WorldWideScience

Sample records for gene mediates adult

  1. Virally mediated gene manipulation in the adult CNS

    Directory of Open Access Journals (Sweden)

    Efrat eEdry

    2011-12-01

    Full Text Available Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult-brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics – recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance.

  2. Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro.

    Directory of Open Access Journals (Sweden)

    Satoru Moritoh

    Full Text Available BACKGROUND: Organotypic tissue culture of adult rodent retina with an acute gene transfer that enables the efficient introduction of variable transgenes would greatly facilitate studies into retinas of adult rodents as animal models. However, it has been a difficult challenge to culture adult rodent retina. The purpose of this present study was to develop organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We established an interphase organotypic tissue culture for adult rat retinas (>P35 of age which was optimized from that used for adult rabbit retinas. We implemented three optimizations: a greater volume of Ames' medium (>26 mL per retina, a higher speed (constant 55 rpm of agitation by rotary shaker, and a greater concentration (10% of horse serum in the medium. We also successfully applied this method to adult mouse retina (>P35 of age. The organotypic tissue culture allowed us to keep adult rodent retina morphologically and structurally intact for at least 4 days. However, mouse retinas showed less viability after 4-day culture. Electrophysiologically, ganglion cells in cultured rat retina were able to generate action potentials, but exhibited less reliable light responses. After transfection of EGFP plasmids by particle-mediated acute gene transfer, we observed EGFP-expressing retinal ganglion cells as early as 1 day of culture. We also introduced polarized-targeting fusion proteins such as PSD95-GFP and melanopsin-EYFP (hOPN4-EYFP into rat retinal ganglion cells. These fusion proteins were successfully transferred into appropriate locations on individual retinal neurons. CONCLUSIONS/SIGNIFICANCE: This organotypic culture method is largely applicable to rat retinas, but it can be also applied to mouse retinas with a caveat regarding cell viability. This method is quite flexible for use in acute gene transfection in adult rodent retina, replacing

  3. RNAi-mediated gene knockdown and in vivo diuresis assay in adult female Aedes aegypti mosquitoes.

    Science.gov (United States)

    Drake, Lisa L; Price, David P; Aguirre, Sarah E; Hansen, Immo A

    2012-07-14

    This video protocol demonstrates an effective technique to knockdown a particular gene in an insect and conduct a novel bioassay to measure excretion rate. This method can be used to obtain a better understanding of the process of diuresis in insects and is especially useful in the study of diuresis in blood-feeding arthropods that are able to take up huge amounts of liquid in a single blood meal. This RNAi-mediated gene knockdown combined with an in vivo diuresis assay was developed by the Hansen lab to study the effects of RNAi-mediated knockdown of aquaporin genes on Aedes aegypti mosquito diuresis. The protocol is setup in two parts: the first demonstration illustrates how to construct a simple mosquito injection device and how to prepare and inject dsRNA into the thorax of mosquitoes for RNAi-mediated gene knockdown. The second demonstration illustrates how to determine excretion rates in mosquitoes using an in vivo bioassay.

  4. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  5. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera

    Science.gov (United States)

    Elias-Neto, Moysés; Falcon, Tiago; Dallacqua, Rodrigo Pires; Martins, Juliana Ramos; Bitondi, Marcia Maria Gentile

    2016-01-01

    Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs β and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs β and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones. PMID:27907116

  6. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    Directory of Open Access Journals (Sweden)

    Chenggang Lu

    2015-12-01

    Full Text Available Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s. In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC, a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs, spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  7. Perceived parental rejection mediates the influence of serotonin transporter gene (5-HTTLPR) polymorphisms on impulsivity in Japanese adults.

    Science.gov (United States)

    Nishikawa, Saori; Nishitani, Shota; Fujisawa, Takashi X; Noborimoto, Ippei; Kitahara, Takayuki; Takamura, Tsunehiko; Shinohara, Kazuyuki

    2012-01-01

    This study examined (1) the interrelationships among 5-HTTLPR genotype, perceived parental rejection, and impulsivity, and (2) meditational models in which perceived paternal/maternal rejection mediates the relationship between the 5-HTTLPR genotype and impulsive behaviour. Participants included 403 adults (152 males and 252 females, mean age = 24.20) who provided genetic data and a set of the questionnaires (BIS11; Barratt Impulsiveness Scale-11 and EMBU; Egna Minnen av Bätraffande Uppfostran). Using SEM (Structural Equation Modeling), we evaluated 3 models for both direct and indirect relationships between 5-HTTLPR (5HTT) and Impulsivity (IMP), via maternal/fraternal rejection (MAT/FAT). In model 1, the direct path from 5HTT and IMP was not significant across the mother's and father's analysis. Models 2 and 3 assessed the indirect influence of 5HTT on IMP through MOT/FAT. The paths of models 2 and 3 were all significant and showed a good fit between the hypothesized model and data. Furthermore, the effects of the 5-HTTLPR genotype on impulsiveness in this Japanese sample were particularly accounted for by perceived rejection from the mother or father. The effects from the parents appeared to be robust especially among males. These results may help elucidate the specific pathways of risk in relation to genetic and environment influences on impulsive phenotypes.

  8. RNA interference-mediated knockdown of the hydroxyacid-oxoacid transhydrogenase gene decreases thiamethoxam resistance in adults of the whitefly Bemisia tabaci.

    Science.gov (United States)

    Yang, Xin; Xie, Wen; Li, Ru-Mei; Zhou, Xiao-Mao; Wang, Shao-Li; Wu, Qing-Jun; Yang, Ni-Na; Xia, Ji-Xing; Yang, Ze-Zong; Guo, Li-Tao; Liu, Ya-Ting; Zhang, You-Jun

    2017-01-24

    Bemisia tabaci has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we investigated whether hydroxyacid-oxoacid transhydrogenase (HOT) is involved in resistance to the neonicotinoid insecticide thiamethoxam in the whitefly. We cloned the full-length gene that encodes HOT in B. tabaci. Its cDNA contains a 1428-bp open reading frame encoding 475 amino acid residues. Then we evaluated the mRNA expression level of HOT in different developmental stages, and found HOT expression was significantly greater in thiamethoxam resistance adults than in thiamethoxam susceptible adults. Subsequently, seven field populations of B. tabaci adults were sampled, the expression of mRNA level of HOT significant positive correlated with thiamethoxam resistance level. At last, we used a modified gene silencing system to knock-down HOT expression in B. tabaci adults. The results showed that the HOT mRNA levels decreased by 57% and thiamethoxam resistance decreased significantly after 2 days of feeding on a diet containing HOT dsRNA. The results indicated that down-regulation of HOT expression decreases thiamethoxam resistance in B. tabaci adults.

  9. Electroporation-mediated gene delivery.

    Science.gov (United States)

    Young, Jennifer L; Dean, David A

    2015-01-01

    Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.

  10. A combined approach for β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA) production and fetal hemoglobin (HbF) induction.

    Science.gov (United States)

    Zuccato, Cristina; Breda, Laura; Salvatori, Francesca; Breveglieri, Giulia; Gardenghi, Sara; Bianchi, Nicoletta; Brognara, Eleonora; Lampronti, Ilaria; Borgatti, Monica; Rivella, Stefano; Gambari, Roberto

    2012-08-01

    Gene therapy might fall short in achieving a complete reversion of the β-thalassemic phenotype due to current limitations in vector design and myeloablative regimen. Following gene transfer, all or a large proportion of erythroid cells might express suboptimal levels of β-globin, impairing the therapeutic potential of the treatment. Our aim was to evaluate whether, in absence of complete reversion of the β-globin phenotype upon gene transfer, it is possible to use fetal hemoglobin induction to eliminate the residual α-globin aggregates and achieve normal levels of hemoglobin. Transgenic K562 cell lines and erythroid precursor cells from β(0)39-thalassemia patients were employed. Gene therapy was performed with the lentiviral vector T9W. Induction of fetal hemoglobin was obtained using mithramycin. Levels of mRNA and hemoglobins were determined by qRT-PCR and HPLC. First, we analyzed the effect of mithramycin on K562 transgenic cell lines harboring different copies of a lentiviral vector carrying the human β-globin gene, showing that γ-globin mRNA expression and HbF production can be induced in the presence of high levels of β-globin gene expression and HbA accumulation. We then treated erythroid progenitor cells from β-thalassemic patients with T9W, which expresses the human β-globin gene and mithramycin separately or in combination. When transduction with our lentiviral vector is insufficient to completely eliminate the unpaired α-globin chains, combination of β-globin gene transfer therapy together with fetal hemoglobin induction might be very efficacious to remove the excess of α-globin proteins in thalassemic erythroid progenitor cells.

  11. RNA interference-mediated knockdown of the hydroxyacid-oxoacid transhydrogenase gene decreases thiamethoxam resistance in adults of the whitefly Bemisia tabaci

    OpenAIRE

    Xin Yang; Wen Xie; Ru-mei Li; Xiao-mao Zhou; Shao-li Wang; Qing-jun Wu; Ni-na Yang; Ji-xing Xia; Ze-zong Yang; Li-tao Guo; Ya-ting Liu; You-jun Zhang

    2017-01-01

    Bemisia tabaci has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we investigated whether hydroxyacid-oxoacid transhydrogenase (HOT) is involved in resistance to the neonicotinoid insecticide thiamethoxam in the whitefly. We cloned the full-length gene that encodes HOT in B. tabaci. Its cDNA contains a 1428-bp open reading frame encoding 475 amino acid residues. Then we evaluate...

  12. Vitamin D-mediated gene expression.

    Science.gov (United States)

    Lowe, K E; Maiyar, A C; Norman, A W

    1992-01-01

    The steroid hormone 1,25(OH)2D3 modulates the expression of a wide variety of genes in a tissue- and developmentally specific manner. It is well established that 1,25(OH)2D3 can up- or downregulate the expression of genes involved in cell proliferation, differentiation, and mineral homeostasis. The hormone exerts its genomic effects via interactions with the vitamin D receptor or VDR, a member of the superfamily of hormone-activated nuclear receptors which can regulate eukaryotic gene expression. The ligand-bound receptor acts as a transcription factor that binds to specific DNA sequences, HREs, in target gene promoters. The DNA-binding domains of the steroid hormone receptors are highly conserved and contain two zinc-finger motifs that recognize the HREs. The spacing and orientation of the HRE half-sites, as well as the HRE sequence, are critical for proper discrimination by the various receptors. Other nuclear factors such as fos and jun can influence vitamin D-mediated gene expression. A wide range of experimental techniques has been used to increase our understanding of how 1,25(OH)2D3 and its receptor play a central role in gene expression.

  13. Torsion-mediated interaction between adjacent genes.

    Directory of Open Access Journals (Sweden)

    Sam Meyer

    2014-09-01

    Full Text Available DNA torsional stress is generated by virtually all biomolecular processes involving the double helix, in particular transcription where a significant level of stress propagates over several kilobases. If another promoter is located in this range, this stress may strongly modify its opening properties, and hence facilitate or hinder its transcription. This mechanism implies that transcribed genes distant of a few kilobases are not independent, but coupled by torsional stress, an effect for which we propose the first quantitative and systematic model. In contrast to previously proposed mechanisms of transcriptional interference, the suggested coupling is not mediated by the transcription machineries, but results from the universal mechanical features of the double-helix. The model shows that the effect likely affects prokaryotes as well as eukaryotes, but with different consequences owing to their different basal levels of torsion. It also depends crucially on the relative orientation of the genes, enhancing the expression of eukaryotic divergent pairs while reducing that of prokaryotic convergent ones. To test the in vivo influence of the torsional coupling, we analyze the expression of isolated gene pairs in the Drosophila melanogaster genome. Their orientation and distance dependence is fully consistent with the model, suggesting that torsional gene coupling may constitute a widespread mechanism of (coregulation in eukaryotes.

  14. Kidney-specific transposon-mediated gene transfer in vivo

    Science.gov (United States)

    Woodard, Lauren E.; Cheng, Jizhong; Welch, Richard C.; Williams, Felisha M.; Luo, Wentian; Gewin, Leslie S.; Wilson, Matthew H.

    2017-01-01

    Methods enabling kidney-specific gene transfer in adult mice are needed to develop new therapies for kidney disease. We attempted kidney-specific gene transfer following hydrodynamic tail vein injection using the kidney-specific podocin and gamma-glutamyl transferase promoters, but found expression primarily in the liver. In order to achieve kidney-specific transgene expression, we tested direct hydrodynamic injection of a DNA solution into the renal pelvis and found that luciferase expression was strong in the kidney and absent from extra-renal tissues. We observed heterogeneous, low-level transfection of the collecting duct, proximal tubule, distal tubule, interstitial cells, and rarely glomerular cells following injection. To assess renal injury, we performed the renal pelvis injections on uninephrectomised mice and found that their blood urea nitrogen was elevated at two days post-transfer but resolved within two weeks. Although luciferase expression quickly decreased following renal pelvis injection, the use of the piggyBac transposon system improved long-term expression. Immunosuppression with cyclophosphamide stabilised luciferase expression, suggesting immune clearance of the transfected cells occurs in immunocompetent animals. Injection of a transposon expressing erythropoietin raised the haematocrit, indicating that the developed injection technique can elicit a biologic effect in vivo. Hydrodynamic renal pelvis injection enables transposon mediated-kidney specific gene transfer in adult mice. PMID:28317878

  15. Mediators of Sexual Revictimization Risk in Adult Sexual Assault Victims

    Science.gov (United States)

    Ullman, Sarah E.; Vasquez, Amanda L.

    2015-01-01

    This study examined sexual risk behaviors and sexual refusal assertiveness in relationship to child sexual abuse (CSA), emotion dysregulation, and adult sexual revictimization. Path analyses of 1,094 survivors who had sex in the past year were done to examine sexual risk behavior, and sexual refusal assertiveness mediational pathways by which CSA severity and emotion dysregulation may affect revictimization over one year in adult female sexual assault survivors. Exchanging sex for money and sexual refusal assertiveness were significantly associated with emotion dysregulation, whereas exchanging sex for money, and not sexual refusal assertiveness, was only significantly related to CSA severity. Both exchanging sex for money and sex refusal assertiveness mediated the relationship between emotion dysregulation and adult sexual revictimization. Exchanging sex for money mediated the CSA severity-revictimization relationship. These findings demonstrate the importance of considering both risky and protective sexual behaviors in research and prevention programming that address sexual revictimization in women. PMID:25942287

  16. Computer-Mediated Social Support, Older Adults, and Coping.

    Science.gov (United States)

    Wright, Kevin

    2000-01-01

    Investigates social support for older adults in the computer-mediated environment. Finds that: satisfaction with Internet providers of social support was significantly higher for high Internet users than for low Internet users, whereas low Internet users were more satisfied with their non-Internet support networks than high Internet users; and…

  17. Adult Attachment and Dyadic Adjustment: The Mediating Role of Shame.

    Science.gov (United States)

    Martins, Teresa C; Canavarro, Maria Cristina; Moreira, Helena

    2016-07-03

    Although it is widely recognized that adult attachment is associated with romantic relationship quality, the mechanisms involved remain poorly understood. This study aimed to investigate the mediating role of external and internal shame on the association between attachment and dyadic adjustment. A battery of self-report measures was completed by 228 Portuguese participants and a serial multiple mediation model was tested. Data showed that, in the population under study, attachment dimensions were associated with worse dyadic adjustment through high external and internal shame. Internal shame alone also mediated the association between attachment avoidance and dyadic adjustment. This study identifies a new putative mechanism linking adult attachment and intimate relationship functioning that may be targeted in couples therapy to promote a better dyadic adjustment and relationship functioning.

  18. Gene targeting in adult rhesus macaque fibroblasts

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2008-03-01

    Full Text Available Abstract Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.

  19. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  20. CTCF-mediated chromatin loops enclose inducible gene regulatory domains

    NARCIS (Netherlands)

    Oti, M.O.; Falck, J.; Huynen, M.A.; Zhou, Huiqing

    2016-01-01

    BACKGROUND: The CCTC-binding factor (CTCF) protein is involved in genome organization, including mediating three-dimensional chromatin interactions. Human patient lymphocytes with mutations in a single copy of the CTCF gene have reduced expression of enhancer-associated genes involved in response to

  1. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the

  2. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the w

  3. Adult respiratory distress syndrome: mediators on the run.

    Science.gov (United States)

    Vollman, K M

    1994-06-01

    The critical care nurse can no longer view adult respiratory distress syndrome (ARDS) as a single organ dysfunction. ARDS may be the triggering event or the end result of a systemic inflammatory response. This article focuses on the research examining the cellular and humoral mediators precipitating the pathophysiologic processes seen in ARDS. An examination of assessment cues for early diagnosis and continued evaluation of the progression of acute lung injury and the systemic response are explored. Concluding the article is a critical analysis of supportive and experimental treatment modalities and their impact on patient outcome.

  4. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    Science.gov (United States)

    2016-04-12

    34--- I lr_ Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Recent Development in Gene Therapy , 2007: 77-94...ISBN: 81-7895-262-9 Editor: Jim Xiang Adenovirus-mediated gene therapy against viral biothreat agents Josh Q.H. Wu Chemical Biological Defence... therapy , which introduces therapeutic genes into mammalian cells to achieve therapeutic effective, hds a great potential for use as a defensive

  5. Targeted gene knockout in chickens mediated by TALENs

    OpenAIRE

    Park, Tae Sub; Lee, Hong Jo; Kim, Ki Hyun; Kim, Jin-Soo; Han, Jae Yong

    2014-01-01

    Targeted gene knockout by editing specific loci in genome has revolutionized the field of functional genomics. Transcription activator-like effector nucleases (TALENs) are representative next-generation platforms for customized genomic editing in transgenic animals, as well as cultured cells in vitro. In this study, in combination with chicken primordial germ cell line with germ-line transmission capacity, we generated the ovalbumin gene knockout chickens by TALEN-mediated gene targeting. Our...

  6. HIGH EFFICIENCY RETROVIRUS-MEDIATED GENE TRANSFER TO LEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    FU Jian-xin; CHEN Zi-xing; CEN Jian-nong; WANG Wei; RUAN Chang-geng

    1999-01-01

    Objective: To establish an efficient and safe gene transfer system mediated by retrovirus for gene marking and gene therapy of human leukemia. Method: The retroviral vector LXSN, containing the neomycin resistance (NeoR) gene, was transferred into amphotropic packaging cells GP+envAm12 by liposome transfection or by ecotropic retrovirus transduction. Amphotropic retrovirus in supernatants with higher titer was used to infect human leukemic cell lines NB4, U937, and THP-1.The efficiency of gene transfer was assayed on colonies formed by transduced K562 cells. Results: The titer of DOSPER directly transfected GP+envAm12 cells determined on NIH3T3 cells was 8.0×105 CFU/ml, while that of producer infected with retrovirus was 1.6×107CFU/ml. Integration of NeoR gene into all leukemia cells was confirmed by polymerase chain reaction (PCR).Absence of replication-competent virus was proved by both nested PCR for env gene and marker gene rescue assay. Gene transfer with the efficiency as high as 93.3 to 100% in K562 cells was verified by seminested PCR for integrated NeoR gene on colonies after 7 days' culture.Conclusion: The efficiency and safety of retrovirus mediated gene transfer system might provide an optimal system in gene therapy for leukemia or genetic diseases.

  7. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  8. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.

    Directory of Open Access Journals (Sweden)

    Nathalie Swales

    Full Text Available AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3. In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.

  9. In vivo particle-mediated gene transfer for cancer therapy.

    Science.gov (United States)

    Rakhmilevich, A L; Yang, N S

    2000-01-01

    During the past several years, particle-mediated delivery techniques have been developed as a nonviral technology for gene transfer (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective for transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4), brain, mammary, and leukocyte primary cultures or tissue explants ex vivo (2,5-7), and a wide range of cell lines in vitro (3,6,7). In this chapter, we describe the general principles, mechanisms, protocols, and uses of the particle-mediated gene transfer technology for in vivo gene transfer, mainly into skin tissues. Specific applications of this technology to basic studies in molecular biology as well as to gene therapy and genetic immunization against cancer are addressed.

  10. Agrobacterium-mediated gene transfer to Chrysanthemum.

    NARCIS (Netherlands)

    Wordragen, van M.F.

    1991-01-01

    Genetic manipulation of plants is a technique that enables us to add to the plant genome, in a precise and well controlled manner, one or a few new genes, coding for desirable traits. In contrast to this, the conventional method for the introduction of new properties in plants, by cross breeding, is

  11. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  12. Raf-mediated cardiac hypertrophy in adult Drosophila.

    Science.gov (United States)

    Yu, Lin; Daniels, Joseph; Glaser, Alex E; Wolf, Matthew J

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFR(A887T), Ras85D(V12) and Ras85D(V12S35), which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERK(D334N), which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for

  13. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf-mediated

  14. Raf-mediated cardiac hypertrophy in adult Drosophila

    Science.gov (United States)

    Yu, Lin; Daniels, Joseph; Glaser, Alex E.; Wolf, Matthew J.

    2013-01-01

    SUMMARY In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for

  15. Targeting of AID-mediated sequence diversification to immunoglobulin genes.

    Science.gov (United States)

    Kothapalli, Naga Rama; Fugmann, Sebastian D

    2011-04-01

    Activation-induced cytidine deaminase (AID) is a key enzyme for antibody-mediated immune responses. Antibodies are encoded by the immunoglobulin genes and AID acts as a transcription-dependent DNA mutator on these genes to improve antibody affinity and effector functions. An emerging theme in field is that many transcribed genes are potential targets of AID, presenting an obvious danger to genomic integrity. Thus there are mechanisms in place to ensure that mutagenic outcomes of AID activity are specifically restricted to the immunoglobulin loci. Cis-regulatory targeting elements mediate this effect and their mode of action is probably a combination of immunoglobulin gene specific activation of AID and a perversion of faithful DNA repair towards error-prone outcomes.

  16. Loneliness mediates the relationship between childhood trauma and adult psychopathology: evidence from the adult psychiatric morbidity survey.

    Science.gov (United States)

    Shevlin, Mark; McElroy, Eoin; Murphy, Jamie

    2015-04-01

    Childhood abuse (CA) has been found to be related to the development of a variety of psychiatric disorders in adulthood. Although CA is also associated with adult loneliness, few studies have investigated the role of loneliness as a mediator in the relationship between CA and adult psychopathology. Using data from a large, general population sample a mediation model was proposed and tested. Controlling for a range of background variables, the results from a series of regression analyses found that loneliness mediated the association between CA and six adult psychiatric disorders. The findings of this study highlight the importance of loneliness to the development of psychopathology. Theoretical and practical implications are discussed.

  17. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    Science.gov (United States)

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  18. Sunlight exposure-mediated DNA damage in young adults.

    Science.gov (United States)

    Kato, Masashi; Iida, Machiko; Goto, Yuji; Kondo, Takaaki; Yajima, Ichiro

    2011-08-01

    Previous experimental studies showed that single ultraviolet B (UVB) light irradiation increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a well-established biomarker of carcinogenesis and oxidative DNA damage, in epithelial cells in animals and humans. We conducted for the first time an epidemiologic study to investigate the correlations among levels of oxidative DNA damage, skin pigmentation, and sunlight exposure in human daily life. Digitalized skin pigmentation levels and creatinine-adjusted urinary 8-OHdG levels were examined in 127 healthy young adults aged 20 to 24 years and in hairless mice with normal pigmented skin (HL-mice; n = 20) and hyperpigmented skin (HL-HPS-mice; n = 20). Data obtained by a questionnaire were also analyzed for the 127 subjects. Binary logistic regression analysis showed that increased sunlight intensity, but not sunlight-exposed time or sunlight-exposed skin area, was correlated with elevation in creatinine-adjusted urinary 8-OHdG levels. In contrast, increased skin pigmentation level, but not the use of sunscreen, was correlated with reduction in urinary 8-OHdG level in humans. UVB irradiation corresponding to several minutes of sunlight exposure significantly increased urinary 8-OHdG levels in HL-mice but not in HL-HPS-mice. We showed that increase in intensity of sunlight in human daily life increased levels of DNA damage. We also showed a protective effect of skin pigmentation on sunlight exposure-mediated DNA damage. We have provided more reliable evidence of routine sunlight exposure-mediated DNA damage in humans through the combination of epidemiologic and experimental studies. ©2011 AACR.

  19. Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper

    Directory of Open Access Journals (Sweden)

    Dong Ying

    2005-10-01

    Full Text Available Abstract Background Grasshopper serves as important model system in neuroscience, development and evolution. Representatives of this primitive insect group are also highly relevant targets of pest control efforts. Unfortunately, the lack of genetics or gene specific molecular manipulation imposes major limitations to the study of grasshopper biology. Results We investigated whether juvenile instars of the grasshopper species Schistocerca americana are conducive to gene silencing via the systemic RNAi pathway. Injection of dsRNA corresponding to the eye colour gene vermilion into first instar nymphs triggered suppression of ommochrome formation in the eye lasting through two instars equivalent to 10–14 days in absolute time. QRT-PCR analysis revealed a two fold decrease of target transcript levels in affected animals. Control injections of EGFP dsRNA did not result in detectable phenotypic changes. RT-PCR and in situ hybridization detected ubiquitous expression of the grasshopper homolog of the dsRNA channel protein gene sid-1 in embryos, nymphs and adults. Conclusion Our results demonstrate that systemic dsRNA application elicits specific and long-term gene silencing in juvenile grasshopper instars. The conservation of systemic RNAi in the grasshopper suggests that this pathway can be exploited for gene specific manipulation of juvenile and adult instars in a wide range of primitive insects.

  20. Methods for particle-mediated gene transfer into skin.

    Science.gov (United States)

    Yang, N S; McCabe, D E; Swain, W F

    1997-01-01

    During the past 5 yr, particle-mediated delivery techniques have been developed as a physical means for gene transfer into various eukaryotic systems, including plants, insects, fish, and mammals (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective in transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4); brain, mammary, and leukocyte pnmary cultures or explants ex vivo (2,5-7); and a wide range of different mammalian cell lines in vitro (3,6,7).

  1. TEAD mediates YAP-dependent gene induction and growth control.

    Science.gov (United States)

    Zhao, Bin; Ye, Xin; Yu, Jindan; Li, Li; Li, Weiquan; Li, Siming; Yu, Jianjun; Lin, Jiandie D; Wang, Cun-Yu; Chinnaiyan, Arul M; Lai, Zhi-Chun; Guan, Kun-Liang

    2008-07-15

    The YAP transcription coactivator has been implicated as an oncogene and is amplified in human cancers. Recent studies have established that YAP is phosphorylated and inhibited by the Hippo tumor suppressor pathway. Here we demonstrate that the TEAD family transcription factors are essential in mediating YAP-dependent gene expression. TEAD is also required for YAP-induced cell growth, oncogenic transformation, and epithelial-mesenchymal transition. CTGF is identified as a direct YAP target gene important for cell growth. Moreover, the functional relationship between YAP and TEAD is conserved in Drosophila Yki (the YAP homolog) and Scalloped (the TEAD homolog). Our study reveals TEAD as a new component in the Hippo pathway playing essential roles in mediating biological functions of YAP.

  2. In vivo electroporation mediated gene delivery to the beating heart.

    Directory of Open Access Journals (Sweden)

    Erick L Ayuni

    Full Text Available Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase and TNT (Troponin T were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.

  3. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...csml) Show Signalling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalli...ng pathways mediating type I interferon gene expression. Authors Edwards MR, Slat

  4. Retinal functional change caused by adenoviral vector-mediated transfection of LacZ gene.

    Science.gov (United States)

    Sakamoto, T; Ueno, H; Goto, Y; Oshima, Y; Yamanaka, I; Ishibashi, T; Inomata, H

    1998-04-10

    We examined the effect of insertion of an exogenous gene on retinal function to assess the rationale of adenoviral vector-mediated gene transfer for future gene therapy. An adenoviral vector expressing bacterial LacZ (AdCALacZ) was injected into the eyes of adult rats either intravitreally (group A) or subretinally (group B), and the gene expression and retinal function were thus examined at different time points after gene transfer for 3 weeks. X-Gal histostaining showed that neural retinal cells were transfected in group A and that retinal pigment epithelial cells were transfected in group B. The gene transfer was more efficient in group B (54.4% of the fixed retinal area was stained) than in group A (10.4%). The electroretinogram (ERG) revealed retinal dysfunction in the AdCALacZ-transfected rats even at the stage in which the histological damage was not apparent by electron microscopy and immunohistochemical studies for cytokeratin, S-100 protein, and glial fibrillary acidic protein. The ERG change was correlated with the intensity of inflammation, and retinal function recovered to the original level by 3 weeks, along with a diminution of inflammation. Functional changes were more evident in eyes treated with AdCALacZ than in those infected with adenoviral vector with no exogenous gene; however, no histological difference was observed between these groups, indicating that the insertion of exogenous gene itself affects retinal function. The results showed that different kinds of retinal cells could be gene-transferred by an adenoviral vector, depending on the application method. The retinal dysfunction caused by each adenoviral transfection method was caused by inflammation and the insertion of exogenous gene, and this retinal dysfunction was recoverable. In future gene therapy, special attention should be given to the method of exogenous gene insertion in the retina.

  5. RETROVIRAL-MEDIATED SUICIDE GENE THERAPY OF EXPERIMENTAL GLIOMA

    Institute of Scientific and Technical Information of China (English)

    Xu Lingfei; Ge Kai; Zheng Zhongcheng; Sun Lanying; Liu Xinyuan

    1998-01-01

    Objective: To establish a retroviral-mediated suicide gene therapy system for experimental glioma and test its efficacy. Methods: C6 rat glioma cells were infected with recombinant retrovirus containing HSV-tk gene. The C6/tk cell line which stably expressed tk was selected and cloned. The sensitivities of C6/tk cells to several nucleoside analogues, such as GCV, BVdU, ACV were compared by the growth inhibition studies. Antitumor effects were also observed after GCV treatment in nude mice bearing tumors derived from C6/tk cells. Results:The growth inhibition studies showed that GCV was the most efficient prodrug in this system. C6/tk cells were highly sensitive to GCV, with an IC50<0.2 μmol/L, being 500-fold less than that in tk-negative C6 cells. In vivo studies showed significant tumor inhibition in the treatment group. Conclusion: Glioma cells can be eradicated by using retroviral-mediated suicide gene system in vitro as well as in vivo.

  6. Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals.

    Science.gov (United States)

    Chattopadhyay, Munmun; Goss, James; Lacomis, David; Goins, William C; Glorioso, Joseph C; Mata, Marina; Fink, David J

    2003-02-01

    The distinct distribution of trkA receptors on small neurons and trkC receptors on large neurons in the dorsal root ganglion correlates with the dependence of these two classes of neurons on nerve growth factor and neurotrophin-3, respectively, for survival during development. In adult animals, the distribution of high affinity neurotrophin (trk) is complex and overlapping; neurotrophins are not required for cell survival, but may influence cell phenotype and the response to injury. In order to test the functional activity of trkA receptors in the sensory ganglia of adult animals in vivo, we examined the ability of a nerve growth factor-expressing recombinant replication-defective herpes simplex virus-based vector to prevent the selective degeneration of large sensory fibres caused by intoxication with pyridoxine. Transduction of dorsal root ganglion neurons in vivo by subcutaneous inoculation of the nerve growth factor-expressing vector prevented the development of pyridoxine-induced neuropathy measured by electrophysiological, morphological and behavioural measures. These results demonstrate a functional activity of trkA receptors expressed on large neurons in the dorsal root ganglion in mature animals; this observation has important implications for the choice of neurotrophic factors for treatment of peripheral nerve disease.

  7. Role of Adult Attachment in the Intergenerational Transmission of Violence: Mediator, Moderator, or Independent Predictor?

    Science.gov (United States)

    2002-05-02

    1997; Doumas, Margolin, & John , 1994). Adult Attachment 6 Mediation of ITV Effects A second issue that requires study involves the process by...that attachment mediates the ITV effect in the context of predicting adult CPA risk. According to attachment theory ( Bowlby , 1969, 1973, 1980), infants...schemas or “internal working models” of relationships ( Bowlby , 1973; George & Solomon, 1996), with securely attached infants developing positive schemas

  8. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation.

    Science.gov (United States)

    de Pater, Sylvia; Pinas, Johan E; Hooykaas, Paul J J; van der Zaal, Bert J

    2013-05-01

    Previously, we showed that ZFN-mediated induction of double-strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium-mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild-type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T-DNA with an incomplete PPO gene, missing the 5' coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10⁻³ per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10⁻³ per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so-called true GT events, repaired via homologous recombination (HR) at the 5' and the 3' end of the gene. One plant line contained a PPO gene repaired only at the 5' end via HR. Most plant lines contained extra randomly integrated T-DNA copies. Two plant lines did not contain extra T-DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.

  9. Peptide nucleic acid (PNA) binding-mediated gene regulation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.

  10. Condensin-mediated chromosome organization and gene regulation

    Directory of Open Access Journals (Sweden)

    Alyssa Christine Lau

    2015-01-01

    Full Text Available In many organisms sexual fate is determined by a chromosome-based method which entails a difference in sex chromosome-linked gene dosage. Consequently, a gene regulatory mechanism called dosage compensation equalizes X-linked gene expression between the sexes. Dosage compensation initiates as cells transition from pluripotency to differentiation. In C. elegans, dosage compensation is achieved by the dosage compensation complex (DCC binding to both X chromosomes in hermaphrodites to downregulate gene expression by two fold. The DCC contains a subcomplex (condensin IDC similar to the evolutionarily conserved condensin complexes which play a fundamental role in chromosome dynamics during mitosis. Therefore, mechanisms related to mitotic chromosome condensation are hypothesized to mediate dosage compensation. Consistent with this hypothesis, monomethylation of histone H4 lysine 20 (H4K20 is increased, whereas acetylation of histone H4 lysine 16 (H4K16 is decreased, both on mitotic chromosomes and on interphase dosage compensated X chromosomes in worms. These observations suggest that interphase dosage compensated X chromosomes maintain some characteristics associated with condensed mitotic chromosome. This chromosome state is stably propagated from one cell generation to the next. In this review we will speculate on how the biochemical activities of condensin can achieve both mitotic chromosome compaction and gene repression.

  11. The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

    Science.gov (United States)

    Overall, Rupert W; Paszkowski-Rogacz, Maciej; Kempermann, Gerd

    2012-01-01

    Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes) to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already successful 'top-down' approach of the Gene Ontology.

  12. The mammalian adult neurogenesis gene ontology (MANGO provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available BACKGROUND: Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. CONCLUSIONS/SIGNIFICANCE: The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already

  13. Electroporation-mediated gene transfer directly to the swine heart.

    Science.gov (United States)

    Hargrave, B; Downey, H; Strange, R; Murray, L; Cinnamond, C; Lundberg, C; Israel, A; Chen, Y-J; Marshall, W; Heller, R

    2013-02-01

    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using three different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the electrocardiogram were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were killed 48 h after injection and electroporation and gene expression was determined. Results were compared with sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared with injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo.

  14. Differential potencies of effector genes in adult Drosophila.

    Science.gov (United States)

    Thum, Andreas S; Knapek, Stephan; Rister, Jens; Dierichs-Schmitt, Eva; Heisenberg, Martin; Tanimoto, Hiromu

    2006-09-10

    The GAL4/UAS gene expression system in Drosophila has been crucial in revealing the behavioral significance of neural circuits. Transgene products that block neurotransmitter release and induce cell death have been proved to inhibit neural function powerfully. Here we compare the action of the five effector genes shibire(ts1), Tetanus toxin light chain (TNT), reaper, Diphtheria toxin A-chain (DTA), and inwardly rectifying potassium channel (Kir2.1) and show differences in their efficiency depending on the target cells and the timing of induction. Specifically, effectors blocking neuronal transmission or excitability led to adult-induced paralysis more efficiently than those causing cell ablation. We contrasted these differential potencies in adult to their actions during development. Furthermore, we induced TNT expression in the adult mushroom bodies. In contrast to the successful impairment in short-term olfactory memory by shibire(ts1), adult TNT expression in the same set of cells did not lead to any obvious impairment. Altogether, the efficiency of effector genes depends on properties of the targeted neurons. Thus, we conclude that the selection of the appropriate effector gene is critical for evaluating the function of neural circuits.

  15. Adenovirus-mediated gene transfer to tumor cells.

    Science.gov (United States)

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting.

  16. Adaptive and Maladaptive Perfectionism as Mediators of Adult Attachment Styles and Depression, Hopelessness, and Life Satisfaction

    Science.gov (United States)

    Gnilka, Philip B.; Ashby, Jeffrey S.; Noble, Christina M.

    2013-01-01

    This study examined the relationships between adaptive and maladaptive perfectionism, anxious and avoidant adult attachment styles, depression, hopelessness, and life satisfaction among a sample of 180 undergraduate students. Maladaptive perfectionism mediated the relationship between both forms of adult attachment and depression, hopelessness,…

  17. Adaptive and Maladaptive Perfectionism as Mediators of Adult Attachment Styles and Depression, Hopelessness, and Life Satisfaction

    Science.gov (United States)

    Gnilka, Philip B.; Ashby, Jeffrey S.; Noble, Christina M.

    2013-01-01

    This study examined the relationships between adaptive and maladaptive perfectionism, anxious and avoidant adult attachment styles, depression, hopelessness, and life satisfaction among a sample of 180 undergraduate students. Maladaptive perfectionism mediated the relationship between both forms of adult attachment and depression, hopelessness,…

  18. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.

    NARCIS (Netherlands)

    Michielse, C.B.; Arentshorst, M.; Ram, A.F.; Hondel, C.A. van den

    2005-01-01

    In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated tra

  19. Deletion of the homeobox gene PRX-2 affects fetal but not adult fibroblast wound healing responses.

    Science.gov (United States)

    White, Philip; Thomas, David W; Fong, Steven; Stelnicki, Eric; Meijlink, Fritz; Largman, Corey; Stephens, Phil

    2003-01-01

    The phenotype of fibroblasts repopulating experimental wounds in vivo has been shown to influence both wound healing responses and clinical outcome. Recent studies have demonstrated that the human homeobox gene PRX-2 is strongly upregulated in fibroblasts within fetal, but not adult, mesenchymal tissues during healing. Differential homeobox gene expression by fibroblasts may therefore be important in mediating the scarless healing exhibited in early fetal wounds. RNase protection analysis demonstrated that murine Prx-2 expression was involved in fetal but not adult wound healing responses in vitro. Using fibroblasts established from homozygous mutant (Prx-2-/-) and wild-type (Prx-2+/+) murine skin tissues it was demonstrated that Prx-2 affected a number of fetal fibroblastic responses believed to be important in mediating scarless healing in vivo; namely cellular proliferation, extracellular matrix reorganization, and matrix metalloproteinase 2 and hyaluronic acid production. These data demonstrate how Prx-2 may contribute to the regulation of fetal, but not adult, fibroblasts and ultimately the wound healing phenotype. This study provides further evidence for the importance of homeobox transcription factors in the regulation of scarless wound healing. A further understanding of these processes will, it is hoped, enable the targeting of specific therapies in wound healing, both to effect scarless healing and to stimulate healing in chronic, nonhealing wounds such as venous leg ulcers.

  20. INDUCIBLE RNAi-MEDIATED GENE SILENCING USING NANOSTRUCTURED GENE DELIVERY ARRAYS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, David George James [ORNL; McKnight, Timothy E [ORNL; Mcpherson, Jackson [University of Tennessee, Knoxville (UTK); Hoyt, Peter R [ORNL; Melechko, Anatoli Vasilievich [ORNL; Simpson, Michael L [ORNL; Sayler, Gary Steven [ORNL

    2008-01-01

    RNA interference has become a powerful biological tool over the last decade. In this study, a tetracycline-inducible shRNA vector system was designed for silencing CFP expression and introduced alongside the yfp marker gene into Chinese hamster ovary cells using spatially indexed vertically aligned carbon nanofiber arrays (VACNFs) in a gene delivery process termed impalefection. The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time. 24 hours after nanofiber-mediated delivery, 53.1% 10.4% of the cells that expressed the yfp marker gene were also fully silenced by the inducible CFP-silencing shRNA vector. Additionally, efficient CFP-silencing was observed in single cells among a population of cells that remained CFP-expressing. This effective transient expression system enables rapid analysis of gene silencing effects using RNAi in single cells and cell populations.

  1. Gene silencing: Double-stranded RNA mediated mRNA degradation and gene inactivation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the presence of a homologous transgene. More and more investigations have demonstrated that doublestranded RNA can silence genes by triggering degradation of homologous RNA in the cytoplasm and by directing methylation of homologous nuclear DNA sequences. Analyses of Arabidopsis mutants and plant viral suppressors of silencing are unraveling RNA-silencing mechanisms and are assessing the role of methylation in transcriptional and posttranscriptional gene silencing. This review will focus on double-stranded RNA mediated mRNA degradation and gene inactivation in plants.

  2. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Directory of Open Access Journals (Sweden)

    Qiu-Lan Zhou

    2014-01-01

    Full Text Available With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo, including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

  3. Stable oncogenic transformation induced by microcell-mediated gene transfer

    Institute of Scientific and Technical Information of China (English)

    吕有勇; Donald G.Blair

    1995-01-01

    Oncogenes have been identified using DNA-mediated transfection, but the size of the transferable and unrearranged DNA, gene rearrangement and amplification which occur during the transfection process limit the use of the techniques. We have evaluated microcell-mediated gene transfer techniques for the transfer and analysis of dominant oncogenes. MNNG-HOS, a transformed human cell line which contained the met oncogene mapping to human chromosome 7 was infected with retroviruses carrying drug resistance markers and used to optimize microcell preparation and transfer. Stable and drug-resistant hybrids containing single human chromosomes as well as the foci of the transformed cells containing the activated met oncogene and intact hitman chromosomes were obtained. Hybridization analysis with probes (i.e. collA2, pJ3.11) mapping up to 1 Mb away from met shows that the cells from the individual focr contain different amounts of apparently unrearranged human DNA associated with the oncogene, and the microcell-g

  4. Neuroticism mediates the relationship between childhood adversity and adult sleep quality.

    Science.gov (United States)

    Ramsawh, Holly J; Ancoli-Israel, Sonia; Sullivan, Sarah G; Hitchcock, Carla A; Stein, Murray B

    2011-01-01

    This study investigated the relationship of childhood adversity and adult sleep quality in 327 college students (91 males), with a mean age of 18.9 years (SD = 2.1) and also examined whether neuroticism significantly mediated the observed association. Regression findings indicate that the relationship between childhood adversity and adult sleep quality is significant, and that there is a stronger association in men. Furthermore, a bootstrapping approach to testing the significance of the indirect effect (i.e., mediation) indicated that neuroticism mediated this relationship in both men and women. These data suggest that otherwise healthy young adults with a history of childhood adversity are at increased risk for sleep disturbance. Neuroticism may represent a potential target for change in future insomnia interventions, particularly in adults with a history of childhood adversity.

  5. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Science.gov (United States)

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  6. Isolated limb perfusion for local gene delivery: efficient and targeted adenovirus-mediated gene transfer into soft tissue sarcomas

    NARCIS (Netherlands)

    W.K. de Roos; J.H.W. de Wilt (Johannes); M.E. van der Kaaden; E.R. Manusama (Eric); M.W. de Vries; A. Bout; T.L.M. ten Hagen (Timo); D. Valerio (Dinko); A.M.M. Eggermont (Alexander)

    2000-01-01

    textabstractOBJECTIVE: To evaluate the potential of isolated limb perfusion (ILP) for efficient and tumor-specific adenovirus-mediated gene transfer in sarcoma-bearing rats. SUMMARY BACKGROUND DATA: A major concern in adenovirus-mediated gene therapy in cancer is the transfer of ge

  7. Chromatin-mediated regulation of cytomegalovirus gene expression.

    Science.gov (United States)

    Reeves, Matthew B

    2011-05-01

    Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral

  8. Early childhood poverty, immune-mediated disease processes, and adult productivity.

    Science.gov (United States)

    Ziol-Guest, Kathleen M; Duncan, Greg J; Kalil, Ariel; Boyce, W Thomas

    2012-10-16

    This study seeks to understand whether poverty very early in life is associated with early-onset adult conditions related to immune-mediated chronic diseases. It also tests the role that these immune-mediated chronic diseases may play in accounting for the associations between early poverty and adult productivity. Data (n = 1,070) come from the US Panel Study of Income Dynamics and include economic conditions in utero and throughout childhood and adolescence coupled with adult (age 30-41 y) self-reports of health and economic productivity. Results show that low income, particularly in very early childhood (between the prenatal and second year of life), is associated with increases in early-adult hypertension, arthritis, and limitations on activities of daily living. Moreover, these relationships and particularly arthritis partially account for the associations between early childhood poverty and adult productivity as measured by adult work hours and earnings. The results suggest that the associations between early childhood poverty and these adult disease states may be immune-mediated.

  9. Silencing of Two Insulin Receptor Genes Disrupts Nymph-Adult Transition of Alate Brown Citrus Aphid

    Science.gov (United States)

    Ding, Bi-Yue; Shang, Feng; Zhang, Qiang; Xiong, Ying; Yang, Qun; Niu, Jin-Zhi; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insulin receptors play key roles in growth, development, and polymorphism in insects. Here, we report two insulin receptor genes (AcInR1 and AcInR2) from the brown citrus aphid, Aphis (Toxoptera) citricidus. Transcriptional analyses showed that AcInR1 increased during the nymph–adult transition in alate aphids, while AcInR2 had the highest expression level in second instar nymphs. AcInR1 is important in aphid development from fourth instar nymphs to adults as verified by dsRNA feeding mediated RNAi. The silencing of AcInR1 or/and AcInR2 produced a variety of phenotypes including adults with normal wings, malformed wings, under-developed wings, and aphids failing to develop beyond the nymphal stages. Silencing of AcInR1 or AcInR2 alone, and co-silencing of both genes, resulted in 73% or 60%, and 87% of aphids with problems in the transition from nymph to normal adult. The co-silencing of AcInR1 and AcInR2 resulted in 62% dead nymphs, but no mortality occurred by silencing of AcInR1 or AcInR2 alone. Phenotypes of adults in the dsInR1 and dsInR2 were similar. The results demonstrate that AcInR1 and AcInR2 are essential for successful nymph–adult transition in alate aphids and show that RNAi methods may be useful for the management of this pest. PMID:28230772

  10. Microhomology-mediated deletion and gene conversion in African trypanosomes.

    Science.gov (United States)

    Glover, Lucy; Jun, Junho; Horn, David

    2011-03-01

    Antigenic variation in African trypanosomes is induced by DNA double-strand breaks (DSBs). In these protozoan parasites, DSB repair (DSBR) is dominated by homologous recombination (HR) and microhomology-mediated end joining (MMEJ), while non-homologous end joining (NHEJ) has not been reported. To facilitate the analysis of chromosomal end-joining, we established a system whereby inter-allelic repair by HR is lethal due to loss of an essential gene. Analysis of intrachromosomal end joining in individual DSBR survivors exclusively revealed MMEJ-based deletions but no NHEJ. A survey of microhomologies typically revealed sequences of between 5 and 20 bp in length with several mismatches tolerated in longer stretches. Mean deletions were of 54 bp on the side closest to the break and 284 bp in total. Break proximity, microhomology length and GC-content all favored repair and the pattern of MMEJ described above was similar at several different loci across the genome. We also identified interchromosomal gene conversion involving HR and MMEJ at different ends of a duplicated sequence. While MMEJ-based deletions were RAD51-independent, one-sided MMEJ was RAD51 dependent. Thus, we describe the features of MMEJ in Trypanosoma brucei, which is analogous to micro single-strand annealing; and RAD51 dependent, one-sided MMEJ. We discuss the contribution of MMEJ pathways to genome evolution, subtelomere recombination and antigenic variation.

  11. Exploration of the Brn4-regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing.

    Science.gov (United States)

    Guo, Jingjing; Cheng, Xiang; Zhang, Lei; Wang, Linmei; Mao, Yongxin; Tian, Guixiang; Xu, Wenhao; Wu, Yuhao; Ma, Zhi; Qin, Jianbing; Tian, Meiling; Jin, Guohua; Shi, Wei; Zhang, Xinhua

    2017-02-18

    Adult hippocampal neurogenesis is essential for learning and memory, and its dysfunction is involved in neurodegenerative diseases. However, the molecular mechanisms underlying adult hippocampal neurogenesis are still largely unknown. Our previous studies indicated that the transcription factor Brn4 was upregulated and promoted neuronal differentiation of neural stem cells (NSCs) in the surgically denervated hippocampus in rats. In this study, we use high-throughput RNA sequencing to explore the molecular mechanisms underlying the enhancement of adult hippocampal neurogenesis induced by lentivirus-mediated Brn4 overexpression in vivo. After 10 days of the lentivirus injection, we found that the expression levels of genes related to neuronal development and maturation were significantly increased and the expression levels of genes related to NSC maintenance were significantly decreased, indicating enhanced neurogenesis in the hippocampus after Brn4 overexpression. Through RNA sequencing, we found that 658 genes were differentially expressed in the Brn4-overexpressed hippocampi compared with GFP-overexpressed controls. Many of these differentially expressed genes are involved in NSC division and differentiation. By using quantitative real-time PCR, we validated the expression changes of three genes, including Ctbp2, Notch2, and Gli1, all of which are reported to play key roles in neuronal differentiation of NSCs. Importantly, the expression levels of Ctbp2 and Notch2 were also significantly changed in the hippocampus of Brn4 KO mice, which indicates that the expression levels of Ctbp2 and Notch2 may be directly regulated by Brn4. Our current study provides a solid foundation for further investigation and identifies Ctbp2 and Notch2 as possible downstream targets of Brn4. © 2017 Wiley Periodicals, Inc.

  12. Induction of AhR-mediated gene transcription by coffee.

    Science.gov (United States)

    Ishikawa, Toshio; Takahashi, Satoshi; Morita, Koji; Okinaga, Hiroko; Teramoto, Tamio

    2014-01-01

    Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.

  13. Efficient TALEN-mediated gene knockout in livestock.

    Science.gov (United States)

    Carlson, Daniel F; Tan, Wenfang; Lillico, Simon G; Stverakova, Dana; Proudfoot, Chris; Christian, Michelle; Voytas, Daniel F; Long, Charles R; Whitelaw, C Bruce A; Fahrenkrug, Scott C

    2012-10-23

    Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications.

  14. Induction of AhR-mediated gene transcription by coffee.

    Directory of Open Access Journals (Sweden)

    Toshio Ishikawa

    Full Text Available Aryl hydrocarbon receptor (AhR is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs. Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells.HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses.All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum.By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.

  15. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  16. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens.

    Directory of Open Access Journals (Sweden)

    Wenjun Zha

    Full Text Available BACKGROUND: RNA interference (RNAi is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. METHODOLOGY/PRINCIPAL FINDINGS: The Hemipteran insect brown planthopper (Nilaparvata lugens Stål is a typical phloem sap feeder specific to rice (Oryza sativa L.. To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. CONCLUSIONS: Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants.

  17. Delinquency, parental involvement, early adult criminality, and sex: Evidence of moderated mediation.

    Science.gov (United States)

    Walters, Glenn D

    2013-08-01

    One purpose of this study was to determine whether parental involvement, measured in late adolescence, mediates the relationship between delinquency in mid-adolescence and crime in early adulthood. This study's second purpose was to ascertain whether this relationship is moderated by sex, such that late adolescent parental involvement mediates the delinquency-crime relationship in females but not in males. A secondary analysis of data provided by 579 (272 males, 307 females) members of the National Longitudinal Survey of Youth-Child (NLSYC) was conducted in an effort to evaluate the possibility of moderated mediation in the relationship between delinquency at age 16, parental involvement at age 18, and criminality at age 24. Moderated mediation analysis, path analysis, and causal mediation analysis revealed the presence of a conditional indirect relationship between delinquency, parental involvement, and adult crime moderated by sex. These results are consistent with views on cumulative disadvantage and gendered pathways to crime.

  18. Global gene expression patterns in the post-pneumonectomy lung of adult mice

    Directory of Open Access Journals (Sweden)

    Ingenito Edward P

    2009-10-01

    Full Text Available Abstract Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points. Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1, as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.

  19. Recollections of parental behaviour, adult attachment and mental health: mediating and moderating effects.

    Science.gov (United States)

    Gittleman, M G; Klein, M H; Smider, N A; Essex, M J

    1998-11-01

    Attachment theory posits links between early experiences with parents, adult relationships and adult mental health, but does not specify whether these are independent, mediating, or moderating effects. Associations of parent's behaviour on the Parental Bonding Instrument, adult attachment styles and three dimensions of mental health were investigated in a large sample of women and men. Men and women with secure styles recalled higher levels of care from both parents than those with fearful styles. Maternal and paternal control were more consistent predictors of increased distress for men than for women. Fearful and preoccupied adult styles were associated with higher levels of distress in both men and women. While adult styles had few mediating effects on the association of parental behaviour and mental health, interactions between the fearful style and parental variables suggested that this form of insecurity sometimes accentuated the impact of high parental care or low paternal control on mental health in both men and women; among women, however, the secure style seemed to buffer somewhat the negative effect of high parental control. Although the amount of variance explained by either parental behaviour or adult styles was modest, patterns of moderating effects of adult styles on associations between parental behaviour and mental health suggested that both continuity and discontinuity principles can be applied to understanding these links.

  20. Adult Sexual Experiences as a Mediator Between Child Abuse and Current Secretory Immunoglobulin A Levels.

    Science.gov (United States)

    Waldron, Jonathan C; Scarpa, Angela; Kim-Spoon, Jungmeen; Coe, Christopher L

    2016-03-01

    The current study investigated whether a history of child abuse is a predictor of adult immune status, with unwanted adult sexual experiences as a proximal mediator. Participants included 89 young adult women (M(age) = 19.24) who were classified as having experienced no child abuse, child physical abuse, or child sexual abuse, based upon self-reported victimization history before 14 years of age. Participants also reported on unwanted sexual experiences in young adulthood and provided four saliva samples, which were collected over two consecutive days to determine secretory immunoglobulin A (sIgA). Age and negative life events were considered as covariates. The results indicated that adult sexual victimization partially mediated the relationship between child abuse (physical and sexual) and sIgA. Specifically, child abuse experiences predicted more adult sexual victimization experiences, which in turn predicted lower sIgA levels. These findings support long-term health effects of victimization, and suggest that the influence of child abuse on sIgA may be perpetuated through adult victimization. Prevention efforts should aim to empower child maltreatment survivors with skills to prevent adult re-victimization. By thwarting future unwanted sexual experiences in adulthood, individuals will be better protected from the health impairments associated with early abuse experiences. © The Author(s) 2014.

  1. Mismatch-mediated error prone repair at the immunoglobulin genes.

    Science.gov (United States)

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  2. Inferior Prefrontal Cortex Mediates the Relationship between Phosphatidylcholine and Executive Functions in Healthy, Older Adults

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2016-09-01

    Full Text Available Objectives: This study examines the neural mechanisms that mediate the relationship between phosphatidylcholine and executive functions in cognitively intact older adults. We hypothesized that higher plasma levels of phosphatidylcholine are associated with better performance on a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter structure of regions within the prefrontal cortex (PFC that have been implicated in cognitive flexibility. Methods: We examined 72 cognitively intact adults between the ages of 65 and 75 in an observational, cross-sectional study to investigate the relationship between blood biomarkers of phosphatidylcholine, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter structure of regions within the PFC. A three-step mediation analysis was implemented using multivariate linear regressions and we controlled for age, sex, education, income, depression status, and body mass index.Results: The mediation analysis revealed that gray matter thickness of one region within the PFC, the left inferior PFC (Brodmann’s Area 45, mediates the relationship between phosphatidylcholine blood biomarkers and cognitive flexibility. Conclusion: These results suggest that the inferior PFC acts as a mediator of the relationship between phosphatidylcholine and cognitive flexibility in cognitively intact older adults. This report demonstrates a novel structural mediation between plasma phosphatidylcholine levels and cognitive flexibility. Future work should examine the potential mechanisms underlying this mediation, including phosphatidylcholine-dependent cell membrane integrity of the inferior PFC and phosphatidylcholine-dependent cholinergic projections to the inferior PFC.

  3. Computer-mediated communication in adults with high-functioning autism spectrum disorders and controls

    NARCIS (Netherlands)

    van der Aa, Christine; Pollmann, Monique; Plaat, Aske; van der Gaag, Rutger Jan

    2016-01-01

    It has been suggested that people with Autism Spectrum Disorders (ASD) are attracted to computer-mediated communication (CMC). In this study, we compare CMC use in adults with high-functioning ASD (N = 113) and a control group (N = 72). We find that people with ASD spend more time on CMC than contro

  4. Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells.

    NARCIS (Netherlands)

    Colak, D.; Mori, T.; Brill, M.S; Pfeifer, A.; Falk, S.; Deng, C.; Monteiro, R.; Mummery, C.L.; Sommer, L.; Gotz, M.

    2008-01-01

    In the mammalian brain, neurogenesis continues only in few regions of the forebrain. The molecular signals governing neurogenesis in these unique neurogenic niches, however, are still ill defined. Here, we show that bone morphogenic protein (BMP)-mediated signaling is active in adult neural stem cel

  5. Pelvic Floor Muscle Problems Mediate Sexual Problems in Young Adult Rape Victims

    NARCIS (Netherlands)

    Postma, Riemke; Bicanic, Iva; van der Vaart, Huub; Laan, Ellen

    2013-01-01

    Introduction. Prior studies have addressed sexual abuse and sexual function in adult women. No studies have focused on the effect of adolescence rape on sexual functioning. Aim. To investigate the effect of rape on sexual problems and on pelvic floor problems, as well as the mediating role of pelvic

  6. Behavioral Mediators of Weight Loss in Two Group-Based Behavioral Interventions in Older Adults

    Science.gov (United States)

    Baruth, Meghan; Schlaff, Rebecca A.

    2017-01-01

    Background: Understanding the mechanisms by which behavioral interventions exert their effects is important. Purpose: To examine behavioral mediators of weight loss in a sample of older adults participating in an evidence-based physical activity (PA) or nutrition intervention. Methods: Participants (n = 46) were randomized to a 12-week,…

  7. Health Worry, Physical Activity Participation, and Walking Difficulty among Older Adults: A Mediation Analysis

    Science.gov (United States)

    Li, Kin-Kit; Cardinal, Bradley J.; Vuchinich, Samuel

    2009-01-01

    This study examined the effect of health worry (i.e., cognitive aspect of anxiety resulting from concern for health) on walking difficulty in a nationally representative sample (N = 7,527) of older adults (M age = 76.83 years). The study further tested whether physical activity mediates the effect of health worry on walking difficulty in a 6-year…

  8. Self/other Perception Mediates Between Personality and Suicidal Ideation in Young Adults

    Directory of Open Access Journals (Sweden)

    Emanuele Fino

    Full Text Available Background and Objectives: Individual differences in vulnerability to suicidal ideation have been recently addressed to internal working models of attachment. However, to date, research has mainly focused on adolescents. Few studies have investigated the role of adult attachment and personality dimensions in suicidal ideation, either examined from a mediational perspective. In this study, we aimed at testing a theoretical model in which Self/other perception mediates between personality and suicidal ideation in young adults. Methods: Dimensions of Attachment (self/other perception, Personality (the Big Five factor model, and Suicidal Ideation (hopelessness and depression were assessed in a community sample of 319 young adults from Northern Italy. Structural Equation Modeling and mediation analysis were conducted. Controlling for demographic variables (i.e., gender, age, education, and job, we tested three structural models. Results: The final model confirmed our hypothesis that self/other perception mediates between personality (high neuroticism and low extraversion and suicidal ideation, providing excellent fit to data. Conclusions: In line with the conceptual framework of the Attachment Theory, findings suggest that failure to resolve attachment-related distress is related to the emergence of negative self/other models in adults. Such internal models are likely to attenuate the association between neuroticism and extraversion with depressive symptoms, hopelessness and suicidal ideation.

  9. Marital Status and Problem Gambling Among Australian Older Adults: The Mediating Role of Loneliness.

    Science.gov (United States)

    Botterill, Emma; Gill, Peter Richard; McLaren, Suzanne; Gomez, Rapson

    2016-09-01

    Problem gambling rates in older adults have risen dramatically in recent years and require further investigation. Limited available research has suggested that social needs may motivate gambling and hence problem gambling in older adults. Un-partnered older adults may be at greater risk of problem gambling than those with a partner. The current study explored whether loneliness mediated the marital status-problem gambling relationship, and whether gender moderated the mediation model. It was hypothesised that the relationship between being un-partnered and higher levels of loneliness would be stronger for older men than older women. A community sample of Australian men (n = 92) and women (n = 91) gamblers aged from 60 to 90 years (M = 69.75, SD = 7.28) completed the UCLA Loneliness Scale and the Problem Gambling Severity Index. The results supported the moderated mediation model, with loneliness mediating the relationship between marital status and problem gambling for older men but not for older women. It appears that felt loneliness is an important predictor of problem gambling in older adults, and that meeting the social and emotional needs of un-partnered men is important.

  10. Regulation of gene expression mediating indeterminate muscle growth in teleosts.

    Science.gov (United States)

    Ahammad, A K Shakur; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo; Kinoshita, Shigeharu

    2015-08-01

    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth.

  11. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua.

    Science.gov (United States)

    Li, Hang; Jiang, Weihua; Zhang, Zan; Xing, Yanru; Li, Fei

    2013-01-01

    The beet armyworm, Spodoptera exigua (Hübner), is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1(st) to 5(th) instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl) into the 4(th) instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20-94.3%) after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (Ppest control.

  12. Retinoic acid-mediated gene expression in transgenic reporter zebrafish.

    Science.gov (United States)

    Perz-Edwards, A; Hardison, N L; Linney, E

    2001-01-01

    Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.

  13. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    Directory of Open Access Journals (Sweden)

    Roopa Thapar

    2015-05-01

    Full Text Available The peptidyl-prolyl cis-trans isomerases (PPIases that include immunophilins (cyclophilins and FKBPs and parvulins (Pin1, Par14, Par17 participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.

  14. PexRAP Inhibits PRDM16-Mediated Thermogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Irfan J. Lodhi

    2017-09-01

    Full Text Available How the nuclear receptor PPARγ regulates the development of two functionally distinct types of adipose tissue, brown and white fat, as well as the browning of white fat, remains unclear. Our previous studies suggest that PexRAP, a peroxisomal lipid synthetic enzyme, regulates PPARγ signaling and white adipogenesis. Here, we show that PexRAP is an inhibitor of brown adipocyte gene expression. PexRAP inactivation promoted adipocyte browning, increased energy expenditure, and decreased adiposity. Identification of PexRAP-interacting proteins suggests that PexRAP function extends beyond its role as a lipid synthetic enzyme. Notably, PexRAP interacts with importin-β1, a nuclear import factor, and knockdown of PexRAP in adipocytes reduced the levels of nuclear phospholipids. PexRAP also interacts with PPARγ, as well as PRDM16, a critical transcriptional regulator of thermogenesis, and disrupts the PRDM16-PPARγ complex, providing a potential mechanism for PexRAP-mediated inhibition of adipocyte browning. These results identify PexRAP as an important regulator of adipose tissue remodeling.

  15. VEGF Gene Expression in Adult Human Thymus Fat: A Correlative Study with Hypoxic Induced Factor and Cyclooxigenase-2

    Science.gov (United States)

    Tinahones, Francisco; Salas, Julian; Mayas, María Dolores; Ruiz-Villalba, Adrian; Macias-Gonzalez, Manuel; Garrido-Sanchez, Lourdes; DeMora, Manuel; Moreno-Santos, Inmaculada; Bernal, Rosa; Cardona, Fernando; Bekay, Rajaa El

    2009-01-01

    It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT) produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties. Design Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation. Results We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1α, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARγ1/γ2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus. Conclusion Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new fat has acquired in research in relation to

  16. VEGF gene expression in adult human thymus fat: a correlative study with hypoxic induced factor and cyclooxygenase-2.

    Directory of Open Access Journals (Sweden)

    Francisco Tinahones

    Full Text Available UNLABELLED: It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties. DESIGN: Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation. RESULTS: We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1alpha, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARgamma1/gamma2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus. CONCLUSION: Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new

  17. Octopamine mediates starvation-induced hyperactivity in adult Drosophila

    Science.gov (United States)

    Yang, Zhe; Yu, Yue; Zhang, Vivian; Tian, Yinjun; Qi, Wei; Wang, Liming

    2015-01-01

    Starved animals often exhibit elevated locomotion, which has been speculated to partly resemble foraging behavior and facilitate food acquisition and energy intake. Despite its importance, the neural mechanism underlying this behavior remains unknown in any species. In this study we confirmed and extended previous findings that starvation induced locomotor activity in adult fruit flies Drosophila melanogaster. We also showed that starvation-induced hyperactivity was directed toward the localization and acquisition of food sources, because it could be suppressed upon the detection of food cues via both central nutrient-sensing and peripheral sweet-sensing mechanisms, via induction of food ingestion. We further found that octopamine, the insect counterpart of vertebrate norepinephrine, as well as the neurons expressing octopamine, were both necessary and sufficient for starvation-induced hyperactivity. Octopamine was not required for starvation-induced changes in feeding behaviors, suggesting independent regulations of energy intake behaviors upon starvation. Taken together, our results establish a quantitative behavioral paradigm to investigate the regulation of energy homeostasis by the CNS and identify a conserved neural substrate that links organismal metabolic state to a specific behavioral output. PMID:25848004

  18. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes

    Science.gov (United States)

    Wang, Guan H.; Sun, Bao F.; Xiong, Tuan L.; Wang, Yan K.; Murfin, Kristen E.; Xiao, Jin H.; Huang, Da W.

    2016-01-01

    Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria. PMID:27965627

  19. Intergenerational Solidarity and Satisfaction With Life: Mediation Effects With Emerging Adults

    Directory of Open Access Journals (Sweden)

    Susana Coimbra

    2013-05-01

    Full Text Available The increasing dependency of emerging adults (EA on their family of origin and their lower future expectations challenge intergenerational family support exchanges and may affect their impact on satisfaction with life. This study aims to examine the mediation effect of familism, filial maturity, and relationship satisfaction between different directions of support (received, given and anticipated between both and satisfaction with life. Data was collected through the administration of self-report questionnaires to a convenience sample of 243 EA (18-30 years old of both genders, students and workers, of different socioeconomic statuses. Results corroborate the mediation effect of the study variables and suggest that the magnitude of this impact depends on the direction of the support: partial mediations are observed for the received support, whereas total mediations are observed for the given support.

  20. The ironic effect of guessing: increased false memory for mediated lists in younger and older adults.

    Science.gov (United States)

    Coane, Jennifer H; Huff, Mark J; Hutchison, Keith A

    2016-01-01

    Younger and older adults studied lists of words directly (e.g., creek, water) or indirectly (e.g., beaver, faucet) related to a nonpresented critical lure (CL; e.g., river). Indirect (i.e., mediated) lists presented items that were only related to CLs through nonpresented mediators (i.e., directly related items). Following study, participants completed a condition-specific task, math, a recall test with or without a warning about the CL, or tried to guess the CL. On a final recognition test, warnings (vs. math and recall without warning) decreased false recognition for direct lists, and guessing increased mediated false recognition (an ironic effect of guessing) in both age groups. The observed age-invariance of the ironic effect of guessing suggests that processes involved in mediated false memory are preserved in aging and confirms the effect is largely due to activation in semantic networks during encoding and to the strengthening of these networks during the interpolated tasks.

  1. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli.

    Science.gov (United States)

    Ruiz, Cristian; Levy, Stuart B

    2010-05-01

    Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.

  2. Adult attachment insecurity and dyadic adjustment: The mediating role of self-criticism.

    Science.gov (United States)

    Martins, Teresa C; Canavarro, Maria Cristina; Moreira, Helena

    2015-12-01

    Although it is well established that adult attachment is associated with relationship quality, the mechanisms involved in this association are still poorly understood. Individual variables that are shaped in early attachment experiences, such as self-criticism, may be particularly important. The present study aimed to investigate the mediating role of self-criticism and self-reassurance on the association between attachment-related anxiety and avoidance and dyadic adjustment. About 230 individuals from a community sample completed an online battery of self-report measures of adult attachment, dyadic adjustment, and forms of self-criticism and self-reassuring. A parallel mediation model was tested. Data showed that attachment anxiety and avoidance were associated with poorer dyadic adjustment through high levels of self-criticism in the form of an inadequate self. Our findings highlight the importance of targeting feelings of self-inadequacy in couple therapy to promote better dyadic adjustment and relationship functioning. The innovative contribution of this work is the identification of a new mechanism underlying the association between adult attachment and dyadic functioning. Self-criticism in the form of an inadequate self mediates the association between attachment and dyadic adjustment. Although correlated with attachment dimensions and dyadic adjustment, the hated self and the reassured self do not act as mediators of the relationship between attachment and dyadic adjustment. It seems important to evaluate and address feelings of inadequacy in the context of couple therapy. © 2015 The British Psychological Society.

  3. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaportheoryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M.oryzae-derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M.oryzae was examined by targeting three predicted pathogenicity genes, MoABC1,MoMAC1 and MoPMK1. Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M.oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  4. Differentially expressed genes between female and male adult Anopheles anthropophagus.

    Science.gov (United States)

    Geng, Yi-Jie; Gao, Shi-Tong; Huang, Da-Na; Zhao, Yi-Rui; Liu, Jian-ping; Li, Xiao-Heng; Zhang, Ren-Li

    2009-09-01

    The aim of the present study was to identify sex-specific genes in adult Anopheles anthropophagus. As the major malaria vector and Brugia malayi vector in the Asian continent, female Anopheles mosquitoes take blood meals and transmit pathogens through this pathway, while males are nectar feeders. This complex behavior is controlled at several levels, but is probably initiated by the genetic background difference between these two groups. In our study, a subtractive cDNA library for female A. anthropophagus was constructed using the suppression subtractive hybridization (SSH) technique and then 3,074 clones from the female SSH library were analyzed using a microarray-based survey. Genes that were expressed differentially according to sex in A. anthropophagus were screened using real-time polymerase chain reaction and reverse transcription polymerase chain reaction. In our results, we report a series of genes which may be involved in female-specific mosquito behavior, including an inorganic phosphate transporter, a serine protease, the salivary protein GP35-2, and the D7 cluster salivary protein. These findings will provide clues to the nature of insect vectors and open up unprecedented opportunities to develop novel strategies for the control of mosquito-borne diseases.

  5. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.

    Science.gov (United States)

    Michielse, C B; Arentshorst, M; Ram, A F J; van den Hondel, C A M J J

    2005-01-01

    In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated transformation were 3- to 6-fold higher than the frequencies obtained with CaCl(2)/PEG protoplast transformation. For the pyrG gene, it was found that Agrobacterium-mediated transformation allowed an efficient homologous recombination with shorter DNA flanks than CaCl(2)/PEG protoplast transformation. Finally, the addition of the dominant amdS marker as a second selection marker to the gene replacement cassette led to a further 2-fold enrichment in transformants with gene replacement events, resulting in a gene replacement frequency of 55%. Based on the data it can be concluded that Agrobacterium-mediated transformation is an efficient tool for gene replacement and that the amdS gene can be successfully used as a second selection marker to select transformants with putative gene replacement.

  6. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse.

    Science.gov (United States)

    Gocel, James; Larson, John

    2012-09-27

    Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1 knockout (KO) mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and wild-type (WT) mice, using the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from 3-18months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6-18months of age, but does not explain normal LTP at these synapses in mice 3-6months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24-28months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.

  7. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    Science.gov (United States)

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  8. In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

    Science.gov (United States)

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  9. Mediation of autophagic cell death by type 3 ryanodine receptor (RyR3 in adult hippocampal neural stem cells

    Directory of Open Access Journals (Sweden)

    Kyung Min eChung

    2016-05-01

    Full Text Available Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs and IP3 receptors (IP3Rs, the main Ca2+ release channels located in endoplasmic reticulum (ER membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN cells utilizing an insulin withdrawal model of autophagic cell death. Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs — especially RyR3 — were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished autophagic cell death of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology.

  10. Parahippocampal Cortex Mediates the Relationship between Lutein and Crystallized Intelligence in Healthy, Older Adults

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2016-12-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between dietary nutrients and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between a carotenoid important for brain health across the lifespan, lutein, and crystallized intelligence in cognitively intact older adults. We hypothesized that higher serum levels of lutein are associated with better performance on a task of crystallized intelligence, and that this relationship is mediated by gray matter structure of regions within the temporal cortex. This investigation aims to contribute to a growing line of evidence, which suggests that particular nutrients may slow or prevent aspects of cognitive decline by targeting specific features of brain aging.Methods: We examined 75 cognitively intact adults between the ages of 65 and 75 to investigate the relationship between serum lutein, tests of crystallized intelligence (measured by the Wechsler Abbreviated Scale of Intelligence, and gray matter volume of regions within the temporal cortex. A three-step mediation analysis was implemented using multivariate linear regressions to control for age, sex, education, income, depression status, and body mass index.Results: The mediation analysis revealed that gray matter thickness of one region within the temporal cortex, the right parahippocampal cortex (Brodmann’s Area 34, partially mediates the relationship between serum lutein and crystallized intelligence. Conclusion: These results suggest that the parahippocampal cortex acts as a mediator of the relationship between serum lutein and crystallized intelligence in cognitively intact older adults. Prior findings substantiate the individual relationships reported within the mediation, specifically the links between (i serum lutein and temporal cortex structure, (ii serum lutein and crystallized intelligence, and (iii parahippocampal cortex structure

  11. Nestin-positive/SOX2-negative cells mediate adult neurogenesis of nigral dopaminergic neurons in mice.

    Science.gov (United States)

    Albright, Joshua E; Stojkovska, Iva; Rahman, Abir A; Brown, Connor J; Morrison, Brad E

    2016-02-26

    The primary clinical motor symptoms of Parkinson's disease (PD) result from loss of dopaminergic (DA) neurons in the substantia nigra (SN). Consequently, neurogenesis of this group of neurons in the adult brain has drawn considerable interest for the purpose of harnessing endogenous neurogenerative potential as well as devising better strategies for stem cell therapy for PD. However, the existence of adult neurogenesis for DA neurons within the SN remains controversial. To overcome technical and design limitations associated with previous studies, our group has developed a novel genetic mouse model for assessing adult nigral DA neurogenesis. This system utilizes transgenic mice that express a tamoxifen-activatable Cre recombinase (Cre(ERT2)) under the control of the neuronal progenitor cell promoters nestin or Sox2 leading to suppression of the DA neuron marker tyrosine hydroxylase (TH) via excision of exon 1 by flanking loxP sites in adult animals. This study reports that six months following initiation of a six week treatment with tamoxifen mice with nestin-mediated Th excision displayed a significant reduction in TH+ neurons in the SN. This finding indicates that nestin-expressing cells regenerate DA neurons within the SN of adult animals. Interestingly, no reduction was observed in TH+ cells following Sox2-mediated Th excision suggesting that a nestin+/SOX2- precursor cell population drives DA neurogenesis in the adult SN. This information represents a substantial leap in current knowledge of adult DA neurogenesis, will enable improved in vitro and in vivo modeling, as well as facilitate the harnessing of this process for therapeutic intervention for PD. Published by Elsevier Ireland Ltd.

  12. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming

    DEFF Research Database (Denmark)

    Swales, Nathalie; Martens, Geert A; Bonné, Stefan

    2012-01-01

    Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it....

  13. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0314 TITLE: Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis ...19 Sep 2015 4. TITLE AND SUBTITLE Glucocorticoid Receptor-Mediated Repression of Pro- Inflammatory Genes in Rheumatoid Arthritis 5a. CONTRACT NUMBER... arthritis (RA) patients rely on glucocorticoids (GCs) at some point during the disease. GCs signal through the GC receptor (GR), a transcription factor that

  14. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer.

    Science.gov (United States)

    Rivella, Stefano; May, Chad; Chadburn, Amy; Rivière, Isabelle; Sadelain, Michel

    2003-04-15

    Patients affected by beta-thalassemia major require lifelong transfusions because of insufficient or absent production of the beta chain of hemoglobin (Hb). A minority of patients are cured by allogeneic bone marrow transplantation. In the most severe of the hitherto available mouse models of beta-thalassemia, a model for human beta-thalassemia intermedia, we previously demonstrated that globin gene transfer in bone marrow cells is curative, stably raising Hb levels from 8.0-8.5 to 11.0-12.0 g/dL in long-term chimeras. To fully assess the therapeutic potential of gene therapy in the context of a lethal anemia, we now have created an adult model of beta(0)-thalassemia major. In this novel model, mice engrafted with beta-globin-null (Hbb(th3/th3)) fetal liver cells succumb to ineffective erythropoiesis within 60 days. These mice rapidly develop severe anemia (2-4 g/dL), massive splenomegaly, extramedullary hematopoiesis (EMH), and hepatic iron overload. Remarkably, most mice (11 of 13) treated by lentivirus-mediated globin gene transfer were rescued. Long-term chimeras with an average 1.0-2.4 copies of the TNS9 vector in their hematopoietic and blood cells stably produced up to 12 g/dL chimeric Hb consisting of mu alpha(2):hu beta(2) tetramers. Pathologic analyses indicated that erythroid maturation was restored, while EMH and iron overload dramatically decreased. Thus, we have established an adult animal model for the most severe of the hemoglobinopathies, Cooley anemia, which should prove useful to investigate both genetic and pharmacologic treatments. Our findings demonstrate the remarkable efficacy of lentivirus-mediated globin gene transfer in treating a fulminant blood disorder and strongly support the efficacy of gene therapy in the severe hemoglobinopathies.

  15. Overexpression of two α-esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Wang, L-L; Huang, Y; Lu, X-P; Jiang, X-Z; Smagghe, G; Feng, Z-J; Yuan, G-R; Wei, D; Wang, J-J

    2015-08-01

    Esterase has been reported to be involved in malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel). However, the underlying molecular mechanism of the esterase-mediated resistance remains largely unknown in this species. Here, with the use of a strain selected for malathion resistance in the laboratory (MR), we found that two overexpressed α-esterase genes, namely BdCarE4 and BdCarE6, predominant in the adult midgut and fat body, function in conferring malathion resistance in B. dorsalis. Notably, these two genes were found to be mostly close to the esterase E3, which are usually implicated in detoxifying organophosphate insecticides. The transcript levels of BdCarE4 and BdCarE6 were investigated and compared between the MR and a susceptible (MS) strain of B. dorsalis. Both genes were significantly up-regulated in the MR strain, which was consistent with the enhanced esterase activity in the MR strain. However, no changes in either the coding sequence or gene copy number were observed between the two strains. Subsequently, heterologous expression combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE4 and BdCarE6 can probably detoxify malathion. Furthermore, RNA interference-mediated knockdown of each of these two genes significantly increased malathion susceptibility in the MR strain adults. In conclusion, these results expand our molecular understanding of the important role of α-esterases during the development of resistance to organophosphorous insecticides in B. dorsalis. © 2015 The Royal Entomological Society.

  16. Gene expression during development of fetal and adult Leydig cells.

    Science.gov (United States)

    Dong, Lei; Jelinsky, Scott A; Finger, Joshua N; Johnston, Daniel S; Kopf, Gregory S; Sottas, Chantal M; Hardy, Matthew P; Ge, Ren-Shan

    2007-12-01

    In rats and mice, Leydig cells are formed as two morphologically and functionally different generations. The first generation develops in utero, from undifferentiated stem Leydig cells (SLCs) that differentiate into fetal Leydig cells (FLCs). After birth, SLCs that may differ from the fetal SLCs undergo lineage-specific commitment and give rise to adult Leydig cells (ALCs). The intermediates of ALCs first become apparent by day 11 postpartum. These first-appearing intermediates, progenitor Leydig cells (PLCs), are spindle shaped and identifiable as steroidogenic because they express luteinizing hormone receptor (LHR) and 3beta-hydroxysteroid dehydrogenase (3betaHSD). The next step in the transition of PLCs to ALCs is the appearance of the immature Leydig cells (ILCs), most commonly seen in the testis during days 28 to 56 postpartum. ILCs have a more abundant smooth endoplasm reticulum (SER), the network of membranes providing a scaffold for steroidogenic enzyme localization, compared to PLCs, but are considered immature because they secrete higher levels of 5alpha-reduced androgen than testosterone. ILCs undergo a final division before ALC steroidogenic function matures by postnatal day 56. ALCs mark the point of maximum differentiation, and at this stage, the Leydig cell secretes testosterone at the highest rate. In this review, trends of gene expression during development of the two Leydig-cell generations, and recent information from gene profiling by microarray, are evaluated. The expression profiles are distinct, indicating that FLCs and ALCs may originate from separate pools of stem cells.

  17. [The effectiveness of empirical antibiotic therapy of pyelonephritis in patients with type 2 diabetes and without depending on the availability of plasmid-mediated resistance genes].

    Science.gov (United States)

    Chub, O I; Bilchenko, A V

    2015-02-01

    Multi-drug resistance has been increasing in the treatment of urinary tract infections, especially complicated. The prevalence of plasmid-mediated resistance genes among urinary pathogens has nether been studied in Ukraine. So, the aim of our study was to identify the plasmid-mediated resistance genes and to determine their impact on the efficacy of the treatment. A total of 105 adult patients with chronic pyelonephritis were included in the study. Among them, 32 patients were diagnosed with type 2 diabetes mellitus. The diagnosis of pyelonephritis was verified according to the criteria EAU, 2013. Plasmid-mediated resistance genes were determined by polymerase chain reaction (PCR). The prevalence of plasmid-mediated resistance mechanisms among patients with pyelonephritis were 44,4%. ESBLs was the most common isolated genes. Favorable clinical response was seen in 11/31 (35,5%) infected with ESBL-producing organisms compared with 59/74 (79,7%) patients with non-ESBL-producing organisms (ppyelonephritis due to presence of plasmid-mediated resistance genes. Therefore, prоpеr mаnagеment fоr prescriptiоn of аntibiоtics and also idеntificаtiоn of ESBL-prоducing bаcteria in cоmmunitiеs arе impоrtant fоr prevеntion.

  18. Low functional programming of renal AT{sub 2}R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Ying [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071 (China); Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Li, Bin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Yang, Shuailong; Xia, Liping; Wu, Yong [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); He, Zheng [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071 (China)

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT{sub 2}R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT{sub 1a}R)/AT{sub 2}R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT{sub 2}R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT{sub 2}R might mediate the developmental origin of adult glomerulosclerosis. - Highlights: • Prenatal caffeine exposure induces glomerulosclerosis in adult offspring. • Prenatal caffeine

  19. Perceived Parenting Mediates Serotonin Transporter Gene (5-HTTLPR) and Neural System Function during Facial Recognition: A Pilot Study.

    Science.gov (United States)

    Nishikawa, Saori; Toshima, Tamotsu; Kobayashi, Masao

    2015-01-01

    This study examined changes in prefrontal oxy-Hb levels measured by NIRS (Near-Infrared Spectroscopy) during a facial-emotion recognition task in healthy adults, testing a mediational/moderational model of these variables. Fifty-three healthy adults (male = 35, female = 18) aged between 22 to 37 years old (mean age = 24.05 years old) provided saliva samples, completed a EMBU questionnaire (Swedish acronym for Egna Minnen Beträffande Uppfostran [My memories of upbringing]), and participated in a facial-emotion recognition task during NIRS recording. There was a main effect of maternal rejection on RoxH (right frontal activation during an ambiguous task), and a gene × environment (G × E) interaction on RoxH, suggesting that individuals who carry the SL or LL genotype and who endorse greater perceived maternal rejection show less right frontal activation than SL/LL carriers with lower perceived maternal rejection. Finally, perceived parenting style played a mediating role in right frontal activation via the 5-HTTLPR genotype. Early-perceived parenting might influence neural activity in an uncertain situation i.e. rating ambiguous faces among individuals with certain genotypes. This preliminary study makes a small contribution to the mapping of an influence of gene and behaviour on the neural system. More such attempts should be made in order to clarify the links.

  20. Perceived Parenting Mediates Serotonin Transporter Gene (5-HTTLPR and Neural System Function during Facial Recognition: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Saori Nishikawa

    Full Text Available This study examined changes in prefrontal oxy-Hb levels measured by NIRS (Near-Infrared Spectroscopy during a facial-emotion recognition task in healthy adults, testing a mediational/moderational model of these variables. Fifty-three healthy adults (male = 35, female = 18 aged between 22 to 37 years old (mean age = 24.05 years old provided saliva samples, completed a EMBU questionnaire (Swedish acronym for Egna Minnen Beträffande Uppfostran [My memories of upbringing], and participated in a facial-emotion recognition task during NIRS recording. There was a main effect of maternal rejection on RoxH (right frontal activation during an ambiguous task, and a gene × environment (G × E interaction on RoxH, suggesting that individuals who carry the SL or LL genotype and who endorse greater perceived maternal rejection show less right frontal activation than SL/LL carriers with lower perceived maternal rejection. Finally, perceived parenting style played a mediating role in right frontal activation via the 5-HTTLPR genotype. Early-perceived parenting might influence neural activity in an uncertain situation i.e. rating ambiguous faces among individuals with certain genotypes. This preliminary study makes a small contribution to the mapping of an influence of gene and behaviour on the neural system. More such attempts should be made in order to clarify the links.

  1. Nanoparticle-mediated p53 gene therapy for tumor inhibition

    OpenAIRE

    Sharma, Blanka; Ma, Wenxue; Adjei, Isaac Morris; Panyam, Jayanth; Dimitrijevic, Sanja; Labhasetwar, Vinod

    2011-01-01

    The p53 tumor suppressor gene is mutated in 50% of human cancers, resulting in more aggressive disease with greater resistance to chemotherapy and radiation therapy. Advances in gene therapy technologies offer a promising approach to restoring p53 function. We have developed polymeric nanoparticles (NPs), based on poly (lactic-co-glycolic acid), that provide sustained intracellular delivery of plasmid DNA, resulting in sustained gene expression without vector-associated toxicity. Our previous...

  2. DNA-mediated gene transfer in plant protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    U, Zang Kual; Riu, Key Zung; So, In Sup; Hong, Kyung Ae [Cheju National University, Cheju (Korea, Republic of)

    1994-12-31

    The neomycin phosphotransferase II gene(NPT-II) was introduced into geranium (Pelargonium zonale hybrids) protoplasts by using PEG or electroporation method. The presence of the introduced DNA in the protoplasts and the expressions of the gene in the transformed cells were examined. The presence of the NPT-II DNA in the protoplasts were detected by polymerase chain reaction. The expressions of NPT-II gene in the transformed cells were confirmed by the NPT-II assay. (author)

  3. Is older adult care mediated by caregivers’ cultural stereotypes? The role of competence and warmth attribution

    Science.gov (United States)

    Fernández-Ballesteros, Rocío; Bustillos, Antonio; Santacreu, Marta; Schettini, Rocio; Díaz-Veiga, Pura; Huici, Carmen

    2016-01-01

    Purpose The purpose of this study is to examine, from the stereotype content model (SCM) perspective, the role of the competence and warmth stereotypes of older adults held by professional caregivers. Methods A quasi-experimental design, ex post facto with observational analyses, was used in this study. The cultural view on competence and warmth was assessed in 100 caregivers working in a set of six residential geriatric care units (three of them organized following a person-centered care approach and the other three providing standard geriatric care). In order to assess caregivers’ cultural stereotypical views, the SCM questionnaire was administered. To evaluate the role of caregivers’ cultural stereotypes in their professional performance as well as in older adult functioning, two observational scales from the Sistema de Evaluación de Residencias de Ancianos (assessment system for older adults residences)-RS (staff functioning and residents’ functioning) were applied. Results Caregivers’ cultural views of older adults (compared to young people) are characterized by low competence and high warmth, replicating the data obtained elsewhere from the SCM. Most importantly, the person-centered units predict better staff performance and better resident functioning than standard units. Moreover, cultural stereotyping of older adult competence moderates the effects of staff performance on resident functioning, in line with the findings of previous research. Conclusion Our results underline the influence of caregivers’ cultural stereotypes on the type of care, as well as on their professional behaviors and on older adult functioning. Caregivers’ cultural stereotypes could be considered as a central issue in older adult care since they mediate the triangle of care: caregivers/older adults/type of care; therefore, much more attention should be paid to this psychosocial care component. PMID:27217736

  4. The human desmin promoter drives robust gene expression for skeletal muscle stem cell-mediated gene therapy.

    Science.gov (United States)

    Jonuschies, Jacqueline; Antoniou, Michael; Waddington, Simon; Boldrin, Luisa; Muntoni, Francesco; Thrasher, Adrian; Morgan, Jennifer

    2014-01-01

    Lentiviral vectors (LVs) represent suitable candidates to mediate gene therapy for muscular dystrophies as they infect dividing and non-dividing cells and integrate their genetic material into the host genome, thereby theoretically mediating longterm expression. We evaluated the ability of LVs where a GFP reporter gene was under the control of five different promoters, to transduce and mediate expression in myogenic and non-myogenic cells in vitro and in skeletal muscle fibres and stem (satellite) cells in vivo. We further analysed lentivirally-transduced satellite cell-derived myoblasts following their transplantation into dystrophic, immunodeficient mouse muscles. The spleen focus-forming virus promoter mediated the highest gene expression in all cell types; the CBX3-HNRPA2B1 ubiquitously-acting chromatin opening element (UCOE) promoter was also active in all cells, whereas the human desmin promoter in isolation or fused with UCOE had lower activity in non-muscle cells. Surprisingly, the human skeletal muscle actin promoter was also active in immune cells. The human desmin promoter mediated robust, persistent reporter gene expression in myogenic cells in vitro, and satellite cells and muscle fibres in vivo. The human desmin promoter combined with UCOE did not significantly increase transgene expression. Therefore, our data indicate that the desmin promoter is suitable for the development of therapeutic purposes.

  5. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    Science.gov (United States)

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

  6. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo, E-mail: innks@khu.ac.kr

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  7. Vector-mediated cancer gene therapy: an overview.

    Science.gov (United States)

    Seth, Prem

    2005-05-01

    In recent years there has been a dramatic increase in developing gene therapy approaches for the treatment of cancer. The two events that have permitted the formulation of concept of cancer gene therapy are the new understanding of the molecular mechanisms underlying oncogenesis, and the development of the DNA-delivery vehicles or vectors. Many approaches to cancer gene therapy have been proposed, and several viral and non-viral vectors have been utilized. The purpose of this review article is to describe the various strategies of cancer gene therapy (transfer of tumor suppressor genes, suicide genes-enzyme/pro-drug approach, inhibition of dominant oncogenes, immunomodulation approaches, expression of molecules that affect angiogenesis, tumor invasion and metastasis, chemosensitization and radiosensitization approaches, and chemoprotection of stem cells). The chapter also reviews the commonly used vectors (retroviral vectors, adenoviral vectors, adeno-associated viral vectors, pox viruses, herpes simplex viruses, HIV- vectors, non-viral vectors and targetable vectors) for cancer gene therapy. Some of the important issues in cancer gene therapy, and the potential future directions are also being discussed.

  8. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Montanez, Cecilia [Department of Genetics and Molecular Biology, Centre for Research and Advanced Studies (CINVESTAV), IPN, Mexico City 07360 (Mexico); Wong, Carlos [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Baeza, Isabel, E-mail: ibaeza@encb.ipn.mx [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico)

    2010-05-28

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  9. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    Science.gov (United States)

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  10. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Science.gov (United States)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  11. Magnetic Iron Oxide Nanoparticles Mediated Gene Therapy for Cancer An In Vitro Study

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aim of this study was to evaluate the feasibility and efficacy of using TRAIL gene to treat breast cancer mediated with a novel carrier - magnetic iron oxide nanoparticles (polyMAG-1000) coated with PEI. The magnetic iron oxide nanoparticles were used as gene carrier to transfect TRAIL gene into MCF-7 cells. The polyMAG-1000 without TRAIL gene was transfected into the tumor cells as negative control. TRAIL gene transfection with liposome as carrier served as positive control. The apoptosis of cells was detected with TUNEL method. The apoptosis ratio of tumor cells was measured with flow cytometry (FCM). It was found that the apoptosis occurred in the tumor cells after transfection of TRAIL gene mediated by both polyMAG-1000 and liposome. The apoptosis ratio in the group with polyMAG-1000 as gene carrier was (25.11±2.85) %, whereas it was (5.06±1.05) % in the control group with polyMAG-1000 (P<0.01). The apoptosis ratio was as low as (18.31±2.44) % in the group with liposome as gene carrier (P<0.05, as compared with the group with polyMAG-1000 as gene carrier). It is suggested that TRAIL gene may induce apoptosis in MCF-7 breast cancer cells. The magnetic iron oxide nanoparticles coated with PEI may be a potential gene carrier with high transfection efficacy for cancer gene therapy.

  12. Baculovirus-mediated Gene Delivery and RNAi Applications

    Directory of Open Access Journals (Sweden)

    Kaisa-Emilia Makkonen

    2015-04-01

    Full Text Available Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.

  13. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  14. Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure.

    Science.gov (United States)

    Ao, Ying; Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na; Li, Bin; Yang, Shuailong; Xia, Liping; Wu, Yong; Wang, Linlong; He, Zheng; Wang, Hui

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT2R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT2R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT2R might mediate the developmental origin of adult glomerulosclerosis.

  15. Does adult attachment style mediate the relationship between childhood maltreatment and mental and physical health outcomes?

    Science.gov (United States)

    Widom, Cathy Spatz; Czaja, Sally J; Kozakowski, Sandra Sepulveda; Chauhan, Preeti

    2017-05-15

    Attachment theory has been proposed as one explanation for the relationship between childhood maltreatment and problematic mental and physical health outcomes in adulthood. This study seeks to determine whether: (1) childhood physical abuse and neglect lead to different attachment styles in adulthood, (2) adult attachment styles predict subsequent mental and physical health outcomes, and (3) adult attachment styles mediate the relationship between childhood physical abuse and neglect and mental and physical health outcomes. Children with documented cases of physical abuse and neglect (ages 0-11) were matched with children without these histories and followed up in adulthood. Adult attachment style was assessed at mean age 39.5 and outcomes at 41.1. Separate path models examined mental and physical health outcomes. Individuals with histories of childhood neglect and physical abuse had higher levels of anxious attachment style in adulthood, whereas neglect predicted avoidant attachment as well. Both adult attachment styles (anxious and avoidant) predicted mental health outcomes (higher levels of anxiety and depression and lower levels of self-esteem), whereas only anxious adult attachment style predicted higher levels of allostatic load. Path analyses revealed that anxious attachment style in adulthood in part explained the relationship between childhood neglect and physical abuse to depression, anxiety, and self-esteem, but not the relationship to allostatic load. Childhood neglect and physical abuse have lasting effects on adult attachment styles and anxious and avoidant adult attachment styles contribute to understanding the negative mental health consequences of childhood neglect and physical abuse 30 years later in adulthood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Individual differences in adult foreign language learning: the mediating effect of metalinguistic awareness.

    Science.gov (United States)

    Brooks, Patricia J; Kempe, Vera

    2013-02-01

    In this study, we sought to identify cognitive predictors of individual differences in adult foreign-language learning and to test whether metalinguistic awareness mediated the observed relationships. Using a miniature language-learning paradigm, adults (N = 77) learned Russian vocabulary and grammar (gender agreement and case marking) over six 1-h sessions, completing tasks that encouraged attention to phrases without explicitly teaching grammatical rules. The participants' ability to describe the Russian gender and case-marking patterns mediated the effects of nonverbal intelligence and auditory sequence learning on grammar learning and generalization. Hence, even under implicit-learning conditions, individual differences stemmed from explicit metalinguistic awareness of the underlying grammar, which, in turn, was linked to nonverbal intelligence and auditory sequence learning. Prior knowledge of languages with grammatical gender (predominantly Spanish) predicted learning of gender agreement. Transfer of knowledge of gender from other languages to Russian was not mediated by awareness, which suggests that transfer operates through an implicit process akin to structural priming.

  17. Social Networks and Health Among Older Adults in Lebanon: The Mediating Role of Support and Trust

    Science.gov (United States)

    Antonucci, Toni C.; Ajrouch, Kristine J.; Abdulrahim, Sawsan

    2015-01-01

    Objectives. Despite a growing body of literature documenting the influence of social networks on health, less is known in other parts of the world. The current study investigates this link by clustering characteristics of network members nominated by older adults in Lebanon. We then identify the degree to which various types of people exist within the networks. This study further examines how network composition as measured by the proportion of each type (i.e., type proportions) is related to health; and the mediating role of positive support and trust in this process. Method. Data are from the Family Ties and Aging Study (2009). Respondents aged ≥60 were selected (N = 195) for analysis. Results. Three types of people within the networks were identified: Geographically Distant Male Youth, Geographically Close/Emotionally Distant Family, and Close Family. Having more Geographically Distant Male Youth in one’s network was associated with health limitations, whereas more Close Family was associated with no health limitations. Positive support mediated the link between type proportions and health limitations, whereas trust mediated the link between type proportions and depressive symptoms. Discussion. Results document links between the social networks and health of older adults in Lebanon within the context of ongoing demographic transitions. PMID:25324295

  18. Avoidant/ambivalent attachment style as a mediator between abusive childhood experiences and adult relationship difficulties.

    Science.gov (United States)

    McCarthy, G; Taylor, A

    1999-03-01

    The role of attachment style, self-esteem, and relationship attributions as possible mediators between abusive childhood experiences and difficulties in establishing supportive love relationships in adulthood were investigated in a sample of women known to be at risk of experiencing relationship problems. Measures of child abuse, the quality of love relationships, and the three potential mediators were made concurrently in adulthood. Participants who had experienced child abuse were found to be six times more likely to be experiencing difficulties in the domain of adult love relationships than those who had not. Self-esteem and relationship attributions were not found to be related to child abuse. When both child abuse and avoidant/ambivalent attachment style were considered together avoidant/ambivalent attachment style, but not child abuse, was found to be related to relationship difficulties. These findings indicate that avoidant/ambivalent attachment style, but not self-esteem and relationship attributions, is a mediating factor in the route from child abuse to adult relationship abilities.

  19. Attachment anxiety and avoidance as mediators of the association between childhood maltreatment and adult personality dysfunction.

    Science.gov (United States)

    Cohen, Lisa J; Ardalan, Firouz; Tanis, Thachell; Halmi, Winter; Galynker, Igor; Von Wyl, Agnes; Hengartner, Michael P

    2017-02-01

    This paper tests the hypothesis that the association between childhood maltreatment and adult personality dysfunction is at least partially attributable to insecure attachment, that is that attachment style mediates the relationship between childhood maltreatment and adult personality dysfunction. Associations between childhood trauma, as measured by the Childhood Trauma Questionnaire (CTQ), anxious and avoidant attachment in romantic relationships, as measured by the Experiences in Close Relationships-Revised (ECR-R), and five personality domains, as measured by the Severity Indices of Personality Problems (SIPP-118), were examined in a sample of 72 psychiatric inpatients. The SIPP-118 domains included relational capacities, identity integration, self-control, responsibility, and social concordance. The direct effect of childhood trauma on all SIPP-118 domains was not significant after controlling for the indirect effect of attachment. In regression modeling, a significant indirect effect of childhood trauma via adult attachment style was found for SIPP-118 relational capacities, identity integration, self-control, and social concordance. Specifically, anxious attachment was a significant mediator of the effect of childhood trauma on self-control, identity integration, and relational domains. These results suggest that childhood trauma impacts a broad range of personality domains and does so in large part through the pathway of anxious romantic attachment style.

  20. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    Science.gov (United States)

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.

  1. Self-Esteem of Young Adults Experiencing Interparental Violence and Child Physical Maltreatment: Parental and Peer Relationships as Mediators

    Science.gov (United States)

    Shen, April Chiung-Tao

    2009-01-01

    This study examined the joint impact of experiencing both interparental violence and child physical maltreatment on young adults' self-esteem. It also tested the hypothesis of parental and peer relationship qualities as mediators in the relationship between childhood histories of family violence and adult self-esteem. Data were collected from a…

  2. Self-Esteem of Young Adults Experiencing Interparental Violence and Child Physical Maltreatment: Parental and Peer Relationships as Mediators

    Science.gov (United States)

    Shen, April Chiung-Tao

    2009-01-01

    This study examined the joint impact of experiencing both interparental violence and child physical maltreatment on young adults' self-esteem. It also tested the hypothesis of parental and peer relationship qualities as mediators in the relationship between childhood histories of family violence and adult self-esteem. Data were collected from a…

  3. The Signature of Selection Mediated by Expression on Human Genes

    OpenAIRE

    Urrutia, Araxi O.; Hurst, Laurence D

    2003-01-01

    As the efficacy of natural selection is expected to be a function of population size, in humans it is usually presumed that selection is a weak force and hence that gene characteristics are mostly determined by stochastic forces. In contrast, in species with large population sizes, selection is expected to be a much more effective force. Evidence for this has come from examining how genic parameters vary with expression level, which appears to determine many of a gene's features, such as codo...

  4. Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents

    Directory of Open Access Journals (Sweden)

    Shashank R. Sirsi, Mark A. Borden

    2012-01-01

    Full Text Available Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provided evidence of specific mechanisms that enhance in vivo gene delivery utilizing microbubble contrast agents, namely their ability to 1 improving cell membrane permeability, 2 modulate vascular permeability, and 3 enhance endocytotic uptake in cells. Additionally, we review novel microbubble vectors that are being developed in order to exploit these mechanisms and deliver higher gene payloads with greater target specificity. Finally, we discuss some future considerations that should be addressed in the development of next-generation microbubbles in order to improve in vivo microbubble gene delivery. Overall, microbubbles are rapidly gaining popularity as efficient gene carriers, and combined with their functionality as imaging contrast agents, they represent powerful theranostic tools for image guided gene therapy applications.

  5. Advances in ultrasound mediated gene therapy using microbubble contrast agents.

    Science.gov (United States)

    Sirsi, Shashank R; Borden, Mark A

    2012-01-01

    Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provided evidence of specific mechanisms that enhance in vivo gene delivery utilizing microbubble contrast agents, namely their ability to 1) improving cell membrane permeability, 2) modulate vascular permeability, and 3) enhance endocytotic uptake in cells. Additionally, we review novel microbubble vectors that are being developed in order to exploit these mechanisms and deliver higher gene payloads with greater target specificity. Finally, we discuss some future considerations that should be addressed in the development of next-generation microbubbles in order to improve in vivo microbubble gene delivery. Overall, microbubbles are rapidly gaining popularity as efficient gene carriers, and combined with their functionality as imaging contrast agents, they represent powerful theranostic tools for image guided gene therapy applications.

  6. Transcription mediated insulation and interference direct gene cluster expression switches.

    Science.gov (United States)

    Nguyen, Tania; Fischl, Harry; Howe, Françoise S; Woloszczuk, Ronja; Serra Barros, Ana; Xu, Zhenyu; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-11-19

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

  7. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Science.gov (United States)

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.

  8. Differential expression of the FMRF gene in adult and hatchling stellate ganglia of the squid Loligo pealei

    Directory of Open Access Journals (Sweden)

    J. Peter H. Burbach

    2013-12-01

    The giant fiber system of the squid Loligo pealei mediates the escape response and is an important neurobiological model. Here, we identified an abundant transcript in the stellate ganglion (SG that encodes a FMRFamide precursor, and characterized FMRFamide and FI/LRF-amide peptides. To determine whether FMRFamide plays a role in the adult and hatchling giant fiber system, we studied the expression of the Fmrf gene and FMRFamide peptides. In stage 29 embryos and stage 30 hatchlings, Ffmr transcripts and FMRFamide peptide were low to undetectable in the SG, in contrast to groups of neurons intensely expressing the Fmrf gene in several brain lobes, including those that innervate the SG. In the adult SG the Fmrf gene was highly expressed, but the FMRFamide peptide was in low abundance. Intense staining for FMRFamide in the adult SG was confined to microneurons and fibers in the neuropil and to small fibers surrounding giant axons in stellar nerves. This shows that the Fmrf gene in the SG is strongly regulated post-hatching, and suggests that the FMRFamide precursor is incompletely processed in the adult SG. The data suggest that the SG only employs the Fmrf gene post-hatching and restricts the biosynthesis of FMRFamide, demonstrating that this peptide is not a major transmitter of the giant fiber system. This contrasts with brain lobes that engage FMRFamide embryonically as a regulatory peptide in multiple neuronal systems, including the afferent fibers that innervate the SG. The biological significance of these mechanisms may be to generate diversity within Fmrf-expressing systems in cephalopods.

  9. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Science.gov (United States)

    Srikhanta, Yogitha N; Dowideit, Stefanie J; Edwards, Jennifer L; Falsetta, Megan L; Wu, Hsing-Ju; Harrison, Odile B; Fox, Kate L; Seib, Kate L; Maguire, Tina L; Wang, Andrew H-J; Maiden, Martin C; Grimmond, Sean M; Apicella, Michael A; Jennings, Michael P

    2009-04-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that

  10. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    2009-04-01

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18 and modB (modB1, 2. These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11, differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates

  11. Calpains mediate integrin attachment complex maintenance of adult muscle in Caenorhabditis elegans.

    Science.gov (United States)

    Etheridge, Timothy; Oczypok, Elizabeth A; Lehmann, Susann; Fields, Brandon D; Shephard, Freya; Jacobson, Lewis A; Szewczyk, Nathaniel J

    2012-01-01

    Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line- or M-line-specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks

  12. Calpains mediate integrin attachment complex maintenance of adult muscle in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Timothy Etheridge

    2012-01-01

    Full Text Available Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line- or M-line-specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C

  13. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M system, controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates. Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.

  14. Obesity Mediates the Association between Mediterranean Diet Consumption and Insulin Resistance and Inflammation in US Adults.

    Science.gov (United States)

    Park, Yong-Moon; Zhang, Jiajia; Steck, Susan E; Fung, Teresa T; Hazlett, Linda J; Han, Kyungdo; Ko, Seung-Hyun; Merchant, Anwar T

    2017-04-01

    Background: The inverse association between Mediterranean diet (Med-diet) consumption and insulin resistance or inflammatory markers is well known. However, the extent to which obesity may act directly on or mediate this association is unclear.Objective: We aimed to investigate whether the associations between Med-diet consumption and markers of insulin resistance and inflammation are mediated by body mass index (BMI) or waist circumference (WC) in a representative US population.Methods: We used cross-sectional data from 4700 adults aged 20-90 y without any previous diagnosis of cancer, cardiovascular disease, diabetes, or hypertension based on the NHANES III, 1988-1994. A Med-diet score (MDS) was created to assess adherence to the Med-diet. Linear regression models were fitted in conventional and causal mediation analyses comparing extreme MDS tertiles.Results: Compared with the lowest MDS tertile, the highest tertile of MDS was associated with a 0.77 lower BMI (in kg/m(2); P = 0.004) and a 2.7 cm lower WC (P insulin resistance and glucose intolerance markers (log insulin, log homoeostasis model assessment of insulin resistance, fasting glucose, and glycated hemoglobin) and inflammatory markers (white blood cell count and fibrinogen), whereas BMI mediated the association between MDS and insulin resistance and glucose intolerance markers only (all P obesity may play an important role in the pathway through which Med-diet consumption reduces insulin resistance and inflammation. © 2017 American Society for Nutrition.

  15. Debra-mediated Ci degradation controls tissue homeostasis in Drosophila adult midgut.

    Science.gov (United States)

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-02-11

    Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control.

  16. Parental verbal abuse and the mediating role of self-criticism in adult internalizing disorders.

    Science.gov (United States)

    Sachs-Ericsson, Natalie; Verona, Edelyn; Joiner, Thomas; Preacher, Kristopher J

    2006-07-01

    Researchers (e.g., [Gibb, B.E., 2002. Childhood maltreatment and negative cognitive styles. A quantitative and qualitative review. Clinical Psychology Review, 22 (2), 223-246]; [Rose, D.T., Abramson, L.Y., 1992. Developmental predictors of depressive cognitive styles: developmental perspectives on depression. In Cicchetti, D., Toth, S.L. (Eds.), Developmental Perspectives on Depression. Rochester symposium on developmental psychopathology, vol. 4, pp. 323-349]) have proposed that when childhood abuse is verbal (rather than sexual or physical), the child is more likely to develop a negative self-schema because the negative self-cognitions are directly supplied to the child by the abuser (e.g., "you are stupid"). In a test of this theory in adult participants, and drawing on the National Comorbidity Survey (NCS) (N=5877), we investigate the mediating role of current levels of self-criticism on the relationship between retrospective reports of parental verbal abuse, as well as sexual and physical abuse, and adult internalizing symptoms. We found self-criticism, but not dependency traits, to fully mediate the relationship between childhood verbal abuse perpetrated by parents and internalizing (depression, anxiety) symptoms. On the other hand, self-criticism was only a partial mediator of the relationship between the other types of abuse and internalizing symptoms. The NCS data is cross-sectional, which limits any firm conclusions regarding causality. While these results are suggestive that self-criticism is a mediator of the relationship between abuse and internalizing symptoms, longitudinal data are necessary to help rule out alternative explanations. Results of this study suggest that childhood abuse experiences, and in particular verbal abuse, may confer risk for internalizing disorders in part because verbal abuse influences the development of a self-critical style.

  17. Lentiviral gene transfer into the dorsal root ganglion of adult rats

    Directory of Open Access Journals (Sweden)

    Park Frank

    2011-08-01

    Full Text Available Abstract Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP under control of the human elongation factor 1α (EF1α promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs, and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.

  18. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    Directory of Open Access Journals (Sweden)

    Ji-Si Zhang

    Full Text Available The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'. Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS. Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution

  19. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    Science.gov (United States)

    Zhang, Ji-Si; Zhao, Jing; Zhang, Shaohua; He, Chaoying

    2014-01-01

    The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'). Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV)-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS). Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi) methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution and development

  20. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  1. Is older adult care mediated by caregivers' cultural stereotypes? The role of competence and warmth attribution

    Directory of Open Access Journals (Sweden)

    Fernández-Ballesteros R

    2016-05-01

    professional behaviors and on older adult functioning. Caregivers’ cultural stereotypes could be considered as a central issue in older adult care since they mediate the triangle of care: caregivers/older adults/type of care; therefore, much more attention should be paid to this psychosocial care component. Keywords: cultural stereotypes, caregiver functioning, older adult functioning, person-centered care vs standard care, stereotype content model

  2. Adenovirus-mediated nitric oxide synthase gene transfer.

    Science.gov (United States)

    Raman, Kathleen G; Shapiro, Richard A; Tzeng, Edith; Kibbe, Melina R

    2004-01-01

    The varied biological effects of nitric oxide (NO) have led to intense research into its diverse physiologic and pathophysiologic roles in multiple disease processes. It has been implicated in the development of altered vasomotor tone, intimal hyperplasia, atherosclerosis, impotence, host defense, and wound healing. Using the modern technologies of recombinant DNA and gene transfer using adenoviral vectors, the effects of NO derived from various NO synthase (NOS) enzymes can be studied in a variety of tissues and the therapeutic applications of NOS is possible. Such uses of NOS gene transfer have been investigated extensively in the vasculature where NO is critical to regulating vascular homeostasis. NOS gene therapy has the theoretical advantage of allowing NO delivery to be localized, thereby limiting potential adverse effects of NO. The benefits of adenoviral vectors in gene transfer include relatively high transduction efficiencies, both replicating and nonreplicating cells may be infected, and the high titers of adenovirus that can be produced. The methods described in this chapter include the cloning of the iNOS cDNA into a recombinant adenoviral vector, large-scale production of that vector AdiNOS preparation, and the use of the vector to transduce tissue in vitro and in vivo.

  3. Transient gene expression mediated by integrase-defective retroviral vectors.

    Science.gov (United States)

    Yu, Seung Shin; Dan, Kazuyuki; Chono, Hideto; Chatani, Emi; Mineno, Junichi; Kato, Ikunoshin

    2008-04-18

    Nonintegrating retroviral vectors were produced from a Moloney murine leukemia virus (MoMLV)-based retroviral vector system by introducing a point mutation into the integrase (IN) gene of the packaging plasmid. The efficacy of IN-defective retroviral vectors was measured through the transient expression of ZsGreen or luciferase in human cell lines. The IN-defective retroviral vectors could transduce target cells efficiently, but their gene expression was transient and lower than that seen with the integrating vectors. IN-defective retroviral vector gene expression decreased to background levels in fewer than 10 days. Southern blot analysis of transduced K562 cells confirmed the loss of a detectable vector sequence by 15 days. The residual integration activity of the IN-defective vector was 1000- to 10,000-fold lower than that of the integrating vector. These results demonstrate that the IN-defective retroviral vectors can provide a useful tool for efficient transient gene expression targeting of primary hematopoietic stem cells and lymphoid cells.

  4. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  5. LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS

    Science.gov (United States)

    Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...

  6. A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants.

    Science.gov (United States)

    Li, Zhongsen; Xing, Aiqiu; Moon, Bryan P; Burgoyne, Susan A; Guida, Anthony D; Liang, Huiling; Lee, Catharina; Caster, Cheryl S; Barton, Joanne E; Klein, Theodore M; Falco, Saverio C

    2007-10-01

    Marker-gene-free transgenic soybean plants were produced by isolating a developmentally regulated embryo-specific gene promoter, app1, from Arabidopsis and developing a self-activating gene excision system using the P1 bacteriophage Cre/loxP recombination system. To accomplish this, the Cre recombinase gene was placed under control of the app1 promoter and, together with a selectable marker gene (hygromycin phosphotransferase), were cloned between two loxP recombination sites. This entire sequence was then placed between a constitutive promoter and a coding region for either beta-glucuronidase (Gus) or glyphosate acetyltransferase (Gat). Gene excision would remove the entire sequence between the two loxP sites and bring the coding region to the constitutive promoter for expression. Using this system marker gene excision occurred in over 30% of the stable transgenic events as indicated by the activation of the gus reporter gene or the gat gene in separate experiments. Transgenic plants with 1 or 2 copies of a functional excision-activated gat transgene and without any marker gene were obtained in T0 or T1 generation. This demonstrates the feasibility of using developmentally controlled promoters to mediate marker excision in soybean.

  7. Bistability in a stochastic RNA-mediated gene network

    Science.gov (United States)

    Lloyd-Price, Jason; Ribeiro, Andre S.

    2013-09-01

    Small regulatory RNAs (srRNAs) are important regulators of gene expression in eukaryotes and prokaryotes. A common motif containing srRNA is a bistable two-gene motif where one gene codes for a transcription factor (TF) which represses the transcription of the second gene, whose transcript is a srRNA which targets the first gene's transcript. Here, we investigate the properties of this motif in a stochastic model which takes the low copy numbers of the RNA components into account. First, we examine the conditions for stability of the two “noisy attractors.” We find that for realistic low copy numbers, extreme, but within realistic intervals, mutual repression strengths are required to compensate for the variability of the RNA numbers and thus, achieve long-term bistability. Second, the promoter initiation kinetics is found to strongly influence the bistability of the switch. Super-Poissonian RNA production disrupts the ability of the srRNA to silence its target, though sub-Poissonian RNA production does not rule out the need for strong mutual repression. Finally, we show that asymmetry between the two interactions forming the switch allows an external input to induce the transition from “high srRNA” to “‘high TF” more easily (i.e., with a shorter input) than in the opposite direction. We hypothesize that this asymmetric switching property allows these circuits to be more sensitive to one external input, without sacrificing the stability of one of the noisy attractors.

  8. Electroporation-mediated delivery of genes in rodent models of lung contusion.

    Science.gov (United States)

    Machado-Aranda, David; Raghavendran, Krishnan

    2014-01-01

    Several of the biological processes involved in the pathogenesis of acute lung injury and acute respiratory distress syndrome after lung contusion are regulated at a genetic and epigenetic level. Thus, strategies to manipulate gene expression in this context are highly desirable not only to elucidate the mechanisms involved but also to look for potential therapies. In the present chapter, we describe mouse and rat models of inducing blunt thoracic injury followed by electroporation-mediated gene delivery to the lung. Electroporation is a highly efficient and easily reproducible technique that allows circumvention of several of lung gene delivery challenges and safety issues present with other forms of lung gene therapy.

  9. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  10. Cytokine gene-mediated immunotherapy: current status and future perspectives.

    Science.gov (United States)

    Jinushi, Masahisa; Tahara, Hideaki

    2009-08-01

    Recent understanding of the molecular events crucial in overcoming immunosuppressive tumor microenvironments and generating effective antitumor immunity provides us with the wreath opportunity to manipulate genes that have a key role in antitumor immune responses. Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-12 (IL-12) are two indispensable cytokines for activating dendritic cells and boosting the strong immune responses against cancer. In this review, we describe the antitumor mechanisms and clinical application of gene-modified tumor cells and dendritic cells to secrete GM-CSF or IL-12, respectively, in various preclinical and clinical settings. The principles operative in these vaccination strategies may prove applicable to other immunotherapy strategies, especially in combination with other therapeutic modalities, such as chemotherapy and targeted therapy.

  11. Identifying genes that mediate anthracyline toxicity in immune cells

    Directory of Open Access Journals (Sweden)

    Amber eFrick

    2015-04-01

    Full Text Available The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS, we identified four genome-wide significant quantitative trait loci (QTL that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01x10-8. Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05.In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Thus, further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  12. Thermodynamic control of small RNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Kumiko eUi-Tei

    2012-06-01

    Full Text Available Small interfering RNAs (siRNAs and microRNAs (miRNAs are crucial regulators of posttranscriptional gene silencing, which is referred to as RNA interference (RNAi or RNA silencing. In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC downregulates target gene expression by cleaving mRNA whose sequence is perfectly complementary to the siRNA guide strand. We previously showed that highly functional siRNAs possessed the following characteristics: A or U residues at nucleotide position 1 measured from the 5’ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This finding indicated that an RNA strand with a thermodynamically unstable 5’ terminal is easily retained in the RISC and functions as a guide strand. In addition, it is clear that unintended genes with complementarities only in the seed region (positions 2–8 are also downregulated by off-target effects. siRNA efficiency is mainly determined by the Watson-Crick base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs with a low seed-target duplex melting temperature (Tm have little or no seed-dependent off-target activity. Thus, important parts of the RNA silencing machinery may be regulated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of thermodynamic control may enable an efficient target gene-specific RNAi for functional genomics and safe therapeutic applications.

  13. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.

    Science.gov (United States)

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D; Dupuy, Bruno; Fralick, Joe A

    2009-12-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in PhiCD119 lysogens. During this study we found that repR, a putative repressor gene of PhiCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in PhiCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen.

  14. Bacteriophage-Mediated Toxin Gene Regulation in Clostridium difficile▿

    Science.gov (United States)

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D.; Dupuy, Bruno; Fralick, Joe A.

    2009-01-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by ΦCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in ΦCD119 lysogens. During this study we found that repR, a putative repressor gene of ΦCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in ΦCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  15. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  16. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells

    Science.gov (United States)

    Hyland, Kendra A.; Olson, Erik R.; McIvor, R. Scott

    2015-01-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34+ HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon–chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  17. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kazuki [Department of Dermatology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180 (Japan); Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180 (Japan); Feril, Loreto B., E-mail: ferilism@yahoo.com [Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180 (Japan); Tachibana, Katsuro [Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180 (Japan); Takahashi, Akira; Matsuo, Miki; Endo, Hitomi [Department of Dermatology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180 (Japan); Harada, Yoshimi [Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180 (Japan); Nakayama, Juichiro [Department of Dermatology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180 (Japan)

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  18. Wolbachia-mediated antiviral protection in Drosophila larvae and adults following oral infection.

    Science.gov (United States)

    Stevanovic, Aleksej L; Arnold, Pieter A; Johnson, Karyn N

    2015-12-01

    Understanding viral dynamics in arthropods is of great importance when designing models to describe how viral spread can influence arthropod populations. The endosymbiotic bacterium Wolbachia spp., which is present in up to 40% of all insect species, has the ability to alter viral dynamics in both Drosophila spp. and mosquitoes, a feature that in mosquitoes may be utilized to limit spread of important arboviruses. To understand the potential effect of Wolbachia on viral dynamics in nature, it is important to consider the impact of natural routes of virus infection on Wolbachia antiviral effects. Using adult Drosophila strains, we show here that Drosophila-Wolbachia associations that have previously been shown to confer antiviral protection following systemic viral infection also confer protection against virus-induced mortality following oral exposure to Drosophila C virus in adults. Interestingly, a different pattern was observed when the same fly lines were challenged with the virus when still larvae. Analysis of the four Drosophila-Wolbachia associations that were protective in adults indicated that only the w1118-wMelPop association conferred protection in larvae following oral delivery of the virus. Analysis of Wolbachia density using quantitative PCR (qPCR) showed that a high Wolbachia density was congruent with antiviral protection in both adults and larvae. This study indicates that Wolbachia-mediated protection may vary between larval and adult stages of a given Wolbachia-host combination and that the variations in susceptibility by life stage correspond with Wolbachia density. The differences in the outcome of virus infection are likely to influence viral dynamics in Wolbachia-infected insect populations in nature and could also have important implications for the transmission of arboviruses in mosquito populations.

  19. Genes That Mediate Arsenic and Heavy Metal Detoxification in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, David A.; Gong, Ji-Ming; Schroeder, Julian I.

    2003-03-26

    To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of ars1, a novel mutant with significantly increased tolerance to arsenate. ars1 accumulates similar levels of arsenic as wild type plants, but ars1 tolerance does not appear to be phytochelatin or glutathione dependent. ars1 plants do have a higher rate of phosphate uptake than wild type plants and plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and, consequently, the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 is due to a new mechanism mediated by increased phosphate uptake in ars1. Results exploring increased metal tolerance through engineered phytochelatin expression will also be discussed.

  20. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity.

    Science.gov (United States)

    Vyas, Meenal; Fisher, Tonja W; He, Ruifeng; Nelson, William; Yin, Guohua; Cicero, Joseph M; Willer, Mark; Kim, Ryan; Kramer, Robin; May, Greg A; Crow, John A; Soderlund, Carol A; Gang, David R; Brown, Judith K

    2015-01-01

    The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt), classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW) (http://www.sohomoptera.org/ACPPoP/). Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas transmission.

  1. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity.

    Directory of Open Access Journals (Sweden)

    Meenal Vyas

    Full Text Available The Asian citrus psyllid (ACP Diaphorina citri Kuwayama (Hemiptera: Psyllidae is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas, the causal agent of citrus greening disease, or Huanglongbing (HLB. The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt, classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW (http://www.sohomoptera.org/ACPPoP/. Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas

  2. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2015-12-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL. This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5 on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  3. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival.

    Science.gov (United States)

    Panfil, Amanda R; Al-Saleem, Jacob; Howard, Cory M; Mates, Jessica M; Kwiek, Jesse J; Baiocchi, Robert A; Green, Patrick L

    2015-12-30

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  4. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease.

    Science.gov (United States)

    Kells, Adrian P; Fong, Dahna M; Dragunow, Mike; During, Matthew J; Young, Deborah; Connor, Bronwen

    2004-05-01

    Huntington disease (HD) is a neurodegenerative disorder that results in the progressive loss of GABAergic medium spiny projection neurons in the striatum. Neurotrophic factors have demonstrated neuroprotective actions on striatal neurons, suggesting that increased neurotrophic factor expression may prevent or reduce neuronal loss in the HD brain. We investigated whether enhanced expression of brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), achieved by adeno-associated viral (AAV) vector-mediated gene delivery, could protect striatal neurons in the quinolinic acid (QA) rodent model of HD. Adult Wistar rats received unilateral intrastriatal injections of AAV-BDNF, AAV-GDNF, AAV-GFP, or PBS. Three weeks later, the rats were lesioned with QA, a toxin that induces striatal neuron death by an excitotoxic process. Both AAV-BDNF and AAV-GDNF significantly reduced the loss of both NeuN- and calbindin-immunopositive striatal neurons 2 weeks after lesion compared to controls. AAV-BDNF also provided significant neurotrophic support to NOS-immunopositive striatal interneurons, while AAV-GDNF-treated rats demonstrated significant protection of parvalbumin-immunopositive striatal interneurons compared to controls. These results indicate that AAV-mediated gene transfer of BDNF or GDNF into the striatum provides neuronal protection in a rodent model of HD.

  5. Insulin regulation of the glucagon gene is mediated by an insulin-responsive DNA element.

    OpenAIRE

    1991-01-01

    Diabetes mellitus is characterized by insulin deficiency and high plasma glucagon levels, which can be normalized by insulin replacement. It has previously been reported that glucagon gene expression is negatively regulated by insulin at the transcriptional level. By transfection studies, I have now localized a DNA control element that mediates insulin effects on glucagon gene transcription. This element also confers insulin responsiveness to a heterologous promoter. DNA-binding proteins that...

  6. ISEcp1-Mediated Transposition of qnrB-Like Gene in Escherichia coli▿

    Science.gov (United States)

    Cattoir, Vincent; Nordmann, Patrice; Silva-Sanchez, Jesus; Espinal, Paula; Poirel, Laurent

    2008-01-01

    A novel QnrB-like plasmid-mediated resistance determinant, QnrB19, was identified from an Escherichia coli clinical isolate from Colombia. Its gene was associated with an ISEcp1-like insertion element that did not act as a promoter for its expression. Using an in vitro model of transposition, we showed that the ISEcp1-like element was able to mobilize the qnrB19 gene. PMID:18519717

  7. Genes encoding phospholipases A2 mediate insect nodulation reactions to bacterial challenge.

    Science.gov (United States)

    Shrestha, Sony; Park, Yoonseong; Stanley, David; Kim, Yonggyun

    2010-03-01

    We propose that expression of four genes encoding secretory phospholipases A(2) (sPLA(2)) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA(2)-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA(2) activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA(2) and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA(2)s. The recombinant sPLA(2)s were inhibited by sPLA(2) inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA(2) genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA(2)s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA(2)s showed the presence of the sPLA(2) enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA(2) genes that mediate nodulation reactions strongly supports our hypothesis that sPLA(2)s are central enzymes in insect cellular immune reactions. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. Everyday Multitasking Abilities in Older HIV+ Adults: Neurobehavioral Correlates and the Mediating Role of Metacognition.

    Science.gov (United States)

    Fazeli, P L; Casaletto, K B; Woods, S P; Umlauf, A; Scott, J C; Moore, D J

    2017-05-31

    The prevalence of older adults living with HIV is rising, as is their risk for everyday functioning problems associated with neurocognitive dysfunction. Multitasking, the ability to maintain and carry out subgoals in support of a larger goal, is a multidimensional skill ubiquitous during most real-life tasks and associated with prefrontal networks that are vulnerable in HIV. Understanding factors associated with multitasking will improve characterization of HIV-associated neurocognitive disorders. Metacognition is also associated with frontal systems, is impaired among individuals with HIV, and may contribute to multitasking. Ninety-nine older (≥50 years) adults with HIV completed: the Everyday Multitasking Test (MT), a performance-based measure during which participants concurrently attempt four everyday tasks (e.g., medication management) within a time limit; a comprehensive neuropsychological battery; measures of metacognition regarding their MT performance (e.g., metacognitive knowledge and online awareness). Better global neuropsychological performance (i.e., average T-score across all domains) was associated with better Everyday MT total scores (rho = 0.34; p metacognition (rho = 0.37, p metacognition was a significant partial mediator between neurocognition and Everyday MT (b = 0.09, 95% confidence interval [CI] = 0.01, 0.25). Specifically, metacognitive knowledge (but not online awareness) drove this mediation (b = 0.13, 95% CI = 0.03, 0.27). Consistent with findings among younger persons with HIV, neuropsychological performance is strongly associated with a complex, laboratory-based test of everyday multitasking, and metacognition of task performance was a pathway through which successful multitasking occurred. Interventions aimed at modifying metacognition to improve daily functioning may be warranted among older adults with HIV.

  9. Chloroquine mediated modulation of Anopheles gambiae gene expression.

    Directory of Open Access Journals (Sweden)

    Patrícia Abrantes

    Full Text Available BACKGROUND: Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.

  10. Electric pulse-mediated gene delivery to various animal tissues

    DEFF Research Database (Denmark)

    Mir, Lluis M; Moller, Pernille H; André, Franck

    2005-01-01

    Electroporation designates the use of electric pulses to transiently permeabilize the cell membrane. It has been shown that DNA can be transferred to cells through a combined effect of electric pulses causing (1) permeabilization of the cell membrane and (2) an electrophoretic effect on DNA...... therapy, termed electrogenetherapy (EGT as well). By transfecting cells with a long lifetime, such as muscle fibers, a very long-term expression of genes can be obtained. A great variety of tissues have been transfected successfully, from muscle as the most extensively used, to both soft (e.g., spleen...

  11. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    Science.gov (United States)

    Marie, Pauline P.; Ronsseray, Stéphane; Boivin, Antoine

    2016-01-01

    In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development. PMID:27932388

  12. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    Directory of Open Access Journals (Sweden)

    Pauline P. Marie

    2017-02-01

    Full Text Available In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs. Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.

  13. Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway.

    Directory of Open Access Journals (Sweden)

    Teclise Ng

    Full Text Available Class 3 semaphorins are well-known axonal guidance cues during the embryonic development of mammalian nervous system. However, their activity on postnatally differentiated neurons in neurogenic regions of adult brains has not been characterized. We found that silencing of semaphorin receptors neuropilins (NRP 1 or 2 in neural progenitors at the adult mouse dentate gyrus resulted in newly differentiated neurons with shorter dendrites and simpler branching in vivo. Tyrosine phosphorylation (Tyr 397 and serine phosphorylation (Ser 732 of FAK were essential for these effects. Semaphorin 3A and 3F mediate serine phosphorylation of FAK through the activation of Cdk5. Silencing of either Cdk5 or FAK in newborn neurons phenocopied the defects in dendritic development seen upon silencing of NRP1 or NRP2. Furthermore, in vivo overexpression of Cdk5 or FAK rescued the dendritic phenotypes seen in NRP1 and NRP2 deficient neurons. These results point to a novel role for class 3 semaphorins in promoting dendritic growth and branching during adult hippocampal neurogenesis through the activation of Cdk5-FAK signaling pathway.

  14. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    Science.gov (United States)

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring.

  15. The arginine vasopressin V1b receptor gene and prosociality: Mediation role of emotional empathy.

    Science.gov (United States)

    Wu, Nan; Shang, Siyuan; Su, Yanjie

    2015-09-01

    The vasopressin V1b receptor (AVPR1B) gene has been shown to be closely associated with bipolar disorder and depression. However, whether it relates to positive social outcomes, such as empathy and prosocial behavior, remains unknown. This study explored the possible role of the AVPR1B gene rs28373064 in empathy and prosociality. A total of 256 men, who were genetically unrelated, non-clinical ethnic Han Chinese college students, participated in the study. Prosociality was tested by measuring the prosocial tendencies of cognitive and emotional empathy using the Interpersonal Reactivity Index (IRI). The single nucleotide polymorphism (SNP), rs28373064, was genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results suggest that the AVPR1B gene rs28373064 is linked to emotional empathy and prosociality. The mediation analysis indicated that the effect of the AVPR1B gene on prosociality might be mediated by emotional empathy. This study demonstrated the link between the AVPR1B gene and prosociality and provided evidence that emotional empathy might mediate the relation between the AVPR1B gene and prosociality. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  16. Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Yu, Qin; Barrett-Lennard, Robert; Powles, Stephen

    2008-11-01

    Gene flow promotes genetic exchange among plant populations mediating evolutionary dynamics; yet, the importance of gene flow at distance via pollen movement is poorly understood. A field experiment at the landscape level was conducted with Lolium rigidum herbicide-susceptible individuals (population VLR1) placed into an otherwise Lolium-free bushland environment at increasing distances from adjacent large commercial crop fields infested with herbicide-resistant L. rigidum. Herbicide resistance was used as a marker to quantify the distance and the rate of pollen-mediated gene flow. About 21,245 seeds were produced on the isolated, susceptible mother plants of which 3,303 seedlings were tested for herbicide resistance and 664 seedlings were found to be resistant. Pollen-mediated gene flow occurred at 3,000 m (maximum tested distance). Both Mendelian and molecular analyses (sequencing and CAPS markers) confirmed the introgression of herbicide resistance genes. This is the first documented case of long-distance gene flow in L. rigidum. The results are important for future modeling simulations of herbicide resistance evolution and subsequent mobility. The adoption of integrated agronomic strategies, the control of potential receptor plants on fields' margins and conservative use of herbicides can be realistic options to minimize herbicide resistance spread.

  17. Toxin-mediated gene regulatory mechanism in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hwang-Soo Joo

    2016-12-01

    Full Text Available The dangerous human pathogen Staphylococcus aureus relies heavily on toxins to cause disease, but toxin production can put a strong burden on the bacteria’s energy balance. Thus, controlling the synthesis of proteins solely needed in times of toxin production represents a way for the bacteria to avoid wasting energy. One hypothetical manner to accomplish this sort of regulation is by gene regulatory functions of the toxins themselves. There have been several reports about gene regulation by toxins in S. aureus, but these were never verified on the molecular level. In our study published in MBio [Joo et al., 7(5. pii: e01579-16], we show that phenol-soluble modulins (PSMs, important peptide toxins of S. aureus, release a repressor from the promoter of the operon encoding the toxin export system, thereby enabling toxin secretion. This study describes the first molecular regulatory mechanism exerted by an S. aureus toxin, setting a paradigmatic example of how S. aureus toxins may influence cell functions to adjust them to times of toxin production.

  18. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    李崇辉; 温守明; 翟海峰; 孙曼霁

    1999-01-01

    Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycoprotein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The resuits showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfeetion efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatoeytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.

  20. [Advances in research on radioiodine therapy of carcinoma mediated by gene transfer technology].

    Science.gov (United States)

    Mu, Da; Kuang, Anren

    2010-10-01

    Radioiodine therapy of carcinoma could be mediated by transferring the genes which participate in the process of iodine metabolism in thyroid. The correlative genes are sodium/iodine symporter gene, thyroid peroxidase gene and the specific thyroid transcription factors, and others. The objective gene can specifically express in carcinoma by inserting the tissue-specific promoter/enhancer upstream of them, so radioiodine could be used to treat varied carcinomas. The radioiodine uptake in carcinoma cells was obviously increased and the radioiodine therapy of carcinoma was effective after those genes had expressed in carcinoma cells. The main problem was that the effective half-time of radioiodine in cells was too short to produce the ideal effect of radioiodine therapy. Moreover, 211At and 188Re could be transferred by sodium/iodine symporter and they could be used to treat the carcinoma that is capable of radioiodine uptake.

  1. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis

    Directory of Open Access Journals (Sweden)

    Cuiyuan Huang

    2017-07-01

    Full Text Available Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble–mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  2. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Djupedal, Ingela; Wang, Jingwen [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Kylsten, Per [School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Swoboda, Peter [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Ekwall, Karl, E-mail: Karl.Ekwall@ki.se [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden)

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  3. Adeno-associated virus mediated gene therapy for retinal degenerative diseases.

    Science.gov (United States)

    Stieger, Knut; Cronin, Therese; Bennett, Jean; Rolling, Fabienne

    2011-01-01

    Retinal gene therapy holds great promise for the treatment of inherited and noninherited blinding diseases such as retinitis pigmentosa and age-related macular degeneration. The most widely used vectors for ocular gene delivery are based on adeno-associated virus (AAV) because it mediates long-term transgene expression in a variety of retinal cell types and elicits minimal immune responses. Inherited retinal diseases are nonlethal and have a wide level of genetic heterogeneity. Many of the genes have now been identified and their function elucidated, providing a major step towards the development of gene-based treatments. Extensive preclinical evaluation of gene transfer strategies in small and large animal models is key to the development of successful gene-based therapies for the retina. These preclinical studies have already allowed the field to reach the point where gene therapy to treat inherited blindness has been brought to clinical trial.In this chapter, we focus on AAV-mediated specific gene therapy for inherited retinal degenerative diseases, describing the disease targets, the preclinical studies in animal models and the recent success of the LCA-RPE65 clinical trials.

  4. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    Science.gov (United States)

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  5. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    Science.gov (United States)

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  6. Mechanisms of microRNA-mediated gene regulation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    microRNAs (miRNAs) are identified as a class of non-protein regulators and a new source for broad control of gene expression in eukaryotes. The past years have witnessed substantial progress in understanding miRNA functions and mechanisms, although a few controversies remain. Various hypotheses and models have been suggested for the mechanisms of miRNA repression, including translational inhibition at the level of initiation or elongation, rapid degradation of the nascent peptide, mRNA degradation, and mRNA sequestration into P bodies (processing bodies) and SGs (stress granules) for degradation or/and storage. Recently, some noncanonical miRNA regulation, such as miRNA activation and de-repression of miRNA inhibition, have been uncovered. This review discusses some recent advances about how miRNAs regulate their targets and various modes of miRNA function.

  7. Adenovirus-mediated interteukin-13 gene therapy attenuates acute kidney allograft injury

    NARCIS (Netherlands)

    Sandovici, Maria; Deelmani, Leo E.; van Goor, Harry; Helfrich, Wijnand; de Zeeuw, Dick; Henning, Robert H.

    2007-01-01

    Background Kidney transplantation is possible by virtue of systemic immunosuppression, which is in turn accompanied by serious side effects. The search for novel therapeutic agents and strategies is ongoing. Here we investigate the effects of adenovirus-mediated gene therapy with interleukin (IL)-13

  8. Baculovirus-mediated gene silencing in insect cells using intracellularly produced long double-stranded RNA

    NARCIS (Netherlands)

    Huang, Yi; Deng, F.; Hu, Z.H.; Vlak, J.M.; Wang, H.

    2007-01-01

    Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetics tool to silence gene expression in multiple organisms, including plants, nematodes and insects. In this study, DNA vectors capable of promoting the synthesis of long hairpin dsRNAs in vivo from a DNA

  9. Role of Catechin Quinones in the Induction of EpRE-Mediated Gene Expression

    NARCIS (Netherlands)

    Muzolf-Panek, M.; Gliszczynska-Swiglo, A.; Haan, de L.H.J.; Aarts, J.M.M.J.G.; Szymusiak, H.; Vervoort, J.J.M.; Tyrakowska, B.; Rietjens, I.M.C.M.

    2008-01-01

    In the present study, the ability of green tea catechins to induce electrophile-responsive element (EpRE)-mediated gene expression and the role of their quinones in the mechanism of this induction were investigated. To this end, Hepa1c1c7 mouse hepatoma cells were used, stably transfected with a luc

  10. A Simple Laboratory Practical to Illustrate RNA Mediated Gene Interference Using Drosophila Cell Culture

    Science.gov (United States)

    Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak

    2010-01-01

    RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…

  11. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  12. Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley?

    Science.gov (United States)

    Marzin, Stephan; Hanemann, Anja; Sharma, Shailendra; Hensel, Götz; Kumlehn, Jochen; Schweizer, Günther; Röder, Marion S

    2016-01-01

    A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar 'Morex'. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar 'Morex' or the full resistance reaction requires the presence of several PEI genes.

  13. Gene expression profiles of human liver cells mediated by hepatitis B virus X protein

    Institute of Scientific and Technical Information of China (English)

    Wei-ying ZHANG; Fu-qing XU; Chang-liang SHAN; Rong XIANG; Li-hong YE; Xiao-dong ZHANG

    2009-01-01

    Aim: To demonstrate the gene expression profiles mediated by hepatitis B virus X protein (HBx), we characterized the molecular features of pathogenesis associated with HBx in a human liver cell model.Methods: We examined gene expression profiles in L-O2-X cells, an engineered L-O2 cell line that constitutively expresses HBx, relative to L-O2 cells using an Agilent 22 K human 70-mer oligonucleotide microarray representing more than 21,329 unique, well-characterized Homo sapiens genes, Western blot analysis and RNA interference (RNAi) targeting HBx mRNA validated the overexpression of proliferating cell nuclear antigen (PCNA) and Bcl-2 in L-O2-X cells. Meanwhile, the BrdU incorporation assay was used to test cell proliferation mediated by upregulated cyclooxygenase-2 (COX-2).Results: The microarray showed that the expression levels of 152 genes were remarkably altered; 82 of the genes were upregulated and 70 genes were downregulated in L-O2-X cells. The altered genes were associated with signal transduction pathways, cell cycle, metastasis, transcriptional regulation, immune response, metabolism, and other processes. PCNA and Bcl-2 were upregulated in L-O2-X cells. Furthermore, we found that COX-2 upregulation in L-O2-X cells enhanced proliferation using the BrdU incorporation assay, whereas indomethacin (an inhibitor of COX-2) abolished the promotion.Conclusion: Our findings provide new evidence that HBx is able to regulate many genes that may be involved in the car-cinogenesis. These regulated genes mediated by HBx may serve as molecular targets for the prevention and treatment of hepatocellular carcinoma.

  14. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Hang Li

    Full Text Available The beet armyworm, Spodoptera exigua (Hübner, is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1(st to 5(th instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl into the 4(th instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20-94.3% after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (P<0.05. About 80% of the surviving insects in the siRNA-treated group of five genes (PGCP, chitinase1, tubulin1, tubulin2 and helicase showed retarded development. In chitinase1-siRNA and chitinase7-siRNA administered groups, 12.5% survivors exhibited "half-ecdysis". In arf1-siRNA and arf2-siRNA groups, the body color of 15% became black 48 h after injections. In summary, the transcriptome could be a valuable genetic resource for identification of genes in S. exigua and this study provided putative targets for RNAi pest

  15. Perceived family support and self-esteem: the mediational role of emotional experience in adults with dyslexia.

    Science.gov (United States)

    Nalavany, Blace A; Carawan, Lena W

    2012-02-01

    Although a growing body of literature shows that perceived family support (PFS) influences self-esteem in adults with dyslexia, little empirical attention has been given to the mechanisms through which this effect operates across early, middle, and late adulthood. The present study examined the mediational effect of emotional experience with dyslexia (EED, emotions stemming from living with an often misunderstood and stereotyped learning difficulty) that may account for the empirical link between PFS and self-esteem. The participants were 224 adults with self-identified dyslexia (average age = 49.1 years, males = 64.7%) who participated in a Web-based survey. A bootstrapping analysis (a new approach to mediational analysis) revealed that EED mediated the relationship between PFS and self-esteem across the entire sample and in early and middle adulthood. The mediational effect was strongest in early adulthood. Implications of these findings are discussed.

  16. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  17. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  18. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    Science.gov (United States)

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  19. Mood impairs time-based prospective memory in young but not older adults: the mediating role of attentional control.

    Science.gov (United States)

    Schnitzspahn, Katharina M; Thorley, Craig; Phillips, Louise; Voigt, Babett; Threadgold, Emma; Hammond, Emily R; Mustafa, Besim; Kliegel, Matthias

    2014-06-01

    The present study examined age-by-mood interactions in prospective memory and the potential role of attentional control. Positive, negative, or neutral mood was induced in young and older adults. Subsequent time-based prospective memory performance was tested, incorporating a measure of online attentional control shifts between the ongoing and the prospective memory task via time monitoring behavior. Mood impaired prospective memory in the young, but not older, adults. Moderated mediation analyses showed that mood effects in the young were mediated by changes in time monitoring. Results are discussed in relation to findings from the broader cognitive emotional aging literature.

  20. Recombinase-mediated Gene Stacking as a Transformation Operating System

    Institute of Scientific and Technical Information of China (English)

    David W. Ow

    2011-01-01

    The current method for combining transgenes into a genome is through the assortment of independent loci, a classical operating system compatible with transgenic traits created by different developers, at different times and/or through different transformation techniques. However, as the number of transgenic loci increases over time, increasingly larger populations are needed to find the rare individual with the desired assortment of transgenic loci along with the non-transgenic elite traits. Introducing a transgene directly into a field cultivar would bypass the need to introgress the engineered trait. However, this necessitates separate transformations into numerous field cultivars, along with the characterization and regulatory approval of each independent transformation event. Reducing the number of segregating transgenic loci could be achieved if multiple traits are introduced at the same time, a preferred option if each of the many traits is new or requires re-engineering. If reengineering of prewously introduced traits is not needed, then appending a new trait to an existing locus would be a rational strategy. The insertion of new DNA at a known locus can be accomplished by sitespecific integration, through a host-dependent homology-based process, or a heterologous site-specific recombination system. Here, we discuss gene stacking through the use of site-specific recombinases.

  1. Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses.

    Directory of Open Access Journals (Sweden)

    Laila Gasmi

    2015-09-01

    Full Text Available Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.

  2. Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses.

    Science.gov (United States)

    Gasmi, Laila; Boulain, Helene; Gauthier, Jeremy; Hua-Van, Aurelie; Musset, Karine; Jakubowska, Agata K; Aury, Jean-Marc; Volkoff, Anne-Nathalie; Huguet, Elisabeth; Herrero, Salvador; Drezen, Jean-Michel

    2015-09-01

    Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.

  3. Agrobacterium tumefaciens-mediated GUS gene transformation of Robinia pseudoacacia 'Idaho'

    Institute of Scientific and Technical Information of China (English)

    Sun Hai-jun; Li Min; Chen Shou-yi; He Si-jie; Wang Hua-fang

    2006-01-01

    Based on the plant regeneration system, a GUS gene transformation system to Idaho locust (Robinia pseudoacacia 'Idaho')mediated by Agrobacterium tumefaciens was established. The successful transformation was confirmed by regenerating the shoots from the infected leaves in the presence of hygromysin; by histochemical X-gluc assays of β-glucuronidase (GUS) and by PCR and PCR-Southern blotting analysis. The ratio of positive transgenic plants is 5.8% (5 out of 86 plants). With this system, the target gene DREB was introduced into the leaves of Idaho locust. The transgenic plants regenerated, which was verified by PCR-Southem blotting. It is suggested that the transformation system could be a new, simple, reliable and practical route to gene transformation of R.pseudoacacia 'Idaho' mediated with A. tumefaciens.

  4. Inositol and Phosphatidylinositol Mediated Glucose Derepression, Gene Expression and Invertase Secretion in Yeasts

    Institute of Scientific and Technical Information of China (English)

    Zhen-Ming CHI; Jun-Feng LI; Xiang-Hong WANG; Shu-Min YAO

    2004-01-01

    Glucose repression occurs in many yeast species and some filamentous fungi, and it represses the expression and secretion of many intracellular and extracellular proteins. In recent years, it has been found that many biochemical reactions in yeast cells are mediated by phosphatidylinositol (PI)-type signaling pathway. However, little is known about the relationships between PI-type signaling and glucose repression,gene expression and invertase secretion in yeasts. Many evidences in our previous studies showed that glucose repression, invertase secretion, gene expression and cell growth were mediated by inositol and PI in Saccharomyces and Schizosaccharomyces. The elucidation of the new regulatory mechanisms of protein secretion, gene expression and glucose repression would be an entirely new aspect of inositol and PI-type signaling regulation in yeasts.

  5. Super-distant molecular hybridization of plant seeds by ion beam-mediated gene cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The N beam-mediated distant molecular hybridization between Ginkgo biloba I and watermelon was studied. The results showed that the ester gene of Ginkgo biloba L was successfully expressed in two varieties of watermelon. 3-16 and SR2-14-2, in both of which the ester quantities were measured as 17.0756 μg/g and 45.9998 μg/g respectively. Meanwhile, superoxide dismutase (SOD) activity in leaves of the watennelon expressing ester gene was increased twofold as compared to that of the control, showing that ion beam could mediate distant and/or super-distant donor gene expression in the cells of a receptor. Furthermore, the molecular nechanism of distant hybridization was analyzed.

  6. Agrobacterium tumefaciens-mediated transformation of CryⅠA(b) gene to Trichoderma harzianum

    Institute of Scientific and Technical Information of China (English)

    GAO Xingxi; YANG Qian

    2004-01-01

    In this study, CryⅠA(b) gene was successfully transferred into the biocontrol fungus Trichoderma harzianum with an efficiency of 60-180 transformants per 106 spores by using Agrobacterium tumefaciens-mediated trans- formation. Putative transformants were analyzed to test the presence of CryⅠA(b) gene by Southern blot. Most transformants contained a single T-DNA copy. RT-PCR analysis showed that the CryⅠA(b) gene was transcribed. Antifungal activities and insecticidal activities of the transformants were examined. There was no obvious difference in antifungal activities between the transformants and their wild strains. The modified mortalities of the transformants T1 and T2 were 69.57% and 91.30%, respectively. The tranformation system mediated by A. tumefaciens proved to be a powerful tool for the filamentous fungi transformation and functional genomic study with its high transformation frequency, simplicity of T-DNA integration, and genetic stability of transformants.

  7. Mindfulness predicts less texting while driving among young adults: Examining attention- and emotion-regulation motives as potential mediators

    OpenAIRE

    Feldman, Greg; Greeson, Jeff; Renna, Megan; Robbins-Monteith, Kendra

    2011-01-01

    Many young adult drivers read and send text messages while driving despite clear safety risks. Understanding predictors of texting-while-driving may help to indentify relevant targets for interventions to reduce this dangerous behavior. The present study examined whether individual differences in mindfulness is associated with texting-while-driving in a sample of young-adult drivers. Using path analysis, we tested whether this relationship would be mediated by the degree to which individuals ...

  8. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    OpenAIRE

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.; Hyde, David R.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cel...

  9. The impact of the experience of childhood poverty on adult health-risk behaviors in Japan: a mediation analysis

    OpenAIRE

    Umeda, Maki; Oshio, Takashi; Fujii, Mayu

    2015-01-01

    Background The experience of childhood poverty has a long-lasting, adverse impact on physical health outcomes in adulthood. We examined the mediating effects of adult socioeconomic status (SES) and social support on the association between childhood poverty and adult health-risk behaviors. Methods Cross-sectional data collected from Japanese community residents (N = 3836) were used. A binary indicator of the experience of childhood poverty was constructed by utilizing retrospectively assessed...

  10. Fsh controls gene expression in fish both independently of and through steroid mediation.

    Directory of Open Access Journals (Sweden)

    Elisabeth Sambroni

    Full Text Available The mechanisms and the mediators relaying Fsh action on testicular functions are poorly understood. Unlike in mammals, in fish both gonadotropins (Fsh and Lh are able to efficiently stimulate steroidogenesis, likely through a direct interaction with their cognate receptors present on the Leydig cells. In this context, it is crucial to understand if Fsh effects are mediated through the production of steroids. To address this issue we performed transcriptome studies after in vitro incubations of rainbow trout testis explants in the presence of Fsh alone or in combination with trilostane, an inhibitor of Δ4- steroidogenesis. Trilostane significantly reduced or suppressed the response of many genes to Fsh (like wisp1, testis gapdhs, cldn11, inha, vt1 or dmrt1 showing that, in fish, important aspects of Fsh action follow indirect pathways and require the production of Δ4-steroids. What is more, most of the genes regulated by Fsh through steroid mediation were similarly regulated by Lh (and/or androgens. In contrast, the response to Fsh of other genes was not suppressed in the presence of trilostane. These latter included genes encoding for anti-mullerian hormone, midkine a (pleiotrophin related, angiopoietine-related protein, cyclins E1 and G1, hepatocyte growth factor activator, insulin-like growth factor 1b/3. A majority of those genes were preferentially regulated by Fsh, when compared to Lh, suggesting that specific regulatory effects of Fsh did not depend on steroid production. Finally, antagonistic effects between Fsh and steroids were found, in particular for genes encoding key factors of steroidogenesis (star, hsd3b1, cyp11b2-2 or for genes of the Igf system (igf1b/3. Our study provides the first clear evidence that, in fish, Fsh exerts Δ4-steroid-independent regulatory functions on many genes which are highly relevant for the onset of spermatogenesis.

  11. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults

    National Research Council Canada - National Science Library

    Lissner, Michelle M; Thomas, Brandon J; Wee, Kathleen; Tong, Ann-Jay; Kollmann, Tobias R; Smale, Stephen T

    2015-01-01

    .... An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults...

  12. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  13. Identification of certain cancer-mediating genes using Gaussian fuzzy cluster validity index

    Indian Academy of Sciences (India)

    Anupam Ghosh; Rajat K De

    2015-10-01

    In this article, we have used an index, called Gaussian fuzzy index (GFI), recently developed by the authors, based on the notion of fuzzy set theory, for validating the clusters obtained by a clustering algorithm applied on cancer gene expression data. GFI is then used for the identification of genes that have altered quite significantly from normal state to carcinogenic state with respect to their mRNA expression patterns. The effectiveness of the methodology has been demonstrated on three gene expression cancer datasets dealing with human lung, colon and leukemia. The performance of GFI is compared with 19 exiting cluster validity indices. The results are appropriately validated biologically and statistically. In this context, we have used biochemical pathways, -value statistics of GO attributes, -test and -score for the validation of the results. It has been reported that GFI is capable of identifying high-quality enriched clusters of genes, and thereby is able to select more cancer-mediating genes.

  14. Comparative Analysis of Cluster Validity Indices in Identifying Some Possible Genes Mediating Certain Cancers.

    Science.gov (United States)

    Ghosh, Anupam; Dhara, Bibhas Chandra; De, Rajat K

    2013-04-01

    In this article, we compare the performance of 19 cluster validity indices, in identifying some possible genes mediating certain cancers, based on gene expression data. For the purpose of this comparison, we have developed a method. The proposed method involves cluster generation, selection of the best k-value or c-values, cluster identification, identifying the altered gene cluster, scoring an altered gene cluster and determining the best k-value or c-value exploring through biological repositories. The effectiveness of the method has been demonstrated on three gene expression data sets dealing with human lung cancer, colon cancer, and leukemia. Here, we have used three clustering algorithms, i.e., k-means, PAM and fuzzy c-means. We have used biochemical pathways related to these cancers and p-value statistics for validating the study. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Plasma omega 3 PUFA and white matter mediated executive decline in older adults

    Directory of Open Access Journals (Sweden)

    Gene L. Bowman

    2013-12-01

    Full Text Available Introduction: Cross-sectional studies have identified long chain omega-3 polyunsaturated fatty acids (eicosapentaenoic acid 20:5n-3 and docosahexaenoic acid 22:6n-3 (O3PUFA in association with fewer white matter lesions and better executive function in older adults. We hypothesized that O3PUFA are associated with less executive decline over time and that total white matter hyperintensity volume (WMH mediates the putative association. Methods: Eighty-six non-demented older adults were followed over 4 years after measurement of plasma O3PUFA with annual evaluations of cognitive function. A subset of these participants also had brain MRI of total WMH available to conduct a formal mediation analysis of a putative relationship between O3PUFA and cognitive function. Results: Mean age at baseline was 86, 62% were female and 11% carried the APOE4 allele. Each 100 μg/ml increase in plasma O3PUFA associated with 4 seconds less change in executive decline per year of aging (p = 0.02, fully adjusted model. O3PUFA was not associated with verbal memory or global cognitive changes. The significance of the association between O3PUFA and better executive function was lost once WMH was added to the regression model. Conclusion: Executive decline with age appears to be a cognitive domain particularly sensitive to plasma O3PUFA in longitudinal examination. O3PUFA may modulate executive functioning by mechanisms underlying the development of WMH, a biologically plausible hypothesis that warrants further investigation.

  16. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms

    DEFF Research Database (Denmark)

    Svingen, T; Jørgensen, Anne; Rajpert-De Meyts, E

    2014-01-01

    expressed across the samples analysed: a so-called normalizing or housekeeping gene. Although this is a valid strategy, the identification of stable normalizing genes has proved challenging and a gene showing stable expression across all cells or tissues is unlikely to exist. Therefore, it is necessary...... to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers...

  17. Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression

    Directory of Open Access Journals (Sweden)

    Mansukhani Mahesh

    2006-05-01

    Full Text Available Abstract Background Cervical Cancer (CC exhibits highly complex genomic alterations. These include hemizygous deletions at 4p15.3, 10q24, 5q35, 3p12.3, and 11q24, the chromosomal sites of Slit-Robo pathway genes. However, no candidate tumor suppressor genes at these regions have been identified so far. Slit family of secreted proteins modulates chemokine-induced cell migration of distinct somatic cell types. Slit genes mediate their effect by binding to its receptor Roundabout (Robo. These genes have shown to be inactivated by promoter hypermethylation in a number of human cancers. Results To test whether Slit-Robo pathway genes are targets of inactivation at these sites of deletion, we examined promoter hypermethylation of SLIT1, SLIT2, SLIT3, ROBO1, and ROBO3 genes in invasive CC and its precursor lesions. We identified a high frequency of promoter hypermethylation in all the Slit-Robo genes resulting in down regulated gene expression in invasive CC, but the inhibitors of DNA methylation and histone deacetylases (HDACs in CC cell lines failed to effectively reactivate the down-regulated expression. These results suggest a complex mechanism of inactivation in the Slit-Robo pathway in CC. By analysis of cervical precancerous lesions, we further show that promoter hypermethylation of Slit-Robo pathway occurs early in tumor progression. Conclusion Taken together, these findings suggest that epigenetic alterations of Slit-Robo pathway genes (i play a role in CC development, (ii further delineation of molecular basis of promoter methylation-mediated gene regulation provides a potential basis for epigenetic-based therapy in advanced stage CC, and (iii form epigenetic signatures to identify precancerous lesions at risk to progression.

  18. Gender nonconformity and mental health among lesbian, gay, and bisexual adults: Homophobic stigmatization and internalized homophobia as mediators.

    Science.gov (United States)

    Van Beusekom, Gabriël; Bos, Henny Mw; Kuyper, Lisette; Overbeek, Geertjan; Sandfort, Theo Gm

    2016-04-01

    We assessed among a sample of 724 Dutch lesbian, gay, and bisexual-identified adults ( Mage = 31.42) whether experiences with homophobic stigmatization and internalized homophobia simultaneously mediated the relation of gender nonconformity with mental health. Results indicated that homophobic stigmatization and internalized homophobia partially mediated the relation between gender nonconformity and mental health. Gender nonconformity was related to more mental health problems via increased experiences with homophobic stigmatization and to less mental health problems because of reduced levels of internalized homophobia. However, the mediated relation of gender nonconformity with mental health via homophobic stigmatization was only significant for men.

  19. COPING AS A MEDIATOR OF INTERNALIZED HOMOPHOBIA AND PSYCHOLOGICAL DISTRESS AMONG YOUNG ADULT SEXUAL MINORITY WOMEN.

    Science.gov (United States)

    Kaysen, Debra; Kulesza, Magdalena; Balsam, Kimberly F; Rhew, Isaac C; Blayney, Jessica A; Lehavot, Keren; Hughes, Tonda L

    2014-09-01

    Sexual minorities have higher rates of depression and anxiety than their heterosexual counterparts. This elevated risk of psychological distress has generally been hypothesized to be a result of the effects of discrimination including internalized negative beliefs about sexual minorities. However, little research has examined the role of various types of coping in mediating between internalized homophobia and mental health. We tested the direct relationship between internalized homophobia and psychological distress and evaluated general and sexual minority-specific coping strategies as potential mediators using structural equation modeling. Data are from a national sample of 1,099 young adult sexual minority women who were on average 20.86 (SD= 2.12) years old, participating in a study on mental health and substance use. The model demonstrated acceptable fit, χ(2) (83) = 402.9, p homophobia and psychological distress, sexual minority-specific coping did not. Our findings support previous studies that have demonstrated the impact of internalized homophobia on psychological distress as well as the role of coping as a protective/risk factor in this relationship.

  20. Different Gene Expression Signatures in Children and Adults with Celiac Disease

    Science.gov (United States)

    López-Palacios, N.; Bodas, A.; Dema, B.; Fernández-Arquero, M.; González-Pérez, B.; Salazar, I.; Núñez, C.

    2016-01-01

    Celiac disease (CD) is developed after gluten ingestion in genetically susceptible individuals. It can appear at any time in life, but some differences are commonly observed between individuals with onset early in life or in adulthood. We aimed to investigate the molecular basis underlying those differences. We collected 19 duodenal biopsies of children and adults with CD and compared the expression of 38 selected genes between each other and with the observed in 13 non-CD controls matched by age. A Bayesian methodology was used to analyze the differences of gene expression between groups. We found seven genes with a similarly altered expression in children and adults with CD when compared to controls (C2orf74, CCR6, FASLG, JAK2, IL23A, TAGAP and UBE2L3). Differences were observed in 13 genes: six genes being altered only in adults (IL1RL1, CD28, STAT3, TMEM187, VAMP3 and ZFP36L1) and two only in children (TNFSF18 and ICOSLG); and four genes showing a significantly higher alteration in adults (CCR4, IL6, IL18RAP and PLEK) and one in children (C1orf106). This is the first extensive study comparing gene expression in children and adults with CD. Differences in the expression level of several genes were found between groups, being notorious the higher alteration observed in adults. Further research is needed to evaluate the possible genetic influence underlying these changes and the specific functional consequences of the reported differences. PMID:26859134

  1. Influence of long-distance seed dispersal on the genetic diversity of seed rain in fragmented Pinus densiflora populations relative to pollen-mediated gene flow.

    Science.gov (United States)

    Ozawa, Hajime; Watanabe, Atsushi; Uchiyama, Kentaro; Saito, Yoko; Ide, Yuji

    2013-01-01

    Long-distance dispersal (LDD) of seeds has a critical impact on species survival in patchy landscapes. However, relative to pollen dispersal, empirical data on how seed LDD affects genetic diversity in fragmented populations have been poorly reported. Thus, we attempted to indirectly evaluate the influence of seed LDD by estimating maternal and paternal inbreeding in the seed rain of fragmented 8 Pinus densiflora populations. In total, the sample size was 458 seeds and 306 adult trees. Inbreeding was estimated by common parentage analysis to evaluate gene flow within populations and by sibship reconstruction analysis to estimate gene flow within and among populations. In the parentage analysis, the observed probability that sampled seeds had the same parents within populations was significantly larger than the expected probability in many populations. This result suggested that gene dispersal was limited to within populations. In the sibship reconstruction, many donors both within and among populations appeared to contribute to sampled seeds. Significant differences in sibling ratios were not detected between paternity and maternity. These results suggested that seed-mediated gene flow and pollen-mediated gene flow from outside population contributed some extent to high genetic diversity of the seed rain (H E > 0.854). We emphasize that pine seeds may have excellent potential for gene exchange within and among populations.

  2. Gene expression profiles of colonic mucosa in healthy young adult and senior dogs.

    Directory of Open Access Journals (Sweden)

    Dong Yong Kil

    Full Text Available BACKGROUND: We have previously reported the effects of age and diet on nutrient digestibility, intestinal morphology, and large intestinal fermentation patterns in healthy young adult and senior dogs. However, a genome-wide molecular analysis of colonic mucosa as a function of age and diet has not yet been performed in dogs. METHODOLOGY/PRINCIPAL FINDINGS: Colonic mucosa samples were collected from six senior (12-year old and six young adult (1-year old female beagles fed one of two diets (animal protein-based vs. plant protein-based for 12 months. Total RNA in colonic mucosa was extracted and hybridized to Affymetrix GeneChip® Canine Genome Arrays. Results indicated that the majority of gene expression changes were due to age (212 genes rather than diet (66 genes. In particular, the colonic mucosa of senior dogs had increased expression of genes associated with cell proliferation, inflammation, stress response, and cellular metabolism, whereas the expression of genes associated with apoptosis and defensive mechanisms were decreased in senior vs. young adult dogs. No consistent diet-induced alterations in gene expression existed in both age groups, with the effects of diet being more pronounced in senior dogs than in young adult dogs. CONCLUSION: Our results provide molecular insight pertaining to the aged canine colon and its predisposition to dysfunction and disease. Therefore, our data may aid in future research pertaining to age-associated gastrointestinal physiological changes and highlight potential targets for dietary intervention to limit their progression.

  3. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    Science.gov (United States)

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought. PMID:28094345

  4. Msh homeobox genes regulate cadherin-mediated cell adhesion and cell-cell sorting.

    Science.gov (United States)

    Lincecum, J M; Fannon, A; Song, K; Wang, Y; Sassoon, D A

    1998-07-01

    Msx-1 and Msx-2 are two closely related homeobox genes expressed in cephalic neural crest tooth buds, the optic cup endocardial cushions, and the developing limb [Hill and Davidson, 1991; Monaghan et al., 1991; Robert et al., 1991]. These sites correspond to regions of active cell segregation and proliferation under the influence of epithelial-mesenchymal cell interactions [Brown et al., 1993; Davidson et al., 1991], suggesting that Msx-1 and Msx-2 regulate cell-cell interactions. We have investigated the potential relationship between expression of the Msh homeobox genes (Msx-1 and Msx-2) and cadherin-mediated cell adhesion and cell sorting. We report that cell lines stably expressing Msx-1 or Msx-2 differentially sort on the basis of Msh gene expression. We demonstrate in vitro that initial cell aggregation involves calcium-dependent adhesion molecules (cadherins) and that Msh genes regulate cadherin-mediated adhesion. These results support the hypothesis that Msh genes play a role in the regulation of cell-cell adhesion and provide a link between the genetic phenomena of homeobox gene expression and cellular events involved in morphogenesis, including cell sorting and proliferation.

  5. Nonsense-mediated mRNA decay among coagulation factor genes

    Directory of Open Access Journals (Sweden)

    Shirin Shahbazi

    2016-04-01

    Full Text Available Objective(s: Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD. There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8 does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade.

  6. Expression of Foreign Genes Demonstrates the Effectiveness of Pollen-Mediated Transformation in Zea mays

    Science.gov (United States)

    Yang, Liyan; Cui, Guimei; Wang, Yixue; Hao, Yaoshan; Du, Jianzhong; Zhang, Hongmei; Wang, Changbiao; Zhang, Huanhuan; Wu, Shu-Biao; Sun, Yi

    2017-01-01

    Plant genetic transformation has arguably been the core of plant improvement in recent decades. Efforts have been made to develop in planta transformation systems due to the limitations present in the tissue-culture-based methods. Herein, we report an improved in planta transformation system, and provide the evidence of reporter gene expression in pollen tube, embryos and stable transgenicity of the plants following pollen-mediated plant transformation with optimized sonication treatment of pollen. The results showed that the aeration at 4°C treatment of pollen grains in sucrose prior to sonication significantly improved the pollen viability leading to improved kernel set and transformation efficiency. Scanning electron microscopy observation revealed that the removal of operculum covering pollen pore by ultrasonication might be one of the reasons for the pollen grains to become competent for transformation. Evidences have shown that the eGfp gene was expressed in the pollen tube and embryos, and the Cry1Ac gene was detected in the subsequent T1 and T2 progenies, suggesting the successful transfer of the foreign genes to the recipient plants. The Southern blot analysis of Cry1Ac gene in T2 progenies and PCR-identified Apr gene segregation in T2 seedlings confirmed the stable inheritance of the transgene. The outcome illustrated that the pollen-mediated genetic transformation system can be widely applied in the plant improvement programs with apparent advantages over tissue-culture-based transformation methods. PMID:28377783

  7. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  8. Application of GFAT as a novel selection marker to mediate gene expression.

    Directory of Open Access Journals (Sweden)

    Guogan Wu

    Full Text Available The enzyme glutamine: fructose-6-phosphate aminotransferase (GFAT, also known as glucosamine synthase (GlmS, catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. For the first time, the GFAT gene was proven to possess a function as an effective selection marker for genetically modified (GM microorganisms. This was shown by construction and analysis of two GFAT deficient strains, E. coli ΔglmS and S. pombe Δgfa1, and the ability of the GFAT encoding gene to mediate plasmid selection. The gfa1 gene of the fission yeast Schizosaccharomyces pombe was deleted by KanMX6-mediated gene disruption and the Cre-loxP marker removal system, and the glmS gene of Escherichia coli was deleted by using λ-Red mediated recombinase system. Both E. coli ΔglmS and S. pombe Δgfa1 could not grow normally in the media without addition of glucosamine. However, the deficiency was complemented by transforming the plasmids that expressed GFAT genes. The xylanase encoding gene, xynA2 from Thermomyces lanuginosus was successfully expressed and secreted by using GFAT as selection marker in S. pombe. Optimal glucosamine concentration for E. coli ΔglmS and S. pombe Δgfa1 growth was determined respectively. These findings provide an effective technique for the construction of GM bacteria without an antibiotic resistant marker, and the construction of GM yeasts to be applied to complex media.

  9. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression

    Directory of Open Access Journals (Sweden)

    Bosch-Vermeulen Hanneke

    2008-05-01

    Full Text Available Abstract Background The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called 'intestinal barrier proteins'. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPARα, which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPARα on expression of genes encoding intestinal barrier proteins. To this end we used triacylglycerols composed of identical fatty acids in combination with gene expression profiling in wild-type and PPARα-null mice. Treatment with the synthetic PPARα agonist WY14643 served as reference. Results We identified 74 barrier genes that were PPARα-dependently regulated 6 hours after activation with WY14643. For eicosapentaenoic acid (EPA, docosahexaenoic acid (DHA and oleic acid (OA these numbers were 46, 41, and 19, respectively. The overlap between EPA-, DHA-, and WY14643-regulated genes was considerable, whereas OA treatment showed limited overlap. Functional implications inferred form our data suggested that nutrient-activated PPARα regulated transporters and phase I/II metabolic enzymes were involved in a fatty acid oxidation, b cholesterol, glucose, and amino acid transport and metabolism, c intestinal motility, and d oxidative stress defense. Conclusion We identified intestinal barrier genes that were PPARα-dependently regulated after acute activation by fatty acids. This knowledge provides a better understanding of the impact dietary fat has on the barrier function of the gut, identifies PPARα as an important factor controlling this key function, and underscores the importance of PPARα for nutrient-mediated gene regulation in intestine.

  10. Nipbl and mediator cooperatively regulate gene expression to control limb development.

    Directory of Open Access Journals (Sweden)

    Akihiko Muto

    2014-09-01

    Full Text Available Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS, the most common "cohesinopathy". It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb, knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions.

  11. Triptolide T10 enhances AAV-mediated gene transfer in mice striatum.

    Science.gov (United States)

    Ren, Xinmiao; Zhang, Ting; Hu, Jing; Ding, Wei; Wang, Xiaomin

    2010-08-02

    Adeno-associated virus (AAV) mediated gene transfer has been demonstrated to be an effective approach for treating Parkinson's disease (PD). Triptolide T10 is a monomeric compound isolated from tripterygium wilfordii Hook.f. (Thunder God vine), a traditional Chinese herb for anti-inflammatory medications. In the present study, we co-administered T10 with recombinant AAV2 in SH-SY5Y human neuroblastoma cells and in the striatum of C57BL/6 mice, and then evaluated the AAV-mediated gene expression levels. The results have shown that T10 significantly augmented the expression of AAV-mediated gene in a dose-dependent fashion without detectable cytotoxicity. As growing evidence indicated that inflammation contributed to the progression of PD, and the anti-inflammatory effect of T10 was shown in our previous studies, our data of T10 to enhance AAV transduction suggest that T10 might be potentially used as a facilitating reagent for the AAV gene therapy applications in neurodegenerative diseases.

  12. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Fredriksson, Robert; Eriksson, Jenny D. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Mitra, Anaya [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Radomska, Katarzyna J. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Gosnell, Blake A. [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Solvang, Maria N. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Levine, Allen S. [Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Schioeth, Helgi B. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden)

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  13. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation.

    Science.gov (United States)

    Gu, Wanjun; Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-09-01

    Recent studies have suggested that the secondary structure of the 5' untranslated region (5' UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5' UTR; however, the general role of the 5' UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5' UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5' cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5' UTR, number of miRNA target sites, and 5' UTR length may influence mRNA structure near the 5' cap. Our results suggest that the 5' UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5' cap site, rather than the structure of the full-length 5' UTR sequences, plays an important role in miRNA-mediated gene regulation.

  14. Polyethyleneimine (PEI mediated siRNA gene silencing in the Schistosoma mansoni snail host, Biomphalaria glabrata.

    Directory of Open Access Journals (Sweden)

    Matty Knight

    2011-07-01

    Full Text Available An in vivo, non-invasive technique for gene silencing by RNA interference (RNAi in the snail, Biomphalaria glabrata, has been developed using cationic polymer polyethyleneimine (PEI mediated delivery of long double-stranded (ds and small interfering (si RNA. Cellular delivery was evaluated and optimized by using a 'mock' fluorescent siRNA. Subsequently, we used the method to suppress expression of Cathepsin B (CathB with either the corresponding siRNA or dsRNA of this transcript. In addition, the knockdown of peroxiredoxin (Prx at both RNA and protein levels was achieved with the PEI-mediated soaking method. B. glabrata is an important snail host for the transmission of the parasitic digenean platyhelminth, Schistosoma mansoni that causes schistosomiasis in the neotropics. Progress is being made to realize the genome sequence of the snail and to uncover gene expression profiles and cellular pathways that enable the snail to either prevent or sustain an infection. Using PEI complexes, a convenient soaking method has been developed, enabling functional gene knockdown studies with either dsRNA or siRNA. The protocol developed offers a first whole organism method for host-parasite gene function studies needed to identify key mechanisms required for parasite development in the snail host, which ultimately are needed as points for disrupting this parasite mediated disease.

  15. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer ability

    Directory of Open Access Journals (Sweden)

    Satoko eNonaka

    2014-12-01

    Full Text Available Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium.

  16. Perceived Family Support and Self-Esteem: The Mediational Role of Emotional Experience in Adults with Dyslexia

    Science.gov (United States)

    Nalavany, Blace A.; Carawan, Lena W.

    2012-01-01

    Although a growing body of literature shows that perceived family support (PFS) influences self-esteem in adults with dyslexia, little empirical attention has been given to the mechanisms through which this effect operates across early, middle, and late adulthood. The present study examined the mediational effect of emotional experience with…

  17. Perceived Parenting Styles Fail to Mediate between Anxiety and Attachment Styles in Adult Siblings of Individuals with Developmental Disabilities

    Science.gov (United States)

    O'Neill, Linda P.; Murray, Lindsay E.

    2016-01-01

    Adult siblings of individuals with developmental disabilities often experience higher levels of anxiety than individuals in the general population. The present study tested whether perceived parenting could mediate the relationship between attachment styles and anxiety in the sibling group compared to a control group. Little association was found…

  18. Perceived Parenting Styles Fail to Mediate between Anxiety and Attachment Styles in Adult Siblings of Individuals with Developmental Disabilities

    Science.gov (United States)

    O'Neill, Linda P.; Murray, Lindsay E.

    2016-01-01

    Adult siblings of individuals with developmental disabilities often experience higher levels of anxiety than individuals in the general population. The present study tested whether perceived parenting could mediate the relationship between attachment styles and anxiety in the sibling group compared to a control group. Little association was found…

  19. Gender nonconformity, perceived stigmatization, and psychological well-being in Dutch sexual minority youth and young adults: A mediation analysis

    NARCIS (Netherlands)

    Baams, L.; Beek, T.; Hille, H.; Zevenbergen, F.C.; Bos, H.M.W.

    2013-01-01

    Dutch sexual minority youth and young adults (106 females and 86 males, 16-24 years old) were assessed to establish whether there was a relation between gender nonconformity and psychological well-being and whether this relation was mediated by perceived experiences of stigmatization due to perceive

  20. Gender nonconformity, perceived stigmatization, and psychological well-being in Dutch sexual minority youth and young adults: A mediation analysis

    NARCIS (Netherlands)

    Baams, L.; Beek, T.; Hille, H.; Zevenbergen, F.C.; Bos, H.M.W.

    2013-01-01

    Dutch sexual minority youth and young adults (106 females and 86 males, 16-24 years old) were assessed to establish whether there was a relation between gender nonconformity and psychological well-being and whether this relation was mediated by perceived experiences of stigmatization due to

  1. Diversity of human and mouse homeobox gene expression in development and adult tissues.

    Science.gov (United States)

    Dunwell, Thomas L; Holland, Peter W H

    2016-11-03

    Homeobox genes encode a diverse set of transcription factors implicated in a vast range of biological processes including, but not limited to, embryonic cell fate specification and patterning. Although numerous studies report expression of particular sets of homeobox genes, a systematic analysis of the tissue specificity of homeobox genes is lacking. Here we analyse publicly-available transcriptome data from human and mouse developmental stages, and adult human tissues, to identify groups of homeobox genes with similar expression patterns. We calculate expression profiles for 242 human and 278 mouse homeobox loci across a combination of 59 human and 12 mouse adult tissues, early and late developmental stages. This revealed 20 human homeobox genes with widespread expression, primarily from the TALE, CERS and ZF classes. Most homeobox genes, however, have greater tissue-specificity, allowing us to compile homeobox gene expression lists for neural tissues, immune tissues, reproductive and developmental samples, and for numerous organ systems. In mouse development, we propose four distinct phases of homeobox gene expression: oocyte to zygote; 2-cell; 4-cell to blastocyst; early to mid post-implantation. The final phase change is marked by expression of ANTP class genes. We also use these data to compare expression specificity between evolutionarily-based gene classes, revealing that ANTP, PRD, LIM and POU homeobox gene classes have highest tissue specificity while HNF, TALE, CUT and CERS are most widely expressed. The homeobox genes comprise a large superclass and their expression patterns are correspondingly diverse, although in a broad sense related to an evolutionarily-based classification. The ubiquitous expression of some genes suggests roles in general cellular processes; in contrast, most human homeobox genes have greater tissue specificity and we compile useful homeobox datasets for particular tissues, organs and developmental stages. The identification of a

  2. The relationship of host-mediated induced resistance to polymorphism in gene-for-gene relationships.

    Science.gov (United States)

    Tellier, Aurélien; Brown, James K M

    2008-01-01

    Gene-for-gene relationships are a common feature of plant-parasite interactions. Polymorphism at host resistance and parasite avirulence loci is maintained if there is negative, direct frequency-dependent selection on alleles of either gene. More specifically, selection of this kind is generated when the disease is polycyclic with frequent auto-infection. When an incompatible interaction occurs between a resistant host and an avirulent parasite, systemic defenses are triggered, rendering the plant more resistant to a later attack by another parasite. However, induced resistance (IR) incurs a fitness cost to the plant. Here, the effect of IR on polymorphism in gene-for-gene interactions is investigated. First, in an infinite population model in which parasites have two generations per host generation, increasing the fitness cost of IR increases selection for susceptible plants at low disease severity, while increasing the effectiveness of IR against further parasite attacks enhances selection for resistant plants at high disease severity. This reduces the possibility of polymorphism being maintained in host and parasite populations. In finite population models, the number of plants varies over time as a function of the disease burden of the population. Polymorphism in gene-for-gene relationships is then more stable at high disease prevalence and severity if IR reactions are more costly when there is competition for resources between plants.

  3. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  4. Conserved transcriptional responses to cyanobacterial stressors are mediated by alternate regulation of paralogous genes in Daphnia.

    Science.gov (United States)

    Asselman, Jana; Pfrender, Michael E; Lopez, Jacqueline A; De Coninck, Dieter I M; Janssen, Colin R; Shaw, Joseph R; De Schamphelaere, Karel A C

    2015-04-01

    Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles, whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of nonlineage-specific genes were conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment-specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families. © 2015 John Wiley & Sons Ltd.

  5. What Accounts for the Relationship Between Internet Use and Suicidal Ideation of Korean Older Adults? A Mediation Analysis.

    Science.gov (United States)

    Jun, Hey Jung; Kim, Myoung-Yong

    2017-09-01

    This study sought to examine the relationship between Internet use and suicidal ideation in Korean older adults and the mediating roles of social relationships and depressive symptoms. A nationally representative sample of older adults aged 50 or older (N = 6,306), from four waves of the Korean Welfare Panel Study, was used in the analyses. All analyses were conducted using generalized estimation equations, and the mediation effects of social relationship satisfaction and depression in the relationship between Internet use and suicidal ideation were calculated using the product-of-coefficients approach. Internet use was linked with lower levels of suicidal ideation directly and indirectly via the protective effects of Internet use on lowering depression, which was partially mediated by the positive influence Internet use has on older adults' social relationship satisfaction. The results support previous theories about the relationship between social relationships, depression, and suicidal behavior and prior results about how the Internet might confer mental and social health benefits to older adults. This suggests that the Internet is an important social and health activity that contributes to lowering suicidal ideation in older adults.

  6. Mediating and moderating processes in the relationship between multicultural ideology and attitudes towards immigrants in emerging adults.

    Science.gov (United States)

    Musso, Pasquale; Inguglia, Cristiano; Lo Coco, Alida; Albiero, Paolo; Berry, John W

    2016-07-04

    Few studies examine intercultural relations in emerging adulthood. Framed from the perspective of the Mutual Intercultural Relations in Plural Societies (MIRIPS) project, the current paper examined the mediating role of tolerance and perceived consequences of immigration in the relationship between multicultural ideology and attitudes towards immigrants. Additionally, the moderating role of context was analysed. A two-group structural equation modelling was performed on data collected from 305 Italian emerging adults living both in northern and in southern Italy with different socio-political climates towards immigrants. In both groups, tolerance and perceived consequences of immigration mediated the relationship between multicultural ideology and attitudes towards immigrants. Also, this indirect relationship was significantly higher for the northern than southern Italians. These findings provide provisional evidence of mediating and moderating processes in the relationship between multicultural ideology and attitudes towards immigrants and suggest important implications for practitioners interested in promoting intercultural relations among emerging adults.

  7. Perceived Parenting Styles Fail to Mediate Between Anxiety and Attachment Styles in Adult Siblings of Individuals with Developmental Disabilities.

    Science.gov (United States)

    O'Neill, Linda P; Murray, Lindsay E

    2016-09-01

    Adult siblings of individuals with developmental disabilities often experience higher levels of anxiety than individuals in the general population. The present study tested whether perceived parenting could mediate the relationship between attachment styles and anxiety in the sibling group compared to a control group. Little association was found between perceived parenting and attachment styles or anxiety for the siblings but there were robust and expected findings for the control. Adult attachment-related-anxiety was a significant unique predictor of anxiety in the sibling group but there was no mediational role for perceived parenting. Conversely, the majority of parenting styles significantly mediated the relationship between attachment and anxiety in the control. Implications for the atypical findings in the sibling group are discussed.

  8. The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to soybean mosaic virus.

    Science.gov (United States)

    Zhang, Chunquan; Grosic, Sehiza; Whitham, Steven A; Hill, John H

    2012-10-01

    Soybean mosaic virus (SMV) is a major viral pathogen of soybean. Among the three SMV resistance genes, Rsv1 mediates extreme resistance (ER) against most SMV strains, including the β-glucuronidase-tagged G2 isolate that was previously used in studies of Rsv1. Using virus-induced gene silencing (VIGS), we screened 82 VIGS constructs to identify genes that play a role in Rsv1-mediated ER to SMV infection. The target genes included putative Rsv1 candidate genes, soybean orthologs to known defense-signaling genes, and 62 WRKY transcription factors. We identified eight VIGS constructs that compromised Rsv1-mediated resistance when the target genes were silenced, including GmEDR1, GmEDS1, GmHSP90, GmJAR1, GmPAD4, and two WRKY transcription factors. Together, our results provide new insight into the soybean signaling network required for ER against SMV.

  9. Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria

    DEFF Research Database (Denmark)

    Zhang, Qingfeng; Siegel, T Nicolai; Martins, Rafael M

    2014-01-01

    malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin......-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non......-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of Pf...

  10. Agrobacterium-mediated Transformation of Rice (Oryza sativa L.) with Atrazine Chlorohydrolase Gene (atzA)

    Institute of Scientific and Technical Information of China (English)

    WANG Song-wen; SHI Li-li; SUN Zong-xiu; CAI Bao-li; FU Ya-ping; WANG Yang; SI Hua-min; LIU Xia; ZHANG Xin

    2005-01-01

    Atrazine chlorohydrolase gene (atzA) was cloned from Arthrobacter sp. AD1. A plant expression plasmid was constructed under the control of CaMV35s promoter and was used in rice transformation. The target gene was successfully introduced into mature embryos of a japonica rice cultivar Jindao 107 by Agrobacterium- mediated transformation and hundreds of transgenic plants were obtained. The exogenous atzA gene in the transgenic plants that expressed atrazine resistance was confirmed by Southern blot hybridization. The resistance experiments by spraying transgenic rice plants with 0.133% atrazine shown that most of the transgenic rice plants exhibited the resistance to herbicide atrazine. The segregation of exogenous atzA gene in T1 progeny corresponded to the Mendelian ratio.

  11. Polyethylenimine-mediated gene delivery to the lung and therapeutic applications

    Directory of Open Access Journals (Sweden)

    Sante Di Gioia

    2008-09-01

    Full Text Available Sante Di Gioia, Massimo ConeseDepartment of Biomedical Sciences, University of Foggia, Foggia, ItalyAbstract: Nonviral gene delivery is now considered a promising alternative to viral vectors. Among nonviral gene delivery agents, polyethylenimine (PEI has emerged as a potent candidate for gene delivery to the lung. PEI has some advantages over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. However, intracellular (mainly the nuclear membrane and extracellular obstacles still hamper its efficiency in vitro and in vivo, depending on the route of administration and the type of PEI. Nuclear delivery has been increased by adding nuclear localization signals. To overcome nonspecific interactions with biological fluids, extracellular matrix components and nontarget cells, strategies have been developed to protect polyplexes from these interactions and to increase target specificity and gene expression. When gene delivery into airway epithelial cells of the conducting airways is necessary, aerosolization of complexes seems to be better suited to guarantee higher transgene expression in the airway epithelial cells with lower toxicity than observed with either intratracheal or intravenous administration. Aerosolization, indeed, is useful to target the alveolar epithelium and pulmonary endothelium. Proof-of-principle that PEI-mediated gene delivery has therapeutic application to some genetic and acquired lung disease is presented, using as genetic material either plasmidic DNA or small-interfering RNA, although optimization of formulation and delivery protocols and limitation of toxicity need further studies.Keywords: gene transfer, gene therapy, polyethylenimine, airway epithelial cells, lung, RNA interference

  12. Euglossine bees mediate only limited long-distance gene flow in a tropical vine.

    Science.gov (United States)

    Opedal, Øystein H; Falahati-Anbaran, Mohsen; Albertsen, Elena; Armbruster, W Scott; Pérez-Barrales, Rocío; Stenøien, Hans K; Pélabon, Christophe

    2017-03-01

    Euglossine bees (Apidae: Euglossini) have long been hypothesized to act as long-distance pollinators of many low-density tropical plants. We tested this hypothesis by the analysis of gene flow and genetic structure within and among populations of the euglossine bee-pollinated vine Dalechampia scandens. Using microsatellite markers, we assessed historical gene flow by the quantification of regional-scale genetic structure and isolation by distance among 18 populations, and contemporary gene flow by the estimation of recent migration rates among populations. To assess bee-mediated pollen dispersal on a smaller scale, we conducted paternity analyses within a focal population, and quantified within-population spatial genetic structure in four populations. Gene flow was limited to certain nearby populations within continuous forest blocks, whereas drift appeared to dominate on larger scales. Limited long-distance gene flow was supported by within-population patterns; gene flow was biased towards nearby plants, and significant small-scale spatial genetic structure was detected within populations. These findings suggest that, although female euglossine bees might be effective at moving pollen within populations, and perhaps within forest blocks, their contribution to gene flow on the regional scale seems too limited to counteract genetic drift in patchily distributed tropical plants. Among-population gene flow might have been reduced following habitat fragmentation.

  13. Artificial microRNA mediated gene silencing in plants: progress and perspectives.

    Science.gov (United States)

    Tiwari, Manish; Sharma, Deepika; Trivedi, Prabodh Kumar

    2014-09-01

    Homology based gene silencing has emerged as a convenient approach for repressing expression of genes in order to study their functions. For this purpose, several antisense or small interfering RNA based gene silencing techniques have been frequently employed in plant research. Artificial microRNAs (amiRNAs) mediated gene silencing represents one of such techniques which can utilize as a potential tool in functional genomics. Similar to microRNAs, amiRNAs are single-stranded, approximately 21 nt long, and designed by replacing the mature miRNA sequences of duplex within pre-miRNAs. These amiRNAs are processed via small RNA biogenesis and silencing machinery and deregulate target expression. Holding to various refinements, amiRNA technology offers several advantages over other gene silencing methods. This is a powerful and robust tool, and could be applied to unravel new insight of metabolic pathways and gene functions across the various disciplines as well as in translating observations for improving favourable traits in plants. This review highlights general background of small RNAs, improvements made in RNAi based gene silencing, implications of amiRNA in gene silencing, and describes future themes for improving value of this technology in plant science.

  14. Agrobacterium-mediated transformation of tomato elicits unexpected flower phenotypes with similar gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Yi-Hong Wang

    Full Text Available BACKGROUND: Genetic transformation mediated by Agrobacterium tumefaciens is known to cause unexpected phenotypes. Mutations of a specific set of homeotic genes can result in altered floral structure. METHODOLOGY/PRINCIPAL FINDINGS: Previously we identified two genes (LeTGA1 and SOLly GLB1 induced by nutrient availability in tomato. To further elucidate their function, we sought to knock out the genes using antisense RNAi. When antisense constructs for the two different tomato genes were each transformed into Micro-Tina tomato plants, one primary transformant with similar mutant flower phenotypes was identified from transformation of each construct. Microarray analysis shows that a similar set of genes were up- or downregulated in both mutants. Sequencing of insertion sites indicates that each is inserted into a repetitive region which could impact expression of affected genes but direct alteration of floral homeotic gene sequences was not detected. CONCLUSION: This is the first report that dominant flower mutations could be caused by genetic transformation designed to knock out two nutrient stress related genes.

  15. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Shesheny

    Full Text Available Huanglongbing (HLB causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP, the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas, the causal agent of HLB. Silencing genes by RNA interference (RNAi is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th of the nymphal stage. Micro-application (topical application of dsRNA to 5(th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  16. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  17. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  18. Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals.

    Science.gov (United States)

    Piasecki, Brian P; Burghoorn, Jan; Swoboda, Peter

    2010-07-20

    Cilia were present in the last eukaryotic common ancestor (LECA) and were retained by most organisms spanning all extant eukaryotic lineages, including organisms in the Unikonta (Amoebozoa, fungi, choanoflagellates, and animals), Archaeplastida, Excavata, Chromalveolata, and Rhizaria. In certain animals, including humans, ciliary gene regulation is mediated by Regulatory Factor X (RFX) transcription factors (TFs). RFX TFs bind X-box promoter motifs and thereby positively regulate >50 ciliary genes. Though RFX-mediated ciliary gene regulation has been studied in several bilaterian animals, little is known about the evolutionary conservation of ciliary gene regulation. Here, we explore the evolutionary relationships between RFX TFs and cilia. By sampling the genome sequences of >120 eukaryotic organisms, we show that RFX TFs are exclusively found in unikont organisms (whether ciliated or not), but are completely absent from the genome sequences of all nonunikont organisms (again, whether ciliated or not). Sampling the promoter sequences of 12 highly conserved ciliary genes from 23 diverse unikont and nonunikont organisms further revealed that phylogenetic footprints of X-box promoter motif sequences are found exclusively in ciliary genes of certain animals. Thus, there is no correlation between cilia/ciliary genes and the presence or absence of RFX TFs and X-box promoter motifs in nonanimal unikont and in nonunikont organisms. These data suggest that RFX TFs originated early in the unikont lineage, distinctly after cilia evolved. The evolutionary model that best explains these observations indicates that the transcriptional rewiring of many ciliary genes by RFX TFs occurred early in the animal lineage.

  19. Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision.

    Science.gov (United States)

    Nishizawa-Yokoi, Ayako; Endo, Masaki; Ohtsuki, Namie; Saika, Hiroaki; Toki, Seiichi

    2015-01-01

    Precise genome engineering via homologous recombination (HR)-mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR-mediated GT is an extremely rare event, positive-negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re-integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)-tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants.

  20. Expression of tumor necrosis factor-alpha-mediated genes predicts recurrence-free survival in lung cancer.

    Science.gov (United States)

    Wang, Baohua; Song, Ning; Yu, Tong; Zhou, Lianya; Zhang, Helin; Duan, Lin; He, Wenshu; Zhu, Yihua; Bai, Yunfei; Zhu, Miao

    2014-01-01

    In this study, we conducted a meta-analysis on high-throughput gene expression data to identify TNF-α-mediated genes implicated in lung cancer. We first investigated the gene expression profiles of two independent TNF-α/TNFR KO murine models. The EGF receptor signaling pathway was the top pathway associated with genes mediated by TNF-α. After matching the TNF-α-mediated mouse genes to their human orthologs, we compared the expression patterns of the TNF-α-mediated genes in normal and tumor lung tissues obtained from humans. Based on the TNF-α-mediated genes that were dysregulated in lung tumors, we developed a prognostic gene signature that effectively predicted recurrence-free survival in lung cancer in two validation cohorts. Resampling tests suggested that the prognostic power of the gene signature was not by chance, and multivariate analysis suggested that this gene signature was independent of the traditional clinical factors and enhanced the identification of lung cancer patients at greater risk for recurrence.

  1. Expression of tumor necrosis factor-alpha-mediated genes predicts recurrence-free survival in lung cancer.

    Directory of Open Access Journals (Sweden)

    Baohua Wang

    Full Text Available In this study, we conducted a meta-analysis on high-throughput gene expression data to identify TNF-α-mediated genes implicated in lung cancer. We first investigated the gene expression profiles of two independent TNF-α/TNFR KO murine models. The EGF receptor signaling pathway was the top pathway associated with genes mediated by TNF-α. After matching the TNF-α-mediated mouse genes to their human orthologs, we compared the expression patterns of the TNF-α-mediated genes in normal and tumor lung tissues obtained from humans. Based on the TNF-α-mediated genes that were dysregulated in lung tumors, we developed a prognostic gene signature that effectively predicted recurrence-free survival in lung cancer in two validation cohorts. Resampling tests suggested that the prognostic power of the gene signature was not by chance, and multivariate analysis suggested that this gene signature was independent of the traditional clinical factors and enhanced the identification of lung cancer patients at greater risk for recurrence.

  2. Method of Peptide Nucleic Acid (PNA)-Mediated Antisense Inhibition of Gene Expression in Campylobacter jejuni.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2017-01-01

    Peptide nucleic acid (PNA) is an oligonucleotide mimic that recognizes and binds to nucleic acids. The strong binding affinity of PNA to mRNA coupled with its high sequence specificity enable antisense PNA to selectively inhibit (i.e., knockdown) the protein synthesis of a target gene. This novel technology provides a powerful tool for Campylobacter studies because molecular techniques have been relatively less well-developed for this bacterium as compared to other pathogens, such as Escherichia coli and Salmonella. This chapter describes a protocol for PNA-mediated antisense inhibition of gene expression in Campylobacter jejuni.

  3. Baculovirus vector-mediated transfer of NIS gene into colon tumor cells for radionuclide therapy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the feasibility of radionuclide therapy of colon tumor cells by baculovirus vector-mediated transfer of the sodium/iodide symporter(NIS) gene.METHODS:A recombinant baculovirus plasmid carrying the NIS gene was constructed,and the viruses(BacNIS) were prepared using the Bac-to-Bac system.The infection efficiency in the colon cancer cell line SW1116 of a green fluorescent protein(GFP) expressing baculovirus(Bac-GFP) at different multiplicities of infection(MOI) with various concentrations o...

  4. Transformation of GbSGT1 gene into banana by an Agrobacterium-mediated approach

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    SGT1 is a homologue of the yeast ubiquitin ligase-associated protein. It controls some protein degradation and activates defense pathway in plants. Cotton GbSGT1 gene (Gossypium barbadense) has been isolated and characterized in previous work. In this study, the plant expression vector pBSGT1 with bar gene as a selection agent was constructed and transgenic banana was obtained via Agrobacterium-mediated transformation with the assistance of particle bombardment and screened with PCR and Basta spreading on banana plant leaves. Estimating of transgenic banana plants for resistance to Panama wilt is in progress.

  5. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  6. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  7. Electroporation-mediated Delivery of Genes in Rodent Models of Lung Contusion

    OpenAIRE

    2014-01-01

    Several of the biological processes involved in the pathogenesis of acute lung injury and acute respiratory distress syndrome after lung contusion are regulated at a genetic and epigenetic level. Thus, strategies to manipulate gene expression in this context are highly desirable not only to elucidate the mechanisms involved but also to look for potential therapies. In the present chapter, we describe mouse and rat models of inducing blunt thoracic injury followed by electroporation-mediated g...

  8. Genetic analysis of transgenome structure and size of chromosome—mediated gene transfer lines

    Institute of Scientific and Technical Information of China (English)

    XUWeIMING

    1992-01-01

    The TK-selected chromosome-mediate gene transfer lines were analysed using DNA dot blot method G-11 banding and in situ hybridization.The results showed that CMGT can provide a wide variety of intermediate size of the transgenome from greater than 80,000kb to less than 2,000kb,Some of transfectants are intergrated into mouse chromosome which can be detected by G-11 banding and in situ hybridization.

  9. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin

    OpenAIRE

    Zheng, Fei; Luo, Yongneng; Wang, Hongbing

    2009-01-01

    The induction of the immediate early gene Arc is strongly implicated in synaptic plasticity. Although the role of ERK was demonstrated, the regulation of Arc expression is largely unknown. In this study, we investigated the major signaling pathways underlying brain-derived neurotrophic factor (BDNF)-mediated Arc transcription in cultured cortical neurons. The BDNF-stimulated Arc transcription was solely regulated by the Ras-Raf-MAPK signaling through ERK, but not by phosphoinositide 3-kinase ...

  10. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, M.K.; Samples, J.R.; Kramer, P.L. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1997-02-01

    Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-on-set primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C. 57 refs., 3 figs., 3 tabs.

  11. CTCF mediates the cell-type specific spatial organization of the Kcnq5 locus and the local gene regulation.

    Directory of Open Access Journals (Sweden)

    Licheng Ren

    Full Text Available Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.

  12. Sesn1 is a novel gene for left-right asymmetry and mediating nodal signaling.

    Science.gov (United States)

    Peeters, Hilde; Voz, Marianne L; Verschueren, Kristin; De Cat, Bart; Pendeville, Hélène; Thienpont, Bernard; Schellens, Ann; Belmont, John W; David, Guido; Van De Ven, Wim J M; Fryns, Jean-Pierre; Gewillig, Marc; Huylebroeck, Danny; Peers, Bernard; Devriendt, Koen

    2006-11-15

    Remarkable progress has been made in understanding the molecular mechanisms underlying left-right asymmetry in vertebrate animal models but little is known on left-right axis formation in humans. Previously, we identified SESN1 (also known as PA26) as a candidate gene for heterotaxia by positional cloning of the breakpoint regions of a de novo translocation in a heterotaxia patient. In this study, we show by means of a zebrafish sesn1-knockdown model that Sesn1 is required for normal embryonic left-right determination. In this model, developmental defects and expression data of genes implicated in vertebrate left-right asymmetry indicate a role for Sesn1 in mediating Nodal signaling. In the lateral plate mesoderm, Nodal signaling plays a central role in left-right axis formation in vertebrates and is mediated by FoxH1 transcriptional induction. In line with this, we show that Sesn1 physically interacts with FoxH1 or a FoxH1-containing complex. Mutation analysis in a panel of 234 patients with isolated heterotaxia did not reveal mutations, indicating that these are only exceptional causes of human heterotaxia. In this study, we identify SESN1 as an indispensable gene for vertebrate left-right asymmetry and a new player in mediating Nodal signaling.

  13. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Schwab

    Full Text Available BACKGROUND: Different classes of small RNAs (sRNAs refine the expression of numerous genes in higher eukaryotes by directing protein partners to complementary nucleic acids, where they mediate gene silencing. Plants encode a unique class of sRNAs, called trans-acting small interfering RNAs (tasiRNAs, which post-transcriptionally regulate protein-coding transcripts, as do microRNAs (miRNAs, and both sRNA classes control development through their targets. TasiRNA biogenesis requires multiple components of the siRNA pathway and also miRNAs. But while 21mer siRNAs originating from transgenes can mediate silencing across several cell layers, miRNA action seems spatially restricted to the producing or closely surrounding cells. PRINCIPAL FINDINGS: We have previously described the isolation of a genetrap reporter line for TAS3a, the major locus producing AUXIN RESPONS FACTOR (ARF-regulating tasiRNAs in the Arabidopsis shoot. Its activity is limited to the adaxial (upper side of leaf primordia, thus spatially isolated from ARF-activities, which are located in the abaxial (lower side. We show here by in situ hybridization and reporter fusions that the silencing activities of ARF-regulating tasiRNAs are indeed manifested non-cell autonomously to spatially control ARF activities. CONCLUSIONS/SIGNIFICANCE: Endogenous tasiRNAs are thus mediators of a mobile developmental signal and might provide effective gene silencing at a distance beyond the reach of most miRNAs.

  14. Culture as a mediator of gene-environment interaction: Cultural consonance, childhood adversity, a 2A serotonin receptor polymorphism, and depression in urban Brazil.

    Science.gov (United States)

    Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José

    2016-07-01

    Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes.

  15. INDUCIBLE RNAi-MEDIATED GENE SILENCING USING NANOSTRUCTURED GENE DELIVERY ARRAYS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, David George James [ORNL; McKnight, Timothy E [ORNL; Mcpherson, Jackson [University of Tennessee, Knoxville (UTK); Hoyt, Peter R [ORNL; Melechko, Anatoli Vasilievich [ORNL; Simpson, Michael L [ORNL; Sayler, Gary Steven [ORNL

    2008-01-01

    RNA interference has become a powerful biological tool over the last decade. In this study, a tetracycline-inducible shRNA vector system was designed for silencing CFP expression and delivered alongside the yfp marker gene into Chinese hamster ovary cells using impalefection on spatially indexed vertically aligned carbon nanofiber arrays (VACNFs). The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time. Following impalefection and tetracycline induction, 53.1% 10.4% of impalefected cells were fully silenced by the inducible CFP-silencing shRNA vector. Additionally, efficient CFP-silencing was observed in single cells among a population of cells that remained CFP-expressing. This effective transient expression system enables rapid analysis of gene silencing effects using RNAi in single cells and cell populations.

  16. Adenoviral-mediated Hath1-EGFP gene transfer into guinea pig cochlea through intact round window membrane

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; HU Yin-yan; YANG Shi-ming; GUO Wei; SUN Jian-he; HAN Dong-yi; ZHAI Suo-qiang; YANG Wei-yan; David Z.Z.He

    2008-01-01

    Objective To study expression of adenovira1-mediated Hathl-EGFP gene in the guinea pig cochlea after transfer through intact round window membrane (RWM), and to assess its effects on hearing. Methods Twenty adult guinea pigs were used, of which: 12 were surgically inoculated with AdHath1-EGFP in the bony groove of round window niche, and 8 with artificial perilymph. Auditory brainstem response(ABR) thresholds were determined in all animals before and 5 days after surgery. On post-surgery day 5 and day 14, animals were sacrificed and whole mounts of cochlea and fro zensections were examined. Results ABR tests showed no significant change of hearing after the surgery.Strong fluorescence staining in the cochleae was seen in Ad-Hathl-EGFP groups. The highest levels of gene expression were seen in the post-surgery day 5 group with tittle decrease on post-surgery day 14.The contralateral cochlea and those in the control groups were free of fluorescence staining. Conclusion The transgenic Hath1-EGFP can be effectively delivered into the inner ear through intact RWM, in an atraumatic manner.

  17. Is the association between ACE genes and blood pressure mediated by postnatal growth during the first 3 years?

    Science.gov (United States)

    Min, JungWon; Kim, Young Ju; Lee, Hwayoung; Park, Eun Ae; Cho, Su Jin; Hong, Young Mi; Oh, Se-Young; Ha, Eunhee; Kang, DukHee; Park, Hyesook

    2012-06-01

    Unlike the defined role of angiotensin-converting enzyme (ACE) gene in adult hypertension, ACE gene did not show direct influence on childhood blood pressure (BP), rather, seemed to be related to childhood growth with age-dependent characteristics. Thus, we examined intermediate effects of postnatal growth between the ACE polymorphisms and BP. We analyzed data from 257 children born in 2001-04 at Ewha Womans University Hospital in Seoul, Korea, and followed them up until 3 years of age. Children with excessive adiposity had higher BP, as rapid growers did to no-change and decelerated growers. The ACE II genotype was associated with greater growth acceleration than the DD genotype (II: 46.8% vs. DD: 23.9%), and with a higher BP. The interactions between ACE genotype and adiposity at age 3 were significant on the BP levels. The highest BP increase with the same degree of adiposity was observed in those with the II genotype [β (SE) for BMI: 1.9 (0.9), p=0.04]; particularly, only rapid grown II carriers demonstrated statistical significance on this linear association. These results suggested that ACE polymorphisms and BP association are mediated by postnatal growth. Further studies are required to determine the age-specific ACE genetic effects and its undefined biological mechanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection

    Science.gov (United States)

    Wassmer, Sarah J.; Carvalho, Livia S.; György, Bence; Vandenberghe, Luk H.; Maguire, Casey A.

    2017-01-01

    Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye. PMID:28361998

  19. Asialoglycoprotein Receptor-Mediated Gene Delivery to Hepatocytes Using Galactosylated Polymers.

    Science.gov (United States)

    Thapa, Bindu; Kumar, Piyush; Zeng, Hongbo; Narain, Ravin

    2015-09-14

    Highly efficient, specific, and nontoxic gene delivery vector is required for gene therapy to the liver. Hepatocytes exclusively express asialoglycoprotein receptor (ASGPR), which can recognize and bind to galactose or N-acetylgalactosamine. Galactosylated polymers are therefore explored for targeted gene delivery to the liver. A library of safe and stable galactose-based glycopolymers that can specifically deliver genes to hepatocytes were synthesized having different architectures, compositions, and molecular weights via the reversible addition-fragmentation chain transfer process. The physical and chemical properties of these polymers have a great impact on gene delivery efficacy into hepatocytes, as such block copolymers are found to form more stable complexes with plasmid and have high gene delivery efficiency into ASGPR expressing hepatocytes. Transfection efficiency and uptake of polyplexes with these polymers decreased significantly by preincubation of hepatocytes with free asialofetuin or by adding free asialofetuin together with polyplexes into hepatocytes. The results confirmed that polyplexes with these polymers were taken up specifically by hepatocytes via ASGPR-mediated endocytosis. The results from transfection efficiency and uptake of these polymers in cells without ASGPR, such as SK Hep1 and HeLa cells, further support this mechanism. Since in vitro cytotoxicity assays prove these glycopolymers to be nontoxic, they may be useful for delivery of clinically important genes specifically to the liver.

  20. RETROVIRAL MEDIATED EFFICIENT TRANSFER ANDEXPRESSION OF MULTIPLE DRUG RESISTANCE GENE TO HUMAN LEUKEMIC CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%~ 72.5%) than in supernatant system (33.1%~ 46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.

  1. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  2. rAAV vector-mediated gene therapy for experimental ischemic stroke

    Directory of Open Access Journals (Sweden)

    Li Zhao-Jian

    2008-01-01

    Full Text Available The safest viral vector system for gene therapy is based on recombinant adeno-associated virus (rAAV up to date in Phase I clinical trials, which has been developed rapidly and applied for ischemic stroke gene therapy in animal experiments since the past seven years. rAAV vector has made great progress in improving gene delivery by modification of the capsid and increasing transgene expression by encapsidation of double-stranded rAAV genome. And in all, nine therapeutic genes in 12 animal studies were successfully delivered using rAAV vector to ischemic brain via different approaches in rat or mice stroke models for gene therapy and the results suggested that rAAV could mediate genes′ expression efficiently; most of them displayed evidently therapeutic efficacy with satisfactory biological safety. Gene therapy involving rAAV vector seems effective in attenuation of ischemic damage in stroke and has greatly promising potential use for patients in the future. In this review, we will focus on the basic biology and development of rAAV vector itself as well as the recent progress in the use of this vector for ischemic stroke gene therapy in animal experiments.

  3. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.

    Science.gov (United States)

    Wong, Piu; Hattangadi, Shilpa M; Cheng, Albert W; Frampton, Garrett M; Young, Richard A; Lodish, Harvey F

    2011-10-20

    It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.

  4. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  5. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    carry germline mutations. Importantly, the effect of a long-term suppression of the GH/IGF-1 axis during adulthood, as would be considered for human therapeutic purposes, has not been tested. The goal of this study was to determine whether temporally controlled Ghr gene deletion in adult mice would...... affect metabolism and longevity. Thus, we produced adult-onset GHRKO (aGHRKO) mice by disrupting the Ghr gene at 6 weeks of age. We found that aGHRKO mice replicate many of the beneficial effects observed in long-lived GHRKO mice. For example, aGHRKO mice, like GHRKO animals, displayed retarded growth...

  6. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  7. RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus.

    Science.gov (United States)

    Leng, Yueqiang; Wu, Chengxiang; Liu, Zhaohui; Friesen, Timothy L; Rasmussen, Jack B; Zhong, Shaobin

    2011-04-01

    A high-throughput RNA-mediated gene silencing system was developed for Cochliobolus sativus (anamorph: Bipolaris sorokiniana), the causal agent of spot blotch, common root rot and black point in barley and wheat. The green fluorescent protein gene (GFP) and the proteinaceous host-selective toxin gene (ToxA) were first introduced into C. sativus via the polyethylene glycol (PEG)-mediated transformation method. Transformants with a high level of expression of GFP or ToxA were generated. A silencing vector (pSGate1) based on the Gateway cloning system was developed and used to construct RNA interference (RNAi) vectors. Silencing of GFP and ToxA in the transformants was demonstrated by transformation with the RNAi construct expressing hairpin RNA (hpRNA) of the target gene. The polyketide synthase gene (CsPKS1), involved in melanin biosynthesis pathways in C. sativus, was also targeted by transformation with the RNAi vector (pSGate1-CsPKS1) encoding hpRNA of the CsPKS1 gene. The transformants with pSGate1-CsPKS1 exhibited an albino phenotype or reduced melanization, suggesting effective silencing of the endogenous CsPKS1 in C. sativus. Sectors exhibiting the wild-type phenotype of the fungus appeared in some of the CsPKS1-silenced transformants after subcultures as a result of inactivation or deletions of the RNAi transgene. The gene silencing system established provides a useful tool for functional genomics studies in C. sativus and other filamentous fungi.

  8. CRISPR-mediated direct mutation of cancer genes in the mouse liver.

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler

    2014-10-16

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.

  9. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  10. Gene by neuroticism interaction and cognitive function among older adults.

    Science.gov (United States)

    Dar-Nimrod, Ilan; Chapman, Benjamin P; Robbins, John A; Porsteinsson, Anton; Mapstone, Mark; Duberstein, Paul R

    2012-11-01

    Both apolipoprotein E (ApoE) ε-4 allele(s) and elevated trait neuroticism, the tendency to experience distress, are associated with cognitive function among older adults. We predicted that neuroticism moderates the association between ApoE and cognitive function and also explored whether other personality dimensions (openness to experience, agreeableness, extraversion, and conscientiousness) affect the association between ApoE status and cognitive function. Five-hundred and ninety-seven older adults (mean age of 78 years) enrolled in the Ginkgo Evaluation of Memory study completed the NEO five-factor inventory of personality. Cognitive function was assessed via the cognitive portion of the Alzheimer's Disease Assessment Scale, and a blood sample for ApoE genotyping was drawn. As hypothesized, regression analysis indicated that neuroticism moderated the relationship between the presence of ApoE ε-4 and cognitive function. Individuals with high neuroticism scores had significantly lower scores on the cognitive portion of the Alzheimer's Disease Assessment Scale compared with individuals with low neuroticism scores, but this was true only among carriers of ApoE ε-4 (interaction effect β = 0.124, p = 0.028). There was scant evidence that other personality dimensions moderate the association between ApoE ε-4 and cognitive function. Cognitive function may be affected by ApoE and neuroticism acting in tandem. Research on the underlying physiological mechanisms by which neuroticism amplifies the effect of ApoE ε-4 is warranted. The study of genotype by phenotype interactions provides an important and useful direction for the study of cognitive function among older adults and for the development of novel prevention programs. Copyright © 2012 John Wiley & Sons, Ltd.

  11. 3' Untranslated regions mediate transcriptional interference between convergent genes both locally and ectopically in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J; Hu, Xiaohua; Luo, Zewei

    2014-01-01

    Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision

  12. 3' Untranslated regions mediate transcriptional interference between convergent genes both locally and ectopically in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Luwen Wang

    2014-01-01

    Full Text Available Paired sense and antisense (S/AS genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the

  13. Communication Processes that Mediate Family Communication Patterns and Mental Well-Being: A Mean and Covariance Structures Analysis of Young Adults from Divorced and Nondivorced Families

    Science.gov (United States)

    Schrodt, Paul; Ledbetter, Andrew M.

    2007-01-01

    In this study, demand/withdraw patterns and feeling caught were tested as mediators of family communication patterns and young adults' mental well-being. Participants included 567 young adults from divorced and nondivorced families. For young adults in nondivorced families, family conversation orientations had both a positive, direct effect on…

  14. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Directory of Open Access Journals (Sweden)

    Weindruch Richard

    2007-03-01

    Full Text Available Abstract Background Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. Results We identified 712 transcripts that are differentially expressed in young (5 month old and old (25-month old mouse skeletal muscle. Caloric restriction (CR completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P +/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. Conclusion These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.

  15. STAT4-mediated transcriptional repression of the IL5 gene in human memory Th2 cells.

    Science.gov (United States)

    Gonzales-van Horn, Sarah R; Estrada, Leonardo D; van Oers, Nicolai S C; Farrar, J David

    2016-06-01

    Type I interferon (IFN-α/β) plays a critical role in suppressing viral replication by driving the transcription of hundreds of interferon-sensitive genes (ISGs). While many ISGs are transcriptionally activated by the ISGF3 complex, the significance of other signaling intermediates in IFN-α/β-mediated gene regulation remains elusive, particularly in rare cases of gene silencing. In human Th2 cells, IFN-α/β signaling suppressed IL5 and IL13 mRNA expression during recall responses to T-cell receptor (TCR) activation. This suppression occurred through a rapid reduction in the rate of nascent transcription, independent of de novo expression of ISGs. Further, IFN-α/β-mediated STAT4 activation was required for repressing the human IL5 gene, and disrupting STAT4 dimerization reversed this effect. This is the first demonstration of STAT4 acting as a transcriptional repressor in response to IFN-α/β signaling and highlights the unique activity of this cytokine to acutely block the expression of an inflammatory cytokine in human T cells.

  16. Usability Testing by Older Adults of a Computer-Mediated Health Communication Program

    Science.gov (United States)

    Lin, Carolyn A.; Neafsey, Patricia J.; Strickler, Zoe

    2010-01-01

    This study tested the usability of a touch-screen enabled “Personal Education Program” (PEP) with Advanced Practice Registered Nurses (APRN). The PEP is designed to enhance medication adherence and reduce adverse self-medication behaviors in older adults with hypertension. An iterative research process was employed, which involved the use of: (1) pre-trial focus groups to guide the design of system information architecture, (2) two different cycles of think-aloud trials to test the software interface, and (3) post-trial focus groups to gather feedback on the think-aloud studies. Results from this iterative usability testing process were utilized to systematically modify and improve the three PEP prototype versions—the pilot, Prototype-1 and Prototype-2. Findings contrasting the two separate think-aloud trials showed that APRN users rated the PEP system usability, system information and system-use satisfaction at a moderately high level between trials. In addition, errors using the interface were reduced by 76 percent and the interface time was reduced by 18.5 percent between the two trials. The usability testing processes employed in this study ensured an interface design adapted to APRNs’ needs and preferences to allow them to effectively utilize the computer-mediated health-communication technology in a clinical setting. PMID:19283536

  17. Influence of adult attachment insecurities on parenting self-esteem: the mediating role of dyadic adjustment.

    Science.gov (United States)

    Calvo, Vincenzo; Bianco, Francesca

    2015-01-01

    Parenting self-esteem includes two global components, parents' self-efficacy and satisfaction with their parental role, and has a crucial role in parent-child interactions. The purpose of this study was to develop an integrative model linking adult attachment insecurities, dyadic adjustment, and parenting self-esteem. The study involved 118 pairs (236 subjects) of heterosexual parents of a firstborn child aged 0-6 years. They were administered the Experiences in Close Relationships-Revised (ECR-R) questionnaire, the Dyadic Adjustment Scale, and the Parenting Sense of Competence Scale. Path analysis was used to design and test a theoretical integrative model, achieving a good fit with the data. Findings showed that dyadic adjustment mediates the negative influence on parenting self-efficacy of both attachment anxiety and attachment avoidance. Parenting satisfaction is positively influenced by parenting self-efficacy and negatively affected by child's age. Attachment anxiety negatively influences parenting satisfaction. Our findings are in line with the theoretical expectations and have promising implications for future research and intervention programs designed to improve parenting self-esteem.

  18. Influence of adult attachment insecurities on parenting self-esteem: The mediating role of dyadic adjustment

    Directory of Open Access Journals (Sweden)

    Vincenzo eCalvo

    2015-09-01

    Full Text Available Background: Parenting self-esteem includes two global components, parents’ self-efficacy and satisfaction with their parental role, and has a crucial role in parent-child interactions. The purpose of this study was to develop an integrative model linking adult attachment insecurities, dyadic adjustment, and parenting self-esteem.Methods: The study involved 118 pairs (236 subjects of heterosexual parents of a firstborn child aged 0 to 6 years. They were administered the Experiences in Close Relationships – Revised (ECR-R questionnaire, the Dyadic Adjustment Scale (DAS, and the Parenting Sense of Competence Scale (PSOC.Results: Path analysis was used to design and test a theoretical integrative model, achieving a good fit with the data. Findings showed that dyadic adjustment mediates the negative influence on parenting self-efficacy of both attachment anxiety and attachment avoidance. Parenting satisfaction is positively influenced by parenting self-efficacy and negatively affected by child’s age. Attachment anxiety negatively influences parenting satisfaction. Conclusion: Our findings are in line with the theoretical expectations and have promising implications for future research and intervention programs designed to improve parenting self-esteem.

  19. Sex- and tissue-specific effects of waterborne estrogen on estrogen receptor subtypes and E2-mediated gene expression in the reproductive axis of goldfish.

    Science.gov (United States)

    Marlatt, Vicki L; Lakoff, Josh; Crump, Kate; Martyniuk, Chris J; Watt, Jennifer; Jewell, Linda; Atkinson, Susanna; Blais, Jules M; Sherry, Jim; Moon, Thomas W; Trudeau, Vance L

    2010-05-01

    This research examined the gene expression profile of three goldfish estrogen receptor (ER) subtypes in multiple tissues in relation to mRNA levels of aromatase B and vitellogenin (VTG) following waterborne estrogen exposures. The protocol consisted of: i) adult male goldfish in late gonadal recrudescence exposed to 1 nM 17beta-estradiol (E2); ii) adult male and female goldfish in early sexual regression exposed to 1 nM E2 for 3, 6, 12 and 24h; and, iii) sexually mature, adult male goldfish exposed to 0.3 nM 17alpha-ethynylestradiol (EE2) for 24h. Liver produced the most consistent response with up-regulation of ERalpha in sexually regressed, mature and recrudescing males and in sexually regressed females. The dose and length of exposure, reproductive state and sex affected the auto-regulation of ERbeta1 by E2. ERbeta2 was not affected in any experiments suggesting it may not be auto-regulated by E2. Aromatase B and VTG gene expression were affected by E2, but also by other experimental conditions. EE2 induced liver ERalpha and VTG mRNA levels indicating that high environmental EE2 levels induce E2-mediated gene expression in a model teleost. These studies reveal a more complicated action of estrogenic compounds that has important implications on estrogenic endocrine disruptors in teleosts. Copyright 2010 Elsevier Inc. All rights reserved.

  20. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review

    Science.gov (United States)

    Bakar, L. M.; Abdullah, M. Z.; Doolaanea, A. A.; Ichwan, S. J. A.

    2017-08-01

    Cancer becomes a serious issue on society with increasing of their growth and proliferation, either in well economic developed countries or not. Recent years, oral cancer is one of the most threatening diseases impairing the quality of life of the patient. Scientists have emphasised on application of gene therapy for oral cancer by using nanoparticle as transportation vectors as a new alternative platform in order to overcome the limitations of conventional approaches. In modern medicine, nanotechnologies’ application, such as nanoparticles-mediated gene delivery, is one of promising tool for therapeutic devices. The objective of this article is to present a brief review summarizes on the current progress of nanotechnology-based gene delivery treatment system targeted for oral cancer.

  1. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    Science.gov (United States)

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.

  2. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  3. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia

    Science.gov (United States)

    Tripathi, Shubham; Deem, Michael W.

    2015-02-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.

  4. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.

    Science.gov (United States)

    Bearson, Bradley L; Brunelle, Brian W

    2015-08-01

    Fluoroquinolones are broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity, which can cause DNA damage and result in bacterial cell death. In response to DNA damage, bacteria induce an SOS response to stimulate DNA repair. However, the SOS response may also induce prophage with production of infectious virions. Salmonella strains typically contain multiple prophages, and certain strains including phage types DT120 and DT104 contain prophage that upon induction are capable of generalised transduction. In this study, strains of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium DT120 and DT104 were exposed to fluoroquinolones important for use in human and veterinary disease therapy to determine whether prophage(s) are induced that could facilitate phage-mediated gene transfer. Cultures of MDR S. Typhimurium DT120 and DT104 containing a kanamycin resistance plasmid were lysed after exposure to fluoroquinolones (ciprofloxacin, enrofloxacin and danofloxacin). Bacterial cell lysates were able to transfer the plasmid to a recipient kanamycin-susceptible Salmonella strain by generalised transduction. In addition, exposure of DT120 to ciprofloxacin induced the recA gene of the bacterial SOS response and genes encoded in a P22-like generalised transducing prophage. This research indicates that fluoroquinolone exposure of MDR Salmonella can facilitate horizontal gene transfer, suggesting that fluoroquinolone usage in human and veterinary medicine may have unintended consequences, including the induction of phage-mediated gene transfer from MDR Salmonella. Stimulation of gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, and clinical decisions regarding antibiotic selection for infectious disease therapy should include this potential risk. Published by Elsevier B.V.

  5. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer

    Institute of Scientific and Technical Information of China (English)

    TomohikoICHIKAWA; ShigeruHOSOKI; HiroyoshiSUZUKI; KoichiroAKAKURA; TatsuoIGARASHI; YuzoFURUYA; MitsuoOSHIMURA; CarrieW.RINKER-SCHAEFFER; NaokiNIHEI; JohnT.ISAACS; HaruoITO

    2000-01-01

    Aim: To identify the metastasis suppressor genes for prostate cancer. Methods: A copy of human chromosomes was introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediated chromosome transfer. Relationships between the size of human chromosomes introduced into microcell hybrid clones and the number of lung metastases produced by the clones were analyzed to determine which part of human chromosomes contained the metastasis suppressor gene (s) for prostate cancer. To determine portions of human chromosomes introduced, G-banding chromosomal analysis, fluorescence in situ hybridization analysis, and polymerase chain reaction analysis were performed. Results: Each of microcell hybrid clones containing human chromosomes 7, 8, 10, 11, 12, or 17 showed decreased ability to metastasize to the lung without any loss of ttmaorigenicity. This demonstrates that these human chromosomes contain metastasis suppressor genes for prostate cancer. Spontaneous deletion of portions of human chromosomes was observed in the human chromosome 7, 10, 11, 12, and 17 studies. In the human chromosome 8 study, irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal ann deletions of human chromosome 8. Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasis suppressor genes on human chromosomes were located on 7q21-22, 7q31.2-32, 8p21-12, 10q11-22, 11p13-11.2, 12p11-q13, 12q24-ter, and 17pter-q23. KAI1 and MKK4/SEKI were identified as metastasis suppressor genes from 11p11.2 and 17p12, respectively. Conclusion: This assay system is useful to identify metastasis suppressor gene (s) for prostate cancer.

  6. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  7. Avidin-biotin interaction mediated peptide assemblies as efficient gene delivery vectors for cancer therapy.

    Science.gov (United States)

    Qu, Wei; Chen, Wei-Hai; Kuang, Ying; Zeng, Xuan; Cheng, Si-Xue; Zhou, Xiang; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-01-01

    Gene therapy offers a bright future for the treatment of cancers. One of the research highlights focuses on smart gene delivery vectors with good biocompatibility and tumor-targeting ability. Here, a novel gene vector self-assembled through avidin-biotin interaction with optimized targeting functionality, biotinylated tumor-targeting peptide/avidin/biotinylated cell-penetrating peptide (TAC), was designed and prepared to mediate the in vitro and in vivo delivery of p53 gene. TAC exhibited efficient DNA-binding ability and low cytotoxicity. In in vitro transfection assay, TAC/p53 complexes showed higher transfection efficiency and expression amount of p53 protein in MCF-7 cells as compared with 293T and HeLa cells, primarily due to the specific recognition between tumor-targeting peptides and receptors on MCF-7 cells. Additionally, by in situ administration of TAC/p53 complexes into tumor-bearing mice, the expression of p53 gene was obviously upregulated in tumor cells, and the tumor growth was significantly suppressed. This study provides an alternative and unique strategy to assemble functionalized peptides, and the novel self-assembled vector TAC developed is a promising gene vector for cancer therapy.

  8. Detection of Clostridium perfringens alpha toxin gene in lambs by loop mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    B. Radhika

    2016-01-01

    Full Text Available Aim: The loop mediated isothermal amplification (LAMP was standardized for rapid detection of Clostridium perfringens. Materials and Methods: A total of 120 fecal samples were collected from enterotoxemia suspected lambs were used for screening of C. perfringens cpa gene by LAMP. The specificity of the LAMP amplified products was tested by digesting with restriction enzyme XmnI for alpha toxin gene. Results: Out of 120 samples screened 112 (93.3% samples were positive by both LAMP and polymerase chain reaction (PCR for detection of cpa gene which indicated the equal sensitivity of both the tests. The enzyme produced single cut in 162 base pair amplified product of alpha toxin gene at 81 base pair resulting in a single band in gel electrophoresis. Conclusion: Both LAMP and PCR for detection of cpa gene indicated the equal sensitivity of both the tests. Standardization of LAMP reaction for amplification of epsilon and beta toxin genes will help to identify the C. perfringens toxin types from the clinical samples. The test could be a suitable alternative to the PCR in detection of toxin types without the help of sophisticated machinery like thermal cycler. Considering its simplicity in operation and high sensitivity, there is the potential use of this technique in clinical diagnosis and surveillance of infectious diseases.

  9. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

    Science.gov (United States)

    Loureiro, Iñigo; Escorial, María-Concepción; Chueca, María-Cristina

    2016-01-01

    The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation.

  10. Mutant acetolactate synthase (ALS) gene as a selectable marker for Agrobacterium-mediated transformation of soybean

    Institute of Scientific and Technical Information of China (English)

    Chen Shiyun; Zhang Yong

    2006-01-01

    Soybean is one of the crops most difficult to be manipulated in vitro. Although several soybean transformation systems with different selectable marker genes have been reported, e.g. antibiotic (kanamycin or hygromycin) resistant genes and herbicide ( glufosinate, glyphosate) resistant selectable marker genes, all the selectable markers used were from bacteria origin. To find suitable selectable marker gene from plant origin for soybean transformation, a mutant acetolactate synthase (ALS) gene from Arabidopsis thaliana was tested for Agrobacterium-mediated soybean embryo axis transformation with the herbicide Arsenal as the selective agent. Transgenic soybean plants were obtained after the herbicide selection and the To transgenic lines showed resistance to the herbicide at a concentration of 100 g/ha. ALS enzyme assay of To transgenic line also showed higher activity compared to the wild type control plant.PCR analysis of the T1 transgenic lines confirmed the integration and segregation of the transgene. Taken together, our results showed that the mutant ALS gene is a suitable selectable marker for soybean transformation.

  11. Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma.

    Science.gov (United States)

    Lee, Won Jae; Škalamera, Dubravka; Dahmer-Heath, Mareike; Shakhbazov, Konstanin; Ranall, Max V; Fox, Carly; Lambie, Duncan; Stevenson, Alexander J; Yaswen, Paul; Gonda, Thomas J; Gabrielli, Brian

    2017-03-01

    Malignant melanomas often arise from nevi, which result from initial oncogene-induced hyperproliferation of melanocytes that are maintained in a CDKN2A/p16-mediated senescent state. Thus, genes that can bypass this senescence barrier are likely to contribute to melanoma development. We have performed a gain-of-function screen of 17,030 lentivirally expressed human open reading frames (ORFs) in a melanoma cell line containing an inducible p16 construct to identify such genes. Genes known to bypass p16-induced senescence arrest, including the human papilloma virus 18 E7 gene ( HPV18E7), and genes such as the p16-binding CDK6 with expected functions, as well as panel of novel genes, were identified, including high-mobility group box (HMGB) proteins. A number of these were further validated in two other models of p16-induced senescence. Tissue immunohistochemistry demonstrated higher levels of CDK6 in primary melanomas compared with normal skin and nevi. Reduction of CDK6 levels drove melanoma cells expressing functional p16 into senescence, demonstrating its contribution to bypass senescence.

  12. ADA1 and NET1 Genes of Yeast Mediate Both Chromosome Maintenance and Mitochondrial $\\rho^{-}$ Mutagenesis

    CERN Document Server

    Koltovaya, N A; Tchekhouta, I A; Devin, A B

    2002-01-01

    An increase in the mitochondrial (mt) rho^- mutagenesis is a well-known respose of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho^- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho^- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well as on ce...

  13. Ocular gene therapy: an evaluation of recombinant adeno-associated virus-mediated gene therapy interventions for the treatment of ocular disease.

    Science.gov (United States)

    Roy, Kamolika; Stein, Linda; Kaushal, Shalesh

    2010-08-01

    Both gene replacement therapy and alteration of host gene expression are playing increasingly important roles in the treatment of ocular diseases. Ocular gene therapy may provide alternatives to current treatments for eye diseases that are either greatly invasive and thus run the risk of complications, that offer only short-term relief from disease symptoms, or that are unable to directly treat vision loss. The success of three separate phase I clinical trials investigating a gene therapy intervention for the treatment of the retinal degenerative disorder Leber's congenital amaurosis (LCA) has unveiled the therapeutic potential of gene therapy. Preliminary results have demonstrated ocular gene transfer, using nonpathogenic recombinant adeno-associated viral (rAAV) vectors specifically, to be a safe, effective, and long-term treatment for LCA, a previously untreatable disorder. Nonpathogenic rAAV vectors offer the potential for long-term treatment. Many of the genes implicated in human ocular diseases have been identified, and animal models for such diseases have been developed, which have greatly facilitated the application of experimental rAAV-mediated gene therapy. This review highlights the key features of rAAV-mediated gene therapy that make it the most suitable gene therapy treatment approach for ocular diseases. Furthermore, it summarizes the current progress of rAAV-mediated gene therapy interventions/applications for a wide variety of ophthalmologic disorders.

  14. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    Directory of Open Access Journals (Sweden)

    Jang Soo Yook

    2016-03-01

    Full Text Available Naturally occurring astaxantin (ASX is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses using DNA microarray (Agilent 4 × 44 K whole mouse genome chip analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197 as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus.

  15. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  16. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  17. The mechanism underlying Ler-mediated alleviation of gene repression by H-NS.

    Science.gov (United States)

    Shin, Minsang

    2017-01-29

    Secretion of effector proteins in Enteropathogeneic Escherichia coli (EPEC) and Enterohemorrhagic Escherichia coli (EHEC) is mediated by a specialized type III secretion system, components of which are encoded in the LEE operons 1 to 5. H-NS, a global repressor in E. coli, silences the expression of LEE operons. Ler, a master regulator in LEE operons, shares 24% amnio acid identity and 44% amino acid similarity to H-NS. Interestingly, rather than a gene silencer, its main role has been characterized as an antagonizing protein that relieves H-NS-mediated transcriptional silencing. In the previous study we reported molecular mechanism for the repression of LEE5 promoter in EPEC and EHEC by H-NS as a protein interaction between upstream DNA-bound H-NS and the αCTD of promoter-bound RNA polymerase. The mechanism underlying Ler-mediated alleviation of the genes repression by H-NS is largely unknown. We examined regulatory effect of these proteins on LEE5p activity using various in vitro tools. Our results revealed that binding affinity of Ler to the LEE5p DNA is about 40 folds greater than that of H-NS as determined by surface plasmon resonance. We verified that Ler binding removed H-NS bound to the same stretch of DNA on LEE5 promoter resulting in a derepression. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.

    Science.gov (United States)

    Sun, Yongwei; Li, Jingying; Xia, Lanqin

    2016-01-01

    Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes' encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired "safe" harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in plant

  19. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    Science.gov (United States)

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male miceJohn C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.1Reproductive Toxicology Division, National Health and Envir...

  20. Monoamine Oxidase a Promoter Gene Associated with Problem Behavior in Adults with Intellectual/Developmental Disabilities

    Science.gov (United States)

    May, Michael E.; Srour, Ali; Hedges, Lora K.; Lightfoot, David A.; Phillips, John A., III; Blakely, Randy D.; Kennedy, Craig H.

    2009-01-01

    A functional polymorphism in the promoter of the gene encoding monoamine oxidase A has been associated with problem behavior in various populations. We examined the association of MAOA alleles in adult males with intellectual/developmental disabilities with and without established histories of problem behavior. These data were compared with a…

  1. Identification of Susceptibility Genes of Adult Asthma in French Canadian Women

    NARCIS (Netherlands)

    Berube, Jean-Christophe; Gaudreault, Nathalie; Lavoie-Charland, Emilie; Sbarra, Laura; Henry, Cyndi; Madore, Anne-Marie; Pare, Peter D.; van den Berge, Maarten; Nickle, David; Laviolette, Michel; Laprise, Catherine; Boulet, Louis-Philippe; Bosse, Yohan

    2016-01-01

    Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study

  2. Association of ADAM33 gene polymorphisms with adult-onset asthma and its severity in an Indian adult population

    Indian Academy of Sciences (India)

    Priya Tripathi; Shally Awasthi; Rajendra Prasad; Nuzhat Husain; Subramaniam Ganesh

    2011-08-01

    ADAM33, a member of the ADAM (a disintegrin and metalloprotease) gene family, is an asthma susceptibility gene originally identified by positional cloning. In the present study, we investigated the possible association of five single-nucleotide polymorphisms (SNPs) in the ADAM33 (rs511898, rs528557, rs44707, rs597980 and rs2787094) with adult-onset asthma in an Indian population. The study included 175 patients with mild intermittent ($n = 44$), mild persistent ($n = 108$) or moderate persistent ($n = 23$) subgroups of asthma, and 253 nonasthmatic control individuals. SNPs were genotyped with the help of restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) method, and data were analysed using chi-square test and logistic regression model. Bonferroni’s correction for multiple comparisons was applied for each hypothesis. Genotypes and allele frequencies of SNPs rs511898 and rs528557 were significantly associated with adult-onset asthma ($P = 0.010-\\lt 0.001$). A significant association of the homozygous mutant genotype and mutant alleles of SNPs rs2787094, rs44707 and rs597980 with the asthma was also observed ($P = 0.020-\\lt 0.001$). A positive association between asthma and haplotypes AGCCT, GGCCT, AGACT, GCAGT, GGACT, ACCCC and AGACC were also found ($P = 0.036-\\lt 0.001$, OR $= 2.07-8.49$). Haplotypes AGCGT, GCAGC, ACAGC, ACAGT, GGAGC and GGCGT appear to protect against asthma ($P = 0.013-\\lt 0.0001$, OR $= 0.34-0.10$). Our data suggest that ADAM33 gene polymorphisms serve as genetic risk factors for asthma in Indian adult population.

  3. Gene - environment interaction in programming hippocampal plasticity: focus on adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Muriel eKoehl

    2015-08-01

    Full Text Available Interactions between genes and environment are a critical feature of development and both contribute to shape individuality. They are at the chore of vulnerability / resiliency for mental illnesses. During the early postnatal period, several brain structures involved in cognitive and emotional processing, such as the hippocampus, still develop and it is likely that interferences with this neuronal development, which is genetically determined, might lead to long-lasting structural and functional consequences and increase the risk of developing psychopathology. One particular target is adult neurogenesis, which is involved in the regulation of cognitive and emotional processes. Insights into the dynamic interplay between genes and environmental factors in setting up individual rates of neurogenesis have come from laboratory studies exploring experience-dependent changes in adult neurogenesis as a function of individual’s genetic makeup. These studies have implications for our understanding of the mechanisms regulating adult neurogenesis, which could constitute a link between environmental challenges and psychopathology.

  4. UBR5 Gene Mutation Is Associated with Familial Adult Myoclonic Epilepsy in a Japanese Family

    OpenAIRE

    2012-01-01

    The causal gene(s) for familial adult myoclonic epilepsy (FAME) remains undetermined. To identify it, an exome analysis was performed for the proband in a Japanese FAME family. Of the 383 missense/nonsense variants examined, only c.5720G>A mutation (p.Arg1907His) in the UBR5 gene was found in all of the affected individuals in the family, but not in the nonaffected members. Such mutation was not found in any of the 85 healthy individuals in the same community nor in any of the 24 individuals ...

  5. Probing the Limits to MicroRNA-Mediated Control of Gene Expression.

    Directory of Open Access Journals (Sweden)

    Araks Martirosyan

    2016-01-01

    Full Text Available According to the 'ceRNA hypothesis', microRNAs (miRNAs may act as mediators of an effective positive interaction between long coding or non-coding RNA molecules, carrying significant potential implications for a variety of biological processes. Here, inspired by recent work providing a quantitative description of small regulatory elements as information-conveying channels, we characterize the effectiveness of miRNA-mediated regulation in terms of the optimal information flow achievable between modulator (transcription factors and target nodes (long RNAs. Our findings show that, while a sufficiently large degree of target derepression is needed to activate miRNA-mediated transmission, (a in case of differential mechanisms of complex processing and/or transcriptional capabilities, regulation by a post-transcriptional miRNA-channel can outperform that achieved through direct transcriptional control; moreover, (b in the presence of large populations of weakly interacting miRNA molecules the extra noise coming from titration disappears, allowing the miRNA-channel to process information as effectively as the direct channel. These observations establish the limits of miRNA-mediated post-transcriptional cross-talk and suggest that, besides providing a degree of noise buffering, this type of control may be effectively employed in cells both as a failsafe mechanism and as a preferential fine tuner of gene expression, pointing to the specific situations in which each of these functionalities is maximized.

  6. Mindfulness predicts less texting while driving among young adults: Examining attention- and emotion-regulation motives as potential mediators.

    Science.gov (United States)

    Feldman, Greg; Greeson, Jeff; Renna, Megan; Robbins-Monteith, Kendra

    2011-11-01

    Many young adult drivers read and send text messages while driving despite clear safety risks. Understanding predictors of texting-while-driving may help to indentify relevant targets for interventions to reduce this dangerous behavior. The present study examined whether individual differences in mindfulness is associated with texting-while-driving in a sample of young-adult drivers. Using path analysis, we tested whether this relationship would be mediated by the degree to which individuals use text-messaging as a means of reducing unpleasant emotions (emotion-regulation motives) and the degree to which individuals limit texting in order to focus on present-moment experiences (attention-regulation motives). Individuals lower in mindfulness reported more frequent texting-while-driving and this relationship appeared to be mediated primarily by emotion-regulation motives. Results may help inform the development of mindfulness-based interventions to prevent texting-while-driving.

  7. Methylation mediated silencing of TMS1/ASC gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gopisetty Gopal

    2006-07-01

    Full Text Available Abstract Background Transcriptional silencing associated with aberrant promoter methylation has been established as an alternate pathway for the development of cancer by inactivating tumor suppressor genes. TMS1 (Target of Methylation induced Silencing, also known as ASC (Apoptosis Speck like protein containing a CARD is a tumor suppressor gene which encodes for a CARD (caspase recruitment domain containing regulatory protein and has been shown to promote apoptosis directly and by activation of downstream caspases. This study describes the methylation induced silencing of TMS1/ASC gene in prostate cancer cell lines. We also examined the prevalence of TMS1/ASC gene methylation in prostate cancer tissue samples in an effort to correlate race and clinico-pathological features with TMS1/ASC gene methylation. Results Loss of TMS1/ASC gene expression associated with complete methylation of the promoter region was observed in LNCaP cells. Gene expression was restored by a demethylating agent, 5-aza-2'deoxycytidine, but not by a histone deacetylase inhibitor, Trichostatin A. Chromatin Immunoprecipitation (ChIP assay showed enrichment of MBD3 (methyl binding domain protein 3 to a higher degree than commonly associated MBDs and MeCP2. We evaluated the methylation pattern in 66 prostate cancer and 34 benign prostatic hyperplasia tissue samples. TMS1/ASC gene methylation was more prevalent in prostate cancer cases than controls in White patients (OR 7.6, p 0.002 while no difference between the cases and controls was seen in Black patients (OR 1.1, p 0.91. Conclusion Our study demonstrates that methylation-mediated silencing of TMS1/ASC is a frequent event in prostate cancer, thus identifying a new potential diagnostic and prognostic marker for the treatment of the disease. Racial differences in TMS1/ASC methylation patterns implicate the probable role of molecular markers in determining in susceptibility to prostate cancer in different ethnic groups.

  8. Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana.

    Science.gov (United States)

    Mishra, Sandhya; Singh, H B

    2015-03-01

    Melanin production in many fungal phytopathogens has been investigated to play direct or indirect role in pathogenesis. However, in Bipolaris sorokiniana, the spot blotch pathogen of wheat, much less is known about the role melanin play in pathogenesis. As an extension of our previous report, the present study aims to investigate the plausible association between melanin production and virulence factor in B. sorokiniana. In the previous study, we carried out analysis on the antifungal efficacy of biosynthesized silver nanoparticles (AgNPs) against B. sorokiniana. The present investigation revealed the gene expression analysis of melanin biosynthesis genes viz. polyketide synthase (PKS1) and scytalone dehydratase (SCD1) under the influence of AgNPs. The 0.05mg/ml concentration of AgNPs yielded noticeable inhibition of B. sorokiniana growth, while 0.1mg/ml concentration of AgNPs accounted for complete inhibition of pathogen growth. In addition, the semiquantitative RT-PCR analysis exhibited reduced expression of PKS1 and SCD1 under the influence of AgNPs treatment. Furthermore, the qRT-PCR demonstrated 6.47 and 1.808 fold significant decrease in the expression pattern of PKS1 and SCD1, respectively, in B. sorokiniana treated with AgNPs. The present study provides probable understanding of molecular events underlying the antifungal role of AgNPs against B. sorokiniana.

  9. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  10. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons.

    Directory of Open Access Journals (Sweden)

    Christoph Straub

    Full Text Available The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits.

  11. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly.

    Science.gov (United States)

    Sawamura, N; Ando, T; Maruyama, Y; Fujimuro, M; Mochizuki, H; Honjo, K; Shimoda, M; Toda, H; Sawamura-Yamamoto, T; Makuch, L A; Hayashi, A; Ishizuka, K; Cascella, N G; Kamiya, A; Ishida, N; Tomoda, T; Hai, T; Furukubo-Tokunaga, K; Sawa, A

    2008-12-01

    Disrupted-in-schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that colocalizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a corepressor N-CoR, modulating CRE-mediated gene transcription.

  12. Engineered Zinc Finger Nuclease–Mediated Homologous Recombination of the Human Rhodopsin Gene

    Science.gov (United States)

    Greenwald, David L.; Cashman, Siobhan M.

    2010-01-01

    Purpose. Novel zinc finger nucleases (ZFNs) were designed to target the human rhodopsin gene and induce homologous recombination of a donor DNA fragment. Methods. Three-finger zinc finger nucleases were designed based on previously published guidelines. To assay for ZFN specificity, the authors generated human embryonic retinoblast cell lines stably expressing a Pro23His rhodopsin, the most common mutation associated with autosomal dominant retinitis pigmentosa in North America. They report quantification of these rhodopsin-specific ZFNs to induce a targeted double-strand break in the human genome, demonstrate their ability to induce homologous recombination of a donor DNA fragment, and report the quantification of the frequency of ZFN-mediated homologous recombination. Results. Compared with endogenous homologous recombination, the authors observed a 12-fold increase in homologous recombination and an absolute frequency of ZFN-directed homologous recombination as high as 17% in the human rhodopsin gene. Conclusions. ZFNs are chimeric proteins with significant potential for the treatment of inherited diseases. In this study, the authors report the design of novel ZFNs targeting the human rhodopsin gene. These ZFNs may be useful for the treatment of retinal diseases such as retinitis pigmentosa, one of the most common causes of inherited blindness in the developed world. Herein, they also report on several aspects of donor fragment design and in vitro conditions that facilitate ZFN-mediated homologous recombination. PMID:20671268

  13. Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding

    Science.gov (United States)

    Victoria-Acosta, Georgina; Vazquez-Santillan, Karla; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Maldonado, Vilma; Martinez-Ruiz, Gustavo Ulises; Melendez-Zajgla, Jorge

    2015-01-01

    XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that mediate promoter CpG methylation have not been previously studied. Here, we demonstrate that CTCF interacts with the XAF1 promoter in vivo in a methylation-sensitive manner. By transgene assays, we demonstrate that CTCF mediates the open-chromatin configuration of the XAF1 promoter, inhibiting both CpG-dinucleotide methylation and repressive histone posttranslational modifications. In addition, the absence of CTCF in the XAF1 promoter inhibits transcriptional activation induced by well-known apoptosis activators. We report for the first time that epigenetic silencing of the XAF1 gene is a consequence of the loss of CTCF binding. PMID:26443201

  14. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants.

    Science.gov (United States)

    Tenea, Gabriela N; Spantzel, Joerg; Lee, Lan-Ying; Zhu, Yanmin; Lin, Kui; Johnson, Susan J; Gelvin, Stanton B

    2009-10-01

    The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.

  15. Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells.

    Science.gov (United States)

    Stanley, Erin L; Johnston, Daniel S; Fan, Jinjiang; Papadopoulos, Vassilios; Chen, Haolin; Ge, Ren-Shan; Zirkin, Barry R; Jelinsky, Scott A

    2011-12-01

    Leydig cells are the testosterone-producing cells in the adult male. Adult Leydig cells (ALCs) develop from stem Leydig cells (SLCs) through at least two intermediate cells, progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). Microarray gene expression was used to identify the transcriptional changes that occur with the differentiation of SLCs to PLCs and, thus, with the entry of SLCs into the Leydig cell lineage; to comprehensively examine differentiation through the development of ALCs; and to relate the pattern of gene expression in SLCs to that in a well-established stem cell, bone marrow stem cells (BSCs). We show that the pattern of gene expression by SLCs was more similar to the expression by BSCs, an established stem cell outside the male reproductive tract, than to any of the cells in the Leydig cell developmental lineage. These results indicated that the SLCs have many of the molecular characteristics of other stem cells. Pathway analysis indicated that development of Leydig cells from SLCs to PLCs was associated with decreased expression of genes related to adhesion and increased expression of genes related to steroidogenesis. Gene expression changes between PLCs and ILCs and between ILCs and ALCs were relatively minimal, suggesting that these cells are highly similar. In contrast, gene expression changes between SLCs and ALCs were quite distinct.

  16. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available BACKGROUND: Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. METHODOLOGY/PRINCIPAL FINDINGS: RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. CONCLUSIONS: SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  17. Molecular Network Analysis Suggests Aberrant CREB-Mediated Gene Regulation in the Alzheimer Disease Hippocampus

    Directory of Open Access Journals (Sweden)

    Jun-ichi Satoh

    2009-01-01

    Full Text Available The pathogenesis of Alzheimer disease (AD involves the complex interaction between genetic and environmental factors affecting multiple cellular pathways. Recent advances in systems biology provide a system-level understanding of AD by elucidating the genome-wide molecular interactions. By using KeyMolnet, a bioinformatics tool for analyzing molecular interactions on the curated knowledgebase, we characterized molecular network of 2,883 all stages of AD-related genes (ADGs and 559 incipient AD-related genes (IADGs identified by global gene expression profiling of the hippocampal CA1 region of AD brains in terms of significant clinical and pathological correlations (Blalock et al., Proc Natl Acad Sci USA 101: 2173-2178, 2004. By the common upstream search, KeyMolnet identified cAMP-response element-binding protein (CREB as the principal transcription factor exhibiting the most significant relevance to molecular networks of both ADGs and IADGs. The CREB-regulated transcriptional network included upregulated and downregulated sets of ADGs and IADGs, suggesting an involvement of generalized deregulation of the CREB signaling pathway in the pathophysiology of AD, beginning at the early stage of the disease. To verify the in silico observations in vivo, we conducted immunohistochemical studies of 11 AD and 13 age-matched control brains by using anti-phoshorylated CREB (pCREB antibody. An abnormal accumulation of pCREB imunoreactivity was identified in granules of granulovacuolar degeneration (GVD in the hippocampal neurons of AD brains. These observations suggest that aberrant CREB-mediated gene regulation serves as a molecular biomarker of AD-related pathological processes, and support the hypothesis that sequestration of pCREB in GVD granules is in part responsible for deregulation of CREB-mediated gene expression in AD hippocampus.

  18. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  19. Effects of dissolved gases and an echo contrast agent on ultrasound mediated in vitro gene transfection.

    Science.gov (United States)

    Ogawa, Ryohei; Kondo, Takashi; Honda, Hidemi; Zhao, Qing Li; Fukuda, Shigekazu; Riesz, Peter

    2002-09-01

    The effects of acoustic cavitation on in vitro transfection by ultrasound were investigated. HeLa cells were exposed to 1.0 MHz continuous ultrasound in culture media containing the luciferase gene. Transfection efficiency was elevated when an echo contrast agent, Levovist was added or air was dissolved in the medium. When cells were sonicated in medium saturated with Ar, N2 or N2O which have different gamma values (Cp/Cv), or were saturated with He, Ar or Ne with different thermal conductivities, the effectiveness for the dissolved gases in the ultrasound mediated transfection was Ar > N2 > N2O or Ar > Ne > He, respectively. When free radical formation in water by ultrasound was monitored as a measure of inertial cavitation, it was similarly affected by dissolved gases. These results indicate that the efficiency of ultrasound mediated transfection was significantly affected either by occurrence of or by modification of inertial cavitation due to various gases.

  20. Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Aβ levels

    Directory of Open Access Journals (Sweden)

    Dicker Bridget L

    2007-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by a decline in cognitive function and accumulation of amyloid-β peptide (Aβ in extracellular plaques. Mutations in amyloid precursor protein (APP and presenilins alter APP metabolism resulting in accumulation of Aβ42, a peptide essential for the formation of amyloid deposits and proposed to initiate the cascade leading to AD. However, the role of Aβ40, the more prevalent Aβ peptide secreted by cells and a major component of cerebral Aβ deposits, is less clear. In this study, virally-mediated gene transfer was used to selectively increase hippocampal levels of human Aβ42 and Aβ40 in adult Wistar rats, allowing examination of the contribution of each to the cognitive deficits and pathology seen in AD. Results Adeno-associated viral (AAV vectors encoding BRI-Aβ cDNAs were generated resulting in high-level hippocampal expression and secretion of the specific encoded Aβ peptide. As a comparison the effect of AAV-mediated overexpression of APPsw was also examined. Animals were tested for development of learning and memory deficits (open field, Morris water maze, passive avoidance, novel object recognition three months after infusion of AAV. A range of impairments was found, with the most pronounced deficits observed in animals co-injected with both AAV-BRI-Aβ40 and AAV-BRI-Aβ42. Brain tissue was analyzed by ELISA and immunohistochemistry to quantify levels of detergent soluble and insoluble Aβ peptides. BRI-Aβ42 and the combination of BRI-Aβ40+42 overexpression resulted in elevated levels of detergent-insoluble Aβ. No significant increase in detergent-insoluble Aβ was seen in the rats expressing APPsw or BRI-Aβ40. No pathological features were noted in any rats, except the AAV-BRI-Aβ42 rats which showed focal, amorphous, Thioflavin-negative Aβ42 deposits. Conclusion The results show that AAV-mediated gene transfer is a valuable tool to model aspects of AD pathology in

  1. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq

    Science.gov (United States)

    Anderson, Letícia; Amaral, Murilo S.; Beckedorff, Felipe; Silva, Lucas F.; Dazzani, Bianca; Oliveira, Katia C.; Almeida, Giulliana T.; Gomes, Monete R.; Pires, David S.; Setubal, João C.; DeMarco, Ricardo; Verjovski-Almeida, Sergio

    2015-01-01

    Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search

  2. Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

    Directory of Open Access Journals (Sweden)

    Michelle R. Campbell

    2013-01-01

    Full Text Available Nuclear factor- (erythroid-derived 2 like 2 (NFE2L2, NRF2 is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1, and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  3. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides

    Science.gov (United States)

    Bertoni, Carmen; Rustagi, Arjun; Rando, Thomas A.

    2009-01-01

    Gene editing mediated by oligonucleotides has been shown to induce stable single base alterations in genomic DNA in both prokaryotic and eukaryotic organisms. However, the low frequencies of gene repair have limited its applicability for both basic manipulation of genomic sequences and for the development of therapeutic approaches for genetic disorders. Here, we show that single-stranded oligodeoxynucleotides (ssODNs) containing a methyl-CpG modification and capable of binding to the methyl-CpG binding domain protein 4 (MBD4) are able to induce >10-fold higher levels of gene correction than ssODNs lacking the specific modification. Correction was stably inherited through cell division and was confirmed at the protein, transcript and genomic levels. Downregulation of MBD4 expression using RNAi prevented the enhancement of gene correction efficacy obtained using the methyl-CpG-modified ssODN, demonstrating the specificity of the repair mechanism being recruited. Our data demonstrate that efficient manipulation of genomic targets can be achieved and controlled by the type of ssODN used and by modulation of the repair mechanism involved in the correction process. This new generation of ssODNs represents an important technological advance that is likely to have an impact on multiple applications, especially for gene therapy where permanent correction of the genetic defect has clear advantages over viral and other nonviral approaches currently being tested. PMID:19854937

  4. Understanding the role of ETS-mediated gene regulation in complex biological processes.

    Science.gov (United States)

    Findlay, Victoria J; LaRue, Amanda C; Turner, David P; Watson, Patricia M; Watson, Dennis K

    2013-01-01

    Ets factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, which when perturbed contribute to tumor progression. The well-documented alterations in ETS factor expression and function during cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. The anti- and prometastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such an understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection, as well as better diagnosis and staging of disease; (2) detection of minimal residual disease recurrences and evaluation of response to therapy; (3) prevention; and (4) novel treatment strategies. Increased understanding of ETS-regulated biological pathways will directly impact these areas. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nguyen

    2016-01-01

    Full Text Available The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7 and 2 enzymes involved in glucose metabolism (pgd and fbp1a were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates.

  6. IMPROVEMENT OF HUMAN ISLET FUNCTION BY ADENOVIRUS MEDIATED HO-1 GENE TRANSFER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  7. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  8. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

    Directory of Open Access Journals (Sweden)

    Amanda Donnelly

    2015-12-01

    Full Text Available The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i provides enhanced phage-mediated gene transfer; (ii is applicable for laboratory transfection processes and (iii shows promise within industry for large-scale gene transfer applications.

  9. siRNA mediated gene silencing in Fusarium sp. HKF15 for overproduction of bikaverin.

    Science.gov (United States)

    Deshmukh, Radhika; Purohit, Hemant J

    2014-04-01

    Fusarium sp. HKF15 is an isolate from effluent treatment plant which produces bikaverin. Bikaverin is a polyketide having antitumor and antibiotic potential. Acetyl coenzyme A is a common precursor for bikaverin as well as carotenoids and gibberellins. A polyketide synthase gene bik1 is responsible for bikaverin production whereas, hydroxymethyl glutaryl coenzyme A reductase (hmgR) and farnesyl pyrophosphate synthase (fpps) are carotenoid and gibberellin pathway genes. Aim of this study was assessing siRNA mediated gene silencing for bikaverin overproduction with down-regulation of carotenoid and gibberellin pathway. HKF15 protoplasts derived from glucose grown culture were treated with 200pmolml(-1)hmgR and fpps siRNAs separately. Along with down-regulation of target genes, there was 2.4-fold increase in bik1 gene expression. The silencing was effective till 48h with a 41% increase in bikaverin production. The study proposes a strategy for manipulation of physiology towards desired secondary metabolite overproduction.

  10. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement

    Science.gov (United States)

    Sun, Yongwei; Li, Jingying; Xia, Lanqin

    2016-01-01

    Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes’ encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired “safe” harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in

  11. Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement

    Directory of Open Access Journals (Sweden)

    Yongwei Sun

    2016-12-01

    Full Text Available Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks (DSBs by sequence-specific nucleases (SSNs to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ or homology-directed repair (HDR. While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes’ encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired ‘safe’ harbor in a predefined manner. The emergence of three programmable SSNs such as zinc finger nucleases (ZFNs, transcriptional activator-like effector nucleases (TALENs, and the clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated protein 9 (Cas9 systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential

  12. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579

    Directory of Open Access Journals (Sweden)

    Buist Girbe

    2008-04-01

    Full Text Available Abstract Background The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by comparative transcriptome analysis of the wild-type and a ccpA-deletion strain. Results Comparative analysis revealed the growth performance and glucose consumption rates to be lower in the B. cereus ATCC 14579 ccpA deletion strain than in the wild-type. In exponentially grown cells, the expression of glycolytic genes, including a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase that mediates conversion of D-glyceraldehyde 3-phosphate to 3-phospho-D-glycerate in one single step, was down-regulated and expression of gluconeogenic genes and genes encoding the citric acid cycle was up-regulated in the B. cereus ccpA deletion strain. Furthermore, putative CRE-sites, that act as binding sites for CcpA, were identified to be present for these genes. These results indicate CcpA to be involved in the regulation of glucose metabolism, thereby optimizing the efficiency of glucose catabolism. Other genes of which the expression was affected by ccpA deletion and for which putative CRE-sites could be identified, included genes with an annotated function in the catabolism of ribose, histidine and possibly fucose/arabinose and aspartate. Notably, expression of the operons encoding non-hemolytic enterotoxin (Nhe and hemolytic enterotoxin (Hbl was affected by ccpA deletion, and putative CRE-sites were identified, which suggests catabolite repression of the enterotoxin operons to be CcpA-dependent. Conclusion The catabolite control protein CcpA in B. cereus ATCC 14579 is involved in optimizing the catabolism of glucose with concomitant repression of gluconeogenesis and alternative metabolic pathways. Furthermore, the results point to metabolic control

  13. Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant populations.

    Science.gov (United States)

    Burczyk, Jaroslaw; Koralewski, Tomasz E

    2005-07-01

    Assessment of contemporary pollen-mediated gene flow in plants is important for various aspects of plant population biology, genetic conservation and breeding. Here, through simulations we compare the two alternative approaches for measuring pollen-mediated gene flow: (i) the NEIGHBORHOOD model--a representative of parentage analyses, and (ii) the recently developed TWOGENER analysis of pollen pool structure. We investigate their properties in estimating the effective number of pollen parents (N(ep)) and the mean pollen dispersal distance (delta). We demonstrate that both methods provide very congruent estimates of N(ep) and delta, when the methods' assumptions considering the shape of pollen dispersal curve and the mating system follow those used in data simulations, although the NEIGHBORHOOD model exhibits generally lower variances of the estimates. The violations of the assumptions, especially increased selfing or long-distance pollen dispersal, affect the two methods to a different degree; however, they are still capable to provide comparable estimates of N(ep). The NEIGHBORHOOD model inherently allows to estimate both self-fertilization and outcrossing due to the long-distance pollen dispersal; however, the TWOGENER method is particularly sensitive to inflated selfing levels, which in turn may confound and suppress the effects of distant pollen movement. As a solution we demonstrate that in case of TWOGENER it is possible to extract the fraction of intraclass correlation that results from outcrossing only, which seems to be very relevant for measuring pollen-mediated gene flow. The two approaches differ in estimation precision and experimental efforts but they seem to be complementary depending on the main research focus and type of a population studied.

  14. Retrovirus-Mediated Gene Transfer in Immortalization of Progenitor Hair Cell Lines in Newborn Rat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan; ZHAI Suo-qiang; SONG Wei; GUO Wei; ZHENG Gui-liang; HU Yin-yan

    2008-01-01

    Objective To present an experimental method that allows isolation of greater epithelial ridge (GER) and lesser epithelial ridge(LER) cells from postnatal rat cochleae using a combinatorial approach of enzymatic digestion and mechanical separation and to investigate a retrovirus-mediated gene transfer technique for its possibl utility in immortalization of the GER and LER cell lines, in an effort to establish an in vitro model system of hair cell differentiation. Methods GER and LER cells were dissected from postnatal rat cochleae and immortalized by transferring the SV40 large T antigen using a retrovirus. The established cell lines were confirmed through morphology observation, immunnocytochemical staining and RT-PCR analysis. The Hathl gene was transferred into the cell lines using adenovirus-mediated techniques to explore their potential to differentiate into hair cells. Results The established cell lines were stably maintained for more than 20 passages and displayed many features similar to primary GER and LER cells. They grew in patches and assumed a polygonal morphology. Immunostaining showed labeling by SV40 large T antigen and Islet1 (a specific marker for GER and LER). All passages of the cell lines expressed SV40 large T antigen on RT-PCR analysis. The cells also showed the capability to differenti-ate into hair cell-like cells when forced to express Hathl. Conclusion Retrovirus-mediated gene transfer can be used in establishing immortalized progenitor hair cell lines in newborn rat, which may provide an invaluable system for studying hair cell differentiation and regeneration for new treatment of sensory hearing loss caused by hair cell loss.

  15. Comorbid psychopathology and stress mediate the relationship between autistic traits and repetitive behaviours in adults with autism.

    Science.gov (United States)

    García-Villamisar, D; Rojahn, J

    2015-02-01

    Comorbid psychopathology and stress were considered possible mediators that may explain the relationship between some autistic traits and repetitive behaviours. The current study sought to examine the mediational effects of comorbid psychopathology, executive dysfunctions and stress in the relationship between some autistic traits and repetitive behaviours. A battery of questionnaires including measures of autistic traits, repetitive behaviours, stress, executive dysfunctions and comorbid psychopathology were administered to a sample of adults with autism and intellectual disabilities (n = 43). We found that when taken as set dimensions of comorbidity, dysexecutive functioning and stress mediated or explained the effects of autistic symptoms on repetitive behaviour. The total model explained 60% of the variation in repetitive behaviours (R = 0.60; F = 13.64, P autism, while executive functioning did not contribute to that relationship. © 2013 2013 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  16. Mentalizing and its role as a mediator in the relationship between childhood experiences and adult functioning: Exploring the empirical evidence

    Directory of Open Access Journals (Sweden)

    Macintosh Heather Beth

    2013-01-01

    Full Text Available The introduction of the concept of mentalizing into psychoanalytic discourse has provided researchers with an important tool for beginning to understand the mechanisms mediating the relationships between childhood experiences and later psychological functioning. Researchers have made strong statements regarding the strength of this mediational relationship in their movement toward the building of novel and efficacious intervention approaches. The goal of this systematic review was to critically examine the empirical evidence for these statements. Five unique studies were identified that assessed the relationships between the variables of attachment and/or childhood adversity, mentalizing and adult functioning. Some preliminary evidence for the role of mentalizing as an important mediator variable was identified. However, researchers were cautioned to continue to engage in further empirical study to ensure that theoretical explorations do not overstate or move too far beyond the empirical research findings.

  17. Constructing the Suicide Risk Index (SRI): does it work in predicting suicidal behavior in young adults mediated by proximal factors?

    Science.gov (United States)

    O'Connor, Maebh; Dooley, Barbara; Fitzgerald, Amanda

    2015-01-01

    Suicide is a key concern among young adults. The aim of the study was to (1) construct a suicide risk index (SRI) based on demographic, situational, and behavioral factors known to be linked to suicidal behavior and (2) investigate whether the association between the SRI and suicidal behavior was mediated by proximal processes (personal factors, coping strategies, and emotional states). Participants consisted of 7,558 individuals aged 17-25 years (M = 20.35, SD = 1.91). Nearly 22% (n = 1,542) reported self-harm and 7% (n = 499) had attempted suicide. Mediation analysis revealed both a direct effect (ß = .299, 95% CI = [.281, .317], p suicidal behavior. The strongest mediators were levels of self-esteem, depression, and avoidant coping. Interventions to increase self-esteem, reduce depression, and encourage adaptive coping strategies may prevent suicidal behavior in young people.

  18. Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina.

    Directory of Open Access Journals (Sweden)

    Carolina Beltrame Del Debbio

    Full Text Available BACKGROUND: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception. CONCLUSION/SIGNIFICANCE: In summary, our results provide a proof of principle for non-neurotoxin-mediated activation of Müller cells through Notch and Wnt signaling toward the regeneration of rod photoreceptors.

  19. The mediating effect of chronic pain on the relationship between obesity and physical function and disability in older adults.

    Science.gov (United States)

    Fowler-Brown, Angela; Wee, Christina C; Marcantonio, Edward; Ngo, Long; Leveille, Suzanne

    2013-12-01

    To determine the extent to which bodily pain mediates the effect of obesity on disability and physical function. Cross-sectional analysis. Population-based sample of residents in the greater Boston area. Community-dwelling adults aged 70 and older (N=736). Body mass index (BMI), obtained from measured height and weight, was categorized as normal weight (19.0-24.9 kg/m2), overweight (25.0-29.9 kg/m2), or obese (≥30.0 kg/m2). Main outcome measures were the Physical Component Summary of the Medical Outcomes Study 12-item Short-Form Survey (PCS), activity of daily living (ADL) disability, and Short Physical Performance Battery (SPPB) score. Chronic pain was assessed according to the number of weight-bearing joint sites that had pain (hips, knees, feet and pain all over). Older obese adults had greater ADL disability and lower SPPB and PCS scores than their nonobese counterparts, although in sex-stratified adjusted analyses, obesity was adversely associated with outcomes only in women. Obesity was associated with greater number of pain sites; and more pain sites were associated with greater odds of disability. Mediation analysis suggests that pain is a significant mediator (22-44%) of the adverse effect of obesity on disability and physical function in women. Bodily pain may be an important treatable mediator of the adverse effect of obesity on disability and physical function in women. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  20. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  1. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  2. Adenovirus-mediated Gene Transfer of MMP-2 into Cultured Porcine Trabecular Meshwork Cells

    OpenAIRE

    2012-01-01

    This study aimed to use adenoviral gene transfer to express matrix metalloproteinase (MMP)-2 in cultured porcine trabecular meshwork cells and to evaluate the duration of adenovirus-mediated MMP-2 expression and its enzymatic activity. MMP-2 cDNA was synthesized by ligating three segments of MMP-2 cDNA obtained by reverse transcription-polymerase chain reaction (RT-PCR) with mRNA extracted from mouse lungs. MMP-2 cDNA was inserted into replication-deficient adenoviral vectors. Western blottin...

  3. Gene Targets in Prostate Tumor Cells that Mediate Aberrant Growth and Invasiveness

    Science.gov (United States)

    2005-02-01

    named EIAF ( Higashino et al. 1993). Finally, PEA3/EI AF was found to be the fourth Ets factor involved in chromosomal fusions with EWS (Kaneko et al. 1996...in transcriptional repression mediated by the t(8;21), t(16;21), t(12;21), and inv(16) fusion proteins. Curr Opin Hematol 8:197-200 Higashino F...Yoshida K, Handa M, Toyoda Y, Nishihira H, Tanaka Y, Sasaki Y, Ishida S, Higashino F, Fuj inaga K (1996) Fusion of an ETS-family gene, EIAF, to EWS by t

  4. Agrobacterium tumefaciens-mediated GUS gene transfer to Sophora japonica L.

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-ying; Wang Hua-fang; Yin Wei-lun; Zhu Zhen

    2006-01-01

    Agrobacterium-mediated genetic transformation of Sophorajaponica was standardized using the Agrobacterium tumefaciens strain LBA4404 that harbored the binary vector pBI121 containing genes for β-glucuronidase (GUS) and neomycin phosphotransterase (npt Ⅱ). S. japonica transformants were selected by the ability of the leaf explants to produce kanamycin-resistant calli that regenerated into kanamycin-resistant plantlets. Successful transformation was confirmed by histochemical assay for GUS activity, PCR analysis and Southern blot. The period of nearly two months was required for the regeneration of transgenic plantlets from the explants. The transformed plants resembled their parents in morphology.

  5. Conspecific Leaf Litter-Mediated Effect of Conspecific Adult Neighborhood on Early-Stage Seedling Survival in A Subtropical Forest

    Science.gov (United States)

    Liu, Heming; Shen, Guochun; Ma, Zunping; Yang, Qingsong; Xia, Jianyang; Fang, Xiaofeng; Wang, Xihua

    2016-11-01

    Conspecific adults have strong negative effect on the survival of nearby early-stage seedlings and thus can promote species coexistence by providing space for the regeneration of heterospecifics. The leaf litter fall from the conspecific adults, and it could mediate this conspecific negative adult effect. However, field evidence for such effect of conspecific leaf litter remains absent. In this study, we used generalized linear mixed models to assess the effects of conspecific leaf litter on the early-stage seedling survival of four dominant species (Machilus leptophylla, Litsea elongate, Acer pubinerve and Distylium myricoides) in early-stage seedlings in a subtropical evergreen broad-leaved forest in eastern China. Our results consistently showed that the conspecific leaf litter of three species negatively affected the seedling survival. Meanwhile, the traditional conspecific adult neighborhood indices failed to detect this negative conspecific adult effect. Our study revealed that the accumulation of conspecific leaf litter around adults can largely reduce the survival rate of nearby seedlings. Ignoring it could result in underestimation of the importance of negative density dependence and negative species interactions in the natural forest communities.

  6. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta

    DEFF Research Database (Denmark)

    Rewitz, Kim; Rybczynski, Robert; Warren, James T.;

    2006-01-01

    The insect molting hormone 20-hydroxyecdysone (20E) plays a central role in regulating gene expression during development and metamorphosis. In many Lepidoptera, the pro-hormone 3-dehydroecdysone (3DE), synthesized from cholesterol in the prothoracic gland, is rapidly converted to ecdysone (E......) by a hemolymph reductase, and E is subsequently converted to 20E in various peripheral target tissues. Recently, four Drosophila melanogaster P450 enzymes, encoded by specific Halloween genes, were cloned and functionally characterized as mediating the last hydroxylation steps leading to 20E. We extended......-hydroxylase), expressed predominantly in the prothoracic gland during the fifth (final) larval instar and during pupal-adult development, with fifth instar mRNA levels closely paralleling the hemolymph ecdysteroid titer. The data indicate that transcriptional regulation of phm, dib and sad plays a role...

  7. Attachment style as a mediator between childhood maltreatment and the experience of betrayal trauma as an adult.

    Science.gov (United States)

    Hocking, Elise C; Simons, Raluca M; Surette, Renata J

    2016-02-01

    Previous research has demonstrated a positive association between child maltreatment and adult interpersonal trauma (Arata, 2000; Crawford & Wright, 2007). From a betrayal trauma theory perspective, evidence suggests that the experience of trauma high in betrayal (e.g., child maltreatment by parents or guardians) increases ones risk of betrayal trauma as an adult (Gobin & Freyd, 2009). However, the mechanisms explaining these associations are not well understood; attachment theory could provide further insight. Child maltreatment is associated with insecure attachment (Baer & Martinez, 2006; Muller et al., 2000). Insecure attachment is also associated with deficits in interpersonal functioning and risk for intimate partner violence, suggesting insecure attachment may mediate the relationship between child maltreatment and the experience of betrayal trauma as an adult. The current study tested this hypothesis in a sample of 601 college students. Participants completed online questionnaires including the Child Abuse and Trauma Scale (CATS), the Experiences in Close Relationships - Revised (ECR-R) and the Brief Betrayal Trauma Survey (BBTS). Results indicated that child maltreatment is associated with adult betrayal trauma and anxious attachment partially mediates this relationship.

  8. Task-related functional connectivity of the caudate mediates the association between trait mindfulness and implicit learning in older adults.

    Science.gov (United States)

    Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V

    2016-08-01

    Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.

  9. The relationship between childhood conduct disorder and adult antisocial behavior is partially mediated by early-onset alcohol abuse.

    Science.gov (United States)

    Khalifa, Najat; Duggan, Conor; Howard, Rick; Lumsden, John

    2012-10-01

    Early-onset alcohol abuse (EOAA) was previously found to both mediate and moderate the effect of childhood conduct disorder (CD) on adult antisocial behavior (ASB) in an American community sample of young adults (Howard, R., Finn, P. R., Gallagher, J., & Jose, P. (2011). Adolescent-onset alcohol abuse exacerbates the influence of childhood conduct disorder on late adolescent and early adult antisocial behavior. Journal of Forensic Psychiatry and Psychology. Advance online publication. doi:10.1080/14789949.2011.641996). This study tested whether this result would generalize to a British forensic sample comprising 100 male forensic patients with confirmed personality disorder. Results confirmed that those in whom EOAA co-occurred with CD showed the highest level of personality pathology, particularly Cluster B traits and antisocial/borderline comorbidity. Those with co-occurring CD with EOAA, compared with those showing only CD, showed more violence in their criminal history and greater recreational drug use. Regression analysis showed that both EOAA and CD predicted adult ASB when covariates were controlled. Further analysis showed that EOAA significantly mediated but did not moderate the effect of CD on ASB. The failure to demonstrate an exacerbating effect of EOAA on the relationship between CD and ASB likely reflects the high prevalence of CD in this forensic sample. Some implications of these findings are discussed.

  10. Depression in Adults with Attention-Deficit/Hyperactivity Disorder (ADHD): The Mediating Role of Cognitive-Behavioral Factors.

    Science.gov (United States)

    Knouse, Laura E; Zvorsky, Ivori; Safren, Steven A

    2013-12-01

    Adults with Attention-Deficit/Hyperactivity Disorder (ADHD) are at increased risk for depressive disorders but little is known about the potential cognitive and behavioral mechanisms of risk that could shape treatment. This study evaluated the degree to which cognitive-behavioral constructs associated with depression and its treatment-dysfunctional attitudes and cognitive-behavioral avoidance-accounted for variance in depressive symptoms and disorder in adults with ADHD. 77 adults clinically diagnosed with ADHD completed self-report questionnaires, diagnostic interviews, and clinician-administered symptom rating scales. Statistical mediation analysis was employed and indirect effects assessed using bootstrap analysis and bias-corrected confidence intervals. Controlling for recent negative life events, dysfunctional attitudes and cognitive-behavioral avoidance fully accounted for the variance between ADHD symptoms and depressive symptoms. Each independent variable partially mediated the other in accounting for depression symptoms suggesting overlapping and unique variance. Cognitive-behavioral avoidance, however, was more strongly related to meeting diagnostic criteria for a depressive disorder than were dysfunctional attitudes. Processes that are targeted in cognitive behavior therapy (CBT) for depression were associated with symptoms in adults with ADHD. Current CBT approaches for ADHD incorporate active coping skills and cognitive restructuring and such approaches could be further tailored to address the ADHD-depression comorbidity.

  11. Homeotic Gene teashirt (tsh has a neuroprotective function in amyloid-beta 42 mediated neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Michael T Moran

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a debilitating age related progressive neurodegenerative disorder characterized by the loss of cognition, and eventual death of the affected individual. One of the major causes of AD is the accumulation of Amyloid-beta 42 (Aβ42 polypeptides formed by the improper cleavage of amyloid precursor protein (APP in the brain. These plaques disrupt normal cellular processes through oxidative stress and aberrant signaling resulting in the loss of synaptic activity and death of the neurons. However, the detailed genetic mechanism(s responsible for this neurodegeneration still remain elusive. METHODOLOGY/ PRINCIPLE FINDINGS: We have generated a transgenic Drosophila eye model where high levels of human Aβ42 is misexpressed in the differentiating photoreceptor neurons of the developing eye, which phenocopy Alzheimer's like neuropathology in the neural retina. We have utilized this model for a gain of function screen using members of various signaling pathways involved in the development of the fly eye to identify downstream targets or modifiers of Aβ42 mediated neurodegeneration. We have identified the homeotic gene teashirt (tsh as a suppressor of the Aβ42 mediated neurodegenerative phenotype. Targeted misexpression of tsh with Aβ42 in the differentiating retina can significantly rescue neurodegeneration by blocking cell death. We found that Tsh protein is absent/ downregulated in the neural retina at this stage. The structure function analysis revealed that the PLDLS domain of Tsh acts as an inhibitor of the neuroprotective function of tsh in the Drosophila eye model. Lastly, we found that the tsh paralog, tiptop (tio can also rescue Aβ42 mediated neurodegeneration. CONCLUSIONS/SIGNIFICANCE: We have identified tsh and tio as new genetic modifiers of Aβ42 mediated neurodegeneration. Our studies demonstrate a novel neuroprotective function of tsh and its paralog tio in Aβ42 mediated neurodegeneration. The

  12. MicroRNA-mediated GABA Aα-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats.

    Science.gov (United States)

    Sengupta, Jyoti N; Pochiraju, Soumya; Pochiraju, Soumiya; Kannampalli, Pradeep; Bruckert, Mitchell; Addya, Sankar; Yadav, Priyanka; Miranda, Adrian; Shaker, Reza; Banerjee, Banani

    2013-01-01

    The nociceptive transmission under pathological chronic pain conditions involves transcriptional and/or translational alteration in spinal neurotransmitters, receptor expressions, and modification of neuronal functions. Studies indicate the involvement of microRNA (miRNA) - mediated transcriptional deregulation in the pathophysiology of acute and chronic pain. In the present study, we tested the hypothesis that long-term cross-organ colonic hypersensitivity in neonatal zymosan-induced cystitis is due to miRNA-mediated posttranscriptional suppression of the developing spinal GABAergic system. Cystitis was produced by intravesicular injection of zymosan (1% in saline) into the bladder during postnatal (P) days P14 through P16 and spinal dorsal horns (L6-S1) were collected either on P60 (unchallenged groups) or on P30 after a zymosan re-challenge on P29 (re-challenged groups). miRNA arrays and real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed significant, but differential, up-regulation of mature miR-181a in the L6-S1 spinal dorsal horns from zymosan-treated rats compared with saline-treated controls in both the unchallenged and re-challenged groups. The target gene analysis demonstrated multiple complementary binding sites in miR-181a for GABA(A) receptor subunit GABA(Aα-1) gene with a miRSVR score of -1.83. An increase in miR-181a concomitantly resulted in significant down-regulation of GABA(Aα-1) receptor subunit gene and protein expression in adult spinal cords from rats with neonatal cystitis. Intrathecal administration of the GABA(A) receptor agonist muscimol failed to attenuate the viscero-motor response (VMR) to colon distension in rats with neonatal cystitis, whereas in adult zymosan-treated rats the drug produced significant decrease in VMR. These results support an integral role for miRNA-mediated transcriptional deregulation of the GABAergic system in neonatal cystitis-induced chronic pelvic pain. Copyright © 2012 International

  13. The Irony of Immaturity: K'iche' Children as Mediators and Buffers in Adult Social Interactions

    Science.gov (United States)

    Berman, Elise

    2011-01-01

    In Santa Catarina Ixtahuacan adults constantly face the threat of resentment from other members of their community. Evading others' resentment requires concealing one's possessions, a feat that in turn entails the immoral act of speaking untruths. Children, however, can utter falsehoods that adults cannot because adults do not see children as…

  14. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells.

    Science.gov (United States)

    Dimitrov, Lazar; Pedersen, Darlene; Ching, Kathryn H; Yi, Henry; Collarini, Ellen J; Izquierdo, Shelley; van de Lavoir, Marie-Cecile; Leighton, Philip A

    2016-01-01

    The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds.

  15. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-05-01

    Full Text Available India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  16. Agrobacterium-mediated transformation of chickpea with -amylase inhibitor gene for insect resistance

    Indian Academy of Sciences (India)

    S Ignacimuthu; S Prakash

    2006-09-01

    Chickpea is the world’s third most important pulse crop and India produces 75% of the world’s supply. Chickpea seeds are attacked by Callosobruchus maculatus and C. chinensis which cause extensive damage. The -amylase inhibitor gene isolated from Phaseolus vulgaris seeds was introduced into chickpea cultivar K850 through Agrobacterium-mediated transformation. A total of 288 kanamycin resistant plants were regenerated. Only 0.3% of these were true transformants. Polymerase chain reaction (PCR) analysis and Southern hybridization confirmed the presence of 4.9 kb -amylase inhibitor gene in the transformed plants. Western blot confirmed the presence of -amylase inhibitor protein. The results of bioassay study revealed a significant reduction in the survival rate of bruchid weevil C. maculatus reared on transgenic chickpea seeds. All the transgenic plants exhibited a segregation ratio of 3:1.

  17. RNAi-mediated knocking- down of rlpk2 gene retarded soybean leaf senescence

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoping; MA Yuanyuan; LI Pengli; ZHANG Liwen; WANG Yong; ZHANG Ren; WANG Ningning

    2005-01-01

    Leaf senescence that occurs in the last stage of leaf development is a genetically programmed process. It is very significant to elucidate the molecular mechanisms that control the initiation and progression of leaf senescence and the way the senescence signal is transduced. In a previous study on artificially induced soybean leaf senescence, we cloned a novel gene designated rlpk2 (Genbank Accession No. AY687391) that encodes a leucine-rich repeat (LRR) receptor like protein kinase. The expression level of rlpk2 gene was shown to be strongly up-regulated during both the natural leaf senescence process in this report and the artificially induced primary-leaf-senescence process in our previous work. The RNA interference (RNAi)-mediated knocking-down of rlpk2 dramatically retarded both the natural and nutrient deficiency-induced leaf senescence in transgenic soybean. The transgenic leaves showed more cell-aggregated surface structure and higher content of chlorophyll.

  18. Alu-mediated large deletion of the CDSN gene as a cause of peeling skin disease.

    Science.gov (United States)

    Wada, T; Matsuda, Y; Muraoka, M; Toma, T; Takehara, K; Fujimoto, M; Yachie, A

    2014-10-01

    Peeling skin disease (PSD) is an autosomal recessive skin disorder caused by mutations in CDSN and is characterized by superficial peeling of the upper epidermis. Corneodesmosin (CDSN) is a major component of corneodesmosomes that plays an important role in maintaining epidermis integrity. Herein, we report a patient with PSD caused by a novel homozygous large deletion in the 6p21.3 region encompassing the CDSN gene, which abrogates CDSN expression. Several genes including C6orf15, PSORS1C1, PSORS1C2, CCHCR1, and TCF19 were also deleted, however, the patient showed only clinical features typical of PSD. The deletion size was 59.1 kb. Analysis of the sequence surrounding the breakpoint showed that both telomeric and centromeric breakpoints existed within Alu-S sequences that were oriented in opposite directions. These results suggest an Alu-mediated recombination event as the mechanism underlying the deletion in our patient.

  19. Regeneration and gene transformation systems of Robinia pseudoacacia 'Idaho' mediated by Agrobacterium tumefaciens

    Institute of Scientific and Technical Information of China (English)

    Li Min; Cai Zao; Sun De-you; Yin Wei-lun; Chen Shou-yi; Wang Hua-fang

    2006-01-01

    Robinia pseudoacacia 'Idaho' is one of several multi-purpose trees used in ornamental, soil and water conservation, fodder and nectar sources. Plant abiotic stress tolerance transformed by genes could meet the requirements for reclamation of arid or alkalid lands and vegetation restoration. For this paper, we studied the effects of auxin and cytokine on Idaho locust in vitro regeneration and the establishment of gene transformation systems for plants mediated by Agrobacterium tumefaciens. Results showed that the ratios of cytokinin and auxin were the major factors affecting adventitious bud differentiation on a MS medium; the concentration of 0.5inhibit rooting. The most effective antitoxin for screening transgenic Idaho locust shoots was G418 and the most sensitive concentration of it was 8 mg·L-1.

  20. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    Science.gov (United States)

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  1. Thyroid hormone-responsive genes mediate otolith growth and development during flatfish metamorphosis.

    Science.gov (United States)

    Wang, X; Tan, Y; Sievers, Q; Sievers, B; Lee, M; Burrall, K; Schreiber, A M

    2011-01-01

    Flatfish begin life as up-right swimming, bilaterally symmetrical larvae that metamorphose into asymmetrically shaped juveniles that swim with a highly lateralized posture. We have previously shown that TH induces abrupt growth and mineralization of one component of the vestibular system, the otoliths, during early larval development and metamorphosis. Here we report that four of five vestibular-specific genes that we tested (alpha-tectorin, otogelin, otolith matrix protein, and otopetrins 1 and 2 that are known to be associated with otolith development in other vertebrates are up-regulated 1.5- to 7-fold in larval flatfish during spontaneous metamorphosis and/or following 72 h of TH treatment. These findings suggest that otolith growth and development are mediated by diverse TH-responsive genes during flatfish metamorphosis.

  2. A non-surgical approach for male germ cell mediated gene transmission through transgenesis.

    Science.gov (United States)

    Usmani, Abul; Ganguli, Nirmalya; Sarkar, Hironmoy; Dhup, Suveera; Batta, Suryaprakash R; Vimal, Manoj; Ganguli, Nilanjana; Basu, Sayon; Nagarajan, P; Majumdar, Subeer S

    2013-01-01

    Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers.

  3. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression

    Science.gov (United States)

    Lebreton, Alice; Cossart, Pascale

    2017-01-01

    ABSTRACT The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes. PMID:27217337

  4. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  5. Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2013-01-01

    Full Text Available Ultrasound is an emerging modality for drug delivery in chemotherapy. This paper reviews this novel technology by first introducing the designs and characteristics of three classes of drug/gene vehicles, microbubble (including nanoemulsion, liposomes, and micelles. In comparison to conventional free drug, the targeted drug-release and delivery through vessel wall and interstitial space to cancerous cells can be activated and enhanced under certain sonication conditions. In the acoustic field, there are several reactions of these drug vehicles, including hyperthermia, bubble cavitation, sonoporation, and sonodynamics, whose physical properties are illustrated for better understanding of this approach. In vitro and in vivo results are summarized, and future directions are discussed. Altogether, ultrasound-mediated drug/gene delivery under imaging guidance provides a promising option in cancer treatment with enhanced agent release and site specificity and reduced toxicity.

  6. Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression in Plants?

    Science.gov (United States)

    Laxa, Miriam

    2017-01-01

    Many plant promoters were characterized and used for transgene expression in plants. Even though these promoters drive high levels of transgene expression in plants, the expression patterns are rarely constitutive but restricted to some tissues and developmental stages. In terms of crop improvement not only the enhancement of expression per se but, in particular, tissue-specific and spatial expression of genes plays an important role. Introns were used to boost expression in transgenic plants in the field of crop improvement for a long time. However, the mechanism behind this so called intron-mediated enhancement (IME) is still largely unknown. This review highlights the complexity of IME on the levels of its regulation and modes of action and gives an overview on IME methodology, examples in fundamental research and models of proposed mechanisms. In addition, the application of IME in heterologous gene expression is discussed. PMID:28111580

  7. Physical activity as a mediator of the impact of chronic conditions on quality of life in older adults

    Directory of Open Access Journals (Sweden)

    Miller William C

    2007-12-01

    Full Text Available Abstract Background Chronic conditions could negatively affect the quality of life of older adults. This may be partially due to a relative lack of physical activity. We examined whether physical activity mediates the relationship between different chronic conditions and several health outcomes that are important to the quality of life of older adults. Methods The data were taken from the Canadian Community Health Survey (cycle 1.1, a cross-section survey completed in 2001. Only respondents who were 65 years or older were included in our study (N = 22,432. The Health Utilities Index Mark 3 (HUI3 was used to measure overall quality of life, and to measure selected health outcomes (dexterity, mobility, pain, cognition, and emotional wellbeing that are considered to be of importance to the quality of life of older adults. Leisure-time physical activity was assessed by determining weekly energy expenditure (Kcal per week based on the metabolic equivalents of self-reported leisure activities. Linear and logistic regression models were used to determine the mediating effect of leisure-time physical activity while controlling for demographic variables (age and sex, substance use (tobacco use and alcohol consumption, and obesity. Results Having a chronic condition was associated with a relative decrease in health utility scores and a relative increase in mobility limitations, dexterity problems, pain, emotional problems (i.e., decreased happiness, and cognitive limitations. These negative consequences could be partially attributed to a relative lack of physical activity in older adults with a chronic condition (14% mediation for the HUI3 score. The corresponding degree of mediation was 18% for mobility limitations, 5% for pain, and 13% for emotional wellbeing (statistically significant mediation was not observed for the other health attributes. These values varied with respect to the different chronic conditions examined in our study. Conclusion Older

  8. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei.

    Science.gov (United States)

    Sun, Jiufeng; Li, Xiqing; Feng, Peiying; Zhang, Junmin; Xie, Zhi; Song, Erwei; Xi, Liyan

    2014-02-01

    A number of pathogens, most of them intracellular, employ the glyoxylate cycle in order to ingest fatty acids as carbon sources as a way of coping with nutrient deprivation during the infection process. Isocitrate lyase, which is encoded by the pathogen's acuD gene, plays a pivotal role in the glyoxylate cycle, which has been implicated in fungal pathogenesis. In this study, the acuD gene of Penicillium marneffei was knocked down using siRNA expressed by a filamentous fungi expression system. The acuD siRNA reduced the acuD gene's mRNA and protein expression by 21.5 fold and 3.5 fold, respectively. When macrophages were infected with different transformants of P. marneffei, the knockdown of acuD expression with RNA interference was lethal to the pathogens. In addition, the secretion of tumor necrosis factor-alpha and interferon-gamma from the infected macrophages was reduced. Moreover, the RNAi-mediated silencing of acuD expression reduced the fungal burden in the nude mice infected with P. marneffei; inhibited the inflammatory response in the lungs, livers, and spleens during the chronic phase instead of the acute phase of infection; and thus prolonged survival of the infected animals. Collectively, our data indicate that the RNAi-mediated silencing of acuD expression could attenuate virulence of P. marneffei. The endogenous expression of the delivered siRNA vector could be used to evaluate the role of functional genes by continuous and stable expression of siRNA.

  9. Gene Transfection Mediated by Ultrasound and Pluronic P85 in HepG2 Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Fen; LI Kaiyan; CHEN Yunchao; DENG Yuan; HONG Kai

    2007-01-01

    In order to assess whether gene transfection could be mediated by ultrasound in associa- tion with P85 and find the appropriate parameters of ultrasound irradiation, the effects of ultrasound with or without P85 on gene transfection of HepG2 cells were examined. The HepG2 cells were irra- diated by ultrasound at 1 MHz, 0.4-2.0 W/cm2 and 50% duty cycle with plasmid encoding enhanced green fluorescent protein (EGFP) as a report gene. Forty-eight h later, the expression of EGFP was detected under the fluorescence microscopy. Transfection efficacy was quantitatively assessed by flow cytometry, and cell viability was evaluated by trypan blue exclusion. The results showed that the transfection efficacy was increased with the increases in ultrasound output power and the ideal trans- fection efficacy was achieved in HepG2 cells irradiated by ultrasound at 0.8 W/cm2 for 30 s. The transfection efficacy in ulstrasound+P85 group was three times higher than in single ultrasound group [(17.63±1.07)% vs (5.57±0.56)%, P<0.051. The cell viability was about 81% and 62% in ultrasound group and ultrasound+P85 group respectively. It was concluded that ultrasound in combination with P85 could mediate the gene transfection of HepG2 cells, ideal transfection efficacy was achieved by ultrasound irradiation at 0.8 W/cm2 for 30 s, and P85 could somewhat increase the damage to cells caused by ultrasound.

  10. Gene Silencing in Adult Aedes aegypti Mosquitoes Through Oral Delivery of Double-Stranded RNA

    Science.gov (United States)

    2012-01-01

    OR I GI N AL C ONTR I BUTI O N Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA M. R. Coy1, N. D...we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti . Using a non-specific dsRNA construct, we found that...adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post-feeding. Through the feeding of

  11. Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials

    OpenAIRE

    2011-01-01

    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery ...

  12. Otx2 gene deletion in adult mouse retina induces rapid RPE dystrophy and slow photoreceptor degeneration.

    Directory of Open Access Journals (Sweden)

    Francis Béby

    Full Text Available BACKGROUND: Many developmental genes are still active in specific tissues after development is completed. This is the case for the homeobox gene Otx2, an essential actor of forebrain and head development. In adult mouse, Otx2 is strongly expressed in the retina. Mutations of this gene in humans have been linked to severe ocular malformation and retinal diseases. It is, therefore, important to explore its post-developmental functions. In the mature retina, Otx2 is expressed in three cell types: bipolar and photoreceptor cells that belong to the neural retina and retinal pigment epithelium (RPE, a neighbour structure that forms a tightly interdependent functional unit together with photoreceptor cells. METHODOLOGY/PRINCIPAL FINDINGS: Conditional self-knockout was used to address the late functions of Otx2 gene in adult mice. This strategy is based on the combination of a knock-in CreERT2 allele and a floxed allele at the Otx2 locus. Time-controlled injection of tamoxifen activates the recombinase only in Otx2 expressing cells, resulting in selective ablation of the gene in its entire domain of expression. In the adult retina, loss of Otx2 protein causes slow degeneration of photoreceptor cells. By contrast, dramatic changes of RPE activity rapidly occur, which may represent a primary cause of photoreceptor disease. CONCLUSIONS: Our novel mouse model uncovers new Otx2 functions in adult retina. We show that this transcription factor is necessary for long-term maintenance of photoreceptors, likely through the control of specific activities of the RPE.

  13. Establishing a Gene Trap System Mediated by T-DNA(GUS) in Rice

    Institute of Scientific and Technical Information of China (English)

    Shi-Yan Chen; Ai-Min Wang; Wei Li; Zong-Yang Wang; Xiu-Ling Cai

    2008-01-01

    Two plasmids, p13GUS and p13GUS2, were constructed to create a gene trap system containing the promoterless β-glucuronidase (GUS) reporter gene in the T-DNA region. Transformation of these two plasmids into the rice variety Zhonghua 11 (Oryza sativa ssp. japonica cv.), mediated by Agrobacterium tumefaciens, resulted in 942 independent transgenic lines. Histochemical GUS assays revealed that 31 To plants had various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. Hygromycin-resistant (hygr) homozygotes were screened and the copy number of the T-DNA inserts was determined in the GUS-positivs transgenic plants. The flanking sequences of the T-DNA were isolated by inverse-polymerase chain reaction and the insert positions on the rice genome of T-DNA were determined by a basic local alignment search tool in the GUS-positive transgenic plants transformed with plasmid p13GUS. Moreover, calii induced from the seeds of the T1 generation of 911 GUS-negative transgenic lines were subjected to stress and hormone treatments. Histochemical GUS assays were carried out on the calli before and after treatment. The results revealed that calli from 21 lines displayed differential GUS expression after treatment. All of these data demonstrated that this trap system is suitable for identifying rice genes, including those that are sensitive to induction.

  14. Anti-tumor Immune Response Mediated by Newcastle Disease Virus HN Gene

    Institute of Scientific and Technical Information of China (English)

    PENG Li-ping; JIN Ning-yi; LI Xiao; SUN Li-li; WEN Zhong-mei; LIU Yan; GAO Peng; HUANG Hai-yan; PIAO Bing-guo; JIN Jing

    2011-01-01

    Hemagglutinin-neuramidinase(HN) is one of the most important surface structure proteins of the Newcastle disease virus(NDV). HN not only mediates receptor recognition but also possesses neuraminidase(NA) activity,which gives it the ability to cleave a component of those receptors, NAcneu. Previous studies have demonstrated that HN has interesting anti-neoplastic and immune-stimulating properties in mammalian species, including humans. To explore the application of the HN gene in cancer gene therapy, we constructed a Lewis lung carcinoma(LLC) solid tumor model using C57BL/6 mice. Mice were injected intratumorally with the recombinant adenovirus expressing HN gene(Ad-HN), and the effect of HN was explored by natural killer cell activity assay, cytotoxic lymphocyte activity assay, T cell subtype evaluation, and Thl/Th2 cytokines analysis. The results demonstrate that HN not only can elicit clonal expansion of both CD4+ and CD8+ T cell populations and cytotoxic T lymphocyte(CTL) and killer cell response, but also skews the immune response toward Thl. Thus, vaccination with Ad-HN may be a potential strategy for cancer gene therapy.

  15. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection.

  16. Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis

    Science.gov (United States)

    Song, Min-Ji; Kim, Mikyoung; Choi, Yeeun; Yi, Myung-hee; Kim, Juri; Park, Soon-Jung; Yong, Tai-Soon; Kim, Hyoung-Pyo

    2017-01-01

    Trichomonas vaginalis is an extracellular flagellated protozoan parasite that causes trichomoniasis, one of the most common non-viral sexually transmitted diseases. To survive and to maintain infection, T. vaginalis adapts to a hostile host environment by regulating gene expression. However, the mechanisms of transcriptional regulation are poorly understood for this parasite. Histone modification has a marked effect on chromatin structure and directs the recruitment of transcriptional machinery, thereby regulating essential cellular processes. In this study, we aimed to outline modes of chromatin-mediated gene regulation in T. vaginalis. Inhibition of histone deacetylase (HDAC) alters global transcriptional responses and induces hyperacetylation of histones and hypermethylation of H3K4. Analysis of the genome of T. vaginalis revealed that a number of enzymes regulate histone modification, suggesting that epigenetic mechanisms are important to controlling gene expression in this organism. Additionally, we describe the genome-wide localization of two histone H3 modifications (H3K4me3 and H3K27Ac), which we found to be positively associated with active gene expression in both steady and dynamic transcriptional states. These results provide the first direct evidence that histone modifications play an essential role in transcriptional regulation of T. vaginalis, and may help guide future epigenetic research into therapeutic intervention strategies against this parasite. PMID:28345651

  17. Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa.

    Science.gov (United States)

    Michel, Laurent; Bachelard, Aude; Reimmann, Cornelia

    2007-05-01

    In response to iron starvation, Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted to the extracellular environment, pyochelin chelates iron and transports it to the bacterial cytoplasm via its specific outer-membrane receptor FptA and the inner-membrane permease FptX. Exogenously added pyochelin also acts as a signal which induces the expression of the pyochelin biosynthesis and uptake genes by activating PchR, a cytoplasmic regulatory protein of the AraC/XylS family. The importance of ferripyochelin uptake genes in this regulation was evaluated. The fptA and fptX genes were shown to be part of the fptABCX ferripyochelin transport operon, which is conserved in Burkholderia sp. and Rhodospirillum rubrum. The fptB and fptC genes were found to be dispensable for utilization of pyochelin as an iron source, for signalling and for pyochelin production. By contrast, mutations in fptA and fptX not only interfered with pyochelin utilization, but also affected signalling and diminished siderophore production. It is concluded from this that pyochelin-mediated signalling operates to a large extent via the ferripyochelin transport system.

  18. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats

    Directory of Open Access Journals (Sweden)

    Dubner Ronald

    2005-09-01

    Full Text Available Abstract Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors to compare gene expression profiles in the lumbar spinal dorsal horn (LDH of adult (P60 male rats that received neonatal CAR treatment within (at postnatal day 3; P3 and outside (at postnatal 12; P12 of the sensitive period. The data were obtained both without inflammation (at baseline and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems in the LDH ipsilateral to the

  19. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats.

    Science.gov (United States)

    Ren, Ke; Novikova, Svetlana I; He, Fang; Dubner, Ronald; Lidow, Michael S

    2005-09-22

    Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR) injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors) to compare gene expression profiles in the lumbar spinal dorsal horn (LDH) of adult (P60) male rats that received neonatal CAR treatment within (at postnatal day 3; P3) and outside (at postnatal 12; P12) of the sensitive period. The data were obtained both without inflammation (at baseline) and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems) were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems) in the LDH ipsilateral to the neonatally-injured paw. The

  20. Hyperactive Himar1 transposase mediates transposition in cell culture and enhances gene expression in vivo.

    Science.gov (United States)

    Keravala, Annahita; Liu, Dexi; Lechman, Eric R; Wolfe, Darren; Nash, Joan A; Lampe, David J; Robbins, Paul D

    2006-10-01

    The use of nonviral delivery systems results in transient gene expression, in part because of the low efficiency of DNA integration. Previously, vectors based on transposon systems such as Sleeping Beauty have been shown to be able to increase stable transfection efficiencies in cell culture and in animal models. Himar1, a reconstructed active transposon belonging to the Tc1/mariner superfamily, also has been used as a vector for stable gene delivery, but the rate of transposition after transfection is low. In this paper, we evaluate the potential of the hyperactive Himar1 transposase C9, in combination with the Himar1 inverted repeat transposon, as a gene delivery vector. The C9 transposase is a hyperactive mutant of Himar1 with two amino acid substitutions, Q131R and E137K, that result in an increase in activity relative to wild type. Here we demonstrate that cotransfection of the C9 transposase with a Himar1-based vector increases the frequency of stable gene expression in human cells in a transposase concentration-dependent manner. In addition, we establish that C9 transposase mediates integration of the transgene in mammalian cells at a frequency similar to that of Sleeping Beauty under some of the conditions tested. Last, we show significantly higher levels of reporter gene expression in vivo in mouse liver and in synovium of rabbit knee joints after injection of the transposon plasmid expressing the transgene and the C9 transposase. These data suggest that vectors based on the Himar1 transposable element, in conjunction with the hyperactive mutant transposase C9, may be suitable vectors for gene therapy applications.

  1. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.

  2. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

    Directory of Open Access Journals (Sweden)

    Iñigo Loureiro

    Full Text Available The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum. A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction. Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation.

  3. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  4. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  5. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Science.gov (United States)

    Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor

    2012-01-01

    Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621

  6. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Srivathsa C Venugopal

    2009-07-01

    Full Text Available Resistance (R protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1, non-race-specific disease resistance 1 (NDR1, phytoalexin deficient 4 (PAD4, senescence associated gene 101 (SAG101, and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  7. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Science.gov (United States)

    Venugopal, Srivathsa C; Jeong, Rae-Dong; Mandal, Mihir K; Zhu, Shifeng; Chandra-Shekara, A C; Xia, Ye; Hersh, Matthew; Stromberg, Arnold J; Navarre, DuRoy; Kachroo, Aardra; Kachroo, Pradeep

    2009-07-01

    Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  8. Glucose availability is a decisive factor for Nrf2-mediated gene expression

    Directory of Open Access Journals (Sweden)

    Elke H. Heiss

    2013-01-01

    Full Text Available Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2 is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells.

  9. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2003-08-01

    Full Text Available Abstract Background RNA interference (RNAi is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly gene (corresponding to a putative gene CG5652/GM06434, that we named beltless based on an embryonic loss-of-function phenotype. Results Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. Conclusions We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should

  10. Improved confidence in performing nutrition and physical activity behaviours mediates behavioural change in young adults: Mediation results of a randomised controlled mHealth intervention.

    Science.gov (United States)

    Partridge, Stephanie R; McGeechan, Kevin; Bauman, Adrian; Phongsavan, Philayrath; Allman-Farinelli, Margaret

    2017-01-01

    The burden of weight gain disproportionally affects young adults. Understanding the underlying behavioural mechanisms of change in mHealth nutrition and physical activity interventions designed for young adults is important for enhancing and translating effective interventions. First, we hypothesised that knowledge, self-efficacy and stage-of-change for nutrition and physical activity behaviours would improve, and second, that self-efficacy changes in nutrition and physical activity behaviours mediate the behaviour changes observed in an mHealth RCT for prevention of weight gain. Young adults, aged 18-35 years at risk of weight gain (n = 250) were randomly assigned to an mHealth-program, TXT2BFiT, consisting of a three-month intensive phase and six-month maintenance phase or to a control group. Self-reported online surveys at baseline, three- and nine-months assessed nutrition and physical activity behaviours, knowledge, self-efficacy and stage-of-change. The mediating effect of self-efficacy was assessed in multiple PROCESS macro-models for three- and nine-month nutrition and physical activity behaviour change. Young adults randomised to the intervention increased and maintained knowledge of fruit requirements (P = 0.029) compared to controls. Intervention participants' fruit and takeaway behaviours improved to meet recommendations at nine months, with a greater proportion progressing to action or maintenance stage-of-change (P controls. Intervention participants' vegetable and physical activity behaviours did not meet recommendations, thereby halting progress to action or maintenance stage-of-change. Indirect effects of improved nutrition and physical activity behaviours at three- and nine-months in the intervention group were explained by changes in self-efficacy, accounting for 8%-37% of the total effect. This provides insights into how the mHealth intervention achieved part of its effects and the importance of improving self-efficacy to facilitate

  11. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve.

    Science.gov (United States)

    Hu, Gongshe; deHart, Amy K A; Li, Yansu; Ustach, Carolyn; Handley, Vanessa; Navarre, Roy; Hwang, Chin-Feng; Aegerter, Brenna J; Williamson, Valerie M; Baker, Barbara

    2005-05-01

    In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1.

  12. Accounting for Life-Course Exposures in Epigenetic Biomarker Association Studies: Early Life Socioeconomic Position, Candidate Gene DNA Methylation, and Adult Cardiometabolic Risk.

    Science.gov (United States)

    Huang, Jonathan Y; Gavin, Amelia R; Richardson, Thomas S; Rowhani-Rahbar, Ali; Siscovick, David S; Hochner, Hagit; Friedlander, Yechiel; Enquobahrie, Daniel A

    2016-10-01

    Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007-2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes (ABCA1, INS-IGF2, LEP, HSD11B2, and NR3C1). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9-12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The Mediating Effects of Lifestyle Factors on the Relationship between Socioeconomic Status and Self-Rated Health among Middle-Aged and Older Adults in Korea

    Science.gov (United States)

    Kim, Jinhyun

    2011-01-01

    Little is known about how different lifestyle factors mediate the relationship between socioeconomic status (SES) and health among middle-aged and older adults in Korea. Using data from the Korean Longitudinal Study of Aging, this study examined the direct effects of SES on self-rated health and how lifestyle factors mediate the relationships…

  14. Meaning in life and mastery mediate the relationship of negative reminiscence with psychological distress among older adults with mild to moderate depressive symptoms

    NARCIS (Netherlands)

    Korte, J.; Cappeliez, Philippe; Bohlmeijer, Ernst Thomas; Westerhof, Gerben Johan

    2012-01-01

    To understand the adaptive value of reminiscence, a mediational model of reminiscence was tested in a sample of older adults with mild to moderate depressive symptoms. Using structural equation modeling, we investigated if psychological resources (mastery and meaning in life) mediate the relation

  15. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.

    Science.gov (United States)

    Patrizio, Mario; Vago, Valerio; Musumeci, Marco; Fecchi, Katia; Sposi, Nadia Maria; Mattei, Elisabetta; Catalano, Liviana; Stati, Tonino; Marano, Giuseppe

    2008-12-01

    The treatment with beta-blockers causes an enhancement of the norepinephrine-induced fetal gene response in cultured cardiomyocytes. Here, we tested whether the activation of cAMP-mediated beta-adrenergic signaling antagonizes alpha(1)-adrenergic receptor (AR)-mediated fetal gene response. To address this question, the fetal gene program, of which atrial natriuretic peptide (ANP) and the beta-isoform of myosin heavy chain are classical members, was induced by phenylephrine (PE), an alpha(1)-AR agonist. In cultured neonatal rat cardiomyocytes, we found that stimulation of beta-ARs with isoproterenol, a beta-AR agonist, inhibited the fetal gene expression induced by PE. Similar results were also observed when cardiomyocytes were treated with forskolin (FSK), a direct activator of adenylyl cyclase, or 8-CPT-6-Phe-cAMP, a selective activator of protein kinase A (PKA). Conversely, the PE-induced fetal gene expression was further upregulated by H89, a selective PKA inhibitor. To evaluate whether these results could be generalized to Gq-mediated signaling and not specifically to alpha(1)-ARs, cardiomyocytes were treated with prostaglandin F(2)alpha, another Gq-coupled receptor agonist, which is able to promote fetal gene expression. This treatment caused an increase of both ANP mRNA and protein levels, which was almost completely abolished by FSK treatment. The capability of beta-adrenergic signaling to regulate the fetal gene expression was also evaluated in vivo conditions by using beta1- and beta2-AR double knockout mice, in which the predominant cardiac beta-AR subtypes are lacking, or by administering isoproterenol (ISO), a beta-AR agonist, at a subpressor dose. A significant increase of the fetal gene expression was found in beta(1)- and beta(2)-AR gene deficient mice. Conversely, we found that ANP, beta-MHC and skACT mRNA levels were significantly decreased in ISO-treated hearts. Collectively, these data indicate that cAMP-mediated beta-adrenergic signaling

  16. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus.

    Science.gov (United States)

    Song, Juan; Sun, Jiaqi; Moss, Jonathan; Wen, Zhexing; Sun, Gerald J; Hsu, Derek; Zhong, Chun; Davoudi, Heydar; Christian, Kimberly M; Toni, Nicolas; Ming, Guo-Li; Song, Hongjun

    2013-12-01

    Using immunohistology, electron microscopy, electrophysiology and optogenetics, we found that proliferating adult mouse hippocampal neural precursors received immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress adult quiescent neural stem cell activation, parvalbumin interneuron activation promoted newborn neuronal progeny survival and development. Our results suggest a niche mechanism involving parvalbumin interneurons that couples local circuit activity to the diametric regulation of two critical early phases of adult hippocampal neurogenesis.

  17. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum.

    Science.gov (United States)

    Gilles, Anna F; Schinko, Johannes B; Averof, Michalis

    2015-08-15

    Gene-editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently. Here, we test the CRISPR technology in an emerging insect model and pest, the beetle Tribolium castaneum. We use simple assays to test CRISPR/Cas activity, we demonstrate efficient expression of guide RNAs and Cas9 from Tribolium U6 and hsp68 promoters and we test the efficiency of knockout and knock-in approaches in Tribolium. We find that 55-80% of injected individuals carry mutations (indels) generated by non-homologous end joining, including mosaic bi-allelic knockouts; 71-100% carry such mutations in their germ line and transmit them to the next generation. We show that CRISPR-mediated gene knockout of the Tribolium E-cadherin gene causes defects in dorsal closure, which is consistent with RNAi-induced phenotypes. Homology-directed knock-in of marker transgenes was observed in 14% of injected individuals and transmitted to the next generation by 6% of injected individuals. Previous work in Tribolium mapped a large number of transgene insertions associated with developmental phenotypes and enhancer traps. We present an efficient method for re-purposing these insertions, via CRISPR-mediated replacement of these transgenes by new constructs.

  18. Temporal Control of Cre Recombinase-mediated in Vitro DNA Recombination by Tet-on Gene Expression System

    Institute of Scientific and Technical Information of China (English)

    Zhong-Min GUO; Kang XU; Ying YUE; Bing HUANG; Xin-Yan DENG; Nü-Qi ZHONG; Xun HONG; Xi-Gu CHEN; Dong XIAO

    2005-01-01

    Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in mouse models. These strategies exploiting Cre-mediated site-specific DNA recombination have been incorporated into transgenic and gene-targeting procedures to allow in vivo manipulation of DNA in embryonic stem cells (ES cells) or living animals. The Cre/lox P system has become widely used in conditional gene targeting, conditional gene repair and activation, inducible chromosome translocation, and chromosome engineering. In this project, we have employed the universal transgenic system and the liver-specific promoter system for tightly temporal and liver-specific control of Cre gene expression in mice that (1) integrates the advantages of the Tet-on gene expression system and Cre/lox P site-mediated gene activation, and (2) simplifies the scheme of animal crosses through a combination of two control elements in a single transgene. A liver-specific apoE promoter was inserted into the promoter cloning site upstream of the rtTA cassette of pCore construct to generate the transgene construct pApoErtTAtetO-Cre, followed by demonstrating stringent regulation of doxycycline (Dox)-induced Cre-mediated recombination in the lox P-flanked transcription STOP cassette-modified BEL-7402 cells. That is to say, in the absence of Dox, the Cre gene is not expressed and will not induce site-specific recombination between two lox P sites, whereas on exposure to Dox, the Cre gene will be expressed and the recombination will occur.Together, these data indicate that the Tet-on gene expression system is able to successfully and stringently control Cre expression in vitro, which lays a solid foundation for efficient and spatio-temporal Cre gene activation in transgenic mice.

  19. Expression levels of the innate response gene RIG-I and its regulators RNF125 and TRIM25 in HIV-1-infected adult and pediatric individuals.

    Science.gov (United States)

    Britto, Alan M A; Amoedo, Nívea D; Pezzuto, Paula; Afonso, Adriana O; Martínez, Ana M B; Silveira, Jussara; Sion, Fernando S; Machado, Elizabeth S; Soares, Marcelo A; Giannini, Ana L M

    2013-07-31

    TLRs (Toll-like receptors) and RLRs (RIG-I-like receptors) mediate innate immune responses by detecting microorganism invasion. RIG-I activation results in the production of interferon (IFN) type 1 and IFN responsive genes (ISGs). As the ubiquitin ligases RNF125 and TRIM25 are involved in regulating RIG-I function, our aim was to assess whether the levels of these three genes vary between healthy and HIV-infected individuals and whether these levels are related to disease progression. Gene expression analyses for RIG-I, RNF125, and TRIM25 were performed for HIV-infected adults and the children's peripheral blood mononuclear cells (PBMCs). Reverse transcription-quantitative PCRs (RT-qPCRs) were performed in order to quantify the expression levels of RIG-I, RNF125 and TRIM25 from PBMCs purified from control or HIV-infected individuals. Controls express higher levels of the three genes when compared to HIV-infected patients. These expressions are clearly distinct between healthy and progressors, and are reproduced in adults and children. In controls, RNF125 is the highest expressed gene, whereas in progressors, RIG-I is either the highest expressed gene or is expressed similarly to RNF125 and TRIM25. A pattern of expression of RIG-I, RNF125, and TRIM25 genes in HIV patients is evident. The high expression of RNF125 in healthy individuals reflects the importance of keeping RIG-I function off, inhibiting unnecessary IFN production. Consistent with this assumption, RNF125 levels are lower in HIV patients and importantly, the RNF125/RIG-I ratio is lower in patients who progress to AIDS. Our results might help to predict disease progression and unveil the role of poorly characterized host genes during HIV infection.

  20. Polymorphisms in the NPY and AGRP genes and body fatness in Dutch adults.

    OpenAIRE

    Rossum, Caroline T M van; Pijl, H.; Adan, R A H; Hoebee, Barbara; Seidell, J. C.

    2006-01-01

    OBJECTIVE: To investigate the association between DNA polymorphisms in the NPY and AGRP genes and body fatness. DESIGN AND METHODS: The association between the AGRP Ala67Thr or the NPY Leu7Pro polymorphisms and indicators of body fatness (baseline leptin levels, body mass index (BMI) values and prevalence of overweight) are investigated in 582 participants of two large cohorts in The Netherlands (total 18 500 adult men and women), aged 20-40 years whose weight remained relatively constant or ...

  1. Angiotensin-Converting Enzyme Gene Polymophism in Adult Primary Focal Segmental Glomerulosclerosis

    OpenAIRE

    2014-01-01

    Background Primary focal segmental glomerulosclerosis (FSGS) accounts for a third of biopsy-proven primary glomerulonephritis in Malaysia. Pediatric studies have found the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene to be associated with renal disease progression. The aim of this study was to determine the prevalence of the ACE (I/D) genotypes in adult primary FSGS and its association with renal outcome on follow-up. Methods Prospective observational ...

  2. Advances in adult asthma diagnosis and treatment in 2012: potential therapeutics and gene-environment interactions.

    Science.gov (United States)

    Apter, Andrea J

    2013-01-01

    In the Journal of Allergy and Clinical Immunology in 2012, research reports related to asthma in adults clustered around mechanisms of disease, with a special focus on their potential for informing new therapies. There was also consideration of the effect of the environment on health from pollution, climate change, and epigenetic influences, underlining the importance of understanding gene-environment interactions in the pathogenesis of asthma and response to treatment.

  3. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    Science.gov (United States)

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  4. Well-being among older adults with OA: direct and mediated patterns of control beliefs, optimism and pessimism.

    Science.gov (United States)

    Sherman, Aurora M; Cotter, Kelly A

    2013-01-01

    To assess the contribution of important psychological resources (i.e. optimism, pessimism, control beliefs) to the psychological well-being of older adults with Osteoarthritis (OA); to assess the direct and mediated association of these psychosocial resources to outcomes (depressive symptoms, life satisfaction, and self-esteem). These objectives are important because OA is a significant stressor, treatments are limited, and psychological functioning is at risk for those coping with the condition, even compared to other chronic illnesses. A cross-sectional survey of 160 community-dwelling older adults with OA (81% women). Participants were not randomly selected, but nonetheless reflected the demographic makeup of the selection area. Ordinary least squares regression analyses using the PROCESS macro revealed that optimism and pessimism were associated with higher depressive symptoms and lower self-esteem indirectly through constraints beliefs. The analysis of life satisfaction showed that optimism and pessimism were each partially mediated through mastery and constraints beliefs. These results suggest that prior research, which has assessed these psychological resources as having singular relationships to outcomes, may have underestimated the importance of the relationship between these variables. We discuss possible points of intervention for older adults with OA who may experience increasing constraints beliefs over time.

  5. Well-Being among Older Adults with OA: Direct and Mediated Patterns of Control Beliefs, Optimism and Pessimism

    Science.gov (United States)

    Sherman, Aurora M.; Cotter, Kelly A.

    2013-01-01

    Objectives To assess the contribution of important psychological resources (i.e., optimism, pessimism, control beliefs) to the psychological well-being of older adults with Osteoarthritis (OA); to assess the direct and mediated association of these psychosocial resources to outcomes (depressive symptoms, life satisfaction, and self-esteem). These objectives are important because OA is a significant stressor, treatments are limited, and psychological functioning is at risk for those coping with the condition, even compared to other chronic illnesses. Method A cross-sectional survey of 160 community-dwelling older adults with OA (81% women). Participants were not randomly selected, but nonetheless reflected the demographic makeup of the selection area. Results Ordinary least squares regression analyses using the PROCESS macro (Hayes, 2012) revealed that optimism and pessimism were associated with higher depressive symptoms and lower self-esteem indirectly through constraints beliefs. The analysis of life satisfaction showed that optimism and pessimism were each partially mediated through mastery and constraints beliefs. Discussion These results suggest that prior research, which has assessed these psychological resources as having singular relationships to outcomes, may have underestimated the importance of the relationship between these variables. We discuss possible points of intervention for older adults with OA who may experience increasing constraints beliefs over time. PMID:23418813

  6. The association of health literacy with physical activity and nutritional behavior in older adults, and its social cognitive mediators.

    Science.gov (United States)

    Geboers, Bas; de Winter, Andrea F; Luten, Karla A; Jansen, Carel J M; Reijneveld, Sijmen A

    2014-01-01

    Inadequate health literacy is a common problem among older adults and is associated with poor health outcomes. Insight into the association between health literacy and health behaviors may support interventions to mitigate the effects of inadequate health literacy. The authors assessed the association of health literacy with physical activity and nutritional behavior in community-dwelling older adults. The authors also assessed whether the associations between health literacy and health behaviors are mediated by social cognitive factors. Data from a study among community-dwelling older adults (55 years and older) in a relatively deprived area in The Netherlands were used (baseline n=643, response: 43%). The authors obtained data on health literacy, physical activity, fruit and vegetable consumption, and potential social cognitive mediators (attitude, self-efficacy, and risk perception). After adjustment for confounders, inadequate health literacy was marginally significantly associated with poor compliance with guidelines for physical activity (OR=1.52, p=.053) but not with poor compliance with guidelines for fruit and vegetable consumption (OR=1.20, p=.46). Self-efficacy explained 32% of the association between health literacy and compliance with physical activity guidelines. Further research may focus on self-efficacy as a target for interventions to mitigate the negative effects of inadequate health literacy.

  7. Food insecurity partially mediates associations between social disadvantage and body composition among older adults in india: Results from the study on global AGEing and adult health (SAGE).

    Science.gov (United States)

    Schrock, Joshua M; McClure, Heather H; Snodgrass, J Josh; Liebert, Melissa A; Charlton, Karen E; Arokiasamy, Perianayagam; Naidoo, Nirmala; Kowal, Paul

    2017-07-05

    Our objective was to test whether food insecurity mediates cross-sectional associations between social disadvantage and body composition among older adults (aged 50+) in India (n = 6556). Adjusting for key sociodemographic and dietary variables, we examined whether markers of social disadvantage (lower educational attainment, lower household wealth, belonging to a disadvantaged caste/tribe, and belonging to a minority religion) were associated with food insecurity. We then examined whether food insecurity, in turn, was associated with anthropometric measures of body composition, body mass index (BMI), and waist circumference (WC). We also tested whether food insecurity mediated the relationship between social disadvantage and body composition. In adjusted models, lower household wealth [lowest quintile (Q5) vs highest quintile (Q1): odds ratio (OR) = 13.57, P food insecurity. Those who were severely food insecure had greater odds of being underweight (OR = 1.36, P food insecurity explained 4.7%-29.7% of the relationship between social disadvantage and body composition, depending on the variables considered. Our results are consistent with the hypothesis that food insecurity is a mechanism linking social disadvantage and body composition among older adults in India. These analyses contribute to a better understanding of processes leading to variation in body composition, which may help enhance the design of interventions aimed at improving population nutritional status. © 2017 Wiley Periodicals, Inc.

  8. Efficient Gene Transfer Mediated by HIV-1-based Defective Lentivector and Inhibition of HIV-1 Replication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5-1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols.

  9. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system

    Directory of Open Access Journals (Sweden)

    Eroglu E

    2013-04-01

    Full Text Available Erdal Eroglu,1 Pooja M Tiwari,1 Alain B Waffo,1 Michael E Miller,2 Komal Vig,1 Vida A Dennis,1 Shree R Singh1 1Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA; 2Research Instrumentation Facility, Auburn University, AL, USA Abstract: The transport of DNA into eukaryotic cells is minimal because of the cell membrane barrier, and this limits the application of DNA vaccines, gene silencing, and gene therapy. Several available transfection reagents and techniques have been used to circumvent this problem. Alternatively, nonviral nanoscale vectors have been shown to bypass the eukaryotic cell membrane. In the present work, we developed a unique nanomaterial, pHEMA+chitosan nanospheres (PCNSs, which consisted of poly (2-hydroxyethyl methacrylate nanospheres surrounded by a chitosan cationic shell, and we used this for encapsulation of a respiratory syncytial virus (RSV-F gene construct (a model for a DNA vaccine. The new nanomaterial was capable of transfecting various eukaryotic cell lines without the use of a commercial transfection reagent. Using transmission electron microscopy, (TEM, fluorescence activated cell sorting (FACS, and immunofluorescence, we clearly demonstrated that the positively charged PCNSs were able to bind to the negatively charged cell membrane and were taken up by endocytosis, in Cos-7 cells. Using quantitative polymerase chain reaction (qPCR, we also evaluated the efficiency of transfection achieved with PCNSs and without the use of a liposomal-based transfection mediator, in Cos-7, HEp-2, and Vero cells. To assess the transfection efficiency of the PCNSs in vivo, these novel nanomaterials containing RSV-F gene were injected intramuscularly into BALB/c mice, resulting in high copy number of the transgene. In this study, we report, for the first time, the application of the PCNSs as a nanovehicle for gene delivery in vitro and in vivo. Keywords: pHEMA+chitosan nanoparticles, nonviral vector

  10. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ronda, Carlotta; Maury, Jérôme; Jakočiunas, Tadas; Jacobsen, Simo Abdessamad Baallal; Germann, Susanne Manuela; Harrison, Scott James; Borodina, Irina; Keasling, Jay D; Jensen, Michael Krogh; Nielsen, Alex Toftgaard

    2015-07-07

    One of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers. Here, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native β-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes. The CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.

  11. Efficiency of adenoviral vector mediated CTLA4Ig gene delivery into mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    邓宇斌; 郭小荑; 原清涛; 李树浓

    2003-01-01

    Objective To prevent Graft-versus-host disease (GVHD) in rat model, we evaluated the feasibility of mesenchymal stem cells (MSCs) as a gene transfer target and studied the efficiency of recombinant adenovirus mediated gene therapy. Methods We constructed the recombinant adenovirus containing CTLA4Ig gene. Rat MSCs of passages 3-5 were infected by the adenovirus, and the transfection efficiency was monitored by GFP markers. We performed flow cytometric analysis, immunohistochemical and Western blotting analysis to identify the CTLA4Ig expression. The gene transferred MSCs were tested for their ability to inhibit the allogeneic lymphocyte response in vitro and to prevent GVHD in a rat model. Results Recombinant adenovirus pAd-CTLA4Ig was correctly constructed and confirmed. After MSCs were infected by the adenovirus, the CTLA4Ig protein was detected not only in transgenic MSCs, but also in the culture medium. In a mixed lymphocytes response (MLR) test, the transgenic MSCs could significantly inhibit the allogeneic lymphocyte response compared with the control groups (P<0.05). A model of GVHD was developed by transplanting bone marrow cells and spleen lymphocytes of F344 rats to lethally irradiated SD rats. The onset of GVHD could be ameliorated or prevented by co-administration of transgenic MSCs. All the rats in the control groups suffered severe acute GVHD. CTLA4Ig expression was observed in the liver, intestine, kidney and spleen 30 days post- transplantation. Conclusions Our results indicate that adenoviral vectors could efficiently transfer CTLA4Ig gene into MSCs and sustain long-term stable expression in vitro and in vivo.

  12. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.

    Directory of Open Access Journals (Sweden)

    Himangi G Marathe

    Full Text Available SOX10 is a Sry-related high mobility (HMG-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ and the gene that encodes myelin basic protein (MBP. Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate

  13. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.

    Science.gov (United States)

    Marathe, Himangi G; Mehta, Gaurav; Zhang, Xiaolu; Datar, Ila; Mehrotra, Aanchal; Yeung, Kam C; de la Serna, Ivana L

    2013-01-01

    SOX10 is a Sry-related high mobility (HMG)-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ) and the gene that encodes myelin basic protein (MBP). Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate with SOX10 to

  14. Area-Specific Cell Stimulation via Surface-Mediated Gene Transfer Using Apatite-Based Composite Layers

    Directory of Open Access Journals (Sweden)

    Yushin Yazaki

    2015-04-01

    Full Text Available Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications.

  15. Gene Expression Patterns Underlying the Reinstatement of Plasticity in the Adult Visual System

    Directory of Open Access Journals (Sweden)

    Ettore Tiraboschi

    2013-01-01

    Full Text Available The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.

  16. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Directory of Open Access Journals (Sweden)

    Béringue Vincent

    2010-07-01

    Full Text Available Abstract Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.

  17. Gene polymorphisms in association with emerging cardiovascular risk markers in adult women

    Directory of Open Access Journals (Sweden)

    Dowling Nicole F

    2010-01-01

    Full Text Available Abstract Background Evidence on the associations of emerging cardiovascular disease risk factors/markers with genes may help identify intermediate pathways of disease susceptibility in the general population. This population-based study is aimed to determine the presence of associations between a wide array of genetic variants and emerging cardiovascular risk markers among adult US women. Methods The current analysis was performed among the National Health and Nutrition Examination Survey (NHANES III phase 2 samples of adult women aged 17 years and older (sample size n = 3409. Fourteen candidate genes within ADRB2, ADRB3, CAT, CRP, F2, F5, FGB, ITGB3, MTHFR, NOS3, PON1, PPARG, TLR4, and TNF were examined for associations with emerging cardiovascular risk markers such as serum C-reactive protein, homocysteine, uric acid, and plasma fibrinogen. Linear regression models were performed using SAS-callable SUDAAN 9.0. The covariates included age, race/ethnicity, education, menopausal status, female hormone use, aspirin use, and lifestyle factors. Results In covariate-adjusted models, serum C-reactive protein concentrations were significantly (P value controlling for false-discovery rate ≤ 0.05 associated with polymorphisms in CRP (rs3093058, rs1205, MTHFR (rs1801131, and ADRB3 (rs4994. Serum homocysteine levels were significantly associated with MTHFR (rs1801133. Conclusion The significant associations between certain gene variants with concentration variations in serum C-reactive protein and homocysteine among adult women need to be confirmed in further genetic association studies.

  18. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  19. Recombinant adeno-associated virus-mediated delivery of antisense angiotensin Ⅱ receptor 1 gene attenuates hypertension development

    Institute of Scientific and Technical Information of China (English)

    Xu-guang LI; Jiang-tao YAN; Xi-zheng XU; Jia-ning WANG; Li-ming CHENG; Tao WANG; Ping ZUO; Dao-wen WANG

    2007-01-01

    Aim:The renin-angiotensin system plays a crucial role in the development and establishment of hypertension,and the pharmacological blockade of the system results in a reduction in blood pressure. In the present study,we investigated whether the effects of a novel,double-stranded,recombinant adeno-associated virus vector (rAAV)-mediated antisense angiotensin Ⅱ receptor l (AT1R) gene efficiently prevents the development of hypertension induced by a high-salt diet in adult,male Sprague-Dawley (SD) rats. Methods:A rAAV was prepared with a cassette containing a cytomegalovirus promoter and partial cDNA (660 base pairs) for the AT1R inserted in the antisense direction (rAAV-AT1AS). A single tail vein injection of the rAAV-AT1-AS or rAAV-GFP (green fluorescent protein,a reporter gene) was performed in adult,male SD rats. Two weeks after injection,the animals were fed a diet containing 8% NaCI,and the systolic blood pressure was measured weekly using the tail-cuff method for 12 weeks. Results:The high-salt diet induced a significant rise in systolic blood pressure in the rAAV-GFP-treated animals;however,the rAAV-AT:AS treatment attenuated the rise in blood pressure (142.7±4.5 mmHg vs 117±3.8 mmHg,P<0.01),and the hypotensive effect was maintained until the experiments ended at 12 weeks. In the rAAV-GFP-treated animals AT1 was overexpressed in various tissues,especially in the aorta and kidney at mRNA levels;in contrast,rAAV-AT:AS treatment markedly attenuated AT1 expression. Furthermore,rAAV-AT:AS treatment prevented target organ damages from hypertension,including cardiac dysfunction and renal injury compared to the rAAV-GFP group. Conclusion:These results suggest that rAAVmediated anti-AT1 delivery attenuates the development of hypertension and protects against renal injury and cardiac remodeling.

  20. Flipase-mediated cassette exchange in Sf9 insect cells for stable gene expression.

    Science.gov (United States)

    Fernandes, Fabiana; Vidigal, João; Dias, Mafalda M; Prather, Kristala L J; Coroadinha, Ana S; Teixeira, Ana P; Alves, Paula M

    2012-11-01

    Site-specific DNA integration allows predictable heterologous gene expression and circumvents extensive clone screening. Herein, the establishment of a Flipase (Flp)-mediated cassette exchange system in Sf9 insect cells for targeted gene integration is described. A tagging cassette harboring a reporter dsRed gene was randomly introduced into the cell genome after screening different transfection protocols. Single-copy integration clones were then co-transfected with both Flp-containing plasmid and an EGFP-containing targeting cassette. Successful cassette exchange was suggested by emergence of G418-resistant green colonies and confirmed by PCR analysis, showing the absence of the tagging cassette and single integration of the targeting cassette in the same locus. Upon cassette exchange, uniform EGFP expression between clones derived from the same integration site was obtained. Moreover, the resulting cell clones exhibited the expression properties of the parental cell line. EGFP production titers over 40 mg/L were of the same order of magnitude as those achieved through baculovirus infection. This Sf9 master cell line constitutes a versatile and re-usable platform to produce multiple recombinant proteins for fundamental and applied research.

  1. Intra-arterial adenoviral mediated tumor transfection in a novel model of cancer gene therapy

    Directory of Open Access Journals (Sweden)

    Siemionow Maria

    2006-08-01

    Full Text Available Abstract Background The aim of the present study was to develop and characterize a novel in vivo cancer gene therapy model in which intra-arterial adenoviral gene delivery can be characterized. In this model, the rat cremaster muscle serves as the site for tumor growth and provides convenient and isolated access to the tumor parenchyma with discrete control of arterial and venous access for delivery of agents. Results Utilizing adenovirus encoding the green fluorescent protein we demonstrated broad tumor transfection. We also observed a dose dependant increment in luciferase activity at the tumor site using an adenovirus encoding the luciferase reporter gene. Finally, we tested the intra-arterial adenovirus dwelling time required to achieve optimal tumor transfection and observed a minimum time of 30 minutes. Conclusion We conclude that adenovirus mediated tumor transfection grown in the cremaster muscle of athymic nude rats via an intra-arterial route could be achieved. This model allows definition of the variables that affect intra-arterial tumor transfection. This particular study suggests that allowing a defined intra-tumor dwelling time by controlling the blood flow of the affected organ during vector infusion can optimize intra-arterial adenoviral delivery.

  2. RNA structures facilitate recombination-mediated gene swapping in HIV-1.

    Science.gov (United States)

    Simon-Loriere, Etienne; Martin, Darren P; Weeks, Kevin M; Negroni, Matteo

    2010-12-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny.

  3. RNA Structures Facilitate Recombination-Mediated Gene Swapping in HIV-1 ▿

    Science.gov (United States)

    Simon-Loriere, Etienne; Martin, Darren P.; Weeks, Kevin M.; Negroni, Matteo

    2010-01-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny. PMID:20881047

  4. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation.

    Science.gov (United States)

    Münch, Steffen; Ludwig, Nancy; Floss, Daniela S; Sugui, Janyce A; Koszucka, Anna M; Voll, Lars M; Sonnewald, Uwe; Deising, Holger B

    2011-01-01

    A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function. © 2010 The Authors. Molecular Plant Pathology © 2010 BSPP and Blackwell Publishing Ltd.