WorldWideScience

Sample records for gene herg channels

  1. Regulation of the human ether-a-go-go-related gene (hERG) potassium channel by Nedd4 family interacting proteins (Ndfips).

    Science.gov (United States)

    Kang, Yudi; Guo, Jun; Yang, Tonghua; Li, Wentao; Zhang, Shetuan

    2015-11-15

    The cardiac electrical disorder long QT syndrome (LQTS) pre-disposes affected individuals to ventricular arrhythmias and sudden death. Dysfunction of the human ether-a-go-go-related gene (hERG)-encoded rapidly activating delayed rectifier K(+) channel (IKr) is a major cause of LQTS. The expression of hERG channels is controlled by anterograde trafficking of newly synthesized channels to and retrograde degradation of existing channels from the plasma membrane. We have previously shown that the E3 ubiquitin (Ub) ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2) targets the PY motif of hERG channels to initiate channel degradation. Although both immature and mature hERG channels contain the PY motif, Nedd4-2 selectively mediates the degradation of mature hERG channels. In the present study, we demonstrate that Nedd4-2 is directed to specific cellular compartments by the Nedd4 family interacting proteins, Nedd4 family-interacting protein 1 (Ndfip1) and Ndfip2. Ndfip1 is primarily localized in the Golgi apparatus where it recruits Nedd4-2 to mediate the degradation of mature hERG proteins during channel trafficking to the plasma membrane. Although Ndfip2 directs Nedd4-2 to the Golgi apparatus, it also recruits Nedd4-2 to the multivesicular bodies (MVBs), which may impair MVB function and impede the degradation of mature hERG proteins mediated by Nedd4-2. These findings extend our understanding of hERG channel regulation and provide information which may be useful for the rescue of impaired hERG function in LQTS.

  2. Inhibition of the Human Ether-a-go-go-related Gene (HERG) K+ Channels by Lindera erythrocarpa

    Science.gov (United States)

    Hong, Hee-Kyung; Yoon, Weon-Jong; Kim, Young Ho; Yoo, Eun-Sook

    2009-01-01

    Lindera erythrocarpa Makino (Lauraceae) is used as a traditional medicine for analgesic, antidote, and antibacterial purposes and shows anti-tumor activity. We studied the effects of Lindera erythrocarpa on the human ether-a-go-go-related gene (HERG) channel, which appears of importance in favoring cancer progression in vivo and determining cardiac action potential duration. Application of MeOH extract of Lindera erythrocarpa showed a dose-dependent decrease in the amplitudes of the outward currents measured at the end of the pulse (IHERG) and the tail currents of HERG (Itail). When the BuOH fraction and H2O fraction of Lindera erythrocarpa were added to the perfusate, both IHERG and Itail were suppressed, while the hexane fraction, CHCl3 fraction, and EtOAc fraction did not inhibit either IHERG or Itail. The potential required for half-maximal activation caused by EtOAc fraction, BuOH fraction, and H2O fraction shifted significantly. The BuOH fraction and H2O fraction (100 µg/mL) decreased gmax by 59.6% and 52.9%, respectively. The H2O fraction- and BuOH fraction-induced blockades of Itail progressively decreased with increasing depolarization, showing the voltage-dependent block. Our findings suggest that Lindera erythrocarpa, a traditional medicine, blocks HERG channel, which could contribute to its anticancer and cardiac arrhythmogenic effect. PMID:19949665

  3. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  4. Effect of beta-adrenoceptor blockers on human ether-a-go-go-related gene (HERG) potassium channels

    DEFF Research Database (Denmark)

    Dupuis, Delphine S; Klaerke, Dan A; Olesen, Søren-Peter

    2005-01-01

    Patients with congenital long QT syndrome may develop arrhythmias under conditions of increased sympathetic tone. We have addressed whether some of the beta-adrenoceptor blockers commonly used to prevent the development of these arrhythmias could per se block the cardiac HERG (Human Ether....... These data showed that HERG blockade by beta-adrenoceptor blockers occurred only at high micromolar concentrations, which are significantly above the recently established safe margin of 100 (Redfern et al., 2003).......-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride) blocked the HERG channel with similar affinity, whereas the beta1-receptor antagonists metoprolol and atenolol showed weak effects. Further, the four compounds blocked HERG channels expressed in a mammalian HEK293 cell line...

  5. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy.

    Science.gov (United States)

    Ganapathi, Sindura B; Kester, Mark; Elmslie, Keith S

    2009-04-01

    Human ether-a-go-go-related gene (HERG) potassium channel acts as a delayed rectifier in cardiac myocytes and is an important target for both pro- and antiarrhythmic drugs. Many drugs have been pulled from the market for unintended HERG block causing arrhythmias. Conversely, recent evidence has shown that HERG plays a role in cell proliferation and is overexpressed both in multiple tumor cell lines and in primary tumor cells, which makes HERG an attractive target for cancer treatment. Therefore, a drug that can block HERG but that does not induce cardiac arrhythmias would have great therapeutic potential. Roscovitine is a cyclin-dependent kinase (CDK) inhibitor that is in phase II clinical trials as an anticancer agent. In the present study we show that R-roscovitine blocks HERG potassium current (human embryonic kidney-293 cells stably expressing HERG) at clinically relevant concentrations. The block (IC(50) = 27 microM) was rapid (tau = 20 ms) and reversible (tau = 25 ms) and increased with channel activation, which supports an open channel mechanism. Kinetic study of wild-type and inactivation mutant HERG channels supported block of activated channels by roscovitine with relatively little effect on either closed or inactivated channels. A HERG gating model reproduced all roscovitine effects. Our model of open channel block by roscovitine may offer an explanation of the lack of arrhythmias in clinical trials using roscovitine, which suggests the utility of a dual CDK/HERG channel block as an adjuvant cancer therapy.

  6. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  7. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels.

    Science.gov (United States)

    Hantouche, Christine; Williamson, Brittany; Valinsky, William C; Solomon, Joshua; Shrier, Alvin; Young, Jason C

    2017-02-10

    Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    Full Text Available Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM. It is well known that the human ether-ago-go-related gene (hERG controls the rapid delayed rectifier K+ current (IKr in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR by up-regulating the expression levels of activating transcription factor-6 (ATF-6 and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel

  9. Screening for cardiac HERG potassium channel interacting proteins using the yeast two-hybrid technique.

    Science.gov (United States)

    Ma, Qingyan; Yu, Hong; Lin, Jijin; Sun, Yifan; Shen, Xinyuan; Ren, Li

    2014-02-01

    The human ERG protein (HERG or Kv 11.1) encoded by the human ether-a-go-go-related gene (herg) is the pore-forming subunit of the cardiac delayed rectifier potassium current (IKr) responsible for action potential (AP) repolarization. Mutations in HERG lead to long-QT syndrome, a major cause of arrhythmias. Protein-protein interactions are fundamental for ion channel trafficking, membrane localization, and functional modulation. To identify proteins involved in the regulation of the HERG channel, we conducted a yeast two-hybrid screen of a human heart cDNA library using the C-terminus or N-terminus of HERG as bait. Fifteen proteins were identified as HERG amino terminal (HERG-NT)-interacting proteins, including Caveolin-1 (a membrane scaffold protein with multiple interacting partners, including G-proteins, kinases and NOS), the zinc finger protein, FHL2 and PTPN12 (a non-receptor tyrosine phosphatase). Eight HERG carboxylic terminal (HERG-CT)-interacting proteins were also identified, including the NF-κB-interacting protein myotrophin, We have identified multiple potential interacting proteins that may regulate cardiac IKr through cytoskeletal interactions, G-protein modulation, phosphorylation and downstream second messenger and transcription cascades. These findings provide further insight into dynamic modulation of HERG under physiological conditions and arrhythmogenesis.

  10. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression

    Science.gov (United States)

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K+ channel underlies the rapidly activating delayed rectifier K+ conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels. PMID:23793622

  11. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    Directory of Open Access Journals (Sweden)

    Yan M

    2015-10-01

    Full Text Available Meng Yan,1 Kaiping Zhang,1 Yanhui Shi,1 Lifang Feng,1 Lin Lv,1 Baoxin Li1,2 1Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China Abstract: Berberine (BBR, an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293 cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652 and phenylalanine (Phe656 in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. Keywords: berberine, hERG, cavoline-1, cardiotoxicity, LQTS, pharmacological rescue

  12. Stereoselective Blockage of Quinidine and Quinine in the hERG Channel and the Effect of Their Rescue Potency on Drug-Induced hERG Trafficking Defect

    Directory of Open Access Journals (Sweden)

    Meng Yan

    2016-09-01

    Full Text Available Diastereoisomers of quinidine and quinine are used to treat arrhythmia and malaria, respectively. It has been reported that both drugs block the hERG (human ether-a-go-go-related gene potassium channel which is essential for myocardium repolarization. Abnormality of repolarization increases risk of arrhythmia. The aim of our research is to study and compare the impacts of quinidine and quinine on hERG. Results show that both drugs block the hERG channel, with quinine 14-fold less potent than quinidine. In addition, they presented distinct impacts on channel dynamics. The results imply their stereospecific block effect on the hERG channel. However, F656C-hERG reversed this stereoselectivity. The mutation decreases affinity of the two drugs with hERG, and quinine was more potent than quinidine in F656C-hERG blockage. These data suggest that F656 residue contributes to the stereoselective pocket for quinidine and quinine. Further study demonstrates that both drugs do not change hERG protein levels. In rescue experiments, we found that they exert no reverse effect on pentamidine- or desipramine-induced hERG trafficking defect, although quinidine has been reported to rescue trafficking-deficient pore mutation hERG G601S based on the interaction with F656. Our research demonstrated stereoselective effects of quinidine and quinine on the hERG channel, and this is the first study to explore their reversal potency on drug-induced hERG deficiency.

  13. Local anesthetic interaction with human ether-a-go-go-related gene (HERG) channels: role of aromatic amino acids Y652 and F656

    DEFF Research Database (Denmark)

    Siebrands, Cornelia C; Schmitt, Nicole; Friederich, Patrick

    2005-01-01

    was to determine the effect of the mutations Y652A and F656A in the putative drug binding region of HERG on the inhibition by bupivacaine, ropivacaine, and mepivacaine. METHODS: The authors examined the inhibition of wild-type and mutant HERG channels, transiently expressed in Chinese hamster ovary cells...... by bupivacaine, ropivacaine, and mepivacaine. Whole cell patch clamp recordings were performed at room temperature. RESULTS: Inhibition of HERG wild-type and mutant channels by the different local anesthetics was concentration dependent, stereoselective, and reversible. The sensitivity decreased in the order...... bupivacaine > ropivacaine > mepivacaine for wild-type and mutant channels. The mutant channels were approximately 4-30 times less sensitive to the inhibitory action of the different local anesthetics than the wild-type channel. The concentration-response data were described by Hill functions (bupivacaine...

  14. Stereoselective inhibition of the hERG1 potassium channel

    Directory of Open Access Journals (Sweden)

    Liliana eSintra Grilo

    2010-11-01

    Full Text Available A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1 channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.

  15. Increased expression of HERG K(+) channels contributes to myelodysplastic syndrome progression and displays correlation with prognosis stratification.

    Science.gov (United States)

    Lu, Li; Du, Wen; Liu, Wei; Guo, Dongmei; He, Xiaoqi; Li, Huiyu

    2016-12-01

    Human ether-a-go-go-related gene (HERG) K(+) channels are shown to be aberrantly expressed in a variety of cancer cells where they play roles in contributing to cancer progression. Myelodysplastic syndromes (MDS) are a group of clinical heterogeneous disorders characterized by bone marrow failure and dysplasia of blood cells. However, the involvement of HERG K(+) channels in MDS development is poorly understood. The expression of HERG K(+) channels in untreated MDS, acute myeloid leukemia (AML) patients and the control group was detected by flow cytometry. The roles of HERG K(+) channels in regulation of SKM-1 cell proliferation, apoptosis, and cell cycle were determined by CCK-8 assay and flow cytometry, respectively. We found that expression of HERG K(+) channels in MDS patients was significantly higher than controls and was lower than AML. Percentage of HERG K(+) channels on CD34+CD38- cells gradually increased from controls to high-grade MDS subtypes. And HERG K(+) channel levels showed an ascending tendency from low-risk to high-risk MDS group. In addition, the CCK-8 assay, apoptosis and cell cycle analysis were performed and showed that blockage of HERG K(+) channels decreased the proliferation of MDS cells but rarely had effects on cell apoptosis and cell cycle distribution. Our study demonstrated that HERG K(+) channels might be a potential tumor marker of MDS. These channels were likely to contribute to MDS progression and were helpful for predicting prognosis of MDS. Inhibition of HERG K(+) channels might be a novel therapeutic measure for MDS.

  16. Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes.

    Science.gov (United States)

    Sanguinetti, M C; Xu, Q P

    1999-02-01

    1. The structural basis for the activation gate of voltage-dependent K+ channels is not known, but indirect evidence has implicated the S4-S5 linker, the cytoplasmic region between the fourth and fifth transmembrane domains of the channel subunit. We have studied the effects of mutations in the S4-S5 linker of HERG (human ether-á-go-go-related gene), a human delayed rectifier K+ channel, in Xenopus oocytes. 2. Mutation of acidic residues (D540, E544) in the S4-S5 linker of HERG channels to neutral (Ala) or basic (Lys) residues accelerated the rate of channel deactivation. Most mutations greatly accelerated the rate of activation. However, E544K HERG channels activated more slowly than wild-type HERG channels. 3. Mutation of residues in the S4-S5 linker had little or no effect on fast inactivation, consistent with independence of HERG channel activation and inactivation 4. In response to large hyperpolarizations, D540K HERG channels can reopen into a state that is distinct from the normal depolarization-induced open state. It is proposed that substitution of a negatively charged Asp with the positively charged Lys disrupts a subunit interaction that normally stabilizes the channel in a closed state at negative transmembrane potentials. 5. The results indicate that the S4-S5 linker is a crucial component of the activation gate of HERG channels.

  17. Concatenated hERG1 tetramers reveal stoichiometry of altered channel gating by RPR-260243.

    Science.gov (United States)

    Wu, Wei; Gardner, Alison; Sanguinetti, Michael C

    2015-01-01

    Activation of human ether-a-go-go-related gene 1 (hERG1) K(+) channels mediates repolarization of action potentials in cardiomyocytes. RPR-260243 [(3R,4R)-4-[3-(6-methoxy-quinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid] (RPR) slows deactivation and attenuates inactivation of hERG1 channels. A detailed understanding of the molecular mechanism of hERG1 agonists such as RPR may facilitate the design of more selective and potent compounds for prevention of arrhythmia associated with abnormally prolonged ventricular repolarization. RPR binds to a hydrophobic pocket located between two adjacent hERG1 subunits, and, hence, a homotetrameric channel has four identical RPR binding sites. To investigate the stoichiometry of altered channel gating induced by RPR, we constructed and characterized tetrameric hERG1 concatemers containing a variable number of wild-type subunits and subunits containing a point mutation (L553A) that rendered the channel insensitive to RPR, ostensibly by preventing ligand binding. The slowing of deactivation by RPR was proportional to the number of wild-type subunits incorporated into a concatenated tetrameric channel, and four wild-type subunits were required to achieve maximal slowing of deactivation. In contrast, a single wild-type subunit within a concatenated tetramer was sufficient to achieve half of the maximal RPR-induced shift in the voltage dependence of hERG1 inactivation, and maximal effect was achieved in channels containing three or four wild-type subunits. Together our findings suggest that the allosteric modulation of channel gating involves distinct mechanisms of coupling between drug binding and altered deactivation and inactivation.

  18. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available BACKGROUND: Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels. METHODS AND RESULTS: Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action. CONCLUSIONS: The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  19. Demonstration of physical proximity between the N terminus and the S4-S5 linker of the human ether-a-go-go-related gene (hERG) potassium channel.

    Science.gov (United States)

    de la Peña, Pilar; Alonso-Ron, Carlos; Machín, Angeles; Fernández-Trillo, Jorge; Carretero, Luis; Domínguez, Pedro; Barros, Francisco

    2011-05-27

    Potassium channels encoded by the human ether-à-go-go-related gene (hERG) contribute to cardiac repolarization as a result of their characteristic gating properties. The hERG channel N terminus acts as a crucial determinant in gating. It is also known that the S4-S5 linker couples the voltage-sensing machinery to the channel gate. Moreover, this linker has been repeatedly proposed as an interaction site for the distal portion of the N terminus controlling channel gating, but direct evidence for such an interaction is still lacking. In this study, we used disulfide bond formation between pairs of engineered cysteines to demonstrate the close proximity between the beginning of the N terminus and the S4-S5 linker. Currents from channels with introduced cysteines were rapidly and strongly attenuated by an oxidizing agent, this effect being maximal for cysteine pairs located around amino acids 3 and 542 of the hERG sequence. The state-dependent modification of the double-mutant channels, but not the single-cysteine mutants, and the ability to readily reverse modification with the reducing agent dithiothreitol indicate that a disulfide bond is formed under oxidizing conditions, locking the channels in a non-conducting state. We conclude that physical interactions between the N-terminal-most segment of the N terminus and the S4-S5 linker constitute an essential component of the hERG gating machinery, thus providing a molecular basis for previous data and indicating an important contribution of these cytoplasmic domains in controlling its unusual gating and hence determining its physiological role in setting the electrical behavior of cardiac and other cell types.

  20. In Silico Predictions of hERG Channel Blockers in Drug Discovery

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Sørensen, Flemming Steen

    2011-01-01

    The risk for cardiotoxic side effects represents a major problem in clinical studies of drug candidates and regulatory agencies have explicitly recommended that all new drug candidates should be tested for blockage of the human Ether-a-go-go Related-Gene (hERG) potassium channel. Indeed, several....... Significant progress has been made in structure-based and ligand-based drug design and a number of models have been developed to predict hERG blockage.Although approaches such as homology modeling in combination with docking and molecular dynamics bring us closer to understand the drug-channel interactions...... on current methods to predict hERG blockers and the need of consistent data to improve the quality and performance of the in silico models. Finally, integration of network-based analysis on drugs inducing potentially long-QT syndrome and arrhythmia will be discussed as a new perspective for a better...

  1. In silico predictions of hERG channel blockers in drug discovery

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jørgensen, Flemming Steen

    2011-01-01

    The risk for cardiotoxic side effects represents a major problem in clinical studies of drug candidates and regulatory agencies have explicitly recommended that all new drug candidates should be tested for blockage of the human Ether-a-go-go Related-Gene (hERG) potassium channel. Indeed, several....... Significant progress has been made in structure-based and ligand-based drug design and a number of models have been developed to predict hERG blockage. Although approaches such as homology modeling in combination with docking and molecular dynamics bring us closer to understand the drug-channel interactions...... on current methods to predict hERG blockers and the need of consistent data to improve the quality and performance of the in silico models. Finally, integration of network-based analysis on drugs inducing potentially long-QT syndrome and arrhythmia will be discussed as a new perspective for a better...

  2. Propofol inhibits hERG K(+) channels and enhances the inhibition effects on its mutations in HEK293 cells.

    Science.gov (United States)

    Han, Sheng-Na; Jing, Ying; Yang, Lin-Lin; Zhang, Zhao; Zhang, Li-Rong

    2016-11-15

    QT interval prolongation, a potential risk for arrhythmias, may result from gene polymorphisms relevant to cardiomyocyte repolarization. Another noted cause of QT interval prolongation is the administration of chemical compounds such as anesthetics, which may affect a specific type of cardiac K(+) channel encoded by the human ether-a-go-go-related gene (hERG). hERG K(+) current was recorded using whole-cell patch clamp in human embryonic kidney (HEK293) cells expressing wild type (WT) or mutated hERG channels. Expression of hERG K(+) channel proteins was evaluated using western blot and confirmed by fluorescent staining and imaging. Computational modeling was adopted to identify the possible binding site(s) of propofol with hERG K(+) channels. Propofol had a significant inhibitory effect on WT hERG K(+) currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC50) of 60.9±6.4μM. Mutations in drug-binding sites (Y652A or F656C) of the hERG channel were found to attenuate hERG current blockage by propofol. However, propofol did not inhibit the trafficking of hERG protein to the cell membrane. Meanwhile, for the three selective hERG K(+) channel mutant heterozygotes WT/Q738X-hERG, WT/A422T-hERG, and WT/H562P-hERG, the IC50 of propofol was calculated as 14.2±2.8μM, 3.3±1.2μM, and 5.9±1.9μM, respectively, which were much lower than that for the wild type. These findings indicate that propofol may potentially increase QT interval prolongation risk in patients via direct inhibition of the hERG K(+) channel, especially in those with other concurrent triggering factors such as hERG gene mutations. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The human ether-a'-go-go related gene (hERG) K+ channel blockade by the investigative selective-serotonin reuptake inhibitor CONA-437: limited dependence on S6 aromatic residues.

    Science.gov (United States)

    Alexandrou, A J; Milnes, J T; Sun, S Z; Fermini, B; Kim, S C; Jenkinson, S; Leishman, D J; Witchel, H J; Hancox, J C; Leaney, J L

    2014-08-01

    Diverse non-cardiac drugs adversely influence cardiac electrophysiology by inhibiting repolarising K(+) currents mediated by channels encoded by the human ether-a-go-go-related gene (hERG). In this study, pharmacological blockade of hERG K(+) channel current (I(hERG)) by a novel investigative serotonin-selective reuptake inhibitor (SSRI), CONA-437, was investigated. Whole-cell patch-clamp measurements of I(hERG) were made from human embryonic kidney (HEK 293) cells expressing wild-type (WT) or mutant forms of the hERG channel. With a step-ramp voltage-command, peak I(hERG) was inhibited with an IC(50) of 1.34 μM at 35 ±1°C; the IC(50) with the same protocol was not significantly different at room temperature. Voltage-command waveform selection had only a modest effect on the potency of I(hERG) block: the IC50 with a ventricular action potential command was 0.72 μM. I(hERG) blockade developed rapidly with time following membrane depolarisation and showed a weak dependence on voltage, accompanied by a shift of ≈ -5 mV in voltage-dependence of activation. There was no significant effect of CONA-437 on voltage-dependence of I(hERG) inactivation, though at some voltages an apparent acceleration of the time-course of inactivation was observed. Significantly, mutation of the S6 aromatic amino acid residues Y652 and F656 had only a modest effect on I(hERG) blockade by CONA-437 (a 3-4 fold shift in affinity). CONA-437 at up to 30 μM had no significant effect on either Nav1.5 sodium channels or L-type calcium channels. In conclusion, the novel SSRI CONA-437 is particularly notable as a gating-dependent hERG channel inhibitor for which neither S6 aromatic amino-acid constituent of the canonical drug binding site on the hERG channel appears obligatory for I(hERG) inhibition to occur.

  4. Allosteric modulators of the hERG K{sup +} channel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyi, E-mail: z.yu@lacdr.leidenuniv.nl; Klaasse, Elisabeth, E-mail: elisabethklaasse@hotmail.com; Heitman, Laura H., E-mail: l.h.heitman@lacdr.leidenuniv.nl; IJzerman, Adriaan P., E-mail: ijzerman@lacdr.leidenuniv.nl

    2014-01-01

    Drugs that block the cardiac K{sup +} channel encoded by the human ether-à-go-go gene (hERG) have been associated with QT interval prolongation leading to proarrhythmia, and in some cases, sudden cardiac death. Because of special structural features of the hERG K{sup +} channel, it has become a promiscuous target that interacts with pharmaceuticals of widely varying chemical structures and a reason for concern in the pharmaceutical industry. The structural diversity suggests that multiple binding sites are available on the channel with possible allosteric interactions between them. In the present study, three reference compounds and nine compounds of a previously disclosed series were evaluated for their allosteric effects on the binding of [{sup 3}H]astemizole and [{sup 3}H]dofetilide to the hERG K{sup +} channel. LUF6200 was identified as an allosteric inhibitor in dissociation assays with both radioligands, yielding similar EC{sub 50} values in the low micromolar range. However, potassium ions increased the binding of the two radioligands in a concentration-dependent manner, and their EC{sub 50} values were not significantly different, indicating that potassium ions behaved as allosteric enhancers. Furthermore, addition of potassium ions resulted in a concentration-dependent leftward shift of the LUF6200 response curve, suggesting positive cooperativity and distinct allosteric sites for them. In conclusion, our investigations provide evidence for allosteric modulation of the hERG K{sup +} channel, which is discussed in the light of findings on other ion channels. - Highlights: • Allosteric modulators on the hERG K{sup +} channel were evaluated in binding assays. • LUF6200 was identified as a potent allosteric inhibitor. • Potassium ions were found to behave as allosteric enhancers. • Positive cooperativity and distinct allosteric sites for them were proposed.

  5. Effect of terfenadine and pentamidine on the HERG channel and its intracellular trafficking: combined analysis with automated voltage clamp and confocal microscopy.

    Science.gov (United States)

    Tanaka, Hikaru; Takahashi, Yukiko; Hamaguchi, Shogo; Iida-Tanaka, Naoko; Oka, Takayuki; Nishio, Masato; Ohtsuki, Atsushi; Namekata, Iyuki

    2014-01-01

    The effects of terfenadine and pentamidine on the human ether-a-go-go related gene (hERG) channel current and its intracellular trafficking were evaluated. Green fluorescent protein (GFP)-linked hERG channels were expressed in HEK293 cells, and the membrane current was measured by an automated whole cell voltage clamp system. To evaluate drug effects on channel trafficking to the cell membrane, the fraction of channel present on the cell membrane was quantified by current measurement after drug washout and confocal microscopy. Terfenadine directly blocked the hERG channel current but had no effect on trafficking of hERG channels to the cell membrane after application in culture medium for 2 d. In contrast, pentamidine had no direct effect on the hERG channel current but reduced trafficking of hERG channels. The two drugs inhibited hERG channel function through different mechanisms: terfenadine through direct channel blockade and pentamidine through inhibition of channel trafficking to the cell membrane. Combined use of automated voltage clamp and confocal microscopic analyses would provide insights into the mechanisms of drug-induced QT-prolongation and arrhythmogenesis.

  6. In vitro chronic effects on hERG channel caused by the marine biotoxin Yessotoxin.

    Directory of Open Access Journals (Sweden)

    Sara Fernández Ferreiro

    2014-06-01

    Currently, published evidence indicates that hERG channel dysfunction can be due to more than one mechanism for many drugs (Guth, 2007. Alterations of hERG channel trafficking are considered an important factor in hERG-related cardiotoxicity. Actually, a screening study revealed that almost 40% of the drugs that block Ikr have also trafficking effects (Wible et al., 2005. Although YTX does not block hERG channels, it has been historically described as cardiotoxic due to in vivo damage to cardiomyocytes. Our results show that YTX induces a significant increase of hERG channel levels on the extracellular side of the plasma membrane in vitro. YTX causes cell death in many cell lines (Korsnes and Espenes, 2011 and the alterations of surface hERG levels might be related to the apoptotic process. However, annexin-V, a relatively early marker of apoptosis (Vermes et al., 1995, occurs later than the increase of surface hERG. Additionally, staurosporine triggered apoptosis without a simultaneous increase of surface hERG, so events are not necessarily related. Therefore YTX-induced elevated hERG in the plasma membrane seem to be independent of apoptosis. Functional implications of hERG currents have been described after alterations of cell surface hERG density (Guth, 2007. YTX did not cause significant alterations of hERG currents. Furthermore the hERG levels after YTX treatment were duplicated, so the effect on currents should be clearly evidenced if these channels were functional. The hERG channels on the cell surface are regulated by its production, translocation to the plasma membrane and degradation. The increase of extracellular channel could be a consequence of a higher production and externalization or a slower degradation. Higher synthesis in our cell model would not be physiologically relevant but our results demonstrated that the amount of immature hERG is reduced instead of increased. Fully glycosylated hERG seems slightly increased in these conditions but it is

  7. Expression and Fuactional Role of HERG1, K+ Channels in Leukemic Cells and Leukemic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    LI Huiyu; LIU Liqiong; GUO Tiannan; ZHANG Jiahua; LI Xiaoqing; DU Wen; LIU Wei; CHEN Xiangjun; HUANG Shi'ang

    2007-01-01

    In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cytometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytogenetic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by inducing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells proliferation and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.

  8. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Xi Chu

    Full Text Available Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells, and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV. Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively. Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  9. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    Science.gov (United States)

    Chu, Xi; Guo, Yusong; Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  10. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and h...... in the presence of hERG1b, whereas no difference in the time constant of inactivation was observed. The voltage-dependent recovery from inactivation was also similar. However, the time constant of recovery from inactivation was significantly faster for hERG1b channels compared to hERG1a and hERG1a...

  11. The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel.

    Science.gov (United States)

    Ferrer, Tania; Rupp, Jason; Piper, David R; Tristani-Firouzi, Martin

    2006-05-05

    A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.2 channel reveals that the S4-S5 linker is the structural link between the voltage sensing and pore domains. In this study, we used chimeras constructed from hERG and ether-a'-go-go (EAG) channels to identify interactions between residues in the S4-S5 linker and S6 domain that were critical for stabilizing the channel in a closed state. To verify the spatial proximity of these regions, we introduced cysteines in the S4-S5 linker and at the C-terminal end of the S6 domain and then probed for the effect of oxidation. The D540C-L666C channel current decreased in an oxidizing environment in a state-dependent manner consistent with formation of a disulfide bond that locked the channel in a closed state. Disulfide bond formation also restricted movement of the voltage sensor, as measured by gating currents. Taken together, these data confirm that the S4-S5 linker directly couples voltage sensor movement to the activation gate. Moreover, rather than functioning simply as a mechanical lever, these findings imply that specific interactions between the S4-S5 linker and the activation gate stabilize the closed channel conformation.

  12. Effect of daurisoline on HERG channel electrophysiological function and protein expression.

    Science.gov (United States)

    Liu, Qiangni; Mao, Xiaofang; Zeng, Fandian; Jin, Si; Yang, Xiaoyan

    2012-09-28

    Daurisoline (1) is a bis-benzylisoquinoline alkaloid isolated from the rhizomes of Menispermum dauricum. The antiarrhythmic effect of 1 has been demonstrated in different experimental animals. In previous studies, daurisoline (1) prolonged action potential duration (APD) in a normal use-dependent manner. However, the electrophysiological mechanisms for 1-induced prolongation of APD have not been documented. In the present study, the direct effect of 1 was investigated on the hERG current and the expression of mRNA and protein in human embryonic kidney 293 (HEK293) cells stably expressing the hERG channel. It was shown that 1 inhibits hERG current in a concentration- and voltage-dependent manner. In the presence of 10 μM 1, steady-state inactivation of V(1/2) was shifted negatively by 15.9 mV, and 1 accelerated the onset of inactivation. Blockade of hERG channels was dependent on channel opening. The expression and function of hERG were unchanged by 1 at 1 and 10 μM, while hERG expression and the hERG current were decreased significantly by 1 at 30 μM. These results indicate that 1, at concentrations below 30 μM, exerts a blocking effect on hERG, but does not affect the expression and function of the hERG channel. This may explain the relatively lower risk of long QT syndrome after long-term usage.

  13. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus

    2015-01-01

    The hERG potassium channel is essential for repolarization of the cardiac action potential. Due to this vital function, absence of unintended and potentially life-threatening interactions with hERG is required for approval of new drugs. The structure of hERG is therefore one of the most sought......-after. To provide purified hERG for structural studies and new hERG biomimetic platforms for detection of undesirable interactions, we have developed a hERG expression platform generating unprecedented amounts of purified and functional hERG channels. Full-length hERG, with or without a C-terminally fused green......-hemisuccinate and Astemizole resulted in a monodisperse elution profile demonstrating a high quality of the hERG channels. hERG-GFP-His(8) purified by Ni-affinity chromatography maintained the ability to bind Astemizole with the correct stoichiometry indicating that the native, tetrameric structure was preserved. To our...

  14. Proline Scan of the hERG Channel S6 Helix Reveals the Location of the Intracellular Pore Gate

    Science.gov (United States)

    Thouta, Samrat; Sokolov, Stanislav; Abe, Yuki; Clark, Sheldon J.; Cheng, Yen M.; Claydon, Tom W.

    2014-01-01

    In Shaker-like channels, the activation gate is formed at the bundle crossing by the convergence of the inner S6 helices near a conserved proline-valine-proline motif, which introduces a kink that allows for electromechanical coupling with voltage sensor motions via the S4-S5 linker. Human ether-a-go-go-related gene (hERG) channels lack the proline-valine-proline motif and the location of the intracellular pore gate and how it is coupled to S4 movement is less clear. Here, we show that proline substitutions within the S6 of hERG perturbed pore gate closure, trapping channels in the open state. Performing a proline scan of the inner S6 helix, from Ile655 to Tyr667 revealed that gate perturbation occurred with proximal (I655P-Q664P), but not distal (R665P-Y667P) substitutions, suggesting that Gln664 marks the position of the intracellular gate in hERG channels. Using voltage-clamp fluorimetry and gating current analysis, we demonstrate that proline substitutions trap the activation gate open by disrupting the coupling between the voltage-sensing unit and the pore of the channel. We characterize voltage sensor movement in one such trapped-open mutant channel and demonstrate the kinetics of what we interpret to be intrinsic hERG voltage sensor movement. PMID:24606930

  15. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    Directory of Open Access Journals (Sweden)

    Delin Wu

    2013-01-01

    Full Text Available Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA. However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (IK, the rapidly activating (IKr and slowly activating (IKs components of IK, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record IK (IKr, IKs and the HERG K+ current. Results. GA (1, 5, and 10 μM inhibited IK (IKr, IKs and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of IK (IKr, IKs and HERG K+ channel.

  16. Modeling of The hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).

    Science.gov (United States)

    Li, Xiao; Zhang, Yuan; Li, Huanhuan; Zhao, Yong

    2017-08-30

    Human ether-a-go-go related gene (hERG) K+ channel plays an important role in cardiac action potential. Blockage of hERG channel may result in long QT syndrome (LQTS), even cause sudden cardiac death. Many drugs have been withdrawn from the market because of the serious hERG-related cardiotoxicity. Therefore, it is quite essential to estimate the chemical blockage of hERG in the early stage of drug discovery. In this study, a diverse set of 3721 compounds with hERG inhibition data was assembled from literature. Then, we make full use of the Online Chemical Modeling Environment (OCHEM), which supplies rich machine learning methods and descriptor sets, to build a series of classification models for hERG blockage. We also generated two consensus models based on the top-performing individual models. The consensus models performed much better than the individual models both on 5-fold cross validation and external validation. Especially, consensus model II yielded the prediction accuracy of 89.5 % and MCC of 0.670 on external validation. This result indicated that the predictive power of consensus model II should be stronger than most of the previously reported models. The 17 top-performing individual models and the consensus models and the data sets used for model development are available at https://ochem.eu/article/103592. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology.

    Science.gov (United States)

    Li, Zhihua; Dutta, Sara; Sheng, Jiansong; Tran, Phu N; Wu, Wendy; Chang, Kelly; Mdluli, Thembi; Strauss, David G; Colatsky, Thomas

    2017-02-01

    The current proarrhythmia safety testing paradigm, although highly efficient in preventing new torsadogenic drugs from entering the market, has important limitations that can restrict the development and use of valuable new therapeutics. The CiPA (Comprehensive in vitro Proarrhythmia Assay) proposes to overcome these limitations by evaluating drug effects on multiple cardiac ion channels in vitro and using these data in a predictive in silico model of the adult human ventricular myocyte. A set of drugs with known clinical torsade de pointes risk was selected to develop and calibrate the in silico model. Manual patch-clamp data assessing drug effects on expressed cardiac ion channels were integrated into the O'Hara-Rudy myocyte model modified to include dynamic drug-hERG channel (human Ether-à-go-go-Related Gene) interactions. Together with multichannel pharmacology data, this model predicts that compounds with high torsadogenic risk are more likely to be trapped within the hERG channel and show stronger reverse use dependency of action potential prolongation. Furthermore, drug-induced changes in the amount of electronic charge carried by the late sodium and L-type calcium currents was evaluated as a potential metric for assigning torsadogenic risk. Modeling dynamic drug-hERG channel interactions and multi-ion channel pharmacology improves the prediction of torsadogenic risk. With further development, these methods have the potential to improve the regulatory assessment of drug safety models under the CiPA paradigm. © 2017 American Heart Association, Inc.

  18. Structural insight into the transmembrane segments 3 and 4 of the hERG potassium channel.

    Science.gov (United States)

    Li, Qingxin; Wong, Ying Lei; Ng, Hui Qi; Gayen, Shovanlal; Kang, CongBao

    2014-12-01

    The hERG (human ether-a-go-go related gene) potassium channel is a voltage-gated potassium channel containing an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. The transmembrane segment 4 (S4) is important for sensing changes of membrane potentials through positively charge residues. A construct containing partial S2-S3 linker, S3, S4 and the S4-S5 linker of the hERG channel was purified into detergent micelles. This construct exhibits good quality NMR spectrum when it was purified in lyso-myristoyl phosphatidylglycerol (LMPG) micelles. Structural study showed that S3 contains two short helices with a negatively charged surface. The S4 and S4-S5 linker adopt helical structures. The six positively charged residues in S4 localize at different sides, suggesting that they may have different functions in channel gating. Relaxation studies indicated that S3 is more flexible than S4. The boundaries of S3-S4 and S4-S4-S5 linker were identified. Our results provided structural information of the S3 and S4, which will be helpful to understand their roles in channel gating.

  19. Blockade of HERG channels by the class III antiarrhythmic azimilide: mode of action

    Science.gov (United States)

    Busch, A E; Eigenberger, B; Jurkiewicz, N K; Salata, J J; Pica, A; Suessbrich, H; Lang, F

    1998-01-01

    The class III antiarrhythmic azimilide has previously been shown to inhibit IKs and IKr in guinea-pig cardiac myocytes and IKs (minK) channels expressed in Xenopus oocytes. Because HERG channels underly the conductance IKr in human heart, the effects of azimilide on HERG channels expressed in Xenopus oocytes were the focus of the present study.In contrast to other well characterized HERG channel blockers, azimilide blockade was reverse use-dependent, i.e., the relative block and apparent affinity of azimilide decreased with an increase in channel activation frequency. Azimilide blocked HERG channels at 0.1 and 1 Hz with IC50 s of 1.4 μM and 5.2  μM respectively.In an envelope of tail test, HERG channel blockade increased with increasing channel activation, indicating binding of azimilide to open channels.Azimilide blockade of HERG channels expressed in Xenopus oocytes and IKr in mouse AT-1 cells was decreased under conditions of high [K+]e, whereas block of slowly activating IKs channels was not affected by changes in [K+]e.In summary, azimilide is a blocker of cardiac delayed rectifier channels, IKs and HERG. Because of the distinct effects of stimulation frequency and [K+]e on azimilide block of IKr and IKs channels, we conclude that the relative contribution of block of each of these cardiac delayed rectifier channels depends on heart frequency. [K+]e and regulatory status of the respective channels. PMID:9484850

  20. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels

    DEFF Research Database (Denmark)

    Diness, Thomas Goldin; Hansen, Rie Schultz; Olesen, Søren-Peter

    2006-01-01

    of the beta-subunits KCNE1 and KCNE2. In addition, the functional role of HERG1 in native guinea pig cardiac myocytes was demonstrated at different pacing frequencies by application of 10microM of the new HERG1 activator, NS1643. In conclusion, we have demonstrated that HERG1 and hKCNQ1 channels are inversely......To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3Hz....... The activity of HERG1 channels was inhibited down to 65% at high frequencies. In contrast, hKCNQ1 channel activity was increased up to 525% at high frequencies. The general frequency-dependent modulation of the channels was unaffected by both co-expression of hKCNQ1 and HERG1 channels, and by the presence...

  1. Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels.

    Science.gov (United States)

    Tristani-Firouzi, Martin; Chen, Jun; Sanguinetti, Michael C

    2002-05-24

    Outward movement of the voltage sensor is coupled to activation in voltage-gated ion channels; however, the precise mechanism and structural basis of this gating event are poorly understood. Potential insight into the coupling mechanism was provided by our previous finding that mutation to Lys of a single residue (Asp(540)) located in the S4-S5 linker endowed HERG (human ether-a-go-go-related gene) K(+) channels with the unusual ability to open in response to membrane depolarization and hyperpolarization in a voltage-dependent manner. We hypothesized that the unusual hyperpolarization-induced gating occurred through an interaction between Lys(540) and the C-terminal end of the S6 domain, the region proposed to form the activation gate. Therefore, we mutated six residues located in this region of S6 (Ile(662)-Tyr(667)) to Ala in D540K HERG channels. Mutation of Arg(665), but not the other five residues, prevented hyperpolarization-dependent reopening of D540K HERG channels. Mutation of Arg(665) to Gln or Asp also prevented reopening. In addition, D540R and D540K/R665K HERG reopened in response to hyperpolarization. Together these findings suggest that a single residue (Arg(665)) in the S6 domain interacts with Lys(540) by electrostatic repulsion to couple voltage sensing to hyperpolarization-dependent opening of D540K HERG K(+) channels. Moreover, our findings suggest that the C-terminal ends of S4 and S6 are in close proximity at hyperpolarized membrane potentials.

  2. New binding site on common molecular scaffold provides HERG channel specificity of scorpion toxin BeKm-1

    DEFF Research Database (Denmark)

    Korolkova, Yuliya V; Bocharov, Eduard V; Angelo, Kamilla

    2002-01-01

    The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure...... resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located...... in the alpha-helix and following loop whereas the "traditional" functional site of other short scorpion toxins is formed by residues from the beta-sheet. Thus the unique location of the binding site of BeKm-1 provides its specificity toward the HERG channel....

  3. The solution structure of the S4-S5 linker of the hERG potassium channel.

    Science.gov (United States)

    Gayen, Shovanlal; Li, Qingxin; Kang, CongBao

    2012-02-01

    The human ether-à-go-go related gene (hERG) encodes a protein that forms a voltage-gated potassium channel and plays an important role in the heart by controlling the rapid delayed rectifier K(+) current (I(Kr)). The S4-S5 linker was shown to be important for the gating of the hERG channel. Nuclear magnetic resonance study showed that a peptide derived from the S4-S5 linker had no well-ordered structure in aqueous solution and adopted a 3(10) -helix (E544-Y545-G546) structure in detergent micelles. The existence of an amphipathic helix was confirmed, which may be important for interaction with cell membrane. Close contact between side chains of residues R541 and E544 was observed, which may be important for its regulation of channel gating.

  4. Interaction among hERG channel blockers is a potential mechanism of death in caffeine overdose.

    Science.gov (United States)

    Zheng, Jifeng; Zhao, Wei; Xu, Kai; Chen, Qingmao; Chen, Yingying; Shen, Yueliang; Xiao, Liping; Jiang, Liqin; Chen, Yuan

    2017-04-05

    Caffeine overdose death is due to cardiac arrest, but its mechanism has not been explored in detail. In this study, our data showed that caffeine significantly prolonged the heart rate-corrected QT interval (QTc) of rabbits in vivo (PCaffeine was also found to be a hERG channel blocker with an IC50 of 5.04mM (n=5). Although these two findings likely link caffeine overdose death with hERG channel blockade, the amount of caffeine consumption needed to reach the IC50 is very high. Further study demonstrated that addition another hERG blocker could lower the consumption of caffeine significantly, no matter whether two hERG blockers share the same binding sites. Our data does not rule out other possibility, however, it suggests that there is a potential causal relationship between caffeine overdose death with hERG channel and the interaction among these hERG blockers. Published by Elsevier B.V.

  5. Effects of the histamine H1 receptor antagonist hydroxyzine on hERG K+ channels and cardiac action potential duration

    Institute of Scientific and Technical Information of China (English)

    Byung Hoon LEE; Seung Ho LEE; Daehyun CHU; Jin Won HYUN; Han CHOE; Bok Hee CHOI; Su-Hyun JO

    2011-01-01

    To investigate the effects of hydroxyzine on human ether-a-go-go-related gene (hERG) channels to determine the electrolphysiological basis for its proarrhythmic effects.Methods:hERG channels were expressed in Xenopus oocytes and HEK293 cells,and the effects of hydroxyzine on the channels were examined using two-microelectrode voltage-clamp and patch-clamp techniques,respectively.The effects of hydroxyzine on action potential duration were examined in guinea pig ventricular myocytes using current clamp.Results:Hydroxyzine (0.2 and 2 μmol/L) significantly increased the action potential duration at 90% repolarization (APD90) in both concentration- and time-dependent manners.Hydroxyzine (0.03-3 μmol/L) blocked both the steady-state and tail hERG currents.The block was voltage-dependent,and the values of IC50 for blocking the steady-state and tail currents at +20 mV was 0.18±0.02 μmol/L and 0.16±0.01 μmol/L,respectively,in HEK293 cells.Hydroxyzine (5 μmol/L) affected both the activated and the inactivated states of the channels,but not the closed state.The S6 domain mutation Y652A attenuated the blocking of hERG current by ~6-fold.Conclusion:The results suggest that hydroxyzine could block hERG channels and prolong APD.The tyrosine at position 652 in the channel may be responsible for the proarrhythmic effects of hydroxyzine.

  6. Inhibition of hERG Potassium Channels by Celecoxib and Its Mechanism

    Science.gov (United States)

    Frolov, Roman V.; Ignatova, Irina I.; Singh, Satpal

    2011-01-01

    Background Celecoxib (Celebrex), a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels. Methods and Results Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action. Conclusions The above channels play a significant role in drug-induced long QT syndrome (LQTS) and short QT syndrome (SQTS). Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities. PMID:22039467

  7. Mutations within the S4-S5 linker alter voltage sensor constraints in hERG K+ channels.

    Science.gov (United States)

    Van Slyke, Aaron C; Rezazadeh, Saman; Snopkowski, Mischa; Shi, Patrick; Allard, Charlene R; Claydon, Tom W

    2010-11-03

    Human ether-a-go-go related gene (hERG) channel gating is associated with slow activation, yet the mechanistic basis for this is unclear. Here, we examine the effects of mutation of a unique glycine residue (G546) in the S4-S5 linker on voltage sensor movement and its coupling to pore gating. Substitution of G546 with residues possessing different physicochemical properties shifted activation gating by ∼-50 mV (with the exception of G546C). With the activation shift taken into account, the time constant of activation was also accelerated, suggesting a stabilization of the closed state by ∼1.6-4.3 kcal/mol (the energy equivalent of one to two hydrogen bonds). Predictions of the α-helical content of the S4-S5 linker suggest that the presence of G546 in wild-type hERG provides flexibility to the helix. Deactivation gating was affected differentially by the G546 substitutions. G546V induced a pronounced slow component of closing that was voltage-independent. Fluorescence measurements of voltage sensor movement in G546V revealed a slow component of voltage sensor return that was uncoupled from charge movement, suggesting a direct effect of the mutation on voltage sensor movement. These data suggest that G546 plays a critical role in channel gating and that hERG channel closing involves at least two independently modifiable reconfigurations of the voltage sensor.

  8. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  9. The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.

    Science.gov (United States)

    Ng, Chai Ann; Perry, Matthew D; Tan, Peter S; Hill, Adam P; Kuchel, Philip W; Vandenberg, Jamie I

    2012-01-01

    Human ether-à-go-go-related gene (hERG) K(+) channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

  10. A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1

    DEFF Research Database (Denmark)

    Angelo, Kamilla; Korolkova, Yuliya V; Grunnet, Morten

    2003-01-01

    The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1...

  11. hERG1 potassium channel in cancer cells: a tool to reprogram immortality.

    Science.gov (United States)

    Gentile, Saverio

    2016-10-01

    It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.

  12. Ubiquitination-dependent quality control of hERG K+ channel with acquired and inherited conformational defect at the plasma membrane.

    Science.gov (United States)

    Apaja, Pirjo M; Foo, Brian; Okiyoneda, Tsukasa; Valinsky, William C; Barriere, Herve; Atanasiu, Roxana; Ficker, Eckhard; Lukacs, Gergely L; Shrier, Alvin

    2013-12-01

    Membrane trafficking in concert with the peripheral quality control machinery plays a critical role in preserving plasma membrane (PM) protein homeostasis. Unfortunately, the peripheral quality control may also dispose of partially or transiently unfolded polypeptides and thereby contribute to the loss-of-expression phenotype of conformational diseases. Defective functional PM expression of the human ether-a-go-go-related gene (hERG) K(+) channel leads to the prolongation of the ventricular action potential that causes long QT syndrome 2 (LQT2), with increased propensity for arrhythmia and sudden cardiac arrest. LQT2 syndrome is attributed to channel biosynthetic processing defects due to mutation, drug-induced misfolding, or direct channel blockade. Here we provide evidence that a peripheral quality control mechanism can contribute to development of the LQT2 syndrome. We show that PM hERG structural and metabolic stability is compromised by the reduction of extracellular or intracellular K(+) concentration. Cardiac glycoside-induced intracellular K(+) depletion conformationally impairs the complex-glycosylated channel, which provokes chaperone- and C-terminal Hsp70-interacting protein-dependent polyubiquitination, accelerated internalization, and endosomal sorting complex required for transport-dependent lysosomal degradation. A similar mechanism contributes to the down-regulation of PM hERG harboring LQT2 missense mutations, with incomplete secretion defect. These results suggest that PM quality control plays a determining role in the loss-of-expression phenotype of hERG in certain hereditary and acquired LTQ2 syndromes.

  13. A novel deletion-frameshift mutation in the S1 region of HERG gene in a Chinese family with long QT syndrome

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; ZHANG Ping; LI Xue-bin; WU Cun-cao; GUO Ji-hong

    2013-01-01

    Background The congenital Long QT syndrome (LQTS) is a hereditary cardiac channelopathy that is characterized by a prolonged QT interval,syncope,ventricular arrhythmias,and sudden death.The chromosome 7-linked type 2 congenital LQTS (LQT2) is caused by gene mutations in the human ether-a-go-go-related gene (HERG).Methods A Chinese family diagnosed with LQTS were screened for KCNQ1,HERG and SCN5A,using polymerase chain reaction (PCR),direct sequencing,and clong sequencing.We also investigated the mRNA expression of the HERG gene.Results We identified a novel i414fs+98X mutation in the HERG gene.The deletion mutation of 14-bp in the first transmembrane segment (S1) introduced premature termination codons (PTCs) at the end of exon 6.This mutation would result in a serious phenotype if the truncated proteins co-assembled with normal subunit to form the defective channels.But only the proband was symptomatic.Conclusions We found that the mRNA level of the HERG gene was significantly lower in 1414fs+98X carriers than in noncarriers.We found a novel 1414fs+98X mutation.The mRNA level supports that NMD mechanism might regulate the novel mutation.

  14. The synergic modeling for the binding of fluoroquinolone antibiotics to the hERG potassium channel.

    Science.gov (United States)

    Ryu, Sunghi; Imai, Yumi N; Oiki, Shigetoshi

    2013-07-01

    The fluoroquinolone antibiotic binding site in the hERG potassium channel was examined for the residues involved and their position in the tetrameric channel. The blocking effect of the two fluoroquinolones levofloxacin and sparfloxacin to tandem dimers of the hERG mutants were evaluated electrophysiologically. The results indicated that two Tyr652s in the neighboring subunits and one or two Phe656s in the diagonal subunits contributed to the blockade in the case of both compounds, and Ser624 was also involved. The docking studies suggested that the protonated carboxyl group in the compounds strongly interacts with Phe656 as a π acceptor. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. hERG1 channels drive tumour malignancy and may serve as prognostic factor in pancreatic ductal adenocarcinoma

    Science.gov (United States)

    Lastraioli, E; Perrone, G; Sette, A; Fiore, A; Crociani, O; Manoli, S; D'Amico, M; Masselli, M; Iorio, J; Callea, M; Borzomati, D; Nappo, G; Bartolozzi, F; Santini, D; Bencini, L; Farsi, M; Boni, L; Di Costanzo, F; Schwab, A; Onetti Muda, A; Coppola, R; Arcangeli, A

    2015-01-01

    Background: hERG1 channels are aberrantly expressed in human cancers. The expression, functional role and clinical significance of hERG1 channels in pancreatic ductal adenocarcinoma (PDAC) is lacking. Methods: hERG1 expression was tested in PDAC primary samples assembled as tissue microarray by immunohistochemistry using an anti-hERG1 monoclonal antibody (α-hERG1-MoAb). The functional role of hERG1 was studied in PDAC cell lines and primary cultures. ERG1 expression during PDAC progression was studied in Pdx-1-Cre,LSL-KrasG12D/+,LSL-Trp53R175H/+ transgenic (KPC) mice. ERG1 expression in vivo was determined by optical imaging using Alexa-680-labelled α-hERG1-MoAb. Results: (i) hERG1 was expressed at high levels in 59% of primary PDAC; (ii) hERG1 blockade decreased PDAC cell growth and migration; (iii) hERG1 was physically and functionally linked to the Epidermal Growth Factor-Receptor pathway; (iv) in transgenic mice, ERG1 was expressed in PanIN lesions, reaching high expression levels in PDAC; (v) PDAC patients whose primary tumour showed high hERG1 expression had a worse prognosis; (vi) the α-hERG1-MoAb could detect PDAC in vivo. Conclusions: hERG1 regulates PDAC malignancy and its expression, once validated in a larger cohort also comprising of late-stage, non-surgically resected cases, may be exploited for diagnostic and prognostic purposes in PDAC either ex vivo or in vivo. PMID:25719829

  16. Comparison of the effects of DC031050,a class Ⅲ antiarrhythmic agent, on hERG channel and three neuronal potassium channels

    Institute of Scientific and Technical Information of China (English)

    Ping LI; Hai-feng SUN; Ping-zheng ZHOU; Chao-ying MA; Guo-yuan HU; Hua-liang JIANG; Min LI; Hong LIU; Zhao-bing GAO

    2012-01-01

    Aim:This study was conducted to test the selectivity of DC031050 on cardiac and neuronal potassium channels.Methods:Human ether-à-go-go related gene (hERG),KCNQ and Kv1.2 channels were expressed in CHO cells.The delayed rectifier potassium current (IK) was recorded from dissociated hippocampal pyramidal neurons of neonatal rats.Whole-cell voltage patch clamp was used to record the voltage-activated potassium currents.Drug-containing solution was delivered using a RSC-100 Rapid Solution Changer.Results:Both DC031050 and dofetilide potently inhibited hERG currents with IC50 values of 2.3±1.0 and 17.9±1.2 nmol/L,respectively.DC031050 inhibited the IK current with an IC50 value of 2.7±1.5 μmol/L,which was >1000 times the concentration required to inhibit hERG current.DC031050 at 3 μmol/L did not significantly affect the voltage-dependence of the steady activation,steady inactivation of IK,or the rate of IK from inactivation.Intracellular application of DC031050 (5μmol/L) was insufficient to inhibit IK.DC031050 up to 10μmol/L had no effects on KCNQ2 and Kv1.2 channel currents.Conclusion:DC031050 is a highly selective hERG potassium channel blocker with a substantial safety margin of activity over neuronal potassium channels,thus holds significant potential for therapeutic application as a class Ⅲ antiarrhythmic agent.

  17. Acute alteration of cardiac ECG, action potential, I{sub Kr} and the human ether-a-go-go-related gene (hERG) K{sup +} channel by PCB 126 and PCB 77

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Hyeong; Park, Won Sun; Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr

    2012-07-01

    Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K{sup +} current (I{sub Kr}) of guinea pigs' hearts, and hERG K{sup +} current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD{sub 90}), and 50% of repolarization (APD{sub 50}) (P < 0.05) without changing the action potential duration at 20% (APD{sub 20}). PCB 77 decreased APD{sub 20} (P < 0.05) without affecting QTc, APD{sub 90}, and APD{sub 50}. The PCB 126 increased the I{sub Kr} in guinea-pig ventricular myocytes held at 36 °C and hERG K{sup +} current amplitude at the end of the voltage steps in voltage-dependent mode (P < 0.05); however, PCB 77 did not change the hERG K{sup +} current amplitude. The PCB 77 increased the diastolic Ca{sup 2+} and decreased Ca{sup 2+} transient amplitude (P < 0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD{sub 90} possibly by increasing I{sub Kr}, while PCB 77 decreased the APD{sub 20} possibly by other modulation related with intracellular Ca{sup 2+}. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca{sup 2+}, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K{sup +} current and I{sub Kr}.

  18. A k-nearest neighbor classification of hERG K(+) channel blockers.

    Science.gov (United States)

    Chavan, Swapnil; Abdelaziz, Ahmed; Wiklander, Jesper G; Nicholls, Ian A

    2016-03-01

    A series of 172 molecular structures that block the hERG K(+) channel were used to develop a classification model where, initially, eight types of PaDEL fingerprints were used for k-nearest neighbor model development. A consensus model constructed using Extended-CDK, PubChem and Substructure count fingerprint-based models was found to be a robust predictor of hERG activity. This consensus model demonstrated sensitivity and specificity values of 0.78 and 0.61 for the internal dataset compounds and 0.63 and 0.54 for the external (PubChem) dataset compounds, respectively. This model has identified the highest number of true positives (i.e. 140) from the PubChem dataset so far, as compared to other published models, and can potentially serve as a basis for the prediction of hERG active compounds. Validating this model against FDA-withdrawn substances indicated that it may even be useful for differentiating between mechanisms underlying QT prolongation.

  19. Research progress in drug reactions on hERG potassium channels%药物对hERG钾通道作用机制研究进展

    Institute of Scientific and Technical Information of China (English)

    林敏; 李泱; 张建成

    2012-01-01

    人ether-a-go-go-related gene (hERG)钾通道表达了延迟整流钾电流的快激活成分,对动作电位的复极至关重要.hERG钾电流不仅是抗心律失常作用的主要靶点,也是诸多药物增加尖端扭转型室速和心源性猝死风险的关键位点,而该电流的降低和(或)升高与基因突变或药物阻滞作用密切相关.随着对药物与hERG钾通道相互作用机制研究的深入,药物与通道孔道区蛋白结合位点的作用及其对通道转运的影响逐步被揭示,但这些药物对hERG作用的临床应用仍有待评价.%Human ether-a-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current ( Ikr). The reduction ( or increase ) of Ikr current due to either gene mutations or adverse drug effects would increase the risk of torsades de pointes and sudden cardiac death. This paper reviews various mechanisms of drug reactions of hERG potassium channels and the properties of major drug-protein reaction sites in the pore region and trafficking of hERG potassium channels under the influence of drugs. However, the effect of clinical administration of drugs on hERG remains unclear.

  20. Environment-Sensitive Fluorescent Probe for the Human Ether-a-go-go-Related Gene Potassium Channel

    OpenAIRE

    Liu, Zhenzhen; Jiang, Tianyu; Wang, Beilei; Ke, Bowen; Zhou, Yubin; Du, Lupei; Li, Minyong

    2016-01-01

    A novel environment-sensitive probe S2 with turn-on switch for Human Ether-a-go-go-Related Gene (hERG) potassium channel was developed herein. After careful evaluation, this fluorescent probe showed high binding affinity with hERG potassium channel with an IC50 value of 41.65 nM and can be well applied to hERG channel imaging or cellular distribution study for hERG channel blockers. Compared with other imaging techniques, such as immunofluorescence and fluorescent protein-based approaches, th...

  1. Antisense oligonucleotides on neurobehavior, respiratory, and cardiovascular function, and hERG channel current studies.

    Science.gov (United States)

    Kim, Tae-Won; Kim, Ki-Suk; Seo, Joung-Wook; Park, Shin-Young; Henry, Scott P

    2014-01-01

    Safety Pharmacology studies were conducted in mouse, rat, and non-human primate to determine in vivo effects of antisense oligonucleotides (ASOs) on the central nervous system, respiratory system, and cardiovascular system. Effects on the hERG potassium channel current was evaluated in vitro. ASOs contained terminal 2'-O-methoxyethyl nucleotides, central deoxy nucleotides, and a phosphorothioate backbone. Neurobehavior was evaluated by Functional Observatory Battery in rodents. Respiratory function was directly measured in rodents by plethysmograph; respiratory rate and blood gases were measured in monkey. Basic cardiovascular endpoints were measured in rat; cardiovascular evaluation in monkey involved implanted telemetry units. In single and repeat dose studies ASOs were administered by subcutaneous injection at up to 300 mg/kg, 250 mg/kg, and 40 mg/kg in mouse, rat, or monkey, respectively. Assays were performed in HEK293 or CHO-K1 cells, stably transfected with hERG cDNA, at ASO concentrations of up to 300 μM. No apparent effects were noted for respiratory or CNS function. Continuous monitoring of the cardiovascular system in monkey demonstrated no ASO-related changes in blood pressures, heart rate, or ECG and associated parameters (i.e., QRS duration). Specific assessment of the hERG potassium channel indicated no potential for actions on ventricular repolarization or modest effects only at excessive concentrations. The absence of direct actions on neurobehavior and respiratory function associated with the administration of ASOs in safety pharmacology core battery studies is consistent with published toxicology studies. The combination of in vitro hERG studies and in vivo studies in rat and monkey are consistent with no direct actions by ASOs on cardiac cell function or electrical conduction at relevant concentrations and dose levels. Taken as a whole, dedicated studies focused on the safety pharmacology of specific organ systems do not appear to add

  2. Utility of hERG assays as surrogate markers of delayed cardiac repolarization and QT safety.

    Science.gov (United States)

    Gintant, Gary A; Su, Zhi; Martin, Ruth L; Cox, Bryan F

    2006-01-01

    HERG (human-ether-a-go-go-related gene) encodes for a cardiac potassium channel that plays a critical role in defining ventricular repolarization. Noncardiovascular drugs associated with a rare but potentially lethal ventricular arrhythmia (Torsades de Pointes) have been linked to delayed cardiac repolarization and block of hERG current. This brief overview will discuss the role of hERG current in cardiac electrophysiology, its involvement in drug-induced delayed repolarization, and approaches used to define drug effects on hERG current. In addition, examples of hERG blocking drugs acting differently (i.e., overt and covert hERG blockade due to multichannel block) together with the utility and limitations of hERG assays as tools to predict the risk of delayed repolarization and proarrhythmia are discussed.

  3. hERG (KCNH2 or Kv11.1) K+ channels: screening for cardiac arrhythmia risk.

    Science.gov (United States)

    Bowlby, Mark R; Peri, Ravi; Zhang, Howard; Dunlop, John

    2008-11-01

    Testing new compounds for pro-arrhythmic potential has focused in recent years on avoiding activity at the hERG K+ channel, as hERG block is a common feature of many pro-arrhythmic compounds associated with Torsades de Pointes in humans. Blockers of hERG are well known to prolong cardiac action potentials and lead to long QT syndrome, and activators, although rarer, can lead to short QT syndrome. The most reliable assays of hERG utilize stable cell lines, and include ligand binding, Rb+ flux and electrophysiology (both automated and manual). These assays can be followed by measurement of activity at other ion channels contributing to cardiac contractility and detailed action potential/repolarization measurements in cardiac tissue. An integrated risk assessment for pro-arrhythmic potential is ultimately required, as the constellation of ion channel activities and potencies, along with the mechanism/kinetics of ion channel block, may ultimately be the best predictor of cardiac risk in vivo.

  4. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    Science.gov (United States)

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  5. Trafficking-deficient hERG K⁺ channels linked to long QT syndrome are regulated by a microtubule-dependent quality control compartment in the ER.

    Science.gov (United States)

    Smith, Jennifer L; McBride, Christie M; Nataraj, Parvathi S; Bartos, Daniel C; January, Craig T; Delisle, Brian P

    2011-07-01

    The human ether-a-go-go related gene (hERG) encodes the voltage-gated K(+) channel that underlies the rapidly activating delayed-rectifier current in cardiac myocytes. hERG is synthesized in the endoplasmic reticulum (ER) as an "immature" N-linked glycoprotein and is terminally glycosylated in the Golgi apparatus. Most hERG missense mutations linked to long QT syndrome type 2 (LQT2) reduce the terminal glycosylation and functional expression. We tested the hypothesis that a distinct pre-Golgi compartment negatively regulates the trafficking of some LQT2 mutations to the Golgi apparatus. We found that treating cells in nocodazole, a microtubule depolymerizing agent, altered the subcellular localization, functional expression, and glycosylation of the LQT2 mutation G601S-hERG differently from wild-type hERG (WT-hERG). G601S-hERG quickly redistributed to peripheral compartments that partially colocalized with KDEL (Lys-Asp-Glu-Leu) chaperones but not calnexin, Sec31, or the ER golgi intermediate compartment (ERGIC). Treating cells in E-4031, a drug that increases the functional expression of G601S-hERG, prevented the accumulation of G601S-hERG to the peripheral compartments and increased G601S-hERG colocalization with the ERGIC. Coexpressing the temperature-sensitive mutant G protein from vesicular stomatitis virus, a mutant N-linked glycoprotein that is retained in the ER, showed it was not restricted to the same peripheral compartments as G601S-hERG at nonpermissive temperatures. We conclude that the trafficking of G601S-hERG is negatively regulated by a microtubule-dependent compartment within the ER. Identifying mechanisms that prevent the sorting or promote the release of LQT2 channels from this compartment may represent a novel therapeutic strategy for LQT2.

  6. Thermodynamic and kinetic properties of amino-terminal and S4-S5 loop HERG channel mutants under steady-state conditions.

    Science.gov (United States)

    Alonso-Ron, Carlos; de la Peña, Pilar; Miranda, Pablo; Domínguez, Pedro; Barros, Francisco

    2008-05-15

    Gating kinetics and underlying thermodynamic properties of human ether-a-go-go-related gene (HERG) K(+) channels expressed in Xenopus oocytes were studied using protocols able to yield true steady-state kinetic parameters. Channel mutants lacking the initial 16 residues of the amino terminus before the conserved eag/PAS region showed significant positive shifts in activation voltage dependence associated with a reduction of z(g) values and a less negative DeltaG(o), indicating a deletion-induced displacement of the equilibrium toward the closed state. Conversely, a negative shift and an increased DeltaG(o), indicative of closed-state destabilization, were observed in channels lacking the amino-terminal proximal domain. Furthermore, accelerated activation and deactivation kinetics were observed in these constructs when differences in driving force were considered, suggesting that the presence of distal and proximal amino-terminal segments contributes in wild-type channels to specific chemical interactions that raise the energy barrier for activation. Steady-state characteristics of some single point mutants in the intracellular loop linking S4 and S5 helices revealed a striking parallelism between the effects of these mutations and those of the amino-terminal modifications. Our data indicate that in addition to the recognized influence of the initial amino-terminus region on HERG deactivation, this cytoplasmic region also affects activation behavior. The data also suggest that not only a slow movement of the voltage sensor itself but also delaying its functional coupling to the activation gate by some cytoplasmic structures possibly acting on the S4-S5 loop may contribute to the atypically slow gating of HERG.

  7. Computational analysis of the effects of the hERG channel opener NS1643 in a human ventricular cell model

    DEFF Research Database (Denmark)

    Peitersen, Torben; Grunnet, Morten; Benson, Alan P

    2008-01-01

    BACKGROUND: Dysfunction or pharmacologic inhibition of repolarizing cardiac ionic currents can lead to fatal arrhythmias. The hERG potassium channel underlies the repolarizing current I(Kr), and mutations therein can produce both long and short QT syndromes (LQT2 and SQT1). We previously reported...... on the diphenylurea compound NS1643, which acts on hERG channels in two distinct ways: by increasing overall conductance and by shifting the inactivation curve in the depolarized direction. OBJECTIVE: The purpose of this study was to determine which of the two components contributes more to the antiarrhythmic effects...... of NS1643 under normokalemic and hypokalemic conditions. METHODS: The study consisted of mathematical simulation of action potentials in a human ventricular ionic cell model in single cell and string of 100 cells. RESULTS: Regardless of external potassium concentration or diastolic interval used, NS1643...

  8. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  9. Indexing molecules for their hERG liability.

    Science.gov (United States)

    Rayan, Anwar; Falah, Mizied; Raiyn, Jamal; Da'adoosh, Beny; Kadan, Sleman; Zaid, Hilal; Goldblum, Amiram

    2013-07-01

    The human Ether-a-go-go-Related-Gene (hERG) potassium (K(+)) channel is liable to drug-inducing blockage that prolongs the QT interval of the cardiac action potential, triggers arrhythmia and possibly causes sudden cardiac death. Early prediction of drug liability to hERG K(+) channel is therefore highly important and preferably obligatory at earlier stages of any drug discovery process. In vitro assessment of drug binding affinity to hERG K(+) channel involves substantial expenses, time, and labor; and therefore computational models for predicting liabilities of drug candidates for hERG toxicity is of much importance. In the present study, we apply the Iterative Stochastic Elimination (ISE) algorithm to construct a large number of rule-based models (filters) and exploit their combination for developing the concept of hERG Toxicity Index (ETI). ETI estimates the molecular risk to be a blocker of hERG potassium channel. The area under the curve (AUC) of the attained model is 0.94. The averaged ETI of hERG binders, drugs from CMC, clinical-MDDR, endogenous molecules, ACD and ZINC, were found to be 9.17, 2.53, 3.3, -1.98, -2.49 and -3.86 respectively. Applying the proposed hERG Toxicity Index Model on external test set composed of more than 1300 hERG blockers picked from chEMBL shows excellent performance (Matthews Correlation Coefficient of 0.89). The proposed strategy could be implemented for the evaluation of chemicals in the hit/lead optimization stages of the drug discovery process, improve the selection of drug candidates as well as the development of safe pharmaceutical products.

  10. Modulating effect of ginseng saponins on heterologously expressed HERG currents in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Cuk-seong KIM; Sook-jin SON; Hyo-shin KIM; Yong-duk KIM; Kyu-seung LEE; Byeong-hwa JEON; Kwang-jin KIM; Jin-kyu PARK; Jin-bong PARK

    2005-01-01

    Aim: To examine the effects of ginseng saponins on the heterologously expressed human ether-a-go-go related gene (HERG) that encodes the rapid component of the delayed rectifier K+ channel. Methods: A two-electrode voltage clamp tech nique was used. HERG currents were recorded in Xenopus oocytes injected with HERG cRNA. Results: Crude saponins of Korean red ginseng (GS) induced a minimal increase of the maximal HERG conductance without changes in the voltage-dependent HERG current activation and inactivation curves. GS, however,decelerated HERG current deactivation in a concentration-dependent manner,which was more noticeable with panaxitriol (PT) than panaxidiol (PD). Consistently,ginseng saponins increased the HERG deactivation time constants with the order of potency of Rg1 (a major component of PT)>Rf 1>Rb1 (a major component of PD).Re had little effect on HERG deactivation. During a cardiac action Potential, GS increased the outward HERG current. Conclusion: Ginseng saponins enhance HERG currents, which could be in part a possible mechanism of the shortening cardiac action potential of ginseng saponins.

  11. hERG Channel Inhibitory Daphnane Diterpenoid Orthoesters and Polycephalones A and B with Unprecedented Skeletons from Gnidia polycephala.

    Science.gov (United States)

    De Mieri, Maria; Du, Kun; Neuburger, Markus; Saxena, Priyanka; Zietsman, Pieter C; Hering, Steffen; van der Westhuizen, Jan H; Hamburger, Matthias

    2015-07-24

    The hERG channel is an important antitarget in safety pharmacology. Several drugs have been withdrawn from the market or received severe usage restrictions because of hERG-related cardiotoxicity. In a screening of medicinal plants for hERG channel inhibition using a two-microelectrode voltage clamp assay with Xenopus laevis oocytes, a dichloromethane extract of the roots of Gnidia polycephala reduced the peak tail hERG current by 58.8 ± 13.4% (n = 3) at a concentration of 100 μg/mL. By means of HPLC-based activity profiling daphnane-type diterpenoid orthoesters (DDOs) 1, 4, and 5 were identified as the active compounds [55.4 ± 7.0% (n = 4), 42.5 ± 16.0% (n = 3), and 51.3 ± 9.4% (n = 4), respectively, at 100 μM]. In a detailed phytochemical profiling of the active extract, 16 compounds were isolated and characterized, including two 2-phenylpyranones (15 and 16) with an unprecedented tetrahydro-4H-5,8-epoxypyrano[2,3-d]oxepin-4-one skeleton, two new DDOs (3 and 4), two new guaiane sesquiterpenoids (11 and 12), and 10 known compounds (1, 2, 5-10, 13, and 14). Structure elucidation was achieved by extensive spectroscopic analysis (1D and 2D NMR, HRMS, and electronic circular dichroism), computational methods, and X-ray crystallography.

  12. Irresponsiveness of two retinoblastoma cases to conservative therapy correlates with up- regulation of hERG1 channels and of the VEGF-A pathway

    Directory of Open Access Journals (Sweden)

    La Torre Agostino

    2010-09-01

    Full Text Available Abstract Background Treatment strategies for Retinoblastoma (RB, the most common primary intraocular tumor in children, have evolved over the past few decades and chemoreduction is currently the most popular treatment strategy. Despite success, systemic chemotherapeutic treatment has relevant toxicity, especially in the pediatric population. Antiangiogenic therapy has thus been proposed as a valuable alternative for pediatric malignancies, in particolar RB. Indeed, it has been shown that vessel density correlates with both local invasive growth and presence of metastases in RB, suggesting that angiogenesis could play a pivotal role for both local and systemic invasive growth in RB. We present here two cases of sporadic, bilateral RB that did not benefit from the conservative treatment and we provide evidence that the VEGF-A pathway is significantly up-regulated in both RB cases along with an over expression of hERG1 K+ channels. Case presentation Two patients showed a sporadic, bilateral RB, classified at Stage II of the Reese-Elsworth Classification. Neither of them got benefits from conservative treatment, and the two eyes were enucleated. In samples from both RB cases we studied the VEGF-A pathway: VEGF-A showed high levels in the vitreous, the vegf-a, flt-1, kdr, and hif1-α transcripts were over-expressed. Moreover, both the transcripts and proteins of the hERG1 K+ channels turned out to be up-regulated in the two RB cases compared to the non cancerous retinal tissue. Conclusions We provide evidence that the VEGF-A pathway is up-regulated in two particular aggressive cases of bilateral RB, which did not experience any benefit from conservative treatment, showing the overexpression of the vegf-a, flt-1, kdr and hif1-α transcripts and the high secretion of VEGF-A. Moreover we also show for the first time that the herg1 gene transcripts and protein are over expressed in RB, as occurs in several aggressive tumors. These results further stress

  13. Regional flexibility in the S4-S5 linker regulates hERG channel closed-state stabilization.

    Science.gov (United States)

    Hull, Christina M; Sokolov, Stanislav; Van Slyke, Aaron C; Claydon, Tom W

    2014-10-01

    hERG K(+) channel function is vital for normal cardiac rhythm, yet the mechanisms underlying the unique biophysical characteristics of the channel, such as slow activation and deactivation gating, are incompletely understood. The S4-S5 linker is thought to transduce voltage sensor movement to opening of the pore gate, but may also integrate signals from cytoplasmic domains. Previously, we showed that substitutions of G546 within the S4-S5 linker destabilize the closed state of the channel. Here, we present results of a glycine-scan in the background of 546L. We demonstrate site-specific restoration of WT-like activation which suggests that flexibility in the N-terminal portion of the S4-S5 linker is critical for the voltage dependence of hERG channel activation. In addition, we show that the voltage dependence of deactivation, which was recently shown to be left-shifted from that of activation due to voltage sensor mode-shift, is also modulated by the S4-S5 linker. The G546L mutation greatly attenuated the coupling of voltage sensor mode-shift to the pore gate without altering the mode-shift itself. Indeed, all of the S4-S5 linker mutations tested similarly reduced coupling of the mode-shift to the pore gate. These data demonstrate a key role for S4-S5 linker in the unique activation and deactivation gating of hERG channels. Furthermore, uncoupling of the mode-shift to the pore by S4-S5 linker mutations parallels the effects of mutations in the N-terminus suggestive of functional interactions between the two regions.

  14. A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel.

    Science.gov (United States)

    Titus, Steven A; Beacham, Daniel; Shahane, Sampada A; Southall, Noel; Xia, Menghang; Huang, Ruili; Hooten, Elizabeth; Zhao, Yong; Shou, Louie; Austin, Christopher P; Zheng, Wei

    2009-11-01

    Long QT syndrome, either inherited or acquired from drug treatments, can result in ventricular arrhythmia (torsade de pointes) and sudden death. Human ether-a-go-go-related gene (hERG) channel inhibition by drugs is now recognized as a common reason for the acquired form of long QT syndrome. It has been reported that more than 100 known drugs inhibit the activity of the hERG channel. Since 1997, several drugs have been withdrawn from the market due to the long QT syndrome caused by hERG inhibition. Food and Drug Administration regulations now require safety data on hERG channels for investigative new drug (IND) applications. The assessment of compound activity on the hERG channel has now become an important part of the safety evaluation in the process of drug discovery. During the past decade, several in vitro assay methods have been developed and significant resources have been used to characterize hERG channel activities. However, evaluation of compound activities on hERG have not been performed for large compound collections due to technical difficulty, lack of throughput, and/or lack of biological relevance to function. Here we report a modified form of the FluxOR thallium flux assay, capable of measuring hERG activity in a homogeneous 1536-well plate format. To validate the assay, we screened a 7-point dilution series of the LOPAC 1280 library collection and reported rank order potencies of ten common hERG inhibitors. A correlation was also observed for the hERG channel activities of 10 known hERG inhibitors determined in this thallium flux assay and in the patch clamp experiment. Our findings indicate that this thallium flux assay can be used as an alternative method to profile large-volume compound libraries for compound activity on the hERG channel.

  15. Regulation of the voltage-insensitive step of HERG activation by extracellular pH.

    Science.gov (United States)

    Zhou, Qinlian; Bett, Glenna C L

    2010-06-01

    Human ether-à-go-go-related gene (HERG, Kv11.1, KCNH2) voltage-gated K(+) channels dominate cardiac action potential repolarization. In addition, HERG channels play a role in neuronal and smooth cell excitability as well as cancer pathology. Extracellular pH (pH(o)) is modified during myocardial ischemia, inflammation, and respiratory alkalosis, so understanding the response of HERG channels to changes in pH is of clinical significance. The relationship between pH(o) and HERG channel gating appears complex. Acidification has previously been reported to speed, slow, or have no effect on activation. We therefore undertook comprehensive analysis of the effect of pH(o) on HERG channel activation. HERG channels have unique and complex activation gating characteristics with both voltage-sensitive and voltage-insensitive steps in the activation pathway. Acidosis decreased the activation rate, suppressed peak current, and altered the sigmoidicity of gating near threshold potentials. At positive voltages, where the voltage-insensitive transition is rate limiting, pH(o) modified the voltage-insensitive step with a pK(a) similar to that of histidine. Hill coefficient analysis was incompatible with a coefficient of 1 but was well described by a Hill coefficient of 4. We derived a pH(o)-sensitive term for a five-state Markov model of HERG channel gating. This model demonstrates the mechanism of pH(o) sensitivity in HERG channel activation. Our experimental data and mathematical model demonstrate that the pH(o) sensitivity of HERG channel activation is dominated by the pH(o) sensitivity of the voltage-insensitive step, in a fashion that is compatible with the presence of at least one proton-binding site on each subunit of the channel tetramer.

  16. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus;

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  17. Improved functional expression of recombinant human ether-a-go-go (hERG K+ channels by cultivation at reduced temperature

    Directory of Open Access Journals (Sweden)

    Hamilton Bruce

    2007-12-01

    Full Text Available Abstract Background HERG potassium channel blockade is the major cause for drug-induced long QT syndrome, which sometimes cause cardiac disrhythmias and sudden death. There is a strong interest in the pharmaceutical industry to develop high quality medium to high-throughput assays for detecting compounds with potential cardiac liability at the earliest stages of drug development. Cultivation of cells at lower temperature has been used to improve the folding and membrane localization of trafficking defective hERG mutant proteins. The objective of this study was to investigate the effect of lower temperature maintenance on wild type hERG expression and assay performance. Results Wild type hERG was stably expressed in CHO-K1 cells, with the majority of channel protein being located in the cytoplasm, but relatively little on the cell surface. Expression at both locations was increased several-fold by cultivation at lower growth temperatures. Intracellular hERG protein levels were highest at 27°C and this correlated with maximal 3H-dofetilide binding activity. In contrast, the expression of functionally active cell surface-associated hERG measured by patch clamp electrophysiology was optimal at 30°C. The majority of the cytoplasmic hERG protein was associated with the membranes of cytoplasmic vesicles, which markedly increased in quantity and size at lower temperatures or in the presence of the Ca2+-ATPase inhibitor, thapsigargin. Incubation with the endocytic trafficking blocker, nocodazole, led to an increase in hERG activity at 37°C, but not at 30°C. Conclusion Our results are consistent with the concept that maintenance of cells at reduced temperature can be used to boost the functional expression of difficult-to-express membrane proteins and improve the quality of assays for medium to high-throughput compound screening. In addition, these results shed some light on the trafficking of hERG protein under these growth conditions.

  18. [Progress in research on defective protein trafficking and functional restoration in HERG-associated long QT syndrome].

    Science.gov (United States)

    Fang, Peiliang; Lian, Jiangfang

    2016-02-01

    The human ether-a-go-go related gene (HERG) encodes the α -subunit of the rapid component of the delayed rectifier K(+) channel, which is essential for the third repolarization of the action potential of human myocardial cells. Mutations of the HERG gene can cause type II hereditary long QT syndrome (LQT2), characterized by prolongation of the QT interval, abnormal T wave, torsade de pointes, syncope and sudden cardiac death. So far more than 300 HERG mutations have been identified, the majority of which can cause LQT2 due to HERG protein trafficking defect. It has been reported that certain drugs can induce acquired long QT syndrome through directly blocking the pore and/or affecting the HERG trafficking. The trafficking defects and K(+) currents can be restored with low temperature and certain drugs. However, the mechanisms underlying defective trafficking caused by HERG mutations and the inhibition/restoration of HERG trafficking by drugs are still unknown. This review summarizes the current understanding of the molecular mechanisms including HERG trafficking under physiological and pathological conditions, and the effects of drugs on the HERG trafficking, in order to provide theoretical evidence for the diagnosis and treatment of long QT syndrome.

  19. Stabilization of the Activated hERG Channel Voltage Sensor by Depolarization Involves the S4-S5 Linker.

    Science.gov (United States)

    Thouta, Samrat; Hull, Christina M; Shi, Yu Patrick; Sergeev, Valentine; Young, James; Cheng, Yen M; Claydon, Thomas W

    2017-01-24

    Slow deactivation of hERG channels is critical for preventing cardiac arrhythmia yet the mechanistic basis for the slow gating transition is unclear. Here, we characterized the temporal sequence of events leading to voltage sensor stabilization upon membrane depolarization. Progressive increase in step depolarization duration slowed voltage-sensor return in a biphasic manner (τfast = 34 ms, τslow = 2.5 s). The faster phase of voltage-sensor return slowing correlated with the kinetics of pore opening. The slower component occurred over durations that exceeded channel activation and was consistent with voltage sensor relaxation. The S4-S5 linker mutation, G546L, impeded the faster phase of voltage sensor stabilization without attenuating the slower phase, suggesting that the S4-S5 linker is important for communications between the pore gate and the voltage sensor during deactivation. These data also demonstrate that the mechanisms of pore gate-opening-induced and relaxation-induced voltage-sensor stabilization are separable. Deletion of the distal N-terminus (Δ2-135) accelerated off-gating current, but did not influence the relative contribution of either mechanism of stabilization of the voltage sensor. Lastly, we characterized mode-shift behavior in hERG channels, which results from stabilization of activated channel states. The apparent mode-shift depended greatly on recording conditions. By measuring slow activation and deactivation at steady state we found the "true" mode-shift to be ∼15 mV. Interestingly, the "true" mode-shift of gating currents was ∼40 mV, much greater than that of the pore gate. This demonstrates that voltage sensor return is less energetically favorable upon repolarization than pore gate closure. We interpret this to indicate that stabilization of the activated voltage sensor limits the return of hERG channels to rest. The data suggest that this stabilization occurs as a result of reconfiguration of the pore gate upon opening by

  20. Environment-Sensitive Fluorescent Probe for the Human Ether-a-go-go-Related Gene Potassium Channel.

    Science.gov (United States)

    Liu, Zhenzhen; Jiang, Tianyu; Wang, Beilei; Ke, Bowen; Zhou, Yubin; Du, Lupei; Li, Minyong

    2016-02-02

    A novel environment-sensitive probe S2 with turn-on switch for Human Ether-a-go-go-Related Gene (hERG) potassium channel was developed herein. After careful evaluation, this fluorescent probe showed high binding affinity with hERG potassium channel with an IC50 value of 41.65 nM and can be well applied to hERG channel imaging or cellular distribution study for hERG channel blockers. Compared with other imaging techniques, such as immunofluorescence and fluorescent protein-based approaches, this method is convenient and affordable, especially since a washing procedure is not needed. Meanwhile, this environment-sensitive turn-on design strategy may provide a good example for the probe development for these targets that have no reactive or catalytic activity.

  1. Trafficking-Competent KCNQ1 Variably Influences the Function of HERG Long QT Alleles

    Science.gov (United States)

    Hayashi, Kenshi; Shuai, Wen; Sakamoto, Yuichiro; Higashida, Haruhiro; Yamagishi, Masakazu; Kupershmidt, Sabina

    2010-01-01

    Background Mutations in the KCNQ1 and HERG genes cause the Long QT Syndromes, LQTS1 and LQTS2, due to reductions in the cardiac repolarizing IKs and IKr currents, respectively. It was previously reported that KCNQ1 co-expression modulates HERG function by enhancing membrane expression of HERG, and that the two proteins co-immunoprecipitate, and co-localize in myocytes. In vivo studies in genetically modified rabbits also support a HERG-KCNQ1 interaction. Objective We sought to determine whether KCNQ1 influences the current characteristics of HERG genetic variants. Methods Expression of HERG and KCNQ1 wild type (WT) and mutant channels in heterologous systems, combined with whole cell patch clamp analysis and biochemistry. Results Supporting the notion that KCNQ1 needs to be trafficking competent to influence HERG function, we found that although the tail current density of HERG expressed in CHO cells was approximately doubled by WT KCNQ1 co-expression, it was not altered in the presence of the trafficking-defective KCNQ1T587M variant. Activation and deactivation kinetics of HERG variants were not altered. The HERGM124T variant, previously shown to be mildly impaired functionally, was restored to WT levels by KCNQ1-WT but not KCNQ1T587M co-expression. The tail current densities of the severely trafficking-impaired HERGG601S and HERGF805C variants were only slightly improved by KCNQ1 co-expression. The trafficking competent, but incompletely processed HERGN598Q, and a mutation in the selectivity filter, HERGG628S, were not improved by KCNQ1 co-expression. Conclusions These findings suggest a functional co-dependence of HERG on KCNQ1 during channel biogenesis. Moreover, KCNQ1 variably modulates LQTS2 mutations with distinct underlying pathologies. PMID:20348026

  2. Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating.

    Directory of Open Access Journals (Sweden)

    Jorge Fernández-Trillo

    Full Text Available A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus. Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C point mutation in the S4-S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET analysis of fluorophore-tagged proteins under total internal reflection fluorescence (TIRF conditions revealed a substantial level of FRET between the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment with the gating machinery, likely at the level of the S4-S5 linker.

  3. Evolutionary analyses of KCNQ1 and HERG voltage-gated potassium channel sequences reveal location-specific susceptibility and augmented chemical severities of arrhythmogenic mutations

    Directory of Open Access Journals (Sweden)

    Accili Eric A

    2008-06-01

    Full Text Available Abstract Background Mutations in HERG and KCNQ1 potassium channels have been associated with Long QT syndrome and atrial fibrillation, and more recently with sudden infant death syndrome and sudden unexplained death. In other proteins, disease-associated amino acid mutations have been analyzed according to the chemical severity of the changes and the locations of the altered amino acids according to their conservation over metazoan evolution. Here, we present the first such analysis of arrhythmia-associated mutations (AAMs in the HERG and KCNQ1 potassium channels. Results Using evolutionary analyses, AAMs in HERG and KCNQ1 were preferentially found at evolutionarily conserved sites and unevenly distributed among functionally conserved domains. Non-synonymous single nucleotide polymorphisms (nsSNPs are under-represented at evolutionarily conserved sites in HERG, but distribute randomly in KCNQ1. AAMs are chemically more severe, according to Grantham's Scale, than changes observed in evolution and their severity correlates with the expected chemical severity of the involved codon. Expected chemical severity of a given amino acid also correlates with its relative contribution to arrhythmias. At evolutionarily variable sites, the chemical severity of the changes is also correlated with the expected chemical severity of the involved codon. Conclusion Unlike nsSNPs, AAMs preferentially locate to evolutionarily conserved, and functionally important, sites and regions within HERG and KCNQ1, and are chemically more severe than changes which occur in evolution. Expected chemical severity may contribute to the overrepresentation of certain residues in AAMs, as well as to evolutionary change.

  4. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action.

    Science.gov (United States)

    Vonderlin, Nadine; Fischer, Fathima; Zitron, Edgar; Seyler, Claudia; Scherer, Daniel; Thomas, Dierk; Katus, Hugo A; Scholz, Eberhard P

    2015-01-01

    Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG) channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 μM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 μM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam.

  5. A comparison of currents carried by HERG, with and without coexpression of MiRP1, and the native rapid delayed rectifier current. Is MiRP1 the missing link?

    Science.gov (United States)

    Weerapura, Manjula; Nattel, Stanley; Chartier, Denis; Caballero, Ricardo; Hébert, Terence E

    2002-04-01

    Although it has been suggested that coexpression of minK related peptide (MiRP1) is required for reconstitution of native rapid delayed-rectifier current (I(Kr)) by human ether-a-go-go related gene (HERG), currents resulting from HERG (I(HERG)) and HERG plus MiRP1 expression have not been directly compared with native I(Kr). We compared the pharmacological and selected biophysical properties of I(HERG) with and without MiRP1 coexpression in Chinese hamster ovary (CHO) cells with those of guinea-pig I(Kr) under comparable conditions. Comparisons were also made with HERG expressed in Xenopus oocytes. MiRP1 coexpression significantly accelerated I(HERG) deactivation at potentials negative to the reversal potential, but did not affect more physiologically relevant deactivation of outward I(HERG), which remained slower than that of I(Kr). MiRP1 shifted I(HERG) activation voltage dependence in the hyperpolarizing direction, whereas I(Kr) activated at voltages more positive than I(HERG). There were major discrepancies between the sensitivity to quinidine, E-4031 and dofetilide of I(HERG) in Xenopus oocytes compared to I(Kr), which were not substantially affected by coexpression with MiRP1. On the other hand, the pharmacological sensitivity of I(HERG) in CHO cells was indistinguishable from that of I(Kr) and was unaffected by MiRP1 coexpression. We conclude that the properties of I(HERG) in CHO cells are similar in many ways to those of native I(Kr) under the same recording conditions, and that the discrepancies that remain are not reduced by coexpression with MiRP1. These results suggest that the physiological role of MiRP1 may not be to act as an essential consituent of the HERG channel complex carrying native I(Kr).

  6. Regulation of hERG and hEAG channels by Src and by SHP-1 tyrosine phosphatase via an ITIM region in the cyclic nucleotide binding domain.

    Directory of Open Access Journals (Sweden)

    Lyanne C Schlichter

    Full Text Available Members of the EAG K(+ channel superfamily (EAG/Kv10.x, ERG/Kv11.x, ELK/Kv12.x subfamilies are expressed in many cells and tissues. In particular, two prototypes, EAG1/Kv10.1/KCNH1 and ERG1/Kv11.1/KCNH2 contribute to both normal and pathological functions. Proliferation of numerous cancer cells depends on hEAG1, and in some cases, hERG. hERG is best known for contributing to the cardiac action potential, and for numerous channel mutations that underlie 'long-QT syndrome'. Many cells, particularly cancer cells, express Src-family tyrosine kinases and SHP tyrosine phosphatases; and an imbalance in tyrosine phosphorylation can lead to malignancies, autoimmune diseases, and inflammatory disorders. Ion channel contributions to cell functions are governed, to a large degree, by post-translational modulation, especially phosphorylation. However, almost nothing is known about roles of specific tyrosine kinases and phosphatases in regulating K(+ channels in the EAG superfamily. First, we show that tyrosine kinase inhibitor, PP1, and the selective Src inhibitory peptide, Src40-58, reduce the hERG current amplitude, without altering its voltage dependence or kinetics. PP1 similarly reduces the hEAG1 current. Surprisingly, an 'immuno-receptor tyrosine inhibitory motif' (ITIM is present within the cyclic nucleotide binding domain of all EAG-superfamily members, and is conserved in the human, rat and mouse sequences. When tyrosine phosphorylated, this ITIM directly bound to and activated SHP-1 tyrosine phosphatase (PTP-1C/PTPN6/HCP; the first report that a portion of an ion channel is a binding site and activator of a tyrosine phosphatase. Both hERG and hEAG1 currents were decreased by applying active recombinant SHP-1, and increased by the inhibitory substrate-trapping SHP-1 mutant. Thus, hERG and hEAG1 currents are regulated by activated SHP-1, in a manner opposite to their regulation by Src. Given the widespread distribution of these channels, Src and SHP

  7. Effects of Chelidonium majus extracts and major alkaloids on hERG potassium channels and on dog cardiac action potential - a safety approach.

    Science.gov (United States)

    Orvos, Péter; Virág, László; Tálosi, László; Hajdú, Zsuzsanna; Csupor, Dezső; Jedlinszki, Nikoletta; Szél, Tamás; Varró, András; Hohmann, Judit

    2015-01-01

    Chelidonium majus or greater celandine is spread throughout the world, and it is a very common and frequent component of modern phytotherapy. Although C. majus contains alkaloids with remarkable physiological effect, moreover, safety pharmacology properties of this plant are not widely clarified, medications prepared from this plant are often used internally. In our study the inhibitory effects of C. majus herb extracts and alkaloids on hERG potassium current as well as on cardiac action potential were investigated. Our data show that hydroalcoholic extracts of greater celandine and its alkaloids, especially berberine, chelidonine and sanguinarine have a significant hERG potassium channel blocking effect. These extracts and alkaloids also prolong the cardiac action potential in dog ventricular muscle. Therefore these compounds may consequently delay cardiac repolarization, which may result in the prolongation of the QT interval and increase the risk of potentially fatal ventricular arrhythmias. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Dynamics of hERG closure allow novel insights into hERG blocking by small molecules.

    Science.gov (United States)

    Schmidtke, Peter; Ciantar, Marine; Theret, Isabelle; Ducrot, Pierre

    2014-08-25

    Today, drug discovery routinely uses experimental assays to determine very early if a lead compound can yield certain types of off-target activity. Among such off targets is hERG. The ion channel plays a primordial role in membrane repolarization and altering its activity can cause severe heart arrhythmia and sudden death. Despite routine tests for hERG activity, rather little information is available for helping medicinal chemists and molecular modelers to rationally circumvent hERG activity. In this article novel insights into the dynamics of hERG channel closure are described. Notably, helical pairwise closure movements have been observed. Implications and relations to hERG inactivation are presented. Based on these dynamics novel insights on hERG blocker placement are presented, compared to literature, and discussed. Last, new evidence for horizontal ligand positioning is shown in light of former studies on hERG blockers.

  9. Effects of Common Antitussive Drugs on the hERG Potassium Channel Current

    National Research Council Canada - National Science Library

    Deisemann, Heike; Ahrens, Nadine; Schlobohm, Irene; Kirchhoff, Christian; Netzer, Rainer; Möller, Clemens

    2008-01-01

    A common over-the-counter (OTC) non-opioid antitussive drug, clobutinol, was recently withdrawn from the market due to its potential to induce cardiac arrhythmias by a blockade of the potassium channel coded by the human ether-à...

  10. A pharmacologically validated, high-capacity, functional thallium flux assay for the human Ether-à-go-go related gene potassium channel.

    Science.gov (United States)

    Schmalhofer, William A; Swensen, Andrew M; Thomas, Brande S; Felix, John P; Haedo, Rodolfo J; Solly, Kelli; Kiss, Laszlo; Kaczorowski, Gregory J; Garcia, Maria L

    2010-12-01

    The voltage-gated potassium channel, human Ether-à-go-go related gene (hERG), represents the molecular component of IKr, one of the potassium currents involved in cardiac action potential repolarization. Inhibition of IKr increases the duration of the ventricular action potential, reflected as a prolongation of the QT interval in the electrocardiogram, and increases the risk for potentially fatal ventricular arrhythmias. Because hERG is an appropriate surrogate for IKr, hERG assays that can identify potential safety liabilities of compounds during lead identification and optimization have been implemented. Although the gold standard for hERG evaluation is electrophysiology, this technique, even with the medium capacity, automated instruments that are currently available, does not meet the throughput demands for supporting typical medicinal chemistry efforts in the pharmaceutical environment. Assays that could provide reliable molecular pharmacology data, while operating in high capacity mode, are therefore desirable. In the present study, we describe a high-capacity, 384- and 1,536-well plate, functional thallium flux assay for the hERG channel that fulfills these criteria. This assay was optimized and validated using different structural classes of hERG inhibitors. An excellent correlation was found between the potency of these agents in the thallium flux assay and in electrophysiological recordings of channel activity using the QPatch automated patch platform. Extension of this study to include 991 medicinal chemistry compounds from different internal drug development programs indicated that the thallium flux assay was a good predictor of in vitro hERG activity. These data suggest that the hERG thallium flux assay can play an important role in supporting drug development efforts.

  11. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-à-go-go-related gene channels.

    Science.gov (United States)

    Perrin, Mark J; Kuchel, Philip W; Campbell, Terence J; Vandenberg, Jamie I

    2008-11-01

    Drug block of the human ether-à-go-go-related gene K(+) channel (hERG) is the most common cause of acquired long QT syndrome, a disorder of cardiac repolarization that may result in ventricular tachycardia and sudden cardiac death. We investigated the open versus inactivated state dependence of drug block by using hERG mutants N588K and N588E, which shift the voltage dependence of inactivation compared with wild-type but in which the mutated residue is remote from the drug-binding pocket in the channel pore. Four high-affinity drugs (cisapride, dofetilide, terfenadine, and astemizole) demonstrated lower affinity for the inactivation-deficient N588K mutant hERG channel compared with N588E and wild-type hERG. Three of four low-affinity drugs (erythromycin, perhexiline, and quinidine) demonstrated no preference for N588E over N588K channels, whereas dl-sotalol was an example of a low-affinity state-dependent blocker. All five state-dependent blockers showed an even lower affinity for S620T mutant hERG (no inactivation) compared with N588K mutant hERG (greatly reduced inactivation). Computer modeling indicates that the reduced affinity for S620T compared with N588K and wild-type channels can be explained by the relative kinetics of drug block and unblock compared with the kinetics of inactivation and recovery from inactivation. We were also able to calculate, for the first time, the relative affinities for the inactivated versus the open state, which for the drugs tested here ranged from 4- to 70-fold. Our results show that preferential binding to the inactivated state is necessary but not sufficient for high-affinity binding to hERG channels.

  12. ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches.

    Science.gov (United States)

    Wang, Shuangquan; Sun, Huiyong; Liu, Hui; Li, Dan; Li, Youyong; Hou, Tingjun

    2016-08-01

    Blockade of human ether-à-go-go related gene (hERG) channel by compounds may lead to drug-induced QT prolongation, arrhythmia, and Torsades de Pointes (TdP), and therefore reliable prediction of hERG liability in the early stages of drug design is quite important to reduce the risk of cardiotoxicity-related attritions in the later development stages. In this study, pharmacophore modeling and machine learning approaches were combined to construct classification models to distinguish hERG active from inactive compounds based on a diverse data set. First, an optimal ensemble of pharmacophore hypotheses that had good capability to differentiate hERG active from inactive compounds was identified by the recursive partitioning (RP) approach. Then, the naive Bayesian classification (NBC) and support vector machine (SVM) approaches were employed to construct classification models by integrating multiple important pharmacophore hypotheses. The integrated classification models showed improved predictive capability over any single pharmacophore hypothesis, suggesting that the broad binding polyspecificity of hERG can only be well characterized by multiple pharmacophores. The best SVM model achieved the prediction accuracies of 84.7% for the training set and 82.1% for the external test set. Notably, the accuracies for the hERG blockers and nonblockers in the test set reached 83.6% and 78.2%, respectively. Analysis of significant pharmacophores helps to understand the multimechanisms of action of hERG blockers. We believe that the combination of pharmacophore modeling and SVM is a powerful strategy to develop reliable theoretical models for the prediction of potential hERG liability.

  13. Inhibition of human ether-a-go-go-related gene potassium channels by alpha 1-adrenoceptor antagonists prazosin, doxazosin, and terazosin.

    Science.gov (United States)

    Thomas, Dierk; Wimmer, Anna-Britt; Wu, Kezhong; Hammerling, Bettina C; Ficker, Eckhard K; Kuryshev, Yuri A; Kiehn, Johann; Katus, Hugo A; Schoels, Wolfgang; Karle, Christoph A

    2004-05-01

    Human ether-a-go-go-related gene (HERG) potassium channels are expressed in multiple tissues including the heart and adenocarcinomas. In cardiomyocytes, HERG encodes the alpha-subunit underlying the rapid component of the delayed rectifier potassium current, I(Kr), and pharmacological reduction of HERG currents may cause acquired long QT syndrome. In addition, HERG currents have been shown to be involved in the regulation of cell proliferation and apoptosis. Selective alpha 1-adrenoceptor antagonists are commonly used in the treatment of hypertension and benign prostatic hyperplasia. Recently, doxazosin has been associated with an increased risk of heart failure. Moreover, quinazoline-derived alpha 1-inhibitors induce apoptosis in cardiomyocytes and prostate tumor cells independently of alpha1-adrenoceptor blockade. To assess the action of the effects of prazosin, doxazosin, and terazosin on HERG currents, we investigated their acute electrophysiological effects on cloned HERG potassium channels heterologously expressed in Xenopus oocytes and HEK 293 cells.Prazosin, doxazosin, and terazosin blocked HERG currents in Xenopus oocytes with IC(50) values of 10.1, 18.2, and 113.2 microM respectively, whereas the IC(50) values for HERG channel inhibition in human HEK 293 cells were 1.57 microM, 585.1 nM, and 17.7 microM. Detailed biophysical studies revealed that inhibition by the prototype alpha 1-blocker prazosin occurred in closed, open, and inactivated channels. Analysis of the voltage-dependence of block displayed a reduction of inhibition at positive membrane potentials. Frequency-dependence was not observed. Prazosin caused a negative shift in the voltage-dependence of both activation (-3.8 mV) and inactivation (-9.4 mV). The S6 mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) HERG current blockade, indicating that prazosin binds to a common drug receptor within the pore-S6 region. In conclusion, this study demonstrates that HERG

  14. A novel splice mutation of HERG in a Chinese family with long QT syndrome

    Institute of Scientific and Technical Information of China (English)

    SHANG Yun-peng; XIE Xu-dong; WANG Xing-xiang; CHEN Jun-zhu; ZHU Jian-hua; TAO Qian-min; ZHENG Liang-rong

    2005-01-01

    Congenital long QT syndrome (LQTS) is a genetically heterogeneous disease in which six ion-channel genes have been identified. The phenotype-genotype relationships of the HERG (human ether-a-go-go-related gene) mutations are not fully understood. The objective of this study is to identify the underlying genetic basis of a Chinese family with LQTS and to characterize the clinical manifestations properties of the mutation. Single strand conformation polymorphism (SSCP) analyses were conducted on DNA fragments amplified by polymerase chain reaction from five LQT-related genes. Aberrant conformers were analyzed by DNA sequencing. A novel splice mutation in C-terminus of HERG was identified in this Chinese LQTS family,leading to the deletion of 11-bp at the acceptor splice site of Exon9 [Exon9 IVS del (-12→-2)]. The mutation might affect,through deficient splicing, the putative cyclic nucleotide binding domain (CNBD) of the HERG K+ channel. This mutation resulted in a mildly affected phenotype. Only the proband had a history of syncopes, while the other three individuals with long QT interval had no symptoms. Two other mutation carriers displayed normal phenotype. No sudden death occurred in the family. The 4 affected individuals and the two silent mutation carriers were all heterozygous for the mutation. It is the first splice mutation of HERG reported in Chinese LQTS families. Clinical data suggest that the CNBD mutation may be less malignant than mutations occurring in the pore region and be partially dominant over wild-type function.

  15. HERG block, QT liability and sudden cardiac death.

    Science.gov (United States)

    Brown, Arthur M

    2005-01-01

    Non-cardiac drugs may prolong action potential duration (APD) and QT leading to Torsade de Pointes (TdP) and sudden cardiac death. TdP is rare and QT is used as a surrogate marker in the clinic. For non-cardiac drugs, APD/QT liability is always associated with a reduction in hERG current produced by either direct channel block or inhibition of trafficking. hERG and APD liabilities correlate better when APDs are measured in rabbit versus canine Purkinje fibres. hERG and APD/QT liabilities may be dissociated when hERG block is offset by block of calcium or sodium currents. hERG liability may be placed in context by calculating a safety margin (SM) from the IC50 for inhibition of hERG current measured by patch clamp divided by the effective therapeutic plasma concentration of the drug. The SM is uncertain because literature values for IC50 may vary by 50-fold and small differences in plasma protein binding have large effects. With quality control, the IC50 95% confidence limits vary less than twofold. Ideally, hERG liability should be determined during lead optimization. Patch damp has insufficient throughput for this purpose. A novel high-throughput screen has been developed to detect drugs that block hERG directly and/or inhibit hERG trafficking.

  16. Interactions of H562 in the S5 helix with T618 and S621 in the pore helix are important determinants of hERG1 potassium channel structure and function.

    Science.gov (United States)

    Lees-Miller, James P; Subbotina, Julia O; Guo, Jiqing; Yarov-Yarovoy, Vladimir; Noskov, Sergei Y; Duff, Henry J

    2009-05-06

    hERG1 is a member of the cyclic nucleotide binding domain family of K(+) channels. Alignment of cyclic nucleotide binding domain channels revealed an evolutionary conserved sequence HwX(A/G)C in the S5 domain. We reasoned that histidine 562 in hERG1 could play an important structure-function role. To explore this role, we created in silica models of the hERG1 pore domain based on the KvAP crystal structure with Rosetta-membrane modeling and molecular-dynamics simulations. Simulations indicate that the H562 residue in the S5 helix spans the gap between the S5 helix and the pore helix, stabilizing the pore domain, and that mutation at the H562 residue leads to a disruption of the hydrogen bonding to T618 and S621, resulting in distortion of the selectivity filter. Analysis of the simulated point mutations at positions 562/618/621 showed that the reciprocal double mutations H562W/T618I would partially restore the orientation of the 562 residue. Matching hydrophobic interactions between mutated W562 residue and I618 partially compensate for the disrupted hydrogen bonding. Complementary in vitro electrophysiological studies confirmed the results of the molecular-dynamics simulations on single mutations at positions 562, 618, and 621. Experimentally, mutations of the H562 to tryptophan produced a functional channel, but with slowed deactivation and shifted V(1/2) of activation. Furthermore, the double mutation T618I/H562W rescued the defects seen in activation, deactivation, and potassium selectivity seen with the H562W mutation. In conclusion, interactions between H562 in the S5 helix and amino acids in the pore helix are important determinants of hERG1 potassium channel function, as confirmed by theory and experiment.

  17. Assignment of human G-protein-coupled inward rectifier K{sup +} channel homolog GIRK3 gene to chromosome 1q21-q23

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, F.; Fink, M.; Barhanin, J. [CNRS, Valbonne (France)] [and others

    1995-10-10

    More than 20 genes that encode voltage-gated and Ca{sup 2+}-dependent K{sup +} channels have been identified. These channels are involved in a wide variety of biological functions such as neuronal and muscle excitability, hormone secretion, and osmotic regulation. Two voltage-gated K{sup +} channel genes, KCNA1 and HERG, have been related to neurological and cardiac inherited disorders in humans. Missense mutations in the KCNA1 gene lead to episodic ataxia/myokimia syndrome. Missense, splice donor, and deletion mutations in the HERG gene have been shown to cause long QT syndrome. These two channels belong to the superfamily of cationic channels, which share the characteristic structural features of six transmembrane domains and one segment (called 115) involved in pore formation. 17 refs., 1 fig.

  18. hERG Blockade by Iboga Alkaloids.

    Science.gov (United States)

    Alper, Kenneth; Bai, Rong; Liu, Nian; Fowler, Steven J; Huang, Xi-Ping; Priori, Silvia G; Ruan, Yanfei

    2016-01-01

    The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel.

  19. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action

    Directory of Open Access Journals (Sweden)

    Vonderlin N

    2015-02-01

    Full Text Available Nadine Vonderlin,1 Fathima Fischer,1 Edgar Zitron,1,2 Claudia Seyler,1 Daniel Scherer,1 Dierk Thomas,1,2 Hugo A Katus,1,2 Eberhard P Scholz1 1Department of Internal Medicine III, University Hospital Heidelberg, 2German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany Abstract: Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 µM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 µM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam. Keywords: midazolam, anesthetics, human ether

  20. 氟西汀对hERG钾通道的阻断作用及佛波酯的抑制作用%Blocking effect of fluoxetine on hERG potassium channel activity and inhibition by phorbol-12-myristate-13-acetate

    Institute of Scientific and Technical Information of China (English)

    汪溪洁; 惠涛涛; 宋征; 马璟

    2014-01-01

    目的:探讨氟西汀对hERG( ether-a-go-go-related gene)钾通道的作用及蛋白激酶C( PKC)激动剂佛波酯( PMA )对氟西汀作用的影响。方法采用全细胞膜片钳技术记录氟西汀0.01,0.1,1和10μmol·L-1处理后稳定表达hERG钾通道的HEK293细胞( hERG-HEK293稳态细胞)上hERG钾通道电流(IKr)的变化,研究氟西汀对IKr作用的浓度依赖性和电压依赖性,并观察氟西汀1μmol·L-1处理后hERG钾通道激活、失活和复活动力学的变化。在此基础上,观察PMA 1μmol·L-1对氟西汀1μmol·L-1作用IKr后的影响。结果氟西汀0.01,0.1,1和10μmol·L-1对hERG-HEK293稳态细胞上IKr具有浓度依赖性和电压依赖性的抑制作用,半数抑制浓度( lC50)约为0.8μmol·L-1,Hill系数约为1.1。氟西汀1μmol·L-1可以减小IKr激活、失活和复活电流,并影响hERG钾通道的激活和复活过程。在氟西汀对IKr电流的抑制作用达到稳态后,PMA 1μmol·L-1可抑制氟西汀对hERG钾通道的阻断作用。结论氟西汀对hERG-HEK293稳态细胞上hERG钾通道具有明显的阻断作用,该作用可被PKC激动剂PMA抑制。%OBJECTlVE To investigate the action mechanism of antidepressant fluoxetine on hERG ( ether-a-go-go-related gene ) potassium channel, and the effect of protein kinase C ( PKC ) agonist phorbol-12-myristate-13-acetate ( PMA) on fluoxetine inhibition. METHODS The whole cell patch clamp technique was used to record the change in hERG potassium current ( IKr ) on HEK293 cells that stably expressed hERG potassium channel ( hERG-HEK293 steady-state cells) , which was treated with fluoxe-tine 0.01, 0.1, 1 and 10μmol·L-1 , to study the concentration-and voltage-dependence of the effects on IKr, and to observe the changes in activation, inactivation and recovery dynamics of hERG potassium channel treated with fluoxetine 1μmol·L-1 . On this basis, the effect of PMA of 1μmol·L-1 on inhibition of fluoxetine 1 μmol·L-1 was explored

  1. Tuning HERG out: antitarget QSAR models for drug development.

    Science.gov (United States)

    Braga, Rodolpho C; Alves, Vinicius M; Silva, Meryck F B; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander; Andrade, Carolina H

    2014-01-01

    Several non-cardiovascular drugs have been withdrawn from the market due to their inhibition of hERG K+ channels that can potentially lead to severe heart arrhythmia and death. As hERG safety testing is a mandatory FDArequired procedure, there is a considerable interest for developing predictive computational tools to identify and filter out potential hERG blockers early in the drug discovery process. In this study, we aimed to generate predictive and well-characterized quantitative structure-activity relationship (QSAR) models for hERG blockage using the largest publicly available dataset of 11,958 compounds from the ChEMBL database. The models have been developed and validated according to OECD guidelines using four types of descriptors and four different machine-learning techniques. The classification accuracies discriminating blockers from non-blockers were as high as 0.83-0.93 on external set. Model interpretation revealed several SAR rules, which can guide structural optimization of some hERG blockers into non-blockers. We have also applied the generated models for screening the World Drug Index (WDI) database and identify putative hERG blockers and non-blockers among currently marketed drugs. The developed models can reliably identify blockers and non-blockers, which could be useful for the scientific community. A freely accessible web server has been developed allowing users to identify putative hERG blockers and non-blockers in chemical libraries of their interest (http://labmol.farmacia.ufg.br/predherg).

  2. Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations.

    Science.gov (United States)

    Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J; Noskov, Sergei Yu

    2010-11-01

    The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed.

  3. APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel.

    Science.gov (United States)

    Zhang, M; Liu, X-S; Diochot, S; Lazdunski, M; Tseng, G-N

    2007-08-01

    We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amplitudes elicited by strong depolarizing pulses that maximally activate the channels. The APETx1 binding site is distinctly different from that of a pore-blocking peptide toxin, BeKm-1. Mutations in the S3b region of hERG have dramatic impact on the responsiveness to APETx1: G514C potentiates whereas E518C abolishes the APETx1 effect. Restoring the negative charge at position 518 (methanethiosulfonate ethylsulfonate modification of 518C) partially restores APETx1 responsiveness, supporting an electrostatic interaction between E518 and APETx1. Among the three hERG isoforms, hERG1 and hERG3 are equally responsive to APETx1, whereas hERG2 is insensitive. The key feature seems to be an arginine residue uniquely present at the 514-equivalent position in hERG2, where the other two isoforms possess a glycine. Our data show that APETx1 is a gating modifier toxin of the hERG channel, and its binding site shares characteristics with those of gating modifier toxin binding sites on other Kv channels.

  4. Inhibitory effects of coronary vasodilator papaverine on heterologously-expressed HERG currents in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Cuk-seong KIM; Jin-bong PARK; Nam LEE; Sook-jin SON; Kyu-seung LEE; Hyo-shin KIM; Yong-geun KWAK; Soo-wan CHAE; Sang-do LEE; Byeong-hwa JEON

    2007-01-01

    Aim: To characterize the effects of papaverine on HERG channels expressed in Xenopus oocytes as well as cardiac action potential in rabbit ventricular myocytes.Methods: Conventional microelectrodes were used to record action potential in rabbit ventricular myocytes. HERG currents were recorded by 2-electrode voltage clamp technique in Xenopus oocytes injected with HERG cRNA. Results: Papa-verine increased the cardiac action potential duration in rabbit ventricular myocytes.It blocked heterologously-expressed HERG currents in a concentration-depen-dent manner (IC50 71.03±4.75 μmol/L, NH 0.80, n=6), whereas another phosphodi-esterase inhibitor, theophyUine (500 μmol/L), did not. The blockade of papaverine on HERG currents was not voltage-dependent. The slope conductance measured as a slope of the fully activated HERG current-voltage curves decreased from 78.03±4.25 μS of the control to 56.84±5.33, 36.06±6.53, and 27.09±5.50 μS (n=4) by 30, 100, and 300 μmol/L of papaverine, respectively. Papaverine (100 μmol/L)caused a 9 mV hyperpolarizing shift in the voltage-dependence of steady-state inactivation, but there were no changes in the voltage-dependence of HERG cur-rent activation. Papaverine blocked HERG channels in the closed, open, and inactivated states. Conclusion: These results showed that papaverine blocked HERG channels in a voltage- and state-independent manner, which may most likely be the major mechanism of papaverine-induced cardiac arrhythmia reported in humans.

  5. Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death

    DEFF Research Database (Denmark)

    De Bruin, M L; Pettersson, M; Meyboom, R H B;

    2005-01-01

    AIMS: Drug-induced QTc-prolongation, resulting from inhibition of HERG potassium channels may lead to serious ventricular arrhythmias and sudden death. We studied the quantitative anti-HERG activity of pro-arrhythmic drugs as a risk factor for this outcome in day-to-day practice. METHODS AND RESU......AIMS: Drug-induced QTc-prolongation, resulting from inhibition of HERG potassium channels may lead to serious ventricular arrhythmias and sudden death. We studied the quantitative anti-HERG activity of pro-arrhythmic drugs as a risk factor for this outcome in day-to-day practice. METHODS...... AND RESULTS: All 284,426 case reports of suspected adverse drug reactions of drugs with known anti-HERG activity received by the International Drug Monitoring Program of the World Health Organization (WHO-UMC) up to the first quarter of 2003, were used to calculate reporting odds ratios (RORs). Cases were...... defined as reports of cardiac arrest, sudden death, torsade de pointes, ventricular fibrillation, and ventricular tachycardia (n = 5591), and compared with non-cases regarding the anti-HERG activity, defined as the effective therapeutic plasma concentration (ETCPunbound) divided by the HERG IC50 value...

  6. Acute and Chronic Toxicity, Cytochrome P450 Enzyme Inhibition, and hERG Channel Blockade Studies with a Polyherbal, Ayurvedic Formulation for Inflammation

    Directory of Open Access Journals (Sweden)

    Debendranath Dey

    2015-01-01

    Full Text Available Ayurvedic plants are known for thousands of years to have anti-inflammatory and antiarthritic effect. We have recently shown that BV-9238, a proprietary formulation of Withania somnifera, Boswellia serrata, Zingiber officinale, and Curcuma longa, inhibits LPS-induced TNF-alpha and nitric oxide production from mouse macrophage and reduces inflammation in different animal models. To evaluate the safety parameters of BV-9238, we conducted a cytotoxicity study in RAW 264.7 cells (0.005–1 mg/mL by MTT/formazan method, an acute single dose (2–10 g/kg bodyweight toxicity study and a 180-day chronic study with 1 g and 2 g/kg bodyweight in Sprague Dawley rats. Some sedation, ptosis, and ataxia were observed for first 15–20 min in very high acute doses and hence not used for further chronic studies. At the end of 180 days, gross and histopathology, blood cell counts, liver and renal functions were all at normal levels. Further, a modest attempt was made to assess the effects of BV-9238 (0.5 µg/mL on six major human cytochrome P450 enzymes and 3H radioligand binding assay with human hERG receptors. BV-9238 did not show any significant inhibition of these enzymes at the tested dose. All these suggest that BV-9238 has potential as a safe and well tolerated anti-inflammatory formulation for future use.

  7. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ

    2015-07-01

    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  8. Frequency- and state-dependent blockade of human ether-a-go-go-related gene K+ channel by arecoline hydrobromide.

    Science.gov (United States)

    Zhao, Xu-yan; Liu, Yu-qi; Fu, Yi-cheng; Xu, Bin; Gao, Jin-liao; Zheng, Xiao-qin; Lin, Min; Chen, Mei-yan; Li, Yang

    2012-03-01

    The rapidly activating delayed rectifier potassium current (I(Kr)), whose pore-forming alpha subunit is encoded by the human ether-a-go-go-related gene (hERG), is a key contributor to the third phase of action potential repolarization. The aim of this study was to investigate the effect and mechanism of arecoline hydrobromide induced inhibition of hERG K(+) current (I(hERG)). Transient transfection of hERG channel cDNA plasmid pcDNA3.1 into the cultured HEK293 cells was performed using Lipofectamine. A standard whole-cell patch-clamp technique was used to record the I(hERG) before and after the exposure to arecoline. Arecoline decreased the amplitude and the density of the I(hERG) in a concentration-dependent manner (IC(50) = 9.55 mmol/L). At test potential of +60 mV, the magnitude of I(hERG) tail at test pulse of -40 mV was reduced from (151.7 ± 6.2) pA/pF to (84.4 ± 7.6) pA/pF (P arecoline in the open and inactivated state was significant in a state-dependent manner. The maximal blockade was achieved in the inactivated state. Studies of gating mechanism showed that the steady-state activation curve of I(hERG) was significantly negatively shifted by arecoline. Time constants of activation were shortened. Steady-state inactivation curve and time constants of fast inactivation were not significantly affected by arecoline. Furthermore, the inhibition of I(hERG) by arecoline was characterized markedly by a frequency-dependent manner from 0.03 to 1.00 Hz pulse. Arecoline could potently block I(hERG) in both frequency and state-dependent manner.

  9. A novel assessment of nefazodone-induced hERG inhibition by electrophysiological and stereochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dae-Seop; Park, Myoung Joo [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Hyang-Ae [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Joo Yun; Chung, Hee-Chung; Yoo, Dae Seok; Chae, Chong Hak [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Sang-Joon [College of Veterinary Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kim, Ki-Suk [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Bae, Myung Ae, E-mail: mbae@krict.re.kr [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2014-02-01

    Nefazodone was used widely as an antidepressant until it was withdrawn from the U.S. market in 2004 due to hepatotoxicity. We have investigated methods to predict various toxic effects of drug candidates to reduce the failure rate of drug discovery. An electrophysiological method was used to assess the cardiotoxicity of drug candidates. Small molecules, including withdrawn drugs, were evaluated using a patch-clamp method to establish a database of hERG inhibition. Nefazodone inhibited hERG channel activity in our system. However, nefazodone-induced hERG inhibition indicated only a theoretical risk of cardiotoxicity. Nefazodone inhibited the hERG channel in a concentration-dependent manner with an IC{sub 50} of 45.3 nM in HEK-293 cells. Nefazodone accelerated both the recovery from inactivation and its onset. Nefazodone also accelerated steady-state inactivation, although it did not modify the voltage-dependent character. Alanine mutants of hERG S6 and pore region residues were used to identify the nefazodone-binding site on hERG. The hERG S6 point mutants Y652A and F656A largely abolished the inhibition by nefazodone. The pore region mutant S624A mildly reduced the inhibition by nefazodone but T623A had little effect. A docking study showed that the aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions, while an amine interacted with the S624 residue in the pore region. In conclusion, Y652 and F656 in the S6 domain play critical roles in nefazodone binding. - Highlights: • Nefazodone inhibits hERG channels with an IC{sub 50} of 45.3 nM in HEK-293 cells. • Nefazodone blocks hERG channels by binding to the open channels. • Y652 and F656 are important for binding of nefazodone. • The aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions.

  10. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr) and modulates cardiac action potential characteristics

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter

    2010-01-01

    The repolarizing cardiac rapid delayed rectifier current, I(Kr), is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr). Marked heterogeneity in the kinetic properties of native I(Kr) has been described. We hypothesized...

  11. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased...... repolarization current could be a new antiarrhythmic principle, because it possibly would attenuate afterdepolarizations, ischemic leak currents, and reentry phenomena. Repolarization of the cardiac myocytes is crucially dependent on the late rapid delayed rectifier current (I(Kr)) conducted by ether......-a-go-go-related gene (ERG) potassium channels. We have developed the diphenylurea compound 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643) and tested whether this small organic molecule could increase the activity of human ERG (HERG) channels expressed heterologously. In Xenopus laevis oocytes, NS1643...

  12. Rosuvastatin blocks hERG current and prolongs cardiac repolarization.

    Science.gov (United States)

    Plante, Isabelle; Vigneault, Patrick; Drolet, Benoît; Turgeon, Jacques

    2012-02-01

    Blocking of the potassium current I(Kr) [human ether-a-go-go related gene (hERG)] is generally associated with an increased risk of long QT syndrome (LQTS). The 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor, rosuvastatin, is a methanesulfonamide derivative, which shows structural similarities with several I(Kr) blockers. Hence, we assessed the effects of rosuvastatin on cardiac repolarization by using in vitro, ex vivo, and in vivo models. Patch clamp experiments on hERG-transfected human embryonic kidney (HEK) 293 cells established the potency of rosuvastatin to block hERG [half maximal inhibitory concentration (IC(50) ) = 195 nM]. We showed in isolated guinea pig hearts that 195 nM rosuvastatin prolonged (basic cycle length of 250 ms; p cancer resistance protein (BCRP), multidrug resistance gene (MDR1)] and influx [organic anion transporting polypeptide (OATP) 2B1] transporters involved in the disposition and cardiac distribution of the drug. Genetic polymorphisms observed for BCRP, MDR1, and OATP2B1, and IC(50) determined for hERG blocking lead us to propose that some patients may be at risk of rosuvastatin-induced LQTS.

  13. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr and modulates cardiac action potential characteristics.

    Directory of Open Access Journals (Sweden)

    Anders Peter Larsen

    Full Text Available BACKGROUND: The repolarizing cardiac rapid delayed rectifier current, I(Kr, is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr. Marked heterogeneity in the kinetic properties of native I(Kr has been described. We hypothesized that the heterogeneity of native I(Kr can be reproduced by differential expression of ERG1a and ERG1b isoforms. Furthermore, the functional consequences of differential expression of ERG1 isoforms were explored as a potential mechanism underlying native heterogeneity of action potential duration (APD and restitution. METHODOLOGY/PRINCIPAL FINDINGS: The results show that the heterogeneity of native I(Kr can be reproduced in heterologous expression systems by differential expression of ERG1a and ERG1b isoforms. Characterization of the macroscopic kinetics of ERG1 currents demonstrated that these were dependent on the relative abundance of ERG1a and ERG1b. Furthermore, we used a computational model of the ventricular cardiomyocyte to show that both APD and the slope of the restitution curve may be modulated by varying the relative abundance of ERG1a and ERG1b. As the relative abundance of ERG1b was increased, APD was gradually shortened and the slope of the restitution curve was decreased. CONCLUSIONS/SIGNIFICANCE: Our results show that differential expression of ERG1 isoforms may explain regional heterogeneity of I(Kr kinetics. The data demonstrate that subunit dependent changes in channel kinetics are important for the functional properties of ERG1 currents and hence I(Kr. Importantly, our results suggest that regional differences in the relative abundance of ERG1 isoforms may represent a potential mechanism underlying the heterogeneity of both APD and APD restitution observed in mammalian hearts.

  14. Progress in research on defective protein trafficking and functional restoration in HERG-associated long QT syndrome%HERG钾通道蛋白质转运异常和功能恢复与LQTS的研究进展

    Institute of Scientific and Technical Information of China (English)

    方培亮; 廉姜芳

    2016-01-01

    The human ether-a-go-go related gene (HERG) encodes the α-subunit of the rapid component of the delayed rectifier K+ channel,which is essential for the third repolarization of the action potential of human myocardial cells.Mutations of the HERG gene can cause type Ⅱ hereditary long QT syndrome (LQT2),characterized by prolongation of the QT interval,abnormal T wave,torsade de pointes,syncope and sudden cardiac death.So far more than 300 HERG mutations have been identified,the majority of which can cause LQT2 due to HERG protein trafficking defect.It has been reported that certain drugs can induce acquired long QT syndrome through directly blocking the pore and/or affecting the HERG trafficking.The trafficking defects and K+ currents can be restored with low temperature and certain drugs.However,the mechanisms underlying defective trafficking caused by HERG mutations and the inhibition/ restoration of HERG trafficking by drugs are still unknown.This review summarizes the current understanding of the molecular mechanisms including HERG trafficking under physiological and pathological conditions,and the effects of drugs on the HERG trafficking,in order to provide theoretical evidence for the diagnosis and treatment of long QT syndrome.%HERG基因编码快速激活延迟整流钾电流(rapidly activated delayed rectifier potassuim current,Ikr)的α亚单位,而Ikr在人类心脏动作电位3期复极化过程中起着重要的作用.HERG基因突变引起遗传性2型长QT综合征(hereditary long QT syndrome 2,hLQT2),表现为心电图QT间期延长、T波异常,易于发生尖端扭转型室速、晕厥及心源性猝死.截至目前,已发现300多个HERG基因突变位点,而其中多数突变导致LQT2机制为蛋白质转运异常.近年报道很多药物可致获得性长QT综合征(acquired long QT syndrome,aLQTS),机制除药物直接阻滞HERG通道外,亦伴随对HERG蛋白转运的抑制从而使细胞膜Ikr电流减少.很多体外实验又证明,低温

  15. Discovery of 5-Chloro-1-(5-chloro-2-(methylsulfonyl)benzyl)-2-imino-1,2-dihydropyridine-3-carboxamide (TAK-259) as a Novel, Selective, and Orally Active α1D Adrenoceptor Antagonist with Antiurinary Frequency Effects: Reducing Human Ether-a-go-go-Related Gene (hERG) Liabilities.

    Science.gov (United States)

    Sakauchi, Nobuki; Kohara, Yasuhisa; Sato, Ayumu; Suzaki, Tomohiko; Imai, Yumi; Okabe, Yuichi; Imai, Shigemitsu; Saikawa, Reiko; Nagabukuro, Hiroshi; Kuno, Haruhiko; Fujita, Hisashi; Kamo, Izumi; Yoshida, Masato

    2016-04-14

    A novel structural class of iminopyridine derivative 1 was identified as a potent and selective human α1D adrenoceptor (α1D adrenergic receptor; α1D-AR) antagonist against α1A- and α1B-AR through screening of an in-house compound library. From initial structure-activity relationship studies, we found lead compound 9m with hERG K(+) channel liability. To develop analogues with reduced hERG K(+) channel inhibition, a combination of site-directed mutagenesis and docking studies was employed. Further optimization led to the discovery of (R)-9s and 9u, which showed antagonistic activity by a bladder strip test in rats with bladder outlet obstruction, as well as ameliorated cystitis-induced urinary frequency in rats. Ultimately, 9u was selected as a clinical candidate. This is the first study to show the utility of iminopyridine derivatives as selective α1D-AR antagonists and evaluate their effects in vivo.

  16. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi; Huang, Qiwei; Raida, Manfred [Experimental Therapeutics Center, The Agency for Science, Technology and Research, 31 Biopolis Way Nanos, 03-01, Singapore 138669 (Singapore); Kang, CongBao, E-mail: cbkang@etc.a-star.edu.sg [Experimental Therapeutics Center, The Agency for Science, Technology and Research, 31 Biopolis Way Nanos, 03-01, Singapore 138669 (Singapore)

    2010-12-03

    Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation. To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.

  17. hERG classification model based on a combination of support vector machine method and GRIND descriptors

    DEFF Research Database (Denmark)

    Li, Qiyuan; Jorgensen, Flemming Steen; Oprea, Tudor

    2008-01-01

    invest substantial effort in the assessment of cardiac toxicity of drugs. The development of in silico tools to filter out potential hERG channel inhibitors in earlystages of the drug discovery process is of considerable interest. Here, we describe binary classification models based on a large...

  18. Oxycodone is associated with dose-dependent QTc prolongation in patients and low-affinity inhibiting of hERG activity in vitro

    DEFF Research Database (Denmark)

    Fanoe, Søren; Jensen, Gorm Boje; Sjøgren, Per

    2008-01-01

    with the use of these drugs. WHAT THIS PAPER ADDS: This study is the first to show that oxycodone dose is associated with QT prolongation and in vitro blockade of hERG channels expressed in HEK293. Neither morphine nor tramadol doses are associated with the QT interval length. AIMS: During recent years some...... patients treated with methadone, oxycodone, morphine or tramadol were recruited in a cross-sectional study. The QTc was estimated from a 12-lead ECG. To examine hERG activity in the presence of oxycodone, electrophysiological testing was conducted using Xenopus laevis oocytes and HEK293 cells expressing h...... dose was associated with a 10 ms(1/2) (95% CI 2-19) longer QTc. Neither morphine nor tramadol dose was associated with the QTc. Electrophysiological testing revealed low-affinity inhibition of the potassium current through hERG channels expressed in HEK293 cells (IC(50) = 171 microM oxycodone...

  19. Ion channel gene expression predicts survival in glioma patients.

    Science.gov (United States)

    Wang, Rong; Gurguis, Christopher I; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-08-03

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients.

  20. Overexpression of potassium channel genes in rice plant

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    China′ s potassium fertilizer mainly depends on import and the utilization efficiency of K fertilizer was only 30% . So it is very important to enhance utilization efficiency and to reduce its applying amount by improving nutrition characteristics of plant with bioengineering techinques. Potassium channel genes AKT1 and KAT1 were the genes involved in K+ uptake. To investigate the role of heterogeneous K channel genes in the enhancement of K absorbing, genes AKT1 and KAT1 were transferred into four rice varieties, i.e. Zhonghua 8, Zhonghua 9, Zhonghua 13, and 8706.

  1. Ivabradine prolongs phase 3 of cardiac repolarization and blocks the hERG1 (KCNH2) current over a concentration-range overlapping with that required to block HCN4.

    Science.gov (United States)

    Lees-Miller, James P; Guo, Jiqing; Wang, Yibo; Perissinotti, Laura L; Noskov, Sergei Y; Duff, Henry J

    2015-08-01

    In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance.

  2. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker.

    Science.gov (United States)

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi; Huang, Qiwei; Raida, Manfred; Kang, Congbao

    2010-12-03

    The human Ether-à-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation. To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.

  3. hERG S4-S5 linker acts as a voltage-dependent ligand that binds to the activation gate and locks it in a closed state.

    Science.gov (United States)

    Malak, Olfat A; Es-Salah-Lamoureux, Zeineb; Loussouarn, Gildas

    2017-12-01

    Delayed-rectifier potassium channels (hERG and KCNQ1) play a major role in cardiac repolarization. These channels are formed by a tetrameric pore (S5-S6) surrounded by four voltage sensor domains (S1-S4). Coupling between voltage sensor domains and the pore activation gate is critical for channel voltage-dependence. However, molecular mechanisms remain elusive. Herein, we demonstrate that covalently binding, through a disulfide bridge, a peptide mimicking the S4-S5 linker (S4-S5L) to the channel S6 C-terminus (S6T) completely inhibits hERG. This shows that channel S4-S5L is sufficient to stabilize the pore activation gate in its closed state. Conversely, covalently binding a peptide mimicking S6T to the channel S4-S5L prevents its inhibiting effect and renders the channel almost completely voltage-independent. This shows that the channel S4-S5L is necessary to stabilize the activation gate in its closed state. Altogether, our results provide chemical evidence that S4-S5L acts as a voltage-controlled ligand that binds S6T to lock the channel in a closed state, elucidating the coupling between voltage sensors and the gate in delayed rectifier potassium channels and potentially other voltage-gated channels.

  4. Changing channels in pain and epilepsy: Exploiting ion channel gene therapy for disorders of neuronal hyperexcitability.

    Science.gov (United States)

    Snowball, Albert; Schorge, Stephanie

    2015-06-22

    Chronic pain and epilepsy together affect hundreds of millions of people worldwide. While traditional pharmacotherapy provides essential relief to the majority of patients, a large proportion remains resistant, and surgical intervention is only possible for a select few. As both disorders are characterised by neuronal hyperexcitability, manipulating the expression of the most direct modulators of excitability - ion channels - represents an attractive common treatment strategy. A number of viral gene therapy approaches have been explored to achieve this. These range from the up- or down-regulation of channels that control excitability endogenously, to the delivery of exogenous channels that permit manipulation of excitability via optical or chemical means. In this review we highlight the key experimental successes of each approach and discuss the challenges facing their clinical translation.

  5. TRP channel gene expression in the mouse retina.

    Science.gov (United States)

    Gilliam, Jared C; Wensel, Theodore G

    2011-12-08

    In order to identify candidate cation channels important for retinal physiology, 28 TRP channel genes were surveyed for expression in the mouse retina. Transcripts for all TRP channels were detected by RT-PCR and sequencing. Northern blotting revealed that mRNAs for 12 TRP channel genes are enriched in the retina. The strongest signals were observed for TRPC1, TRPC3, TRPM1, TRPM3, and TRPML1, and clear signals were obtained for TRPC4, TRPM7, TRPP2, TRPV2, and TRPV4. In situ hybridization and immunofluorescence revealed widespread expression throughout multiple retinal layers for TRPC1, TRPC3, TRPC4, TRPML1, PKD1, and TRPP2. Striking localization of enhanced mRNA expression was observed for TRPC1 in the photoreceptor inner segment layer, for TRPM1 in the inner nuclear layer (INL), for TRPM3 in the INL, and for TRPML1 in the outer plexiform and nuclear layers. Strong immunofluorescence signal in cone outer segments was observed for TRPM7 and TRPP2. TRPC5 immunostaining was largely confined to INL cells immediately adjacent to the inner plexiform layer. TRPV2 antibodies stained photoreceptor axons in the outer plexiform layer. Expression of TRPM1 splice variants was strong in the ciliary body, whereas TRPM3 was strongly expressed in the retinal pigmented epithelium.

  6. Reduced response to IKr blockade and altered hERG1a/1b stoichiometry in human heart failure.

    Science.gov (United States)

    Holzem, Katherine M; Gomez, Juan F; Glukhov, Alexey V; Madden, Eli J; Koppel, Aaron C; Ewald, Gregory A; Trenor, Beatriz; Efimov, Igor R

    2016-07-01

    Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus, we aimed to examine whether decreased expression of the rapid delayed rectifier potassium current, IKr, contributes to repolarization abnormalities in human HF. To map functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (∆APD80) and found that ∆APD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p=0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongation was greater in normal conditions than in failing conditions, provided that the cellular model of HF included a significant downregulation of IKr. In human HF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with

  7. Support for calcium channel gene defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Lu Ake Tzu-Hui

    2012-12-01

    Full Text Available Abstract Background Alternation of synaptic homeostasis is a biological process whose disruption might predispose children to autism spectrum disorders (ASD. Calcium channel genes (CCG contribute to modulating neuronal function and evidence implicating CCG in ASD has been accumulating. We conducted a targeted association analysis of CCG using existing genome-wide association study (GWAS data and imputation methods in a combined sample of parent/affected child trios from two ASD family collections to explore this hypothesis. Methods A total of 2,176 single-nucleotide polymorphisms (SNP (703 genotyped and 1,473 imputed covering the genes that encode the α1 subunit proteins of 10 calcium channels were tested for association with ASD in a combined sample of 2,781 parent/affected child trios from 543 multiplex Caucasian ASD families from the Autism Genetics Resource Exchange (AGRE and 1,651 multiplex and simplex Caucasian ASD families from the Autism Genome Project (AGP. SNP imputation using IMPUTE2 and a combined reference panel from the HapMap3 and the 1,000 Genomes Project increased coverage density of the CCG. Family-based association was tested using the FBAT software which controls for population stratification and accounts for the non-independence of siblings within multiplex families. The level of significance for association was set at 2.3E-05, providing a Bonferroni correction for this targeted 10-gene panel. Results Four SNPs in three CCGs were associated with ASD. One, rs10848653, is located in CACNA1C, a gene in which rare de novo mutations are responsible for Timothy syndrome, a Mendelian disorder that features ASD. Two others, rs198538 and rs198545, located in CACN1G, and a fourth, rs5750860, located in CACNA1I, are in CCGs that encode T-type calcium channels, genes with previous ASD associations. Conclusions These associations support a role for common CCG SNPs in ASD.

  8. Genomic organisation of the channel catfish Mx1 gene and characterisation of multiple channel catfish Mx gene promoters.

    Science.gov (United States)

    Plant, Karen P; Thune, Ronald L

    2008-05-01

    In order to further characterise channel catfish (Ictalurus punctatus) Mx1, studies were initiated to amplify and clone the Mx1 promoter into a reporter vector, pGL3basic. Initially the Mx1 gene was amplified from genomic DNA and was found to have 12 exons and 11 introns, spanning a region over 6 kilobases (kb) in length. The Mx1 promoter was amplified using genome walking and during this process four additional Mx promoters were identified, suggesting the presence of five Mx genes in the channel catfish. All five promoters possess an interferon stimulated response element (ISRE) and the Mx1 promoter possessed two potential NF-kappabeta transcription sites. Following cloning each construct was transiently transfected into COS-7 and EPC cells for 24h and treated with 5 microg/ml poly I:C for 24h. An increase in expression of the reporter gene in response to poly I:C was noted in both cell lines in the pGL3Mx1 construct only. However, the reporter gene was also constitutively expressed in these cells. Constitutive expression was also observed in channel catfish ovary cells transiently transfected with pGL3Mx1 only. Treatment with 5 microg/ml poly I:C did not increase this expression, which may be due to high levels of cell death in this difficult to transfect cell line. The constitutive expression observed implies that a repressor element is missing in the 390 base pair sequence of the Mx1 promoter used in this study. These results suggest that only channel catfish Mx1 is involved in the type I interferon pathway and that the presence of an ISRE in a regulatory region is not necessarily indicative of a role in the type I interferon response.

  9. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  10. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.

    Science.gov (United States)

    Hirano-Iwata, Ayumi; Ishinari, Yutaka; Yoshida, Miyu; Araki, Shun; Tadaki, Daisuke; Miyata, Ryusuke; Ishibashi, Kenichi; Yamamoto, Hideaki; Kimura, Yasuo; Niwano, Michio

    2016-05-24

    Artificially formed bilayer lipid membranes (BLMs) provide well-defined systems for functional analyses of various membrane proteins, including ion channels. However, difficulties associated with the integration of membrane proteins into BLMs limit the experimental efficiency and usefulness of such BLM reconstitution systems. Here, we report on the use of centrifugation to more efficiently reconstitute human ion channels in solvent-free BLMs. The method improves the probability of membrane fusion. Membrane vesicles containing the human ether-a-go-go-related gene (hERG) channel, the human cardiac sodium channel (Nav1.5), and the human GABAA receptor (GABAAR) channel were formed, and the functional reconstitution of the channels into BLMs via vesicle fusion was investigated. Ion channel currents were recorded in 67% of the BLMs that were centrifuged with membrane vesicles under appropriate centrifugal conditions (14-55 × g). The characteristic channel properties were retained for hERG, Nav1.5, and GABAAR channels after centrifugal incorporation into the BLMs. A comparison of the centrifugal force with reported values for the fusion force revealed that a centrifugal enhancement in vesicle fusion was attained, not by accelerating the fusion process but by accelerating the delivery of membrane vesicles to the surface of the BLMs, which led to an increase in the number of membrane vesicles that were available for fusion. Our method for enhancing the probability of vesicle fusion promises to dramatically increase the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based, high-throughput platform for functional assays of various membrane proteins.

  11. Interactions between hERG and KCNQ1 α-subunits are mediated by their COOH termini and modulated by cAMP.

    Science.gov (United States)

    Organ-Darling, Louise E; Vernon, Amanda N; Giovanniello, Jacqueline R; Lu, Yichun; Moshal, Karni; Roder, Karim; Li, Weiyan; Koren, Gideon

    2013-02-15

    KCNQ1 and hERG encode the voltage-gated potassium channel α-subunits of the cardiac repolarizing currents I(Ks) and I(Kr), respectively. These currents function in vivo with some redundancy to maintain appropriate action potential durations (APDs), and loss-of-function mutations in these channels manifest clinically as long QT syndrome, characterized by the prolongation of the QT interval, polymorphic ventricular tachycardia, and sudden cardiac death. Previous cellular electrophysiology experiments in transgenic rabbit cardiomyocytes and heterologous cell lines demonstrated functional downregulation of complementary repolarizing currents. Biochemical assays indicated direct, protein-protein interactions between KCNQ1 and hERG may underlie the interplay between I(Ks) and I(Kr). Our objective was to investigate hERG-KCNQ1 interactions in the intact cellular environment primarily through acceptor photobleach FRET (apFRET) experiments. We quantitatively assessed the extent of interactions based on fluorophore location and the potential regulation of interactions by physiologically relevant signals. apFRET experiments established specific hERG-KCNQ1 associations in both heterologous and primary cardiomyocytes. The largest FRET efficiency (E(f); 12.0 ± 5.2%) was seen between ion channels with GFP variants fused to the COOH termini. Acute treatment with forskolin + IBMX or a membrane-permeable cAMP analog significantly and specifically reduced the extent of hERG-KCNQ1 interactions (by 41 and 38%, respectively). Our results demonstrate direct interactions between KCNQ1 and hERG occur in both intact heterologous cells and primary cardiomyocytes and are mediated by their COOH termini. Furthermore, this interplay between channel proteins is regulated by intracellular cAMP.

  12. Molecular Cloning and Sequencing of Hemoglobin-Beta Gene of Channel Catfish, Ictalurus Punctatus Rafinesque

    Science.gov (United States)

    : Hemoglobin-y gene of channel catfish , lctalurus punctatus, was cloned and sequenced . Total RNA from head kidneys was isolated, reverse transcribed and amplified . The sequence of the channel catfish hemoglobin-y gene consists of 600 nucleotides . Analysis of the nucleotide sequence reveals one o...

  13. Sodium channel gene expression in mosquitoes, Aedes albopictus (S.)

    Institute of Scientific and Technical Information of China (English)

    NANNAN LIU; QIANG XU; LEE ZHANG

    2006-01-01

    A mosquito strain of Aerdes albopictus,HAmAalG0,from Huntsville,Alabama,USA,showed a normal susceptibility and low tolerance to permethrin and resmethrin (pyrethroid insecticides) compared to a susceptible Ikaken strain,even though these pyrethroid insecticides have been used in the field for a long period of time in Alabama.Recently,we treated HAmAalG0 in the laboratory with permethrin for five generations and detected no significant change in the level of resistance to permethrin in the selected mosquitoes,HAmAalG5,compared with the parental strain HAmAalG0. We then examined the allelic expression at the L-to-F kdr site of the sodium channel gene in the Aedes mosquitoes to address our hypothesis that the L-to-F kdr mutation was not present in HAmAalG0 and HAmAalG5 mosquitoes. We found that every tested individual in Ikaken,HAmAalG0,and HAmAalG5 populations expressed a codon of CTA at the L-to-F kdr site encoding Leu,strongly corresponding to their susceptibility to insecticides.

  14. Ion channel gene expression in lung adenocarcinoma: potential role in prognosis and diagnosis.

    Science.gov (United States)

    Ko, Jae-Hong; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Eun A; Zhou, Tong

    2014-01-01

    Ion channels are known to regulate cancer processes at all stages. The roles of ion channels in cancer pathology are extremely diverse. We systematically analyzed the expression patterns of ion channel genes in lung adenocarcinoma. First, we compared the expression of ion channel genes between normal and tumor tissues in patients with lung adenocarcinoma. Thirty-seven ion channel genes were identified as being differentially expressed between the two groups. Next, we investigated the prognostic power of ion channel genes in lung adenocarcinoma. We assigned a risk score to each lung adenocarcinoma patient based on the expression of the differentially expressed ion channel genes. We demonstrated that the risk score effectively predicted overall survival and recurrence-free survival in lung adenocarcinoma. We also found that the risk scores for ever-smokers were higher than those for never-smokers. Multivariate analysis indicated that the risk score was a significant prognostic factor for survival, which is independent of patient age, gender, stage, smoking history, Myc level, and EGFR/KRAS/ALK gene mutation status. Finally, we investigated the difference in ion channel gene expression between the two major subtypes of non-small cell lung cancer: adenocarcinoma and squamous-cell carcinoma. Thirty ion channel genes were identified as being differentially expressed between the two groups. We suggest that ion channel gene expression can be used to improve the subtype classification in non-small cell lung cancer at the molecular level. The findings in this study have been validated in several independent lung cancer cohorts.

  15. Mechanism of action of a novel human ether-a-go-go-related gene channel activator

    DEFF Research Database (Denmark)

    Casis, Oscar; Olesen, Søren-Peter; Sanguinetti, Michael C

    2005-01-01

    depolarizations, NS1643 enhanced the magnitude of wild-type hERG current in a concentration- and voltage-dependent manner with an EC(50) of 10.4 microM at -10 mV. The fully activated current-voltage relationship revealed that the drug increased outward but not inward currents, consistent with altered inactivation...

  16. The KCNQ1 potassium channel: from gene to physiological function

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Olesen, Søren-Peter

    2005-01-01

    The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory...... factors, capable of modulating the properties of the channel complexes. This paper reviews the current knowledge about the KCNQ1 channel with a major focus on interacting proteins and physiological functions....

  17. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    Science.gov (United States)

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue.

  18. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    Full Text Available Abstract Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa channels, which suggests that ion channel regulatory partners have evolved distinct lineage

  19. Voltage-gated sodium channel gene repertoire of lampreys: gene duplications, tissue-specific expression and discovery of a long-lost gene.

    Science.gov (United States)

    Zakon, Harold H; Li, Weiming; Pillai, Nisha E; Tohari, Sumanty; Shingate, Prashant; Ren, Jianfeng; Venkatesh, Byrappa

    2017-09-27

    Studies of the voltage-gated sodium (Nav) channels of extant gnathostomes have made it possible to deduce that ancestral gnathostomes possessed four voltage-gated sodium channel genes derived from a single ancestral chordate gene following two rounds of genome duplication early in vertebrates. We investigated the Nav gene family in two species of lampreys (the Japanese lamprey Lethenteron japonicum and sea lamprey Petromyzon marinus) (jawless vertebrates-agnatha) and compared them with those of basal vertebrates to better understand the origin of Nav genes in vertebrates. We noted six Nav genes in both lamprey species, but orthology with gnathostome (jawed vertebrate) channels was inconclusive. Surprisingly, the Nav2 gene, ubiquitously found in invertebrates and believed to have been lost in vertebrates, is present in lampreys, elephant shark (Callorhinchus milii) and coelacanth (Latimeria chalumnae). Despite repeated duplication of the Nav1 family in vertebrates, Nav2 is only in single copy in those vertebrates in which it is retained, and was independently lost in ray-finned fishes and tetrapods. Of the other five Nav channel genes, most were expressed in brain, one in brain and heart, and one exclusively in skeletal muscle. Invertebrates do not express Nav channel genes in muscle. Thus, early in the vertebrate lineage Nav channels began to diversify and different genes began to express in heart and muscle. © 2017 The Author(s).

  20. Mutations in Sodium Channel Gene SCN9A and the Pain Perception Disorders

    OpenAIRE

    Marković, Danica; Janković, Radmilo; Veselinović, Ines

    2015-01-01

    Voltage-gated sodium channels (NaV) play a crucial role in development and propagation of action potentials in neurons and muscle cells. NaV1.7 channels take a special place in modern science since it is believed that they contribute to nerve hyperexcitability. Mutations of the gene SCN9A, which codes the α subunit of NaV1.7 channels, are associated with pain perception disorders (primary erythermalgia, congenital analgesia, and paroxysmal pain disorder). It is considered that the SCN9A gene ...

  1. Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.

    Directory of Open Access Journals (Sweden)

    Timothy Jegla

    Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.

  2. Compilation and physicochemical classification analysis of a diverse hERG inhibition database

    Science.gov (United States)

    Didziapetris, Remigijus; Lanevskij, Kiril

    2016-12-01

    A large and chemically diverse hERG inhibition data set comprised of 6690 compounds was constructed on the basis of ChEMBL bioactivity database and original publications dealing with experimental determination of hERG activities using patch-clamp and competitive displacement assays. The collected data were converted to binary format at 10 µM activity threshold and subjected to gradient boosting machine classification analysis using a minimal set of physicochemical and topological descriptors. The tested parameters involved lipophilicity (log P), ionization (p K a ), polar surface area, aromaticity, molecular size and flexibility. The employed approach allowed classifying the compounds with an overall 75-80 % accuracy, even though it only accounted for non-specific interactions between hERG and ligand molecules. The observed descriptor-response profiles were consistent with common knowledge about hERG ligand binding site, but also revealed several important quantitative trends, as well as slight inter-assay variability in hERG inhibition data. The results suggest that even weakly basic groups (p K a zwitterions > neutrals > acids. Given its robust performance and clear physicochemical interpretation, the proposed model may provide valuable information to direct drug discovery efforts towards compounds with reduced risk of hERG-related cardiotoxicity.

  3. Non-silent story on synonymous sites in voltage-gated ion channel genes.

    Science.gov (United States)

    Zhou, Tong; Ko, Eun A; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Jae-Hong

    2012-01-01

    Synonymous mutations are usually referred to as "silent", but increasing evidence shows that they are not neutral in a wide range of organisms. We looked into the relationship between synonymous codon usage bias and residue importance of voltage-gated ion channel proteins in mice, rats, and humans. We tested whether translationally optimal codons are associated with transmembrane or channel-forming regions, i.e., the sites that are particularly likely to be involved in the closing and opening of an ion channel. Our hypothesis is that translationally optimal codons are preferred at the sites within transmembrane domains or channel-forming regions in voltage-gated ion channel genes to avoid mistranslation-induced protein misfolding or loss-of-function. Using the Mantel-Haenszel procedure, which applies to categorical data, we found that translationally optimal codons are more likely to be used at transmembrane residues and the residues involved in channel-forming. We also found that the conservation level at synonymous sites in the transmembrane region is significantly higher than that in the non-transmembrane region. This study provides evidence that synonymous sites in voltage-gated ion channel genes are not neutral. Silent mutations at channel-related sites may lead to dysfunction of the ion channel.

  4. Non-silent story on synonymous sites in voltage-gated ion channel genes.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Synonymous mutations are usually referred to as "silent", but increasing evidence shows that they are not neutral in a wide range of organisms. We looked into the relationship between synonymous codon usage bias and residue importance of voltage-gated ion channel proteins in mice, rats, and humans. We tested whether translationally optimal codons are associated with transmembrane or channel-forming regions, i.e., the sites that are particularly likely to be involved in the closing and opening of an ion channel. Our hypothesis is that translationally optimal codons are preferred at the sites within transmembrane domains or channel-forming regions in voltage-gated ion channel genes to avoid mistranslation-induced protein misfolding or loss-of-function. Using the Mantel-Haenszel procedure, which applies to categorical data, we found that translationally optimal codons are more likely to be used at transmembrane residues and the residues involved in channel-forming. We also found that the conservation level at synonymous sites in the transmembrane region is significantly higher than that in the non-transmembrane region. This study provides evidence that synonymous sites in voltage-gated ion channel genes are not neutral. Silent mutations at channel-related sites may lead to dysfunction of the ion channel.

  5. The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons

    Energy Technology Data Exchange (ETDEWEB)

    Shreffler, W.; Magardino, T.; Shekdar, K.; Wolinsky, E. [New York Univ. Medical School, NY (United States)

    1995-03-01

    Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels. 37 refs., 6 figs., 3 tabs.

  6. Expression of immune genes in skin of channel catfish immunized with live theronts of Ichthyophthirius multifiliis

    Science.gov (United States)

    There is limited information on innate and adaptive immune gene expression in the skin of channel catfish, Ictalurus punctatus immunized with Ichthyophthirius multifiliis (Ich). The objective of this study was to evaluate differential expression of innate and adaptive immune genes, including immunog...

  7. Gene transcription and splicing of T-type channels are evolutionarily-conserved strategies for regulating channel expression and gating.

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    Full Text Available T-type calcium channels operate within tightly regulated biophysical constraints for supporting rhythmic firing in the brain, heart and secretory organs of invertebrates and vertebrates. The snail T-type gene, LCa(v3 from Lymnaea stagnalis, possesses alternative, tandem donor splice sites enabling a choice of a large exon 8b (201 aa or a short exon 25c (9 aa in cytoplasmic linkers, similar to mammalian homologs. Inclusion of optional 25c exons in the III-IV linker of T-type channels speeds up kinetics and causes hyperpolarizing shifts in both activation and steady-state inactivation of macroscopic currents. The abundant variant lacking exon 25c is the workhorse of embryonic Ca(v3 channels, whose high density and right-shifted activation and availability curves are expected to increase pace-making and allow the channels to contribute more significantly to cellular excitation in prenatal tissue. Presence of brain-enriched, optional exon 8b conserved with mammalian Ca(v3.1 and encompassing the proximal half of the I-II linker, imparts a ~50% reduction in total and surface-expressed LCa(v3 channel protein, which accounts for reduced whole-cell calcium currents of +8b variants in HEK cells. Evolutionarily conserved optional exons in cytoplasmic linkers of Ca(v3 channels regulate expression (exon 8b and a battery of biophysical properties (exon 25c for tuning specialized firing patterns in different tissues and throughout development.

  8. Paramecium BBS genes are key to presence of channels in Cilia

    Directory of Open Access Journals (Sweden)

    Valentine Megan

    2012-09-01

    Full Text Available Abstract Background Changes in genes coding for ciliary proteins contribute to complex human syndromes called ciliopathies, such as Bardet-Biedl Syndrome (BBS. We used the model organism Paramecium to focus on ciliary ion channels that affect the beat form and sensory function of motile cilia and evaluate the effects of perturbing BBS proteins on these channels. Methods We used immunoprecipitations and mass spectrometry to explore whether Paramecium proteins interact as in mammalian cells. We used RNA interference (RNAi and swimming behavior assays to examine the effects of BBS depletion on ciliary ion channels that control ciliary beating. Combining RNA interference and epitope tagging, we examined the effects of BBS depletion of BBS 7, 8 and 9 on the location of three channels and a chemoreceptor in cilia. Results We found 10 orthologs of 8 BBS genes in P. tetraurelia. BBS1, 2, 4, 5, 7, 8 and 9 co-immunoprecipitate. While RNAi reduction of BBS 7 and 9 gene products caused loss and shortening of cilia, RNAi for all BBS genes except BBS2 affected patterns of ciliary motility that are governed by ciliary ion channels. Swimming behavior assays pointed to loss of ciliary K+ channel function. Combining RNAi and epitope tagged ciliary proteins we demonstrated that a calcium activated K+ channel was no longer located in the cilia upon depletion of BBS 7, 8 or 9, consistent with the cells’ swimming behavior. The TRPP channel PKD2 was also lost from the cilia. In contrast, the ciliary voltage gated calcium channel was unaffected by BBS depletion, consistent with behavioral assays. The ciliary location of a chemoreceptor for folate was similarly unperturbed by the depletion of BBS 7, 8 or 9. Conclusions The co-immunoprecipitation of BBS 1,2,4,5,7,8, and 9 suggests a complex of BBS proteins. RNAi for BBS 7, 8 or 9 gene products causes the selective loss of K+ and PKD2 channels from the cilia while the critical voltage gated calcium channel and a

  9. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.

    Science.gov (United States)

    Chen, J; Mitcheson, J S; Tristani-Firouzi, M; Lin, M; Sanguinetti, M C

    2001-09-25

    Voltage-gated channels are normally opened by depolarization and closed by repolarization of the membrane. Despite sharing significant sequence homology with voltage-gated K(+) channels, the gating of hyperpolarization-activated, cyclic-nucleotide-gated (HCN) pacemaker channels has the opposite dependence on membrane potential: hyperpolarization opens, whereas depolarization closes, these channels. The mechanism and structural basis of the process that couples voltage sensor movement to HCN channel opening and closing is not understood. On the basis of our previous studies of a mutant HERG (human ether-a-go-go-related gene) channel, we hypothesized that the intracellular linker that connects the fourth and fifth transmembrane domains (S4-S5 linker) of HCN channels might be important for channel gating. Here, we used alanine-scanning mutagenesis of the HCN2 S4-S5 linker to identify three residues, E324, Y331, and R339, that when mutated disrupted normal channel closing. Mutation of a basic residue in the S4 domain (R318Q) prevented channel opening, presumably by disrupting S4 movement. However, channels with R318Q and Y331S mutations were constitutively open, suggesting that these channels can open without a functioning S4 domain. We conclude that the S4-S5 linker mediates coupling between voltage sensing and HCN channel activation. Our findings also suggest that opening of HCN and related channels corresponds to activation of a gate located near the inner pore, rather than recovery of channels from a C-type inactivated state.

  10. Cyamemazine metabolites: effects on human cardiac ion channels in-vitro and on the QTc interval in guinea pigs.

    Science.gov (United States)

    Crumb, William; Benyamina, Amine; Arbus, Christophe; Thomas, George P; Garay, Ricardo P; Hameg, Ahcène

    2008-11-01

    Monodesmethyl cyamemazine and cyamemazine sulfoxide, the two main metabolites of the antipsychotic and anxiolytic phenothiazine cyamemazine, were investigated for their effects on the human ether-à-go-go related gene (hERG) channel expressed in HEK 293 cells and on native I(Na), I(Ca), I(to), I(sus) or I(K1) of human atrial myocytes. Additionally, cyamemazine metabolites were compared with terfenadine for their effects on the QT interval in anaesthetized guinea pigs. Monodesmethyl cyamemazine and cyamemazine sulfoxide reduced hERG current amplitude, with IC50 values of 0.70 and 1.53 microM, respectively. By contrast, at a concentration of 1 microM, cyamemazine metabolites failed to significantly affect I(Na), I(to), I(sus) or I(K1) current amplitudes. Cyamemazine sulfoxide had no effect on I(Ca) at 1 microM, while at this concentration, monodesmethyl cyamemazine only slightly (17%), albeit significantly, inhibited I(Ca) current. Finally, cyamemazine metabolites (5 mg kg(-1) i v.) were unable to significantly prolong QTc values in the guinea pig. Conversely, terfenadine (5 mg kg(-1) i.v.) significantly increased QTc values. In conclusion, cyamemazine metabolite concentrations required to inhibit hERG current substantially exceed those necessary to achieve therapeutic activity of the parent compound in humans. Moreover, cyamemazine metabolites, in contrast to terfenadine, do not delay cardiac repolarization in the anaesthetized guinea pig. These non-clinical findings explain the excellent cardiac safety records of cyamemazine during its 30 years of extensive therapeutic use.

  11. Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients

    DEFF Research Database (Denmark)

    Nielsen, Nathalie H; Winkel, Bo G; Kanters, Jørgen K

    2007-01-01

    identified the point mutations P91L and E33V in the KCNA5 gene encoding the Kv1.5 potassium channel that has not previously been associated with arrhythmia. We functionally characterized the mutations in HEK293 cells. The mutated channels behaved similarly to the wild-type with respect to biophysical......Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we...... characteristics and drug sensitivity. Both patients also carried a D85N polymorphism in KCNE1, which was neither found to influence the Kv1.5 nor the Kv7.1 channel activity. We conclude that although the two N-terminal Kv1.5 mutations did not show any apparent electrophysiological phenotype, it is possible...

  12. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes

    Directory of Open Access Journals (Sweden)

    Veronica Lang

    2010-11-01

    Full Text Available Veronica Lang, Peter E LightDepartment of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, CanadaAbstract: Neonatal diabetes mellitus (NDM is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP-sensitive potassium (KATP channel Kir6.2 and SUR1 subunits, respectively, are found in ~50% of NDM patients. In the pancreatic β-cell, KATP channel activity couples glucose metabolism to insulin secretion via cellular excitability and mutations in either KCNJ11 or ABCC8 genes alter KATP channel activity, leading to faulty insulin secretion. Inactivation mutations decrease KATP channel activity and stimulate excessive insulin secretion, leading to hyperinsulinism of infancy. In direct contrast, activation mutations increase KATP channel activity, resulting in impaired insulin secretion, NDM, and in severe cases, developmental delay and epilepsy. Many NDM patients with KCNJ11 and ABCC8 mutations can be successfully treated with sulfonylureas (SUs that inhibit the KATP channel, thus replacing the need for daily insulin injections. There is also strong evidence indicating that SU therapy ameliorates some of the neurological defects observed in patients with more severe forms of NDM. This review focuses on the molecular and cellular mechanisms of mutations in the KATP channel that underlie NDM. SU pharmacogenomics is also discussed with respect to evaluating whether patients with certain KATP channel activation mutations can be successfully switched to SU therapy.Keywords: neonatal diabetes, KCNJ11, ABCC8, ATP-sensitive potassium channels

  13. Suggestive evidence for association of two potassium channel genes with different idiopathic generalised epilepsy syndromes.

    Science.gov (United States)

    Chioza, B; Osei-Lah, A; Wilkie, H; Nashef, L; McCormick, D; Asherson, P; Makoff, A J

    2002-12-01

    Several potassium channel genes have been implicated in epilepsy. We have investigated three such genes, KCNJ3, KCNJ6 and KCNQ2, by association studies using a broad sample of idiopathic generalised epilepsy (IGE) unselected by syndrome. One of the two single nucleotide polymorphisms (SNPs) examined in one of the inward rectifying potassium channel genes, KCNJ3, was associated with IGE by genotype (P=0.0097), while its association by allele was of borderline significance (P=0.051). Analysis of the different clinical subgroups within the IGE sample showed more significant association with the presence of absence seizures (P=0.0041) and which is still significant after correction for multiple testing. Neither SNP in the other rectifying potassium channel gene, KCNJ6, was associated with IGE or any subgroup. None of the three SNPs in the voltage-gated potassium channel gene, KCNQ2, was associated with IGE. However, one SNP was associated with epilepsy with generalised tonic clonic seizures only (P=0.016), as was an SNP approximately 56 kb distant in the closely linked nicotinic acetylcholine gene CHRNA4 (P=0.014). These two SNPs were not in linkage disequilibrium with each other, suggesting that if they are not true associations they have independently occurred by chance. Neither association remains significant after correcting for multiple testing.

  14. Cloning and characterization of a human delayed rectifier potassium channel gene.

    Science.gov (United States)

    Albrecht, B; Lorra, C; Stocker, M; Pongs, O

    1993-01-01

    A human genomic DNA library was screened for sequences homologues to the rat delayed rectifier Kv 2.1 (DRK1) K+ channel cDNA. Three phages were isolated which hybridized to Kv 2.1 cDNA probes. Alignment of the human genomic DNA sequence with the rat cDNA sequence indicated that the open reading frame (ORF) is interrupted by a large intervening sequence, that separates exons encoding the membrane spanning core region of the K+ channel polypeptide. The Kv 2.1 gene occurs once in the human genome and has been mapped to chromosome 20. The human, mouse and rat Kv 2.1 proteins have been highly conserved, showing only a few substitutions outside of the membrane spanning domains in the amino- and carboxy-terminal cytoplasmic domains. Nevertheless, expression of human DRK1 channels in Xenopus oocytes showed that mouse, rat and human Kv 2.1 channels have distinct pharmacological and electrophysiological properties. The observed differences in activation, voltage-dependence, 4-aminopyridine sensitivity and single-channel conductance have to be attributed to amino acid substitutions in the amino-and/or carboxy-terminal cytoplasmic domains. Obviously, these domains of Kv 2.1 channels influence biophysical K+ channel properties, which are thought to be determined solely by the membrane spanning core domain of potassium channels.

  15. Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design

    Directory of Open Access Journals (Sweden)

    Thangadurai Mani

    2016-12-01

    Full Text Available Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP sites (1508 intronic and 126 exonic in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes.

  16. Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus.

    Science.gov (United States)

    Ptacek, L J; Trimmer, J S; Agnew, W S; Roberts, J W; Petajan, J H; Leppert, M

    1991-01-01

    Paramyotonia congenita (PC), an autosomal dominant muscle disease, shares some clinical and electrophysiological similarities with another myotonic muscle disorder, hyperkalemic periodic paralysis (HYPP). However, clinical and electrophysiologic differences allow differentiation of the two disorders. The HYPP locus was recently shown to be linked to a skeletal muscle sodium-channel gene probe. We now report that PC maps to the same locus (LOD score 4.4, theta = 0 at assumed penetrance of .95). These linkage results, coupled with physiological data demonstrating abnormal sodium-channel function in patients with PC, implicate a sodium-channel gene as an important candidate for the site of mutation responsible for PC. Furthermore, this is strong evidence for the hypothesis that PC and HYPP are allelic disorders. PMID:1654742

  17. Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Brugada, Ramon

    2011-01-01

    Variations in the gene encoding for the major sodium channel (Na(v)1.5) in the heart, SCN5A, has been shown to cause a number of arrhythmia syndromes (with or without structural changes in the myocardium), including the long-QT syndrome (type 3), Brugada syndrome, (progressive) cardiac conduction di

  18. Complement regulatory protein genes in channel catfish and their involvement in disease defense response.

    Science.gov (United States)

    Jiang, Chen; Zhang, Jiaren; Yao, Jun; Liu, Shikai; Li, Yun; Song, Lin; Li, Chao; Wang, Xiaozhu; Liu, Zhanjiang

    2015-11-01

    Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.

  19. Ca2+ Channel Re-localization to Plasma-Membrane Microdomains Strengthens Activation of Ca2+-Dependent Nuclear Gene Expression

    Directory of Open Access Journals (Sweden)

    Krishna Samanta

    2015-07-01

    Full Text Available In polarized cells or cells with complex geometry, clustering of plasma-membrane (PM ion channels is an effective mechanism for eliciting spatially restricted signals. However, channel clustering is also seen in cells with relatively simple topology, suggesting it fulfills a more fundamental role in cell biology than simply orchestrating compartmentalized responses. Here, we have compared the ability of store-operated Ca2+ release-activated Ca2+ (CRAC channels confined to PM microdomains with a similar number of dispersed CRAC channels to activate transcription factors, which subsequently increase nuclear gene expression. For similar levels of channel activity, we find that channel confinement is considerably more effective in stimulating gene expression. Our results identify a long-range signaling advantage to the tight evolutionary conservation of channel clustering and reveal that CRAC channel aggregation increases the strength, fidelity, and reliability of the general process of excitation-transcription coupling.

  20. A novel mutation in the calcium channel gene in a family with hypokalemic periodic paralysis.

    Science.gov (United States)

    Hirano, Makito; Kokunai, Yosuke; Nagai, Asami; Nakamura, Yusaku; Saigoh, Kazumasa; Kusunoki, Susumu; Takahashi, Masanori P

    2011-10-15

    Hypokalemic periodic paralysis (HypoPP) type 1 is an autosomal dominant disease caused by mutations in the Ca(V)1.1 calcium channel encoded by the CACNA1S gene. Only seven mutations have been found since the discovery of the causative gene in 1994. We describe a patient with HypoPP who had a high serum potassium concentration after recovery from a recent paralysis, which complicated the correct diagnosis. This patient and other affected family members had a novel mutation, p.Arg900Gly, in the CACNA1S gene. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 2. Reduction of hERG activity, observed species selectivity, and structure-activity relationships.

    Science.gov (United States)

    Slee, Deborah H; Moorjani, Manisha; Zhang, Xiaohu; Lin, Emily; Lanier, Marion C; Chen, Yongsheng; Rueter, Jaimie K; Lechner, Sandra M; Markison, Stacy; Malany, Siobhan; Joswig, Tanya; Santos, Mark; Gross, Raymond S; Williams, John P; Castro-Palomino, Julio C; Crespo, María I; Prat, Maria; Gual, Silvia; Díaz, José-Luis; Jalali, Kayvon; Sai, Yang; Zuo, Zhiyang; Yang, Chun; Wen, Jenny; O'Brien, Zhihong; Petroski, Robert; Saunders, John

    2008-03-27

    Previously we have described a series of novel A 2A receptor antagonists with excellent water solubility. As described in the accompanying paper, the antagonists were first optimized to remove an unsubstituted furyl moiety, with the aim of avoiding the potential metabolic liabilities that can arise from the presence of an unsubstituted furan. This effort identified a series of potent and selective methylfuryl derivatives. Herein, we describe the further optimization of this series to increase potency, maintain selectivity for the human A 2A vs the human A 1 receptor, and minimize activity against the hERG channel. In addition, the observed structure-activity relationships against both the human and the rat A 2A receptor are reported.

  2. Molecular characterization of genes encoding inward rectifier potassium (Kir) channels in the bed bug (Cimex lectularius).

    Science.gov (United States)

    Mamidala, Praveen; Mittapelly, Priyanka; Jones, Susan C; Piermarini, Peter M; Mittapalli, Omprakash

    2013-04-01

    The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology.

  3. Effects of Shensong Yangxin capsule on pacemaker channels encoded by human HCN4 gene

    Institute of Scientific and Technical Information of China (English)

    SUN Li-ping; LI Ning; WU Yi-ling; PU Jie-lin

    2010-01-01

    @@ Shensong Yangxin (SSYX) is one of the compound recipes of Chinese materia medica including 12ingredients such as Panax ginseng, dwarf lilyturf tuber,nardostachys root, etc. Small-scale randomized multi-centre clinical trials suggested that SSYX reduced the number of ventricular extrasystoles in patients with or without structural heart disease.1 Besides excellent antiarrhythmic efficacy,2 SSYX also improved bradycardia in some patients, which was evidenced by animal studies3 as well. However, the antiarrhythmic mechanisms of SSYX have not been fully understood.Our previous studies have explored effect of SSYX on many channels except hyperpolarization-activated cation channel encoded by human hHCN4 gene.4

  4. Generation of Myostatin Gene-Edited Channel Catfish (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System.

    Science.gov (United States)

    Khalil, Karim; Elayat, Medhat; Khalifa, Elsayed; Daghash, Samer; Elaswad, Ahmed; Miller, Michael; Abdelrahman, Hisham; Ye, Zhi; Odin, Ramjie; Drescher, David; Vo, Khoi; Gosh, Kamal; Bugg, William; Robinson, Dalton; Dunham, Rex

    2017-08-04

    The myostatin (MSTN) gene is important because of its role in regulation of skeletal muscle growth in all vertebrates. In this study, CRISPR/Cas9 was utilized to successfully target the channel catfish, Ictalurus punctatus, muscle suppressor gene MSTN. CRISPR/Cas9 induced high rates (88-100%) of mutagenesis in the target protein-encoding sites of MSTN. MSTN-edited fry had more muscle cells (p CRISPR/Cas9 is a highly efficient tool for editing the channel catfish genome, and opens ways for facilitating channel catfish genetic enhancement and functional genomics. This approach may produce growth-enhanced channel catfish and increase productivity.

  5. Cardiac potassium channels in health and disease.

    Science.gov (United States)

    Brown, A M

    1997-05-01

    Cardiac K(+)currents regulate resting membrane potential and action potential duration. These tasks are accomplished for the most part by four membrane currents: an inwardly rectifying current (I(K1)), a transient outward current (I(To)), and rapid (I(Kr)), and slow (I(Ks)) delayed rectifier currents. Recent studies have revealed far greater complexity at the molecular level. I(K1) may be produced by at least three genes from the Kir 2 subfamily of the supergene Kir family. The remaining currents appear to be produced by the supergene Kvα family, sometimes in association with the cytoplasmic protein Kvβ family. I(To) may be produced by the Kv4 subfamily, but members of the Kv1 subfamily could contribute, particularly if associated with Kvβ genes. Very rapid currents could be produced by Kv1.5, but Kvs 1.2 and 2.1 might also participate. Additional levels of complexity are possible because members within a Kv subfamily may form heterotetramers, and these, in turn, may associate with different Kvβs. The situation may be simpler for I(Kr) and I(Ks), which at present appear to be produced by the Kv HER gene and the KvLQT1 gene, respectively. Mutations of these two genes have been linked to two forms of hereditary long QT syndrome, and heterologous expression of mutant HERGs has reproduced the pathophysiological phenotype satisfactorily. Sporadic mutations in these and other cardiac K(+)channel genes may provide a basis for hypersensitivity to cardioactive or cardiotoxic drugs. (Trends Cardiovasc Med 1997;7:118-124). © 1997, Elsevier Science Inc.

  6. Beyond the Electrocardiogram: Mutations in Cardiac Ion Channel Genes Underlie Nonarrhythmic Phenotypes

    Directory of Open Access Journals (Sweden)

    Thomas M Roston

    2017-03-01

    Full Text Available Cardiac ion channelopathies are an important cause of sudden death in the young and include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, and short QT syndrome. Genes that encode ion channels have been implicated in all of these conditions, leading to the widespread implementation of genetic testing for suspected channelopathies. Over the past half-century, researchers have also identified systemic pathologies that extend beyond the arrhythmic phenotype in patients with ion channel gene mutations, including deafness, epilepsy, cardiomyopathy, periodic paralysis, and congenital heart disease. A coexisting phenotype, such as cardiomyopathy, can influence evaluation and management. However, prior to recent molecular advances, our understanding and recognition of these overlapping phenotypes were poor. This review highlights the systemic and structural heart manifestations of the cardiac ion channelopathies, including their phenotypic spectrum and molecular basis.

  7. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart.

    Science.gov (United States)

    Marionneau, Céline; Couette, Brigitte; Liu, Jie; Li, Huiyu; Mangoni, Matteo E; Nargeot, Joël; Lei, Ming; Escande, Denis; Demolombe, Sophie

    2005-01-01

    Even though sequencing of the mammalian genome has led to the discovery of a large number of ionic channel genes, identification of the molecular determinants of cellular electrical properties in different regions of the heart has been rarely obtained. We developed a high-throughput approach capable of simultaneously assessing the expression pattern of ionic channel repertoires from different regions of the mouse heart. By using large-scale real-time RT-PCR, we have profiled 71 channels and related genes in the sinoatrial node (SAN), atrioventricular node (AVN), the atria (A) and ventricles (V). Hearts from 30 adult male C57BL/6 mice were microdissected and RNA was isolated from six pools of five mice each. TaqMan data were analysed using the threshold cycle (C(t)) relative quantification method. Cross-contamination of each region was checked with expression of the atrial and ventricular myosin light chains. Two-way hierarchical clustering analysis of the 71 genes successfully classified the six pools from the four distinct regions. In comparison with the A, the SAN and AVN were characterized by higher expression of Nav beta 1, Nav beta 3, Cav1.3, Cav3.1 and Cav alpha 2 delta 2, and lower expression of Kv4.2, Cx40, Cx43 and Kir3.1. In addition, the SAN was characterized by higher expression of HCN1 and HCN4, and lower expression of RYR2, Kir6.2, Cav beta 2 and Cav gamma 4. The AVN was characterized by higher expression of Nav1.1, Nav1.7, Kv1.6, Kvbeta1, MinK and Cav gamma 7. Other gene expression profiles discriminate between the ventricular and the atrial myocardium. The present study provides the first genome-scale regional ionic channel expression profile in the mouse heart.

  8. Identification of a new specific Kv1.3 channel blocker, Ctri9577, from the scorpion Chaerilus tricostatus.

    Science.gov (United States)

    Xie, Shujun; Feng, Jing; Yu, Congya; Li, Zhi; Wu, Yingliang; Cao, Zhijian; Li, Wenxin; He, Xiaohua; Xiang, Ming; Han, Song

    2012-07-01

    Scorpion toxins are valuable resources for discovering new ion channel modulators and drug candidates. Potassium channel Kv1.3 is an important pharmacological target of T cell-mediated autoimmune diseases, which are encouraging the screening and design of the specific peptide blockers for Kv1.3 channel. Ctri9577, the first neurotoxin gene of Chaerilidae family was cloned from the venom of the scorpion Chaerilus tricostatus through the constructing its cDNA library. The sequence analysis showed that the mature peptide of Ctri9577 contained 39 amino acid residues including six conserved cysteines, whose low sequence similarity indicated that it was a new member of α-KTx15 subfamily. By using expression and purification technology, the recombinant peptide was obtained. Subsequently, the electrophysiological experiments indicated that the Ctri9577 peptide selectively inhibited Kv1.3 channel current with an IC(50) of 0.49±0.45 nM without effectively blocking potassium channels Kv1.1, Kv1.2, hERG and SK3. All these findings not only enrich the knowledge of toxins from the Chaerilidae family, but also present a novel potential drug candidate targeting Kv1.3 channels for the therapy of autoimmune diseases.

  9. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes

    Science.gov (United States)

    Zuo, Yayun; Peng, Xiong; Wang, Kang; Lin, Fangfei; Li, Yuting; Chen, Maohua

    2016-07-01

    The voltage-gated sodium channel (VGSC) is the target of sodium-channel-blocking insecticides. Traditionally, animals were thought to have only one VGSC gene comprising a α-subunit with four homologous domains (DI-DIV). The present study showed that Rhopalosiphum padi, an economically important crop pest, owned a unique heterodimeric VGSC (H1 and H2 subunits) encoded by two genes (Rpvgsc1 and Rpvgsc2), which is unusual in insects and other animals. The open reading frame (ORF) of Rpvgsc1 consisted 1150 amino acids, and the ORF of Rpvgsc2 had 957 amino acids. Rpvgsc1 showed 64.1% amino acid identity to DI-DII of Drosophila melanogaster VGSC and Rpvgsc2 showed 64.0% amino acid identity to DIII-DIV of D. melanogaster VGSC. A M918L mutation previously reported in pyrethroids-resistant strains of other insects was found in the IIS4-S6 region of R. padi field sample. The two R. padi VGSC genes were expressed at all developmental stages and showed similar expression patterns after treatment with beta-cypermethrin. Knockdown of Rpvgsc1 or Rpvgsc2 caused significant reduction in mortality rate of R. padi after exposure to beta-cypermethrin. These findings suggest that the two R. padi VGSC genes are both functional genes.

  10. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    Science.gov (United States)

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  11. Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene.

    Science.gov (United States)

    Thompson, Ammon; Vo, Derek; Comfort, Caitlin; Zakon, Harold H

    2014-08-01

    Ion channels have played a substantial role in the evolution of novel traits across all of the domains of life. A fascinating example of a novel adaptation is the convergent evolution of electric organs in the Mormyroid and Gymnotiform electric fishes. The regulated currents that flow through ion channels directly generate the electrical signals which have evolved in these fish. Here, we investigated how the expression evolution of two sodium channel paralogs (Scn4aa and Scn4ab) influenced their convergent molecular evolution following the teleost-specific whole-genome duplication. We developed a reliable assay to accurately measure the expression stoichiometry of these genes and used this technique to analyze relative expression of the duplicate genes in a phylogenetic context. We found that before a major shift in expression from skeletal muscle and neofunctionalization in the muscle-derived electric organ, Scn4aa was first downregulated in the ancestors of both electric lineages. This indicates that underlying the convergent evolution of this gene, there was a greater propensity toward neofunctionalization due to its decreased expression relative to its paralog Scn4ab. We investigated another derived muscle tissue, the sonic organ of Porichthys notatus, and show that, as in the electric fishes, Scn4aa again shows a radical shift in expression away from the ancestral muscle cells into the evolutionarily novel muscle-derived tissue. This study presents evidence that expression downregulation facilitates neofunctionalization after gene duplication, a pattern that may often set the stage for novel trait evolution after gene duplication. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use

    NARCIS (Netherlands)

    Waxman, S.G.; Merkies, I.S.; Gerrits, M.M.; Dib-Hajj, S.D.; Lauria, G.; Cox, J.J.; Wood, J.N.; Woods, C.G.; Drenth, J.P.H.; Faber, C.G.

    2014-01-01

    Human studies have firmly implicated voltage-gated sodium channels in human pain disorders, and targeted and massively parallel genomic sequencing is beginning to be used in clinical practice to determine which sodium channel variants are involved. Missense substitutions of SCN9A, the gene encoding

  13. A sodium channel gene SCN9A polymorphism that increases nociceptor excitability.

    Science.gov (United States)

    Estacion, Mark; Harty, T Patrick; Choi, Jin-Sung; Tyrrell, Lynda; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2009-12-01

    Sodium channel Na(V)1.7, encoded by the SCN9A gene, is preferentially expressed in nociceptive primary sensory neurons, where it amplifies small depolarizations. In studies on a family with inherited erythromelalgia associated with Na(V)1.7 gain-of-function mutation A863P, we identified a nonsynonymous single-nucleotide polymorphism within SCN9A in the affected proband and several unaffected family members; this polymorphism (c. 3448C&T, Single Nucleotide Polymorphisms database rs6746030, which produces the amino acid substitution R1150W in human Na(V)1.7 [hNa(V)1.7]) is present in 1.1 to 12.7% of control chromosomes, depending on ethnicity. In this study, we examined the effect of the R1150W substitution on function of the hNa(V)1.7 channel, and on the firing of dorsal root ganglion (DRG) neurons in which this channel is normally expressed. We show that this polymorphism depolarizes activation (7.9-11mV in different assays). Current-clamp analysis shows that the 1150W allele depolarizes (6mV) resting membrane potential and increases ( approximately 2-fold) the firing frequency in response to depolarization in DRG neurons in which it is present. Our results suggest that polymorphisms in the Na(V)1.7 channel may influence susceptibility to pain.

  14. Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2010-12-01

    Full Text Available Myotonia congenita (MC is a genetic disease characterized by mutations in the muscle chloride channel gene (CLCN1. To date, approximately 130 different mutations on the CLCN1 gene have been identified. However, most of the studies have focused on Caucasians, and reports on CLCN1 mutations in Chinese population are rare. This study investigated the mutation of CLCN1 in two Chinese families with MC. Direct sequencing of the CLCN1 gene revealed a heterozygous mutation (892G>A, resulting in A298T in one family and a compound heterozygous mutations (782A>G, resulting in Y261C; 1679T>C, resulting in M560T in the other family, None of the 100 normal controls had these mutations. Our findings add more to the available information on the CLCN1 mutation spectrum, and provide a valuable reference for studying the mutation types and inheritance pattern of CLCN1 in the Chinese population.

  15. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are i...... releases CGRP, and the release is regulated by Ca2+ ions and voltage-gated calcium channels.......Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons...

  16. Variations in potassium channel genes are associated with breast pain in women prior to breast cancer surgery.

    Science.gov (United States)

    Langford, Dale J; West, Claudia; Elboim, Charles; Cooper, Bruce A; Abrams, Gary; Paul, Steven M; Schmidt, Brian L; Levine, Jon D; Merriman, John D; Dhruva, Anand; Neuhaus, John; Leutwyler, Heather; Baggott, Christina; Sullivan, Carmen Ward; Aouizerat, Bradley E; Miaskowski, Christine

    2014-01-01

    Preoperative breast pain in women with breast cancer may result from a number of causes. Previous work from our team found that breast pain occurred in 28.2% of women (n = 398) who were about to undergo breast cancer surgery. The occurrence of preoperative breast pain was associated with a number of demographic and clinical characteristics, as well as variation in two cytokine genes. Given that ion channels regulate excitability of sensory neurons, we hypothesized that variations in potassium channel genes would be associated with preoperative breast pain in these patients. Therefore, in this study, we evaluated for associations between single-nucleotide polymorphisms and inferred haplotypes among 10 potassium channel genes and the occurrence of preoperative breast pain in patients scheduled to undergo breast cancer surgery. Multivariable logistic regression analyses were used to identify those genetic variations that were associated with the occurrence of preoperative breast pain while controlling for age and genomic estimates of and self-reported race/ethnicity. Variations in four potassium channel genes: (1) potassium voltage-gated channel, delayed rectifier, subfamily S, member 1 (KCNS1); (2) potassium inwardly rectifying channel, subfamily J, member 3 (KCNJ3); (3) KCNJ6; and (4) potassium channel, subfamily K, member 9 (KCNK9) were associated with the occurrence of breast pain. Findings from this study warrant replication in an independent sample of women who report breast pain following one or more breast biopsies.

  17. Characterization of the chicken inward rectifier K+ channel IRK1/Kir2.1 gene

    Directory of Open Access Journals (Sweden)

    Locke Emily

    2004-11-01

    Full Text Available Abstract Background Inward rectifier potassium channels (IRK contribute to the normal function of skeletal and cardiac muscle cells. The chick inward rectifier K+ channel cIRK1/Kir2.1 is expressed in skeletal muscle, heart, brain, but not in liver; a distribution similar but not identical to that of mouse Kir2.1. We set out to explore regulatory domains of the cIRK1 promoter that enhance or inhibit expression of the gene in different cell types. Results We cloned and characterized the 5'-flanking region of cIRK1. cIRK1 contains two exons with splice sites in the 5'-untranslated region, a structure similar to mouse and human orthologs. cIRK1 has multiple transcription initiation sites, a feature also seen in mouse. However, while the chicken and mouse promoter regions share many regulatory motifs, cIRK1 possesses a GC-richer promoter and a putative TATA box, which appears to positively regulate gene expression. We report here the identification of several candidate cell/tissue specific cIRK1 regulatory domains by comparing promoter activities in expressing (Qm7 and non-expressing (DF1 cells using in vitro transcription assays. Conclusion While multiple transcription initiation sites and the combinatorial function of several domains in activating cIRK1 expression are similar to those seen in mKir2.1, the cIRK1 promoter differs by the presence of a putative TATA box. In addition, several domains that regulate the gene's expression differentially in muscle (Qm7 and fibroblast cells (DF1 were identified. These results provide fundamental data to analyze cIRK1 transcriptional mechanisms. The control elements identified here may provide clues to the tissue-specific expression of this K+ channel.

  18. Converging evidence for epistasis between ANK3 and potassium channel gene KCNQ2 in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Jennifer Toolan Judy

    2013-05-01

    Full Text Available Genome-wide association studies (GWAS have implicated ANK3 as a susceptibility gene for bipolar disorder (BP. We examined whether epistasis with ANK3 may contribute to the missing heritability in BP. We first identified via the STRING database 14 genes encoding proteins with prior biological evidence that they interact molecularly with ANK3. We then tested for statistical evidence of interactions between SNPs in these genes in association with BP in a discovery GWAS dataset and two replication GWAS datasets. The most significant interaction in the discovery GWAS was between SNPs in ANK3 and KCNQ2 (p = 3.18 x 10-8. A total of 31 pairwise interactions involving combinations between two SNPs from KCNQ2 and 16 different SNPs in ANK3 were significant after permutation. Of these, 28 pairwise interactions were significant in the first replication GWAS. None were significant in the second replication GWAS, but the two SNPs from KCNQ2 were found to significantly interact with 5 other SNPs in ANK3, suggesting possible allelic heterogeneity. KCNQ2 forms homo- and hetero-meric complexes with KCNQ3 that constitute voltage-gated potassium channels in neurons. ANK3 is an adaptor protein that, through its interaction with KCNQ2 and KCNQ3, directs the localization of this channel in the axon initial segment (AIS. At the AIS, the KCNQ2/3 complex gives rise to the M-current, which stabilizes the neuronal resting potential and inhibits repetitive firing of action potentials. Thus, these channels act as dampening components and prevent neuronal hyperactivity. The interactions between ANK3 and KCNQ2 merit further investigation, and, if confirmed, may motivate a new line of research into a novel therapeutic target for BP.

  19. QSAR and pharmacophore analysis of a series of piperidinyl urea derivatives as HERG blockers and H3 antagonists.

    Science.gov (United States)

    Moorthy, N S Hari Narayana; Ramos, Maria J; Fernandes, Pedro A

    2013-03-01

    In the present study, a computational based pharmacophore and structural analysis were performed on a series of piperidinyl urea derivatives, a limited number of compounds which have variation in structures and activities that exhibit hERG blocking and H3 antagonistic activities. The conducted QSAR studies demonstrated that the developed models are statistically significant, which have been confirmed through validation. The Q2 values for the models developed with hERG blocking activity are > 0.8 and with the H3 antagonistic activity are > 0.6. The descriptors contributed in the models show that the distributed polar properties on the vdW surface of the molecules are important for the hERG blocking activity. The vsurf_ descriptors (surface area, volume and shape) such as vsurf_DD13 and vsurf_Wp4 correlate with the H3 antagonistic activity of these compounds. The distances between the pharmacophore sites were measured in order to confirm their significance to the activities. The results reveal that the acceptor (acc), donor (don), hydrophobic (hyd) and aromatic/hydrophobic (aro/hyd) pharmacophore properties are favorable contours sites for both the activities. Also, our study reveals that the distance between the polar contours (acc, don, etc) has to be small for better hERG blocking activity. The distances between the aro/hyd to the polar groups should be higher for better hERG blocking activity. However, the H3 antagonistic activity for these series depends upon hydrophobic property of the molecules, particularly the hyd and the hyd/aro contours of the molecules. Hence, these results reveal the requirements on the structural properties and the distances between the pharmacophore contour sites of the molecules responsible for their hERG and H3 antagonistic activities.

  20. Ovine congenital myotonia associated with a mutation in the muscle chloride channel gene.

    Science.gov (United States)

    Monteagudo, Luis Vicente; Tejedor, María Teresa; Ramos, Juan José; Lacasta, Delia; Ferrer, Luis Miguel

    2015-04-01

    Congenital myotonia (CM) is characterised by a delay in muscular relaxation after sudden contractions. In a recent outbreak of ovine CM affecting 1% of new-born lambs in a Spanish flock of Rasa Aragonesa sheep, a comparative pathology approach was taken: because a mutation in the muscle chloride channel gene (CLCN1) was identified as responsible for CM in goats, the same gene was sequenced in the affected lambs. A non-synonymous single nucleotide variation (SNV) in the second exon of CLCN1 was associated with this pathology. Rams carrying this SNV heterozygously were thereafter identified and replaced by wild-type homozygous young males. No additional CM cases were detected in subsequent lambing seasons.

  1. Sequence Alterations of I(Ks Potassium Channel Genes in Kazakhstani Patients with Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Ainur Akilzhanova

    2014-12-01

    Full Text Available Introduction. Atrial fibrillation (AF is the most common sustained arrhythmia, and it results in significant morbidity and mortality. However, the pathogenesis of AF remains unclear to date. Recently, more pieces of evidence indicated that AF is a multifactorial disease resulting from the interaction between environmental factors and genetics. Recent studies suggest that genetic mutation of the slow delayed rectifier potassium channel (I(Ks may underlie AF.Objective. To investigate sequence alterations of I(Ks potassium channel genes KCNQ1, KCNE1 and KCNE2 in Kazakhstani patients with atrial fibrillation.Methods. Genomic DNA of 69 cases with atrial fibrillation and 27 relatives were analyzed for mutations in all protein-coding exons and their flanking splice site regions of the genes KCNQ1 (NM_000218.2 and NM_181798.1, KCNE1 (NM_000219.2, and KCNE2 (NM_172201.1 using bidirectional sequencing on the ABI 3730xL DNA Analyzer (Applied Biosystems, Foster City, CA, USA.Results. In total, a disease-causing mutation was identified in 39 of the 69 (56.5% index cases. Of these, altered sequence variants in the KCNQ1 gene accounted for 14.5% of the mutations, whereas a KCNE1 mutation accounted for 43.5% of the mutations and KCNE2 mutation accounted for 1.4% of the mutations. The majority of the distinct mutations were found in a single case (80%, whereas 20% of the mutations were observed more than once. We found two sequence variants in KCNQ1 exon 13 (S546S G1638A and exon 16 (Y662Y, C1986T in ten patients (14.5%. In KCNE1 gene in exon 3 mutation, S59G A280G was observed in 30 of 69 patients (43.5% and KCNE2 exon 2 T10K C29A in 1 patient (1.4%. Genetic cascade screening of 27 relatives to the 69 index cases with an identified mutation revealed 26.9% mutation carriers  who were at risk of cardiac events such as syncope or sudden unexpected death.Conclusion. In this cohort of Kazakhstani index cases with AF, a disease-causing mutation was identified in

  2. Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression

    Directory of Open Access Journals (Sweden)

    Mats Wiedemann

    2015-10-01

    Full Text Available The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight. In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca2+ action potentials. Determination of the current through ATP-dependent K+ channels (KATP channels revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h, the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.

  3. Variations in potassium channel genes are associated with distinct trajectories of persistent breast pain after breast cancer surgery.

    Science.gov (United States)

    Langford, Dale J; Paul, Steven M; West, Claudia M; Dunn, Laura B; Levine, Jon D; Kober, Kord M; Dodd, Marylin J; Miaskowski, Christine; Aouizerat, Bradley E

    2015-03-01

    Persistent pain after breast cancer surgery is a common clinical problem. Given the role of potassium channels in modulating neuronal excitability, coupled with recently published genetic associations with preoperative breast pain, we hypothesized that variations in potassium channel genes will be associated with persistent postsurgical breast pain. In this study, associations between 10 potassium channel genes and persistent breast pain were evaluated. Using growth mixture modeling (GMM), 4 distinct latent classes of patients, who were assessed before and monthly for 6 months after breast cancer surgery, were identified previously (ie, No Pain, Mild Pain, Moderate Pain, Severe Pain). Genotyping was done using a custom array. Using logistic regression analyses, significant differences in a number of genotype or haplotype frequencies were found between: Mild Pain vs No Pain and Severe Pain vs No Pain classes. Seven single-nucleotide polymorphisms (SNPs) across 5 genes (ie, potassium voltage-gated channel, subfamily A, member 1 [KCNA1], potassium voltage-gated channel, subfamily D, member 2 [KCND2], potassium inwardly rectifying channel, subfamily J, members 3 and 6 (KCNJ3 and KCNJ6), potassium channel, subfamily K, member 9 [KCNK9]) were associated with membership in the Mild Pain class. In addition, 3 SNPs and 1 haplotype across 4 genes (ie, KCND2, KCNJ3, KCNJ6, KCNK9) were associated with membership in the Severe Pain class. These findings suggest that variations in potassium channel genes are associated with both mild and severe persistent breast pain after breast cancer surgery. Although findings from this study warrant replication, they provide intriguing preliminary information on potential therapeutic targets.

  4. The Eag potassium channel as a new prognostic marker in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Schalkwyk Gerhard V

    2010-12-01

    Full Text Available Abstract Background Ovarian cancer is the second most common cancer of the female genital tract in the United Kingdom (UK, accounting for 6% of female deaths due to cancer. This cancer is associated with poor survival and there is a need for new treatments in addition to existing chemotherapy to improve survival. Potassium (K+ channels have been shown to be overexpressed in various cancers where they appear to play a role in cell proliferation and progression. Objectives To determine the expression of the potassium channels Eag and HERG in ovarian cancer tissue and to assess their role in cell proliferation. Methods The expression of Eag and HERG potassium channels was examined in an ovarian cancer tissue microarray. Their role in cell proliferation was investigated by blocking voltage-gated potassium channels in an ovarian cancer cell line (SK-OV-3. Results We show for the first time that high expression of Eag channels in ovarian cancer patients is significantly associated with poor survival (P = 0.016 unlike HERG channel expression where there was no correlation with survival. There was also a significant association of Eag staining with high tumour grade (P = 0.014 and presence of residual disease (P = 0.011. Proliferation of SK-OV-3 cells was significantly (P + channel blockers. Conclusion This novel finding demonstrates a role for Eag as a prognostic marker for survival in patients with ovarian cancer.

  5. The epithelial sodium channel γ-subunit gene and blood pressure: family based association, renal gene expression, and physiological analyses.

    Science.gov (United States)

    Büsst, Cara J; Bloomer, Lisa D S; Scurrah, Katrina J; Ellis, Justine A; Barnes, Timothy A; Charchar, Fadi J; Braund, Peter; Hopkins, Paul N; Samani, Nilesh J; Hunt, Steven C; Tomaszewski, Maciej; Harrap, Stephen B

    2011-12-01

    Variants in the gene encoding the γ-subunit of the epithelial sodium channel (SCNN1G) are associated with both Mendelian and quantitative effects on blood pressure. Here, in 4 cohorts of 1611 white European families composed of a total of 8199 individuals, we undertook staged testing of candidate single-nucleotide polymorphisms for SCNN1G (supplemented with imputation based on data from the 1000 Genomes Project) followed by a meta-analysis in all of the families of the strongest candidate. We also examined relationships between the genotypes and relevant intermediate renal phenotypes, as well as expression of SCNN1G in human kidneys. We found that an intronic single-nucleotide polymorphism of SCNN1G (rs13331086) was significantly associated with age-, sex-, and body mass index-adjusted blood pressure in each of the 4 populations (Ppressure and 0.52-mm Hg increase in diastolic blood pressure (SE=0.33, P=0.002 for systolic blood pressure; SE=0.21, P=0.011 for diastolic blood pressure). The same allele was also associated with higher 12-hour overnight urinary potassium excretion (P=0.04), consistent with increased epithelial sodium channel activity. Renal samples from hypertensive subjects showed a nonsignificant (P=0.07) 1.7-fold higher expression of SCNN1G compared with normotensive controls. These data provide genetic and phenotypic evidence in support of a role for a common genetic variant of SCNN1G in blood pressure determination.

  6. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart.

    Science.gov (United States)

    Tarradas, Anna; Pinsach-Abuin, Mel Lina; Mackintosh, Carlos; Llorà-Batlle, Oriol; Pérez-Serra, Alexandra; Batlle, Montserrat; Pérez-Villa, Félix; Zimmer, Thomas; Garcia-Bassets, Ivan; Brugada, Ramon; Beltran-Alvarez, Pedro; Pagans, Sara

    2017-01-01

    Aberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples. Gene reporter experiments show GATA4 and GATA5 synergism in the activation of the SCN5A promoter, and its dependence on predicted GATA binding sites. GATA4 and GATA6 mRNAs are robustly expressed in fresh-frozen human left ventricle samples as measured by highly sensitive droplet digital PCR (ddPCR). GATA5 mRNA is marginally but still clearly detected in the same samples. Importantly, GATA4 mRNA levels are strongly and positively correlated with SCN5A transcript levels in the human heart. Together, our findings uncover a novel mechanism of GATA TFs in the regulation of the SCN5A gene in human heart tissue. Our studies suggest that GATA5 but especially GATA4 are main contributors to SCN5A gene expression, thus providing a new paradigm of SCN5A expression regulation that may shed new light into the understanding of cardiac disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Structural basis for ether-a-go-go-related gene K+ channel subtype-dependent activation by niflumic acid.

    Science.gov (United States)

    Fernandez, David; Sargent, John; Sachse, Frank B; Sanguinetti, Michael C

    2008-04-01

    Niflumic acid [2-((3-(trifluoromethyl)phenyl)amino)-3-pyridinecarboxylic acid, NFA] is a nonsteroidal anti-inflammatory drug that also blocks or modulates the gating of a wide spectrum of ion channels. Here we investigated the mechanism of channel activation by NFA on ether-a-go-go-related gene (ERG) K(+) channel subtypes expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. NFA acted from the extracellular side of the membrane to differentially enhance ERG channel currents independent of channel state. At 1 mM, NFA shifted the half-point for activation by -6, -18, and -11 mV for ERG1, ERG2, and ERG3 channels, respectively. The half-point for channel inactivation was shifted by +5 to +9 mV by NFA. The structural basis for the ERG subtype-specific response to NFA was explored with chimeric channels and site-directed mutagenesis. The molecular determinants of enhanced sensitivity of ERG2 channels to NFA were isolated to an Arg and a Thr triplet in the extracellular S3-S4 linker.

  8. Characterization and variation of a human inwardly-rectifying-K-channel gene (KCNJ6): a putative ATP-sensitive K-channel subunit.

    Science.gov (United States)

    Sakura, H; Bond, C; Warren-Perry, M; Horsley, S; Kearney, L; Tucker, S; Adelman, J; Turner, R; Ashcroft, F M

    1995-06-26

    The ATP-sensitive K-channel plays a central role in insulin release from pancreatic beta-cells. We report here the cloning of the gene (KCNJ6) encoding a putative subunit of a human ATP-sensitive K-channel expressed in brain and beta-cells, and characterisation of its exon-intron structure. Screening of a somatic cell mapping panel and fluorescent in situ hybridization place the gene on chromosome 21 (21q22.1-22.2). Analysis of single-stranded conformational polymorphisms revealed the presence of two silent polymorphisms (Pro-149: CCG-CCA and Asp-328: GAC-GAT) with similar frequencies in normal and non-insulin-dependent diabetic patients.

  9. Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution.

    Science.gov (United States)

    Zakon, Harold H; Lu, Ying; Zwickl, Derrick J; Hillis, David M

    2006-03-07

    We investigated whether the evolution of electric organs and electric signal diversity in two independently evolved lineages of electric fishes was accompanied by convergent changes on the molecular level. We found that a sodium channel gene (Na(v)1.4a) that is expressed in muscle in nonelectric fishes has lost its expression in muscle and is expressed instead in the evolutionarily novel electric organ in both lineages of electric fishes. This gene appears to be evolving under positive selection in both lineages, facilitated by its restricted expression in the electric organ. This view is reinforced by the lack of evidence for selection on this gene in one electric species in which expression of this gene is retained in muscle. Amino acid replacements occur convergently in domains that influence channel inactivation, a key trait for shaping electric communication signals. Some amino acid replacements occur at or adjacent to sites at which disease-causing mutations have been mapped in human sodium channel genes, emphasizing that these replacements occur in functionally important domains. Selection appears to have acted on the final step in channel inactivation, but complementarily on the inactivation "ball" in one lineage, and its receptor site in the other lineage. Thus, changes in the expression and sequence of the same gene are associated with the independent evolution of signal complexity.

  10. The faint source population at 15.7 GHz - III. A high-frequency study of HERGs and LERGs

    CERN Document Server

    Whittam, Imogen H; Green, David A; Jarvis, Matt J

    2016-01-01

    A complete sample of 96 faint ($S > 0.5$ mJy) radio galaxies is selected from the Tenth Cambridge (10C) survey at 15.7~GHz. Optical spectra are used to classify 17 of the sources as high-excitation or low-excitation radio galaxies (HERGs and LERGs respectively), for the remaining sources three other methods are used; these are optical compactness, X-ray observations and mid-infrared colour--colour diagrams. 32 sources are HERGs and 35 are LERGs while the remaining 29 sources could not be classified. We find that the 10C HERGs tend to have higher 15.7-GHz flux densities, flatter spectra, smaller linear sizes and be found at higher redshifts than the LERGs. This suggests that the 10C HERGs are more core dominated than the LERGs. Lower-frequency radio images, linear sizes and spectral indices are used to classify the sources according to their radio morphology; 18 are Fanaroff and Riley type I or II sources, a further 13 show some extended emission, and the remaining 65 sources are compact and are referred to as...

  11. Sudden infant death syndrome caused by cardiac arrhythmias: only a matter of genes encoding ion channels?

    Science.gov (United States)

    Sarquella-Brugada, Georgia; Campuzano, Oscar; Cesar, Sergi; Iglesias, Anna; Fernandez, Anna; Brugada, Josep; Brugada, Ramon

    2016-03-01

    Sudden infant death syndrome is the unexpected demise of a child younger than 1 year of age which remains unexplained after a complete autopsy investigation. Usually, it occurs during sleep, in males, and during the first 12 weeks of life. The pathophysiological mechanism underlying the death is unknown, and the lethal episode is considered multifactorial. However, in cases without a conclusive post-mortem diagnosis, suspicious of cardiac arrhythmias may also be considered as a cause of death, especially in families suffering from any cardiac disease associated with sudden cardiac death. Here, we review current understanding of sudden infant death, focusing on genetic causes leading to lethal cardiac arrhythmias, considering both genes encoding ion channels as well as structural proteins due to recent association of channelopathies and desmosomal genes. We support a comprehensive analysis of all genes associated with sudden cardiac death in families suffering of infant death. It allows the identification of the most plausible cause of death but also of family members at risk, providing cardiologists with essential data to adopt therapeutic preventive measures in families affected with this lethal entity.

  12. Effect of Heavy Metal Cadmium lon on Outward Potassium Channel in Cell%重金属Cd2+对细胞外向K+通道的影响

    Institute of Scientific and Technical Information of China (English)

    杜春蕾; 王丽红; 江娜; 黄晓华

    2011-01-01

    重金属镉(Cd)污染及其对动植物的伤害机理,已成为中外相关专家研究的热点,但是细胞毒害机理依然不清楚.分布于细胞膜上的通道蛋白,不仅是外来物质作用于生物体的首要位点,且会影响离子通道的功能.为阐释镉(Cd)污染致病与毒害的细胞学机理,选择具有重要生理功能的细胞钾离子(K+)通道为示踪,并应用全细胞膜片钳技术,研究了Cd2+对hERG(K+)通道电流的影响.结果表明:(1)Cd2+能显著抑制hERG K+通道的稳态电流和尾电流,干扰通道蛋白正常开关;(2)当10,50,200 μg/LCd2+作用细胞后,hERG(K+)通道激活曲线右移,斜率因子不变;(3)当10μg/L Cd2+作用细胞后,hERG K+通道电流迅速下降,且随Cd2+浓度增加,此抑制作用未发生明显改变.本工作从一新的角度揭示了Cd2+细胞毒性机理.结果提示,钾通道可作为镉污染致病与毒害的细胞学机理研究的靶点.%Cadmium (Cd) contamination leads to a variety of clinical diseases. Potassium ion (K+) channel is the most diverse and ubiquitous class of ion channels, and it plays the important physiological roles in human. In order to elucidate the cellular mechanism of the pathogenic and toxic effect of Cd2+pollution, the effects of Cd2+on the currents of a human ether-a-go-go related gene (hERG) K+channel was investigated by a whole-cell patch clamp method. The results indicated that Cd2+ significantly inhibited the steady-state and tail currents of hERG K+channel. When cells were treated with 10, 50, 200 μg/L Cd2+, the activation curve of hERG K+channel was right-shifted, and the slope factor was not changed. The currents of hERG K+ channel was not significantly changed with increasing the concentration of Cd2+. The results suggested that potassium channels can be used as the target of the research on the cellular mechanism of the pathogenic and toxic effect of Cd2+pollution.

  13. A novel mutation in the sodium channel α1 subunit gene in a child with Dravet syndrome in Turkey

    Institute of Scientific and Technical Information of China (English)

    Mutluay Arslan; Ulu(c) Yi(s); Hande (C)a(g)layan; R1dvan Akin

    2013-01-01

    Dravet syndrome is a rare epileptic encephalopathy characterized by frequent seizures beginning in the first year of life and behavioral disorders. Mutations in the sodium channel α1 subunit gene are the main cause of this disease. We report two patients with refractory seizures and psychomotor retardation in whom the final diagnosis was Dravet syndrome with confirmed mutations in the sodium channel α1 subunit gene. The mutation identified in the second patient was a novel frame shift mutation, which resulted from the deletion of five nucleotides in exon 24.

  14. Molecular Characterization of LRB7 Gene and a Water Channel Protein TIP2 in Chorispora bungeana

    Directory of Open Access Journals (Sweden)

    Ming Li

    2016-01-01

    Full Text Available Background. Water channel proteins, also called aquaporins, are integral membrane proteins from major intrinsic protein (MIP family and involved in several pathways including not only water transport but also cell signaling, reproduction, and photosynthesis. The full cDNA and protein sequences of aquaporin in Chorispora bungeana Fisch. & C.A. Mey (C. bungeana are still unknown. Results. In this study, PCR and rapid amplification of cDNA ends approaches were used to clone the full cDNA of LRB7 (GenBank accession number: EU636988 of C. bungeana. Sequence analysis indicated that it was 1235 bp, which had two introns and encoded a protein of 250 amino acids. Structure analysis revealed that the protein had two conserved NPA motifs, one of which is MIP signature sequence (SGxHxNPAVT, six membrane helix regions, and additional membrane-embedded domains. Phylogenetic analysis suggested that the protein was from TIP2 subgroup. Surprisingly, semiquantitative RT-PCR experiment and western blot analysis showed that LRB7 and TIP2 were only detectable in roots, unlike Arabidopsis and Raphanus. Connecting with our previous studies, LRB7 was supported to associate with chilling-tolerance in C. bungeana. Conclusion. This is the first time to characterize the full sequences of LRB7 gene and water channel protein in C. bungeana. Our findings contribute to understanding the water transports in plants under low temperatures.

  15. Molecular Characterization of LRB7 Gene and a Water Channel Protein TIP2 in Chorispora bungeana

    Science.gov (United States)

    Liang, Zhaoxu; Di, Cuixia; Fang, Weikuan; Wu, Kaichao; Chen, Maoshan; He, Shanshan; Zeng, Yuan; Jing, Yan; Liang, Jun; Tan, Fang; Li, Song; Chen, Tuo; Liu, Guangxiu

    2016-01-01

    Background. Water channel proteins, also called aquaporins, are integral membrane proteins from major intrinsic protein (MIP) family and involved in several pathways including not only water transport but also cell signaling, reproduction, and photosynthesis. The full cDNA and protein sequences of aquaporin in Chorispora bungeana Fisch. & C.A. Mey (C. bungeana) are still unknown. Results. In this study, PCR and rapid amplification of cDNA ends approaches were used to clone the full cDNA of LRB7 (GenBank accession number: EU636988) of C. bungeana. Sequence analysis indicated that it was 1235 bp, which had two introns and encoded a protein of 250 amino acids. Structure analysis revealed that the protein had two conserved NPA motifs, one of which is MIP signature sequence (SGxHxNPAVT), six membrane helix regions, and additional membrane-embedded domains. Phylogenetic analysis suggested that the protein was from TIP2 subgroup. Surprisingly, semiquantitative RT-PCR experiment and western blot analysis showed that LRB7 and TIP2 were only detectable in roots, unlike Arabidopsis and Raphanus. Connecting with our previous studies, LRB7 was supported to associate with chilling-tolerance in C. bungeana. Conclusion. This is the first time to characterize the full sequences of LRB7 gene and water channel protein in C. bungeana. Our findings contribute to understanding the water transports in plants under low temperatures. PMID:27689074

  16. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  17. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction.

    Science.gov (United States)

    Padula, Audrey E; Griffin, William C; Lopez, Marcelo F; Nimitvilai, Sudarat; Cannady, Reginald; McGuier, Natalie S; Chesler, Elissa J; Miles, Michael F; Williams, Robert W; Randall, Patrick K; Woodward, John J; Becker, Howard C; Mulholland, Patrick J

    2015-07-01

    Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction.

  18. Channel catfish hemoglobin genes: identification, phylogenetic and syntenic analysis, and specific induction in response to heat stress.

    Science.gov (United States)

    Feng, Jianbin; Liu, Shikai; Wang, Xiuli; Wang, Ruijia; Zhang, Jiaren; Jiang, Yanliang; Li, Chao; Kaltenboeck, Ludmilla; Li, Jiale; Liu, Zhanjiang

    2014-03-01

    Hemoglobins transport oxygen from gill to inner organs in fish, and this process is affected by temperature, one of the major environmental factors for fish. The hemoglobin gene clusters have been well studied in humans and several model fish species, but remain largely unknown in catfish. Here, eight α- and six β-hemoglobin genes were identified and characterized in channel catfish. Genomic synteny analysis showed that these hemoglobin genes were separated into two unlinked clusters, the MN cluster containing six α- and six β-hemoglobin genes, and the LA cluster consisting of two α-hemoglobin genes. Channel catfish hemoglobin genes were ubiquitously expressed in all the 10 tested tissues from healthy fish, but exhibited higher expression level in spleen, head kidney, and trunk kidney. In response to heat stress, hemoglobin genes, especially MN Hbα4, MN Hbα5, MN Hbα6, MN Hbβ4, MN Hbβ5, MN Hbβ6, LA Hbα1, and LA Hbα2, presumably the embryonic hemoglobin genes, were drastically up-regulated in the gill and head kidney of heat-tolerant fishes, but not in these tissues of the heat-intolerant fish, suggesting the importance of the embryonic hemoglobin genes in coping with the low oxygen conditions under heat stress.

  19. 2-(4-Carbonylphenyl)benzoxazole inhibitors of CETP: attenuation of hERG binding and improved HDLc-raising efficacy.

    Science.gov (United States)

    Sweis, Ramzi F; Hunt, Julianne A; Sinclair, Peter J; Chen, Ying; Eveland, Suzanne S; Guo, Qiu; Hyland, Sheryl A; Milot, Denise P; Cumiskey, Anne-Marie; Latham, Melanie; Rosa, Raymond; Peterson, Larry; Sparrow, Carl P; Anderson, Matt S

    2011-05-01

    The development of 2-phenylbenzoxazoles as inhibitors of cholesteryl ester transfer protein (CETP) is described. Efforts focused on finding suitable replacements for the central piperidine with the aim of reducing hERG binding: a main liability of our benchmark benzoxazole (1a). Replacement of the piperidine with a cyclohexyl group successfully attenuated hERG binding, but was accompanied by reduced in vivo efficacy. The approach of substituting a piperidine moiety with an oxazolidinone also attenuated hERG binding. Further refinement of this latter scaffold via SAR at the pyridine terminus and methyl branching on the oxazolidinone led to compounds 7e and 7f, which raised HDLc by 33 and 27mg/dl, respectively, in our transgenic mouse PD model and without the hERG liability of previous series.

  20. Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance.

    Science.gov (United States)

    Kutchinsky, Jonatan; Friis, Søren; Asmild, Margit; Taboryski, Rafael; Pedersen, Simon; Vestergaard, Ras K; Jacobsen, Rasmus B; Krzywkowski, Karen; Schrøder, Rikke L; Ljungstrøm, Trine; Hélix, Nathalie; Sørensen, Claus B; Bech, Morten; Willumsen, Niels J

    2003-10-01

    Planar silicon chips with 1-2-microm etched holes (average resistance: 2.04 +/- 0.02 MOmega in physiological buffer, n = 274) have been developed for patch-clamp recordings of whole-cell currents from cells in suspension. An automated 16-channel parallel screening system, QPatch 16, has been developed using this technology. A single-channel prototype of the QPatch system was used for validation of the patch-clamp chip technology. We present here data on the quality of patch-clamp recordings and from actual drug screening studies of human potassium channels expressed in cultured cell lines. Using Chinese hamster ovary (CHO) and human embryonic kidney cells (HEK), gigaseals of 4.1 +/- 0.4 GOmega (n = 146) and high-quality whole-cell current recordings were obtained from hERG and KCNQ4 potassium channels. Success rates for gigaseal recordings varied from 40 to 95%, and 67% of the whole-cell configurations lasted for >20 min. Cells were maintained in suspension up to 4 h in a cell storage facility that is integrated in the QPatch 16. No decline in patchability was observed during this time course. A series of screens was conducted with known inhibitors of the hERG and KCNQ4 potassium channels. Dose-response relationship characterizations of verapamil and rBeKm-1 blockage of hERG currents provided IC(50) values similar to values reported in the literature.

  1. Potassium and calcium channel gene expression in small arteries in porcine and rat models of diet-induced obesity (Poster)

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Salomonsson, Max; Sørensen, Charlotte Mehlin

    2014-01-01

    Obesity is an increasing problem worldwide leading to cardiovascular morbidity. Only limited information exists on the transcriptional regulation of arterial K+ and Ca2+ channels in obesity. We quantified, by real-time PCR, mRNA expression of K+ channels and L-type Ca2+ channels (LTCC) in small m...... changes in K+ and Ca2+ channel gene expression, which, in rats, did not seem to be linked with changes in SBP. These transcriptional changes may lead to disturbances in microvascular flow patterns in obesity.......Obesity is an increasing problem worldwide leading to cardiovascular morbidity. Only limited information exists on the transcriptional regulation of arterial K+ and Ca2+ channels in obesity. We quantified, by real-time PCR, mRNA expression of K+ channels and L-type Ca2+ channels (LTCC) in small...... mesenteric (MA), middle cerebral (MCA), and left coronary arteries (LCA) of lean vs. obese rats and minipigs. Male Sprague Dawley rats were fed a high-fat (FAT; N=5), high-fructose (FRUC; N=7), high-fat/high-fructose (FAT/FRUC; N=7) or standard diet (STD; N=7-11) for 28 Weeks. FAT and FAT/FRUC became obese...

  2. De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy : a retrospective study

    NARCIS (Netherlands)

    Berkovic, SF; Harkin, L; McMahon, JM; Pelekanos, JT; Zuberi, SM; Wirrell, EC; Gill, DS; Iona, [No Value; Mulley, JC; Scheffer, IE

    2006-01-01

    Background Vaccination, particularly for pertussis, has been implicated as a direct cause of an encephalopathy with refractory seizures and intellectual impairment. We postulated that cases of so-called vaccine encephalopathy could have mutations in the neuronal sodium channel alpha 1 subunit gene (

  3. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J;

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are i...

  4. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    NARCIS (Netherlands)

    Drenth, J.P.H.; Waxman, S.G.

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pa

  5. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    NARCIS (Netherlands)

    Drenth, J.P.H.; Waxman, S.G.

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pa

  6. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    Science.gov (United States)

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  7. QSAR modeling and data mining link Torsades de Pointes risk to the interplay of extent of metabolism, active transport, and HERG liability.

    Science.gov (United States)

    Broccatelli, Fabio; Mannhold, Raimund; Moriconi, Alessio; Giuli, Sandra; Carosati, Emanuele

    2012-08-06

    We collected 1173 hERG patch clamp (PC) data (IC50) from the literature to derive twelve classification models for hERG inhibition, covering a large variety of chemical descriptors and classification algorithms. Models were generated using 545 molecules and validated through 258 external molecules tested in PC experiments. We also evaluated the suitability of the best models to predict the activity of 26 proprietary compounds tested in radioligand binding displacement (RBD). Results proved the necessity to use multiple validation sets for a true estimation of model accuracy and demonstrated that using various descriptors and algorithms improves the performance of ligand-based models. Intriguingly, one of the most accurate models uncovered an unexpected link between extent of metabolism and hERG liability. This hypothesis was fairly reinforced by using the Biopharmaceutics Drug Disposition Classification System (BDDCS) that recognized 94% of the hERG inhibitors as extensively metabolized in vivo. Data mining suggested that high Torsades de Pointes (TdP) risk results from an interplay of hERG inhibition, extent of metabolism, active transport, and possibly solubility. Overall, these new findings might improve both the decision making skills of pharmaceutical scientists to mitigate hERG liability during the drug discovery process and the TdP risk assessment during drug development.

  8. Monte Carlo method for predicting of cardiac toxicity: hERG blocker compounds.

    Science.gov (United States)

    Gobbi, Marco; Beeg, Marten; Toropova, Mariya A; Toropov, Andrey A; Salmona, Mario

    2016-05-27

    The estimation of the cardiotoxicity of compounds is an important task for the drug discovery as well as for the risk assessment in ecological aspect. The experimental estimation of the above endpoint is complex and expensive. Hence, the theoretical computational methods are very attractive alternative of the direct experiment. A model for cardiac toxicity of 400 hERG blocker compounds (pIC50) is built up using the Monte Carlo method. Three different splits into the visible training set (in fact, the training set plus the calibration set) and invisible validation sets examined. The predictive potential is very good for all examined splits. The statistical characteristics for the external validation set are (i) the coefficient of determination r(2)=(0.90-0.93); and (ii) root-mean squared error s=(0.30-0.40). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Association analysis of a highly polymorphic CAG Repeat in the human potassium channel gene KCNN3 and migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Ovcaric Mick

    2005-09-01

    Full Text Available Abstract Background Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels. Methods The present association study tested whether length variations in the second (more 3' polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO. In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis. Results Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090. Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05. The prevalence of the long CAG repeat (>19 repeats did not reach statistical significance in migraineurs (P = 0.15, nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively, or between MA vs MO (P = 0.40. Conclusion This association study provides no evidence that length variations of the second polyglutamine array in

  10. Genetic variation in genes encoding airway epithelial potassium channels is associated with chronic rhinosinusitis in a pediatric population.

    Directory of Open Access Journals (Sweden)

    Michael T Purkey

    Full Text Available BACKGROUND: Apical potassium channels regulate ion transport in airway epithelial cells and influence air surface liquid (ASL hydration and mucociliary clearance (MCC. We sought to identify whether genetic variation within genes encoding airway potassium channels is associated with chronic rhinosinusitis (CRS. METHODS: Single nucleotide polymorphism (SNP genotypes for selected potassium channels were derived from data generated on the Illumnia HumanHap550 BeadChip or Illumina Human610-Quad BeadChip for 828 unrelated individuals diagnosed with CRS and 5,083 unrelated healthy controls from the Children's Hospital of Philadelphia (CHOP. Statistical analysis was performed with set-based tests using PLINK, and corrected for multiple testing. RESULTS: Set-based case control analysis revealed the gene KCNMA1 was associated with CRS in our Caucasian subset of the cohort (598 CRS cases and 3,489 controls; p = 0.022, based on 10,000 permutations. In addition there was borderline evidence that the gene KCNQ5 (p = 0.0704 was associated with the trait in our African American subset of the cohort (230 CRS cases and 1,594 controls. In addition to the top significant SNPs rs2917454 and rs6907229, imputation analysis uncovered additional genetic variants in KCNMA1 and in KCNQ5 that were associated with CRS. CONCLUSIONS: We have implicated two airway epithelial potassium channels as novel susceptibility loci in contributing to the pathogenesis of CRS.

  11. An atypical phenotype of hypokalemic periodic paralysis caused by a mutation in the sodium channel gene SCN4A.

    Science.gov (United States)

    Park, Yang Hee; Kim, June Bum

    2010-10-01

    Familial hypokalemic periodic paralysis is an autosomal-dominant channelopathy characterized by episodic muscle weakness with hypokalemia. The respiratory and cardiac muscles typically remain unaffected, but we report an atypical case of a family with hypokalemic periodic paralysis in which the affected members presented with frequent respiratory insufficiency during severe attacks. Molecular analysis revealed a heterozygous c.664 C>T transition in the sodium channel gene SCN4A, leading to an Arg222Trp mutation in the channel protein. The patients described here presented unusual clinical characteristics that included a severe respiratory phenotype, an incomplete penetrance in female carriers, and a different response to medications.

  12. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes

    DEFF Research Database (Denmark)

    Pers, Tune H; Timshel, Pascal; Ripke, Stephan;

    2016-01-01

    Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approach...... validate the relevance of the prioritized genes by showing that they are enriched for rare disruptive variants and de novo variants from schizophrenia sequencing studies (odds ratio 1.67, P=0.039), and are enriched for genes encoding members of mouse and human postsynaptic density proteomes (odds ratio 4......, we show that genes in associated loci: (1) are highly expressed in cortical brain areas; (2) are enriched for ion channel pathways (false discovery ratesgenes that are functionally related to each other and hence represent promising candidates for experimental follow up. We...

  13. hERG blocking potential of acids and zwitterions characterized by three thresholds for acidity, size and reactivity

    DEFF Research Database (Denmark)

    Nikolov, Nikolai Georgiev; Dybdahl, Marianne; Jonsdottir, Svava Osk

    2014-01-01

    acidic non-blockers have not been fully elucidated. We propose a rule for prediction of hERG blocking by acids and zwitterionic ampholytes based on thresholds for only three descriptors related to acidity, size and reactivity. The training set of 153 acids and zwitterionic ampholytes was predicted...... with a concordance of 91% by a decision tree based on the rule. Two external validations were performed with sets of 35 and 48 observations, respectively, both showing concordances of 91%. In addition, a global QSAR model of hERG blocking was constructed based on a large diverse training set of 1374 chemicals...... covering all ionization classes, externally validated showing high predictivity and compared to the decision tree. The decision tree was found to be superior for the acids and zwitterionic ampholytes classes....

  14. CRAC channels drive digital activation and provide analog control and synergy to Ca(2+)-dependent gene regulation.

    Science.gov (United States)

    Kar, Pulak; Nelson, Charmaine; Parekh, Anant B

    2012-02-07

    Ca(2+)-dependent gene expression is critical for cell growth, proliferation, plasticity, and adaptation [1-3]. Because a common mechanism in vertebrates linking cytoplasmic Ca(2+) signals with activation of protein synthesis involves the nuclear factor of activated T cells (NFAT) family of transcription factors [4, 5], we have quantified protein expression in single cells following physiological Ca(2+) signals by using NFAT-driven expression of a genetically encoded fluorescent protein. We find that gene expression following CRAC channel activation is an all-or-nothing event over a range of stimulus intensities. Increasing agonist concentration recruits more cells but each responding cell does so in an essentially digital manner. Furthermore, Ca(2+)-dependent gene expression shows both short-term memory and strong synergy, where two pulses of agonist, which are ineffectual individually, robustly activate gene expression provided that the time interval between them is short. Such temporal filtering imparts coincidence detection to Ca(2+)-dependent gene activation. The underlying molecular basis mapped to time-dependent, nonlinear accumulation of nuclear NFAT. Local Ca(2+) near CRAC channels has to rise above a threshold level to drive gene expression, providing analog control to the digital activation process and a means to filter out fluctuations in background noise from activating transcription while ensuring robustness and high fidelity in the excitation-transcription coupling mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Ting-Feng Lin

    Full Text Available Eag (Kv10 and Erg (Kv11 belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH. While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1 and human Erg (hERG1 channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.

  16. [Study on the effect of Klotho gene interferred by plasmid-mediated short hairpin RNA (shRNA) on sinoatrial node pacing channel gene].

    Science.gov (United States)

    Cai, Yingying; Wang, Han; Hou, Yanbin; Fang, Chenli; Tian, Peng; Wang, Guihua; Li, Lu; Deng, Juelin

    2013-06-01

    The study was aimed to assess the effect of Klotho gene and sinoatrial node pacing channel gene (HCN4 and HCN2) for studying sick sinus syndrome, with Klotho gene under the interference of Plasmid-mediated short hairpin RNA. Twenty-five C57BL/6J mice were divided into four groups, i. e, plasmid shRNA 24h group, plasmid shRNA 12h group, sodium chloride 24h group and sodium chloride 12h group. Plasmid shRNA 50microL (1microg/microL) and sodium chloride 50microl were respectively injected according to mice vena caudalis into those in plasmid shRNA group and sodium chloride group. After 12h or 24h respectively, all mice were executed and their sinoatrial node tissues were cut. The mRNA of Klotho, HCN4 and HCN2 gene were detected by RT-PCR. The results of RT-PCR showed that Klotho, HCN4 and HCN2 mRNA levels were lower compared with those in sodium chloride 12h group after 12h interference interval. The results indicated that there might be the a certain relationship between Klotho gene and sinoatrial node pacing channel gene.

  17. Cys-loop ligand-gated ion channel gene discovery in the Locusta migratoria manilensis through the neuron transcriptome.

    Science.gov (United States)

    Wang, Xin; Meng, Xiangkun; Liu, Chuanjun; Gao, Hongli; Zhang, Yixi; Liu, Zewen

    2015-05-01

    As an ideal model, Locusta migratoria manilensis (Meyen) has been widely used in the study of endocrinological and neurobiological processes. Here we created a large transcriptome of the locust neurons, which enriched ion channels whose potential for functional genetic experiments is currently limited. With high-throughput Illumina sequencing technology, we obtained more than 50 million raw reads, which were assembled into 61,056 unique sequences with average size of 737bp. Among the unigenes, a total 24,884 sequences had significant similarities with proteins in the five public databases (NR, SwissProt, GO, COG and KEGG) with a cut-off E-value of 10(-5) using BLASTx. Moreover, the number of potential genes of the cys-loop ligand-gated ion channels (LGICs) was manually curated, including 39 putative nicotinic acetylcholine receptors (nAChRs), 6 putative γ-aminobutyric acid (GABA) gated anion channels, 21 putative glutamate-gated chloride channels (GluCls) and 1 histamine-gated chloride channels (HisCls). In addition, the full-length of 11 nAChRs subunits (9 alpha and 2 beta) were obtained by RACE technique that would be helpful to further studies on nAChR neurochemistry and pharmacological aspects. To our knowledge, this is the first study to characterize the locust neuron transcriptome, which will provide a useful resource especially for future studies on the neuro-function and behavior of the locust.

  18. Endocytic regulation of voltage-dependent potassium channels in the heart.

    Science.gov (United States)

    Ishii, Kuniaki; Norota, Ikuo; Obara, Yutaro

    2012-01-01

    Understanding the regulation of cardiac ion channels is critical for the prevention of arrhythmia caused by abnormal excitability. Ion channels can be regulated by a change in function (qualitative) and a change in number (quantitative). Functional changes have been extensively investigated for many ion channels including cardiac voltage-dependent potassium channels. By contrast, the regulation of ion channel numbers has not been widely examined, particularly with respect to acute modulation of ion channels. This article briefly summarizes stimulus-induced endocytic regulation of major voltage-dependent potassium channels in the heart. The stimuli known to cause their endocytosis include receptor activation, drugs, and low extracellular [K(+)], following which the potassium channels undergo either clathrin-mediated or caveolin-mediated endocytosis. Receptor-mediated endocytic regulation has been demonstrated for Kv1.2, Kv1.5, KCNQ1 (Kv7.1), and Kv4.3, while drug-induced endocytosis has been demonstrated for Kv1.5 and hERG. Low [K(+)](o)-induced endocytosis might be unique for hERG channels, whose electrophysiological characteristics are known to be under strong influence of [K(+)](o). Although the precise mechanisms have not been elucidated, it is obvious that major cardiac voltage-dependent potassium channels are modulated by endocytosis, which leads to changes in cardiac excitability.

  19. Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules.

    Science.gov (United States)

    Santos Ornellas, D; Grozovsky, R; Goldenberg, R C; Carvalho, D P; Fong, P; Guggino, W B; Morales, M

    2003-09-01

    Thyroid hormones has its main role in controlling metabolism, but it can also modulate extracellular fluid Volume (ECFV) through its action on the expression and activity of Na(+) transporters. Otherwise, chloride is the main anion in the ECFV and the influence of thyroid hormones in the regulation of chloride transporters is not yet understood. In this work, we studied the effect of thyroid hormones in the expression of ClC-2, a cell Volume-, pH- and voltage-sensitive Cl(-) channel, in rat kidney. To analyze the modulation of ClC-2 gene expression by thyroid hormones, we used hypothyroid (Hypo) rats with or without thyroxine (T(4)) replacement and hyperthyroid (Hyper) rats as our experimental models. Total RNA was isolated and the expression of ClC-2 mRNA was evaluated by a ribonuclease protection assay, and/or semi-quantitative RT-PCR. Renal ClC-2 expression decreased in Hypo rats and increased in Hyper rats. In addition, semi-quantitative RT-PCR of different nephron segments showed that these changes were due exclusively to the modulation of ClC-2 mRNA expression by thyroid hormone in convoluted and straight proximal tubules. To investigate whether thyroid hormones action was direct or indirect, renal proximal tubule primary culture cells were prepared and subjected to different T(4) concentrations. ClC-2 mRNA expression was increased by T(4) in a dose-dependent fashion, as analyzed by RT-PCR. Western blotting demonstrated that ClC-2 protein expression followed the same profile of mRNA expression.

  20. Finding differentially expressed genes in two-channel DNA microarray datasets: how to increase reliability of data preprocessing.

    Science.gov (United States)

    Rotter, Ana; Hren, Matjaz; Baebler, Spela; Blejec, Andrej; Gruden, Kristina

    2008-09-01

    Due to the great variety of preprocessing tools in two-channel expression microarray data analysis it is difficult to choose the most appropriate one for a given experimental setup. In our study, two independent two-channel inhouse microarray experiments as well as a publicly available dataset were used to investigate the influence of the selection of preprocessing methods (background correction, normalization, and duplicate spots correlation calculation) on the discovery of differentially expressed genes. Here we are showing that both the list of differentially expressed genes and the expression values of selected genes depend significantly on the preprocessing approach applied. The choice of normalization method to be used had the highest impact on the results. We propose a simple but efficient approach to increase the reliability of obtained results, where two normalization methods which are theoretically distinct from one another are used on the same dataset. Then the intersection of results, that is, the lists of differentially expressed genes, is used in order to get a more accurate estimation of the genes that were de facto differentially expressed.

  1. Transcriptional profiles of multiple genes in the anterior kidney of channel catfish vaccinated with an attenuated Aeromonas hydrophila.

    Science.gov (United States)

    Mu, Xingjiang; Pridgeon, Julia W; Klesius, Phillip H

    2011-12-01

    A total of 22 uniquely expressed sequence tags (ESTs) were identified from channel catfish anterior kidney subtractive cDNA library at 12 h post vaccination with an attenuated Aeromonas hydrophila (AL09-71 N+R). Of the 22 ESTs, six were confirmed to be significantly (P < 0.05) induced by the vaccination. Of 88 channel catfish genes selected from literature, 14 were found to be significantly (P < 0.05) upregulated by the vaccination. The transcriptional levels of the total 20 genes induced by the vaccination were then compared to that induced by the virulent parent A. hydrophila (AL09-71) at different time points. At 3 h post vaccination (hpv) or infection (hpi), Na(+)/K(+) ATPase α subunit was upregulated the most. At 6 and 12 hpv or hpi, hepcidin and interleukin-1β were induced the highest. At 24 hpv or hpi, hepcidin was upregulated the most, followed by lysozyme c. At 48 hpi, lysozyme c and hepcidin were significantly induced. When vaccinated fish were challenged by AL09-71, relative percent of survival of vaccinated fish were 100% at 14 days post vaccination (dpv). Transcriptional levels of toll-like receptor 5 and hepcidin were significantly upregulated in vaccinated fish at 14 dpv. Taken together, our results suggest that vaccination with attenuated A. hydrophila mimics infection by live bacteria, inducing multiple immune genes in channel catfish.

  2. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes

    NARCIS (Netherlands)

    Kawashima, Yoshiyuki; Geleoc, Gwenaelle S. G.; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K.; Della Santina, Charles C.; Holt, Jeffrey R.; Griffith, Andrew J.

    2011-01-01

    Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in

  3. An ERG channel inhibitor from the scorpion Buthus eupeus

    DEFF Research Database (Denmark)

    Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.

    2001-01-01

    that the precursor contains a signal peptide of 21 amino acid residues. The mature toxin consists of 36 amino acid residues. BeKm-1 belongs to the family of scorpion venom potassium channel blockers and represents a new subgroup of these toxins. The recombinant BeKm-1 was produced as a Protein A fusion product...... and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3......, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels....

  4. Plectasin, First Animal Toxin-Like Fungal Defensin Blocking Potassium Channels through Recognizing Channel Pore Region

    Directory of Open Access Journals (Sweden)

    Fang Xiang

    2015-01-01

    Full Text Available The potassium channels were recently found to be inhibited by animal toxin-like human β-defensin 2 (hBD2, the first defensin blocker of potassium channels. Whether there are other defensin blockers from different organisms remains an open question. Here, we reported the potassium channel-blocking plectasin, the first defensin blocker from a fungus. Based on the similar cysteine-stabilized alpha-beta (CSαβ structure between plectasin and scorpion toxins acting on potassium channels, we found that plectasin could dose-dependently block Kv1.3 channel currents through electrophysiological experiments. Besides Kv1.3 channel, plectasin could less inhibit Kv1.1, Kv1.2, IKCa, SKCa3, hERG and KCNQ channels at the concentration of 1 μΜ. Using mutagenesis and channel activation experiments, we found that outer pore region of Kv1.3 channel was the binding site of plectasin, which is similar to the interacting site of Kv1.3 channel recognized by animal toxin blockers. Together, these findings not only highlight the novel function of plectasin as a potassium channel inhibitor, but also imply that defensins from different organisms functionally evolve to be a novel kind of potassium channel inhibitors.

  5. Blockade by NIP-142, an antiarrhythmic agent, of carbachol-induced atrial action potential shortening and GIRK1/4 channel.

    Science.gov (United States)

    Matsuda, Tomoyuki; Ito, Mie; Ishimaru, Sayoko; Tsuruoka, Noriko; Saito, Tomoaki; Iida-Tanaka, Naoko; Hashimoto, Norio; Yamashita, Toru; Tsuruzoe, Nobutomo; Tanaka, Hikaru; Shigenobu, Koki

    2006-08-01

    Mechanisms for the atria-specific action potential-prolonging action of NIP-142 ((3R*,4S*)-4-cyclopropylamino-3,4-dihydro-2,2-dimethyl-6-(4-methoxyphenylacetylamino)-7-nitro-2H-1-benzopyran-3-ol), a benzopyran compound that terminates experimental atrial arrhythmia, was examined. In isolated guinea-pig atrial tissue, NIP-142 reversed the shortening of action potential duration induced by either carbachol or adenosine. These effects were mimicked by tertiapin, but not by E-4031. NIP-142 concentration-dependently blocked the human G protein-coupled inwardly rectifying potassium channel current (GIRK1/4 channel current) expressed in HEK-293 cells with an EC50 value of 0.64 microM. At higher concentrations, NIP-142 blocked the human ether a go-go related gene (HERG) channel current with an EC50 value of 44 microM. In isolated guinea-pig papillary muscles, NIP-142 had no effect on the negative inotropic effect of carbachol under beta-adrenergic stimulation, indicating lack of effect on the muscarinic receptor and Gi protein. These results suggest that NIP-142 directly inhibits the acetylcholine-activated potassium current.

  6. Sodium Channel Gene Mutations in Children with GEFS+ and Dravet Syndrome: A Cross Sectional Study

    Directory of Open Access Journals (Sweden)

    Seyed Hassan TONEKABONI

    2013-06-01

    Full Text Available  How to Cite This Article: Tonekaboni SH, Ebrahimi A, Bakhshandeh Bali MK, Houshmand M, Moghaddasi M, Taghdiri MM, Nasehi MM. Sodium Channel Gene Mutations in Children with GEFS+ and Dravet Syndrome: A Cross Sectional Study. Iran J Child Neurol. 2013 Winter; 7 (1:25-29. Objective Dravet syndrome or severe myoclonic epilepsy of infancy (SMEI is a baleful epileptic encephalopathy that begins in the first year of life. This syndrome specified by febrile seizures followed by intractable epilepsy, disturbed psychomotor development, and ataxia. Clinical similarities between Dravet syndrome and generalized epilepsy with febrile seizure plus (GEFS+ includes occurrence of febrile seizures and joint molecular genetic etiology. Shared features of these two diseases support the idea that these two disorders represent a severity spectrum of the same illness. Nowadays, more than 60 heterozygous pattern SCN1A mutations, which many are de novo mutations, have been detected in Dravet syndrome. Materials & Methods From May 2008 to August 2012, 35 patients who referred to Pediatric Neurology Clinic of Mofid Children Hospital in Tehran were enrolled in this study. Entrance criterion of this study was having equal or more than four criteria for Dravet syndrome. We compared clinical features and genetic findings of the patients diagnosed as Dravet syndrome or GEFS+. Results 35 patients (15 girls and 20 boys underwent genetic testing. Mean age of them was 7.7 years (a range of 13 months to 15 years. Three criteria that were best evident in SCN1A mutation positive patients are as follows: Normal development before the onset of seizures, onset of seizure before age of one year, and psychomotor retardation after onset of seizures. Our genetic testing showed that 1 of 3 (33.3% patients with clinical Dravet syndrome and 3 of 20 (15% patients that diagnosed as GEFS+, had SCN1A mutation. Conclusion In this study, normal development before seizure onset, seizures beginning

  7. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  8. Variants in the human potassium channel gene (KCNN3) are associated with migraine in a high risk genetic isolate.

    Science.gov (United States)

    Cox, Hannah C; Lea, Rod A; Bellis, Claire; Carless, Melanie; Dyer, Tom; Blangero, John; Griffiths, Lyn R

    2011-12-01

    The calcium-activated potassium ion channel gene (KCNN3) is located in the vicinity of the familial hemiplegic migraine type 2 locus on chromosome 1q21.3. This gene is expressed in the central nervous system and plays a role in neural excitability. Previous association studies have provided some, although not conclusive, evidence for involvement of this gene in migraine susceptibility. To elucidate KCNN3 involvement in migraine, we performed gene-wide SNP genotyping in a high-risk genetic isolate from Norfolk Island, a population descended from a small number of eighteenth century Isle of Man 'Bounty Mutineer' and Tahitian founders. Phenotype information was available for 377 individuals who are related through the single, well-defined Norfolk pedigree (96 were affected: 64 MA, 32 MO). A total of 85 SNPs spanning the KCNN3 gene were genotyped in a sub-sample of 285 related individuals (76 affected), all core members of the extensive Norfolk Island 'Bounty Mutineer' genealogy. All genotyping was performed using the Illumina BeadArray platform. The analysis was performed using the statistical program SOLAR v4.0.6 assuming an additive model of allelic effect adjusted for the effects of age and sex. Haplotype analysis was undertaken using the program HAPLOVIEW v4.0. A total of four intronic SNPs in the KCNN3 gene displayed significant association (P migraine. Two SNPs, rs73532286 and rs6426929, separated by approximately 0.1 kb, displayed complete LD (r (2) = 1.00, D' = 1.00, D' 95% CI = 0.96-1.00). In all cases, the minor allele led to a decrease in migraine risk (beta coefficient = 0.286-0.315), suggesting that common gene variants confer an increased risk of migraine in the Norfolk pedigree. This effect may be explained by founder effect in this genetic isolate. This study provides evidence for association of variants in the KCNN3 ion channel gene with migraine susceptibility in the Norfolk genetic isolate with the rarer allelic variants conferring a

  9. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities.

    Science.gov (United States)

    Kearney, J A; Plummer, N W; Smith, M R; Kapur, J; Cummins, T R; Waxman, S G; Goldin, A L; Meisler, M H

    2001-01-01

    The GAL879-881QQQ mutation in the cytoplasmic S4-S5 linker of domain 2 of the rat brain IIA sodium channel (Na(v)1.2) results in slowed inactivation and increased persistent current when expressed in Xenopus oocytes. The neuron-specific enolase promoter was used to direct in vivo expression of the mutated channel in transgenic mice. Three transgenic lines exhibited seizures, and line Q54 was characterized in detail. The seizures in these mice began at two months of age and were accompanied by behavioral arrest and stereotyped repetitive behaviors. Continuous electroencephalogram monitoring detected focal seizure activity in the hippocampus, which in some instances generalized to involve the cortex. Hippocampal CA1 neurons isolated from presymptomatic Q54 mice exhibited increased persistent sodium current which may underlie hyperexcitability in the hippocampus. During the progression of the disorder there was extensive cell loss and gliosis within the hippocampus in areas CA1, CA2, CA3 and the hilus. The lifespan of Q54 mice was shortened and only 25% of the mice survived beyond six months of age. Four independent transgenic lines expressing the wild-type sodium channel were examined and did not exhibit any abnormalities. The transgenic Q54 mice provide a genetic model that will be useful for testing the effect of pharmacological intervention on progression of seizures caused by sodium channel dysfunction. The human ortholog, SCN2A, is a candidate gene for seizure disorders mapped to chromosome 2q22-24.

  10. Molecular characterization, phylogenetic analysis and expression patterns of five protein arginine methyltransferase genes of channel catfish, Ictalurus punctatus (Rafinesque).

    Science.gov (United States)

    Yeh, Hung-Yueh; Klesius, Phillip H

    2012-08-01

    Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMT), has recently emerged as an important modification in the regulation of gene expression. In this communication, we identified and characterized the channel catfish orthologs to human PRMT 1, 3, 4 and 5, and PRMT4 like. Each PRMT nucleic acid sequence has an open reading frame (ORF) and 3'-untranslated regions. Each ORF appears to encode 361, 587 and 458 amino acid residues for PRMT1, PRMT4 and variant, respectively. The partial ORF of PRMT3 and PRMT5 encode 292 and 563 amino acids, respectively. By comparison with the human counterparts, each channel catfish PRMT also has conserved domains. For expression profile, the channel catfish PRMT1 transcript was detected by RT-PCR in spleens, anterior kidneys, livers, intestines, skin and gills of fish examined. Except in liver, the PRMT3 transcript was detected in all catfish tissues examined. However, the PRMT4 cDNA was detected in livers from all three catfish and gills from two fish, but not other tissues. This information will enable us to further elucidate PRMT functions in channel catfish.

  11. Expression patterns of two potassium channel genes in skeletal muscle cells of patients with familial hypokalemic periodic paralysis.

    Science.gov (United States)

    Kim, June-Bum; Lee, Gyung-Min; Kim, Sung-Jo; Yoon, Dong-Ho; Lee, Young-Hyuk

    2011-01-01

    Familial hypokalemic periodic paralysis is an autosomal-dominant disorder characterized by episodic attacks of muscle weakness with hypokalemia. The combination of sarcolemmal depolarization and hypokalemia has been attributed to abnormalities of the potassium conductance governing the membrane potential; however, the molecular mechanism that causes hypokalemia has not yet been determined. To test the hypothesis that the expression patterns of delayed rectifier potassium channel genes in the skeletal muscle cells of patients with familial hypokalemic periodic paralysis differ from those in normal cells. We examined both mRNA and protein levels of two major delayed rectifier potassium channel genes KCNQ3 and KCNQ5 in the skeletal muscle cells from three patients with familial hypokalemic periodic paralysis and three healthy controls. When normal cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the KCNQ3 protein level significantly increased in the membrane fraction but decreased in the cytosolic fraction, whereas the opposite was true in patient cells. Abnormal subcellular distribution of the KCNQ3 protein was observed in patient cells. Our results suggest that the altered expression of KCNQ3 in patient cells exposed to high extracellular potassium levels could possibly hinder normal function of the channel protein. These findings may provide an important clue to understanding the molecular mechanism of familial hypokalemic periodic paralysis.

  12. Expression patterns of two potassium channel genes in skeletal muscle cells of patients with familial hypokalemic periodic paralysis

    Directory of Open Access Journals (Sweden)

    June-Bum Kim

    2011-01-01

    Full Text Available Background: Familial hypokalemic periodic paralysis is an autosomal-dominant disorder characterized by episodic attacks of muscle weakness with hypokalemia. The combination of sarcolemmal depolarization and hypokalemia has been attributed to abnormalities of the potassium conductance governing the membrane potential; however, the molecular mechanism that causes hypokalemia has not yet been determined. Aim: To test the hypothesis that the expression patterns of delayed rectifier potassium channel genes in the skeletal muscle cells of patients with familial hypokalemic periodic paralysis differ from those in normal cells. Material and Methods: We examined both mRNA and protein levels of two major delayed rectifier potassium channel genes KCNQ3 and KCNQ5 in the skeletal muscle cells from three patients with familial hypokalemic periodic paralysis and three healthy controls. Results: When normal cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the KCNQ3 protein level significantly increased in the membrane fraction but decreased in the cytosolic fraction, whereas the opposite was true in patient cells. Conclusion: Abnormal subcellular distribution of the KCNQ3 protein was observed in patient cells. Our results suggest that the altered expression of KCNQ3 in patient cells exposed to high extracellular potassium levels could possibly hinder normal function of the channel protein. These findings may provide an important clue to understanding the molecular mechanism of familial hypokalemic periodic paralysis.

  13. Sea Anemone Toxins Affecting Potassium Channels

    Science.gov (United States)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  14. Cloning and characterization of a novel calcium channel toxin-like gene BmCa1 from Chinese scorpion Mesobuthus martensii Karsch.

    Science.gov (United States)

    Zhijian, Cao; Yun, Xie; Chao, Dai; Shunyi, Zhu; Shijin, Yin; Yingliang, Wu; Wenxin, Li

    2006-06-01

    Many studies have been carried on peptides and genes encoding scorpion toxins from the venom of Mesobuthus martensii Karsch (synonym: Buthus martensii Karsch, BmK), such as Na+, K+ and Cl- channel modulators. In this study, a novel calcium channel toxin-like gene BmCa1 was isolated and characterized from the venom of Mesobuthus martensii Karsch. First, a partial cDNA sequence of the Ca2+ channel toxin-like gene was identified by random sequencing method from a venomous gland cDNA library of Mesobuthus martensii Karsch. The full-length sequence of BmCa1 was then obtained by 5'RACE technique. The peptide deduced from BmCa1 precursor nucleotide sequence contains a 27-residue signal peptide and a 37-residue mature peptide. Although BmCa1 and other scorpion toxins are different at the gene and protein primary structure levels, BmCa1 has the same precursor nucleotide organization and cysteine arrangement as that of the first subfamily members of calcium channel scorpion toxins. Genomic DNA sequence of BmCa1 was also cloned by PCR. Sequence analysis showed that BmCa1 gene consists of three exons separated by two introns of 72 bp and 1076 bp in length, respectively. BmCa1 is the first calcium channel toxin-like gene cloned from the venom of Mesobuthus martensii Karsch and potentially represents a novel class of calcium channel toxins in scorpion venoms.

  15. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes.

    Science.gov (United States)

    Pers, Tune H; Timshel, Pascal; Ripke, Stephan; Lent, Samantha; Sullivan, Patrick F; O'Donovan, Michael C; Franke, Lude; Hirschhorn, Joel N

    2016-03-15

    Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approach, we show that genes in associated loci: (1) are highly expressed in cortical brain areas; (2) are enriched for ion channel pathways (false discovery rates genes that are functionally related to each other and hence represent promising candidates for experimental follow up. We validate the relevance of the prioritized genes by showing that they are enriched for rare disruptive variants and de novo variants from schizophrenia sequencing studies (odds ratio 1.67, P = 0.039), and are enriched for genes encoding members of mouse and human postsynaptic density proteomes (odds ratio 4.56, P = 5.00 × 10(-4); odds ratio 2.60, P = 0.049).The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Author.

  16. Hyperkalemic periodic paralysis caused by recurring mutation in the adult muscle sodium channel alpha-subunit gene.

    Science.gov (United States)

    Sillén, A; Wadelius, C; Sundvall, M; Ahlsten, G; Gustavson, K H

    1996-01-01

    Linkage studies and mutation analysis were performed in two Swedish families with hyperkalemic periodic paralysis (HYPP), an autosomal dominant inherited disorder characterized by episodic muscle weakness associated with increasing or high levels of serum potassium. The gene for HYPP is the gene encoding the alpha-subunit of the sodium channel of adult human skeletal muscle (SCN4A). SCN4A has been localized on chromosome 17 q closely linked to the human growth hormone gene. Linkage between a microsatellite polymorphism in the SCN4A gene and the disease was shown in two Swedish families (Z = 12.10 theta = 0). Sequence analysis revealed that the two Swedish families have got a C to T transition at position 2188 in the cDNA. At the protein level this Thr 704 to Met mutation is located in the fifth membrane spanning segment of domain II of the protein, as previously described (28). The mutation was linked to different microsatellite alleles regarding both a (GT)n and a (GA)n repeat in the gene. Either the families are related and new mutations have occurred in both microsatellites when the pedigrees were separated or the mutation has arisen independently in the two families analysed. From the mutant alleles characterized so far it seems as if a limited number of mutations is present in this gene.

  17. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  18. Structural Basis for Ether-a-go-go-Related Gene K+ Channel Subtype-Dependent Activation by Niflumic Acid[S

    OpenAIRE

    Fernandez, David; Sargent, John; Frank B Sachse; Sanguinetti, Michael C.

    2008-01-01

    Niflumic acid [2-((3-(trifluoromethyl)phenyl)amino)-3-pyridin-ecarboxylic acid, NFA] is a nonsteroidal anti-inflammatory drug that also blocks or modulates the gating of a wide spectrum of ion channels. Here we investigated the mechanism of channel activation by NFA on ether-a-go-go-related gene (ERG) K+ channel subtypes expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. NFA acted from the extracellular side of the membrane to differentially enhance ERG channel ...

  19. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq datasets

    Science.gov (United States)

    Zhang, Jiaren; Yao, Jun; Wang, Ruijia; Zhang, Yu; Liu, Shikai; Sun, Luyang; Jiang, Yanliang; Feng, Jianbin; Liu, Nannan; Nelson, David; Waldbieser, Geoff; Liu, Zhanjiang

    2015-01-01

    Background Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals. Methods We identified CYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish. Phylogenetic analyses and conserved syntenic analyses were conducted to determine their identities and orthologies. Meta-analysis of RNA-Seq databases was conducted to analyze expression profile of CYP genes following bacterial infection. Results A full set of 61 CYP genes were identified and characterized in channel catfish. Phylogenetic tree and conserved synteny provided strong evidence of their identities and orthorlogy. Lineage-specific gene duplication was evident in a number of clans in channel catfish. CYP46A1 is missing in the catfish genome as observed with syntenic analysis and RT-PCR analysis. Thirty CYPs were found up- or down-regulated in liver, while seven and eight CYPs were observed regulated in intestine and gill following bacterial infection. Conclusion We systematically identified and characterized a full set of 61 CYP genes in channel catfish and studied their expression profiles after bacterial infection. Strikingly large numbers of CYP genes appear to be involved in the bacterial defense processes. General significance This work provides an example to systematically study CYP genes in non-model species. Moreover, it provides a basis for further toxicological and physiological studies in channel catfish. PMID:24780645

  20. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    Science.gov (United States)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  1. Cloning of Partial Sodium Channel Gene From Strains of Fenvalerate-Resistant and Susceptible Cotton Aphid(Aphis gossypii Glover)

    Institute of Scientific and Technical Information of China (English)

    SUN Lu-juan; GAO Xi-wu; ZHENG Bing-zong

    2003-01-01

    The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perform PCR amplification. A cDNA encoding partial sodium channel gene was cloned from the fenvalerate-resistant and -susceptible strains. There were two nucleotide acid differences between fenvalerate-resistant strain and -susceptible strain, resulting in an amino acid mutation, Met→Leu. It is predicted that the mutation is related to the cotton aphid resistance to fenvalerate.

  2. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders

    OpenAIRE

    Drenth, J.P.H.; Waxman, S G

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in los...

  3. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    OpenAIRE

    Vargas-Alarcon Gilberto; Alvarez-Leon Edith; Fragoso Jose-Manuel; Vargas Angelica; Martinez Aline; Vallejo Maite; Martinez-Lavin Manuel

    2012-01-01

    Abstract Background A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM); and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG) are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7) act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expre...

  4. Effect of nutrient restriction and re-feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus.

    Directory of Open Access Journals (Sweden)

    Elena Preziosa

    Full Text Available BACKGROUND: Calpains, a superfamily of intracellular calcium-dependent cysteine proteases, are involved in the cytoskeletal remodeling and wasting of skeletal muscle. Calpains are generated as inactive proenzymes which are activated by N-terminal autolysis induced by calcium-ions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we characterized the full-length cDNA sequences of three calpain genes, clpn1, clpn2, and clpn3 in channel catfish, and assessed the effect of nutrient restriction and subsequent re-feeding on the expression of these genes in skeletal muscle. The clpn1 cDNA sequence encodes a protein of 704 amino acids, Clpn2 of 696 amino acids, and Clpn3 of 741 amino acids. Phylogenetic analysis of deduced amino acid sequences indicate that catfish Clpn1 and Clpn2 share a sequence similarity of 61%; catfish Clpn1 and Clpn3 of 48%, and Clpn2 and Clpn3 of only 45%. The domain structure architectures of all three calpain genes in channel catfish are similar to those of other vertebrates, further supported by strong bootstrap values during phylogenetic analyses. Starvation of channel catfish (average weight, 15-20 g for 35 days influenced the expression of clpn1 (2.3-fold decrease, P<0.05, clpn2 (1.3-fold increase, P<0.05, and clpn3 (13.0-fold decrease, P<0.05, whereas the subsequent refeeding did not change the expression of these genes as measured by quantitative real-time PCR analysis. Calpain catalytic activity in channel catfish skeletal muscle showed significant differences only during the starvation period, with a 1.2- and 1.4- fold increase (P<0.01 after 17 and 35 days of starvation, respectively. CONCLUSION/SIGNIFICANCE: We have assessed that fasting and refeeding may provide a suitable experimental model to provide us insight into the role of calpains during fish muscle atrophy and how they respond to changes in nutrient supply.

  5. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile☆

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  6. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4

    NARCIS (Netherlands)

    R.A. Ophoff (Roel); G.M. Terwindt (Gisela); Y. Vergouwe (Yvonne); R. van Eijk (Ronald); P.J. Oefner (Peter); S.M.G. Hoffman (Susan M.); J.E. Lamerdin (Jane); H.W. Mohrenweiser (Harvey); B. Bulman; M. Ferrari (Maurizio); J. Haan (Joost); D. Lindhout (Dick); G.J. van Ommen (Gert); M.A. Hofker (Marten); M.D. Ferrari (Michel); R.R. Frants (Rune)

    1996-01-01

    textabstractGenes for familial hemiplegic migraine (FHM) and episodic ataxia type-2 (EA-2) have been mapped to chromosome 19p13. We characterized a brain- specific P/Q-type Ca2+ channel α1-subunit gene, CACNLIA4, covering 300 kb with 47 exons. Sequencing of all exons and their surroundings revealed

  8. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  9. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  10. Mutation analysis of potassium channel genes KCNQ1 and KCNH2 in patients with long QT syndrome

    Institute of Scientific and Technical Information of China (English)

    刘文玲; 胡大一; 李翠兰; 李萍; 李运田; 李志明; 李蕾; 秦绪光; 董玮; 戚豫; 陈胜寒; 王擎

    2003-01-01

    Objective To determine mutations of two common potassium channel subunit genes KCNQ1, KCNH2 causing long QT syndrome (LQTS) in the Chinese.Methods Thirty-one Chinese LQTS pedigrees were characterized for mutations in the two LQTS genes, KCNQ1 and KCNH2, by sequencing.Results Two novel KCNQ1 mutations, S277L in the S5 domain and G306V in the channel pore, and two novel KCNH2 mutations, L413P in the transmembrane domain S1 and L559H in the transmembrane domain S5 were identified. The triggering factors for cardiac events developed in these mutation carriers included physical exercise and excitation. Mutation L413P in KCNH2 was associated with the notched T wave on ECGs. Mutation L559H in KCNH2 was associated with the typical bifid T wave on ECGs. Mutation S277L in KCNQ1 was associated with a high-amplitude T wave and G306V was associated with a low-amplitude T wave. Two likely polymorphisms, IVS11+18C>T in KCNQ1 and L520V in KCNH2 were also identified in two LQTS patients.Conclusions The mutation rates for both KCNQ1 (6.4%) and KCNH2 (6.4%) are lower in the Chinese population than those from North America or Europe.

  11. "A Nightmare Land, a Place of Death": An Exploration of the Moon as a Motif in Herge's "Destination Moon" (1953) and "Explorers on the Moon" (1954)

    Science.gov (United States)

    Beauvais, Clementine

    2010-01-01

    This article analyses the symbolic meaning of the Moon in two "bande dessinee" books from the Tintin series, Herge's "Destination Moon" ("Objectif Lune," 1953) and its sequel "Explorers on the Moon" ("On a Marche sur la Lune," 1954). It argues that these two volumes stand out in the series for their graphic, narrative and philosophical emphasis on…

  12. Structural Basis for Ether-a-go-go-Related Gene K+ Channel Subtype-Dependent Activation by Niflumic Acid[S

    Science.gov (United States)

    Fernandez, David; Sargent, John; Sachse, Frank B.; Sanguinetti, Michael C.

    2008-01-01

    Niflumic acid [2-((3-(trifluoromethyl)phenyl)amino)-3-pyridin-ecarboxylic acid, NFA] is a nonsteroidal anti-inflammatory drug that also blocks or modulates the gating of a wide spectrum of ion channels. Here we investigated the mechanism of channel activation by NFA on ether-a-go-go-related gene (ERG) K+ channel subtypes expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. NFA acted from the extracellular side of the membrane to differentially enhance ERG channel currents independent of channel state. At 1 mM, NFA shifted the half-point for activation by −6, −18, and −11 mV for ERG1, ERG2, and ERG3 channels, respectively. The half-point for channel inactivation was shifted by +5 to +9 mV by NFA. The structural basis for the ERG subtype-specific response to NFA was explored with chimeric channels and site-directed mutagenesis. The molecular determinants of enhanced sensitivity of ERG2 channels to NFA were isolated to an Arg and a Thr triplet in the extracellular S3-S4 linker. PMID:18218980

  13. Developmental gene expression and tissue distribution of the CHIP28 water-channel protein.

    OpenAIRE

    Bondy, C; Chin, E.; Smith, B L; Preston, G M; Agre, P

    1993-01-01

    The CHIP28 water channel is a major component of red cell and renal tubule membranes; however, its ontogeny and tissue distribution remain undefined. Three patterns of expression were identified when CHIP28 mRNA was surveyed by in situ hybridization histochemistry in rats between embryonic day 14 and maturity. (i) CHIP28 mRNA and protein were very abundant in hematopoietic tissue and kidneys of mature rats, but strong expression did not occur until after birth, when it appeared in renal proxi...

  14. Pleiotropic effects of a disrupted K+ channel gene: Reduced body weight, impaired motor skill and muscle contraction, but no seizures

    OpenAIRE

    Ho, Chi Shun; Grange, Robert W.; Joho, Rolf H.

    1997-01-01

    To investigate the roles of K+ channels in the regulation and fine-tuning of cellular excitability, we generated a mutant mouse carrying a disrupted gene for the fast activating, voltage-gated K+ channel Kv3.1. Kv3.1−/− mice are viable and fertile but have significantly reduced body weights compared with their Kv3.1+/− littermates. Wild-type, heterozygous, and homozygous Kv3.1 channel-deficient mice exhibit similar spontaneous locomotor and exploratory activity. In a test for coordinated moto...

  15. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression.

    Science.gov (United States)

    Wheeler, Damian G; Groth, Rachel D; Ma, Huan; Barrett, Curtis F; Owen, Scott F; Safa, Parsa; Tsien, Richard W

    2012-05-25

    Activity-dependent gene expression triggered by Ca(2+) entry into neurons is critical for learning and memory, but whether specific sources of Ca(2+) act distinctly or merely supply Ca(2+) to a common pool remains uncertain. Here, we report that both signaling modes coexist and pertain to Ca(V)1 and Ca(V)2 channels, respectively, coupling membrane depolarization to CREB phosphorylation and gene expression. Ca(V)1 channels are advantaged in their voltage-dependent gating and use nanodomain Ca(2+) to drive local CaMKII aggregation and trigger communication with the nucleus. In contrast, Ca(V)2 channels must elevate [Ca(2+)](i) microns away and promote CaMKII aggregation at Ca(V)1 channels. Consequently, Ca(V)2 channels are ~10-fold less effective in signaling to the nucleus than are Ca(V)1 channels for the same bulk [Ca(2+)](i) increase. Furthermore, Ca(V)2-mediated Ca(2+) rises are preferentially curbed by uptake into the endoplasmic reticulum and mitochondria. This source-biased buffering limits the spatial spread of Ca(2+), further attenuating Ca(V)2-mediated gene expression.

  16. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Directory of Open Access Journals (Sweden)

    Vargas-Alarcon Gilberto

    2012-02-01

    Full Text Available Abstract Background A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM; and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7 act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms. Methods We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ. Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637. Results The frequency of the rs6754031 polymorphism was significantly different in both groups (P = 0.036 mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88 than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; P = 0.002 and the TT genotype (median = 71; percentile 25/75 = 64/77; P = 0.001. Conclusion In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that

  17. Identification of evolutionarily conserved, functional noncoding elements in the promoter region of the sodium channel gene SCN8A.

    Science.gov (United States)

    Drews, Valerie L; Shi, Kehui; de Haan, Georgius; Meisler, Miriam H

    2007-10-01

    SCN8A is a major neuronal sodium channel gene expressed throughout the central and peripheral nervous systems. Mutations of SCN8A result in movement disorders and impaired cognition. To investigate the basis for the tissue-specific expression of SCN8A, we located conserved, potentially regulatory sequences in the human, mouse, chicken, and fish genes by 5' RACE of brain RNA and genomic sequence comparison. A highly conserved 5' noncoding exon, exon 1c, is present in vertebrates from fish to mammals and appears to define the ancestral promoter region. The distance from exon 1c to the first coding exon increased tenfold during vertebrate evolution, largely by insertion of repetitive elements. The mammalian gene acquired three novel, mutually exclusive noncoding exons that are not represented in the lower vertebrates. Within the shared exon 1c, we identified four short sequence elements of 10-20 bp with an unusually high level of evolutionary conservation. The conserved elements are most similar to consensus sites for the transcription factors Pou6f1/Brn5, YY1, and REST/NRSF. Introduction of mutations into the predicted Pou6f1 and REST sites reduced promoter activity in transfected neuronal cells. A 470-bp promoter fragment containing all of the conserved elements directed brain-specific expression of the LacZ reporter in transgenic mice. Transgene expression was highest in hippocampal neurons and cerebellar Purkinje cells, consistent with the expression of the endogenous gene. The compact cluster of conserved regulatory elements in SCN8A provides a useful target for molecular analysis of neuronal gene expression.

  18. Familial hyperkalemic periodic paralysis caused by a de novo mutation in the sodium channel gene SCN4A.

    Science.gov (United States)

    Han, Ji-Yeon; Kim, June-Bum

    2011-11-01

    Familial hyperkalemic periodic paralysis (HYPP) is an autosomaldominant channelopathy characterized by transient and recurrent episodes of paralysis with concomitant hyperkalemia. Mutations in the skeletal muscle voltage-gated sodium channel gene SCN4A have been reported to be responsible for this disease. Here, we report the case of a 16-year-old girl with HYPP whose mutational analysis revealed a heterozygous c.2111C>T substitution in the SCN4A gene leading to a Thr704Met mutation in the protein sequence. The parents were clinically unaffected and did not have a mutation in the SCN4A gene. A de novo SCN4A mutation for familial HYPP has not previously been reported. The patient did not respond to acetazolamide, but showed a marked improvement in paralytic symptoms upon treatment with hydrochlorothiazide. The findings in this case indicate that a de novo mutation needs to be considered when an isolated family member is found to have a HYPP phenotype.

  19. Familial hyperkalemic periodic paralysis caused by a de novo mutation in the sodium channel gene SCN4A

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Han

    2011-11-01

    Full Text Available Familial hyperkalemic periodic paralysis (HYPP is an autosomaldominant channelopathy characterized by transient and recurrent episodes of paralysis with concomitant hyperkalemia. Mutations in the skeletal muscle voltage-gated sodium channel gene SCN4A have been reported to be responsible for this disease. Here, we report the case of a 16-year-old girl with HYPP whose mutational analysis revealed a heterozygous c.2111C&gt;T substitution in the SCN4A gene leading to a Thr704Met mutation in the protein sequence. The parents were clinically unaffected and did not have a mutation in the SCN4A gene. A de novo SCN4A mutation for familial HYPP has not previously been reported. The patient did not respond to acetazolamide, but showed a marked improvement in paralytic symptoms upon treatment with hydrochlorothiazide. The findings in this case indicate that a de novo mutation needs to be considered when an isolated family member is found to have a HYPP phenotype.

  20. Caco-2 Permeability Studies and In Vitro hERG Liability Assessment of Tryptanthrin and Indolinone.

    Science.gov (United States)

    Jähne, Evelyn A; Eigenmann, Daniela E; Moradi-Afrapoli, Fahimeh; Verjee, Sheela; Butterweck, Veronika; Hebeisen, Simon; Hettich, Timm; Schlotterbeck, Götz; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-08-01

    Tryptanthrin and (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolinone (indolinone) were recently isolated from Isatis tinctoria as potent anti-inflammatory and antiallergic alkaloids, and shown to inhibit COX-2, 5-LOX catalyzed leukotriene synthesis, and mast cell degranulation at low µM to nM concentrations. To assess their suitability for oral administration, we screened the compounds in an in vitro intestinal permeability assay using human colonic adenocarcinoma cells. For exact quantification of the compounds, validated UPLC-MS/MS methods were used. Tryptanthrin displayed high permeability (apparent permeability coefficient > 32.0 × 10(-6) cm/s) across the cell monolayer. The efflux ratio below 2 ( 10 µM) and indolinone (IC50 of 24.96 µM). The analysis of compounds using various in silico methods confirmed favorable pharmacokinetic properties, as well as a slight inhibition of the human ether-a-go-go-related gene potassium channel at micromolar concentrations.

  1. Genetic Evidence for Possible Involvement of the Calcium Channel Gene CACNA1A in Autism Pathogenesis in Chinese Han Population.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available Autism spectrum disorders (ASD are a group of neurodevelopmental disorders. Recent studies suggested that calcium channel genes might be involved in the genetic etiology of ASD. CACNA1A, encoding an alpha-1 subunit of voltage-gated calcium channel, has been reported to play an important role in neural development. Previous study detected that a single nucleotide polymorphism (SNP in CACNA1A confers risk to ASD in Central European population. However, the genetic relationship between autism and CACNA1A in Chinese Han population remains unclear. To explore the association of CACNA1A with autism, we performed a family-based association study. First, we carried out a family-based association test between twelve tagged SNPs and autism in 239 trios. To further confirm the association, the sample size was expanded to 553 trios by recruiting 314 additional trios. In a total of 553 trios, we identified association of rs7249246 and rs12609735 with autism though this would not survive after Bonferroni correction. Our findings suggest that CACNA1A might play a role in the etiology of autism.

  2. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    Science.gov (United States)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  3. Update on the frequency of Ile1016 mutation in voltage-gated sodium channel gene of Aedes aegypti in Mexico.

    Science.gov (United States)

    Siller, Quetzaly; Ponce, Gustavo; Lozano, Saul; Flores, Adriana E

    2011-12-01

    We analyzed 790 Aedes aegypti from 14 localities of Mexico in 2009 to update information on the frequency of the Ile1016 allele in the voltage-gated sodium channel gene that confers resistance to pyrethroids and DDT. The Ile1016 mutation was present in all 17 collections, and was close to fixation in Acapulco (frequency = 0.97), Iguala (0.93), and San Nicolas (0.90). Genotypes at the 1016 locus were not in Hardy-Weinberg proportions in collections from Panuco, Veracruz, Cosoleacaque, Coatzacoalcos, Tantoyuca, and Monterrey due in every case to an excess of homozygotes. The high frequencies of this mutation in Ae. aegypti are probably due to selection pressure from pyrethroid insecticides, particularly permethrin, which has been used in mosquito control programs for >10 years in Mexico.

  4. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    Science.gov (United States)

    Drenth, Joost P H; Waxman, Stephen G

    2007-12-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in loss of Na(v)1.7 function and a condition known as channelopathy-associated insensitivity to pain, a rare disorder in which affected individuals are unable to feel physical pain. This review highlights these recent developments and discusses the critical role of Na(v)1.7 in pain sensation in humans.

  5. A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome.

    Science.gov (United States)

    Doyle, Jefferson J; Doyle, Alexander J; Wilson, Nicole K; Habashi, Jennifer P; Bedja, Djahida; Whitworth, Ryan E; Lindsay, Mark E; Schoenhoff, Florian; Myers, Loretha; Huso, Nick; Bachir, Suha; Squires, Oliver; Rusholme, Benjamin; Ehsan, Hamid; Huso, David; Thomas, Craig J; Caulfield, Mark J; Van Eyk, Jennifer E; Judge, Daniel P; Dietz, Harry C

    2015-10-27

    Calcium channel blockers (CCBs) are prescribed to patients with Marfan syndrome for prophylaxis against aortic aneurysm progression, despite limited evidence for their efficacy and safety in the disorder. Unexpectedly, Marfan mice treated with CCBs show accelerated aneurysm expansion, rupture, and premature lethality. This effect is both extracellular signal-regulated kinase (ERK1/2) dependent and angiotensin-II type 1 receptor (AT1R) dependent. We have identified protein kinase C beta (PKCβ) as a critical mediator of this pathway and demonstrate that the PKCβ inhibitor enzastaurin, and the clinically available anti-hypertensive agent hydralazine, both normalize aortic growth in Marfan mice, in association with reduced PKCβ and ERK1/2 activation. Furthermore, patients with Marfan syndrome and other forms of inherited thoracic aortic aneurysm taking CCBs display increased risk of aortic dissection and need for aortic surgery, compared to patients on other antihypertensive agents.

  6. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Sattelle David B

    2007-09-01

    Full Text Available Abstract Background Members of the cys-loop ligand-gated ion channel (cys-loop LGIC superfamily mediate chemical neurotransmission and are studied extensively as potential targets of drugs used to treat neurological disorders such as Alzheimer's disease. Insect cys-loop LGICs are also of interest as they are targets of highly successful insecticides. The red flour beetle, Tribolium castaneum, is a major pest of stored agricultural products and is also an important model organism for studying development. Results As part of the T. castaneum genome sequencing effort, we have characterized the beetle cys-loop LGIC superfamily which is the third insect superfamily to be described after those of Drosophila melanogaster and Apis mellifera, and also the largest consisting of 24 genes. As with Drosophila and Apis, Tribolium possesses ion channels gated by acetylcholine, γ-amino butyric acid (GABA, glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel subunit (pHCl, CG8916 and CG12344. Similar to Drosophila and Apis, Tribolium cys-loop LGIC diversity is broadened by alternative splicing although the beetle orthologs of RDL and GluCl possess more variants of exon 3. Also, RNA A-to-I editing was observed in two Tribolium nicotinic acetylcholine receptor subunits, Tcasα6 and Tcasβ1. Editing in Tcasα6 is evolutionarily conserved with D. melanogaster, A. mellifera and Heliothis virescens, whereas Tcasβ1 is edited at a site so far only observed in the beetle. Conclusion Our findings reveal that in diverse insect species the cys-loop LGIC superfamily has remained compact with only minor changes in gene numbers. However, alternative splicing, RNA editing and the presence of divergent subunits broadens the cys-loop LGIC proteome and generates species-specific receptor isoforms. These findings on Tribolium castaneum enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the

  7. Identification and characterization of human neuronal voltage-gated calcium channel gamma 3 subunit gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By homologous expressed sequence tag (EST) searching,one EST (GenBank: W29095) was obtained,which shows 75% identity in 435 bp overlap with the coding sequence of mouse Cacng2 gene. A 1 545 bp cDNA fragment was obtained from the nested polymerase chain reaction (PCR) and rapid applification of cDNA end (RACE) reaction in the human brain prefrontal cortex cDNA library and the human brain Ready cDNA with the primers designed on W29095. The fragment contained a 948-bp open reading frame (ORF) encoding 315 amino acids,and was named CACNG3. As it was identical to a BAC clone (GenBank: AC004125) from chromosome 16p12-p13.1,the CACNG3 gene was mapped to human chromosome 16p12-p13.1,and the coding region was composed of 4 exons. Reverse transcription PCR (RT-PCR) analysis showed that the CACNG3 gene expressed in human adult brain and fetal brain. Single strand comformation polymorphism (SSCP) analysis was performed in 3 pedigrees with autosomal recessive retinitis pigmentosa,8 pedigrees with autosomal recessive retinitis pigmentosa accompanied by deafness and 2 pedigrees with epilepsy,but no mutation was detected.

  8. In-channel printing-device opening assay for micropatterning multiple cells and gene analysis.

    Science.gov (United States)

    Zhou, Hao; Zhao, Liang; Zhang, Xueji

    2015-02-17

    Herein we report an easy but versatile method for patterning different cells on a single substrate by using a microfluidic approach that allows not only spatial and temporal control of multiple microenvironments but also retrieval of specific treated cells to profile their expressed genetic information at around 10-cell resolution. By taking advantages of increased surface area of gold nanoparticles on a poly(dimethylsiloxane) (PDMS) coated substrate, cell adhesive-promotive protein, human fibronectin (hFN) can be significantly accumulated on designed regions where cells can recognize the protein and spread out. Moreover, the whole device can be easily opened by hand without any loss of patterned cells which could be retrieved by mouth-pipet. Consequently, we demonstrate the possibility of analyzing the difference of gene expression patterns between wild type MCF-7 cell and MCF/Adr (drug-resistant cell line) from less than 400 cells in total for a single comprehensive assay, including parallel experiments, controls, and multiple dose treatments. Certain genes, especially the P-glycoprotein coding gene (ABCB1), show high expression level in resistant cells compared with the wild type, suggesting a possible pathway that may contribute to the antidrug mechanism.

  9. A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome

    Science.gov (United States)

    Doyle, Jefferson J; Doyle, Alexander J; Wilson, Nicole K; Habashi, Jennifer P; Bedja, Djahida; Whitworth, Ryan E; Lindsay, Mark E; Schoenhoff, Florian; Myers, Loretha; Huso, Nick; Bachir, Suha; Squires, Oliver; Rusholme, Benjamin; Ehsan, Hamid; Huso, David; Thomas, Craig J; Caulfield, Mark J; Van Eyk, Jennifer E; Judge, Daniel P; Dietz, Harry C

    2015-01-01

    Calcium channel blockers (CCBs) are prescribed to patients with Marfan syndrome for prophylaxis against aortic aneurysm progression, despite limited evidence for their efficacy and safety in the disorder. Unexpectedly, Marfan mice treated with CCBs show accelerated aneurysm expansion, rupture, and premature lethality. This effect is both extracellular signal-regulated kinase (ERK1/2) dependent and angiotensin-II type 1 receptor (AT1R) dependent. We have identified protein kinase C beta (PKCβ) as a critical mediator of this pathway and demonstrate that the PKCβ inhibitor enzastaurin, and the clinically available anti-hypertensive agent hydralazine, both normalize aortic growth in Marfan mice, in association with reduced PKCβ and ERK1/2 activation. Furthermore, patients with Marfan syndrome and other forms of inherited thoracic aortic aneurysm taking CCBs display increased risk of aortic dissection and need for aortic surgery, compared to patients on other antihypertensive agents. DOI: http://dx.doi.org/10.7554/eLife.08648.001 PMID:26506064

  10. Large scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing.

    Science.gov (United States)

    Labrum, R W; Rajakulendran, S; Graves, T D; Eunson, L H; Bevan, R; Sweeney, M G; Hammans, S R; Tubridy, N; Britton, T; Carr, L J; Ostergaard, J R; Kennedy, C R; Al-Memar, A; Kullmann, D M; Schorge, S; Temple, K; Davis, M B; Hanna, M G

    2009-11-01

    Episodic ataxia type 2 (EA2) and familial hemiplegic migraine type 1 (FHM1) are autosomal dominant disorders characterised by paroxysmal ataxia and migraine, respectively. Point mutations in CACNA1A, which encodes the neuronal P/Q-type calcium channel, have been detected in many cases of EA2 and FHM1. The genetic basis of typical cases without CACNA1A point mutations is not fully known. Standard DNA sequencing methods may miss large scale genetic rearrangements such as deletions and duplications. The authors investigated whether large scale genetic rearrangements in CACNA1A can cause EA2 and FHM1. The authors used multiplex ligation dependent probe amplification (MLPA) to screen for intragenic CACNA1A rearrangements. The authors identified five previously unreported large scale deletions in CACNA1A in seven families with episodic ataxia and in one case with hemiplegic migraine. One of the deletions (exon 6 of CACNA1A) segregated with episodic ataxia in a four generation family with eight affected individuals previously mapped to 19p13. In addition, the authors identified the first pathogenic duplication in CACNA1A in an index case with isolated episodic diplopia without ataxia and in a first degree relative with episodic ataxia. Large scale deletions and duplications can cause CACNA1A associated channelopathies. Direct DNA sequencing alone is not sufficient as a diagnostic screening test.

  11. The role of the potassium channel gene KCNK2 in major depressive disorder.

    Science.gov (United States)

    Congiu, Chiara; Minelli, Alessandra; Bonvicini, Cristian; Bortolomasi, Marco; Sartori, Riccardo; Maj, Carlo; Scassellati, Catia; Maina, Giuseppe; Trabucchi, Luigi; Segala, Matilde; Gennarelli, Massimo

    2015-02-28

    Six single nucleotide polymorphisms (SNPs) of the KCNK2 gene were investigated for their association with major depressive disorder (MDD) and treatment efficacy in 590 MDD patients and 441 controls. The A homozygotes of rs10779646 were significantly more frequent in patients than controls whereas G allele of rs7549184 was associated with the presence of psychotic symptoms and the severity of disease. Evaluating the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) dataset, we confirmed our findings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway.

    Science.gov (United States)

    Wulf-Johansson, H; Amrutkar, D V; Hay-Schmidt, A; Poulsen, A N; Klaerke, D A; Olesen, J; Jansen-Olesen, I

    2010-06-02

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS11021 on CGRP release from isolated TG and TNC was investigated. By RT-PCR, BK(Ca) channel mRNA was detected in the TG and the TNC. A significant difference in BK(Ca) channel mRNA transcript levels were found using qPCR between the TNC as compared to the TG. The BK(Ca) channel protein was more expressed in the TNC as compared to the TG shown by western blotting. Immunohistochemistry identified BK(Ca) channels in the nerve cell bodies of the TG and the TNC. The beta2- and beta4-subunit proteins were found in the TG and the TNC. They were both more expressed in the TNC as compared to TG shown by western blotting. In isolated TNC, the BK(Ca) channel blocker iberiotoxin induced a concentration-dependent release of CGRP that was attenuated by the BK(Ca) channel opener NS11021. No effect on basal CGRP release was found by NS11021 in isolated TG or TNC or by iberiotoxin in TG. In conclusion, we found both BK(Ca) channel mRNA and protein expression in the TG and the TNC. The BK(Ca) channel protein and the modulatory beta2- and beta4-subunt proteins were more expressed in the TNC than in the TG. Iberiotoxin induced an increase in CGRP release from the TNC that was attenuated by NS11021. Thus, BK(Ca) channels might have a role in trigeminovascular pain transmission.

  13. Comparative transcriptional analysis reveals distinct expression patterns of channel catfish genes after the first infection and re-infection with Aeromonas hydrophila

    Science.gov (United States)

    To determine whether transcriptional levels of channel catfish (Ictalurus punctatus) genes are differentially regulated between a first infection with Aeromonas hydrophila and a re-infection, suppression subtractive hybridization (SSH) was performed in this study using anterior kidney cDNA after the...

  14. Assignment of the human gene for the water channel of renal collecting duct Aquaporin 2 (AQP2) to chromosome 12 region q12-->q13

    NARCIS (Netherlands)

    Deen, P M; Weghuis, D O; Sinke, R J; Geurts van Kessel, A; Wieringa, B; van Os, C H

    1994-01-01

    The chromosomal localization of the gene encoding Aquaporin 2 (previously called WCH-CD), which acts as a water channel in the collecting tubules of the kidney, was determined. Southern blot hybridizations of chromosomal DNA from a panel of 25 different human-rodent hybrid cell lines assigned AQP2 t

  15. Cloning and characterization of genes encoding alpha and beta subunits of glutamate-gated chloride channel protein in Cylicocyclus nassatus.

    Science.gov (United States)

    Tandon, Ritesh; LePage, Keith T; Kaplan, Ray M

    2006-11-01

    The invertebrate glutamate-gated chloride channels (GluCls) are receptor molecules and targets for the avermectin-milbemycin (AM) group of anthelmintics. Mutations in GluCls are associated with ivermectin resistance in the soil dwelling nematode Caenorhabditis elegans and the parasitic nematode Cooperia oncophora. In this study, full-length cDNAs encoding alpha and beta subunits of GluCl were cloned and sequenced in Cylicocyclus nassatus, a common and important cyathostomin nematode parasite of horses. Both genes possess the sequence characteristics typical of GluCls, and phylogenetic analysis confirms that these genes are evolutionarily closely related to GluCls of other nematodes and flies. Complete coding sequences of C. nassatus GluCl-alpha and GluCl-beta were subcloned into pTL1 mammalian expression vector, and proteins were expressed in COS-7 cells. Ivermectin-binding characteristics were determined by incubating COS-7 cell membranes expressing C. nassatus GluCl-alpha and GluCl-beta proteins with [(3)H]ivermectin. In competitive binding experiments, fitting the data to a one site competition model, C. nassatus GluCl-alpha was found to bind [(3)H]ivermectin with a high amount of displaceable binding (IC(50)=208 pM). Compared to the mock-transfected COS-7 cells, the means of [(3)H]ivermectin binding were significantly different for C. nassatus GluCl-alpha and the Haemonchus contortus GluCl (HcGluCla) (p=0.018 and 0.023, respectively) but not for C. nassatus GluCl-beta (p=0.370). This is the first report of orthologs of GluCl genes and in vitro expression of an ivermectin-binding protein in a cyathostomin species. These data suggest the likelihood of a similar mechanism of action of AM drugs in these parasites, and suggest that mechanisms of resistance may also be similar.

  16. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  17. Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds.

    Science.gov (United States)

    Nisius, Britta; Göller, Andreas H; Bajorath, Jürgen

    2009-01-01

    Blockade of the human ether-a-go-go related gene potassium channel is regarded as a major cause of drug toxicity and associated with severe cardiac side-effects. A variety of in silico models have been reported to aid in the identification of compounds blocking the human ether-a-go-go related gene channel. Herein, we present a classification approach for the detection of diverse human ether-a-go-go related gene blockers that combines cluster analysis of training data, feature selection and support vector machine learning. Compound learning sets are first divided into clusters of similar molecules. For each cluster, independent support vector machine models are generated utilizing preselected MACCS structural keys as descriptors. These models are combined to predict human ether-a-go-go related gene inhibition of our large compound data set with consistent experimental measurements (i.e. only patch clamp measurements on mammalian cell lines). Our combined support vector machine model achieves a prediction accuracy of 85% on this data set and performs better than alternative methods used for comparison. We also find that structural keys selected on the basis of statistical criteria are associated with molecular substructures implicated in human ether-a-go-go related gene channel binding.

  18. Seasonal Differences in Steroids and Maturation-related Genes in Channel Catfish Under Normal and Accelerated Thermoperiods

    Science.gov (United States)

    Selective breeding of channel catfish, Ictalurus punctatus, is hampered by a long generation time. Female channel catfish typically spawn when they are 3-years-old; however, a low percentage of spawning may be observed at two years of age. Mature female channel catfish can spawn once annually. Their...

  19. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation : Differential regulation of protein and mRNA levels for K+ channels

    NARCIS (Netherlands)

    Brundel, BJJM; Van Gelder, IC; Henning, RH; Tuinenburg, AE; Wietses, M; Grandjean, JG; Wilde, AAM; Van Gilst, WH; Crijns, HJGM

    2001-01-01

    OBJECTIVES Our purpose was to determine whether patients with persistent atrial fibrillation (AF) and patients with paroxysmal AF show alterations in potassium channel expression. BACKGROUND Persistent AF is associated with a sustained shortening of the atrial action potential duration and atrial re

  20. Pronounced effects of HERG-blockers E-4031 and erythromycin on APD, spatial APD dispersion and triangulation in transgenic long-QT type 1 rabbits.

    Science.gov (United States)

    Ziupa, David; Beck, Julia; Franke, Gerlind; Perez Feliz, Stefanie; Hartmann, Maximilian; Koren, Gideon; Zehender, Manfred; Bode, Christoph; Brunner, Michael; Odening, Katja E

    2014-01-01

    Prolongation of action potential duration (APD), increased spatial APD dispersion, and triangulation are major factors promoting drug-induced ventricular arrhythmia. Preclinical identification of HERG/IKr-blocking drugs and their pro-arrhythmic potential, however, remains a challenge. We hypothesize that transgenic long-QT type 1 (LQT1) rabbits lacking repolarizing IKs current may help to sensitively detect HERG/IKr-blocking properties of drugs. Hearts of adult female transgenic LQT1 and wild type littermate control (LMC) rabbits were Langendorff-perfused with increasing concentrations of HERG/IKr-blockers E-4031 (0.001-0.1 µM, n=9/7) or erythromycin (1-300 µM, n=9/7) and APD, APD dispersion, and triangulation were analyzed. At baseline, APD was longer in LQT1 than in LMC rabbits in LV apex and RV mid. Erythromycin and E-4031 prolonged APD in LQT1 and LMC rabbits in all positions. However, erythromycin-induced percentaged APD prolongation related to baseline (%APD) was more pronounced in LQT1 at LV base-lateral and RV mid positions (100 µM, LQT1, +40.6 ± 9.7% vs. LMC, +24.1 ± 10.0%, ptriangulation only in LQT1 in LV base-septal and RV mid positions. Similarly, E-4031 increased triangulation only in LQT1 in LV apex and base-septal positions. E-4031 and erythromycin prolonged APD and increased triangulation more pronouncedly in LQT1 than in LMC rabbits. Moreover, erythromycin increased APD dispersion only in LQT1, indicating that transgenic LQT1 rabbits could serve as sensitive model to detect HERG/IKr-blocking properties of drugs.

  1. Complete structure, genomic organization, and expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix metalloproteinase-9 gene.

    Science.gov (United States)

    Yeh, Hung-Yueh; Klesius, Phillip H

    2008-03-01

    In this study, the channel catfish (CC) matrix metalloproteinase-9 (MMP-9) gene was cloned, sequenced, and characterized at both the cDNA and the genomic DNA levels. The complete sequence of the CC MMP-9 cDNA consisted of 2,551 nucleotides, including one open reading frame and 5'- and 3'-end untranslated regions. The open reading frame potentially encoded a 686-amino-acid peptide with a calculated molecular mass (without glycosylation) of approximately 77.4 kDa, which included a signal peptide and potentially heavy O-glycosylation sites. CC MMP-9 did not have the tripeptide Arg-Gly-Asp motif. The degree of conservation of the CC MMP-9 amino acid sequence to human and mouse counterparts was 55%, while to those of other fish species was 67-74%. The full-length CC MMP-9 genomic DNA comprised 5,663 nucleotides, much shorter than human or mouse counterparts. The exon-intron structure followed the splice acceptor/donor consensus rule, and the sequence contained 13 exons. The MMP-9 transcript was constitutively expressed in restrictive CC tissues. This result should provide fundamental information for further exploration of the role of MMP-9 in fish pathophysiology.

  2. The calcium channel blocker amlodipine exerts its anti-proliferative action via p21(Waf1/Cip1) gene activation.

    Science.gov (United States)

    Ziesche, Rolf; Petkov, Ventzislav; Lambers, Christopher; Erne, Paul; Block, Lutz-Henning

    2004-10-01

    Proliferation of vascular smooth muscle cells (VSMC) contributes to the progression of atherosclerotic plaques. Calcium channel blockers have been shown to reduce VSMC proliferation, but the underlying molecular mechanism remains unclear. p21(Waf1/Cip1) is a potent inhibitor of cell cycle progression. Here, we demonstrate that amlodipine (10(-6) to 10(-8) M) activates de novo synthesis of p21(Waf1/Cip1) in vitro. We show that amlodipine-dependent activation of p21(Waf1/Cip1) involves the action of the glucocorticoid receptor (GR) and C/EBP-alpha. The underlying pathway apparently involves the action of mitogen-activated protein kinase or protein kinase C, but not of extracellular signal-related kinase or changes of intracellular calcium. Amlodipine-induced p21(Waf1/Cip1) promoter activity and expression were abrogated by C/EBP-alpha antisense oligonucleotide or by the GR antagonist RU486. Amlodipine-dependent inhibition of cell proliferation was partially reversed by RU486 at 10(-8) M (58%+/-29%), antisense oligonucleotides targeting C/EBP-alpha (91%+/-26%), or antisense mRNAs targeting p21(Waf1/Cip1) (96%+/-32%, n=6); scrambled antisense oligonucleotides or those directed against C/EBP-beta were ineffective. The data suggest that the anti-proliferative action of amlodipine is achieved by induction of the p21 (Waf1/Cip1) gene, which may explain beneficial covert effects of this widely used cardiovascular therapeutic drug beyond a more limited role as a vascular relaxant.

  3. Channel catfish重组激活基因克隆与鉴定%Cloning and identification of the rag 1 gene in channel catfish

    Institute of Scientific and Technical Information of China (English)

    公衍文; 张云; 黄庆; 张雪; 府伟灵

    2004-01-01

    目的尝试用简并引物扩增序列未知的channel catfish基因组DNA中ragl基因的片段并测序,为ragl基因的早期进化模式和遗传学变异情况的研究提供直接的证据.方法基于ragl基因的高度保守设计简并引物,PCR扩增channel catfish基因组DNA中ragl基因的片段,TA克隆并双向测序.将所得序列资料拼接,用多种生物信息学方法分析其ORF、内含子、与其它物种ragI基因及Ragl蛋白的相似性,并做多序列比较和系统进化树分析.结果扩增出3条chan-nel catfish ragl基因的DNA片段.从拼接后的序列中找到一2 235bp的ORF和一293bp的内含子,所得序列与其它物种ragl基因的相似程度高(多大于70%),去除内含子后的channel catfish ragl基因序列与zebrafish、rainbow trout、bull shark的ragl基因cDNA全序列碱基一致的位点占43.9%,自第1 352位碱基至2 925位碱基为53.1%,而自第1位碱基至1 351位碱基为33.2%,有非常显著的差异(P<0.01).结论用简并引物成功扩增出channel catfish ragl基因的DNA片段.序列在GenBank中的登记号是:AY423858(去除内含子序列),AY423859.ragl基因进化缓慢,高度保守,不同物种ragI基因的变异相对集中在氨基末端的区域.系统进化树分析显示了13种硬骨鱼在进化上关系的亲疏.

  4. Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.E.; Van Bakel, I.; Craig, I.W. [Univ. of Oxford (United Kingdom)] [and others

    1995-10-10

    Dent disease, an X-linked familial renal tubular disorder, is a form of Fanconi syndrome associated with proteinuria, hypercalciuria, nephrocalcinosis, kidney stones, and eventual renal failure. We have previously used positional cloning to identify the 3{prime} part of a novel kidney-specific gene (initially termed hClC-K2, but now referred to as CLCN5), which is deleted in patients from one pedigree segregating Dent disease. Mutations that disrupt this gene have been identified in other patients with this disorder. Here we describe the isolation and characterization of the complete open reading frame of the human CLCN5 gene, which is predicted to encode a protein of 746 amino acids, with significant homology to all known members of the ClC family of voltage-gated chloride channels. CLCN5 belongs to a distinct branch of this family, which also includes the recently identified genes CLCN3 and CLCN4. We have shown that the coding region of CLCN5 is organized into 12 exons, spanning 25-30 kb of genomic DNA, and have determined the sequence of each exon-intron boundary. The elucidation of the coding sequence and exon-intron organization of CLCN5 will both expedite the evaluation of structure/function relationships of these ion channels and facilitate the screening of other patients with renal tubular dysfunction for mutations at this locus. 31 refs., 5 figs.

  5. Linkage of malignant hyperthermia and hyperkalemic periodic paralysis to the adult skeletal muscle sodium channel (SCN4A) gene in a large pedigree.

    Science.gov (United States)

    Moslehi, R; Langlois, S; Yam, I; Friedman, J M

    1998-02-26

    Hyperkalemic periodic paralysis (HPP) is caused by mutations of the adult skeletal muscle sodium channel (SCN4A) gene on chromosome 17. Malignant hyperthermia (MH) is a genetically heterogeneous autosomal-dominant disorder occurring in association with various neuromuscular diseases or without other apparent abnormalities. In some families, MH is associated with mutations of a calcium release channel (RYR1) gene on chromosome 19. In other families, linkage of this disorder to the SCN4A gene on chromosome 17 has been suggested. We report on linkage analysis in a family in which both HPP and MH are inherited as autosomal-dominant traits. Two polymorphisms within the SCN4A locus, an RFLP and a (C-A)n repeat, were typed on multiple family members. The findings were consistent with linkage of the polymorphic markers within the SCN4A gene to both HPP (Zmax = 6.79 at theta = 0.0) and MH (Zmax = 1.76 at theta = 0) in this family. Our data provide further evidence that MH is linked to the SCN4A locus in some families.

  6. Molecular cloning and functional expression of the Equine K+ channel KV11.1 (Ether à Go-Go-related/KCNH2 gene) and the regulatory subunit KCNE2 from equine myocardium

    DEFF Research Database (Denmark)

    Pedersen, Philip Juul; Thomsen, Kirsten Brolin; Olander, Emma Rie;

    2015-01-01

    The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT inter...

  7. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  8. Differential gene expression patterns and colocalization of ATP-gated P2X6/P2X4 ion channels during rat small intestine ontogeny.

    Science.gov (United States)

    Padilla, Karla; Gonzalez-Mendoza, David; Berumen, Laura C; Escobar, Jesica E; Miledi, Ricardo; García-Alcocer, Guadulupe

    2016-07-01

    Gene coding for ATP-gated receptor ion channels (P2X1-7) has been associated with the developmental process in various tissues; among these ion channel subtypes, P2X6 acts as a physiological regulator of P2X4 receptor functions when the two receptors form heteroreceptors. The P2X4 receptor is involved in pain sensation, the inflammatory process, and body homeostasis by means of Mg(2+) absorption through the intestine. The small intestine is responsible for the absorption and digestion of nutrients; throughout its development, several gene expressions are induced that are related to nutrients received, metabolism, and other intestine functions. Previous work has shown a differential P2X4 and P2X6 protein distribution in the small intestine of newborn and adult rats; however, it is not well-known at what age the change in the relationship between the gene and protein expression occurs and whether or not these receptors are colocalized. In this work, we evaluate P2X4 and P2X6 gene expression patterns by qPCR from embryonic (E18, P0, P7, P17, P30) to adult age in rat gut, as well as P2X6/P2X4 colocalization using qRT-PCR and confocal immunofluorescence in proximal and distal small intestine sections. The results showed that P2X6 and P2X4 gene expression levels of both receptors decreased at the embryonic-perinatal transition, whereas from ages P17 to P30 (suckling-weaning transition) both receptors increased their gene expression levels. Furthermore, P2X4 and P2X6 proteins were expressed in a different way during rat small intestine development, showing a higher colocalization coefficient at age P30 in both intestine regions. Those results suggest that purinergic receptors may play a role in intestinal maturation, which is associated with age and intestinal region.

  9. Quantitative structure-activity relationship of phenoxyphenyl-methanamine compounds with 5HT2A, SERT, and hERG activities.

    Science.gov (United States)

    Mente, Scot; Gallaschun, Randall; Schmidt, Anne; Lebel, Lorrie; Vanase-Frawley, Michelle; Fliri, Anton

    2008-12-01

    QSAR models have been used to evaluate activities for compounds in the phenoxyphenyl-methanamine (PPMA) class of compounds. These models utilize Hammett-type donating-withdrawing substituent values as well as simple parameters to describe substituent size and elucidate the SAR of the 'A' and 'B' rings. Using this methodology, intuitive QSAR relationships were found for the three biological activities with R(2) values of 0.73, 0.45, and 0.58 for 5HT(2A), SerT, and hERG activities.

  10. [Familial hyperkalemic periodic paralysis: a brief review of the adult human skeletal muscle sodium channel and the application of LA-PCR to the SCN4A gene analysis].

    Science.gov (United States)

    Sakoda, S; Nakagawa, M; Arimura, Y; Arimura, K; Osame, M

    1997-12-01

    Recent work has revealed that familial hyperkalemic periodic paralysis, paramyotonia congenita and other non-dystrophic myotonias result from point mutations in the gene encoding the alpha-subunit of the adult human skeletal muscle sodium channel (SCN4A). Sodium channel myotonias are a diverse group of skeletal muscle disorders that share a common pathophysiological mechanism: all are caused by impaired rapid inactivation of skeletal muscle sodium channel. Clinical studies, pharmacology, electrophysiology and molecular genetics have contributed to an elucidation of the genotype-phenotype correlation within these disorders. This article briefly reviews recent advances in our understanding of skeletal muscle sodium channel and sodium channel myotonias. The application of LA-PCR to the SCN4A gene analysis is also referred.

  11. Critical role of a K+ channel in Plasmodium berghei transmission revealed by targeted gene disruption

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Maciel, Jorge; Mlambo, Godfree;

    2008-01-01

    through the mosquito vector remains unknown. We hypothesize that these two K(+) channels mediate the transport of K(+) in the parasites, and thus are important for parasite survival. To test this hypothesis, we identified the orthologue of one of the P. falciparum K(+) channels, PfKch1, in the rodent...... inhibition of the development of PbKch1-null parasites in Anopheles stephensi mosquitoes. In conclusion, these studies demonstrate that PbKch1 contributes to the transport of K(+) in P. berghei parasites and supports the growth of the parasites, in particular the development of oocysts in the mosquito midgut...

  12. Allitridi inhibits multiple cardiac potassium channels expressed in HEK 293 cells.

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Xu

    Full Text Available Allitridi (diallyl trisulfide is an active compound (volatile oil from garlic. The previous studies reported that allitridi had anti-arrhythmic effect. The potential ionic mechanisms are, however, not understood. The present study was designed to determine the effects of allitridi on cardiac potassium channels expressed in HEK 293 cells using a whole-cell patch voltage-clamp technique and mutagenesis. It was found that allitridi inhibited hKv4.3 channels (IC(50 = 11.4 µM by binding to the open channel, shifting availability potential to hyperpolarization, and accelerating closed-state inactivation of the channel. The hKv4.3 mutants T366A, T367A, V392A, and I395A showed a reduced response to allitridi with IC(50s of 35.5 µM, 44.7 µM, 23.7 µM, and 42.4 µM. In addition, allitridi decreased hKv1.5, hERG, hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells with IC(50s of 40.2 µM, 19.6 µM and 17.7 µM. However, it slightly inhibited hKir2.1 current (100 µM, inhibited by 9.8% at -120 mV. Our results demonstrate for the first time that allitridi preferably blocks hKv4.3 current by binding to the open channel at T366 and T367 of P-loop helix, and at V392 and I395 of S6 domain. It has a weak inhibition of hKv1.5, hERG, and hKCNQ1/hKCNE1 currents. These effects may account for its anti-arrhythmic effect observed in experimental animal models.

  13. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC Gene in Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jiabao Xu

    2016-05-01

    Full Text Available Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr. Previous studies reported various mutations in the voltage-gated sodium channel (VGSC gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established.A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested.A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations.Two novel kdr

  14. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Marshall-Gradisnik S

    2016-03-01

    Full Text Available Sonya Marshall-Gradisnik,1,2 Teilah Huth,1,2 Anu Chacko,1,2 Samantha Johnston,1,2 Pete Smith,2 Donald Staines21School of Medical Science, 2National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia Aim: The aim of this paper was to determine natural killer (NK cytotoxic activity and if single nucleotide polymorphisms (SNPs and genotypes in transient receptor potential (TRP ion channels and acetylcholine receptors (AChRs were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME/chronic fatigue syndrome (CFS patients. Subjects and methods: A total of 39 ME/CFS patients (51.69±2 years old and 30 unfatigued controls (47.60±2.39 years old were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software. Results: ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68% compared with the unfatigued control group (31%±6.78%. Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8 were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05. Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05. There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5, TRPM8 (n=2, TRPC4 (n=3, TRPC2 (n=1, CHRNE (n=1, CHRNA2 (n=2, CHRNA3 (n=1

  15. Genetic Control of Potassium Channels.

    Science.gov (United States)

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  16. A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197

    Energy Technology Data Exchange (ETDEWEB)

    Auburger, G.; Ratzlaff, T.; Lunkes, A.; Nelles, H.W. [Univ. Hospital, Duesseldorf (Germany)] [and others

    1996-01-01

    Paroxysmal choreoathetosis/episodic ataxia is a heterogeneous neurological syndrome usually inherited in an autosomal dominant manner. Recently, the association of one form of episodic ataxia (defined by the presence of additional myokymia) with point mutations in the potassium channel gene KCNA1 was described. This gene locus on chromosome 12p (HGMW-approved symbol CSE) was excluded in a large pedigree with paroxysmal choreoathetosis and additional spasticity. Linkage to chromosome 1p where a cluster of related potassium channel genes is located, was demonstrated. Genotyping of 18 affected and 11 unaffected family members with 28 microsatellites over a region of 45 cM proved linkage with a lod score of 7.2 at a recombination fraction {theta}=0 to D1S451/421/447/GGAT4C11. Crossing-over events in 9 patients and 4 unaffected offspring suggested a probable assignment of the gene to a region of 2 cM between D1S443 and D1S197. 24 refs., 1 fig.

  17. Critical role of a K+ channel in Plasmodium berghei transmission revealed by targeted gene disruption

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Maciel, Jorge; Mlambo, Godfree

    2008-01-01

    Regulated K(+) transport across the plasma membrane is of vital importance for the survival of most cells. Two K(+) channels have been identified in the Plasmodium falciparum genome; however, their functional significance during parasite life cycle in the vertebrate host and during transmission...

  18. Characterization of an Oct1 orthologue in the channel catfish, Ictalurus punctatus: A negative regulator of immunoglobulin gene transcription?

    NARCIS (Netherlands)

    Lennard, M.L.; Hikima, J.I.; Ross, D.A.; Kruiswijk, C.P.; Wilson, M.R.; Miller, N.W.; Warr, G.W.

    2007-01-01

    Background - The enhancer (E¿3') of the immunoglobulin heavy chain locus (IGH) of the channel catfish (Ictalurus punctatus) has been well characterized. The functional core region consists of two variant Oct transcription factor binding octamer motifs and one E-protein binding ¿E5 site. An orthologu

  19. Human endogenous retrovirus W family envelope gene activates the small conductance Ca2+-activated K+ channel in human neuroblastoma cells through CREB.

    Science.gov (United States)

    Li, S; Liu, Z C; Yin, S J; Chen, Y T; Yu, H L; Zeng, J; Zhang, Q; Zhu, F

    2013-09-05

    Numerous studies have shown that human endogenous retrovirus W family (HERV-W) envelope gene (env) is related to various diseases but the underlying mechanism has remained poorly understood. Our previous study showed that there was abnormal expression of HERV-W env in sera of patients with schizophrenia. In this paper, we reported that overexpression of the HERV-W env elevated the levels of small conductance Ca(2+)-activated K(+) channel protein 3 (SK3) in human neuroblastoma cells. Using a luciferase reporter system and RNA interference method, we found that functional cAMP response element site was required for the expression of SK3 triggered by HERV-W env. In addition, it was also found that the SK3 channel was activated by HERV-W env. Further study indicated that cAMP response element-binding protein (CREB) was required for the activation of the SK3 channel. Thus, a novel signaling mechanism of how HERV-W env influences neuronal activity and contributes to mental illnesses such as schizophrenia was proposed.

  20. Mutations in the Gene Encoding the Calcium-Permeable Ion Channel TRPV4 Produce Spondylometaphyseal Dysplasia, Kozlowski Type and Metatropic Dysplasia

    Science.gov (United States)

    Krakow, Deborah; Vriens, Joris; Camacho, Natalia; Luong, Phi; Deixler, Hannah; Funari, Tara L.; Bacino, Carlos A.; Irons, Mira B.; Holm, Ingrid A.; Sadler, Laurie; Okenfuss, Ericka B.; Janssens, Annelies; Voets, Thomas; Rimoin, David L.; Lachman, Ralph S.; Nilius, Bernd; Cohn, Daniel H.

    2009-01-01

    The spondylometaphyseal dysplasias (SMDs) are a group of short-stature disorders distinguished by abnormalities in the vertebrae and the metaphyses of the tubular bones. SMD Kozlowski type (SMDK) is a well-defined autosomal-dominant SMD characterized by significant scoliosis and mild metaphyseal abnormalities in the pelvis. The vertebrae exhibit platyspondyly and overfaced pedicles similar to autosomal-dominant brachyolmia, which can result from heterozygosity for activating mutations in the gene encoding TRPV4, a calcium-permeable ion channel. Mutation analysis in six out of six patients with SMDK demonstrated heterozygosity for missense mutations in TRPV4, and one mutation, predicting a R594H substitution, was recurrent in four patients. Similar to autosomal-dominant brachyolmia, the mutations altered basal calcium channel activity in vitro. Metatropic dysplasia is another SMD that has been proposed to have both clinical and genetic heterogeneity. Patients with the nonlethal form of metatropic dysplasia present with a progressive scoliosis, widespread metaphyseal involvement of the appendicular skeleton, and carpal ossification delay. Because of some similar radiographic features between SMDK and metatropic dysplasia, TRPV4 was tested as a disease gene for nonlethal metatropic dysplasia. In two sporadic cases, heterozygosity for de novo missense mutations in TRPV4 was found. The findings demonstrate that mutations in TRPV4 produce a phenotypic spectrum of skeletal dysplasias from the mild autosomal-dominant brachyolmia to SMDK to autosomal-dominant metatropic dysplasia, suggesting that these disorders should be grouped into a new bone dysplasia family. PMID:19232556

  1. Diverse and Dynamic Expression Patterns of Voltage-Gated Ion Channel Genes in Rat Cochlear Hair Cells

    Science.gov (United States)

    Beisel, K. W.; Fritzsch, B.

    2003-02-01

    Both qualitative and quantitative differences in ion-channel conductances are observed along the tonotopic axis of the mammalian cochlea. We have used a molecular approach to characterize these longitudinal expression patterns of voltage-gated ion-channel (VgCN) superfamily members in the peripheral auditory system. Initially RT-PCR and sequence analyses identified the VgCN α and accessory subunits of the cochlear hair cell (HC). Next, whole mount in situ hybridizations demonstrated at least seven common longitudinal expression patterns with the apex tip and basal hook region having the greatest in disparity. These data suggest potential topological variations in hair-cell electrophysiological signatures and these gradients may contribute to cochlear HC's ability to function as efficient frequency analyzers.

  2. Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti.

    Science.gov (United States)

    Yang, Zhongxia; Statler, Bethanie-Michelle; Calkins, Travis L; Alfaro, Edna; Esquivel, Carlos J; Rouhier, Matthew F; Denton, Jerod S; Piermarini, Peter M

    2017-02-01

    Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Potassium and calcium channel gene expression in small arteries in porcine and rat models of diet-induced obesity (Poster)

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Salomonsson, Max; Sørensen, Charlotte Mehlin

    2014-01-01

    Obesity is an increasing problem worldwide leading to cardiovascular morbidity. Only limited information exists on the transcriptional regulation of arterial K+ and Ca2+ channels in obesity. We quantified, by real-time PCR, mRNA expression of K+ channels and L-type Ca2+ channels (LTCC) in small...... mesenteric (MA), middle cerebral (MCA), and left coronary arteries (LCA) of lean vs. obese rats and minipigs. Male Sprague Dawley rats were fed a high-fat (FAT; N=5), high-fructose (FRUC; N=7), high-fat/high-fructose (FAT/FRUC; N=7) or standard diet (STD; N=7-11) for 28 Weeks. FAT and FAT/FRUC became obese...... increased in OB and OB+DIAB. BKca, IKca, SKca and/or LTCC mRNA was up-regulated in LCA from OB and OB+DIAB (n.s.). Expression of BKca mRNA was increased, whereas IKca mRNA decreased in MCA from OB (n.s.). SKca mRNA was decreased in MA from OB (n.s.). Diet-induced obesity in rats and minipigs lead to complex...

  4. Downregulation of Kv4.2 and Kv4.3 channel gene expression in right ventricular hypertrophy induced by monocrotaline in rat

    Institute of Scientific and Technical Information of China (English)

    Tian-tai ZHANG; Bing CUI; De-zai DAI

    2004-01-01

    AIM: To investigate the differences in gene expression of transient outward potassium ion channel between the free wall of right ventricle, free wall of left ventricle, and the septum in monocrotaline (MCT)-induced right ventricular hypertrophy of rat. METHODS: Twenty rats were randomly divided into two groups: a single injection of monocrotaline (MCT) 60 mg/kg (model) or saline (control). Four weeks later, hemodynamic parameters were measured and the gene expression of Ito channels were detected by semi-quantitative RT-PCR. RESUITS: After 28 d, the right ventricular systolic pressure and central venous pressure were remarkably elevated by 128 % and 533 % in the MCT-treated group, accompanied by an overt right ventricle (RV) remodeling. The difference of mRNA expression of Kv1.4 was not significant in free wall of RV, left ventricle (LV), and septum in MCT group compared with control group. In contrast, mRNA of Ky4.2 and Ky4.3 in the free wall of RV in MCT-induced rat was dramatically decreased by 45.2 % and 51.1% vs control, however, in free wall of LV and septum, no difference was found. In addition, mRNA expression level of Ky4.2 in control rat was significantly lower in septum than that in free wall of RV and LV. CONCLUSION: Expression of Kv1.4. Ky4.2, and Kv4.3 differs between regions in normal rat hearts. The down-regulation of Ky4 family gene expression of Ito contributed to the pathophysiological changes in ventricular hypertrophy and pulmonary hypertension induced by MCT.

  5. Identification of a cation-specific channel (TipA) in the cell wall of the gram-positive mycolata Tsukamurella inchonensis: the gene of the channel-forming protein is identical to mspA of Mycobacterium smegmatis and mppA of Mycobacterium phlei.

    Science.gov (United States)

    Dörner, Ursula; Maier, Elke; Benz, Roland

    2004-11-17

    Detergent extracts of whole cells of the Gram-positive bacterium Tsukamurella inchonensis ATCC 700082, which belongs to the mycolata, were studied for the presence of ion-permeable channels using lipid bilayer experiments. One channel with a conductance of about 4.5 nS in 1 M KCl was identified in the extracts. The channel-forming protein was purified to homogeneity by preparative SDS-PAGE. The protein responsible for channel-forming activity had an apparent molecular mass of about 33 kDa as judged by SDS-PAGE. Interestingly, the protein showed cross-reactivity with polyclonal antibodies raised against a polypeptide derived from MspA of Mycobacterium smegmatis similarly as the cell wall channel of Mycobacterium phlei. Primers derived from mspA were used to clone and sequence the gene of the cell wall channels of T. inchonensis (named tipA for T. inchonensis porin A) and M. phlei (named mppA for M. phlei porin A). Surprisingly, both genes, tipA and mppA, were found to be identical to mspA of M. smegmatis, indicating that the genomes of T. inchonensis, M. phlei and M. smegmatis contain the same genes for the major cell wall channel. RT-PCR revealed that tipA is transcribed in T. inchonensis and mppA in M. phlei. The results suggest that despite a certain distance between the three organisms, their genomes contain the same gene coding for the major cell wall channel, with a molecular mass of 22 kDa for the monomer.

  6. Motor disturbances in mice with deficiency of the sodium channel gene Scn8a show features of human dystonia.

    Science.gov (United States)

    Hamann, Melanie; Meisler, Miriam H; Richter, Angelika

    2003-12-01

    The med(J) mouse with twisting movements related to deficiency of the sodium channel Scn8a has been proposed as a model of kinesiogenic dystonia. This prompted us to examine the phenotype of these mice in more detail. By cortical electroencephalographic (EEG) recordings, we could not detect any changes, demonstrating that the motor disturbances are not epileptic in nature, an important similarity to human dystonia. The significantly decreased body weight of med(J) mice was related to reduced food intake. Observations in the open field and by video recordings revealed that the mice exhibit sustained abnormal postures and movements of limbs, trunk and tail not only during locomotor activity but also at rest. With the exception of the head tremor, the other motor impairments were persistent rather than paroxysmal. When several neurological reflexes were tested, alterations were restricted to the posture and righting reflexes. Results of the wire hang test confirmed the greatly reduced muscle strength in the med(J) mouse. In agreement with different types of human dystonia, biperiden, haloperidol and diazepam moderately reduced the severity of motor disturbances in med(J) mice. In view of the sodium channel deficiency in med(J) mice, the beneficial effects of the sodium channel blocker phenytoin was an unexpected finding. By immunohistochemical examinations, the density of nigral dopaminergic neurons was found to be unaltered, substantiating the absence of pathomorphological abnormalities within the brain of med(J) mice shown by previous studies. With the exception of muscle weakness, many of the features of the med(J) mouse are similar to human idiopathic dystonia.

  7. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Science.gov (United States)

    2016-01-01

    Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time polymerase chain reaction (PCR) in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP) there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain. PMID:27896032

  8. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  9. Trisomy of the G protein-coupled K+ channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice.

    Science.gov (United States)

    Cooper, Ayelet; Grigoryan, Gayane; Guy-David, Liora; Tsoory, Michael M; Chen, Alon; Reuveny, Eitan

    2012-02-14

    G protein-activated inwardly rectifying K+ channels (GIRK) generate slow inhibitory postsynaptic potentials in the brain via G(i/o) protein-coupled receptors. GIRK2, a GIRK subunit, is widely abundant in the brain and has been implicated in various functions and pathologies, such as learning and memory, reward, motor coordination, and Down syndrome. Down syndrome, the most prevalent cause of mental retardation, results from the presence of an extra maternal chromosome 21 (trisomy 21), which comprises the Kcnj6 gene (GIRK2). The present study examined the behaviors and cellular physiology properties in mice harboring a single trisomy of the Kcnj6 gene. Kcnj6 triploid mice exhibit deficits in hippocampal-dependent learning and memory, altered responses to rewards, hampered depotentiation, a form of excitatory synaptic plasticity, and have accentuated long-term synaptic depression. Collectively the findings suggest that triplication of Kcnj6 gene may play an active role in some of the abnormal neurological phenotypes found in Down syndrome.

  10. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene-KCNA1 (Kv1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.L.; Gancher, S.T.; Nutt, J.G. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    Episodic ataxia (EA) is a rare, familial disorder producing attacks of generalized ataxia, with normal or near-normal neurological function between attacks. One type of EA (MIM No.160120) displays autosomal dominant inheritance and is characterized by episodes of ataxia lasting seconds to minutes with myokymia (rippling of small muscles) evident between attacks. Genetic linkage studies in 4 families suggested localization of an EA/myokymia gene near the K{sup +} channel gene KCNA1 (Kv1.1) on chromosome 12p. Chemical cleavage mismatch and DNA sequence analysis of the KCNA1 coding region in these families identified 4 different missense point mutations present in the heterozygous state. The mutations found were Val174Phe, Arg239Ser, Phe249Ile and Val408Ala; the residue numbers correspond to those in the published amino acid sequence of KCNA1 (Genbank Accession No. L02750). Each of these mutations affects an amino acid residue that is invariant among Drosophila melanogaster, mouse, rat and human, The mutations were present in the affected members of the family and absent in all of the unaffected members and in at least 70 unrelated control individuals. These data strongly suggest that EA/myokymia can result from mutations in the KCNA1 gene.

  11. Balanced translocation in a patient with severe myoclonic epilepsy of infancy disrupts the sodium channel gene SCN1A

    DEFF Research Database (Denmark)

    Møller, Rikke S; Schneider, Lizette M; Hansen, Christian P;

    2008-01-01

    In a patient with severe myoclonic epilepsy of infancy (SMEI), we identified a de novo balanced translocation, t(2;5)(q24.3,q34). The breakpoint on chromosome 2q24.3 truncated the SCN1A gene and the 5q34 breakpoint was within a highly conserved genomic region. Point mutations or microdeletions of...

  12. [Three-dimensional structure of human Kv10.2 ion channel studied by single particle electron microscopy and molecular modeling].

    Science.gov (United States)

    Sokolova, O S; Shaĭtan, K V; Grizel', A V; Popinako, A V; Karlova, M G; Kirpichnikov, M P

    2012-01-01

    Here we present a three-dimensional structure of human voltage gated Kv10.2 ion channel solved at 2.5 nm resolution. We demonstrated that Kv10.2 channel structure is subdivided into two layers. For interpretation of the structure we used the homology modeling, using the transmembrane regions of MlotiK1 channel (C subunit), and cytoplasmic PAS-PAC and cNBD domains of the N-terminal tail of hERG (A subunit) and the bacterial cyclic nucleotide-activated K+ channel binding domain as the templates. The homologous transmembrane part can be fitted into the upper part of the reconstruction. The cytoplasmic domains form the structure, similar to a "hanging gondola", which is connected to the membrane-embedded domain with linkers. The length of linkers allow contacts between C-terminal cNBD domains and N-terminal PAS domains.

  13. Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla

    OpenAIRE

    Mayer, Catherine A.; Macklin, Wendy B.; Avishai, Nanthawan; Balan, Kannan; Wilson, Christopher G.; Miller, Martha J.

    2009-01-01

    Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al. 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plpmsd), and Plpnull mice, as well as shiverer (Mbpshi) mice, a myelin basic protein mutant. Current-voltage relation...

  14. Fluorescence-tracking of activation gating in human ERG channels reveals rapid S4 movement and slow pore opening.

    Directory of Open Access Journals (Sweden)

    Zeineb Es-Salah-Lamoureux

    Full Text Available BACKGROUND: hERG channels are physiologically important ion channels which mediate cardiac repolarization as a result of their unusual gating properties. These are very slow activation compared with other mammalian voltage-gated potassium channels, and extremely rapid inactivation. The mechanism of slow activation is not well understood and is investigated here using fluorescence as a direct measure of S4 movement and pore opening. METHODS AND FINDINGS: Tetramethylrhodamine-5-maleimide (TMRM fluorescence at E519 has been used to track S4 voltage sensor movement, and channel opening and closing in hERG channels. Endogenous cysteines (C445 and C449 in the S1-S2 linker bound TMRM, which caused a 10 mV hyperpolarization of the V((1/2 of activation to -27.5+/-2.0 mV, and showed voltage-dependent fluorescence signals. Substitution of S1-S2 linker cysteines with valines allowed unobstructed recording of S3-S4 linker E519C and L520C emission signals. Depolarization of E519C channels caused rapid initial fluorescence quenching, fit with a double Boltzmann relationship, F-V(ON, with V((1/2 (,1 = -37.8+/-1.7 mV, and V((1/2 (,2 = 43.5+/-7.9 mV. The first phase, V((1/2 (,1, was approximately 20 mV negative to the conductance-voltage relationship measured from ionic tail currents (G-V((1/2 = -18.3+/-1.2 mV, and relatively unchanged in a non-inactivating E519C:S620T mutant (V((1/2 = -34.4+/-1.5 mV, suggesting the fast initial fluorescence quenching tracked S4 voltage sensor movement. The second phase of rapid quenching was absent in the S620T mutant. The E519C fluorescence upon repolarization (V((1/2 = -20.6+/-1.2, k = 11.4 mV and L520C quenching during depolarization (V((1/2 = -26.8+/-1.0, k = 13.3 mV matched the respective voltage dependencies of hERG ionic tails, and deactivation time constants from -40 to -110 mV, suggesting they detected pore-S4 rearrangements related to ionic current flow during pore opening and closing. CONCLUSION: THE DATA INDICATE: 1

  15. Family-based genome-wide association study of frontal θ oscillations identifies potassium channel gene KCNJ6.

    Science.gov (United States)

    Kang, S J; Rangaswamy, M; Manz, N; Wang, J-C; Wetherill, L; Hinrichs, T; Almasy, L; Brooks, A; Chorlian, D B; Dick, D; Hesselbrock, V; Kramer, J; Kuperman, S; Nurnberger, J; Rice, J; Schuckit, M; Tischfield, J; Bierut, L J; Edenberg, H J; Goate, A; Foroud, T; Porjesz, B

    2012-08-01

    Event-related oscillations (EROs) represent highly heritable neuroelectric correlates of cognitive processes that manifest deficits in alcoholics and in offspring at high risk to develop alcoholism. Theta ERO to targets in the visual oddball task has been shown to be an endophenotype for alcoholism. A family-based genome-wide association study was performed for the frontal theta ERO phenotype using 634 583 autosomal single nucleotide polymorphisms (SNPs) genotyped in 1560 family members from 117 families densely affected by alcohol use disorders, recruited in the Collaborative Study on the Genetics of Alcoholism. Genome-wide significant association was found with several SNPs on chromosome 21 in KCNJ6 (a potassium inward rectifier channel; KIR3.2/GIRK2), with the most significant SNP at P = 4.7 × 10(-10)). The same SNPs were also associated with EROs from central and parietal electrodes, but with less significance, suggesting that the association is frontally focused. One imputed synonymous SNP in exon four, highly correlated with our top three SNPs, was significantly associated with the frontal theta ERO phenotype. These results suggest KCNJ6 or its product GIRK2 account for some of the variations in frontal theta band oscillations. GIRK2 receptor activation contributes to slow inhibitory postsynaptic potentials that modulate neuronal excitability, and therefore influence neuronal networks.

  16. Over-Expression of Dopamine D2 Receptor and Inwardly Rectifying Potassium Channel Genes in Drug-Naive Schizophrenic Peripheral Blood Lymphocytes as Potential Diagnostic Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Zvara

    2005-01-01

    Full Text Available Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3 was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2 and the inwardly rectifying potassium channel (Kir2.3 were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  17. Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers.

    Science.gov (United States)

    Zvara, Agnes; Szekeres, György; Janka, Zoltán; Kelemen, János Z; Cimmer, Csongor; Sántha, Miklós; Puskás, László G

    2005-01-01

    Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL) express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3) was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2) and the inwardly rectifying potassium channel (Kir2.3) were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR) using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  18. High-density SNP screen of sodium channel genes by haplotype tagging and DNA pooling for association with idiopathic generalized epilepsy.

    Science.gov (United States)

    Makoff, Andrew; Lai, Teck; Barratt, Catherine; Valentin, Antonio; Moran, Nick; Asherson, Philip; Nashef, Lina

    2010-04-01

    We have investigated seven voltage-gated sodium channel genes for association with idiopathic generalized epilepsy (IGE). Probands and control DNA were grouped into pools and used to screen 85 single-nucleotide polymorphisms (SNPs), mostly HapMap SNPs tagging the common variation in these genes. Twelve SNPs exhibiting an allele frequency difference between pools were genotyped individually in our sample of 232 probands, 313 controls, and 95 parent-proband trios. Two SNPs, in SCN1A and SCN8A, were associated by allele and genotype at nominal level of significance, but were not significant after Bonferroni correction. Two SCN2A SNPs (rs3943809 and rs16850331) were associated by case-control with a subgroup with IGE and history of febrile seizures and also by transmission disequilibrium test (TDT) in parent-proband trios. Both SNPs are part of a linkage disequilibrium (LD) cluster of 38 SNPs, but none are obvious functional variants. The association of rs3943809 with the febrile seizure subgroup (p = 0.0004) remains significant after the conservative Bonferroni correction for multiple testing.

  19. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 2 HvSLAC1 with grain yield for increasing salinity tolerance in barley

    Directory of Open Access Journals (Sweden)

    Xiaohui eLiu

    2014-11-01

    Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.

  20. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae).

    Science.gov (United States)

    Rosser, Thomas G; Griffin, Matt J; Quiniou, Sylvie M A; Khoo, Lester H; Pote, Linda M

    2014-12-01

    In the southeastern USA, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. However, only two of these have confirmed life cycles that involve the oligochaete Dero digitata as the definitive host. During a health screening of farm-raised channel catfish, several fish presented with deformed primary lamellae. Lamellae harbored large, nodular, white pseudocysts 1.25 mm in diameter, and upon rupturing, these pseudocysts released Henneguya myxospores, with a typical lanceolate-shaped spore body, measuring 17.1 ± 1.0 μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in width. Pyriform-shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 ± 0.1 μm (1.4-1.9 μm) in width. The two caudal processes were 40.0 ± 5.1 μm in length (29.5-50.0 μm) with a spore length of 57.2 ± 4.7 (46.8-66.8 μm). The contiguous SSU rRNA gene sequence obtained from myxospores of five excised cysts did not match any Henneguya sp. in GenBank. The greatest sequence homology (91% over 1,900 bp) was with Henneguya pellis, associated with blister-like lesions on the skin of blue catfish Ictalurus furcatus. Based on the unique combination of pseudocyst and myxospore morphology, tissue location, host, and SSU rRNA gene sequence data, we report this isolate to be a previously unreported species, Henneguya bulbosus sp. nov.

  1. Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia.

    Science.gov (United States)

    Schwarz, N; Hahn, A; Bast, T; Müller, S; Löffler, H; Maljevic, S; Gaily, E; Prehl, I; Biskup, S; Joensuu, T; Lehesjoki, A-E; Neubauer, B A; Lerche, H; Hedrich, U B S

    2016-02-01

    Mutations in SCN2A cause epilepsy syndromes of variable severity including neonatal-infantile seizures. In one case, we previously described additional childhood-onset episodic ataxia. Here, we corroborate and detail the latter phenotype in three further cases. We describe the clinical characteristics, identify the causative SCN2A mutations and determine their functional consequences using whole-cell patch-clamping in mammalian cells. In total, four probands presented with neonatal-onset seizures remitting after five to 13 months. In early childhood, they started to experience repeated episodes of ataxia, accompanied in part by headache or back pain lasting minutes to several hours. In two of the new cases, we detected the novel mutation p.Arg1882Gly. While this mutation occurred de novo in both patients, one of them carries an additional known variant on the same SCN2A allele, inherited from the unaffected father (p.Gly1522Ala). Whereas p.Arg1882Gly alone shifted the activation curve by -4 mV, the combination of both variants did not affect activation, but caused a depolarizing shift of voltage-dependent inactivation, and a significant increase in Na(+) current density and protein production. p.Gly1522Ala alone did not change channel gating. The third new proband carries the same de novo SCN2A gain-of-function mutation as our first published case (p.Ala263Val). Our findings broaden the clinical spectrum observed with SCN2A gain-of-function mutations, showing that fairly different biophysical mechanisms can cause a convergent clinical phenotype of neonatal seizures and later onset episodic ataxia.

  2. Novel mutations in the gene for α-subunit of retinal cone cyclic nucleotide-gated channels in a Japanese patient with congenital achromatopsia.

    Science.gov (United States)

    Kuniyoshi, Kazuki; Muraki-Oda, Sanae; Ueyama, Hisao; Toyoda, Futoshi; Sakuramoto, Hiroyuki; Ogita, Hisakazu; Irifune, Motohiro; Yamamoto, Shuji; Nakao, Akira; Tsunoda, Kazushige; Iwata, Takeshi; Ohji, Masahito; Shimomura, Yoshikazu

    2016-05-01

    To present the characteristics and pathology of a patient with congenital achromatopsia. The patient was a 22-year-old Japanese woman who was 8 years old when she first visited our clinic. Comprehensive ophthalmic examinations including visual acuity measurements, perimetry, optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, electroretinography (ERG), and color vision tests were performed. Her genomic DNA was used as the template for the amplification of exons of five candidate genes for achromatopsia; CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H, and the amplified products were sequenced. A missense mutation, found in the CNGA3, was studied both electrophysiologically and biochemically. Her phenotype was typical of congenital complete achromatopsia. She was followed for 14 years, and her vision and fundus findings were stable. However, the scotopic ERG b-waves at age 22 were smaller than those at age 8, and her FAF images showed increased autofluorescence in both maculae. Genetic examinations revealed combined heterozygous mutations of c.997_998delGA and p.M424V in the CNGA3 gene. The homomeric channel consisting of the CNGA3 subunit with the p.M424V mutation had a weak cGMP-activated current in patch-clamp recordings. In heterologous expression analyses, the expression at the cell surface of the mutant CNGA3 subunit was about 28 % of the wild type. The two novel mutations found in the CNGA3 gene, c.997_998delGA and p.M424V, can cause complete achromatopsia. The vision of the patient was stationary until the third decade of life although the FAF was altered at the age of 22 years.

  3. Gene dose influences cellular and calcium channel dysregulation in heterozygous and homozygous T4826I-RYR1 malignant hyperthermia-susceptible muscle.

    Science.gov (United States)

    Barrientos, Genaro C; Feng, Wei; Truong, Kim; Matthaei, Klaus I; Yang, Tianzhong; Allen, Paul D; Lopez, José R; Pessah, Isaac N

    2012-01-20

    Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca(2+) concentration ([Ca(2+)](rest)) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca(2+) from the sarcoplasmic reticulum and Ca(2+) entry contributed to halothane-triggered increases in [Ca(2+)](rest) in Hom FDBs and elicited pronounced Ca(2+) oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca(2+)](rest) (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser(2844) phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [(3)H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca(2+), Mg(2+), and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca(2+)](rest), and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are

  4. A potent potassium channel blocker from Mesobuthus eupeus scorpion venom.

    Science.gov (United States)

    Gao, Bin; Peigneur, Steve; Tytgat, Jan; Zhu, Shunyi

    2010-12-01

    Scorpion venom-derived peptidyl toxins are valuable pharmacological tools for investigating the structure-function relationship of ion channels. Here, we report the purification, sequencing and functional characterization of a new K(+) channel blocker (MeuKTX) from the venom of the scorpion Mesobuthus eupeus. Effects of MeuKTX on ten cloned potassium channels in Xenopus oocytes were evaluated using two-electrode voltage-clamp recordings. MeuKTX is the orthologue of BmKTX (α-KTx3.6), a known Kv1.3 blocker from the scorpion Mesobuthus martensii, and classified as α-KTx3.13. MeuKTX potently blocks rKv1.1, rKv1.2 and hKv1.3 channels with 50% inhibitory concentration (IC(50)) of 203.15 ± 4.06 pM, 8.92 ± 2.3 nM and 171 ± 8.56 pM, respectively, but does not affect rKv1.4, rKv1.5, hKv3.1, rKv4.3, and hERG channels even at 2 μM concentration. At this high concentration, MeuKTX is also active on rKv1.6 and Shaker IR. Our results also demonstrate that MeuKTX and BmKTX have the same channel spectrum and similar pharmacological potency. Analysis of the structure-function relationships of α-KTx3 subfamily toxins allows us to recognize several key sites which may be useful for designing toxins with improved activity on hKv1.3, an attractive target for T-cell mediated autoimmune diseases.

  5. The Importance of Being Profiled: Improving Drug Candidate Safety and Efficacy Using Ion Channel Profiling

    Directory of Open Access Journals (Sweden)

    Gregory J. Kaczorowski

    2011-12-01

    Full Text Available Profiling of putative lead compounds against a representative panel of relevant enzymes, receptors, ion channels and transporters is a pragmatic approach to establish a preliminary view of potential issues that might later hamper development. An early idea of which off-target activities must be minimized can save valuable time and money during the preclinical lead optimization phase if pivotal questions are asked beyond the usual profiling at hERG. The best data for critical evaluation of activity at ion channels is obtained using functional assays, since binding assays cannot detect all interactions and do not provide information on whether the interaction is that of an agonist, antagonist, or allosteric modulator. For ion channels present in human cardiac muscle, depending on the required throughput, manual- or automated- patch-clamp methodologies can be easily used to evaluate compounds individually to accurately reveal any potential liabilities. The issue of expanding screening capacity against a cardiac panel has recently been addressed by developing a series of robust, high-throughput, cell-based counter-screening assays employing fluorescence-based readouts. Similar assay development approaches can be used to configure panels of efficacy assays that can be used to assess selectivity within a family of related ion channels, such as Nav1.X channels. This overview discusses the benefits of in vitro assays, specific decision points where profiling can be of immediate benefit, and highlights the development and validation of patch-clamp and fluorescence-based profiling assays for ion channels.

  6. A new sodium channel alpha-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2.

    Science.gov (United States)

    Beckers, M C; Ernst, E; Belcher, S; Howe, J; Levenson, R; Gros, P

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an alpha-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel alpha-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2.

  7. A new sodium channel {alpha}-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Gros, P. [McGill Univ., Montreal (Canada)

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2. 17 refs., 1 fig., 3 tabs.

  8. A K⁺ channel blocking peptide from the Cuban scorpion Rhopalurus garridoi.

    Science.gov (United States)

    Rodríguez-Ravelo, Rodolfo; Restano-Cassulini, Rita; Zamudio, Fernando Z; Coronas, Fredy I V; Espinosa-López, Georgina; Possani, Lourival D

    2014-03-01

    A proteomic analysis of the venom obtained from the Cuban scorpion Rhopalurus garridoi was performed. Venom was obtained by electrical stimulation, separated by high performance liquid chromatography, and the molecular masses of their 50 protein components were identified by mass spectrometry. A peptide of 3940 Da molecular mass was obtained in pure form and its primary structure determined. It contains 37 amino acid residues, including three disulfide bridges. Electrophysiological experiments showed that this peptide is capable of blocking reversibly K(+)-channels hKv1.1 with a Kd close to 1 μM, but is not effective against hKv1.4, hERG1 and EAG currents, at the same concentration. This is the first protein component ever isolated from this species of scorpion and was assigned the systematic number α-KTx 2.14.

  9. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley.

    Science.gov (United States)

    Liu, Xiaohui; Mak, Michelle; Babla, Mohammad; Wang, Feifei; Chen, Guang; Veljanoski, Filip; Wang, Gang; Shabala, Sergey; Zhou, Meixue; Chen, Zhong-Hua

    2014-01-01

    Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterization of stomatal behavior of a large number of varieties and genetic lines. Furthermore, we found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant cultivar CM72 showed significantly larger stomatal aperture under 200 mM NaCl treatment than that of salt-sensitive cultivar Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield under salt treatment. Phenotypic characterization and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to higher barley grain yield in the field.

  10. Nuclear receptor CAR specifically activates the two-pore K+ channel Kcnk1 gene in male mouse livers, which attenuates phenobarbital-induced hepatic hyperplasia.

    Science.gov (United States)

    Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2013-03-01

    KCNK1, a member of the family of two-pore K(+) ion channels, is specifically induced in the livers of male mice after phenobarbital treatment. Here, we have determined the molecular mechanism of this male-specific activation of the Kcnk1 gene and characterized KCNK1 as a phenobarbital-inducible antihyperplasia factor. Upon activation by phenobarbital, nuclear receptor CAR binds the 97-bp response element (-2441/-2345) within the Kcnk1 promoter. This binding is observed in the livers of male mice, but not in the livers of female mice and requires the pituitary gland, because hypophysectomy abrogates it. Hyperplasia further progressed in the livers of Kcnk1 ( -/- ) male mice compared with those of Kcnk1 ( +/+ ) males after phenobarbital treatment. Thus, KCNK1 suppresses phenobarbital-induced hyperplasia. These results indicate that phenobarbital treatment induces KCNK1 to elicit a male-specific and growth-suppressing signal. Thus, KCNK1 and Kcnk1 ( -/- ) mice provide an experimental tool for further investigation into the molecular mechanism of CAR-mediated promotion of the development of hepatocellular carcinoma in mice.

  11. Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela.

    Science.gov (United States)

    Alvarez, Leslie C; Ponce, Gustavo; Saavedra-Rodriguez, Karla; Lopez, Beatriz; Flores, Adriana E

    2015-06-01

    The V1016I and F1534C mutations in the voltage-gated sodium channel gene have been associated with resistance to pyrethroids and DDT in Aedes aegypti mosquitoes. A study was carried out to determine the frequency of I1016 and C1534 by real-time PCR in five natural populations of Ae. aegypti in Venezuela during 2008, 2010 and 2012, as well as in a strain selected with 0.14 µg of deltamethrin for 15 generations. In natural populations, frequencies of I1016 varied between 0.01 and 0.37, and frequencies of C1534 between 0.35 and 1.0. In the Pampanito strain, the frequency of I1016 increased from 0.02 in F1 up to 0.5 in F15 and from 0.35 up to fixation for C1534 after selection with deltamethrin. The results showed that C1534 frequencies are higher than I1016 frequencies in natural populations of Ae. aegypti in Venezuela, and that deltamethrin selected the C1534 more rapidly than I1016. © 2014 Society of Chemical Industry.

  12. Altered expression of renal bumetanide-sensitive sodium-pota-ssium-2 chloride cotransporter and Cl- channel -K2 gene in angiotensin Ⅱ-infused hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    YE Tao; LIU Zhi-quan; SUN Chao-feng; ZHENG Yong; MA Ai-qun; FANG Yuan

    2005-01-01

    Background Little information is available regarding the effect of angiotensin Ⅱ (Ang Ⅱ) on the bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2), the thiazide-sensitive sodium-chloride cotransporter (NCC), and the Cl- channel (CLC)-K2 at both mRNA and protein expression level in Ang Ⅱ-induced hypertensive rats. This study was conducted to investigate the influence of Ang Ⅱ with chronic subpressor infusion on nephron-specific gene expression of NKCC2, NCC and CLC-K2. Results Ang Ⅱ significantly increased blood pressure and up-regulated NKCC2 mRNA and protein expression in the kidney. Expression of CLC-K2 mRNA in the kidney increased 1.6 fold (P<0.05).There were no changes in NCC mRNA or protein expression in AngII-treated rats versus control. Conclusions Chronic subpressor Ang Ⅱ infusion can significantly alter NKCC2 and CLC-K2 mRNA expression in the kidney, and protein abundance of NKCC2 in kidney is positively regulated by Ang Ⅱ. These effects may contribute to enhanced renal Na+ and Cl- reabsorption in response to Ang Ⅱ.

  13. Field-collected permethrin-resistant Aedes aegypti from central Thailand contain point mutations in the domain IIS6 of the sodium channel gene (KDR).

    Science.gov (United States)

    Srisawat, Raweewan; Komalamisra, Narumon; Apiwathnasorn, Chamnarn; Paeporn, Pungasem; Roytrakul, Sittiruk; Rongsriyam, Yupha; Eshita, Yuki

    2012-11-01

    One of the mechanisms responsible for pyrethroid resistance in mosquitoes is mutations in domain IIS6 of voltage-gated sodium channel gene (kdr). Aedes aegypti larvae were collected from the central provinces of Thailand (Bangkok, Prachin Buri and Ratchaburi) and colonized until they became adults. Partial fragment of kdr of permethrin-resistant mosquitoes were amplified by RT-PCR and sequenced. Among the four nucleotide mutations detected, two mutations resulted in two amino acid substitutions, S(TCC) 989 P(CCC) and V(GTA)1016 G(GGA). Among 94 permethrin-resistant mosquitoes, the SS genotype (SS/VV) was found to predominate (n = 74), followed by SR (SP/VG) (n = 15) and RR (PP/ GG) genotypes (n = 5), with the resistant allele frequency ranging from 0.03 to 0.17. As pyrethroid insecticides are currently being advocated for use in Thailand, investigations of pyrethroid resistance in other regions of the country are needed to prevent potential cross-resistance among different types of insecticides.

  14. Identification and characterization of the promoter region of the Nav1.7 voltage-gated sodium channel gene (SCN9A).

    Science.gov (United States)

    Diss, James K J; Calissano, Mattia; Gascoyne, Duncan; Djamgoz, Mustafa B A; Latchman, David S

    2008-03-01

    The Nav1.7 sodium channel plays an important role in pain and is also upregulated in prostate cancer. To investigate the mechanisms regulating physiological and pathophysiological Nav1.7 expression we identified the core promoter of this gene (SCN9A) in the human genome. In silico genomic analysis revealed a putative SCN9A 5' non-coding exon approximately 64,000 nucleotides from the translation start site, expression of which commenced at three very closely-positioned transcription initiation sites (TISs), as determined by 5' RACE experiments. The genomic region around these TISs possesses numerous core elements of a TATA-less promoter within a well-defined CpG island. Importantly, it acted as a promoter when inserted upstream of luciferase in a fusion construct. Moreover, the activity of the promoter-luciferase construct ostensibly paralleled endogenous Nav1.7 mRNA levels in vitro, with both increased in a quantitatively and qualitatively similar manner by numerous factors (including NGF, phorbol esters, retinoic acid, and Brn-3a transcription factor over-expression).

  15. The association between the polymorphisms in a sodium channel gene SCN7A and essential hypertension: a case-control study in the Northern Han Chinese.

    Science.gov (United States)

    Zhang, Bei; Li, Mei; Wang, Lijuan; Li, Chuang; Lou, Yuqing; Liu, Jielin; Liu, Ya; Wang, Zuoguang; Wen, Shaojun

    2015-01-01

    Nax , an α-subunit of the sodium channel encoded by the SCN7A gene, has been deemed to be a sensor of the concentration of sodium in the brain and may be involved in salt intake behavior. We inferred that Nax /SCN7A may participate in the regulation of blood pressure and the pathogenesis of essential hypertension (EH). The present case-control study involving 615 hypertensives and 617 normotensives was performed to investigate the association between SCN7A polymorphisms and EH in the Northern Han Chinese population. The three common single nucleotide polymorphisms (SNPs) (rs3791251, rs6738031, rs7565062) in the exons of SCN7A were genotyped with the TaqMan assay. Significant association between SNP rs7565062 and EH was found under the addictive and dominant genetic models (P = 0.024, OR = 1.283, 95%CI [1.033-1.592]; P = 0.013, OR = 1.203, 95%CI [1.040-1.392]; respectively). The three SNPs were in close pair-wise linkage disequilibrium with each other and the haplotype analyses indicated that haplotype G-A-T was significantly associated with increased risk of EH (P = 0.023, OR = 1.290). In conclusion, our data showed that SNP rs7565062 of SCN7A was significantly associated with EH and the allele T of rs7565062 or the related haplotype G-A-T will be a genetic risk factor for EH in the Northern Han Chinese population.

  16. Adaptive molecular evolution of the two-pore channel 1 gene TPC1 in the karst-adapted genus Primulina (Gesneriaceae).

    Science.gov (United States)

    Tao, Junjie; Feng, Chao; Ai, Bin; Kang, Ming

    2016-12-01

    Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca(2+)-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5' end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. The Ca(2+)-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca(2+)-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and

  17. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroyuki [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Kanaya, Sousuke; Hamaji, Nozomu; Sato, Hisae; Shimauchi, Hidetoshi [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2010-04-16

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stability of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.

  18. Calcium channels and migraine.

    Science.gov (United States)

    Pietrobon, Daniela

    2013-07-01

    Missense mutations in CACNA1A, the gene that encodes the pore-forming α1 subunit of human voltage-gated Ca(V)2.1 (P/Q-type) calcium channels, cause a rare form of migraine with aura (familial hemiplegic migraine type 1: FHM1). Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache that may be preceded by transient neurological aura symptoms. This review, first, briefly summarizes current understanding of the pathophysiological mechanisms that are believed to underlie migraine headache, migraine aura and the onset of a migraine attack, and briefly describes the localization and function of neuronal Ca(V)2.1 channels in the brain regions that have been implicated in migraine pathogenesis. Then, the review describes and discusses i) the functional consequences of FHM1 mutations on the biophysical properties of recombinant human Ca(V)2.1 channels and native Ca(V)2.1 channels in neurons of knockin mouse models carrying the mild R192Q or severe S218L mutations in the orthologous gene, and ii) the functional consequences of these mutations on neurophysiological processes in the cerebral cortex and trigeminovascular system thought to be involved in the pathophysiology of migraine, and the insights into migraine mechanisms obtained from the functional analysis of these processes in FHM1 knockin mice. This article is part of a Special Issue entitled: Calcium channels. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Treatment with carbamazepine and gabapentin of a patient with primary erythermalgia (erythromelalgia) identified to have a mutation in the SCN9A gene, encoding a voltage-gated sodium channel.

    Science.gov (United States)

    Natkunarajah, J; Atherton, D; Elmslie, F; Mansour, S; Mortimer, P

    2009-12-01

    Primary erythermalgia (erythromelalgia) is a rare autosomal dominant condition characterized by intermittent attacks of erythema, increased skin temperature and severe burning pain in the extremities, in a bilateral symmetrical distribution. Mutations in the SCN9A gene, which encodes a voltage-gated sodium channel have been shown to cause this disease. We report a family identified to have a mutation in the SCN9A gene, in which one severely affected family member has responded to the therapeutic combination of gabapentin and carbamazepine treatment.

  20. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    Science.gov (United States)

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  1. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression.

    Directory of Open Access Journals (Sweden)

    Hitoshi Kawada

    2016-06-01

    Full Text Available Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures.High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C and one heterozygote of the other mutation (V1016I were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa were significantly higher than those in Ae. aegypti formosus (Aaf. We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area.The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries.

  2. Cardio-vascular safety beyond hERG: in silico modelling of a guinea pig right atrium assay

    Science.gov (United States)

    Fenu, Luca A.; Teisman, Ard; De Buck, Stefan S.; Sinha, Vikash K.; Gilissen, Ron A. H. J.; Nijsen, Marjoleen J. M. A.; Mackie, Claire E.; Sanderson, Wendy E.

    2009-12-01

    As chemists can easily produce large numbers of new potential drug candidates, there is growing demand for high capacity models that can help in driving the chemistry towards efficacious and safe candidates before progressing towards more complex models. Traditionally, the cardiovascular (CV) safety domain plays an important role in this process, as many preclinical CV biomarkers seem to have high prognostic value for the clinical outcome. Throughout the industry, traditional ion channel binding data are generated to drive the early selection process. Although this assay can generate data at high capacity, it has the disadvantage of producing high numbers of false negatives. Therefore, our company applies the isolated guinea pig right atrium (GPRA) assay early-on in discovery. This functional multi-channel/multi-receptor model seems much more predictive in identifying potential CV liabilities. Unfortunately however, its capacity is limited, and there is no room for full automation. We assessed the correlation between ion channel binding and the GPRA's Rate of Contraction (RC), Contractile Force (CF), and effective refractory frequency (ERF) measures assay using over six thousand different data points. Furthermore, the existing experimental knowledge base was used to develop a set of in silico classification models attempting to mimic the GPRA inhibitory activity. The Naïve Bayesian classifier was used to built several models, using the ion channel binding data or in silico computed properties and structural fingerprints as descriptors. The models were validated on an independent and diverse test set of 200 reference compounds. Performances were assessed on the bases of their overall accuracy, sensitivity and specificity in detecting both active and inactive molecules. Our data show that all in silico models are highly predictive of actual GPRA data, at a level equivalent or superior to the ion channel binding assays. Furthermore, the models were interpreted in

  3. Chloride channels in stroke

    Institute of Scientific and Technical Information of China (English)

    Ya-ping ZHANG; Hao ZHANG; Dayue Darrel DUAN

    2013-01-01

    Vascular remodeling of cerebral arterioles,including proliferation,migration,and apoptosis of vascular smooth muscle cells (VSMCs),is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain,ie,stroke.Accumulating evidence strongly supports an important role for chloride (Clˉ) channels in vascular remodeling and stroke.At least three Clˉ channel genes are expressed in VSMCs:1) the TMEM16A (or Ano1),which may encode the calcium-activated Clˉ channels (CACCs); 2) the CLC-3 Clˉ channel and Clˉ/H+ antiporter,which is closely related to the volume-regulated Clˉ channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR),which encodes the PKA-and PKC-activated Clˉ channels.Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization,vasoconstriction,and inhibition of VSMC proliferation.Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species,induces proliferation and inhibits apoptosis of VSMCs.Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension.In addition,Clˉ current mediated by gammaaminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death.This review focuses on the functional roles of Clˉ channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Clˉ channels as new targets for the prevention and treatment of stroke.

  4. Identification and molecular characterization of three new K+-channel specific toxins from the Chinese scorpion Mesobuthus martensii Karsch revealing intronic number polymorphism and alternative splicing in duplicated genes.

    Science.gov (United States)

    Zeng, Xian-Chun; Zhang, Lei; Nie, Yao; Luo, Xuesong

    2012-04-01

    K(+)-channel specific toxins from scorpions are powerful probes used in the structural and functional characterization of different subfamilies of K(+)-channels which are thought to be the most diverse ion channels. However, only a limited number of K(+)-channel toxins have been identified from scorpions so far; moreover, little is known about the mechanisms for the generation of a combinatorial peptide library in a venom gland of a scorpion. Here, we identified and characterized three new K(+)-channel toxin-like peptides from the scorpion Mesobuthus martensii Karsch, which were referred to as BmKcug1, BmKcug2 and BmKcugx, respectively. BmKcug1 and BmKcug2 are two new members of α-KTx1 subfamily, and have been classified as α-KTx1.14 and α-KTx1.15, respectively. BmKcugx represents a new subfamily of K(+)-channel specific toxins which was classified into α-KTx22. BmKcugx was thus classified as α-KTx22.1. Genomic analysis demonstrated that BmKcugx gene has two exons interrupted by an intron inserted in the signal peptide encoding region, whereas BmKcug1a (a close homologue of BmKcug1)/BmKcug2 gene was interrupted by two introns, located within the 5'UTR of the gene and in the signal peptide encoding region, respectively. Transcriptomic analysis for the venom glands of M. martensii Karsch indicated that the abundances of the transcripts of BmKcug1a and BmKcug2 are much higher than that of BmKcugx; it suggests that the intron in 5'UTR could markedly increase the expression level of the K(+)-channel toxins. Alignment of the genomic sequences of BmKcug1a and BmKcug2 revealed that an alternative splicing event occurred at the intron 1-exon 2 junction in the 5'UTR of BmKcug2 transcript.

  5. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  6. Mechanosensitive Channels

    Science.gov (United States)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  7. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin.

    Science.gov (United States)

    Deb, Rajib; Singh, Umesh; Kumar, Sushil; Kumar, Arun; Singh, Rani; Sengar, Gyanendra; Mann, Sandeep; Sharma, Arjava

    2014-04-01

    Calcium channel, voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene is considered to be an important noncytokine candidate gene influencing mastitis. Scanty of reports are available until today regarding the role play of CACNA2D1 gene on the susceptibility of bovine mastitis. We interrogated the CACNA2D1 G519663A [A>G] SNP by PCR-RFLP among two hundreds Frieswal (HF X Sahiwal) crossbred cattle of Indian origin. Genotypic frequency of AA (51.5, n=101) was comparatively higher than AG (35, n=70) and GG (14.5, n=29). Association of Somatic cell score (SCS) with genotypes revealed that, GG genotypes showing lesser count (less susceptible to mastitis) compare to AA and AG. Relative expression of CACNA2D1 transcript (in milk samples) was significantly higher among GG than AG and AA. Further we have also isolated blood sample from the all groups and PBMCs were cultured from each blood sample as per the standard protocol. They were treated with Calcium channel blocker and the expression level of the CACNA2D1 gene was evaluated by Real Time PCR. Results show that expression level decline in each genotypic group after treatment and expression level of GG are again significantly higher than AA and AG. Thus, it may be concluded that GG genotypic animals are favorable for selecting disease resistant breeds.

  8. A single crossing-over event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides.

    Directory of Open Access Journals (Sweden)

    Koichi Hirata

    2014-08-01

    Full Text Available The voltage-sensitive sodium (Na+ channel (Vssc is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction, respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti.

  9. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  10. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels.

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    Full Text Available NALCN is a member of the family of ion channels with four homologous, repeat domains that include voltage-gated calcium and sodium channels. NALCN is a highly conserved gene from simple, extant multicellular organisms without nervous systems such as sponges and placozoans and mostly remains a single gene compared to the calcium and sodium channels which diversified into twenty genes in humans. The single NALCN gene has alternatively-spliced exons at exons 15 or exon 31 that splices in novel selectivity filter residues that resemble calcium channels (EEEE or sodium channels (EKEE or EEKE. NALCN channels with alternative calcium, (EEEE and sodium, (EKEE or EEKE -selective pores are conserved in simple bilaterally symmetrical animals like flatworms to non-chordate deuterostomes. The single NALCN gene is limited as a sodium channel with a lysine (K-containing pore in vertebrates, but originally NALCN was a calcium-like channel, and evolved to operate as both a calcium channel and sodium channel for different roles in many invertebrates. Expression patterns of NALCN-EKEE in pond snail, Lymnaea stagnalis suggest roles for NALCN in secretion, with an abundant expression in brain, and an up-regulation in secretory organs of sexually-mature adults such as albumen gland and prostate. NALCN-EEEE is equally abundant as NALCN-EKEE in snails, but is greater expressed in heart and other muscle tissue, and 50% less expressed in the brain than NALCN-EKEE. Transfected snail NALCN-EEEE and NALCN-EKEE channel isoforms express in HEK-293T cells. We were not able to distinguish potential NALCN currents from background, non-selective leak conductances in HEK293T cells. Native leak currents without expressing NALCN genes in HEK-293T cells are NMDG(+ impermeant and blockable with 10 µM Gd(3+ ions and are indistinguishable from the hallmark currents ascribed to mammalian NALCN currents expressed in vitro by Lu et al. in Cell. 2007 Apr 20;129(2:371-83.

  11. Positron Channeling

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  12. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang

    2009-01-01

    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  13. New disguises for an old channel: MaxiK channel beta-subunits.

    Science.gov (United States)

    Orio, Patricio; Rojas, Patricio; Ferreira, Gonzalo; Latorre, Ramón

    2002-08-01

    Ca(2+)-activated K(+) channels of large conductance (MaxiK or BK channels) control a large variety of physiological processes, including smooth muscle tone, neurosecretion, and hearing. Despite being coded by a single gene (Slowpoke), the diversity of MaxiK channels is great. Regulatory b-subunits, splicing, and metabolic regulation create this diversity fundamental to the adequate function of many tissues.

  14. Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat

    DEFF Research Database (Denmark)

    Gozalov, Aydin; Jansen-Olesen, Inger; Klærke, Dan Arne;

    2008-01-01

    in migraine pathogenesis. We hypothesized that vasodilatation induced by CGRP and the NO donor glyceryltrinitrate (GTN) is mediated via K(ATP) channels. METHODS: We examined the effects of the K(ATP) channel inhibitor glibenclamide on dural and pial vasodilatation induced by CGRP, NO, and endogenously....... In anesthetized rats glibenclamide significantly attenuated CGRP induced dural and TES induced dural/pial artery dilatation (P = .001; P = .001; P = .005), but had no effect on dural/pial vasodilatation induced by GTN. In vitro glibenclamide failed to significantly inhibit CGRP- and GTN-induced vasodilatation....... CONCLUSIONS: These results show that a K(ATP) channel blocker in vivo but not in vitro inhibits CGRP, but not GTN-induced dilatation of dural and pial arteries, a mechanism thought to be important in migraine....

  15. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  16. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  17. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  18. Coevolution of the Ile1,016 and Cys1,534 Mutations in the Voltage Gated Sodium Channel Gene of Aedes aegypti in Mexico.

    Directory of Open Access Journals (Sweden)

    Farah Z Vera-Maloof

    2015-12-01

    Full Text Available Worldwide the mosquito Aedes aegypti (L. is the principal urban vector of dengue viruses. Currently 2.5 billion people are at risk for infection and reduction of Ae. aegypti populations is the most effective means to reduce the risk of transmission. Pyrethroids are used extensively for adult mosquito control, especially during dengue outbreaks. Pyrethroids promote activation and prolong the activation of the voltage gated sodium channel protein (VGSC by interacting with two distinct pyrethroid receptor sites [1], formed by the interfaces of the transmembrane helix subunit 6 (S6 of domains II and III. Mutations of S6 in domains II and III synergize so that double mutants have higher pyrethroid resistance than mutants in either domain alone. Computer models predict an allosteric interaction between mutations in the two domains. In Ae. aegypti, a Ile1,016 mutation in the S6 of domain II was discovered in 2006 and found to be associated with pyrethroid resistance in field populations in Mexico. In 2010 a second mutation, Cys1,534 in the S6 of domain III was discovered and also found to be associated with pyrethroid resistance and correlated with the frequency of Ile1,016.A linkage disequilibrium analysis was performed on Ile1,016 and Cys1,534 in Ae. aegypti collected in Mexico from 2000-2012 to test for statistical associations between S6 in domains II and III in natural populations. We estimated the frequency of the four dilocus haplotypes in 1,016 and 1,534: Val1,016/Phe1,534 (susceptible, Val1,016/Cys1,534, Ile1,016/Phe1,534, and Ile1,016/Cys1,534 (resistant. The susceptible Val1,016/Phe1,534 haplotype went from near fixation to extinction and the resistant Ile1,016/Cys1,534 haplotype increased in all collections from a frequency close to zero to frequencies ranging from 0.5-0.9. The Val1,016/Cys1,534 haplotype increased in all collections until 2008 after which it began to decline as Ile1,016/Cys1,534 increased. However, the Ile1,016/Phe1

  19. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  20. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    Science.gov (United States)

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2015-02-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system.

  1. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  2. The importance of being profiled: improving drug candidate safety and efficacy using ion channel profiling.

    Science.gov (United States)

    Kaczorowski, Gregory J; Garcia, Maria L; Bode, Jacob; Hess, Stephen D; Patel, Umesh A

    2011-01-01

    Profiling of putative lead compounds against a representative panel of relevant enzymes, receptors, ion channels, and transporters is a pragmatic approach to establish a preliminary view of potential issues that might later hamper development. An early idea of which off-target activities must be minimized can save valuable time and money during the preclinical lead optimization phase if pivotal questions are asked beyond the usual profiling at hERG. The best data for critical evaluation of activity at ion channels is obtained using functional assays, since binding assays cannot detect all interactions and do not provide information on whether the interaction is that of an agonist, antagonist, or allosteric modulator. For ion channels present in human cardiac muscle, depending on the required throughput, manual-, or automated-patch-clamp methodologies can be easily used to evaluate compounds individually to accurately reveal any potential liabilities. The issue of expanding screening capacity against a cardiac panel has recently been addressed by developing a series of robust, high-throughput, cell-based counter-screening assays employing fluorescence-based readouts. Similar assay development approaches can be used to configure panels of efficacy assays that can be used to assess selectivity within a family of related ion channels, such as Nav1.X channels. This overview discusses the benefits of in vitro assays, specific decision points where profiling can be of immediate benefit, and highlights the development and validation of patch-clamp and fluorescence-based profiling assays for ion channels (for examples of fluorescence-based assays, see Bhave et al., 2010; and for high-throughput patch-clamp assays see Mathes, 2006; Schrøder et al., 2008).

  3. Gene splicing of an invertebrate beta subunit (LCavβ in the N-terminal and HOOK domains and its regulation of LCav1 and LCav2 calcium channels.

    Directory of Open Access Journals (Sweden)

    Taylor F Dawson

    Full Text Available The accessory beta subunit (Ca(vβ of calcium channels first appear in the same genome as Ca(v1 L-type calcium channels in single-celled coanoflagellates. The complexity of this relationship expanded in vertebrates to include four different possible Ca(vβ subunits (β1, β2, β3, β4 which associate with four Ca(v1 channel isoforms (Ca(v1.1 to Ca(v1.4 and three Ca(v2 channel isoforms (Ca(v2.1 to Ca(v2.3. Here we assess the fundamentally-shared features of the Ca(vβ subunit in an invertebrate model (pond snail Lymnaea stagnalis that bears only three homologous genes: (LCa(v1, LCa(v2, and LCa(vβ. Invertebrate Ca(vβ subunits (in flatworms, snails, squid and honeybees slow the inactivation kinetics of Ca(v2 channels, and they do so with variable N-termini and lacking the canonical palmitoylation residues of the vertebrate β2a subunit. Alternative splicing of exon 7 of the HOOK domain is a primary determinant of a slow inactivation kinetics imparted by the invertebrate LCa(vβ subunit. LCa(vβ will also slow the inactivation kinetics of LCa(v3 T-type channels, but this is likely not physiologically relevant in vivo. Variable N-termini have little influence on the voltage-dependent inactivation kinetics of differing invertebrate Ca(vβ subunits, but the expression pattern of N-terminal splice isoforms appears to be highly tissue specific. Molluscan LCa(vβ subunits have an N-terminal "A" isoform (coded by exons: 1a and 1b that structurally resembles the muscle specific variant of vertebrate β1a subunit, and has a broad mRNA expression profile in brain, heart, muscle and glands. A more variable "B" N-terminus (exon 2 in the exon position of mammalian β3 and has a more brain-centric mRNA expression pattern. Lastly, we suggest that the facilitation of closed-state inactivation (e.g. observed in Ca(v2.2 and Ca(vβ3 subunit combinations is a specialization in vertebrates, because neither snail subunit (LCa(v2 nor LCa(vβ appears to be compatible

  4. Trisomy of the G protein-coupled K+ channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice

    OpenAIRE

    Cooper, Ayelet; Grigoryan, Gayane; Guy-David, Liora; Tsoory, Michael M; Chen, Alon; Reuveny, Eitan

    2012-01-01

    G protein-activated inwardly rectifying K+ channels (GIRK) generate slow inhibitory postsynaptic potentials in the brain via Gi/o protein-coupled receptors. GIRK2, a GIRK subunit, is widely abundant in the brain and has been implicated in various functions and pathologies, such as learning and memory, reward, motor coordination, and Down syndrome. Down syndrome, the most prevalent cause of mental retardation, results from the presence of an extra maternal chromosome 21 (trisomy 21), which com...

  5. Voltage-gated Proton Channels

    Science.gov (United States)

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  6. The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels.

    Science.gov (United States)

    Young, Jason C

    2014-03-01

    Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrated into the endoplasmic reticulum (ER) membrane system and, upon correct folding, are trafficked by the secretory pathway to the cell surface. Misfolded mutant forms traffic poorly, if at all, and are instead degraded by the ER-associated proteasomal degradation (ERAD) system. Molecular chaperones can assist the folding of the cytosolic domains of these transmembrane proteins; however, these chaperones are also involved in selecting misfolded forms for ERAD. Given this dual role of chaperones, diseases caused by the misfolding and aberrant trafficking of ion channels (referred to here as ion-channel-misfolding diseases) can be regarded as a consequence of insufficiency of the pro-folding chaperone activity and/or overefficiency of the chaperone ERAD role. An attractive idea is that manipulation of the chaperones might allow increased folding and trafficking of the mutant proteins, and thereby partial restoration of function. This Review outlines the roles of the cytosolic HSP70 chaperone system in the best-studied paradigms of ion-channel-misfolding disease--the CFTR chloride channel in cystic fibrosis and the hERG potassium channel in cardiac long QT syndrome type 2. In addition, other ion channels implicated in ion-channel-misfolding diseases are discussed.

  7. Regulated trafficking of the CFTR chloride channel

    NARCIS (Netherlands)

    Braakman, L.J.; Kleizen, B.; Jonge, H.R. de

    2000-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Wh

  8. Vanilloid Receptor–Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor

    National Research Council Canada - National Science Library

    Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A; Bell, Andrea M; Denis, Charlotte S; AndrejŠali; Hudspeth, A.J; Friedman, Jeffrey M; Heller, Stefan

    2000-01-01

    .... By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC...

  9. Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria

    Science.gov (United States)

    Ogunjobi, Adeniyi A.

    2016-01-01

    Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include blaTEM, blaSHV, and blaCTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with blaTEM being the most abundant (50/61) and blaCTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, blaSHV + blaTEM or blaCTX + blaTEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic blaTEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria. PMID:27563674

  10. Mutations in Genes Encoding Cardiac Ion Channels Previously Associated With Sudden Infant Death Syndrome (SIDS) Are Present With High Frequency in New Exome Data

    DEFF Research Database (Denmark)

    Andreasen, Charlotte Hartig; Refsgaard, Lena; Nielsen, Jonas B

    2013-01-01

    Sudden infant death syndrome (SIDS) is the leading cause of death in the first 6 months after birth in the industrialized world. The genetic contribution to SIDS has been investigated intensively and to date, 14 cardiac channelopathy genes have been associated with SIDS. Newly published data from...

  11. Phenotype variation and newcomers in ion channel disorders.

    Science.gov (United States)

    Bulman, D E

    1997-01-01

    Ion channels are part of a large family of macromolecules whose functions include the control and maintenance of electrical potential across cell membranes, secretion and signal transduction. Close inspection of the physiological processes involved in channel function and the secondary structure of various ion channels has served as a basis for subdividing ion channels into a number of superfamilies. The voltage-gated ion channels are one of these superfamilies. Recent work has shown that mutations in various ion channel genes are responsible for a number of neuromuscular and neurological disorders. Correlation of the various mutations with the clinical phenotype is providing us with insight into the pathophysiology of these channel proteins. Interestingly, different mutations within the same gene may cause quite distinct clinical disorders, while mutations in different channel genes may result in very similar phenotypes (genetic heterogeneity). Examples of phenotypic variation and genetic heterogeneity are presented in the context of the periodic paralytic disorders of skeletal muscle, episodic ataxia, migraine, long QT syndrome and paroxysmal dyskinesia. Some of these disorders are known to be caused by mutations in ion channel genes, while in the episodic movement disorders, ion channel genes are considered excellent candidate genes.

  12. Computational approaches to understand the adverse drug effect on potassium, sodium and calcium channels for predicting TdP cardiac arrhythmias.

    Science.gov (United States)

    Sharifi, Mohsen

    2017-09-01

    Ion channels play a crucial role in the cardiovascular system. Our understanding of cardiac ion channel function has improved since their first discoveries. The flow of potassium, sodium and calcium ions across cardiomyocytes is vital for regular cardiac rhythm. Blockage of these channels, delays cardiac repolarization or tend to shorten repolarization and may induce arrhythmia. Detection of drug risk by channel blockade is considered essential for drug regulators. Advanced computational models can be used as an early screen for torsadogenic potential in drug candidates. New drug candidates that are determined to not cause blockage are more likely to pass successfully through preclinical trials and not be withdrawn later from the marketplace by manufacturer. Several different approved drugs, however, can cause a distinctive polymorphic ventricular arrhythmia known as torsade de pointes (TdP), which may lead to sudden death. The objective of the present study is to review the mechanisms and computational models used to assess the risk that a drug may TdP. There is strong evidence from multiple studies that blockage of the L-type calcium current reduces risk of TdP. Blockage of sodium channels slows cardiac action potential conduction, however, not all sodium channel blocking antiarrhythmic drugs produce a significant effect, while late sodium channel block reduces TdP. Interestingly, there are some drugs that block the hERG potassium channel and therefore cause QT prolongation, but they are not associated with TdP. Recent studies confirmed the necessity of studying multiple distinctionic ion channels which are responsible for cardiac related diseases or TdP, to obtain an improved clinical TdP risk prediction of compound interactions and also for designing drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Long-term habituation of the gill-withdrawal reflex in Aplysia requires gene transcription, calcineurin and L-type voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Joseph eEsdin

    2010-11-01

    Full Text Available Although habituation is possibly the simplest form of learning, we still do not fully understand the neurobiological basis of habituation in any organism. To advance the goal of a comprehensive understanding of habituation, we have studied long-term habituation (LTH of the gill-withdrawal reflex (GWR in the marine snail Aplysia californica. Previously, we showed that habituation of the GWR in a reduced preparation lasts for up to 12 hr, and depends on protein synthesis, as well as activation of protein phosphatases 1 and 2A and postsynaptic glutamate receptors. Here, we have used the reduced preparation to further analyze the mechanisms of LTH in Aplysia. We found that LTH of the GWR depends on RNA synthesis because it was blocked by both the irreversible transcriptional inhibitor actinomycin-D and the reversible transcriptional inhibitor, 5,6-dichlorobenzimidazole riboside (DRB. In addition, LTH requires activation of protein phosphatase 2B (calcineurin, because it was disrupted by ascomycin. Finally, LTH was blocked by nitrendipine, which indicates that activation of L-type voltage-gated Ca2+ channels is required for this form of learning. Together with our previous results, the present results indicate that exclusively presynaptic mechanisms, although possibly sufficient for short-term habituation, are insufficient for LTH. Rather, LTH must involve postsynaptic, as well as presynaptic, mechanisms.

  14. Potassium channels and human epileptic phenotypes: an updated overview

    Directory of Open Access Journals (Sweden)

    Chiara eVilla

    2016-03-01

    Full Text Available Potassium (K+ channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals.This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms.

  15. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  16. The antibody targeting the E314 peptide of human Kv1.3 pore region serves as a novel, potent and specific channel blocker.

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Yang

    Full Text Available Selective blockade of Kv1.3 channels in effector memory T (T(EM cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3 extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314 was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1, Kv1.2(hKv1.2, Kv1.4(hKv1.4, Kv1.5(hKv1.5, KCa3.1(hKCa3.1, HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca(2+ or voltage-gated Na(+ currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related K(v1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous system (CNS disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker.

  17. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  18. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  19. A novel amino acid substitution in the para-sodium channel gene in Rhipicephalus microplus (Acari: Ixodidae) associated with knockdown resistance.

    Science.gov (United States)

    Aguirre, Marcelino; Flores, Adriana E; Alvarez, Genoveva; Molina, Alberto; Rodriguez, Iram; Ponce, Gustavo

    2010-12-01

    Resistance acquired by the tick Rhipicephalus microplus (Canestrini) to different types of ixodicides in Mexico has had a negative impact on national and local livestock, mainly due to the transmission of diseases such as babesiosis and anaplasmosis, among others. The technique used for the diagnosis of resistance was that in the bioassays noted in the Norma Oficial Mexicana (NOM-006-ZOO-1994). The purpose of this investigation was the determination of resistance to pyrethroids through isoleucine-phenylalanine mutation in the gene KDR, in a population of ticks from Montemorelos, NL, Mexico. Preliminary bioassays demonstrated resistance to cypermethrin and deltamethrin (27.4%) and flumethrin (36.7-34.7%). To identify the mutation, DNA was extracted from 100 mg of larvae (pools), 10 pools were assessed by PCR, in which a pair of primers designed with the program Oligo 2.0 and Amplify 1.2 amplified a 136 bp fragment containing the mutation. The PCR product was subsequently sequenced to confirm the presence of the mutation. A strain susceptible to pyrethroid insecticides (Mora strain) was used as control, but it did not show the mutation. However, the mutation was detected in 4 out of 10 samples of the strain Montemorelos.

  20. A Single Nucleotide Polymorphism (rs4236480) in TRPV5 Calcium Channel Gene Is Associated with Stone Multiplicity in Calcium Nephrolithiasis Patients.

    Science.gov (United States)

    Khaleel, Anas; Wu, Mei-Shin; Wong, Henry Sung-Ching; Hsu, Yu-Wen; Chou, Yii-Her; Chen, Hsiang-Yin

    2015-01-01

    Nephrolithiasis is characterized by calcification of stones in the kidneys from an unknown cause. Animal models demonstrated the functional roles of the transient receptor potential vanilloid member 5 (TRPV5) gene in calcium renal reabsorption and hypercalciuria. Therefore, TRPV5 was suggested to be involved in calcium homeostasis. However, whether genetic polymorphisms of TRPV5 are associated with kidney stone multiplicity or recurrence is unclear. In this study, 365 Taiwanese kidney-stone patients were recruited. Both biochemical data and DNA samples were collected. Genotyping was performed by a TaqMan allelic discrimination assay. We found that a TRPV5 polymorphism (rs4236480) was observed to be associated with stone multiplicity of calcium nephrolithiasis, as the risk of stone multiplicity was higher in patients with the TT+CT genotype than in patients with the CC genotype (p = 0.0271). In summary, despite the complexity of nephrolithiasis and the potential association of numerous calcium homeostatic absorption/reabsorption factors, TRPV5 plays an important role in the pathogenesis of calcium nephrolithiasis.

  1. A Single Nucleotide Polymorphism (rs4236480 in TRPV5 Calcium Channel Gene Is Associated with Stone Multiplicity in Calcium Nephrolithiasis Patients

    Directory of Open Access Journals (Sweden)

    Anas Khaleel

    2015-01-01

    Full Text Available Nephrolithiasis is characterized by calcification of stones in the kidneys from an unknown cause. Animal models demonstrated the functional roles of the transient receptor potential vanilloid member 5 (TRPV5 gene in calcium renal reabsorption and hypercalciuria. Therefore, TRPV5 was suggested to be involved in calcium homeostasis. However, whether genetic polymorphisms of TRPV5 are associated with kidney stone multiplicity or recurrence is unclear. In this study, 365 Taiwanese kidney-stone patients were recruited. Both biochemical data and DNA samples were collected. Genotyping was performed by a TaqMan allelic discrimination assay. We found that a TRPV5 polymorphism (rs4236480 was observed to be associated with stone multiplicity of calcium nephrolithiasis, as the risk of stone multiplicity was higher in patients with the TT+CT genotype than in patients with the CC genotype (p=0.0271. In summary, despite the complexity of nephrolithiasis and the potential association of numerous calcium homeostatic absorption/reabsorption factors, TRPV5 plays an important role in the pathogenesis of calcium nephrolithiasis.

  2. Identification of diterpene alkaloids from Aconitum napellus subsp. firmum and GIRK channel activities of some Aconitum alkaloids.

    Science.gov (United States)

    Kiss, Tivadar; Orvos, Péter; Bánsághi, Száva; Forgo, Peter; Jedlinszki, Nikoletta; Tálosi, László; Hohmann, Judit; Csupor, Dezső

    2013-10-01

    Diterpene alkaloids neoline (1), napelline (2), isotalatizidine (3), karakoline (4), senbusine A (5), senbusine C (6), aconitine (7) and taurenine (8) were identified from Aconitum napellus L. subsp. firmum, four (2-4, 6) of which are reported for the first time from this plant. The structures were determined by means of LC-MS, 1D and 2D NMR spectroscopy, including (1)H-(1)H COSY, NOESY, HSQC and HMBC experiments. Electrophysiological effects of the isolated compounds, together with nine diterpene alkaloids previously obtained from Aconitum toxicum and Consolida orientalis were investigated on stable transfected HEK-hERG (Kv11.1) and HEK-GIRK1/4 (Kir3.1 and Kir3.4) cell lines using automated patch clamp equipment. Significant blocking activity on GIRK channel was exerted by aconitine (7) (45% at 10 μM), but no blocking activities of the other investigated compounds were detected. The tested compounds were inactive on hERG channel in the tested concentration. The comparison of the previously reported metabolites of A. napellus subsp. firmum and compounds identified in our experiment reveals substantial variability of the alkaloid profile of this taxon.

  3. Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study.

    Science.gov (United States)

    Gonzalez, Suzanne; Xu, Chun; Ramirez, Mercedes; Zavala, Juan; Armas, Regina; Contreras, Salvador A; Contreras, Javier; Dassori, Albana; Leach, Robin J; Flores, Deborah; Jerez, Alvaro; Raventós, Henriette; Ontiveros, Alfonso; Nicolini, Humberto; Escamilla, Michael

    2013-03-01

      Through recent genome-wide association studies (GWASs), several groups have reported significant association between variants in the calcium channel, voltage-dependent, L-type, alpha 1C subunit (CACNA1C) and bipolar disorder (BP) in European and European-American cohorts. We performed a family-based association study to determine whether CACNA1C is associated with BP in the Latino population.   This study included 913 individuals from 215 Latino pedigrees recruited from the USA, Mexico, Guatemala, and Costa Rica. The Illumina GoldenGate Genotyping Assay was used to genotype 58 single-nucleotide polymorphisms (SNPs) that spanned a 602.9-kb region encompassing the CACNA1C gene including two SNPs (rs7297582 and rs1006737) previously shown to associate with BP. Individual SNP and haplotype association analyses were performed using Family-Based Association Test (version 2.0.3) and Haploview (version 4.2) software.   An eight-locus haplotype block that included these two markers showed significant association with BP (global marker permuted p = 0.0018) in the Latino population. For individual SNPs, this sample had insufficient power (10%) to detect associations with SNPs with minor effect (odds ratio = 1.15).   Although we were not able to replicate findings of association between individual CACNA1C SNPs rs7297582 and rs1006737 and BP, we were able to replicate the GWAS signal reported for CACNA1C through a haplotype analysis that encompassed these previously reported significant SNPs. These results provide additional evidence that CACNA1C is associated with BP and provides the first evidence that variations in this gene might play a role in the pathogenesis of this disorder in the Latino population. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  4. Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study

    Science.gov (United States)

    Gonzalez, Suzanne; Xu, Chun; Ramirez, Mercedes; Zavala, Juan; Armas, Regina; Contreras, Salvador A; Contreras, Javier; Dassori, Albana; Leach, Robin J; Flores, Deborah; Jerez, Alvaro; Raventós, Henriette; Ontiveros, Alfonso; Nicolini, Humberto; Escamilla, Michael

    2013-01-01

    Objectives Through recent genome-wide association studies (GWAS), several groups have reported significant association between variants in the alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) and bipolar disorder (BP) in European and European-American cohorts. We performed a family-based association study to determine whether CACNA1C is associated with BP in the Latino population. Methods This study consisted of 913 individuals from 215 Latino pedigrees recruited from the United States, Mexico, Guatemala, and Costa Rica. The Illumina GoldenGate Genotyping Assay was used to genotype 58 single-nucleotide polymorphisms (SNPs) that spanned a 602.9 kb region encompassing the CACNA1C gene including two SNPs (rs7297582 and rs1006737) previously shown to associate with BP. Individual SNP and haplotype association analyses were performed using Family-Based Association Test (version 2.0.3) and Haploview (version 4.2) software. Results An eight-locus haplotype block that included these two markers showed significant association with BP (global marker permuted p = 0.0018) in the Latino population. For individual SNPs, this sample had insufficient power (10%) to detect associations with SNPs with minor effect (odds ratio = 1.15). Conclusions Although we were not able to replicate findings of association between individual CACNA1C SNPs rs7297582 and rs1006737 and BP, we were able to replicate the GWAS signal reported for CACNA1C through a haplotype analysis that encompassed these previously reported significant SNPs. These results provide additional evidence that CACNA1C is associated with BP and provides the first evidence that variations in this gene might play a role in the pathogenesis of this disorder in the Latino population. PMID:23437964

  5. Multi-Channel Retailing

    Directory of Open Access Journals (Sweden)

    Dirk Morschett, Dr.,

    2005-01-01

    Full Text Available Multi-channel retailing entails the parallel use by retailing enterprises of several sales channels. The results of an online buyer survey which has been conducted to investigate the impact of multi-channel retailing (i.e. the use of several retail channels by one retail company on consumer behaviour show that the frequently expressed concern that the application of multi-channel systems in retailing would be associated with cannibalization effects, has proven unfounded. Indeed, the appropriate degree of similarity, consistency, integration and agreement achieves the exact opposite. Different channels create different advantages for consumers. Therefore the total benefit an enterprise which has a multi-channel system can offer to its consumers is larger, the greater the number of available channels. The use of multi-channel systems is associated with additional purchases in the different channels. Such systems are thus superior to those offering only one sales channel to their customers. Furthermore, multi-channel systems with integrated channels are superior to those in which the channels are essentially autonomous and independent of one another. In integrated systems, consumers can achieve synergy effects in the use of sales-channel systems. Accordingly, when appropriately formulated, multi-channel systems in retailing impact positively on consumers. They use the channels more frequently, buy more from them and there is a positive customer-loyalty impact. Multi-channel systems are strategic options for achieving customer loyalty, exploiting customer potential and for winning new customers. They are thus well suited for approaching differing and varied target groups.

  6. The gating of the CFTR channel.

    Science.gov (United States)

    Moran, Oscar

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.

  7. TPC1 - SV Channels Gain Shape

    Institute of Scientific and Technical Information of China (English)

    Rainer Hedrich; Irene Marten

    2011-01-01

    T The most prominent ion channel localized in plant vacuoles is the slow activating SV type. Slow vacuolar (SV)channels were discovered by patch clamp studies as early as 1986. In the following two decades, numerous studies revealed that these calcium- and voltage-activated, nonselective cation channels are expressed in the vacuoles of all plants and every plant tissue. The voltage-dependent properties of the SV channel are susceptible to modulation by calcium, pH, redox state, as well as regulatory proteins. In Arabidopsis, the SV channel is encoded by the AtTPC1 gene, and even though its gene product represents the by far largest conductance of the vacuolar membrane, tpc1-loss-of-function mutants appeared not to be impaired in major physiological functions such as growth, development, and reproduction. In contrast, the fou2 gain-of-function point mutation D454N within TPC1 leads to a pronounced growth phenotype and increased synthesis of the stress hormone jasmonate. Since the TPC1 gene is present in all land plants, it likely encodes a very general function. In this review, we will discuss major SV channel properties and their impact on plant cell physiology.

  8. Disease causing mutations of calcium channels.

    Science.gov (United States)

    Lorenzon, Nancy M; Beam, Kurt G

    2008-01-01

    Calcium ions play an important role in the electrical excitability of nerve and muscle, as well as serving as a critical second messenger for diverse cellular functions. As a result, mutations of genes encoding calcium channels may have subtle affects on channel function yet strongly perturb cellular behavior. This review discusses the effects of calcium channel mutations on channel function, the pathological consequences for cellular physiology, and possible links between altered channel function and disease. Many cellular functions are directly or indirectly regulated by the free cytosolic calcium concentration. Thus, calcium levels must be very tightly regulated in time and space. Intracellular calcium ions are essential second messengers and play a role in many functions including, action potential generation, neurotransmitter and hormone release, muscle contraction, neurite outgrowth, synaptogenesis, calcium-dependent gene expression, synaptic plasticity and cell death. Calcium ions that control cell activity can be supplied to the cell cytosol from two major sources: the extracellular space or intracellular stores. Voltage-gated and ligand-gated channels are the primary way in which Ca(2+) ions enter from the extracellular space. The sarcoplasm reticulum (SR) in muscle and the endoplasmic reticulum in non-muscle cells are the main intracellular Ca(2+) stores: the ryanodine receptor (RyR) and inositol-triphosphate receptor channels are the major contributors of calcium release from internal stores.

  9. Hadamard quantum broadcast channels

    Science.gov (United States)

    Wang, Qingle; Das, Siddhartha; Wilde, Mark M.

    2017-10-01

    We consider three different communication tasks for quantum broadcast channels, and we determine the capacity region of a Hadamard broadcast channel for these various tasks. We define a Hadamard broadcast channel to be such that the channel from the sender to one of the receivers is entanglement-breaking and the channel from the sender to the other receiver is complementary to this one. As such, this channel is a quantum generalization of a degraded broadcast channel, which is well known in classical information theory. The first communication task we consider is classical communication to both receivers, the second is quantum communication to the stronger receiver and classical communication to other, and the third is entanglement-assisted classical communication to the stronger receiver and unassisted classical communication to the other. The structure of a Hadamard broadcast channel plays a critical role in our analysis: The channel to the weaker receiver can be simulated by performing a measurement channel on the stronger receiver's system, followed by a preparation channel. As such, we can incorporate the classical output of the measurement channel as an auxiliary variable and solve all three of the above capacities for Hadamard broadcast channels, in this way avoiding known difficulties associated with quantum auxiliary variables.

  10. The discovery of potent blockers of the canonical transient receptor channels, TRPC3 and TRPC6, based on an anilino-thiazole pharmacophore.

    Science.gov (United States)

    Washburn, David G; Holt, Dennis A; Dodson, Jason; McAtee, Jeff J; Terrell, Lamont R; Barton, Linda; Manns, Sharada; Waszkiewicz, Anna; Pritchard, Christina; Gillie, Dan J; Morrow, Dwight M; Davenport, Elizabeth A; Lozinskaya, Irina M; Guss, Jeffrey; Basilla, Jonathan B; Negron, Lorena Kallal; Klein, Michael; Willette, Robert N; Fries, Rusty E; Jensen, Timothy C; Xu, Xiaoping; Schnackenberg, Christine G; Marino, Joseph P

    2013-09-01

    Lead optimization of piperidine amide HTS hits, based on an anilino-thiazole core, led to the identification of analogs which displayed low nanomolar blocking activity at the canonical transient receptor channels 3 and 6 (TRPC3 & 6) based on FLIPR (carbachol stimulated) and electrophysiology (OAG stimulated) assays. In addition, the anilino-thiazole amides displayed good selectivity over other TRP channels (TRPA1, TRPV1, and TRPV4), as well as against cardiac ion channels (CaV1.2, hERG, and NaV1.5). The high oxidation potential of the aliphatic piperidine and aniline groups, as well as the lability of the thiazole amide group contributed to the high clearance observed for this class of compounds. Conversion of an isoquinoline amide to a naphthyridine amide markedly reduced clearance for the bicyclic piperidines, and improved oral bioavailability for this compound series, however TRPC3 and TRPC6 blocking activity was reduced substantially. Although the most potent anilino-thiazole amides ultimately lacked oral exposure in rodents and were not suitable for chronic dosing, analogs such as 14-19, 22, and 23 are potentially valuable in vitro tool compounds for investigating the role of TRPC3 and TRPC6 in cardiovascular disease.

  11. Excitability constraints on voltage-gated sodium channels.

    Directory of Open Access Journals (Sweden)

    Elaine Angelino

    2007-09-01

    Full Text Available We study how functional constraints bound and shape evolution through an analysis of mammalian voltage-gated sodium channels. The primary function of sodium channels is to allow the propagation of action potentials. Since Hodgkin and Huxley, mathematical models have suggested that sodium channel properties need to be tightly constrained for an action potential to propagate. There are nine mammalian genes encoding voltage-gated sodium channels, many of which are more than approximately 90% identical by sequence. This sequence similarity presumably corresponds to similarity of function, consistent with the idea that these properties must be tightly constrained. However, the multiplicity of genes encoding sodium channels raises the question: why are there so many? We demonstrate that the simplest theoretical constraints bounding sodium channel diversity--the requirements of membrane excitability and the uniqueness of the resting potential--act directly on constraining sodium channel properties. We compare the predicted constraints with functional data on mammalian sodium channel properties collected from the literature, including 172 different sets of measurements from 40 publications, wild-type and mutant, under a variety of conditions. The data from all channel types, including mutants, obeys the excitability constraint; on the other hand, channels expressed in muscle tend to obey the constraint of a unique resting potential, while channels expressed in neuronal tissue do not. The excitability properties alone distinguish the nine sodium channels into four different groups that are consistent with phylogenetic analysis. Our calculations suggest interpretations for the functional differences between these groups.

  12. Store-Operated Calcium Channels.

    Science.gov (United States)

    Prakriya, Murali; Lewis, Richard S

    2015-10-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.

  13. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  14. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    . Within this channel were smaller erosional structures (hardgrounds, and locally have a basal fill of granular phosphorite. The entire channel system was progressively infilled by chalk, as demonstrated by the expanded succession...

  15. The molecular choreography of a store-operated calcium channel.

    Science.gov (United States)

    Lewis, Richard S

    2007-03-15

    Store-operated calcium channels (SOCs) serve essential functions from secretion and motility to gene expression and cell growth. A fundamental mystery is how the depletion of Ca2+ from the endoplasmic reticulum (ER) activates Ca2+ entry through SOCs in the plasma membrane. Recent studies using genetic approaches have identified genes encoding the ER Ca2+ sensor and a prototypic SOC, the Ca2+-release-activated Ca2+ (CRAC) channel. New findings reveal a unique mechanism for channel activation, in which the CRAC channel and its sensor migrate independently to closely apposed sites of interaction in the ER and the plasma membrane.

  16. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  17. Quantum Multiple Access Channel

    Institute of Scientific and Technical Information of China (English)

    侯广; 黄民信; 张永德

    2002-01-01

    We consider the transmission of classical information over a quantum channel by many senders, which is a generalization of the two-sender case. The channel capacity region is shown to be a convex hull bound by the yon Neumann entropy and the conditional yon Neumann entropies. The result allows a reasonable distribution of channel capacity over the senders.

  18. DDESC: Dragon database for exploration of sodium channels in human

    Directory of Open Access Journals (Sweden)

    Radovanovic Aleksandar

    2008-12-01

    Full Text Available Abstract Background Sodium channels are heteromultimeric, integral membrane proteins that belong to a superfamily of ion channels. The mutations in genes encoding for sodium channel proteins have been linked with several inherited genetic disorders such as febrile epilepsy, Brugada syndrome, ventricular fibrillation, long QT syndrome, or channelopathy associated insensitivity to pain. In spite of these significant effects that sodium channel proteins/genes could have on human health, there is no publicly available resource focused on sodium channels that would support exploration of the sodium channel related information. Results We report here Dragon Database for Exploration of Sodium Channels in Human (DDESC, which provides comprehensive information related to sodium channels regarding different entities, such as "genes and proteins", "metabolites and enzymes", "toxins", "chemicals with pharmacological effects", "disease concepts", "human anatomy", "pathways and pathway reactions" and their potential links. DDESC is compiled based on text- and data-mining. It allows users to explore potential associations between different entities related to sodium channels in human, as well as to automatically generate novel hypotheses. Conclusion DDESC is first publicly available resource where the information related to sodium channels in human can be explored at different levels. This database is freely accessible for academic and non-profit users via the worldwide web http://apps.sanbi.ac.za/ddesc.

  19. Voltage-gated sodium channels: mutations, channelopathies and targets.

    Science.gov (United States)

    Andavan, G S B; Lemmens-Gruber, R

    2011-01-01

    Voltage-gated sodium channels produce fast depolarization, which is responsible for the rising phase of the action potential in neurons, muscles and heart. These channels are very large membrane proteins and are encoded by ten genes in mammals. Sodium channels are a crucial component of excitable tissues; hence, they are a target for various neurotoxins that are produced by plants and animals for defence and protection, such as tetrodotoxin, scorpion toxins and batrachotoxin. Several mutations in various sodium channel subtypes cause multiple inherited diseases known as channelopathies. When these mutated sodium channel subtypes are expressed in various tissues, channelopathies in brain, skeletal muscle and cardiac muscle develop as well as neuropathic pain. In this review, we discuss aspects of voltage-gated sodium channel genes with an emphasis on cardiac muscle sodium channels. In addition, we report novel mutations that underlie a spectrum of diseases, such as Brugada, long QT syndrome and inherited conduction disorders. Furthermore, this review explains commonalities and differences among the channel subtypes, the channelopathies caused by the sodium channel gene mutation and the specificity of toxins and blockers of the channel subtypes.

  20. Ion channels in plants

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  1. Protocol channels as a new design alternative of covert channels

    CERN Document Server

    Wendzel, Steffen

    2008-01-01

    Covert channel techniques are used by attackers to transfer hidden data. There are two main categories of covert channels: timing channels and storage channels. This paper introduces a third category called protocol channels. A protocol channel switches one of at least two protocols to send a bit combination to a destination while sent packets include no hidden information themselves.

  2. Surface vacancy channels through ion channeling

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Rosandi, Yudi; Urbassek, Herbert M. [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2009-07-01

    Damage patterns of single ion impacts on Pt(111) have been studied by scanning tunneling microscopy (STM) and molecular dynamics simulations (MD). Low temperature experiments, where surface diffusion is absent, have been performed for argon and xenon ions with energies between 1 keV and 15 keV at an angle of incidence of 86 {sup circle} measured with respect to the surface normal. Ions hitting preexisting illuminated step edges penetrate into the crystal and are guided in open crystallographic directions, one or more layers underneath the surface (subsurface channeling). In the case of argon channeling the resulting surface damage consists of adatom and vacancy pairs aligned in ion beam direction. After xenon channeling thin surface vacancy trenches along the ion trajectories - surface vacancy channels - are observed. They result from very efficient sputtering and adatom production along the ion trajectory. This phenomena is well reproduced in molecular dynamics simulations of single ion impacts at 0 K. The damage patterns of Argon and Xenon impacts can be traced back to the different energy losses of the particles in the channel. Channeling distances exceeding 1000 A for 15 keV xenon impacts are observed.

  3. Molecular biology of insect sodium channels and pyrethroid resistance.

    Science.gov (United States)

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S

    2014-07-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.

  4. Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance

    Science.gov (United States)

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.

    2015-01-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279

  5. 质粒shRNA体内干扰Klotho基因对窦房结通道基因的影响%Study on the Effect of Klotho Gene Interferred by Plasmid-mediated Short Hairpin RNA (shRNA) on Sinoatrial Node Pacing Channel Gene

    Institute of Scientific and Technical Information of China (English)

    蔡盈盈; 汪汉; 侯言彬; 房晨鹂; 田鹏; 王贵华; 李璐; 邓珏琳

    2013-01-01

    通过质粒shRNA体内干扰,研究Klotho基因与窦房结起搏通道相关基因HCN4及HCN2之间的关系,为病窦综合征的研究提供新思路.取C57BL/6J小鼠20只,分为4组,每组5只,分别为:质粒shRNA 24 h组、质粒shRNA 12 h组、生理盐水24 h组、生理盐水12h组.质粒shRNA组经尾静脉注射质粒shRNA 50 μL(1 μg质粒/μL),生理盐水组经尾静脉注射生理盐水50 μL.分别于注射12h及24 h后取窦房结周围组织,行RT-PCR检测各组小鼠的Klotho、HCN2、HCN4基因的mRNA水平.RT-PCR结果显示:与生理盐水12h组比较,shRNA 12 h组的klotho、HCN4和HCN2的mRNA表达量明显降低,均有统计学差异(P<0.05).以上结果提示,小鼠Klotho基因和窦房结起搏基因可能存在一定关系.%The study was aimed to assess the effect of Klotho gene and sinoatrial node pacing channel gene (HCN4and HCN2) for studying sick sinus syndrome,with Klotho gene under the interference of Plasmid-mediated short hairpin RNA.Twenty-five C57BL/6J mice were divided into four groups,i.e,plasmid shRNA 24h group,plasmid shRNA 12h group,sodium chloride 24h group and sodium chloride 12h group.Plasmid shRNA 50μL (1μg/μL) and sodium chloride 50μl were respectively injected according to mice vena caudalis into those in plasmid shRNA group and sodium chloride group.After 12h or 24h respectively,all mice were executed and their sinoatrial node tissues were cut.The mRNA of Klotho,HCN4 and HCN2 gene were detected by RT-PCR.The results of RT-PCR showed that Klotho,HCN4 and HCN2 mRNA levels were lower compared with those in sodium chloride 12h group after 12h interference interval.The results indicated that there might be the a certain relationship between Klotho gene and sinoatrial node pacing channel gene.

  6. Discovery of functional antibodies targeting ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I; Gardener, Matthew J; Williams, Wendy A

    2015-04-01

    Ion channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics. Antibodies display high specificity and affinity for their target antigen, and they have the potential to target ion channels very selectively. Nevertheless, isolating antibodies to this target class is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery in addition to the complexity of screening for function. In this article, we will review the current state of ion channel biologics discovery and the progress that has been made. We will also highlight the challenges in isolating functional antibodies to these targets and how these challenges may be addressed. Finally, we also illustrate successful approaches to isolating functional monoclonal antibodies targeting ion channels by way of a number of case studies drawn from recent publications.

  7. Cardiac ion channels in health and disease.

    Science.gov (United States)

    Amin, Ahmad S; Tan, Hanno L; Wilde, Arthur A M

    2010-01-01

    Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli through the heart and, as a consequence, the generation of action potentials in individual cardiomyocytes. Action potential formation results from the opening and closing (gating) of ion channels that are expressed within the sarcolemma of cardiomyocytes. Ion channels possess distinct genetic, molecular, pharmacologic, and gating properties and exhibit dissimilar expression levels within different cardiac regions. By gating, ion channels permit ion currents across the sarcolemma, thereby creating the different phases of the action potential (e.g., resting phase, depolarization, repolarization). The importance of ion channels in maintaining normal heart rhythm is reflected by the increased incidence of arrhythmias in inherited diseases that are linked to mutations in genes encoding ion channels or their accessory proteins and in acquired diseases that are associated with changes in ion channel expression levels or gating properties. This review discusses ion channels that contribute to action potential formation in healthy hearts and their role in inherited and acquired diseases.

  8. Quantum broadcast channels

    CERN Document Server

    Yard, J; Devetak, I; Yard, Jon; Hayden, Patrick; Devetak, Igor

    2006-01-01

    We analyze quantum broadcast channels, which are quantum channels with a single sender and many receivers. Focusing on channels with two receivers for simplicity, we generalize a number of results from the network Shannon theory literature which give the rates at which two senders can receive a common message, while a personalized one is sent to one of them. Our first collection of results applies to channels with a classical input and quantum outputs. The second class of theorems we prove concern sending a common classical message over a quantum broadcast channel, while sending quantum information to one of the receivers. The third group of results we obtain concern communication over an isometry, giving the rates at quantum information can be sent to one receiver, while common quantum information is sent to both, in the sense that tripartite GHZ entanglement is established. For each scenario, we provide an additivity proof for an appropriate class of channels, yielding single-letter characterizations of the...

  9. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  10. Novel N-linked aminopiperidine-based gyrase inhibitors with improved hERG and in vivo efficacy against Mycobacterium tuberculosis.

    Science.gov (United States)

    Hameed P, Shahul; Patil, Vikas; Solapure, Suresh; Sharma, Umender; Madhavapeddi, Prashanti; Raichurkar, Anandkumar; Chinnapattu, Murugan; Manjrekar, Praveena; Shanbhag, Gajanan; Puttur, Jayashree; Shinde, Vikas; Menasinakai, Sreenivasaiah; Rudrapatana, Suresh; Achar, Vijayashree; Awasthy, Disha; Nandishaiah, Radha; Humnabadkar, Vaishali; Ghosh, Anirban; Narayan, Chandan; Ramya, V K; Kaur, Parvinder; Sharma, Sreevalli; Werngren, Jim; Hoffner, Sven; Panduga, Vijender; Kumar, C N Naveen; Reddy, Jitendar; Kumar K N, Mahesh; Ganguly, Samit; Bharath, Sowmya; Bheemarao, Ugarkar; Mukherjee, Kakoli; Arora, Uma; Gaonkar, Sheshagiri; Coulson, Michelle; Waterson, David; Sambandamurthy, Vasan K; de Sousa, Sunita M

    2014-06-12

    DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis.

  11. Functional diversity and evolutionary dynamics of thermoTRP channels.

    Science.gov (United States)

    Saito, Shigeru; Tominaga, Makoto

    2015-03-01

    Animals have evolved sophisticated physiological systems for sensing ambient temperature since changes in environmental temperatures affect various biological processes. Thermosensitive transient receptor potential (thermoTRP) channels serve as thermal sensors in diverse animal species. They are multimodal receptors that are activated by temperature as well as other physical and chemical stimuli. Since thermoTRP channels are calcium permeable non-selective cation channels, their activation leads to an influx of calcium and sodium ions into the cell and triggers downstream signal transduction. ThermoTRP channels have been characterized in diverse animal species over the past several years, illuminating the diversification of thermoTRP channels in the course of evolution. The gene repertoires of thermoTRP channels differ among animal species. Additionally, in some cases, the temperature and chemical sensitivities among orthologous thermoTRP channels vary among species. The evolutionary flexibility of thermoTRP channels enabled them to contribute to unique physiological systems such as infrared sensation in snakes and bats and seasonal adaptation in silk moth. On the other hand, the functional differences of thermoTRP channels among species have been utilized for understanding the molecular basis for their activation (or inhibition) mechanisms, and amino acid residues (or domains) responsible for the respective channel properties have been identified in various thermoTRP channels. Here we summarize the current understanding of the functional diversity and evolutionary dynamics of thermoTRP channels.

  12. The effects of paeoniflorin monomer of a Chinese herb on cardiac ion channels

    Institute of Scientific and Technical Information of China (English)

    WANG Rong-rong; LI Ning; ZHANG Yin-hui; RAN Yu-qin; PU Jie-lin

    2011-01-01

    Background Because of the potential proarrhythmic effect of current antiarrhythmic drugs, it is still desirable to find safer antiarrhythmic drugs worldwide. Paeoniflorin is one of the Chinese herb monomers that have different effects on many ion channels. The present study aimed to determine the effects of paeoniflorin on cardiac ion channels.Methods Whole-cell patch-clamp technique was used to record ion channel currents. L-type calcium current (/Ca-L),inward rectifier potassium current (/K1), and transient outward potassium current (/to1) were studied in rat ventricular myocytes and sodium current (/Na), slow delayed rectifier current (/Ks), and HERG current (/Kr) were investigated in transfected human embryonic kidney 293 cells.Results One hundred μmol/L paeoniflorin reduced the peak /ca-L by 40.29% at the test potential of ±10 mV (from (-9.78±0.52) pA/pF to (-5.84±0.89) pA/pF, n=5, P=0.028). The steady-state activation curve was shifted to more positive potential in the presence of the drug. The half activation potentials were (-11.22±0.27) mV vs. (-5.95±0.84) mV (n=5,P=0.007), respectively. However, the steady-state inactivation and the time course of recovery from inactivation were not changed. One hundred μmol/L paeoniflorin completely inhibited the peak /Na and the effect was reversible. Moreover,paeoniflorin inhibited the /K1 by 30.13% at the test potential of -100 mV (from (-25.26±8.21) pA/pF to (-17.65±6.52)pA/pF, n=6, F=0.015) without effects on the reversal potential and the rectification property. By contrast, 100 μmol/L paeoniflorin had no effects on/to1, /Ks or /Kr channels.Conclusions The study demonstrated that paeoniflorin blocked /Ca-L, /Na, and /Kf without affecting /to1, /Ks, or /Kr. The multi-channel block effect may account for its antiarrhythmic effects with less proarrhythmic potential.

  13. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  14. Quantum feedback channels

    CERN Document Server

    Bowen, G

    2002-01-01

    In classical information theory the capacity of a noisy communication channel cannot be increased by the use of feedback. In quantum information theory the no-cloning theorem means that noiseless copying and feedback of quantum information cannot be achieved. In this paper, quantum feedback is defined as the unlimited use of a noiseless quantum channel from receiver to sender. Given such quantum feedback, it is shown to provide no increase in the entanglement-assisted capacities of a noisy quantum channel, in direct analogy to the classical case. It is also shown that in various cases of non-assisted capacities, feedback can increase the capacity of many quantum channels.

  15. TRP channels in schistosomes

    Directory of Open Access Journals (Sweden)

    Swarna Bais

    2016-12-01

    Full Text Available Praziquantel (PZQ is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting.

  16. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    identified as being crucial mediators of this process in a variety of smooth muscle. Recently, KV7 channels have been shown to be involved in the pathogenesis of hypertension, as well as being implicated in other smooth muscle disorders, providing a new and inviting target for smooth muscle disorders.......Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  17. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  18. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  19. Dravet综合征的临床特点分析及SCN1A基因新突变%Clinical Analysis of Dravet Syndrome and Novel Gene Mutation of Voltage-Gated Sodium Channel α1-Su-bunit

    Institute of Scientific and Technical Information of China (English)

    王新华; 周水珍

    2011-01-01

    Objective To study the clinical characteristics of Dravet syndrome and to screen the voltage -gated sodium channel αl -subunit( SCNI A ) of a newly diagnosed child, hoping to find the gene mutation. Methods The clinical information of 3 Dravet syndrome children were collected,the blood sample of a new diagnostic child was provided. DNA was extracted from peripheral blood leukocytes using relax gene blood DNA system. The total 26 exons of SCN1A were amplified by polymerase chain reaction( PCR), and the PCR products were screened by Denaturing high performance liquid chromatography, then the abnormal fragments were sequenced by Sanger method in order to find the mutations of SCN 1A gene. Results 1. The common manifestations of 3 Dravet syndrome cases: onset during the first year of life; in all children, the seizures were associated with febrile seizures and they changed to afebrile seizures after 1 year; the forms of seizures included clonus,myoclonus and atypical absence;the seizures were difficult to control with anti -epileptic drugs; all children presented some degree of psychomotor development delay; there were sharp - slow waves, spike - slow waves and multi spike - slow waves in EEG of diapause. 2. A missense mutation of SCNI A gene (c. 2867T > G, M956R) was found in the Dravet syndrome child, which had not been reported up to Nov.2010. Conclusions Dravet syndrome is an epileptic encephalopathy with a bad prognosis,and it needs to be differentiate it frome febrile seizures. The missense mutation of SCNIA gene supports the relationship of SCNIA mutation and Dravet syndrom.%目的 分析Dravet综合征的临床特点,并对新诊断患儿进行SCN1A基因筛查,寻找基因突变.方法收集3例Dravet综合征患儿临床资料,留取例1患儿血样标本,提取外周血白细胞基因组DNA,对SCN1A全部外显子进行PCR扩增,通过变性高效液相色谱法对PCR产物进行突变片段筛查,对于变性高效液相色谱法筛查有异常的片段

  20. Generalized channeled polarimetry.

    Science.gov (United States)

    Alenin, Andrey S; Tyo, J Scott

    2014-05-01

    Channeled polarimeters measure polarization by modulating the measured intensity in order to create polarization-dependent channels that can be demodulated to reveal the desired polarization information. A number of channeled systems have been described in the past, but their proposed designs often unintentionally sacrifice optimality for ease of algebraic reconstruction. To obtain more optimal systems, a generalized treatment of channeled polarimeters is required. This paper describes methods that enable handling of multi-domain modulations and reconstruction of polarization information using linear algebra. We make practical choices regarding use of either Fourier or direct channels to make these methods more immediately useful. Employing the introduced concepts to optimize existing systems often results in superficial system changes, like changing the order, orientation, thickness, or spacing of polarization elements. For the two examples we consider, we were able to reduce noise in the reconstruction to 34.1% and 57.9% of the original design values.

  1. Athermalized channeled spectropolarimeter enhancement.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  2. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure......About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...

  3. Recent genetic discoveries implicating ion channels in human cardiovascular diseases.

    Science.gov (United States)

    George, Alfred L

    2014-04-01

    The term 'channelopathy' refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac conduction phenotypes, pulmonary and systemic hypertension. These recent discoveries further emphasize the importance of ion channels in the pathophysiology of human disease and as important druggable targets.

  4. Migraine: Role of the TRESK two-pore potassium channel.

    Science.gov (United States)

    Lafrenière, Ronald G; Rouleau, Guy A

    2011-11-01

    Migraine is a severe episodic headache disorder affecting one in five people. Genetic studies have identified mutations in the CACNA1, ATP1A2 and SCN1A genes in the rare familial hemiplegic migraine. Recently, a mutation in the KCNK18 gene, encoding the TRESK two-pore domain potassium channel, was described in a large family with migraine with aura. This review will elaborate on the possible role of the TRESK channel in regulating neuronal excitability, its role in migraine pathogenesis, and on promising therapeutic opportunities targeting this channel. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Targeting TRP channels for novel migraine therapeutics.

    Science.gov (United States)

    Dussor, Gregory; Yan, J; Xie, Jennifer Y; Ossipov, Michael H; Dodick, David W; Porreca, Frank

    2014-11-19

    Migraine is increasingly understood to be a disorder of the brain. In susceptible individuals, a variety of "triggers" may influence altered central excitability, resulting in the activation and sensitization of trigeminal nociceptive afferents surrounding blood vessels (i.e., the trigeminovascular system), leading to migraine pain. Transient receptor potential (TRP) channels are expressed in a subset of dural afferents, including those containing calcitonin gene related peptide (CGRP). Activation of TRP channels promotes excitation of nociceptive afferent fibers and potentially lead to pain. In addition to pain, allodynia to mechanical and cold stimuli can result from sensitization of both peripheral afferents and of central pain pathways. TRP channels respond to a variety of endogenous conditions including chemical mediators and low pH. These channels can be activated by exogenous stimuli including a wide range of chemical and environmental irritants, some of which have been demonstrated to trigger migraine in humans. Activation of TRP channels can elicit CGRP release, and blocking the effects of CGRP through receptor antagonism or antibody strategies has been demonstrated to be effective in the treatment of migraine. Identification of approaches that can prevent activation of TRP channels provides an additional novel strategy for discovery of migraine therapeutics.

  6. Computation over Mismatched Channels

    CERN Document Server

    Karamchandani, Nikhil; Diggavi, Suhas

    2012-01-01

    We consider the problem of distributed computation of a target function over a multiple-access channel. If the target and channel functions are matched (i.e., compute the same function), significant performance gains can be obtained by jointly designing the computation and communication tasks. However, in most situations there is mismatch between these two functions. In this work, we analyze the impact of this mismatch on the performance gains achievable with joint computation and communication designs over separation-based designs. We show that for most pairs of target and channel functions there is no such gain, and separation of computation and communication is optimal.

  7. Channel Access in Erlang

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  8. Screen-based identification and validation of four novel ion channels as regulators of renal ciliogenesis

    NARCIS (Netherlands)

    Slaats, Gisela G; Wheway, Gabrielle; Foletto, Veronica; Szymanska, Katarzyna; van Balkom, Bas W M; Logister, Ive; Den Ouden, Krista; Keijzer-Veen, Mandy G; Lilien, Marc R; Knoers, Nine V; Johnson, Colin A; Giles, Rachel H

    2015-01-01

    To investigate the contribution of ion channels to ciliogenesis we carried out an siRNA-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4.

  9. Downregulation of Kv7.4 channel activity in primary and secondary hypertension

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Chadha, Preet S; Davis, Alison J

    2011-01-01

    Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of...

  10. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered no sys...... no systematic overview exist of channel choice. We present a literature review of channel choice studies in government to citizen context identifying authors, countries, methods, concepts, units of analysis, and theories, and offer suggestionsfor future studies....

  11. An Insight to Covert Channels

    OpenAIRE

    Salwan, Nitish; Singh, Sandeep; Arora, Suket; Singh, Amarpreet

    2013-01-01

    This paper presents an overview of different concepts regarding covert channels. It discusses the various classifications and the detailing of various fields used to manipulate for the covert channel execution.Different evaluation criterias are presented for measuring the strength of covert channels. The defenses and prevention schemes for this covert channel will also be discussed. This paper also discuss about an advanced timing channel i.e.Temperature Based Covert Channel.

  12. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... mechanism of regulation. Besides being regulated by cell volume, KCNQ1 is also modulated by the interaction of the ß subunit KCNE1 giving rise to the cardiac IKs delayed rectifier potassium current. Apart from altering the kinetic characteristics of the KCNQ1 channel current, KCNE1 also augments the KCNQ1...

  13. Na+ channel β subunits: Overachievers of the ion channel family

    Directory of Open Access Journals (Sweden)

    William J Brackenbury

    2011-09-01

    Full Text Available Voltage gated Na+ channels (VGSCs in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSC α subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin (Ig superfamily of cell adhesion molecules (CAMs and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of pathophysiologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independent of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy.

  14. Cooperative gating between ion channels.

    Science.gov (United States)

    Choi, Kee-Hyun

    2014-01-01

    Cooperative gating between ion channels, i.e. the gating of one channel directly coupled to the gating of neighboring channels, has been observed in diverse channel types at the single-channel level. Positively coupled gating could enhance channel-mediated signaling while negative coupling may effectively reduce channel gating noise. Indeed, the physiological significance of cooperative channel gating in signal transduction has been recognized in several in vivo studies. Moreover, coupled gating of ion channels was reported to be associated with some human disease states. In this review, physiological roles for channel cooperativity and channel clustering observed in vitro and in vivo are introduced, and stimulation-induced channel clustering and direct channel cross linking are suggested as the physical mechanisms of channel assembly. Along with physical clustering, several molecular mechanisms proposed as the molecular basis for functional coupling of neighboring channels are covered: permeant ions as a channel coupling mediator, concerted channel activation through the membrane, and allosteric mechanisms. Also, single-channel analysis methods for cooperative gating such as the binomial analysis, the variance analysis, the conditional dwell time density analysis, and the maximum likelihood fitting analysis are reviewed and discussed.

  15. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  16. Covert Channels within IRC

    Science.gov (United States)

    2011-03-24

    Communications ....................................... 2 1.3 Steganography and Covert Channels .......................................................... 3...Internet Relay Chat ..................................................................................... 7 2.2 Steganography ...13 2.2.2 Encrypted Steganographic Systems .............................................. 15 2.2.3 Text-Based Steganography

  17. 28-Channel rotary transformer

    Science.gov (United States)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  18. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  19. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    - serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...... of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......, controlled cell death and cellular migration. Volume regulatory mechanisms has long been in focus for regulating cellular proliferation and my thesis work have been focusing on the role of Cl- channels in proliferation with specific emphasis on ICl, swell. Pharmacological blockage of the ubiquitously...

  20. Authentication over Noisy Channels

    CERN Document Server

    Lai, Lifeng; Poor, H Vincent

    2008-01-01

    In this work, message authentication over noisy channels is studied. The model developed in this paper is the authentication theory counterpart of Wyner's wiretap channel model. Two types of opponent attacks, namely impersonation attacks and substitution attacks, are investigated for both single message and multiple message authentication scenarios. For each scenario, information theoretic lower and upper bounds on the opponent's success probability are derived. Remarkably, in both scenarios, lower and upper bounds are shown to match, and hence the fundamental limit of message authentication over noisy channels is fully characterized. The opponent's success probability is further shown to be smaller than that derived in the classic authentication model in which the channel is assumed to be noiseless. These results rely on a proposed novel authentication scheme in which key information is used to provide simultaneous protection again both types of attacks.

  1. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  2. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    , and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...... by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling....

  3. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  4. Optogenetic techniques for the study of native potassium channels.

    Science.gov (United States)

    Sandoz, Guillaume; Levitz, Joshua

    2013-01-01

    Optogenetic tools were originally designed to target specific neurons for remote control of their activity by light and have largely been built around opsin-based channels and pumps. These naturally photosensitive opsins are microbial in origin and are unable to mimic the properties of native neuronal receptors and channels. Over the last 8 years, photoswitchable tethered ligands (PTLs) have enabled fast and reversible control of mammalian ion channels, allowing optical control of neuronal activity. One such PTL, maleimide-azobenzene-quaternary ammonium (MAQ), contains a maleimide (M) to tether the molecule to a genetically engineered cysteine, a photoisomerizable azobenzene (A) linker and a pore-blocking quaternary ammonium group (Q). MAQ was originally used to photocontrol SPARK, an engineered light-gated potassium channel derived from Shaker. Potassium channel photoblock by MAQ has recently been extended to a diverse set of mammalian potassium channels including channels in the voltage-gated and K2P families. Photoswitchable potassium channels, which maintain native properties, pave the way for the optical control of specific aspects of neuronal function and for high precision probing of a specific channel's physiological functions. To extend optical control to natively expressed channels, without overexpression, one possibility is to develop a knock-in mouse in which the wild-type channel gene is replaced by its light-gated version. Alternatively, the recently developed photoswitchable conditional subunit technique provides photocontrol of the channel of interest by molecular replacement of wild-type complexes. Finally, photochromic ligands also allow photocontrol of potassium channels without genetic manipulation using soluble compounds. In this review we discuss different techniques for optical control of native potassium channels and their associated advantages and disadvantages.

  5. Voltage regulation of connexin channel conductance.

    Science.gov (United States)

    Oh, Seunghoon; Bargiello, Thaddeus A

    2015-01-01

    Voltage is an important parameter that regulates the conductance of both intercellular and plasma membrane channels (undocked hemichannels) formed by the 21 members of the mammalian connexin gene family. Connexin channels display two forms of voltage-dependence, rectification of ionic currents and voltage-dependent gating. Ionic rectification results either from asymmetries in the distribution of fixed charges due to heterotypic pairing of different hemichannels, or by channel block, arising from differences in the concentrations of divalent cations on opposite sides of the junctional plaque. This rectification likely underpins the electrical rectification observed in some electrical synapses. Both intercellular and undocked hemichannels also display two distinct forms of voltage-dependent gating, termed Vj (fast)-gating and loop (slow)-gating. This review summarizes our current understanding of the molecular determinants and mechanisms underlying these conformational changes derived from experimental, molecular-genetic, structural, and computational approaches.

  6. 人热敏瞬时受体通道1基因转染对兔角膜内皮细胞的影响%Effects of human thermal transient receptor channel 1 gene transfection on cultured rabbit corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    王莉; 杜兆江; 李鹏

    2015-01-01

    ?AIM:To explore the effects of human thermal transient receptor channel 1 gene transfection on corneal endothelial cell of rabbits. ?METHODS:Research group were dealt for thermal transient receptor channel 1 gene mediated by liposome transfection to rabbit corneal endothelial cells. MTT method was used to observe its influence on cell proliferation. Immunohistochemical staining and computer image analysis system were used to test the effects for proliferation cell nucleus antigen ( PCNA ) expression. ?RESULTS:Proliferation of corneal endothelial cell of rabbit was promoted after thermal transient receptor channel 1 gene transfected and the difference between experiment group and control group (t=3.01,P=0.013). The expression of PCNA promoted after thermal transient receptor channel 1 gene transfected (t=3.21,P=0.007) compared with control group. ? CONCLUSION: The expression of PCNA in rabbit corneal endothelial cells can promote the proliferation of corneal endothelial cells of rabbits.%目的:探讨人热敏瞬时受体通道1基因转染对培养的兔角膜内皮细胞增殖能力的影响。  方法:研究组为人热敏瞬时受体通道1基因通过脂质体介导的方法转染到体外培养的兔角膜内皮细胞中,采用MTT方法观察对细胞增殖的影响,免疫组织化学染色法和计算机图像分析系统检测对细胞增殖细胞核抗原( proliferation cell nucleus antigen,PCNA)表达的影响。  结果:热敏瞬时受体通道1基因转染后内皮细胞增殖增加,实验组与对照组比较差异有统计学意义(t=3.01,P=0.013);实验组细胞PCNA表达明显增加,与对照组比较差异有统计学意义( t=3.21,P=0.007)。  结论:人热敏瞬时受体通道1基因转染可以促进兔角膜内皮细胞增殖。

  7. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  8. Fracture channel waves

    Science.gov (United States)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  9. Ion channel expression in the developing enteric nervous system.

    Directory of Open Access Journals (Sweden)

    Caroline S Hirst

    Full Text Available The enteric nervous system arises from neural crest-derived cells (ENCCs that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.

  10. Ion Channel Expression in the Developing Enteric Nervous System

    Science.gov (United States)

    Stamp, Lincon A.; Fegan, Emily; Dent, Stephan; Cooper, Edward C.; Lomax, Alan E.; Anderson, Colin R.; Bornstein, Joel C.; Young, Heather M.; McKeown, Sonja J.

    2015-01-01

    The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons. PMID:25798587

  11. Voltage-Gated Channels as Causative Agents for Epilepsies

    Directory of Open Access Journals (Sweden)

    Mutasem Abuhamed

    2008-01-01

    Full Text Available Problem statement: Epilepsy is a common neurological disorder that afflicts 1-2% of the general population worldwide. It encompasses a variety of disorders with seizures. Approach: Idiopathic epilepsies were defined as a heterogeneous group of seizure disorders that show no underlying cause .Voltage-gated ion channels defect were recognized etiology of epilepsy in the central nervous system. The aim of this article was to provide an update on voltage-gated channels and their mutation as causative agents for epilepsies. We described the structures of the voltage-gated channels, discuss their current genetic studies, and then review the effects of voltage-gated channels as causative agents for epilepsies. Results: Channels control the flow of ions in and out of the cell causing depolarization and hyper polarization of the cell. Voltage-gated channels were classified into four types: Sodium, potassium calcium ands chloride. Voltage-gated channels were macromolecular protein complexes within the lipid membrane. They were divided into subunits. Each subunit had a specific function and was encoded by more than one gen. Conclusion: Current genetic studies of idiopathic epilepsies show the importance of genetic influence on Voltage-gated channels. Different genes may regulate a function in a channel; the channel defect was directly responsible for neuronal hyper excitability and seizures.

  12. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  13. Rescue of mutated cardiac ion channels in inherited arrhythmia syndromes.

    Science.gov (United States)

    Balijepalli, Sadguna Y; Anderson, Corey L; Lin, Eric C; January, Craig T

    2010-08-01

    Inherited arrhythmia syndromes comprise an increasingly complex group of diseases involving mutations in multiple genes encoding ion channels, ion channel accessory subunits and channel interacting proteins, and various regulatory elements. These mutations serve to disrupt normal electrophysiology in the heart, leading to increased arrhythmogenic risk and death. These diseases have added impact as they often affect young people, sometimes without warning. Although originally thought to alter ion channel function, it is now increasingly recognized that mutations may alter ion channel protein and messenger RNA processing, to reduce the number of channels reaching the surface membrane. For many of these mutations, it is also known that several interventions may restore protein processing of mutant channels to increase their surface membrane expression toward normal. In this article, we reviewed inherited arrhythmia syndromes, focusing on long QT syndrome type 2, and discuss the complex biology of ion channel trafficking and pharmacological rescue of disease-causing mutant channels. Pharmacological rescue of misprocessed mutant channel proteins, or their transcripts providing appropriate small molecule drugs can be developed, has the potential for novel clinical therapies in some patients with inherited arrhythmia syndromes.

  14. Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin.

    NARCIS (Netherlands)

    Boccalandro, C.; Mattia, F.P. de; Guo, D.C.; Xue, L.; Orlander, P.; King, T.M.; Gupta, P.; Deen, P.M.T.; Lavis, V.R.; Milewicz, D.M.

    2004-01-01

    A Mexican family with partial congenital nephrogenic diabetes insipidus (NDI) that resulted from a mutation in the aquaporin-2 water channel (AQP2) was characterized, and the source of this rare mutation was traced to the family's town of origin in Mexico. Affected individuals with profound polyuria

  15. Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin.

    NARCIS (Netherlands)

    Boccalandro, C.; Mattia, F.P. de; Guo, D.C.; Xue, L.; Orlander, P.; King, T.M.; Gupta, P.; Deen, P.M.T.; Lavis, V.R.; Milewicz, D.M.

    2004-01-01

    A Mexican family with partial congenital nephrogenic diabetes insipidus (NDI) that resulted from a mutation in the aquaporin-2 water channel (AQP2) was characterized, and the source of this rare mutation was traced to the family's town of origin in Mexico. Affected individuals with profound polyuria

  16. Regulation of voltage-gated potassium channels by PI(4,5)P2.

    Science.gov (United States)

    Kruse, Martin; Hammond, Gerald R V; Hille, Bertil

    2012-08-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) regulates activities of numerous ion channels including inwardly rectifying potassium (K(ir)) channels, KCNQ, TRP, and voltage-gated calcium channels. Several studies suggest that voltage-gated potassium (K(V)) channels might be regulated by PI(4,5)P(2). Wide expression of K(V) channels in different cells suggests that such regulation could have broad physiological consequences. To study regulation of K(V) channels by PI(4,5)P(2), we have coexpressed several of them in tsA-201 cells with a G protein-coupled receptor (M(1)R), a voltage-sensitive lipid 5-phosphatase (Dr-VSP), or an engineered fusion protein carrying both lipid 4-phosphatase and 5-phosphatase activity (pseudojanin). These tools deplete PI(4,5)P(2) with application of muscarinic agonists, depolarization, or rapamycin, respectively. PI(4,5)P(2) at the plasma membrane was monitored by Förster resonance energy transfer (FRET) from PH probes of PLCδ1 simultaneously with whole-cell recordings. Activation of Dr-VSP or recruitment of pseudojanin inhibited K(V)7.1, K(V)7.2/7.3, and K(ir)2.1 channel current by 90-95%. Activation of M(1)R inhibited K(V)7.2/7.3 current similarly. With these tools, we tested for potential PI(4,5)P(2) regulation of activity of K(V)1.1/K(V)β1.1, K(V)1.3, K(V)1.4, and K(V)1.5/K(V)β1.3, K(V)2.1, K(V)3.4, K(V)4.2, K(V)4.3 (with different KChIPs and DPP6-s), and hERG/KCNE2. Interestingly, we found a substantial removal of inactivation for K(V)1.1/K(V)β1.1 and K(V)3.4, resulting in up-regulation of current density upon activation of M(1)R but no changes in activity upon activating only VSP or pseudojanin. The other channels tested except possibly hERG showed no alteration in activity in any of the assays we used. In conclusion, a depletion of PI(4,5)P(2) at the plasma membrane by enzymes does not seem to influence activity of most tested K(V) channels, whereas it does strongly inhibit members of the K(V)7 and K(ir) families.

  17. Pool spacing in forest channels

    Science.gov (United States)

    David R. Montgomery; John M. Buffington; Richard D. Smith; Kevin M. Schmidt; George Pess

    1995-01-01

    Field surveys of stream channels in forested mountain drainage basins in southeast Alaska and Washington reveal that pool spacing depends on large woody debris (LWD) loading and channel type, slope, and width. Mean pool spacing in pool-riffle, plane-bed, and forced pool-riffle channels systematically decreases from greater than 13 channel widths per pool to less than 1...

  18. Optogenetic techniques for the study of native potassium channels

    Directory of Open Access Journals (Sweden)

    Guillaume Eric Sandoz

    2013-04-01

    Full Text Available Optogenetic tools were originally designed to target specific neurons for remote control of their activity by light and have largely been built around opsin-based channels and pumps. These naturally photosensitive opsins are microbial in origin and are unable to mimic the properties of native neuronal receptors and channels. Over the last 8 years, photoswitchable-tethered ligands (PTLs have enabled fast and reversible control of mammalian ion channels, allowing optical control of neuronal activity. One such PTL, MAQ, contains a maleimide (M to tether the molecule to a genetically engineered cysteine, a photoisomerizable azobenzene (A linker and a pore-blocking quaternary ammonium group (Q. MAQ was originally used to photo-control SPARK, an engineered light-gated potassium channel derived from Shaker. Potassium channel photo-block by MAQ has recently been extended to a diverse set of mammalian potassium channels including channels in the voltage-gated and K2P families. Photoswitchable potassium channels, which maintain native properties, pave the way for the optical control of specific aspects of neuronal function and for high precision probing of a specific channel’s physiological functions. To extend optical control to natively expressed channels, without overexpression, one possibility is to develop a knock-in mouse in which the wild type channel gene is replaced by its light-gated version. Alternatively, the recently developed photoswitchable-conditional-subunit technique (PCS provides photocontrol of the channel of interest by molecular replacement of wild type complexes. Finally, photochromic ligands (PCLs also allow photocontrol of potassium channels without genetic manipulation using soluble compounds. In this review we discuss different techniques for optical control of native potassium channels and their associated advantages and disadvantages.

  19. Regulation of BK channels by auxiliary γ subunits

    Directory of Open Access Journals (Sweden)

    Jiyuan eZhang

    2014-10-01

    Full Text Available The large-conductance, calcium- and voltage-activated potassium (BK channel has the largest single-channel conductance among potassium channels and can be activated by both membrane depolarization and increases in intracellular calcium concentration. BK channels consist of pore-forming, voltage- and calcium-sensing α subunits, either alone or in association with regulatory subunits. BK channels are widely expressed in various tissues and cells including both excitable and non-excitable cells and display diverse biophysical and pharmacological characteristics. This diversity can be explained in part by posttranslational modifications and alternative splicing of the α subunit, which is encoded by a single gene, KCNMA1, as well as by tissue-specific β subunit modulation. Recently, a leucine-rich repeat-containing membrane protein, LRRC26, was found to interact with BK channels and cause an unprecedented large negative shift (~-140 mV in the voltage dependence of the BK channel activation. LRRC26 allows BK channels to open even at near-physiological calcium concentration and membrane voltage in non-excitable cells. Three LRRC26-related proteins, LRRC52, LRRC55, and LRRC38, were subsequently identified as BK channel modulators. These LRRC proteins are structurally and functionally distinct from the BK channel β subunits and were designated as γ subunits. The discovery of the γ subunits adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. Unlike BK channel β subunits, which have been intensively investigated both mechanistically and physiologically, our understanding of the γ subunits is very limited at this stage. This article reviews the structure, modulatory mechanisms, physiological relevance, and potential therapeutic implications of γ subunits as they are currently understood.

  20. MEMS in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  1. Channel Identification Machines

    Directory of Open Access Journals (Sweden)

    Aurel A. Lazar

    2012-01-01

    Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  2. Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs.

    Science.gov (United States)

    Vicente, Jose; Stockbridge, Norman; Strauss, David G

    Fourteen drugs were removed from the market worldwide because their potential to cause torsade de pointes (torsade), a potentially fatal ventricular arrhythmia. The observation that most drugs that cause torsade block the potassium channel encoded by the human ether-à-go-go related gene (hERG) and prolong the heart rate corrected QT interval (QTc) on the ECG, led to a focus on screening new drugs for their potential to block the hERG potassium channel and prolong QTc. This has been a successful strategy keeping torsadogenic drugs off the market, but has resulted in drugs being dropped from development, sometimes inappropriately. This is because not all drugs that block the hERG potassium channel and prolong QTc cause torsade, sometimes because they block other channels. The regulatory paradigm is evolving to improve proarrhythmic risk prediction. ECG studies can now use exposure-response modeling for assessing the effect of a drug on the QTc in small sample size first-in-human studies. Furthermore, the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative is developing and validating a new in vitro paradigm for cardiac safety evaluation of new drugs that provides a more accurate and comprehensive mechanistic-based assessment of proarrhythmic potential. Under CiPA, the prediction of proarrhythmic potential will come from in vitro ion channel assessments coupled with an in silico model of the human ventricular myocyte. The preclinical assessment will be checked with an assessment of human phase 1 ECG data to determine if there are unexpected ion channel effects in humans compared to preclinical ion channel data. While there is ongoing validation work, the heart rate corrected J-Tpeak interval is likely to be assessed under CiPA to detect inward current block in presence of hERG potassium channel block.

  3. Chloride channels of platelets%血小板氯通道

    Institute of Scientific and Technical Information of China (English)

    陈晓琳; 尹松梅

    2004-01-01

    Chloride channels distribute widely in the body, and participate in many physiological actions and regulatory processes. Based on their physiological roles and molecular structures, six kinds of chloride channels have been identified: (1) The chloride channels family; (2) Cystic fibrosis transmembrane conductance regulator; (3) Swelling-activated chloride channels; (4) Calcium-activated chloride channels; (5) The p64 (CLIC) gene family; (6) γ-aminobutyric acid and glycine receptors. The chloride channels do exist in platelets, and their appearances are dependent on the presence of intracellular calcium. Blocking agents of chloride channels inhibit the thrombin-activated platelet aggregation and the elevation of the intracellular calcium concentration in a dose-dependent manner. It is suggested that chloride channels play a role in the activation of platelets. In addition, chloride channels act on both the cell volume regulation and the intracellular pH regulation in platelets.

  4. Inactivation as a new regulatory mechanism for neuronal Kv7 channels

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Grunnet, Morten; Olesen, Søren-Peter

    2007-01-01

    Voltage-gated K(+) channels of the Kv7 (KCNQ) family have important physiological functions in both excitable and nonexcitable tissue. The family encompasses five genes encoding the channel subunits Kv7.1-5. Kv7.1 is found in epithelial and cardiac tissue. Kv7.2-5 channels are predominantly...... neuronal channels and are important for controlling excitability. Kv7.1 channels have been considered the only Kv7 channels to undergo inactivation upon depolarization. However, here we demonstrate that inactivation is also an intrinsic property of Kv7.4 and Kv7.5 channels, which inactivate to a larger...... extent than Kv7.1 channels at all potentials. We demonstrate that at least 30% of these channels are inactivated at physiologically relevant potentials. The onset of inactivation is voltage dependent and occurs on the order of seconds. Both time- and voltage-dependent recovery from inactivation...

  5. 水稻钾离子通道基因OsKAT1.1的克隆、表达载体的构建及其电生理功能%Cloning, Construction of Expression Vectors and Electrophysiological Func-tion of Potassium Channel Gene OsKAT1.1 in Rice

    Institute of Scientific and Technical Information of China (English)

    李俊林; 高南; 刘春生; 苏彦华

    2011-01-01

    As one of major mechanisms mediating K+ acquisition and redistribution in plants, K+ channels are key machineries in supporting potassium nutrition as well as improving stress resistance. Growing in flooding paddy soil, rice K+ channels could form preferential functional characteristics and regulatory mechanisms adaptive to the circumstances that are different from their counterparts found in dry land model plants such as Arabidop