: The mRNA expression in the blood samples collected from 20 septic children and 30 healthy controls was quantified by using Affymetrix HG-U133A microarray. Two condition-specific protein-protein interaction networks (PINs, one for the healthy control and the other one for the children with sepsis, were deduced by combining the fundamental human PINs with gene expression profiles in the two phenotypes. Subsequently, distinct modules from the two conditional networks were extracted by adopting a maximal clique-merging approach. Delta entropy (ΔS was calculated between sepsis and control modules. Results: Then, key genes displaying changes in gene composition were identified by matching the control and sepsis modules. Two objective modules were obtained, in which ribosomal protein RPL4 and RPL9 as well as TOP2A were probably considered as the key genes differentiating sepsis from healthy controls. Conclusion: According to previous reports and this work, TOP2A is the potential gene therapy target for pediatric sepsis. The relationship between pediatric sepsis and RPL4 and RPL9 needs further investigation.

  20. Application of random matrix theory to microarray data for discovering functional gene modules.

    Science.gov (United States)

    Luo, Feng; Zhong, Jianxin; Yang, Yunfeng; Zhou, Jizhong

    2006-03-01

    We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.

  1. Application of random matrix theory to microarray data for discovering functional gene modules

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F. [Xiangtan University, Xiangtan Hunan, China; Zhong, Jianxin [ORNL; Yang, Y. F. [unknown; Zhou, Jizhong [ORNL

    2006-03-01

    We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.

  2. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68.

    Science.gov (United States)

    Samadlouie, Hamid-Reza; Hamidi-Esfahani, Zohreh; Alavi, Seyed-Mehdi; Varastegani, Boshra

    2014-01-01

    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.

  3. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68

    Directory of Open Access Journals (Sweden)

    Hamid-Reza Samadlouie

    2014-06-01

    Full Text Available The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.

  4. Expression Analysis of Dihydroflavonol 4-Reductase Genes Involved in Anthocyanin Biosynthesis in Purple Grains of Wheat

    Institute of Scientific and Technical Information of China (English)

    Mao-Sen LIU; Fang WANG; Yu-Xiu DONG; Xian-Sheng ZHANG

    2005-01-01

    The grain color of wheat (Triticum aestivum L.) is an important characteristic in crop production.Dihydroflavonol 4-reductase genes (DFR) encode the key enzyme dihydroflavonol 4-reductase, which is involved in the pigmentation of plant tissues. To investigate the molecular mechanism of anthocyanin deposition in grains of wheat, we determined the expression of the wheat DFR gene in purple grains of cultivar Heimai 76. The results showed that DFR transcripts were localized in the seed coat of purple grains rather than in the pericarp, whereas anthocyanins were accumulated in both tissues of purple grains,suggesting that anthocyanin deposition was mainly regulated at the transcriptional level. Overexpression of the TaDFR-A gene in Arabidopsis showed that TaDFR-A was responsible for the pigmentation of Arabidopsis plant tissues, indicating TaDFR-A gene has the same role in Arabidopsis.

  5. Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development

    Directory of Open Access Journals (Sweden)

    Vikash K. Singh

    2014-12-01

    Full Text Available Flower development is one of the major developmental processes that governs seed setting in angiosperms. However, little is known about the molecular mechanisms underlying flower development in legumes. Employing RNA-seq for various stages of flower development and few vegetative tissues in chickpea, we identified differentially expressed genes in flower tissues/stages in comparison to vegetative tissues, which are related to various biological processes and molecular functions during flower development. Here, we provide details of experimental methods, RNA-seq data (available at Gene Expression Omnibus database under GSE42679 and analysis pipeline published by Singh and colleagues in the Plant Biotechnology Journal (Singh et al., 2013, along with additional analysis for discovery of genes involved in shoot apical meristem (SAM development. Our data provide a resource for exploring the complex molecular mechanisms underlying SAM and flower development and identification of gene targets for functional and applied genomics in legumes.

  6. Identification and functional characterization of pfm, a novel gene involved in swimming motility of Pseudomonas aeruginosa.

    Science.gov (United States)

    Bai, Fang; Li, Yingli; Xu, Haijing; Xia, Huiming; Yin, Tengfei; Yao, Hongming; Zhang, Lu; Zhang, Xiuming; Bai, Yanling; Jin, Shouguang; Qiao, Mingqiang

    2007-10-15

    Pseudomonas aeruginosa, an important opportunistic pathogen, has a single polar flagellum which is an important virulence and colonization factor by providing swimming motility. This paper describes the functional characterization of a novel gene pfm (PA2950) of P. aeruginosa. The pfm encodes a protein that is similar to a number of short-chain alcohol dehydrogenases of other bacterial species. Mutation of this gene results in a defect in swimming motility which can be completed back to that of wild type by a plasmid containing the pfm. Interestingly, the pfm mutant possesses an intact flagellum which does not rotate, thus giving rise to a non-motile phenotype. The pfm gene is encoded on an operon together with two upstream genes which code for electron transfer flavoprotein (ETF). Yeast two-hybrid tests indicated that the PFM interacts with the ETF, suggesting that the putative dehydrogenase (PFM) is involved in energy metabolism that is critical for the rotation of flagellum in P. aeruginosa.

  7. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.

    Science.gov (United States)

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2006-09-01

    One of the challenges of comparative genomics is to identify specific genetic changes associated with the evolution of a novel adaptation or trait. We need to be able to disassociate the genes involved with a particular character from all the other genetic changes that take place as lineages diverge. Here we show that by comparing the transcriptional profile of segregating families with that of parent species differing in a novel trait, it is possible to narrow down substantially the list of potential target genes. In addition, by assuming synteny with a related model organism for which the complete genome sequence is available, it is possible to use the cosegregation of markers differing in transcription level to identify regions of the genome which probably contain quantitative trait loci (QTLs) for the character. This novel combination of genomics and classical genetics provides a very powerful tool to identify candidate genes. We use this methodology to investigate zinc hyperaccumulation in Arabidopsis halleri, the sister species to the model plant, Arabidopsis thaliana. We compare the transcriptional profile of A. halleri with that of its sister nonaccumulator species, Arabidopsis petraea, and between accumulator and nonaccumulator F(3)s derived from the cross between the two species. We identify eight genes which consistently show greater expression in accumulator phenotypes in both roots and shoots, including two metal transporter genes (NRAMP3 and ZIP6), and cytoplasmic aconitase, a gene involved in iron homeostasis in mammals. We also show that there appear to be two QTLs for zinc accumulation, on chromosomes 3 and 7.

  8. An Algorithm for Generating Small RNAs Capable of Epigenetically Modulating Transcriptional Gene Silencing and Activation in Human Cells

    Directory of Open Access Journals (Sweden)

    Amanda Ackley

    2013-01-01

    Full Text Available Small noncoding antisense RNAs (sasRNAs guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications.

  9. Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects.

    Science.gov (United States)

    Fracchiolla, Nicola Stefano; Todoerti, Katia; Bertazzi, Pier Alberto; Servida, Federica; Corradini, Paolo; Carniti, Cristiana; Colombi, Antonio; Cecilia Pesatori, Angela; Neri, Antonino; Deliliers, Giorgio Lambertenghi

    2011-04-28

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a large number of biological effects, including skin, cardiovascular, neurologic diseases, diabetes, infertility, cancers and immunotoxicity. We analysed the in vitro TCDD effects on human CD34+ cells and tested the gene expression modulation by means of microarray analyses before and after TCDD exposure. We identified 257 differentially modulated probe sets, identifying 221 well characterized genes. A large part of these resulted associated to cell adhesion and/or angiogenesis and to transcription regulation. Synaptic transmission and visual perception functions, with the particular involvement of the GABAergic pathway were also significantly modulated. Numerous transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion channel activity or calcium ion binding, tissue development and differentiation, female or male fertility or in several metabolic pathways were also affected after dioxin exposure. The transcriptional profile induced by TCDD treatment on human CD34+ cells strikingly reproduces the clinical and biological effects observed in individuals exposed to dioxin and in biological experimental systems. Our data support a role of dioxin in the neoplastic transformation of hemopoietic stem cells and in immune modulation processes after in vivo exposure, as indicated by the epidemiologic data in dioxin accidentally exposed populations, providing a molecular basis for it. In addition, TCDD alters genes associated to glucidic and lipidic metabolisms, to GABAergic transmission or involved in male and female fertility, thus providing a possible explanation of the diabetogenic, dyslipidemic, neurologic and fertility effects induced by TCDD in vivo exposure.

  10. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  11. Mining genes involved in insecticide resistance of Liposcelis bostrychophila Badonnel by transcriptome and expression profile analysis.

    Directory of Open Access Journals (Sweden)

    Wei Dou

    Full Text Available BACKGROUND: Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina. In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr protein database, gene ontology (GO, cluster of orthologous groups of proteins (COG, and KEGG orthology (KO. The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin exposure using the tag-based digital gene expression (DGE method. CONCLUSION: The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids.

  12. Strategies for functional validation of genes involved in reproductive stages of orchids.

    Science.gov (United States)

    Lu, Hsiang-Chia; Chen, Hong-Hwa; Tsai, Wen-Chieh; Chen, Wen-Huei; Su, Hong-Ji; Chang, Doris Chi-Ning; Yeh, Hsin-Hung

    2007-02-01

    Plants in the largest family of angiosperms, Orchidaceae, are diverse in both specialized pollination and ecological strategies and provide a rich source for investigating evolutionary relationships and developmental biology. However, studies in orchids have been hindered by several challenges that include low transformation efficiency and long regeneration time. To overcome such obstacles, we selected a symptomless cymbidium mosaic virus (CymMV) isolate for constructing virus-induced gene-silencing vectors. The feasibility of the virus vectors was first assessed with use of an orchid phytoene desaturase gene. The vector was able to induce gene silencing in orchids; however, because of the slow growth of orchids, the commonly used phytoene desaturase gene was not a good visual marker in orchids. We inserted a 150-nucleotide unique region of a B-class MADS-box family gene, PeMADS6, into pCymMV-pro60. The transcription level of PeMADS6 in inoculated Phalaenopsis plants was reduced by up to 73%, but no effect was observed for other MADS-box family genes. In contrast, in Phalaenopsis plants inoculated with CymMV transcripts containing 500 nucleotides of PeMADS6, a conserved region among MADS-box genes, the transcription level of PeMADS6 and the B- and C-class MADS-box genes was reduced by up to 97.8% as compared with plants inoculated with the vector alone. Flower morphology was affected in the MADS-box family gene-silenced plants as well. This in vivo experiment demonstrates an efficient way to study genes involved in the reproductive stage of plants with a long life cycle.

  13. Sucrose in bloom-forming cyanobacteria: loss and gain of genes involved in its biosynthesis.

    Science.gov (United States)

    Kolman, María A; Salerno, Graciela L

    2016-02-01

    Bloom-forming cyanobacteria are widely distributed in freshwater ecosystems. To cope with salinity fluctuations, cyanobacteria synthesize compatible solutes, such as sucrose, to maintain the intracellular osmotic balance. The screening of cyanobacterial genomes revealed that homologues to sucrose metabolism-related genes only occur in few bloom-forming strains, mostly belonging to Nostocales and Stigonematales orders. Remarkably, among Chroococcales and Oscillatoriales strains, homologues were only found in M. aeruginosa PCC 7806 and Leptolyngbya boryana PCC 6306, suggesting a massive loss of sucrose metabolism in bloom-forming strains of these orders. After a complete functional characterization of sucrose genes in M. aeruginosa PCC 7806, we showed that sucrose metabolism depends on the expression of a gene cluster that defines a transcriptional unit, unique among all sucrose-containing cyanobacteria. It was also demonstrated that the expression of the encoding genes of sucrose-related proteins is stimulated by salt. In view of its ancestral origin in cyanobacteria, the fact that most bloom-forming strains lack sucrose metabolism indicates that the genes involved might have been lost during evolution. However, in a particular strain, like M. aeruginosa PCC 7806, sucrose synthesis genes were probably regained by horizontal gene transfer, which could be hypothesized as a response to salinity fluctuations.

  14. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).

    Science.gov (United States)

    Castède, Sophie; Campoy, José Antonio; Le Dantec, Loïck; Quero-García, José; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2015-01-01

    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.

  15. A ketoreductase gene from Streptomyces mycarofaciens 1748 DNA involved in biosynthesis of a spore pigment

    Institute of Scientific and Technical Information of China (English)

    夏焕章; 王以光

    1997-01-01

    An efficient plasmid transformation system for S. mycarofaciens 1748 has been established. In order to determine the function of MKR gene in S. mycarofaciens 1748, the gene disruption experiment was carried out. For this purpose the plasmid pKC1139 was used. A recombinant strain with white spore appeared, in contrast to the grey-colour spore of S. mycarofaciens 1748. This suggested that homologous recombination between plasmid-borne MKR gene sequence and the chromosome of S. mycarofaciens 1748 had occurred. A Southern hybridization experiment using α- P-labelled MKR gene as probe indicated that the desired integration event had occurred in the re-combinant. The result of gene disruption showed that the alteration of this gene in the chromosome of S. mycarofa-ciens 1748 made sporulating colonies remain white instead of taking on the typical grey colour of sporulating wild type colonies, suggesting that MKR gene is involved in the biosynthesis of a spore pigment. The recombinant strain was in-cubated wit

  16. Characterization of Pneumococcal Genes Involved in Bloodstream Invasion in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Layla K Mahdi

    Full Text Available Streptococcus pneumoniae (the pneumococcus continues to account for significant morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteremia and meningitis, as well as less serious infections such as sinusitis, conjunctivitis and otitis media. Current polysaccharide vaccines are strictly serotype-specific and also drive the emergence of non-vaccine serotype strains. In this study, we used microarray analysis to compare gene expression patterns of either serotype 4 or serotype 6A pneumococci in the nasopharynx and blood of mice, as a model to identify genes involved in invasion of blood in the context of occult bacteremia in humans. In this manner, we identified 26 genes that were significantly up-regulated in the nasopharynx and 36 genes that were significantly up-regulated in the blood that were common to both strains. Gene Ontology classification revealed that transporter and DNA binding (transcription factor activities constitute the significantly different molecular functional categories for genes up-regulated in the nasopharynx and blood. Targeted mutagenesis of selected genes from both niches and subsequent virulence and pathogenesis studies identified the manganese-dependent superoxide dismutase (SodA as most likely to be essential for colonization, and the cell wall-associated serine protease (PrtA as important for invasion of blood. This work extends our previous analyses and suggests that both PrtA and SodA warrant examination in future studies aimed at prevention and/or control of pneumococcal disease.

  17. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities

    NARCIS (Netherlands)

    Uil, T.G.; Haisma, H.J.; Rots, Marianne

    2003-01-01

    Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger protein

  18. Identification of Putative Ortholog Gene Blocks Involved in Gestant and Lactating Mammary Gland Development: A Rodent Cross-Species Microarray Transcriptomics Approach

    Science.gov (United States)

    Rodríguez-Cruz, Maricela; Coral-Vázquez, Ramón M.; Hernández-Stengele, Gabriel; Sánchez, Raúl; Salazar, Emmanuel; Sanchez-Muñoz, Fausto; Encarnación-Guevara, Sergio; Ramírez-Salcedo, Jorge

    2013-01-01

    The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development. PMID:24288657

  19. Identification of Putative Ortholog Gene Blocks Involved in Gestant and Lactating Mammary Gland Development: A Rodent Cross-Species Microarray Transcriptomics Approach

    Directory of Open Access Journals (Sweden)

    Maricela Rodríguez-Cruz

    2013-01-01

    Full Text Available The mammary gland (MG undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78% and midpregnancy (89% and early lactation (64%, but downregulated in mid-lactation (61%. Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development.

  20. NDRG2: a Myc-repressed gene involved in cancer and cell stress

    Institute of Scientific and Technical Information of China (English)

    Libo Yao; Jian Zhang; Xuewu Liu

    2008-01-01

    As a master switch for cell proliferation and differentiation,Myc exerts its biological functions mainly through transcriptional regulation of its target genes,which are involved in cells' interaction and communication with their external environment.The N-Myc downstream-regulated gene (NDRG) family is composed ofNDRG1,NDRG2,NDRG3 and NDRG4,which are important in cell proliferation and differentiation.This review summarizes the recent studies on the structure,tissue distribution and functions of NDRG2 that try to show its significance in studying cancer and its therapeutic potential.

  1. DIFFERENTIAL EXPRESSION OF GENES INVOLVED IN METABOLISM BETWEEN TUMORIGENITIC HUMAN LEUKEMIA CELL LINES K562 AND K562-n

    Institute of Scientific and Technical Information of China (English)

    吕书晴; 许小平; 夏放; 居小萍; 李瑶; 应康; 毛裕民

    2003-01-01

    Objective: To study the molecular mechanism of different tumorigenicity in nude mice of human leukemia cell lines K562-n and K562. Methods: To analyze the genes differently expressed between K562 and K562-n cells by using cDNA microarray technique. Results: Among the 12800 genes detected, some genes involved in material metabolism and material transport were differently expressed between K562-n and K562 cells. These genes include homo sapiens placenta-specific ATP-binding cassette transporter gene, dihydrodiol dehydrogenase gene, hepatic dihydrodiol dehydrogenase gene, NAD-dependent methylene tetrahydrofolate dehydrogenase cyclohydrolase, lysophosphatidic acid acyltransferase, alpha gene, argininosuccinate lyase gene, mitochondrial isocitrtate dehydrogenase, adhesion protein SQM1 gene, dimethylarginine dimethylamino-hydrolase gene, M1 subunit of ribonucleotide reductase and farnesyl pyrophosphate synthetase gene. Conclusion: The high tumorigenicity of K562-n cells is related to the different expression of some genes concerned with cell metabolism and material transpoert.

  2. An evolutionary genomic approach to identify genes involved in human birth timing.

    Directory of Open Access Journals (Sweden)

    Jevon Plunkett

    2011-04-01

    Full Text Available Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition.

  3. Identification and analysis of novel genes involved in gravitropism of Arabidopsis thaliana.

    Science.gov (United States)

    Morita, Miyo T.; Tasaka, Masao; Masatoshi Taniguchi, .

    2012-07-01

    Gravitropism is a continuous control with regard to the orientation and juxtaposition of the various parts of the plant body in response to gravity. In higher plants, the relative directional change of gravity is mainly suscepted in specialized cells called statocytes, followed by signal conversion from physical information into physiological information within the statocytes. We have studied the early process of shoot gravitropism, gravity sensing and signaling process, mainly by molecular genetic approach. In Arabidopsis shoot, statocytes are the endodermal cells. sgr1/scarcrow (scr) and sgr7/short-root (shr) mutants fail to form the endodermis and to respond to gravity in their inflorescence stems. Since both SGR1/SCR and SGR7/SHR are transcriptional factors, at least a subset of their downstream genes can be expected to be involved in gravitropism. In addition, eal1 (endodermal-amyloplast less 1), which exhibits no gravitropism in inflorescence stem but retains ability to form endodermis, is a hypomorphic allele of sgr7/shr. Take advantage of these mutants, we performed DNA microarray analysis and compared gene expression profiles between wild type and the mutants. We found that approx. 40 genes were commonly down-regulated in these mutants and termed them DGE (DOWN-REGULATED GENE IN EAL1) genes. DGE1 has sequence similarity to Oryza sativa LAZY1 that is involved in shoot gravitropism of rice. DGE2 has a short region homologous to DGE1. DTL (DGE TWO-LIKE}) that has 54% identity to DGE2 is found in Arabidopsis genome. All three genes are conserved in angiosperm but have no known functional domains or motifs. We analyzed T-DNA insertion for these genes in single or multiple combinations. In dge1 dge2 dtl triple mutant, gravitropic response of shoot, hypocotyl and root dramatically reduced. Now we are carrying out further physiological and molecular genetic analysis of the triple mutant.

  4. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Won-Chan; Han, Kyung-Hwan

    2009-11-01

    MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.

  5. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients--support for the glutamate hypothesis of schizophrenias.

    Science.gov (United States)

    Fallgatter, A J; Ehlis, A-C; Herrmann, M J; Hohoff, C; Reif, A; Freitag, C M; Deckert, J

    2010-07-01

    Dysbindin (DTNBP1) is a recently characterized protein that seems to be involved in the modulation of glutamatergic neurotransmission in the human brain, thereby influencing prefrontal cortex function and associated cognitive processes. While association, neuroanatomical and cellular studies indicate that DTNBP1 might be one of several susceptibility genes for schizophrenia, the effect of dysbindin on prefrontal brain function at an underlying neurophysiological level has not yet been explored for these patients. The NoGo-anteriorization (NGA) is a topographical event-related potential measure, which has been established as a valid neurophysiological marker of prefrontal brain function. In the present study, we investigated the influence of seven dysbindin gene variants on the NGA in a group of 44 schizophrenic patients. In line with our a priori hypothesis, one DTNBP1 polymorphism previously linked to schizophrenia (rs2619528) was found to be associated with changes in the NGA; however, the direction of this association directly contrasts with our previous findings in a healthy control sample. This differential impact of DTNBP1 gene variation on prefrontal functioning in schizophrenic patients vs. healthy controls is discussed in terms of abnormal glutamatergic baseline levels in patients suffering from schizophrenic illnesses. This is the first report on a role of DTNBP1 gene variation for prefrontal functioning at a basic neurophysiological level in schizophrenic patients. An impact on fundamental processes of cognitive response control may be one mechanism by which DTNBP1 gene variants via glutamatergic transmission contribute to the pathophysiology underlying schizophrenic illnesses.

  6. (Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti.

    Science.gov (United States)

    Pucciariello, Chiara; Innocenti, Gilles; Van de Velde, Willem; Lambert, Annie; Hopkins, Julie; Clément, Mathilde; Ponchet, Michel; Pauly, Nicolas; Goormachtig, Sofie; Holsters, Marcelle; Puppo, Alain; Frendo, Pierre

    2009-11-01

    Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. Promoter-beta-glucuronidase histochemical analysis showed that the putative MtPIP2 aquaporin might be up-regulated during nodule meristem formation and that this up-regulation is inhibited under (h)GSH depletion. (h)GSH depletion enhances the expression of salicylic acid (SA)-regulated genes after S. meliloti infection and the expression of SA-regulated genes after exogenous SA treatment. Modification of water transport and SA signaling pathway observed under (h)GSH deficiency contribute to explain how (h)GSH depletion alters the proper development of the symbiotic interaction.

  7. Identification of antithrombin-modulating genes. Role of LARGE, a gene encoding a bifunctional glycosyltransferase, in the secretion of proteins?

    Directory of Open Access Journals (Sweden)

    María Eugenia de la Morena-Barrio

    Full Text Available The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families. Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02. Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins.

  8. Identification of Antithrombin-Modulating Genes. Role of LARGE, a Gene Encoding a Bifunctional Glycosyltransferase, in the Secretion of Proteins?

    Science.gov (United States)

    de la Morena-Barrio, María Eugenia; Buil, Alfonso; Antón, Ana Isabel; Martínez-Martínez, Irene; Miñano, Antonia; Gutiérrez-Gallego, Ricardo; Navarro-Fernández, José; Aguila, Sonia; Souto, Juan Carlos; Vicente, Vicente; Soria, José Manuel; Corral, Javier

    2013-01-01

    The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families). Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02). Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins. PMID:23705025

  9. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS.

    Directory of Open Access Journals (Sweden)

    Rosa C Baños

    2009-06-01

    Full Text Available Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

  10. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

    Science.gov (United States)

    Kovács, Akos T; Rákhely, Gábor; Kovács, Kornél L

    2003-06-01

    A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.

  11. Identification of genes involved in cold-shock response in rainbow trout (Oncorhynchus mykiss)

    Indian Academy of Sciences (India)

    ANDREAS BORCHEL; MARIEKE VERLEIH; ALEXANDER REBL; TOM GOLDAMMER

    2017-09-01

    A rapid decline in temperature poses a major challenge for poikilothermic fish, as their entire metabolism depends on ambient temperature. The gene expression of rainbow trout Oncorhynchus mykiss having undergone such a cold shock (0◦C) was compared to a control (5◦C) in a microarray and quantitative real-time PCR based study. The tissues of gill, kidney and liver were examined. The most differently expressed genes were found in liver, many of them contributing to the network ‘cellular compromise, cellular growth and proliferation’.However, the number of genes found to be regulated at 0◦Cwas surprisingly low. Instead of classical genes involved in temperature shock, the three genes encoding fibroblast growth factor 1 (fgf1), growth arrest and DNA-damageinducible,alpha (gadd45a) and sclerostin domain-containing protein 1 (sostdc1) were upregulated in the liver upon cold shock in two different rainbow trout strains, suggesting that these genes may be considered as general biomarkers for cold shock in rainbow trout.

  12. Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway.

    Science.gov (United States)

    Ali, L; Madrid, E; Varshney, R K; Azam, S; Millan, T; Rubio, J; Gil, J

    2014-02-01

    For the first time the putative NSP2 gene in chickpea has been identified using pairs of NILs differing for the Rn1 / rn1 nodulation gene that was located in LG5 of chickpea genetic map. An intraspecific cross between the mutant non-nodulating genotype PM233, carrying the recessive gene rn1, and the wild-type CA2139 was used to develop two pairs of near-isogenic lines (NILs) for nodulation in chickpea. These pairs of NILs were characterized using sequence tagged microsatellite site (STMS) markers distributed across different linkage groups (LGs) of the chickpea genetic map leading to the detection of polymorphic markers located in LG5. Using this information, together with the genome annotation in Medicago truncatula, a candidate gene (NSP2) known to be involved in nodulation pathway was selected for mapping in chickpea. The full length sequence obtained in chickpea wild-type (CaNSP2) was 1,503 bp. Linkage analysis in an F3 population of 118 plants derived from the cross between the pair of NILS NIL7-2A (nod) × NIL7-2B (non-nod) revealed a co-localization between CaNSP2 and Rn1 gene. These data implicate the CaNSP2 gene as a candidate for identity to Rn1, and suggest that it could act in the nodulation signaling transduction pathway similarly to that in other legumes species.

  13. Rj (rj) genes involved in nitrogen-fixing root nodule formation in soybean

    Science.gov (United States)

    Hayashi, Masaki; Saeki, Yuichi; Haga, Michiyo; Harada, Kyuya; Kouchi, Hiroshi; Umehara, Yosuke

    2012-01-01

    It has long been known that formation of symbiotic root nodules in soybean (Glycine max (L.) Merr.) is controlled by several host genes referred to as Rj (rj) genes, but molecular cloning of these genes has been hampered by soybean’s complicated genome structure and large genome size. Progress in molecular identification of legume genes involved in root nodule symbiosis have been mostly achieved by using two model legumes, Lotus japonicus and Medicago truncatula, that have relatively simple and small genomes and are capable of molecular transfection. However, recent development of resources for soybean molecular genetic research, such as genome sequencing, large EST databases, and high-density linkage maps, have enabled us to isolate several Rj genes. This progress has been achieved in connection with systematic utilization of the information obtained from molecular genetics of the model legumes. In this review, we summarize the current status of knowledge of host-controlled nodulation in soybean based on information from recent studies on Rj genes, and discuss the future research prospects. PMID:23136493

  14. The study of sodium channels involved in pain responses using specific modulators

    Institute of Scientific and Technical Information of China (English)

    JI Yong-Hua; LIU Tong

    2008-01-01

    Voltage-gated sodium channels (VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells. Physiological and pharmacological studies have demonstrated that VGSCs play a critical role in chronic pain associated with tissue or nerve injury. Many long-chain peptide toxins (60-76 amino acid residues) purified from the venom of Asian scorpion Buthus martensii Karsch (BmK) axe investigated to be sodium channel-specific modulators. The α-like neurotoxins that can bind to receptor site 3 of sodium channels, named as BmK I and BmK abT, could induce nociceptive effects in rats. On the contrast, the β-like neurotoxins that can bind to receptor site 4 of sodium channels, named as BmK AS, BmK AS-1 and BmK IT2, could produce potent anti-nociceptive effects in animal pain models. BmK I could strongly prolong the fast inactivation of tetrodotoxin (TTX)- sensitive Na+ currents on the rat dorsal root ganglia (DRG) neurons together with the augmentation of peak current amplitude. Howevor BmK IT2 and BmK ASs, potently suppressed both the peak TTX-resistant and TTX-sensitive Na+ currents on rat small DRG neurons. Moreover, BmK ASs could decrease the excitability of small DRG neurons. Thus, the nociception/anti-nociception induced by scorpion neurotoxins may attribute to their distinct modulation on sodium channels in primary afferent sensory neurons. Therefore, the sodium channel-specific modulators from BmK venom could be used as not only pharmacological tools for better understanding the roles of VGSCs in pain signal conduction, but also lead molecules in the development of ideal analgesics targetingVGSCs.

  15. Modules Identification in Gene Positive Networks of Hepatocellular Carcinoma Using Pearson Agglomerative Method and Pearson Cohesion Coupling Modularity

    OpenAIRE

    Hu, Jinyu; Gao, Zhiwei

    2012-01-01

    In this study, a gene positive network is proposed based on a weighted undirected graph, where the weight represents the positive correlation of the genes. A Pearson agglomerative clustering algorithm is employed to build a clustering tree, where dotted lines cut the tree from bottom to top leading to a number of subsets of the modules. In order to achieve better module partitions, the Pearson correlation coefficient modularity is addressed to seek optimal module decomposition by selecting an...

  16. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    Directory of Open Access Journals (Sweden)

    Takamitsu Kurusu

    Full Text Available Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(- and other ions, production of reactive oxygen species (ROS, gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(- efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(- efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  17. Response of S. thermophilus LMD-9 to bacitracin: involvement of a BceRS/AB-like module and of the rhamnose-glucose polysaccharide synthesis pathway.

    Science.gov (United States)

    Thevenard, B; Besset, C; Choinard, S; Fourcassié, P; Boyaval, P; Monnet, V; Rul, F

    2014-05-02

    Streptococcus thermophilus is a lactic acid bacterium of major importance to the dairy industry as it is found in numerous cheeses and is one of the two bacterial species involved in the fermentation of yogurt. Bacterial two-component signal transduction systems (TCSs) play important roles in the process of bacterial environmental adaptation. S. thermophilus LMD-9 possesses eight such TCS systems; however, their functions have thus far been only poorly investigated. Here, we focused on two of the TCSs in LMD-9, TCS06 and TCS07, whose encoding genes are located close to each other on the chromosome, and are associated with those of ABC transporters. TCS06 homologs are frequently found in Lactobacillales, but their function has not yet been determined, while TCS07 and its upstream potential ABC transporter are homologous to the BceRS/AB system, which is involved in bacitracin resistance in Bacillus and Streptococcus species. To investigate the function(s) of TCS06 and TCS07, we constructed and characterized deletion mutants and performed transcriptional analysis in the presence and absence of bacitracin. We show here that both TCS06 and TCS07 regulate the genes in their close vicinity, in particular those encoding ABC transporters. We propose that the response of S. thermophilus to bacitracin includes i) a bacitracin export system, regulated by TCS07 and constituting a BceRS/AB-like detoxification module, and ii) the modification of cell-envelope properties via modulation of rhamnose-glucose polysaccharide synthesis, at least partially regulated by TCS06.

  18. Posterior association networks and functional modules inferred from rich phenotypes of gene perturbations.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the 'search space' for important genetic interactions. We propose to integrate rich phenotypes of multiple single gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental investigations such as combinatorial gene silencing. We present posterior association networks (PANs to predict functional interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap resampling. We demonstrate the power of the proposed methodologies in applications to Ewing's sarcoma and human adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing's sarcoma cells. In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from transcriptional cross regulation. A Bioconductor package

  19. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Directory of Open Access Journals (Sweden)

    Buddhasukh Duang

    2004-04-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170, thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn, were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.

  20. Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices.

    Science.gov (United States)

    Kuznetsova, Elena; Seddas-Dozolme, Pascale M A; Arnould, Christine; Tollot, Marie; van Tuinen, Diederik; Borisov, Alexey; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2010-08-01

    The arbuscular mycorrhiza association results from a successful interaction between genomes of the plant and fungal symbiotic partners. In this study, we analyzed the effect of inactivation of late-stage symbiosis-related pea genes on symbiosis-associated fungal and plant molecular responses in order to gain insight into their role in the functional mycorrhizal association. The expression of a subset of ten fungal and eight plant genes, previously reported to be activated during mycorrhiza development, was compared in Glomus intraradices-inoculated wild-type and isogenic genotypes of pea mutated for the PsSym36, PsSym33, and PsSym40 genes where arbuscule formation is inhibited or fungal turnover modulated, respectively. Microdissection was used to corroborate arbuscule-related fungal gene expression. Molecular responses varied between pea genotypes and with fungal development. Most of the fungal genes were downregulated when arbuscule formation was defective, and several were upregulated with more rapid fungal development. Some of the plant genes were also affected by inactivation of the PsSym36, PsSym33, and PsSym40 loci, but in a more time-dependent way during root colonization by G. intraradices. Results indicate a role of the late-stage symbiosis-related pea genes not only in mycorrhiza development but also in the symbiotic functioning of arbuscule-containing cells.

  1. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    Science.gov (United States)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  2. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    Science.gov (United States)

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  3. Constitutive components and induced gene expression are involved in the desiccation tolerance of Selaginella tamariscina.

    Science.gov (United States)

    Liu, Mao-Sen; Chien, Ching-Te; Lin, Tsan-Piao

    2008-04-01

    Selaginella tamariscina, one of the most primitive vascular plants, can remain alive in a desiccated state and resurrect when water becomes available. To evaluate the nature of desiccation tolerance in this plant, we compared the composition of soluble sugars and saturation ratios of phospholipids (PLs) between hydrated and desiccated tissues of S. tamariscina using gas chromatography. In this study, differences in gene expression and ABA contents were also analyzed during dehydration. The results revealed that trehalose (at >130 mg g(-1) DW) was the major soluble sugar, and low saturated fatty acid content in PLs (0.31) was maintained in both hydrated and desiccated tissues. In addition, the ABA content of S. tamariscina increased 3-fold, and genes involved in ABA signaling and cellular protection were up-regulated while photosystem-related genes were down-regulated during dehydration. The biochemical and molecular findings suggest that both constitutive and inducible protective molecules contribute to desiccation tolerance of S. tamariscina.

  4. Photosynthesis-Involvement in Modulation of Ascorbate and Glutathione in Euterpe oleracea Plants Exposed to Drought

    Directory of Open Access Journals (Sweden)

    Maria Antonia Machado BARBOSA

    2014-06-01

    Full Text Available The present study aimed to determine if photosynthesis interferes with the modulation of antioxidant compounds in young Euterpe oleracea plants exposed to water deficiencies. A factorial, completely randomised experimental design was employed, and two water conditions (water deficit and control and four evaluation points (0, 6, 12 and 18 days were used, resulting in a total of eight measurements. The measured parameters included the water content and temperature of the leaf, gas exchange, electrolyte leakage, and antioxidant content. Compared to the control treatment, the net loss of photosynthesis due to water restriction increased by approximately 100% on the 18th day of drought. The ascorbate levels decreased due to water restriction, presenting significant differences on the 12th and 18th day. In some cases, the water deficit increased the glutathione content; however, significant effects were only observed on the 18th day after irrigation suspension. Water deficits had a negative impact on stomatal conductance, net photosynthesis rate, transpiration rate, and instantaneous carboxylation efficiency. Additionally, increases in the glutathione content, electrolyte leakage, and malondialdehyde content were observed; however, the ascorbate content decreased. Our results confirmed that the rate of photosynthesis interfered with the modulation of ascorbate and glutathione in young Euterpe oleracea plants exposed to drought.

  5. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    Science.gov (United States)

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA

  6. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers.

    Science.gov (United States)

    Mexal, S; Frank, M; Berger, R; Adams, C E; Ross, R G; Freedman, R; Leonard, S

    2005-10-03

    Nicotine is known to induce the release of multiple neurotransmitters, including glutamate and dopamine, through activation of nicotinic receptors. Gene expression in the N-methyl-d-aspartate postsynaptic density (NMDA-PSD), as well as other functional groups, was compared in postmortem hippocampus of schizophrenic and nonmentally ill smokers and nonsmokers utilizing a microarray and quantitative RT-PCR approach. The expression of 277 genes was significantly changed between all smokers and nonsmokers. Specific gene groups, most notably genes expressed in the NMDA-PSD, were prevalent among these transcripts. Analysis of the interaction between smoking and schizophrenia identified several genes in the NMDA-PSD that were differentially affected by smoking in patients. The present findings suggest that smoking may differentially modulate glutamatergic function in schizophrenic patients and control subjects. The biological mechanisms underlying chronic tobacco use are likely to differ substantially between these two groups.

  7. MODULATION OF MDR-1 GENE IN HUMAN BREAST CANCER CELLS BY SODIUM BUTYRATE AND DMSO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the regulation effect of MDR-1 gene inhuman breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure the mRNA level before and after the treatment of sodium butyrate, DMSO, using b -actin as control; 2. Evaluated the effect of sodium butyrate, DMSO on MDR-1 gene expression of human breast cancer at the protein level by immunoflow cytometry; 3. P-glycoprotein function was examined after accumulation of the fluorescent drug, Phodamine-123, by flow cytometry; 4. Chemosensitivity to doxorubicin was analyzed using the MTT assay. Results: Sodium butyrate and DMSO were found to increase the MDR characteristics on MDR-1 gene, MDR-1 expression levels, P-glycoprotein function and chemosensitivity to doxorubicin. Conclusion: sodium butyrate, DMSO can modulate the MDR-1 gene at gene level, protein level, protein function level and cell level.

  8. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin.

    Directory of Open Access Journals (Sweden)

    Corinna Stefanie Weber

    Full Text Available The skin accommodates multiple dendritic cell (DC subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal and chicken ovalbumin (OVA under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation.

  9. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus.

    Science.gov (United States)

    Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S

    2015-09-01

    The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches.

  10. Similar Microbial Consortia and Genes Are Involved in the Biodegradation of Benzalkonium Chlorides in Different Environments.

    Science.gov (United States)

    Ertekin, Emine; Hatt, Janet K; Konstantinidis, Konstantinos T; Tezel, Ulas

    2016-04-19

    Benzalkonium chlorides (BACs) are emerging pollutants. Identification of microorganisms and the genes involved in the biodegradation of BACs is crucial for better understanding the fate of BACs in the environment and developing treatment strategies. Four microbial communities degrading BACs were developed from sewage (SEW), activated sludge (AS), soil (SOIL) and sea sediment (SEA) samples. According to 16S rRNA pyrosequencing and shotgun metagenome sequencing analyses, the most abundant species represented uncharacterized members of the Pseudomonas and Achromobacter genera. BAC biotransformation rates of the enriched microbial communities were 2.8, 3.2, 17.8, and 24.3 μM hr(-1) for SEA, AS, SOIL, and SEW, respectively, and were positively correlated with the relative abundance of a particular Pseudomonas sp. strain, BIOMIG1. The strain BIOMIG1 mineralizes BACs at a rate up to 2.40 μmol hr(-1) 10(-11) cells. Genomes of four BAC degrading and nondegrading BIOMIG1 phenotypes were sequenced and differentially compared with each other. As a result, a gene cluster encoding for transporters, an integrase and a dioxygenase were involved in BAC biotransformation. Our results suggest that BIOMIG1 plays a key role on the fate of BACs in the environment and genes, other than those reported to date, are involved in BAC biotransformation in various habitats.

  11. Key intestinal genes involved in lipoprotein metabolism are downregulated in dyslipidemic men with insulin resistance.

    Science.gov (United States)

    Couture, Patrick; Tremblay, André J; Kelly, Isabelle; Lemelin, Valéry; Droit, Arnaud; Lamarche, Benoît

    2014-01-01

    Insulin resistance (IR) is associated with elevated plasma levels of triglyceride-rich lipoproteins (TRLs) of intestinal origin. However, the mechanisms underlying the overaccumulation of apolipoprotein (apo)B-48-containing TRLs in individuals with IR are not yet fully understood. This study examined the relationships between apoB-48-containing TRL kinetics and the expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism in 14 obese nondiabetic men with IR compared with 10 insulin-sensitive (IS) men matched for waist circumference. The in vivo kinetics of TRL apoB-48 were assessed using a primed-constant infusion of L-[5,5,5-D₃]leucine for 12 h with the participants in a constantly fed state. The expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism was assessed by performing real-time PCR quantification and LC-MS/MS on duodenal biopsy specimens. The TRL apoB-48 pool size and production rate were 102% (P < 0.0001) and 87% (P = 0.01) greater, respectively, in the men with IR versus the IS men. On the other hand, intestinal mRNA levels of sterol regulatory element binding factor-2, hepatocyte nuclear factor-4α, and microsomal triglyceride transfer protein were significantly lower in the men with IR than in the IS men. These data indicate that IR is associated with intestinal overproduction of lipoproteins and significant downregulation of key intestinal genes involved in lipid/lipoprotein metabolism.

  12. Modulation of IKKβ/NF-κB and TGF-β1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice

    Directory of Open Access Journals (Sweden)

    Rong-Qi Wang

    2015-04-01

    Conclusion: FZHY-containing therapies prevented nutritional steatohepatitis and fibrosis through modulating the expression of factors associated with the IKKβ/NF-κB and TGF-β1/Smad signaling pathways and oxidative stress related genes.

  13. Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls.

    Science.gov (United States)

    Yokoyama, Ryusuke; Nishitani, Kazuhiko

    2006-05-01

    The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall.

  14. Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium.

    Science.gov (United States)

    Jeppe, Katherine J; Carew, Melissa E; Long, Sara M; Lee, Siu F; Pettigrove, Vincent; Hoffmann, Ary A

    2014-05-01

    Freshwater invertebrates are often exposed to metal contamination, and changes in gene expression patterns can help understand mechanisms underlying toxicity and act as pollutant-specific biomarkers. In this study the expressions of genes involved in cysteine metabolism are characterized in the midge Chironomus tepperi during exposures to sublethal concentrations of cadmium and copper. These metals altered gene expression of the cysteine metabolism differently. Both metals decreased S-adenosylhomocysteine hydrolase expression and did not change the expression of S-adenosylmethionine synthetase. Cadmium exposure likely increased cystathionine production by up-regulating cystathionine-β-synthase (CβS) expression, while maintaining control level cysteine production via cystathionine-γ-lyase (CγL) expression. Conversely, copper down-regulated CβS expression and up-regulated CγL expression, which in turn could diminish cystathionine to favor cysteine production. Both metals up-regulated glutathione related expression (γ-glutamylcysteine synthase and glutathione synthetase). Only cadmium up-regulated metallothionein expression and glutathione S-transferase d1 expression was up-regulated only by copper exposure. These different transcription responses of genes involved in cysteine metabolism in C. tepperi point to metal-specific detoxification pathways and suggest that the transsulfuration pathway could provide biomarkers for identifying specific metals.

  15. Reversible Histone Acetylation Involved in Transcriptional Regulation of WT1 Gene

    Institute of Scientific and Technical Information of China (English)

    Yangguang SHAO; Jun LU; Cao CHENG; Liguo CUI; Guoping ZHANG; Baiqu HUANG

    2007-01-01

    To validate the involvement of reversible histone acetylation in the transcriptional regulation of human Wilms' tumor 1 gene (WT1), we analyzed the roles of histone deacetylases (HDACs) and histone acetyltransferase in this epigenetic process. Of the six HDACs (HDAC1-6) examined, HDAC4 and HDAC5 were found to have significant repressing effects on the activity of the WT1 reporter gene, as revealed by luciferase reporter assays and quantitative real-time reverse transcription-polymerase chain reaction assays.Luciferase reporter assays showed that the histone acetyltransferase p300 was able to counteract the HDAC4/HDAC5-mediated repression and that p300/CBP synergized with transcription factors Sp1, c-Myb, and Ets-1 in activation of the WT1 reporter. Chromatin immunoprecipitation experiments showed that p300 promotes the acetylation level of histone H3 at the WT1 intronic enhancer. Based on these data, we proposed a hypothetical model for the involvement of reversible histone acetylation in transcriptional regulation of the WT1 gene. This study provides further insight into the mechanisms of transcriptional regulation of the WT1 gene and WT1-associated diseases treatment.

  16. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm.

    Science.gov (United States)

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-11-02

    The silkworm Dominant trimolting (Moltinism, M³) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M³ mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M³ locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M³ and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm.

  17. Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome.

    Science.gov (United States)

    Woollard, Wesley J; Pullabhatla, Venu; Lorenc, Anna; Patel, Varsha M; Butler, Rosie M; Bayega, Anthony; Begum, Nelema; Bakr, Farrah; Dedhia, Kiran; Fisher, Joshua; Aguilar-Duran, Silvia; Flanagan, Charlotte; Ghasemi, Aria A; Hoffmann, Ricarda M; Castillo-Mosquera, Nubia; Nuttall, Elisabeth A; Paul, Arisa; Roberts, Ceri A; Solomonidis, Emmanouil G; Tarrant, Rebecca; Yoxall, Antoinette; Beyers, Carl Z; Ferreira, Silvia; Tosi, Isabella; Simpson, Michael A; de Rinaldis, Emanuele; Mitchell, Tracey J; Whittaker, Sean J

    2016-06-30

    Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.

  18. Combining sequence and Gene Ontology for protein module detection in the Weighted Network.

    Science.gov (United States)

    Yu, Yang; Liu, Jie; Feng, Nuan; Song, Bo; Zheng, Zeyu

    2017-01-07

    Studies of protein modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in locating protein modules. In this paper, a new approach combining Gene Ontology and amino acid background frequency is introduced to detect the protein modules in the weighted PPI networks. The proposed approach mainly consists of three parts: the feature extraction, the weighted graph construction and the protein complex detection. Firstly, the topology-sequence information is utilized to present the feature of protein complex. Secondly, six types of the weighed graph are constructed by combining PPI network and Gene Ontology information. Lastly, protein complex algorithm is applied to the weighted graph, which locates the clusters based on three conditions, including density, network diameter and the included angle cosine. Experiments have been conducted on two protein complex benchmark sets for yeast and the results show that the approach is more effective compared to five typical algorithms with the performance of f-measure and precision. The combination of protein interaction network with sequence and gene ontology data is helpful to improve the performance and provide a optional method for protein module detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cyclo-Oxygenase 2 Modulates Chemoresistance in Breast Cancer Cells Involving NF-κB

    Directory of Open Access Journals (Sweden)

    Maria Chiara Zatelli

    2009-01-01

    Full Text Available Background: Breast cancer cells can develop chemoresistance after prolonged exposure to cytotoxic drugs due to expression of the multi drug resistance (MDR 1 gene. Type 2 cyclo-oxygenase (COX-2 inhibitors reverse the chemoresistance phenotype of a medullary thyroid carcinoma cell line, TT, and of a breast cancer cell line, MCF7, by inhibiting MDR1 expression and P-gp function.

  20. The gene (NFE2L1) for human NRF-1 and activator involved in nuclear mitochondrial interactions maps to 7q32

    Energy Technology Data Exchange (ETDEWEB)

    Tiranti, V.; DiDonato, S.; Zeviani, M. [National Nuerological Institute, Milan (Italy)] [and others

    1995-06-10

    Nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) were first recognized as transcriptional activators of several genes involved in oxidative phosphorylation (OYPHOS). Cis-acting functional NRF-1 and NRF-2 sites are present in the gene encoding cytochrome c and in nuclear genes encoding different subunits of respiratory complexes III, IV, and V. NRF-1 and NRF-2 binding sites have also been found in genes encoding the RNA subunit of MRP endonuclease and the gene for mitochondrial transcription factor A (TCF6). MRP endonuclease is a ribonucleoprotein enzyme possibly involved in cleavage of the light-strand transcripts serving as primers for heavy-strand replication; the product of TCF6 stimulates transcription initiation, and, by controlling light-strand transcription, it is thought to modulate mtDNA replication as well. Furthermore, NRF-1 is required for expression of the gene encoding 5-aminolevulinate synthase, the rate-limiting enzyme in the biosynthesis of heme for respiratory cytochromes. Therefore, NRF-1 plays a major integrative role in controlling numerous nuclear-mitochondrial interactions in higher organisms. 12 refs., 1 fig.

  1. Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Steiner, H; Capell, A; Leimer, U; Haass, C

    1999-01-01

    Alzheimer's disease is characterized by the invariable accumulation of senile plaques that are predominantly composed of amyloid beta-peptide (Abeta). Abeta is generated by proteolytic processing of the beta-amyloid precursor protein (betaAPP) involving the combined action of beta- and gamma-secretase. Cleavage within the Abeta domain by alpha-secretase prevents Abeta generation. In some very rare cases of familial AD (FAD), mutations have been identified within the betaAPP gene. These mutations are located close to or at the cleavage sites of the secretases and pathologically effect betaAPP processing by increasing Abeta production, specifically its highly amyloidogenic 42 amino acid variant (Abeta42). Most of the mutations associated with FAD have been identified in the two presenilin (PS) genes, particularly the PS1 gene. Like the mutations identified within the betaAPP gene, mutations in PS1 and PS2 cause the increased generation of Abeta42. PS1 has been shown to be functionally involved in Notch signaling, a key process in cellular differentation, and in betaAPP processing. A gene knock out of PS1 in mice leads to an embryonic lethal phenotype similar to that of mice lacking Notch. In addition, absence of PS1 results in reduced gamma-secretase cleavage and leads to an accumulation of betaAPP C-terminal fragments and decreased amounts of Abeta. Recent work may suggest that PS1 could be the gamma-secretase itself, exhibiting the properties of a novel aspartyl protease. Mutagenesis of either of two highly conserved intramembraneous aspartate residues of PS1 leads to reduced Abeta production as observed in the PS1 knockout. A corresponding mutation in PS2 interfered with betaAPP processing and Notch signaling suggesting a functional redundancy of both presenilins. In this issue, some of the recent work on the molecular mechanisms involved in Alzheimer's disease (AD) as well as novel diagnostic approaches and risk factors for AD will be discussed. In the first

  2. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes

    Institute of Scientific and Technical Information of China (English)

    Jacqueline Brown; Hannelie Bothma; Robin Veale; Pascale Willem

    2011-01-01

    AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 ( CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21( C-MYC, FAM84B), 11q22.1-q22.3 ( BIRC2, BIRC3), 5p15.2 ( CTNND2), 3q11.2-q12.2 ( MINA) and 18p11.32 ( TYMS, YES1). The significant deletions included 1p31.2-p31.1 ( CTH, GADD45α, DIRAS3), 2q22.1 ( LRP1B), 3p12.1-p14.2 ( FHIT), 4q22.1-q32.1 ( CASP6, SMAD1), 8p23.2-q11.1 ( BNIP3L) and 18q21.1-q21.2 ( SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. CONCLUSION: The finding that a significant number of genes that were amplified (FGF3 , FGF4 , FGF19 , CCND1 and C-MYC ) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

  3. Modulation of Gene Expression Networks underlying Realgar-Induced Differentiation of Acute Promyelocytic Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    王怀宇; 刘陕西

    2002-01-01

    Objective: To elucidate the molecular mechanism of the differentiation of acute promyelocytic leukemia (APL) cell line NB4 induced by realgar. Methods: The response of NB4 cell to realgar was explored with a cDNA microarray representing 1003 different human genes. Results: The analysis of gene expression profiles indicated that 8 genes were up-regulated and 33 genes were down-regulated 48 hrs after realgar treatment. Among the 8 up-regulated genes, 2 genes were involved in ubiquitin proteasome degradation pathway. Some genes related to RNA processing, protein synthesis and signal transduction were down-regulated. Conclusion: The ubiquitin-proteasome degradation pathway may play an important role in the degradation of PML/RAR α fusion protein and the differentiation of NB4 cells.

  4. Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development.

    Science.gov (United States)

    Zhao, Jun-Long; Pan, Jun-Song; Guan, Yuan; Nie, Jing-Tao; Yang, Jun-Jun; Qu, Mei-Ling; He, Huan-Le; Cai, Run

    2015-05-01

    The regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been studied intensively, but that of multicellular remains unclear. In the present study, we characterized cucumber trichomes as representative multicellular and unbranched structures, but in a spontaneous mutant, mict (micro-trichome), all trichomes showed a micro-size and stunted morphologies. We revealed the transcriptome profile using Illumina HiSeq 2000 sequencing technology, and determined that a total of 1391 genes exhibited differential expression. We further validated the accuracy of the transcriptome data by RT-qPCR and found that 43 genes encoding critical transcription factors were likely involved in multicellular trichome development. These 43 candidate genes were subdivided into seven groups: homeodomain, MYB-domain, WRKY-domain, bHLH-domain, ethylene-responsive, zinc finger and other transcription factor genes. Our findings also serve as a powerful tool to further study the relevant molecular networks, and provide a new perspective for investigating this complex and species-specific developmental process.

  5. Identification of genes involved in the drought adaptation and recovery in Portulaca oleracea by differential display.

    Science.gov (United States)

    D'Andrea, Rodrigo Matías; Triassi, Agustina; Casas, María Isabel; Andreo, Carlos Santiago; Lara, María Valeria

    2015-05-01

    Portulaca oleracea is one of the richest plant sources of ω-3 and ω-6 fatty acids and other compounds potentially valuable for nutrition. It is broadly established in arid, semiarid and well-watered fields, thus making it a promising candidate for research on abiotic stress resistance mechanisms. It is capable of withstanding severe drought and then of recovering upon rehydration. Here, the adaptation to drought and the posterior recovery was evaluated at transcriptomic level by differential display validated by qRT-PCR. Of the 2279 transcript-derived fragments amplified, 202 presented differential expression. Ninety of them were successfully isolated and sequenced. Selected genes were tested against different abiotic stresses in P. oleracea and the behavior of their orthologous genes in Arabidopsis thaliana was also explored to seek for conserved response mechanisms. In drought adapted and in recovered plants changes in expression of many protein metabolism-, lipid metabolism- and stress-related genes were observed. Many genes with unknown function were detected, which also respond to other abiotic stresses. Some of them are also involved in the seed desiccation/imbibition process and thus would be of great interest for further research. The potential use of candidate genes to engineer drought tolerance improvement and recovery is discussed.

  6. HIV-1 infection causes a down-regulation of genes involved in ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Claudia L Kleinman

    Full Text Available HIV-1 preferentially infects CD4+ T cells, causing fundamental changes that eventually lead to the release of new viral particles and cell death. To investigate in detail alterations in the transcriptome of the CD4+ T cells upon viral infection, we sequenced polyadenylated RNA isolated from Jurkat cells infected or not with HIV-1. We found a marked global alteration of gene expression following infection, with an overall trend toward induction of genes, indicating widespread modification of the host biology. Annotation and pathway analysis of the most deregulated genes showed that viral infection produces a down-regulation of genes associated with the nucleolus, in particular those implicated in regulating the different steps of ribosome biogenesis, such as ribosomal RNA (rRNA transcription, pre-rRNA processing, and ribosome maturation. The impact of HIV-1 infection on genes involved in ribosome biogenesis was further validated in primary CD4+ T cells. Moreover, we provided evidence by Northern Blot experiments, that host pre-rRNA processing in Jurkat cells might be perturbed during HIV-1 infection, thus strengthening the hypothesis of a crosstalk between nucleolar functions and viral pathogenesis.

  7. Adaptive evolution of the chrysanthemyl diphosphate synthase gene involved in irregular monoterpene metabolism

    Directory of Open Access Journals (Sweden)

    Liu Ping-Li

    2012-11-01

    Full Text Available Abstract Background Chrysanthemyl diphosphate synthase (CDS is a key enzyme in biosynthetic pathways producing pyrethrins and irregular monoterpenes. These compounds are confined to plants of the tribe Anthemideae of the Asteraceae, and play an important role in defending the plants against herbivorous insects. It has been proposed that the CDS genes arose from duplication of the farnesyl diphosphate synthase (FDS gene and have different function from FDSs. However, the duplication time toward the origin of CDS and the evolutionary force behind the functional divergence of the CDS gene are still unknown. Results Two duplication events were detected in the evolutionary history of the FDS gene family in the Asteraceae, and the second duplication led to the origin of CDS. CDS occurred after the divergence of the tribe Mutisieae from other tribes of Asteraceae but before the birth of the Anthemideae tribe. After its origin, CDS accumulated four mutations in sites homologous to the substrate-binding and catalysis sites of FDS. Of these, two sites were involved in the binding of the nucleophilic substrate isopentenyl diphosphate in FDS. Maximum likelihood analyses showed that some sites in CDS were under positive selection and were scattered throughout primary sequences, whereas in the three-dimensional structure model they clustered in the large central cavity. Conclusion Positive selection associated with gene duplication played a major role in the evolution of CDS.

  8. Identification of Corynebacterium diphtheriae gene involved in adherence to epithelial cells.

    Science.gov (United States)

    Kolodkina, Valentina; Denisevich, Tatyana; Titov, Leonid

    2011-03-01

    Corynebacterium diphtheriae the causative pathogen of human diphtheria infects the nasopharynx or skin. Although diphtheria has been extensively studied, little is known about the two key aspects of C. diphtheriae invasiveness: colonization and invasion. The role of adhesive properties in establishing the infection of C. diphtheriae strains, independent of toxin production, still needs to be clarified. In this study, we describe a novel gene involved in adherence to epithelial cells. Transformation of C. diphtheriae 225, biotype gravis, ribotype St-Petersburg by EZ:TN(KAN-2)Tnp Transposome was undertaken. A C. diphtheriae 225 Tn5 insertion library of 2800 mutants was created. Five hundred and eighty five transformants were qualitatively screened for reduced adherence to HEp-2 cells by an adherence assay. One mutant strain consistently exhibiting 15.2% of the wild-type adherence was isolated. The DNA flanking the transposon was identified by inverse PCR and subsequent sequencing. The disrupted gene was 94% identical to the C. diphtheriae DIP1621 gene that belongs to unclassified genes. In conclusion, the disruption of the C. diphtheriae DIP1621 gene led to decreased adherence to epithelial cells; its exact function remains to be established.

  9. Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410.

    Science.gov (United States)

    Yoneda, Aki; Wittmann, Bruce J; King, Jeremy D; Blankenship, Robert E; Dantas, Gautam

    2016-08-01

    Acaryochloris species are a genus of cyanobacteria that utilize chlorophyll (chl) d as their primary chlorophyll molecule during oxygenic photosynthesis. Chl d allows Acaryochloris to harvest red-shifted light, which gives them the ability to live in filtered light environments that are depleted in visible light. Although genomes of multiple Acaryochloris species have been sequenced, their analysis has not revealed how chl d is synthesized. Here, we demonstrate that Acaryochloris sp. CCMEE 5410 cells undergo chlorosis by nitrogen depletion and exhibit robust regeneration of chl d by nitrogen repletion. We performed a time course RNA-Seq experiment to quantify global transcriptomic changes during chlorophyll recovery. We observed upregulation of numerous known chl biosynthesis genes and also identified an oxygenase gene with a similar transcriptional profile as these chl biosynthesis genes, suggesting its possible involvement in chl d biosynthesis. Moreover, our data suggest that multiple prochlorophyte chlorophyll-binding homologs are important during chlorophyll recovery, and light-independent chl synthesis genes are more dominant than the light-dependent gene at the transcription level. Transcriptomic characterization of this organism provides crucial clues toward mechanistic elucidation of chl d biosynthesis.

  10. Predictive screening for regulators of conserved functional gene modules (gene batteries in mammals

    Directory of Open Access Journals (Sweden)

    Sigvardsson Mikael

    2005-05-01

    Full Text Available Abstract Background The expression of gene batteries, genomic units of functionally linked genes which are activated by similar sets of cis- and trans-acting regulators, has been proposed as a major determinant of cell specialization in metazoans. We developed a predictive procedure to screen the mouse and human genomes and transcriptomes for cases of gene-battery-like regulation. Results In a screen that covered ~40 per cent of all annotated protein-coding genes, we identified 21 co-expressed gene clusters with statistically supported sharing of cis-regulatory sequence elements. 66 predicted cases of over-represented transcription factor binding motifs were validated against the literature and fell into three categories: (i previously described cases of gene battery-like regulation, (ii previously unreported cases of gene battery-like regulation with some support in a limited number of genes, and (iii predicted cases that currently lack experimental support. The novel predictions include for example Sox 17 and RFX transcription factor binding sites that were detected in ~10% of all testis specific genes, and HNF-1 and 4 binding sites that were detected in ~30% of all kidney specific genes respectively. The results are publicly available at http://www.wlab.gu.se/lindahl/genebatteries. Conclusion 21 co-expressed gene clusters were enriched for a total of 66 shared cis-regulatory sequence elements. A majority of these predictions represent novel cases of potential co-regulation of functionally coupled proteins. Critical technical parameters were evaluated, and the results and the methods provide a valuable resource for future experimental design.

  11. The Detection of Metabolite-Mediated Gene Module Co-Expression Using Multivariate Linear Models.

    Directory of Open Access Journals (Sweden)

    Trishanta Padayachee

    Full Text Available Investigating whether metabolites regulate the co-expression of a predefined gene module is one of the relevant questions posed in the integrative analysis of metabolomic and transcriptomic data. This article concerns the integrative analysis of the two high-dimensional datasets by means of multivariate models and statistical tests for the dependence between metabolites and the co-expression of a gene module. The general linear model (GLM for correlated data that we propose models the dependence between adjusted gene expression values through a block-diagonal variance-covariance structure formed by metabolic-subset specific general variance-covariance blocks. Performance of statistical tests for the inference of conditional co-expression are evaluated through a simulation study. The proposed methodology is applied to the gene expression data of the previously characterized lipid-leukocyte module. Our results show that the GLM approach improves on a previous approach by being less prone to the detection of spurious conditional co-expression.

  12. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Schmoll Monika

    2012-03-01

    Full Text Available Abstract Background Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. Results We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. Conclusions Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa.

  13. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  14. A high-density association screen of 155 ion transport genes for involvement with common migraine

    Science.gov (United States)

    Nyholt, Dale R.; LaForge, K. Steven; Kallela, Mikko; Alakurtti, Kirsi; Anttila, Verneri; Färkkilä, Markus; Hämaläinen, Eija; Kaprio, Jaakko; Kaunisto, Mari A.; Heath, Andrew C.; Montgomery, Grant W.; Göbel, Hartmut; Todt, Unda; Ferrari, Michel D.; Launer, Lenore J.; Frants, Rune R.; Terwindt, Gisela M.; de Vries, Boukje; Verschuren, W.M. Monique; Brand, Jan; Freilinger, Tobias; Pfaffenrath, Volker; Straube, Andreas; Ballinger, Dennis G.; Zhan, Yiping; Daly, Mark J.; Cox, David R.; Dichgans, Martin; van den Maagdenberg, Arn M.J.M.; Kubisch, Christian; Martin, Nicholas G.; Wessman, Maija; Peltonen, Leena; Palotie, Aarno

    2008-01-01

    The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case–control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case–control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out. PMID:18676988

  15. Transcriptomic analysis using olive varieties and breeding progenies identify candidate genes involved in plant architecture

    Directory of Open Access Journals (Sweden)

    Juan José eGonzález Plaza

    2016-03-01

    Full Text Available Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2,252 differentially expressed genes associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  16. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium.

    Directory of Open Access Journals (Sweden)

    Sophie Castède

    Full Text Available The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.

  17. CCAAT/enhancer binding protein Beta-2 is involved in growth hormone-regulated insulin-like growth factor-II gene expression in the liver of rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific poly...

  18. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport

    Directory of Open Access Journals (Sweden)

    Sun Yongzhen

    2011-10-01

    Full Text Available Abstract Background Camptotheca acuminata is a Nyssaceae plant, often called the "happy tree", which is indigenous in Southern China. C. acuminata produces the terpenoid indole alkaloid, camptothecin (CPT, which exhibits clinical effects in various cancer treatments. Despite its importance, little is known about the transcriptome of C. acuminata and the mechanism of CPT biosynthesis, as only few nucleotide sequences are included in the GenBank database. Results From a constructed cDNA library of young C. acuminata leaves, a total of 30,358 unigenes, with an average length of 403 bp, were obtained after assembly of 74,858 high quality reads using GS De Novo assembler software. Through functional annotation, a total of 21,213 unigenes were annotated at least once against the NCBI nucleotide (Nt, non-redundant protein (Nr, Uniprot/SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG, and Arabidopsis thaliana proteome (TAIR databases. Further analysis identified 521 ESTs representing 20 enzyme genes that are involved in the backbone of the CPT biosynthetic pathway in the library. Three putative genes in the upstream pathway, including genes for geraniol-10-hydroxylase (CaPG10H, secologanin synthase (CaPSCS, and strictosidine synthase (CaPSTR were cloned and analyzed. The expression level of the three genes was also detected using qRT-PCR in C. acuminata. With respect to the branch pathway of CPT synthesis, six cytochrome P450s transcripts were selected as candidate transcripts by detection of transcript expression in different tissues using qRT-PCR. In addition, one glucosidase gene was identified that might participate in CPT biosynthesis. For CPT transport, three of 21 transcripts for multidrug resistance protein (MDR transporters were also screened from the dataset by their annotation result and gene expression analysis. Conclusion This study produced a large amount of transcriptome data from C. acuminata by 454 pyrosequencing. According to

  19. Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors.

    Science.gov (United States)

    Rosa, Priscila B; Neis, Vivian B; Ribeiro, Camille M; Moretti, Morgana; Rodrigues, Ana Lúcia S

    2016-10-01

    It has been suggested that dysregulation of γ-aminobutyric acid (GABA)-mediated neurotransmission is involved in the etiology of major depressive disorder and in the action of the fast-acting antidepressant ketamine. Considering that recent evidence has suggested that ascorbic acid may exert an antidepressant-like effect through mechanisms similar to ketamine, this study evaluated the involvement of GABAA and GABAB receptors in the antidepressant-like effect of ascorbic acid, comparing the results with those obtained with ketamine. To investigate the involvement of GABAA in the antidepressant-like effect of ascorbic acid and ketamine in the tail suspension test (TST), mice were treated with a sub-effective dose of ascorbic acid (0.1mg/kg, po), ketamine (0.1mg/kg, ip) or vehicle and 30minutes later, a sub-effective dose of muscimol (0.1mg/kg, ip, GABAA receptor agonist) or vehicle was administered. In another set of experiments, mice were treated with ascorbic acid (1mg/kg, po, active dose in the TST) or vehicle and 30minutes later, baclofen (1mg/kg, ip, GABAB receptor agonist) was administered. A similar experimental protocol was performed with ketamine (1mg/kg, ip). The administration of muscimol combined with ascorbic acid or ketamine produced a synergistic antidepressant-like effect in the TST. Moreover, the antidepressant-like effects of ascorbic acid and ketamine were abolished by baclofen. There was no alteration in spontaneous locomotion in any experimental group. Results indicate that the anti-immobility effect of ascorbic acid and ketamine in TST may involve an activation of GABAA receptors and a possible inhibition of GABAB receptors. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Modulation of cytochrome C oxidase-va is possibly involved in metallothionein protection from doxorubicin cardiotoxicity.

    Science.gov (United States)

    Merten, Kevyn E; Feng, Wenke; Zhang, Li; Pierce, William; Cai, Jian; Klein, Jon B; Kang, Y James

    2005-12-01

    Previous studies using a cardiac-specific metallothionein (MT)-overexpressing transgenic (MT-TG) mouse model have demonstrated that MT protects from doxorubicin (DOX)-induced oxidative heart injury. The molecular mechanisms that underlie this cardioprotection, however, have yet to be defined. In the present study, we tested the hypothesis that MT overexpression activates cytoprotective mechanisms, leading to cardiac protection from DOX toxicity. MT-TG mice and nontransgenic wild-type (WT) controls were treated i.p. with DOX at a single dose of 20 mg/kg and sacrificed on the third day after the treatment. An expression proteomic analysis involving two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to identify MT-induced changes in cytoprotection-related proteins. We identified 18 proteins that were modified by DOX treatment in the heart. These proteins included those involved in cellular antioxidant defense, enzymes of the mitochondrial electron transport chain, enzymes involved in beta-oxidation of fatty acids and glycolysis, and proteins involved in regulation of cardiac muscle contraction. However, the most dominant modification by MT is the cytochrome c oxidase subunit Va (CCO-Va). In response to DOX treatment, a specific isoform of CCO-Va was enhanced in the MT-TG but not in the WT mouse hearts. Because CCO-Va is a critical component in the mitochondrial electron transport chain, the results suggest that the cardioprotective effect of MT may be related to an increased expression or a differential modification of CCO-Va.

  1. SETDB1 is involved in postembryonic DNA methylation and gene silencing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dawei Gou

    Full Text Available DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9 by members of the Su(var3-9 family of histone methyltransferases (HMTs triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1 can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2 and Su(var205, the Drosophila ortholog of mammalian "Heterochromatin Protein 1", to target genes for dSETDB1. By enlisting Dnmt2 and Su(var205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development.

  2. Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor.

    Science.gov (United States)

    Nodwell, J R; Yang, M; Kuo, D; Losick, R

    1999-02-01

    Morphogenesis in the bacterium Streptomyces coelicolor involves the formation of a lawn of hair-like aerial hyphae on the colony surface that stands up in the air and differentiates into chains of spores. bld mutants are defective in the formation of this aerial mycelium and grow as smooth, hairless colonies. When certain pairs of bld mutants are grown close to one another on rich sporulation medium, they exhibit extracellular complementation such that one mutant restores aerial mycelium formation to the other. The extracellular complementation relationships of most of the previously isolated bld mutants placed them in a hierarchy of extracellular complementation groups. We have screened for further bld mutants with precautions intended to maximize the discovery of additional genes. Most of the 50 newly isolated mutant strains occupy one of three of the previously described positions in the hierarchy, behaving like bldK, bldC, or bldD mutants. We show that the mutations in some of the strains that behave like bldK are bldK alleles but that others fall in a cluster at a position on the chromosome distinct from that of any known bld gene. We name this locus bldL. By introducing cloned genes into the strains that exhibit bldC or bldD-like extracellular complementation phenotypes, we show that most of these strains are likely to contain mutations in genes other than bldC or bldD. These results indicate that the genetic control of aerial mycelium formation is more complex than previously recognized and support the idea that a high proportion of bld genes are directly or indirectly involved in the production of substances that are exchanged between cells during morphological differentiation.

  3. Investigation of polymorphisms in genes involved in estrogen metabolism in menstrual migraine.

    Science.gov (United States)

    Sutherland, Heidi G; Champion, Morgane; Plays, Amelie; Stuart, Shani; Haupt, Larisa M; Frith, Alison; MacGregor, E Anne; Griffiths, Lyn R

    2017-04-05

    Migraine is a common, disabling headache disorder, which is influenced by multiple genes and environmental triggers. After puberty, the prevalence of migraine in women is three times higher than in men and >50% of females suffering from migraine report a menstrual association, suggesting hormonal fluctuations can influence the risk of migraine attacks. It has been hypothesized that the drop in estrogen during menses is an important trigger for menstrual migraine. Catechol-O-methyltransferase (COMT) and Cytochrome P450 (CYP) enzymes are involved in estrogen synthesis and metabolism. Functional polymorphisms in these genes can influence estrogen levels and therefore may be associated with risk of menstrual migraine. In this study we investigated four single nucleotide polymorphisms in three genes involved in estrogen metabolism that have been reported to impact enzyme levels or function, in a specific menstrual migraine cohort. 268 menstrual migraine cases and 142 controls were genotyped for rs4680 in COMT (Val158Met), rs4646903 and rs1048943 in CYP1A1 (T3801C and Ile462Val) and rs700519 in CYP19A1 (Cys264Arg). Neither genotype nor allele frequencies for the COMT and CYP SNPs genotyped were found to be significantly different between menstrual migraineurs and controls by chi-square analysis (P>0.05). Therefore we did not find association of functional polymorphisms in the estrogen metabolism genes COMT, CYP1A1 or CYP19A1 with menstrual migraine. Further studies are required to assess whether menstrual migraine is genetically distinct from the common migraine subtypes and identify genes that influence risk.

  4. Water-Soluble Compounds from Lentinula edodes Influencing the HMG-CoA Reductase Activity and the Expression of Genes Involved in the Cholesterol Metabolism.

    Science.gov (United States)

    Gil-Ramírez, Alicia; Caz, Víctor; Smiderle, Fhernanda R; Martin-Hernandez, Roberto; Largo, Carlota; Tabernero, María; Marín, Francisco R; Iacomini, Marcello; Reglero, Guillermo; Soler-Rivas, Cristina

    2016-03-09

    A water extract from Lentinula edodes (LWE) showed HMG-CoA reductase inhibitory activity but contained no statins. NMR indicated the presence of water-soluble α- and β-glucans and fucomannogalactans. Fractions containing derivatives of these polysaccharides with molecular weight down to approximately 1 kDa still retained their inhibitory activity. Once digested LWE was applied to Caco2 in transport experiments, no significant effect was noticed on the modulation of cholesterol-related gene expression. But, when the lower compartment of the Caco2 monolayer was applied to HepG2, some genes were modulated (after 24 h). LWE was also administrated to normo- and hypercholesterolemic mice, and no significant lowering of serum cholesterol levels was observed; but reduction of triglycerides in liver was observed. However, LWE supplementation modulated the transcriptional profile of some genes involved in the cholesterol metabolism similarly to simvastatin, suggesting that it could hold potential as a hypolipidemic/hypocholesterolemic extract, although further dose-dependent studies should be carried out.

  5. Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice.

    Directory of Open Access Journals (Sweden)

    Patric J D Delhanty

    Full Text Available BACKGROUND: There is increasing evidence that unacylated ghrelin (UAG improves insulin sensitivity and glucose homeostasis; however, the mechanism for this activity is not fully understood since a UAG receptor has not been discovered. METHODOLOGY/PRINCIPAL FINDINGS: To assess potential mechanisms of UAG action in vivo, we examined rapid effects of UAG on genome-wide expression patterns in fat, muscle and liver of growth hormone secretagogue receptor (GHSR-ablated mice using microarrays. Expression data were analyzed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Regulation of subsets of these genes was verified by quantitative PCR in an independent experiment. UAG acutely regulated clusters of genes involved in glucose and lipid metabolism in all three tissues, consistent with enhancement of insulin sensitivity. CONCLUSIONS/SIGNIFICANCE: Fat, muscle and liver are central to the control of lipid and glucose homeostasis. UAG rapidly modulates the expression of metabolically important genes in these tissues in GHSR-deleted mice indicating a direct, GHSR-independent, action of UAG to improve insulin sensitivity and metabolic profile.

  6. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    2015-09-01

    Full Text Available The mitochondrial calcium uniporter (MCU gene codifies for the inner mitochondrial membrane (IMM channel responsible for mitochondrial Ca2+ uptake. Cytosolic Ca2+ transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca2+ regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca2+ transients elicit large increases in the [Ca2+] of the mitochondrial matrix ([Ca2+]mt. Mitochondrial Ca2+ uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca2+ uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca2+ uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection. Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/ (GSE60931.

  7. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU).

    Science.gov (United States)

    Chemello, Francesco; Mammucari, Cristina; Gherardi, Gaia; Rizzuto, Rosario; Lanfranchi, Gerolamo; Cagnin, Stefano

    2015-09-01

    The mitochondrial calcium uniporter (MCU) gene codifies for the inner mitochondrial membrane (IMM) channel responsible for mitochondrial Ca(2 +) uptake. Cytosolic Ca(2 +) transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca(2 +) regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca(2 +) transients elicit large increases in the [Ca(2 +)] of the mitochondrial matrix ([Ca(2 +)]mt). Mitochondrial Ca(2 +) uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca(2 +) uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca(2 +) uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection). Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/) (GSE60931).

  8. Association of Polymorphisms in BDNF, MTHFR, and Genes Involved in the Dopaminergic Pathway with Memory in a Healthy Chinese Population

    Science.gov (United States)

    Yeh, Ting-Kuang; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Pei-Jung; Wu, Chung-Hsin; Lee, Po-Lei; Chang, Chun-Yen

    2012-01-01

    The contribution of genetic factors to the memory is widely acknowledged. Research suggests that these factors include genes involved in the dopaminergic pathway, as well as the genes for brain-derived neurotrophic factor (BDNF) and methylenetetrahydrofolate reductase (MTHFR). The activity of the products of these genes is affected by single…

  9. Association of Polymorphisms in BDNF, MTHFR, and Genes Involved in the Dopaminergic Pathway with Memory in a Healthy Chinese Population

    Science.gov (United States)

    Yeh, Ting-Kuang; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Pei-Jung; Wu, Chung-Hsin; Lee, Po-Lei; Chang, Chun-Yen

    2012-01-01

    The contribution of genetic factors to the memory is widely acknowledged. Research suggests that these factors include genes involved in the dopaminergic pathway, as well as the genes for brain-derived neurotrophic factor (BDNF) and methylenetetrahydrofolate reductase (MTHFR). The activity of the products of these genes is affected by single…

  10. Identification of a BMP inhibitor-responsive promoter module required for expression of the early neural gene zic1.

    Science.gov (United States)

    Tropepe, Vincent; Li, Shuhong; Dickinson, Amanda; Gamse, Joshua T; Sive, Hazel L

    2006-01-15

    Expression of the transcription factor zic1 at the onset of gastrulation is one of the earliest molecular indicators of neural fate determination in Xenopus. Inhibition of bone morphogenetic protein (BMP) signaling is critical for activation of zic1 expression and fundamental for establishing neural identity in both vertebrates and invertebrates. The mechanism by which interruption of BMP signaling activates neural-specific gene expression is not understood. Here, we report identification of a 215 bp genomic module that is both necessary and sufficient to activate Xenopus zic1 transcription upon interruption of BMP signaling. Transgenic analyses demonstrate that this BMP inhibitory response module (BIRM) is required for expression in the whole embryo. Multiple consensus binding sites for specific transcription factor families within the BIRM are required for its activity and some of these regions are phylogenetically conserved between orthologous vertebrate zic1 genes. These data suggest that interruption of BMP signaling facilitates neural determination via a complex mechanism, involving multiple regulatory factors that cooperate to control zic1 expression.

  11. Expression of genes involved in mouse lung cell differentiation/regulation after acute exposure to photons and protons with or without low-dose preirradiation.

    Science.gov (United States)

    Tian, Jian; Zhao, WeiLing; Tian, Sisi; Slater, James M; Deng, Zhiyong; Gridley, Daila S

    2011-11-01

    The goal of this study was to compare the effects of acute 2 Gy irradiation with photons (0.8 Gy/min) or protons (0.9 Gy/min), both with and without pre-exposure to low-dose/low-dose-rate γ rays (0.01 Gy at 0.03 cGy/h), on 84 genes involved in stem cell differentiation or regulation in mouse lungs on days 21 and 56. Genes with a ≥1.5-fold difference in expression and P photons in modulating the genes. More genes were affected by protons than by photons (22 compared to 2 and 6 compared to 2 on day 21 and day 56, respectively) compared to 0 Gy. Preirradiation with low-dose-rate γ rays enhanced the acute photon-induced gene modulation on day 21 (11 compared to 2), and all 11 genes were significantly downregulated on day 56. On day 21, seven genes (aldh2, bmp2, cdc2a, col1a1, dll1, foxa2 and notch1) were upregulated in response to most of the radiation regimens. Immunoreactivity of Clara cell secretory protein was enhanced by all radiation regimens. The number of alveolar type 2 cells positive for prosurfactant protein C in irradiated groups was higher on day 56 (12.4-14.6 cells/100) than on day 21 (8.5-11.2 cells/100) (P photons and protons induced different gene expression profiles in the lungs and that pre-exposure to low-dose-rate γ rays sometimes had modulatory effects. In addition, proteins associated with lung-specific stem cells/progenitors were highly sensitive to radiation.

  12. Transcriptome assembly and candidate genes involved in nutritional programming in the swordtail fish Xiphophorus multilineatus.

    Science.gov (United States)

    Lu, Yuan; Klimovich, Charlotte M; Robeson, Kalen Z; Boswell, William; Ríos-Cardenas, Oscar; Walter, Ronald B; Morris, Molly R

    2017-01-01

    Nutritional programming takes place in early development. Variation in the quality and/or quantity of nutrients in early development can influence long-term health and viability. However, little is known about the mechanisms of nutritional programming. The live-bearing fish Xiphophorus multilineatus has the potential to be a new model for understanding these mechanisms, given prior evidence of nutritional programming influencing behavior and juvenile growth rate. We tested the hypotheses that nutritional programming would influence behaviors involved in energy homeostasis as well gene expression in X. multilineatus. We first examined the influence of both juvenile environment (varied in nutrition and density) and adult environment (varied in nutrition) on behaviors involved in energy acquisition and energy expenditure in adult male X. multilineatus. We also compared the behavioral responses across the genetically influenced size classes of males. Males stop growing at sexual maturity, and the size classes of can be identified based on phenotypes (adult size and pigment patterns). To study the molecular signatures of nutritional programming, we assembled a de novo transcriptome for X. multilineatus using RNA from brain, liver, skin, testis and gonad tissues, and used RNA-Seq to profile gene expression in the brains of males reared in low quality (reduced food, increased density) and high quality (increased food, decreased density) juvenile environments. We found that both the juvenile and adult environments influenced the energy intake behavior, while only the adult environment influenced energy expenditure. In addition, there were significant interactions between the genetically influenced size classes and the environments that influenced energy intake and energy expenditure, with males from one of the four size classes (Y-II) responding in the opposite direction as compared to the other males examined. When we compared the brains of males of the Y-II size class

  13. Spinal Cord Stimulation Modulates Gene Expression in the Spinal Cord of an Animal Model of Peripheral Nerve Injury.

    Science.gov (United States)

    Tilley, Dana M; Cedeño, David L; Kelley, Courtney A; Benyamin, Ramsin; Vallejo, Ricardo

    Previously, we found that application of pulsed radiofrequency to a peripheral nerve injury induces changes in key genes regulating nociception concurrent with alleviation of paw sensitivity in an animal model. In the current study, we evaluated such genes after applying spinal cord stimulation (SCS) therapy. Male Sprague-Dawley rats (n = 6 per group) were randomized into test and control groups. The spared nerve injury model was used to simulate a neuropathic pain state. A 4-contact microelectrode was implanted at the L1 vertebral level and SCS was applied continuously for 72 hours. Mechanical hyperalgesia was tested. Spinal cord tissues were collected and analyzed using real-time polymerase chain reaction to quantify levels of IL1β, GABAbr1, subP, Na/K ATPase, cFos, 5HT3ra, TNFα, Gal, VIP, NpY, IL6, GFAP, ITGAM, and BDNF. Paw withdrawal thresholds significantly decreased in spared nerve injury animals and stimulation attenuated sensitivity within 24 hours (P = 0.049), remaining significant through 72 hours (P = 0.003). Nerve injury caused up-regulation of TNFα, GFAP, ITGAM, and cFOS as well as down-regulation of Na/K ATPase. Spinal cord stimulation therapy modulated the expression of 5HT3ra, cFOS, and GABAbr1. Strong inverse relationships in gene expression relative to the amount of applied current were observed for GABAbr1 (R = -0.65) and Na/K ATPase (R = -0.58), and a positive linear correlations between 5HT3r (R = 0.80) and VIP (R = 0.50) were observed. Continuously applied SCS modulates expression of key genes involved in the regulation of neuronal membrane potential.

  14. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels.

  15. Sentential context modulates the involvement of the motor cortex in action language processing: an FMRI study.

    Science.gov (United States)

    Schuil, Karen D I; Smits, Marion; Zwaan, Rolf A

    2013-01-01

    Theories of embodied cognition propose that language comprehension is based on perceptual and motor processes. More specifically, it is hypothesized that neurons processing verbs describing bodily actions, and those that process the corresponding physical actions, fire simultaneously during action verb learning. Thus the concept and motor activation become strongly linked. According to this view, the language-induced activation of the neural substrates for action is automatic. By contrast, a weak view of embodied cognition proposes that activation of these motor regions is modulated by context. In recent studies it was found that action verbs in literal sentences activate the motor system, while mixed results were observed for action verbs in non-literal sentences. Thus, whether the recruitment of motor regions is automatic or context dependent remains a question. We investigated functional magnetic resonance imaging activation in response to non-literal and literal sentences including arm and leg related actions. The sentence structure was such that the action verb was the last word in the subordinate clause. Thus, the constraining context was presented well before the verb. Region of interest analyses showed that action verbs in literal context engage the motor regions to a greater extent than non-literal action verbs. There was no evidence for a semantic somatotopic organization of the motor cortex. Taken together, these results indicate that during comprehension, the degree to which motor regions are recruited is context dependent, supporting the weak view of embodied cognition.

  16. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  17. Social discounting involves modulation of neural value signals by temporoparietal junction.

    Science.gov (United States)

    Strombach, Tina; Weber, Bernd; Hangebrauk, Zsofia; Kenning, Peter; Karipidis, Iliana I; Tobler, Philippe N; Kalenscher, Tobias

    2015-02-03

    Most people are generous, but not toward everyone alike: generosity usually declines with social distance between individuals, a phenomenon called social discounting. Despite the pervasiveness of social discounting, social distance between actors has been surprisingly neglected in economic theory and neuroscientific research. We used functional magnetic resonance imaging (fMRI) to study the neural basis of this process to understand the neural underpinnings of social decision making. Participants chose between selfish and generous alternatives, yielding either a large reward for the participant alone, or smaller rewards for the participant and another individual at a particular social distance. We found that generous choices engaged the temporoparietal junction (TPJ). In particular, the TPJ activity was scaled to the social-distance-dependent conflict between selfish and generous motives during prosocial choice, consistent with ideas that the TPJ promotes generosity by facilitating overcoming egoism bias. Based on functional coupling data, we propose and provide evidence for a biologically plausible neural model according to which the TPJ supports social discounting by modulating basic neural value signals in the ventromedial prefrontal cortex to incorporate social-distance-dependent other-regarding preferences into an otherwise exclusively own-reward value representation.

  18. Drug-induced modulation of Tc-99m pyrophosphate tissue distribution: what is involved

    Energy Technology Data Exchange (ETDEWEB)

    Wahner, H.W.; Dewanjee, M.K.

    1981-06-01

    More than ten years after their introduction, Tc-99m-labeled phosphates and phosphonates (TcP) continue to be of interest to the investigator and to hold promise for new clinical applications in the future. Initially, TcP compounds were valued because of their bone-seeking properties. Emphasis shifted from bone to soft tissue when Bonte et al. introduced Tc-99m-labeled pyrophosphate (TcPPi) for myocardial infarct scanning. Detailed information about TcPPi uptake in ischemic and necrotic myocardial tissue at the subcellular level has accumulated. Therefore, understanding of the mechanism of TcPPi uptake in infarcted myocardium is more detailed than understanding of uptake by bone. A new, and potentially powerful, approach to the use of TcP is being proposed by Carr et al. The authors attempt to modulate favorably the tissue distribution of TcPPi by prior administration of drugs in pharmacological quantities. The authors demonstrate that uptake of TcPPi can be enhanced in the necrotic myocardium, uptake by bone can be reduced, and the lesion-to-blood ratio can be altered favorably when vitamin D/sub 3/ or desoxycorticosterone acetate (DOCA) is administered in pharmacological doses before the TcPPi injection. A short review is presented of background information helpful for interpreting the drug effects on TcPPi uptake in bone or necrotic myocardial tissue.

  19. Social discounting involves modulation of neural value signals by temporoparietal junction

    Science.gov (United States)

    Strombach, Tina; Weber, Bernd; Hangebrauk, Zsofia; Kenning, Peter; Karipidis, Iliana I.; Tobler, Philippe N.; Kalenscher, Tobias

    2015-01-01

    Most people are generous, but not toward everyone alike: generosity usually declines with social distance between individuals, a phenomenon called social discounting. Despite the pervasiveness of social discounting, social distance between actors has been surprisingly neglected in economic theory and neuroscientific research. We used functional magnetic resonance imaging (fMRI) to study the neural basis of this process to understand the neural underpinnings of social decision making. Participants chose between selfish and generous alternatives, yielding either a large reward for the participant alone, or smaller rewards for the participant and another individual at a particular social distance. We found that generous choices engaged the temporoparietal junction (TPJ). In particular, the TPJ activity was scaled to the social-distance–dependent conflict between selfish and generous motives during prosocial choice, consistent with ideas that the TPJ promotes generosity by facilitating overcoming egoism bias. Based on functional coupling data, we propose and provide evidence for a biologically plausible neural model according to which the TPJ supports social discounting by modulating basic neural value signals in the ventromedial prefrontal cortex to incorporate social-distance–dependent other-regarding preferences into an otherwise exclusively own-reward value representation. PMID:25605887

  20. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    Science.gov (United States)

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs.

  1. Sumoylation of bZIP transcription factor NRL modulates target gene expression during photoreceptor differentiation.

    Science.gov (United States)

    Roger, Jerome E; Nellissery, Jacob; Kim, Douglas S; Swaroop, Anand

    2010-08-13

    Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl(-/-) mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl(-/-) phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis.

  2. Sumoylation of bZIP Transcription Factor NRL Modulates Target Gene Expression during Photoreceptor Differentiation*

    Science.gov (United States)

    Roger, Jerome E.; Nellissery, Jacob; Kim, Douglas S.; Swaroop, Anand

    2010-01-01

    Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl−/− mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl−/− phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis. PMID:20551322

  3. A genome scan for candidate genes involved in the adaptation of turbot (Scophthalmus maximus).

    Science.gov (United States)

    Vilas, Román; Vandamme, Sara G; Vera, Manuel; Bouza, Carmen; Maes, Gregory E; Volckaert, Filip A M; Martínez, Paulino

    2015-10-01

    Partitioning phenotypic variance in genotypic and environmental variance may benefit from the population genomic assignment of genes putatively involved in adaptation. We analyzed a total of 256 markers (120 microsatellites and 136 Single Nucleotide Polymorphisms - SNPs), several of them associated to Quantitative Trait Loci (QTL) for growth and resistance to pathologies, with the aim to identify potential adaptive variation in turbot Scophthalmus maximus L. The study area in the Northeastern Atlantic Ocean, from Iberian Peninsula to the Baltic Sea, involves a gradual change in temperature and an abrupt change in salinity conditions. We detected 27 candidate loci putatively under selection. At least four of the five SNPs identified as outliers are located within genes coding for ribosomal proteins or directly related with the production of cellular proteins. One of the detected outliers, previously identified as part of a QTL for growth, is a microsatellite linked to a gene coding for a growth factor receptor. A similar set of outliers was detected when natural populations were compared with a sample subjected to strong artificial selection for growth along four generations. The observed association between FST outliers and growth-related QTL supports the hypothesis of changes in growth as an adaptation to differences in temperature and salinity conditions. However, further work is needed to confirm this hypothesis.

  4. Labellum transcriptome reveals alkene biosynthetic genes involved in orchid sexual deception and pollination-induced senescence.

    Science.gov (United States)

    Monteiro, Filipa; Sebastiana, Mónica; Figueiredo, Andreia; Sousa, Lisete; Cotrim, Helena C; Pais, Maria Salomé

    2012-11-01

    One of the most remarkable pollination strategy in orchids biology is pollination by sexual deception, in which the modified petal labellum lures pollinators by mimicking the chemical (e.g. sex pheromones), visual (e.g. colour and shape/size) and tactile (e.g. labellum trichomes) cues of the receptive female insect species. The present study aimed to characterize the transcriptional changes occurring after pollination in the labellum of a sexually deceptive orchid (Ophrys fusca Link) in order to identify genes involved on signals responsible for pollinator attraction, the major goal of floral tissues. Novel information on alterations in the orchid petal labellum gene expression occurring after pollination demonstrates a reduction in the expression of alkene biosynthetic genes using O. fusca Link as the species under study. Petal labellum transcriptional analysis revealed downregulation of transcripts involved in both pigment machinery and scent compounds, acting as visual and olfactory cues, respectively, important in sexual mimicry. Regulation of petal labellum senescence was revealed by transcripts related to macromolecules breakdown, protein synthesis and remobilization of nutrients.

  5. Mild copper deficiency alters gene expression of proteins involved in iron metabolism.

    Science.gov (United States)

    Auclair, Sylvain; Feillet-Coudray, Christine; Coudray, Charles; Schneider, Susanne; Muckenthaler, Martina U; Mazur, Andrzej

    2006-01-01

    Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.

  6. Brownie, a gene involved in building complex respiratory devices in insect eggshells.

    Directory of Open Access Journals (Sweden)

    Paula Irles

    Full Text Available BACKGROUND: Insect eggshells must combine protection for the yolk and embryo with provisions for respiration and for the entry of sperm, which are ensured by aeropyles and micropyles, respectively. Insects which oviposit the eggs in an egg-case have a double problem of respiration as gas exchange then involves two barriers. An example of this situation is found in the cockroach Blattella germanica, where the aeropyle and the micropyle are combined in a complex structure called the sponge-like body. The sponge-like body has been well described morphologically, but nothing is known about how it is built up. METHODOLOGY/PRINCIPAL FINDINGS: In a library designed to find genes expressed during late chorion formation in B. germanica, we isolated the novel sequence Bg30009 (now called Brownie, which was outstanding due to its high copy number. In the present work, we show that Brownie is expressed in the follicle cells localized in the anterior pole of the oocyte in late choriogenesis. RNA interference (RNAi of Brownie impaired correct formation of the sponge-like body and, as a result, the egg-case was also ill-formed and the eggs were not viable. CONCLUSIONS/SIGNIFICANCE: Results indicate that the novel gene Brownie plays a pivotal role in building up the sponge-like body. Brownie is the first reported gene involved in the construction of complex eggshell respiratory structures.

  7. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  8. Modulation of Pineal Melatonin Synthesis by Glutamate Involves Paracrine Interactions between Pinealocytes and Astrocytes through NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Darine Villela

    2013-01-01

    Full Text Available The glutamatergic modulation of melatonin synthesis is well known, along with the importance of astrocytes in mediating glutamatergic signaling in the central nervous system. Pinealocytes and astrocytes are the main cell types in the pineal gland. The objective of this work was to investigate the interactions between astrocytes and pinealocytes as a part of the glutamate inhibitory effect on melatonin synthesis. Rat pinealocytes isolated or in coculture with astrocytes were incubated with glutamate in the presence of norepinephrine, and the melatonin content, was quantified. The expression of glutamate receptors, the intracellular calcium content and the NF-κB activation were analyzed in astrocytes and pinealocytes. TNF-α's possible mediation of the effect of glutamate was also investigated. The results showed that glutamate's inhibitory effect on melatonin synthesis involves interactions between astrocytes and pinealocytes, possibly through the release of TNF-α. Moreover, the activation of the astrocytic NF-κB seems to be a necessary step. In astrocytes and pinealocytes, AMPA, NMDA, and group I metabotropic glutamate receptors were observed, as well as the intracellular calcium elevation. In conclusion, there is evidence that the modulation of melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through the activation of the astrocytic NF-κB transcription factor and possibly by subsequent TNF-α release.

  9. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at pmetabolism

  10. Insulin signaling genes modulate nicotine-induced behavioral responses in Caenorhabditis elegans.

    Science.gov (United States)

    Wescott, Seth A; Ronan, Elizabeth A; Xu, X Z Shawn

    2016-02-01

    Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, Caenorhabditis elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. For this, we challenged drug-naive C. elegans with an acute dose of nicotine (100 μmol/l) while recording changes in their locomotion speed. Although nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2, modulate behavioral responses to nicotine in C. elegans, indicating a genetic link between nicotine behavior and insulin signaling.

  11. Physical exercise as an epigenetic modulator: Eustress, the "positive stress" as an effector of gene expression.

    Science.gov (United States)

    Sanchis-Gomar, Fabian; Garcia-Gimenez, Jose Luis; Perez-Quilis, Carme; Gomez-Cabrera, Mari Carmen; Pallardo, Federico V; Lippi, Giuseppe

    2012-12-01

    Physical exercise positively influences epigenetic mechanisms and improves health. Several issues remain unclear concerning the links between physical exercise and epigenetics. There is growing concern about the negative influence of excessive and persistent physical exercise on health. How an individual physically adapts to the prevailing environmental conditions might influence epigenetic mechanisms and modulate gene expression. In this article, we put forward the idea that physical exercise, especially long-term repetitive strenuous exercise, positively affects health, reduces the aging process, and decreases the incidence of cancer through induced stress and epigenetic mechanisms. We propose herein that stress may stimulate genetic adaptations through epigenetics that, in turn, modulate the link between the environment, human lifestyle factors, and genes.

  12. Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus.

    Science.gov (United States)

    Sambanthamoorthy, Karthik; Smeltzer, Mark S; Elasri, Mohamed O

    2006-09-01

    The staphylococcal accessory regulator (sarA) plays a central role in the regulation of virulence in Staphylococcus aureus. To date, studies involving sarA have focused on its activity as a global regulator that modulates transcription of a wide variety of genes (>100) and its role in virulence. However, there is also evidence to suggest the existence of accessory elements that modulate SarA production and/or function. A reporter system was developed to identify such elements, and a new gene, msa (SA1233), mutation of which results in reduced expression of SarA, was identified and characterized. Additionally, it was shown that mutation of msa resulted in altered transcription of the accessory gene regulator (agr) and the genes encoding several virulence factors including alpha toxin (hla) and protein A (spa). However, the impact of mutating msa was different in the laboratory strain RN6390 and the clinical isolate UAMS-1. For instance, mutation of msa caused a decrease in spa and hla transcription in RN6390 but had a different effect in UAMS-1. The strain-dependent effects of the msa mutation were similar to those observed previously, which suggests that msa may modulate the production of specific virulence factors through its impact on sarA. Interestingly, sequence analysis of Msa suggests that it is a putative membrane protein with three membrane-spanning regions, indicating that Msa might interact with the environment. The findings show that msa is involved in the expression of SarA and several virulence factors.

  13. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley.

    Science.gov (United States)

    Suprunova, Tatiana; Krugman, Tamar; Distelfeld, Assaf; Fahima, Tzion; Nevo, Eviatar; Korol, Abraham

    2007-05-01

    Drought is one of the most severe stresses limiting plant growth and yield. Genes involved in water stress tolerance of wild barley (Hordeum spontaneoum), the progenitor of cultivated barley, were investigated using genotypes contrasting in their response to water stress. Gene expression profiles of water-stress tolerant vs. water-stress sensitive wild barley genotypes, under severe dehydration stress applied at the seedling stage, were compared using cDNA-AFLP analysis. Of the 1100 transcript-derived fragments (TDFs) amplified about 70 displayed differential expression between control and stress conditions. Eleven of them showed clear difference (up- or down-regulation) between tolerant and susceptible genotypes. These TDFs were isolated, sequenced and tested by RT-PCR. The differential expression of seven TDFs was confirmed by RT-PCR, and TDF-4 was selected as a promising candidate gene for water-stress tolerance. The corresponding gene, designated Hsdr4 (Hordeum spontaneum dehydration-responsive), was sequenced and the transcribed and flanking regions were determined. The deduced amino acid sequence has similarity to the rice Rho-GTPase-activating protein-like with a Sec14 p-like lipid-binding domain. Analysis of Hsdr4 promoter region that was isolated by screening a barley BAC library, revealed a new putative miniature inverted-repeat transposable element (MITE), and several potential stress-related binding sites for transcription factors (MYC, MYB, LTRE, and GT-1), suggesting a role of the Hsdr4 gene in plant tolerance to dehydration stress. Furthermore, the Hsdr4 gene was mapped using wild barley mapping population to the long arm of chromosome 3H between markers EBmac541 and EBmag705, within a region that previously was shown to affect osmotic adaptation in barley.

  14. CXC CHEMOKINE RECEPTOR 3 MODULATES BLEOMYCIN-INDUCED PULMONARY INJURY VIA INVOLVING INFLAMMATORY PROCESS

    Institute of Scientific and Technical Information of China (English)

    Jin-ming Gao; Bao Lu; Zi-jian Guo

    2006-01-01

    Objective To investigate the role of CXC chemokine receptor 3(CXCR3 ) in bleomycin-induced lung injury by using CXCR3 gene deficient mice.Methods Sex-, age-, and weight-matched C57BL/6 CXCR3 gene knockout mice and C57BL/6 wide type mice were challenged by injection of bleomycin via trachea. Lung tissue was stained with HE method. Airway resistance was measured. Bronchoalveolar lavage (BAL) was performed using phosphate buffered saline twice, cell number and differentials were counted by Diff-Qnick staining. Interleukin(IL)-4, IL-5, IL-12p40, and interfon-γ in BAL fluid and lung homogenate were measured by enzyme-linked immunosorbent assay. Unpaired t test was explored to compare the difference between two groups.Results On day 7 after bleomycin injection via trachea, CXCR3 knockout mice were protected from bleomycininduced lung injury as evidenced by fewer accumulation of inflammatory cells in the airway and lung interstitium compared with their wild type littermates ( P<0.05 ). Airway resistance was also lower in CXCR3 knockout mice compared with wild type mice (P<0.01 ). Significantly lower level of inflammatory cytokines release, including the altered production of IL-4 and IL-5 both in BAL fluid and lung tissue was seen in CXCR3 knockout mice than in wild type mice (both P<0.05).Conclusion CXCR3 signaling promotes inflammatory cells recruiting and initiates inflammatory cytokines cascade following endotracheal bleomycin administration, indicating that CXCR3 might be a therapeutic target for pulmonary injury.

  15. Chromatin Modulation of Herpesvirus Lytic Gene Expression: Managing Nucleosome Density and Heterochromatic Histone Modifications

    Directory of Open Access Journals (Sweden)

    Thomas M. Kristie

    2016-03-01

    Full Text Available Like their cellular hosts, herpesviruses are subject to the regulatory impacts of chromatin assembled on their genomes. Upon infection, these viruses are assembled into domains of chromatin with heterochromatic signatures that suppress viral gene expression or euchromatic characteristics that promote gene expression. The organization and modulation of these chromatin domains appear to be intimately linked to the coordinated expression of the different classes of viral genes and thus ultimately play an important role in the progression of productive infection or the establishment and maintenance of viral latency. A recent report from the Knipe laboratory (J. S. Lee, P. Raja, and D. M. Knipe, mBio 7:e02007-15, 2016 contributes to the understanding of the dynamic modulation of chromatin assembled on the herpes simplex virus genome by monitoring the levels of characteristic heterochromatic histone modifications (histone H3 lysine 9 and 27 methylation associated with a model viral early gene during the progression of lytic infection. Additionally, this study builds upon previous observations that the viral immediate-early protein ICP0 plays a role in reducing the levels of heterochromatin associated with the early genes.

  16. Functional characterisation of wheat Pgip genes reveals their involvement in the local response to wounding.

    Science.gov (United States)

    Janni, M; Bozzini, T; Moscetti, I; Volpi, C; D'Ovidio, R

    2013-11-01

    Polygalacturonase-inhibiting proteins (PGIPs) are cell wall leucine-rich repeat (LRR) proteins involved in plant defence. The hexaploid wheat (Triticum aestivum, genome AABBDD) genome contains one Pgip gene per genome. Tapgip1 (B genome) and Tapgip2 (D genome) are expressed in all tissues, whereas Tapgip3 (A genome) is inactive because of a long terminal repeat, Copia retrotransposon insertion within the coding region. To verify whether Tapgip1 and Tapgip2 encode active PGIPs and are involved in the wheat defence response, we expressed them transiently and analysed their expression under stress conditions. Neither TaPGIP1 nor TaPGIP2 showed inhibition activity in vitro against fungal polygalacturonases. Moreover, a wheat genotype (T. turgidum ssp. dicoccoides) lacking active homologues of Tapgip1 or Tapgip2 possesses PGIP activity. At transcript level, Tapgip1 and Tapgip2 were both up-regulated after fungal infection and strongly induced following wounding. This latter result has been confirmed in transgenic wheat plants expressing the β-glucuronidase (GUS) gene under control of the 5'-flanking region of Tdpgip1, a homologue of Tapgip1 with an identical sequence. Strong and transient GUS staining was mainly restricted to the damaged tissues and was not observed in adjacent tissues. Taken together, these results suggest that Tapgips and their homologues are involved in the wheat defence response by acting at the site of the lesion caused by pathogen infection.

  17. Astroglial glutamate-glutamine cycle is involved in the modulation of inflammatory nociception in rats

    Institute of Scientific and Technical Information of China (English)

    Tiancheng Wang; Jing Wang; Bin Geng; Hongyu Guo; Haili Shen; Yayi Xia

    2011-01-01

    Our previous behavioral studies have indicated that the astroglial glutamate-glutamine cycle is involved in the process of formalin-induced spinal cord central sensitization, but there was little morphological evidence. In this study, double-labeling immunofluorescence techniques showed that after rats were intrathecally injected with PBS and plantarly injected with formalin, glial fibrillary acidic protein (GFAP) and glutamine synthesase (GS) expression were increased and GFAP/GS coexpression was changed to include layers III and IV. After intrathecal injection of methionine sulfoximine, a GS specific inhibitor, the formalin-induced change in expression and coexpression of GFAP and GS in spinal cord dorsal horns was inhibited. The morphology, distribution and quantity of astrocytes recovered to normal levels. An intrathecal glutamine injection reversed the inhibitory effect of methionine sulfoximine. Astrocytes showed significant activation and distribution extended to layers V and VI. The present study provides morphological evidence that the astroglial glutamate-glutamine cycle is involved in the process of formalin-induced spinal cord central sensitization.

  18. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    OpenAIRE

    Gerosolimo Germano; Dallapiccola Bruno; Bruni Roberto; Ferraris Alessandro; Tataseo Paola; Tritarelli Elena; Marcantonio Cinzia; Ciccaglione Anna; Costantino Angela; Rapicetta Maria

    2008-01-01

    Abstract Background Hepatitis C virus (HCV) RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system). Results First, we compared the expression profile of HCV replicon clone 21-5 ...

  19. Identification of PEX7 as the second gene involved in Refsum disease.

    Science.gov (United States)

    van den Brink, Daan M; Brites, Pedro; Haasjes, Janet; Wierzbicki, Anthony S; Mitchell, John; Lambert-Hamill, Michelle; de Belleroche, Jacqueline; Jansen, Gerbert A; Waterham, Hans R; Wanders, Ronald J A

    2003-02-01

    Patients affected with Refsum disease (RD) have elevated levels of phytanic acid due to a deficiency of the peroxisomal enzyme phytanoyl-CoA hydroxylase (PhyH). In most patients with RD, disease-causing mutations in the PHYH gene have been identified, but, in a subset, no mutations could be found, indicating that the condition is genetically heterogeneous. Linkage analysis of a few patients diagnosed with RD, but without mutations in PHYH, suggested a second locus on chromosome 6q22-24. This region includes the PEX7 gene, which codes for the peroxin 7 receptor protein required for peroxisomal import of proteins containing a peroxisomal targeting signal type 2. Mutations in PEX7 normally cause rhizomelic chondrodysplasia punctata type 1, a severe peroxisomal disorder. Biochemical analyses of the patients with RD revealed defects not only in phytanic acid alpha-oxidation but also in plasmalogen synthesis and peroxisomal thiolase. Furthermore, we identified mutations in the PEX7 gene. Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions.

  20. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  1. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Science.gov (United States)

    Simpkins, Jessica A.; Rickel, Kirby E.; Madeo, Marianna; Ahlers, Bethany A.; Carlisle, Gabriel B.; Nelson, Heidi J.; Cardillo, Andrew L.; Weber, Emily A.; Vitiello, Peter F.; Pearce, David A.

    2016-01-01

    ABSTRACT Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. PMID:27142334

  2. INVOLVEMENT OF SYNAPTIC GENES IN THE PATHOGENESIS OF AUTISM SPECTRUM DISORDERS: THE CASE OF SYNAPSINS

    Directory of Open Access Journals (Sweden)

    Silvia eGiovedi

    2014-09-01

    Full Text Available Autism spectrum disorders (ASDs are heterogeneous neurodevelopmental disorders characterized by deficits in social interaction and social communication, restricted interests and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin (Syn genes in humans have been recently associated with ASD and epilepsy, diseases that display a frequent comorbidity. Synapsins are presynaptic proteins regulating synaptic vesicle traffic, neurotransmitter release and short-term synaptic plasticity. In doing so, Syn isoforms control the tone of activity of neural circuits and the balance between excitation and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy, causes core symptoms of ASD by affecting social behavior, social communication and repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to define synaptic alterations involved in the pathogenesis of ASD and epilepsy.

  3. Discovery of genes involved with learning and memory: an experimental synthesis of Hirschian and Benzerian perspectives.

    Science.gov (United States)

    Tully, T

    1996-11-26

    The biological bases of learning and memory are being revealed today with a wide array of molecular approaches, most of which entail the analysis of dysfunction produced by gene disruptions. This perspective derives both from early "genetic dissections" of learning in mutant Drosophila by Seymour Benzer and colleagues and from earlier behavior-genetic analyses of learning and in Diptera by Jerry Hirsh and coworkers. Three quantitative-genetic insights derived from these latter studies serve as guiding principles for the former. First, interacting polygenes underlie complex traits. Consequently, learning/memory defects associated with single-gene mutants can be quantified accurately only in equilibrated, heterogeneous genetic backgrounds. Second, complex behavioral responses will be composed of genetically distinct functional components. Thus, genetic dissection of complex traits into specific biobehavioral properties is likely. Finally, disruptions of genes involved with learning/memory are likely to have pleiotropic effects. As a result, task-relevant sensorimotor responses required for normal learning must be assessed carefully to interpret performance in learning/memory experiments. In addition, more specific conclusions will be obtained from reverse-genetic experiments, in which gene disruptions are restricted in time and/or space.

  4. Transcriptome analysis in Ceratitis capitata to unveil genes involved in ageing-maturation process

    Directory of Open Access Journals (Sweden)

    V. San Andrés

    2013-07-01

    Full Text Available The sterile insect technique (SIT is widely used in integrated programmes against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann (Diptera: Tephritidae. Information on the age distribution of insects, and more particularly, the knowledge of wild female reproductive status (mature or not at the time of the sterile male release is one of the key factors for the success of the SIT. In recent years, sequencing analysis has become an important tool in molecular biology. In this work we present a genome-wide expression analysis based on SSH (substractive sequence hybridization and EST (expressed sequence tag sequencing and macroarray expression analysis to identify signature genes related to the ageing-maturing process in C. capitata, leading to the successful identification of new putative candidate genes of reproductive status in medfly that would serve as molecular markers for ageing. We have sorted out 94 unigenes from 873 single-pass ESTs, of which 57% have homology with known genes. Ageing-maturing process in C. capitata presents a marked expression pattern accompanied by the increase of transcription level of genes involved in reproduction (vitellogenins, chorion proteins and male-specific serum proteins. Other identified cDNAs (43% with a differential expression pattern would be also candidates but deserve further studies, as they belong to the unknown function class.

  5. Key genes involved in desiccation tolerance and dormancy across life forms.

    Science.gov (United States)

    Costa, Maria Cecília D; Farrant, Jill M; Oliver, Melvin J; Ligterink, Wilco; Buitink, Julia; Hilhorst, Henk M W

    2016-10-01

    Desiccation tolerance (DT, the ability of certain organisms to survive severe dehydration) was a key trait in the evolution of life in terrestrial environments. Likely, the development of desiccation-tolerant life forms was accompanied by the acquisition of dormancy or a dormancy-like stage as a second powerful adaptation to cope with variations in the terrestrial environment. These naturally stress tolerant life forms may be a good source of genetic information to generate stress tolerant crops to face a future with predicted higher occurrence of drought. By mining for key genes and mechanisms related to DT and dormancy conserved across different species and life forms, unique candidate key genes may be identified. Here we identify several of these putative key genes, shared among multiple organisms, encoding for proteins involved in protection, growth and energy metabolism. Mutating a selection of these genes in the model plant Arabidopsis thaliana resulted in clear DT-, dormancy- and other seed-associated phenotypes, showing the efficiency and power of our approach and paves the way for the development of drought-stress tolerant crops. Our analysis supports a co-evolution of DT and dormancy by shared mechanisms that favour survival and adaptation to ever-changing environments with strong seasonal fluctuations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development.

    Directory of Open Access Journals (Sweden)

    Harriet E Feilotter

    Full Text Available The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.

  7. [Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma].

    Science.gov (United States)

    Lebedev, T D; Spirin, P V; Suntsova, M V; Ivanova, A V; Buzdin, A A; Prokofjeva, M M; Rubtsov, P M; Prassolov, V S

    2015-01-01

    Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.

  8. High accordance in prognosis prediction of colorectal cancer across independent datasets by multi-gene module expression profiles.

    Directory of Open Access Journals (Sweden)

    Wenting Li

    Full Text Available A considerable portion of patients with colorectal cancer have a high risk of disease recurrence after surgery. These patients can be identified by analyzing the expression profiles of signature genes in tumors. But there is no consensus on which genes should be used and the performance of specific set of signature genes varies greatly with different datasets, impeding their implementation in the routine clinical application. Instead of using individual genes, here we identified functional multi-gene modules with significant expression changes between recurrent and recurrence-free tumors, used them as the signatures for predicting colorectal cancer recurrence in multiple datasets that were collected independently and profiled on different microarray platforms. The multi-gene modules we identified have a significant enrichment of known genes and biological processes relevant to cancer development, including genes from the chemokine pathway. Most strikingly, they recruited a significant enrichment of somatic mutations found in colorectal cancer. These results confirmed the functional relevance of these modules for colorectal cancer development. Further, these functional modules from different datasets overlapped significantly. Finally, we demonstrated that, leveraging above information of these modules, our module based classifier avoided arbitrary fitting the classifier function and screening the signatures using the training data, and achieved more consistency in prognosis prediction across three independent datasets, which holds even using very small training sets of tumors.

  9. New type IV pili-related genes involved in early stages of Ralstonia solanacearum potato infection.

    Science.gov (United States)

    Siri, María Inés; Sanabria, Analía; Boucher, Christian; Pianzzola, María Julia

    2014-07-01

    This study provides insights into the pathogenesis of Ralstonia solanacearum, in particular with regards to strains belonging to phylotype IIB, sequevar 1 (IIB-1) and their interaction with potato, its natural host. We performed a comparative genomic analysis among IIB-1 R. solanacearum strains with different levels of virulence in order to identify candidate virulence genes. With this approach, we identified a 33.7-kb deletion in a strain showing reduced virulence on potato. This region contains a cluster of six genes putatively involved in type IV pili (Tfp) biogenesis. Functional analysis suggests that these proteins contribute to several Tfp-related functions such as twitching motility and biofilm formation. In addition, this genetic cluster was found to contribute to early bacterial wilt pathogenesis and colonization fitness of potato roots.

  10. Analysis and interpretation of RNA splicing alterations in genes involved in genetic disorders.

    Science.gov (United States)

    Vreeswijk, Maaike P G; van der Klift, Heleen M

    2012-01-01

    Germ line mutations in genes involved in hereditary cancer syndromes, such as BRCA1 and BRCA2 in breast cancer and MSH2, MSH6, MLH1, and PSM2 in hereditary nonpolyposis colorectal cancer (HNPCC, more recently indicated as Lynch syndrome), confer a high risk to develop cancer. Mutation analysis in these genes has resulted in the identification of a large number of sequence variants, of which mutations causing frame shifts and nonsense codons are considered undoubtedly to be pathogenic. Many variants, however, cannot be classified as either disease-causing mutations or neutral variants and are therefore called unclassified variants (UVs). A subset of these variants may have an effect on RNA splicing. Appropriate RNA analysis will enable the characterization of the exact molecular nature of this effect and hence, is essential to determine the clinical relevance of the genomic variant. This chapter describes the design and implementation of RNA analysis as an indispensible tool in today's clinical diagnostic setting.

  11. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress.

    Science.gov (United States)

    Feliciello, Isidoro; Akrap, Ivana; Ugarković, Đurđica

    2015-08-01

    Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes' transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions.

  12. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress.

    Directory of Open Access Journals (Sweden)

    Isidoro Feliciello

    2015-08-01

    Full Text Available Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes' transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions.

  13. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish

    Science.gov (United States)

    Di Rosa, Viviana; López-Olmeda, Jose Fernando; Burguillo, Ana; Frigato, Elena; Bertolucci, Cristiano; Piferrer, Francesc; Sánchez-Vázquez, Francisco Javier

    2016-01-01

    Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase) and the antimüllerian hormone (amh, testis) was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase) and ZT 15:39 h (at night), respectively. The expression of foxl2 (forkhead box L2) was also rhythmic in the ovary (acrophase located at ZT 5:02 h) and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1) was rhythmic in testes (acrophase at ZT 18:36 h). In the brain, cyp19a1b (brain aromatase) and cyp11b (11beta-hydroxylase) presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish. PMID:27322588

  14. The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2010-04-08

    Abstract Background Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion.

  15. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Wang, Luo-Luo; Lu, Xue-Ping; Meng, Li-Wei; Huang, Yong; Wei, Dong; Jiang, Hong-Bo; Smagghe, Guy; Wang, Jin-Jun

    2016-06-01

    Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Gene expression profiling reveals potential key pathways involved in pyrazinamide-mediated hepatotoxicity in Wistar rats.

    Science.gov (United States)

    Zhang, Yun; Jiang, Zhenzhou; Su, Yijing; Chen, Mi; Li, Fu; Liu, Li; Sun, Lixin; Wang, Yun; Zhang, Shuang; Zhang, Luyong

    2013-08-01

    Pyrazinamide (PZA) is an important sterilizing prodrug that shortens the duration of tuberculosis therapy. However, hepatotoxicity has been reported during clinical trials investigating PZA. To determine the hepatotoxic effects of PZA in vivo and to further investigate the underlying cellular mechanism, we profiled the gene expression patterns of PZA-treated rat livers by microarray analysis. Wistar rats of both sexes were orally administered PZA at doses of 0.5, 1.0 and 2.0 g kg(-1) for 28 days. Body weight, absolute and relative liver weight, biochemical analysis, histopathology, oxidative stress parameters in liver homogenates and changes in global transcriptomic expression were evaluated to study the hepatotoxic effects of PZA. Our results confirm the dose-dependent and sex-related hepatotoxicity of PZA. Female rats were more sensitive to PZA-induced hepatotoxicity than males. Furthermore, changes in the activity of major antioxidant enzymes and nonenzymatic antioxidants (superoxide dismutase, total antioxidant capacity, glutathione and malondialdehyde), indicating the development of oxidative stress, were more significant in the PZA-treated group. PZA-induced gene expression changes were related to pathways involved in drug metabolism, peroxisome proliferator-activated receptor (PPAR) signaling, oxidative stress and apoptosis. Real-time polymerase chain reaction confirmed the regulation of selected genes involved in PZA-hepatotoxicity (Ephx1, Cyp2b1, Gstm1, Gstp1, Fabp7, Acaa1, Cpt-1b, Cyp8b1, Hmox1 and Ntrk1). We observed for the first time that these genes have effects on PZA-induced hepatotoxicity. In addition, drug metabolism and PPAR signaling pathways may play an important role in PZA hepatotoxicity. Taken together, these findings will be useful for future PZA hepatotoxicity studies.

  17. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Viviana Di Rosa

    Full Text Available Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase and the antimüllerian hormone (amh, testis was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase and ZT 15:39 h (at night, respectively. The expression of foxl2 (forkhead box L2 was also rhythmic in the ovary (acrophase located at ZT 5:02 h and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1 was rhythmic in testes (acrophase at ZT 18:36 h. In the brain, cyp19a1b (brain aromatase and cyp11b (11beta-hydroxylase presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish.

  18. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  19. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    Directory of Open Access Journals (Sweden)

    Yang Chengmin

    2011-11-01

    Full Text Available Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388. A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons, 12, 649 (52.6% of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10. All unique sequences were compared with NCBI expressed sequence tags (ESTs (237 and encoding sequences (44 from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111. The 23, 173 (96.4% unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s and 102 glycosyltransferases (GTs unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various