WorldWideScience

Sample records for gene green fluorescent

  1. Molecular quantification of genes encoding for green-fluorescent proteins

    DEFF Research Database (Denmark)

    Felske, A; Vandieken, V; Pauling, B V

    2003-01-01

    A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification is pro...

  2. Simultaneous stable expression of neomycin phosphotransferase and green fluorescence protein genes in Trypanosoma cruzi.

    Science.gov (United States)

    dos Santos, W G; Buck, G A

    2000-12-01

    The ribosomal RNA (rRNA) gene promoter was used to construct plasmid vectors that simultaneously express multiple exogenous genes in Trypanosoma cruzi. Vector pBSPANEO expresses neomycin phosphotransferase, and pPAGFPAN expresses both green fluorescent protein and neomycin phosphotransferase from a single promoter. Both vectors require the presence of the rRNA promoter for stable transfection; epimastigotes transfected with pPAGFPAN strongly fluoresced due to green fluorescent protein expression. Intact plasmids were rescued from the T. cruzi-transfected population after >8 mo of culture, indicating stable replication of these vectors. Vectors were integrated into the rRNA locus by homologous recombination and into other loci, presumably by illegitimate recombination. Parasites bearing tandem concatamers of plasmids were also found among the transfectants. Transfectants expressing green fluorescent protein showed a bright green fluorescence distributed throughout the cell. Fluorescence was also detected in amastigotes after infection of mammalian cells with transfected parasites, indicating that the rRNA promoter can drive efficient expression of these reporter genes in multiple life-cycle stages of the parasite. Expression of the heterologous genes was detected after passage in mice or in the insect vector. These vectors will be useful for the genetic dissection of T. cruzi biology and pathogenesis.

  3. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  4. The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)

    Science.gov (United States)

    Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.

    2016-06-01

    Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

  5. Dexamethasone-Inducible Green Fluorescent Protein Gene Expression in Transgenic Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Hilary Collver; Katherine Kinken

    2004-01-01

    Genomic research has made a large number of sequences of novel genes or expressed sequence tags available. To investigate functions of these genes, a system for conditional control of gene expression would be a useful tool. Inducible transgene expression that uses green fluorescent protein gene (gfp) as a reporter gene has been investigated in transgenic cell lines of cotton (COT; Gossypium hirsutum L.), Fraser fir [FRA; Abies fraseri (Pursh) Poir], Nordmann fir (NOR; Abies nordmanniana Lk.), and rice (RIC; Oryza sativa L. Cv. Radon). Transgenic cell lines were used to test the function of the chemical inducer dexamethasone. Inducible transgene expression was observed with fluorescence and confocal microscopy, and was confirmed by northern blot analyses. Dexamethasone at 5 mg/L induced gfp expression to the nearly highest level 48 h after treatment in COT, FRA, NOR, and RIC. Dexamethasone at 10 mg/L inhibited the growth of transgenic cells in FRA and NOR, but not COT and RIC. These results demonstrated that concentrations of inducer for optimum inducible gene expression system varied among transgenic cell lines. The inducible gene expression system described here was very effective and could be valuable in evaluating the function of novel gene.

  6. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been con...

  7. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been...

  8. Gene transfer and expression of enhanced green fluorescent protein in variant HT-29c cells

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Lars Boenicke; Bradley D. Howard; Ilka Vogel; Hoiger Kalthoff

    2003-01-01

    AIM: To study the expression of enhanced green fluorescent protein (EGFP) gene in retrovirally transduced variant HT29 cells.METHODS: The retroviral vector prkat EGFP/neo was constructed and transfected into the 293T cell using a standard calcium phosphate precipitation method. HT-29c cells (selected from HT-29 cells) were transduced by a retroviral vector encoding the GEFP gene. The fluorescence intensity of colorectal carcinoma HT-29c cells after transduced with the EGFP bearing retrovirus was visualized using fluorescence microscope and fluorescence activated cell sorter (FACS) analysis. Multiple biological behaviors of transduced cells such as the proliferating potential and the expression of various antigens were comparatively analyzed between untransduced and transduced cells in vitro. EGFP expression of the fresh tumor tissue was assessed in vivo.RESULTS: After transduced, HT-29c cells displayed a stable and long-term EGFP expression under the nonselective conditionsin vitro. After cells were successively cultured to passage 50 in vitro, EGFP expression was still at a high level. Their biological behaviors, such as expression of tumor antigens, proliferation rate and aggregation capability were not different compared to untransduced parental cells in vitro. In subcutaneous tumors, EGFP was stable and highly expressed.CONCLUSION: An EGFP expressing retroviral vector was used to transduce HT-29c cells. The transduced cells show a stable and long-term EGFP expression in vitro and in vivo.These cells with EGFP are a valuable tool forin vivo research of tumor metastatic spread.

  9. Rescue and Preliminary Application of a Recombinant Newcastle Disease Virus Expressing Green Fluorescent Protein Gene

    Institute of Scientific and Technical Information of China (English)

    Shun-lin HU; Qin SUN; Qu-zhi WANG; Yul-iang LIU; Yan-tao WU; Xiu-fan LIU

    2007-01-01

    Based on the complete genome sequence of Newcastle disease virus (NDV) ZJI strain,seven pairs of primers were designed to amplify a cDNA fragment for constructing the plasmid pNDV/ZJI,which contained the full-length cDNA of the NDV ZJI strain.The pNDV/ZJI,with three helper plasmids,pCIneoNP,pCIneoP and pCIneoL,were then cotransfected into BSR-T7/5 cells expressing T7 RNA polymerase.After inoculation of the transfected cell culture supernatant into embryonated chicken eggs from specific-pathogen-free (SPF) flock,an infectious NDV ZJI strain was successfully rescued.Green fluorescent protein (GFP) gene was amplified and inserted into the NDV full-length cDNA to generate a GFP-tagged recombinant plasmid pNDV/ZJIGFP.After cotransfection of the resultant plasmid and the three support plasmids into BSR-T7/5 cells,the recombinant NDV,NDV/ZJIGFP,was rescued.Specific green fluorescence was observed in BSR-T7/5 and chicken embryo fibroblast (CEF) cells 48h post-infection,indicating that the GFP gene was expressed at a relatively high level.NDV/ZJIGFP was inoculated into 10-day-old SPF chickens by oculonasal route.Four days post-infection,strong green fluorescence could be detected in the kidneys and tracheae,indicating that the recombinant GFP-tagged NDV could be a very useful tool for analysis of NDV dissemination and pathogenesis.

  10. Green fluorescent protein gene-transfected peafowl somatic cells participate in the development of chicken embryos.

    Science.gov (United States)

    Xi, Yongmei; Nada, Yoich; Soh, Tomoki; Fujihara, Noboru; Hattori, Masa-Aki

    2004-02-01

    This study was performed to investigate whether the embryonic somatic cells are capable of reconstituting and participating in the embryonic development of chickens to produce chimeras. In order to track the migration behavior of the donor cells, a cell line, originally isolated from an Indian peafowl embryo, was fluorescent-labeled by transfection of the cells with enhanced Green Fluorescent Protein (GFP) and Neomycin resistant (Neo) genes prior to injection into the stage X blastoderm of White Leghorn chickens. The injection was performed with a medium in the presence of 1-5% polyethylene glycol. The development of putative chimeric embryos between the stages three and 24 was examined for GFP expression under fluorescent light. To trace the peafowl cells in the developing chicken embryos, both a species-specific genetic marker originating from the mitochondrial DNA cytochrome b (cyt b) gene and a DNA fragment of GFP gene were used. Of the 185 fertile eggs manipulated, 173 developed into embryos. Fifty-five of them showed positive GFP patches in extra-embryonic tissues, and 15 expressed GFP in intra-embryonic tissues such as those of the head, heart, and gonad. PCR analysis revealed that PCR fragments for the peafowl mitochondrial DNA cyt b and GFP genes were detected in the samples of the GFP positive extra- and intra-embryonic tissues of the chimeras. The present results provide evidence that fluorescent-labeled peafowl embryonic cells carrying GFP and Neo genes are able to participate in the development of chicken embryos to generate chimeras. Copyright 2004 Wiley-Liss, Inc.

  11. Use of green fluorescent protein to detect expression of an endopolygalacturonase gene of Colletotrichum lindemuthianum during bean infection.

    Science.gov (United States)

    Dumas, B; Centis, S; Sarrazin, N; Esquerré-Tugayé, M T

    1999-04-01

    The 5' noncoding region of clpg2, an endopolygalacturonase gene of the bean pathogen Colletotrichum lindemuthianum, was fused to the coding sequence of a gene encoding a green fluorescent protein (GFP), and the construct was introduced into the fungal genome. Detection of GFP accumulation by fluorescence microscopy examination revealed that clpg2 was expressed at the early stages of germination of the conidia and during appressorium formation both in vitro and on the host plant.

  12. Quantitative analysis of tetracycline-inducible expression of the green fluorescent protein gene in transgenic chickens.

    Science.gov (United States)

    Koo, Bon Chul; Kwon, Mo Sun; Roh, Ji Yeol; Kim, Minjee; Kim, Jin-Hoi; Kim, Teoan

    2012-01-01

    The use of transgenic farm animals as "bioreactors" to address the growing demand for biopharmaceuticals, both in terms of increased quantity and greater number, represents a key development in the advancement of medical science. However, the potential for detrimental side-effects as a result of uncontrolled constitutive expression of foreign genes in transgenic animals is a well-recognized limitation of such systems. Previously, using a tetracycline-inducible expression system, we demonstrated the induction of expression of a transgene encoding green fluorescent protein (GFP) in transgenic chickens by feeding with doxycycline, a tetracycline derivative; expression of GFP reverted to pre-induction levels when the inducer was removed from the diet. As a proof of principle study, however, quantitative assessment of expression was not possible, as only one G0 and one G1 transgenic chicken was obtained. In the current study, a sufficient number of G2 and G3 transgenic chickens were obtained, and quantification analysis demonstrated up to a 20-fold induction of expression by doxycycline. In addition, stable transmission of the transgene without any apparent genetic modifications was observed through several generations. The use of an inducible expression system that can be regulated by dietary supplementation could help mitigate the physiological disruption that can occur in transgenic animals as a result of uncontrolled constitutive expression of a transgene. Importantly, these results also support the use of the retroviral system for generating transgenic animals with minimal risk in terms of biosafety.

  13. Green Fluorescent Detection of Fungal Colonization and Endopolygalacturonase Gene Expression in the Interaction of Alternaria citri with Citrus.

    Science.gov (United States)

    Isshiki, A; Ohtani, K; Kyo, M; Yamamoto, H; Akimitsu, K

    2003-07-01

    ABSTRACT Alternaria citri, a postharvest pathogen, produces endopolygalacturonase (endoPG) and causes black rot on citrus fruit. We previously described that an endoPG-disrupted mutant of Alternaria citri was significantly reduced in its ability to macerate plant tissue and cause black rot symptoms on citrus. In order to investigate colonization of citrus fruit tissues by Alternaria citri, pTEFEGFP carrying a green fluorescent protein (GFP) gene was introduced into wild-type Alternaria citri and its endoPG-disrupted mutant (M60). Green fluorescence was observed in spores, germ tubes, appressoria, and infection hyphae of transformants G1 (derived from wild type) and GM4 (derived from M60). Hyphae of G1 but not GM4 vertically penetrated the peel, but the hyphae of both G1 and GM4 spread equally in the juice sac area of citrus fruit. Green fluorescence of Alternaria citri transformant EPG7 carrying a GFP gene under control of the endoPG gene promoter of Alternaria citri was induced by pectin in the peel during the infection stage, but repressed completely in the juice sac area, likely by carbon catabolite repression by sugars in the juice.

  14. Spontaneous silencing of humanized green fluorescent protein (hGFP) gene expression from a retroviral vector by DNA methylation

    DEFF Research Database (Denmark)

    Gram, G J; Nielsen, S D; Hansen, J E

    1998-01-01

    We have constructed a functional murine leukemia virus (MLV)-derived retroviral vector transducing two genes encoding the autofluorescent humanized green fluorescent protein (hGFP) and neomycin phosphotransferase (Neo). This was done to determine whether hGFP could function as a marker gene...... in a retroviral vector and to investigate the expression of genes in a retroviral vector. Surprisingly, clonal vector packaging cell lines showed variable levels of hGFP expression, and expression was detected in as few as 49% of the cells in a clonally derived culture. This indicated that hGFP expression...... was shown to increase the hGFP-expressing MT4 cells from either 10.4% to 11.6% or 3.7% to 4.8%, corresponding to an increase in observed transduction efficiencies of 12% and 30%, respectively. These results indicate that silencing of gene expression from a retroviral vector may result from DNA methylation...

  15. Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression.

    Science.gov (United States)

    Wang, H G; Wang, X F; Jing, X Y; Li, Z; Zhang, Y; Lv, Z J

    2011-08-26

    Our previous studies have shown that tandem Alu repeats inhibit green fluorescent protein (GFP) gene expression when inserted downstream of the GFP gene in the pEGFP-C1 vector. We found that the 22R sequence (5'-GTGAAAAAAATGCTTTATTTGT-3') from the antisense PolyA (240 bp polyadenylation signal) of simian virus 40, eliminated repression of GFP gene expression when inserted between the GFP gene and the Alu repeats. The 22R sequence contains an imperfect palindrome; based on RNA structure software prediction, it forms an unstable stem-loop structure, including a loop, a first stem, a bulge, and a second stem. Analysis of mutations of the loop length of the 22R sequence showed that the three-nucleotide loop (wild-type, 22R) induced much stronger GFP expression than did other loop lengths. Two mutations, 4TMI (A7→T, A17→T) and 5AMI (A6→T, T18→A), which caused the base type changes in the bulge and in the second stem in the 22R sequence, induced stronger GFP gene expression than 22R itself. Mutation of the bulge base (A17→T), leading to complete complementation of the stem, caused weaker GFP gene expression. Sequences without a palindrome (7pieA, 5'-GTGAAAAAAATG CAAAAAAAGT-3', 7pieT, 5'-GTGTTTTTTTTGCTTTTTTTGT-3') did not activate GFP gene expression. We conclude that an imperfect palindrome affects and can increase GFP gene expression.

  16. Establishment of Stable High Expression Cell Line with Green Fluorescent Protein and Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengtao; LIU Wenli; HE Peigen; GONG Feili; YANG Dongliang

    2006-01-01

    In order to establish stable high expression cell lines, the eukaryotic expression vector pIRES2EGFP and recombinant plasmid pIRES2EGFP-TIM-3 were transfected into mammalian cells CHO by Lipofectamine. The transfected cells were cultivated under selective growth medium including G418 and green fluorescent protein (GFP) positive cells were sorted by FACS. Simultaneously, growing transfectants were selected only by G418 in the medium. The GFP expression in stably transfected cells was detected by FACS. Under selective growth conditions with G418, the percentage of GFP positive cells was reduced rapidly and GFP induction was low. In contrast, the percentages of GFP positive cells were increased gradually after FACS. By 3 rounds of GFP selection, the stable high expression cell lines were established. Furthermore, using FACS analysis GFP and the target protein TIM-3 co-expression in the stable transfectants cultured in nonselective medium was detected. Theses results demonstrated that the stably transfected cell lines that express high titer of recombinant protein can be simply and fleetly obtained by using GFP and selective growth medium.

  17. Generation of recombinant Orf virus using an enhanced green fluorescent protein reporter gene as a selectable marker

    Directory of Open Access Journals (Sweden)

    Ning Zhangyong

    2011-12-01

    Full Text Available Abstract Background Reporter genes are often used as a selectable marker for generation of recombinant viruses in order to investigate the mechanism of pathogenesis and to obtain candidate vaccine viruses. Routine selection of the recombinant parapoxvirus is time-consuming and labor intensive. Therefore, developing a novel method for selection is critical. Results In this study, we developed a rapid method to generate recombinant Orf viruses (ORFV based on the enhanced green fluorescent protein (EGFP reporter gene as a selectable marker. The coding sequence of EGFP gene was amplified from pEGFP-N1 vector and subcloned into the pZIPPY-neo/gus plasmid under the control of the early-late vaccinia virus (VACV VV7.5 promoter and flanked by two multiple cloning sites (MCS to generate a novel transfer vector pSPV-EGFP. Using the pSPV-EGFP, two recombination cassettes pSPV-113LF-EGFP-113RF and pSPV-116LF-EGFP-116RF were constructed by cloning the flanking regions of the ORFV113 and ORFV116 and inserted into two MCS flanking the EGFP gene. Using this novel system, two single gene deletion mutants OV-IA82Δ113 and OV-IA82Δ116 were successfully generated. Conclusions This approach shortens the time needed to generate recombinant ORFVs (rORFVs. Thus, the pSPV-EGFP vector provides a direct, fast, and convenient way to manipulate the recombinant viruses, indicating that it is highly suited for its designed purpose.

  18. A vector carrying the GFP gene (Green fluorescent protein as a yeast marker for fermentation processes Um vetor com o gene da GFP (Green fluorescent protein para a marcação de leveduras em processos fermentativos

    Directory of Open Access Journals (Sweden)

    Luiz Humberto Gomes

    2000-12-01

    Full Text Available Contaminant yeasts spoil pure culture fermentations and cause great losses in quality and product yields. They can be detected by a variety of methods although none being so efficient for early detection of contaminant yeast cells that appear at low frequency. Pure cultures bearing genetic markers can ease the direct identification of cells and colonies among contaminants. Fast and easy detection are desired and morphological markers would even help the direct visualization of marked pure cultures among contaminants. The GFP gene for green fluorescent protein of Aquorea victoria, proved to be a very efficient marker to visualize transformed cells in mixed populations and tissues. To test this marker in the study of contaminated yeast fermentations, the GFP gene was used to construct a vector under the control of the ADH2 promoter (pYGFP3. Since ADH2 is repressed by glucose the expression of the protein would not interfere in the course of fermentation. The transformed yeasts with the vector pYGFP3 showed high stability and high bioluminescence to permit identification of marked cells among a mixed population of cells. The vector opens the possibility to conduct further studies aiming to develop an efficient method for early detection of spoilage yeasts in industrial fermentative processes.Leveduras contaminantes podem causar grandes perdas em processos fermentativos quando infectam culturas puras e degradam a qualidade do produto final. Estas leveduras podem ser detectadas por diversos métodos mas nenhum deles oferece resultados com a exatidão e precisão necessárias, quando os contaminantes estão em baixa freqüência. Culturas puras contendo um gene marcador podem ser utilizadas para a direta identificação de células e colônias contaminantes. Detecção rápida e fácil é desejada e marcadores morfológicos podem auxiliar na visualização da cultura marcada. O gene da GFP (green fluorescent protein extraído da Aequorea victoria

  19. 204 POTENTIAL OF GREEN FLUORESCENT PROTEIN LOCUS FOR GENE EDITING IN DNA TRANSPOSON-PRODUCED TRANSGENIC CATTLE.

    Science.gov (United States)

    Yum, S-Y; Lee, S-J; Kim, H-M; Lee, C-I; Kim, H-S; Kim, H-J; Choi, W-J; Hahn, S-E; Lee, J-H; Kim, S-J; Jang, G

    2016-01-01

    Recently, we published on the efficient production of transgenic cattle using the DNA transposon system (Yum et al. 2016 Sci. Rep. 6, 27185). In that study, 8 transgenic cattle were born following transposon-mediated gene delivery system (Sleeping Beauty and Piggybac transposon) via microinjection of zygotes. In the analysis of their genomic stability using next-generation sequencing, there was no significant difference in the number of genomic variants between transgenic and nontransgenic cattle. In this study, we have described current status of those transgenic cattle in term of health, germ-line transmission, and application. All the transgenic cattle have grown up to date (the oldest being 30 months old, the youngest being 12 months old) without any health issue. In general blood analysis, there were not any significant changes between transgenic cattle and wild type. Because the transgene (green fluorescent protein; GFP) expression is constitutively active and has strong expression, it could be visualised without fluorescence equipment. One of transgenic male cattle reached puberty and semen was collected. Over 200 frozen semen straws were produced and some were used for IVF. In every IVF replication, around 80% blastocysts expressed the GFP. Over 36 GFP blastocysts were frozen for embryo transfer in the future, and we are planning to crossbreed for generating homozygotic transgenic cattle. Another application is to use the GFP locus to gene-edit the transgenic cattle, as long-term expression of transgene did not affect their health. In 1 cell stage, embryos produced using GFP frozen-thawed semen, single guide RNA for GFP, Cas9, together with donor DNA that included RFP and homology arms to link the double-strand break of single guide RNA target site, were co-injected and RFP was observed. Knockout/-in for editing GFP locus using CRISPR-Cas9 might be a valuable approach for the next generation of transgenic models by microinjection. In conclusion, we

  20. Gene transfer into primary cultures of fetal neural stem cells by a recombinant adenovirus carrying the gene for green fluorescent protein

    Institute of Scientific and Technical Information of China (English)

    Yong FU; Shen-qing WANG; Ying-peng LIU; Guo-peng WANG; Jian-ting WANG; Shu-sheng GONG

    2008-01-01

    Objective: To evaluate the transduction efficiency of a recombinant adenovirus carrying the gene for green fluorescent protein (Ad-GFP) into the primary cultures of fetal neural stem cells (NSCs) by the expression of GFP. Methods: The Ad-GFP was constructed by homologous recombination in bacteria with the AdEasy system; NSCs were isolated from rat fetal hippocampus and cultured as neurosphere suspensions. After infection with the recombinant Ad-GFP, NSCs were examined with a fluorescent microscopy and a flow cytometry for their expression of GFP. Results: After the viral infection, flow cytometry analysis revealed that the percentage of GFP-positive cells was as high as 97.05%. The infected NSCs sustained the GFP expression for above 4 weeks. After differentiated into astrocytes or neurons, they continued to express GFP efficiently. Conclusion: We have successfully constructed a viral vector Ad-GFP that can efficiently infect the primary NSCs. The reporter gene was showed fully and sustained expression in the infected cells as well as their differentiated progenies.

  1. Red and Green Fluorescence from Oral Biofilms

    Science.gov (United States)

    Hoogenkamp, Michel A.; Krom, Bastiaan P.; Janus, Marleen M.; ten Cate, Jacob M.; de Soet, Johannes J.; Crielaard, Wim; van der Veen, Monique H.

    2016-01-01

    Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries. PMID:27997567

  2. Red and Green Fluorescence from Oral Biofilms.

    Science.gov (United States)

    Volgenant, Catherine M C; Hoogenkamp, Michel A; Krom, Bastiaan P; Janus, Marleen M; Ten Cate, Jacob M; de Soet, Johannes J; Crielaard, Wim; van der Veen, Monique H

    2016-01-01

    Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries.

  3. A comparative analysis of green fluorescent protein and -glucuronidase protein-encoding genes as a reporter system for studying the temporal expression profiles of promoters

    Indian Academy of Sciences (India)

    P Kavita; Pradeep Kumar Burma

    2008-09-01

    The assessment of activity of promoters has been greatly facilitated by the use of reporter genes. However, the activity as assessed by reporter gene is a reflection of not only promoter strength, but also that of the stability of the mRNA and the protein encoded by the reporter gene. While a stable reporter gene product is an advantage in analysing activities of weak promoters, it becomes a major limitation for understanding temporal expression patterns of a promoter, as the reporter product persists even after the activity of the promoter ceases. In the present study we undertook a comparative analysis of two reporter genes, -glucuronidase (gus) and green fluorescent protein (sgfp), for studying the temporal expression pattern of tapetum-specific promoters A9 (Arabidopsis thaliana) and TA29 (Nicotiana tabacum). The activity of A9 and TA29 promoters as assessed by transcript profiles of the reporter genes (gus or sgfp) remained the same irrespective of the reporter gene used. However, while the deduced promoter activity using gus was extended temporally beyond the actual activity of the promoter, sgfp as recorded through its fluorescence correlated better with the transcription profile. Our results thus demonstrate that sgfp is a better reporter gene compared to gus for assessment of temporal activity of promoters. Although several earlier reports have commented on the possible errors in deducing temporal activities of promoters using GUS as a reporter protein, we experimentally demonstrate the advantage of using reporter genes such as gfp for analysis of temporal expression patterns.

  4. Plasmid transfection in bovine cells: Optimization using a realtime monitoring of green fluorescent protein and effect on gene reporter assay.

    Science.gov (United States)

    Osorio, Johan S; Bionaz, Massimo

    2017-08-30

    Gene reporter technology (GRT) has opened several new avenues for monitoring biological events including the activation of transcription factors, which are central to the study of nutrigenomics. However, this technology relies heavily on the insertion of foreign plasmid DNA into the nuclei of cells (i.e., transfection), which can be very challenging and highly variable among cell types. The objective of this study was to investigate the optimal conditions to generate reliable GRT assay data on bovine immortalized cell lines, Madin Darby Bovine Kidney (MDBK) and bovine mammary epithelial alveolar (MACT) cells. Results are reported for two experiments. In Experiment 1, using 96 well-plate and a robotic inverted fluorescent microscope, we compared transfection efficiency among commercially available transfection reagents (TR) Lipofectamine® 3000 (Lipo3), Lipofectamine® LTX (LipoLTX), and TransIT-X2® (TransX2), three doses of TR (i.e., 0.15, 0.3, and 0.4μL/well), and three doses of Green Fluorescent Protein plasmid DNA (i.e., 10, 25, and 50ng/well). Transfection efficiency and mortality rate were analyzed using CellProfiler software. Transfection efficiency increased until the end of the experiment (20h post-transfection) at which point MACT had greater transfection than MDBK cells (16.3% vs. 2.2%). It is unclear the reason for the low transfection in MDBK cells. Maximal transfection efficiency was obtained with 0.3μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 29.5±1.9%) and 0.15μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 4.0±0.4%) for MACT and MDBK cells, respectively. The higher amount of TR and DNA was generally associated with higher cell mortality. Using high, medium, and low transfection efficiency conditions determined in Experiment 1, we performed a GRT assay for peroxisome proliferator-activated response element (PPRE) luciferase in MACT and MDBK cells treated with 10nM or 100nM of synthetic Peroxisome Proliferator-activated Receptor

  5. Stable expression of green fluorescent protein and targeted disruption of thioredoxin peroxidase-1 gene in Babesia bovis with the WR99210/dhfr selection system.

    Science.gov (United States)

    Asada, Masahito; Tanaka, Miho; Goto, Yasuyuki; Yokoyama, Naoaki; Inoue, Noboru; Kawazu, Shin-ichiro

    2012-02-01

    We have achieved stable expression of green fluorescent protein (GFP) in Babesia bovis by using the WR99210/human dihydrofolate reductase (DHFR) gene selection system. A GFP-expression plasmid with a dhfr expression cassette (DHFR-gfp) was constructed and transfected into B. bovis by nucleofection. Following WR99210 selection, a GFP-fluorescent parasite population was obtained and the fluorescent parasite was maintained for more than 7 months under WR99210 drug pressure. The DHFR-gfp was used to construct a small circular chromosome and to target gene disruption in the parasite. For construction of the small circular chromosome (DHFR-gfp-Bbcent2), the putative centromere region of B. bovis chromosome 2 (Bbcent2) was cloned and inserted into the DHFR-gfp plasmid. Addition of Bbcent2 to the DHFR-gfp plasmid improved its segregation efficiency during parasite multiplication and GFP-expressing parasites were maintained for more than 2 months without drug pressure. For targeted disruption of a B. bovis gene we attempted to knockout the thioredoxin peroxidase-1 (TPx-1) gene (a single-copy 2-Cys peroxiredoxin gene, Tbtpx-1) by homologous recombination. To generate the targeting construct (DHFR-gfp-Bbtpx1KO), 5' and 3' portions of Bbtpx-1 were cloned into the DHFR-gfp plasmid. Following nucleofection, WR99210 selection and cloning, a GFP-fluorescent parasite population was obtained. Integration of the construct into the Bbtpx-1 locus was confirmed by PCR. The absence of Bbtpx-1 mRNA and protein were verified by reverse transcription PCR and western blot analysis/indirect immunofluorescence assay, respectively. This is the first report of targeted gene disruption of a Babesia gene. These advances in the methodology of genetic manipulation in B. bovis will facilitate functional analysis of Babesia genomes and will improve our understanding of the basic biology of apicomplexan parasites.

  6. Expression of γ-aminobutyric acid ρ1 and ρ1Δ450 as gene fusions with the green fluorescent protein

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2001-01-01

    The functional characteristics and cellular localization of the γaminobutyric acid (GABA) ρ1 receptor and its nonfunctional isoform ρ1Δ450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with ρ1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type ρ1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, ρ1Δ450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing ρ1Δ450-GFP was distributed similarly to that of ρ1-GFP. Mammalian cells transfected with the ρ1-GFP or ρ1Δ450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that ρ1Δ450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, ρ1- and ρ1Δ450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors. PMID:11172056

  7. The Use of Green Fluorescent Protein Gene in Cotton Transformation%GFP基因在棉花转化中的应用

    Institute of Scientific and Technical Information of China (English)

    黄国存; 朱生伟; 孙敬三; 张寒霜; 高鹏; 李俊兰

    2001-01-01

    With the Green Fluorescent Protein gene (GFP) as a reporter gene, the transgenic embryos, seedlings and calli of cotton(Gossypium hirsutum L.) were obtained by the method of pollen tube pathway and Agrobacterium-mediated techniques separately. The GFP gene under the control of the 35s Cauliflower Mosaic Virus promoter produced bright–green fluorescence easily detectable and screenable in cotton tissue by fluorescence microscopy and a hand-held ultraviolet lamp. The screenable marker aided and facilated the rapid segregation of individual transformation events, drastically reduced the quantity of tissue to be handled. The GFP can be screened in vivo without destroying the materials, so it is more practical and useful than GUS. The use of GFP could advance the development of cotton gene engineering.%以绿色荧光蛋白GFP基因为报道基因,用花粉管通道和农杆菌介导的转化方法将外源基因导入棉花(Gossypium hirsutum L.),分别获得转化幼胚、幼苗和转化愈伤组织。用手持紫外灯结合显微镜检术能够快速地对转化子进行活体筛选鉴定,比用GUS检测方法有明显的优越性。本研究不但为花粉管通道转化法的可行性提供了新的证据,同时也建立了GFP用于棉花基因工程研究的检测技术体系。

  8. Fluorescence dynamics of green fluorescent protein in AOT reversed micelles

    NARCIS (Netherlands)

    Uskova, M.A.; Borst, J.W.; Hink, M.A.; Hoek, van A.; Schots, A.; Klyachko, N.L.; Visser, A.J.W.G.

    2000-01-01

    We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the

  9. In vitro expression of native H5 and N1 genes of avian influenza virus by using Green Fluorescent Protein as reporter

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-10-01

    Full Text Available The hemagglutinin and neuraminidase are important immunogen of avian influenza virus that are suitable for recombinant experimentation. However, both genes have been experienced rapid mutation resulting in diverse variety of genotypes. Hence, gene expression in recombinant systems will be difficult to predict. The objective of the study was to examine expression level of H5 and N1 genes from a field isolate by cloning the genes into expression vector pEGFP-C1. Two clones respresenting fulllength of H5 and N1 gene in plasmid pEGFP-C1 were transfected into chicken embryo fibroblasts (CEF, rabbit kidney (RK13 and African green monkey kidney (VERO cells using Lipofectamine ‘Plus’ reagent. The experiment showed level of gene expression in the VERO cell was higher than in the RK13 and CEF cells. Observations using fluorescent microscopy and Western blotting revealed that the N1 gene was expressed better in all cells compared to the H5 gene.

  10. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral.

    Science.gov (United States)

    Smith-Keune, C; Dove, S

    2008-01-01

    Recent incidences of mass coral bleaching indicate that major reef building corals are increasingly suffering thermal stress associated with climate-related temperature increases. The development of pulse amplitude modulated (PAM) fluorometry has enabled rapid detection of the onset of thermal stress within coral algal symbionts, but sensitive biomarkers of thermal stress specific to the host coral have been slower to emerge. Differential display reverse transcription polymerase chain reaction (DDRT-PCR) was used to produce fingerprints of gene expression for the reef-building coral Acropora millepora exposed to 33 degrees C. Changes in the expression of 23 out of 399 putative genes occurred within 144 h. Down-regulation of one host-specific gene (AmA1a) occurred within just 6 h. Full-length sequencing revealed the product of this gene to be an all-protein chromatophore (green fluorescent protein [GFP]-homolog). RT-PCR revealed consistent down-regulation of this GFP-homolog for three replicate colonies within 6 h at both 32 degrees C and 33 degrees C but not at lower temperatures. Down-regulation of this host gene preceded significant decreases in the photosynthetic activity of photosystem II (dark-adapted F (v)/F (m)) of algal symbionts as measured by PAM fluorometry. Gene expression of host-specific genes such as GFP-homologs may therefore prove to be highly sensitive indicators for the onset of thermal stress within host coral cells.

  11. Analysis of the effects of blue light on morphofunctional status of in vitro cultured blastocysts from mice carrying gene of enhanced green fluorescent protein (EGFP).

    Science.gov (United States)

    Sakharova, N Yu; Mezhevikina, L M; Smirnov, A A; Vikhlyantseva, E F

    2014-05-01

    We studied the effect of blue light (440-490 nm) on the development of late blastocysts of mice carrying the gene of enhanced green fluorescent protein (EGFP). Exposure to blue light for 20 min reduced adhesive properties of blastocysts and their capacity to form primary colonies consisting of the cells of inner cell mass, trophoblast, and extraembryonic endoderm. The negative effects of blue light manifested in morphological changes in the primary colonies and impairment of differentiation and migration of cells of the trophoblast and extraembryonic endoderm. The problems of cell-cell interaction and inductive influences of the inner cell mass on other cell subpopulations are discussed. EGFP blastocysts were proposed as the model for evaluation of the mechanisms underlying the effects of blue light as the major negative factor of visible light used in in vitro experiments on mammalian embryos.

  12. Comparison of Superparamagnetic and Ultrasmall Superparamagnetic Iron Oxide Cell Labeling for Tracking Green Fluorescent Protein Gene Marker with Negative and Positive Contrast Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Zhuoli Zhang

    2009-05-01

    Full Text Available The objectives of this study were to investigate the feasibility of imaging green fluorescent protein (GFP-expressing cells labeled with iron oxide nanoparticles with the fast low-angle positive contrast steady-state free precession (FLAPS method and to compare them with the traditional negative contrast technique. The GFP-R3230Ac cell line (GFP cell was incubated for 24 hours using 20 μg Fe/mL concentration of superparamagnetic iron oxide (SPIO and ultrasmall superparamagnetic iron oxide (USPIO nanoparticles. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using positive contrast with FLAPS imaging, and FLAPS images were compared with negative contrast T2*-weighted images. The results demonstrated that SPIO and USPIO labeling of GFP cells had no effect on cell function or GFP expression. Labeled cells were successfully imaged with both positive and negative contrast magnetic resonance imaging (MRI. The labeled cells were observed as a narrow band of signal enhancement surrounding signal voids in FLAPS images and were visible as signal voids in T2*-weighted images. Positive contrast and negative contrast imaging were both valuable for visualizing labeled GFP cells. MRI of labeled cells with GFP expression holds potential promise for monitoring the temporal and spatial migration of gene markers and cells, thereby enhancing the understanding of cell- and gene-based therapeutic strategies.

  13. Photochromicity and fluorescence lifetimes of green fluorescent protein

    OpenAIRE

    1999-01-01

    The green fluorescent protein (GFP) of the bioluminescent jellyfish Aequorea and its mutants have gained widespread usage as an indicator of structure and function within cells. Proton transfer has been implicated in the complex photophysics of the wild-type molecule, exhibiting a protonated A species excited at 400 nm, and two deprotonated excited-state species I* and B* with red-shifted excitation similar to 475 nm. Photochromicity between the protonated and deprotonated species has been re...

  14. Raman microscopy of bladder cancer cells expressing green fluorescent protein

    Science.gov (United States)

    Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.

    2016-11-01

    Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.

  15. Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions

    Directory of Open Access Journals (Sweden)

    Puisieux Alain

    2003-10-01

    Full Text Available Abstract Background Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. Results We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC in peripheral blood mononuclear cells; the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. Conclusion Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.

  16. Using of green fluorescent reporter gene (GFP) to monitor the fate of Fusarium moniliforme mycoparasitized by Trichoderma viride

    Institute of Scientific and Technical Information of China (English)

    ZHU Ting-heng; WANG Wei-xia; WANG Chang-chun; YANG Rui-qin; CAI Xin-zhong

    2004-01-01

    @@ Fusarium moniliforme Sheld. is a rice pathogenic fungus and causes the disease called Bakanae,which has increasingly damaged rice production in the recent years. Trichoderma spp. has been one of the most widely used biological control agent of plant disease. By geneticaly labelling F. moniliforme with the GFP reporter gene, we have studied the antagonistic action of Trichoderma viride against this pathogenic fungus.

  17. Transgenic expression of green fluorescent protein in caprine embryos produced through electroporation-aided sperm-mediated gene transfer.

    Science.gov (United States)

    Kumar Pramod, R; Kumar, Rakesh; Mitra, Abhijit

    2016-01-15

    Current methods of transgenic animal production are afflicted by low efficiency and high cost. Recently, the electroporation aided sperm-mediated gene transfer (SMGT) emerges as a promising alternative with variable success rate. Among the domestic animal species, the electroporation-aided SMGT is less investigated in goats, except a few reports in which attempts have been made using the auto-uptake method of SMGT. In this study, we report an optimized electroporation condition for SMGT of caprine sperm cells. Results of this study demonstrated that electroporation of caprine sperm cells at 300 V for 200 mS in TALP medium allowed the maximum uptake of foreign DNA with minimum adverse effects on the vital semen parameters viz., progressive motility, viability, and membrane and acrosome integrity. Further, DNA binding assay revealed DNA uptake by 81.3% sperm cells when 1.0 μg of DNA was used under optimum electroporation conditions as compared to 16.5% on simple incubation. The qPCR analysis showed four-fold more (Pelectroporation than incubation. A similar cleavage rate was observed after IVF using either electroporated (23.20 ± 1.20) or non-electroporated (25.20 ± 2.41) sperm cells suggesting the absence of adverse effect of electroporation on the fertilizing ability. Out of the 116 embryos produced by electroporated sperm, five (4.31%) embryos showed the expression of the foreign gene. In conclusion, our results confirm that using optimized electroporation conditions, the caprine sperm cells can uptake foreign DNA effectively with minimum negative effect on the semen parameters and could produce transgenic embryos.

  18. Green fluorescent protein (GFP color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1 transfected endothelial modification.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND: Human Parvovirus B19 (PVB19 has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. METHODS AND FINDINGS: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP color reporter gene in the non-structural segment 1 (NS1 of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304. The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1 and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147 were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber. NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; P<0.05 and induces endothelial expression of EMMPRIN/CD147 (CD147: mean ± SEM: NS1-GFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; P<0.05 compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05. The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR analysis. CONCLUSIONS: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  19. Constitutive and Inducible Expression of Green Fluorescent Protein in Brucella suis

    Science.gov (United States)

    Köhler, Stephan; Ouahrani-Bettache, Safia; Layssac, Marion; Teyssier, Jacques; Liautard, Jean-Pierre

    1999-01-01

    A gene fusion system based on plasmid pBBR1MCS and the expression of green fluorescent protein was developed for Brucella suis, allowing isolation of constitutive and inducible genes. Bacteria containing promoter fusions of chromosomal DNA to gfp were visualized by fluorescence microscopy and examined by flow cytometry. Twelve clones containing gene fragments induced inside J774 murine macrophages were isolated and further characterized. PMID:10569794

  20. Constitutive and Inducible Expression of Green Fluorescent Protein in Brucella suis

    OpenAIRE

    Köhler, Stephan; Ouahrani-Bettache, Safia; Layssac, Marion; Teyssier, Jacques; Liautard, Jean-Pierre

    1999-01-01

    A gene fusion system based on plasmid pBBR1MCS and the expression of green fluorescent protein was developed for Brucella suis, allowing isolation of constitutive and inducible genes. Bacteria containing promoter fusions of chromosomal DNA to gfp were visualized by fluorescence microscopy and examined by flow cytometry. Twelve clones containing gene fragments induced inside J774 murine macrophages were isolated and further characterized.

  1. Structural analysis of the bright monomeric yellow-green fluorescent protein mNeonGreen obtained by directed evolution.

    Science.gov (United States)

    Clavel, Damien; Gotthard, Guillaume; von Stetten, David; De Sanctis, Daniele; Pasquier, Hélène; Lambert, Gerard G; Shaner, Nathan C; Royant, Antoine

    2016-12-01

    Until recently, genes coding for homologues of the autofluorescent protein GFP had only been identified in marine organisms from the phyla Cnidaria and Arthropoda. New fluorescent-protein genes have now been found in the phylum Chordata, coding for particularly bright oligomeric fluorescent proteins such as the tetrameric yellow fluorescent protein lanYFP from Branchiostoma lanceolatum. A successful monomerization attempt led to the development of the bright yellow-green fluorescent protein mNeonGreen. The structures of lanYFP and mNeonGreen have been determined and compared in order to rationalize the directed evolution process leading from a bright, tetrameric to a still bright, monomeric fluorescent protein. An unusual discolouration of crystals of mNeonGreen was observed after X-ray data collection, which was investigated using a combination of X-ray crystallography and UV-visible absorption and Raman spectroscopies, revealing the effects of specific radiation damage in the chromophore cavity. It is shown that X-rays rapidly lead to the protonation of the phenolate O atom of the chromophore and to the loss of its planarity at the methylene bridge.

  2. [Spectral diversity among the members of the family of Green Fluorescent Protein in hydroid jellyfish (Cnidaria, Hydrozoa)].

    Science.gov (United States)

    Ianushevich, Iu G; Shagin, D A; Fradkov, A F; Shakhbazov, K S; Barsova, E V; Gurskaia, N G; Labas, Iu A; Matts, M V; Luk'ianov, k A; Lul'ianov, S A

    2005-01-01

    The cDNAs encoding the genes of new proteins homologous to the well-known Green Fluorescent Protein (GFP) from the hydroid jellyfish Aequorea victoria were cloned. Two green fluorescent proteins from one un-identified anthojellyfish, a yellow fluorescent protein from Phialidium sp., and a nonfluorescent chromoprotein from another unidentified anthojellyfish were characterized. Thus, a broad diversity of GFP-like proteins among the organisms of the class Hydrozoa in both spectral properties and primary structure was shown.

  3. Green fluorescent protein is lighting up fungal biology

    Science.gov (United States)

    Lorang, J.M.; Tuori, R.P; Martinez, J.P; Sawyer, T.L.; Redman, R.S.; Rollins, J. A.; Wolpert, T.J.; Johnson, K.B.; Rodriguez, R.J.; Dickman, M. B.; Ciuffetti, L.M.

    2001-01-01

    Prasher (42) cloned a cDNA for the green fluorescent protein (GFP) gene from the jellyfishAequorea victoria in 1992. Shortly thereafter, to the amazement of many investigators, this gene or derivatives thereof were successfully expressed and conferred fluorescence to bacteria andCaenorhabditis elegans cells in culture (10,31), followed by yeast (24, 39), mammals (40), Drosophila (66),Dictyostelium(23, 30), plants (28,49), and filamentous fungi (54). The tremendous success of GFP as a reporter can be attributed to unique qualities of this 238-amino-acid, 27-kDa protein which absorbs light at maxima of 395 and 475 nm and emits light at a maximum of 508 nm. The fluorescence of GFP requires only UV or blue light and oxygen, and therefore, unlike the case with other reporters (β-glucuronidase, β-galacturonidase, chloramphenicol acetyltransferase, and firefly luciferase) that rely on cofactors or substrates for activity, in vivo observation ofgfp expression is possible with individual cells, with cell populations, or in whole organisms interacting with symbionts or environments in real time. Complications caused by destructive sampling, cell permeablization for substrates, or leakage of products do not occur. Furthermore, the GFP protein is extremely stable in vivo and has been fused to the C or N terminus of many cellular and extracellular proteins without a loss of activity, thereby permitting the tagging of proteins for gene regulation analysis, protein localization, or specific organelle labeling. The mature protein resists many proteases and is stable up to 65°C and at pH 5 to 11, in 1% sodium dodecyl sulfate or 6 M guanidinium chloride (reviewed in references 17and 67), and in tissue fixed with formaldehyde, methanol, or glutaraldehyde. However, GFP loses fluorescence in methanol-acetic acid (3:1) and can be masked by autofluorescent aldehyde groups in tissue fixed with glutaraldehyde. Fluorescence is optimal at pH 7.2 to 8.0 (67).

  4. An optical method for reducing green fluorescence from urine during fluorescence-guided cystoscopy

    DEFF Research Database (Denmark)

    Lindvold, Lars René; Hermann, Gregers G

    2016-01-01

    Photodynamic diagnosis (PDD) of bladder tumour tissue significantly improves endoscopic diagnosis and treatment of bladder cancer in rigid cystoscopes in the operating theatre and thus reduces tumour recurrence. PDD comprises the use of blue light, which unfortunately excites green fluorescence...... from urine. As this green fluorescence confounds the desired red fluorescence of the PDD, methods for avoiding this situation particularly in cystoscopy using flexible cystoscopes are desirable. In this paper we demonstrate how a tailor made high power LED light source at 525 nm can be used...... for fluorescence assisted tumour detection using both a flexible and rigid cystoscope used in the outpatient department (OPD) and operating room (OR) respectively. It is demonstrated both in vitro and in vivo how this light source can significantly reduce the green fluorescence problem with urine. At the same time...

  5. Application of green fluorescent protein for monitoring phenol-degrading strains

    Directory of Open Access Journals (Sweden)

    Ana Milena Valderrama F.

    2011-12-01

    Full Text Available Several methods have been developed for detecting microorganisms in environmental samples. Some systems for incorporating reporter genes, such as lux or the green fluorescent protein (GFP gene, have been developed recently This study describes gfp gene marking of a phenol degrading strain, its evaluation and monitoring in a bioreactor containing refinery sour water. Tagged strains were obtained having the same physiological and metabolic characteristics as the parent strain. Fluorescent expression was kept stable with no selection for more than 50 consecutive generations and tagged strains were recovered from the bioreactor after forty-five days of phenol-degradation treatment. 

  6. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    NARCIS (Netherlands)

    Manen, van Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; Berg, van den Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase

  7. Labeling embryonic stem cells with enhanced green fluorescent protein on the hypoxanthineguanine phosphoribosyl transferase locus

    Institute of Scientific and Technical Information of China (English)

    滕路; 孟国良; 刑阳; 尚克刚; 王小珂; 顾军

    2003-01-01

    Objective To label embryonic stem (ES) cells with enhanced green fluorescent protein (EGF P) on the hypoxanthineguanine phosphoribosyl transferase (HPRT) gene locus for t he first time to provide a convenient and efficient way for cell tracking and ma nipulation in the studies of transplantation and stem cell therapy.Methods Homologous fragments were obtained by polymerase chain reaction (PCR), from whic h the gene targeting vector pHPRT-EGFP was constructed. The linearized vector was introduced into ES cells by electroporation. The G418r6TGr cell clones were obtained after selection with G418 and 6TG media. The integration patterns of these resistant cell clones were identified with Southern blotting.Results EGFP expressing ES cells on the locus of HPRT were successfu lly generated. They have normal properties, such as karyotype, viability and di fferentiation ability. The green fluorescence of EGFP expressing cells was main tained in propagation of the ES cells for more than 30 passages and in different iated cells. Cultured in suspension, the "green" ES cells aggregated and forme d embryoid bodies, retaining the green fluorescence at varying developmental sta ges. The "green" embryoid bodies could expand and differentiate into various t ypes of cells, exhibiting ubiquitous green fluorescence. Conclusions This generation of "green" targeted ES cells is described in an efficient proto col for obtaining the homologous fragments by PCR. Introducing the marker gene in the genome of ES cells, we should be able to manipulate them in vitro and use them as vehicles in cell-replacement therapy as well as for other biomedical a nd research purposes.

  8. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms.

    Science.gov (United States)

    Errampalli, D; Leung, K; Cassidy, M B; Kostrzynska, M; Blears, M; Lee, H; Trevors, J T

    1999-04-01

    In this review, we examine numerous applications of the green fluorescent protein (GFP) marker gene in environmental microbiology research. The GFP and its variants are reviewed and applications in plant-microbe interactions, biofilms, biodegradation, bacterial-protozoan interactions, gene transfer, and biosensors are discussed. Methods for detecting GFP-marked cells are also examined. The GFP is a useful marker in environmental microorganisms, allowing new research that will increase our understanding of microorganisms in the environment.

  9. Fluobodies : green fluorescent single-chain Fv fusion proteins

    NARCIS (Netherlands)

    Griep, R.A.; Twisk, van C.; Wolf, van der J.M.; Schots, A.

    1999-01-01

    An expression system (pSKGFP), which permits the expression of single-chain variable fragments as fusion proteins with modified green fluorescent proteins, was designed. This expression system is comparable to frequently used phage display vectors and allows single-step characterization of the selec

  10. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    Science.gov (United States)

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  11. A Review of Indocyanine Green Fluorescent Imaging in Surgery

    Directory of Open Access Journals (Sweden)

    Jarmo T. Alander

    2012-01-01

    Full Text Available The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined.

  12. Transgenic expression of green fluorescent protein in mouse oxytocin neurones.

    Science.gov (United States)

    Young, W S; Iacangelo, A; Luo, X Z; King, C; Duncan, K; Ginns, E I

    1999-12-01

    Routine targeting of neurones for expression of exogenous genes would facilitate our ability to manipulate their internal milieu or functions, providing insight into physiology of neurones. The magnocellular neurones of the paraventricular and supraoptic nuclei of the hypothalamus have been the objects of limited success by this approach. Here we report on the placement of the enhanced green fluorescent protein (eGFP) coding sequence at various locations within an oxytocin transgene. Placement within the first exon yielded little to no expression, whereas placement in the third exon (as an in-frame fusion with the carboxyl terminus of the oxytocin preprohormone) resulted in cell-specific expression of eGFP in oxytocin neurones. Furthermore, placement of the eGFP sequence downstream of a picornavirus internal ribosomal entry site (IRES), also in the third exon, allowed expression of the eGFP as a separate protein. Other coding sequences should now be amenable to expression within oxytocin neurones to study their physiology.

  13. Early history, discovery, and expression of Aequorea green fluorescent protein, with a note on an unfinished experiment.

    Science.gov (United States)

    Tsuji, Frederick I

    2010-08-01

    The bioluminescent hydromedusan jellyfish, Aequorea victoria, emits a greenish light (lambda(max) = 508 nm) when stimulated electrically or mechanically. The light comes from photocytes located along the margin of its umbrella. The greenish light depends on two intracellular proteins working in consort: aequorin (21.4 kDa) and a green fluorescent protein (27 kDa). An excited state green fluorescent protein molecule results, which, on returning to the ground state, emits a greenish light. Similarly, a green light emission may be induced in the green fluorescent protein by exposing it to ultraviolet or blue light. Because the green light can be readily detected under a fluorescence microscope, the green fluorescent protein, tagged to a protein of interest, has been used widely as a marker to locate proteins in cells and to monitoring gene expression. This article reviews the work that took place leading to the discovery, cloning, and expression of the green fluorescent protein, with a note on an unfinished experiment. (c) 2010 Wiley-Liss, Inc.

  14. Expression of green fluoscrescent protein gene in Sclerotinia sclerotiorum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-zheng; YANG Qian; YANG Lei

    2009-01-01

    Protoplasts of the pathogenic plant fungus,Sclerotinia sclerotiorum,were transformed using the pPGF plasmid,which contains green fluorescent protein gene,under the control of Aspergillus nidulans regula-tory sequences,The pPGF plasmid was introduced by PEG/CaCl2 treatment.Positive transformants were har-Vested with hygromycin B(HYG) resistance as selective marker,and then were observed with green fluores-cence phenomena in response to blue light,which suggested that GFP gene was cloned into genome DNA of s.sclerotiorum.The transformants were verified mitotically stable by Southern blotting analysis and passage cultu-ring.This study is deVeloped as an initial step for further research into infection mechanisms of S.sclerotiorum to Plants and ineraetions with bio-control fungus.

  15. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.

    OpenAIRE

    2000-01-01

    We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotr...

  16. Significance of the expression of green fluorescent protein on detection of glioma invasion in vivo

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the invasion and metastasis of gliomain vivo by xenotransplanted tumor established by implanting C6 glioma cells transfected with green fluorescent protein (GFP) gene in vitro into the brain of SD rats. Methods: C6 cells were transfected with a plasmid vector (pEGEP-N3) containing the GFP gene. Stable GFP-expressing clones were isolated and performed examination by flow cytometry and electron microscope. GFP-expressing cells were stereotactically injected into the brain parenchyma of SD rats to establish xenotransplanted tumor. Four weeks later rats were killed and continuous brain sections respectively were examined by HE staining, immunohistochemistry method and fluorescence microscopy for detection of tumor cell invasion. Xenotransplanted tumor was primarily cultured to determine the storage of exotic GFP gene in vivo. Results: There were not obvious changes in cell cycle and ultrastructure for the cells transfected with GFP gene. C6 cells transfected with GFP gene maintained stable high-level GFP expression in the central nervous system during their growth in vivo. GFP fluorescence clearly demarcated the primary tumor margin and readily allowed for the detection of distant invasion on the single-cell level, which was evidently superior to HE and immunohistochemistry staining. There was not GFP gene loss of transfected cells in vivo. Conclusions: It is suggested that C6 cells transfected with GFP gene can be visualized by fluorescent microscopy after intracranial implantation. This model is an excellent experimental animal model in research on invasion of glioma.

  17. The labeling of C57BL/6j derived embryonic stem cells with enhanced green fluorescent protein

    Institute of Scientific and Technical Information of China (English)

    滕路; 张崇本; 尤洁芳; 尚克刚; 顾军

    2003-01-01

    Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/ chicken beta-actin promoter/ beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.Results We generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the "green" ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The "green" embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence. Conclusions The hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.

  18. Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage.

    Science.gov (United States)

    Hanazono, Y; Yu, J M; Dunbar, C E; Emmons, R V

    1997-07-20

    Green fluorescent protein (GFP) has been used as a reporter molecule for gene expression because it fluoresces green after blue-light excitation. Inclusion of this gene in a vector could allow rapid, nontoxic selection of successfully transduced cells. However, many attempts by our laboratory to isolate stable retroviral producer cell clones secreting biologically active vectors containing either the highly fluorescent S65T-GFP mutant or humanized GFP have failed. Vector plasmids containing various forms of GFP and the neomycin resistance gene were transfected into three different packaging cell lines and fluorescence was observed for several days, but stable clones selected with G418 no longer fluoresced. Using confocal microscopy, the brightest cells were observed to contract and die within a matter of days. RNA slot-blot analysis of retroviral producer supernatants showed no viral production from the GFP plasmid-transfected clones, although all clones derived after transfection with an identical retroviral construct not containing GFP produced virus. Genomic Southern analysis of the GFP-transduced clones showed a much higher probability of rearrangement of the priviral sequences than in the control non-GFP clones. Overall, 18/34 S65T-GFP clones and 17/33 humanized-GFP clones had rearrangements, whereas 2/15 control non-GFP clones had rearrangements. Hence, producer cells expressing high levels of these GFP genes seem to be selected against, with stable clones undergoing major rearrangements or other mutations that both abrogate GFP expression and prevent vector production. These observations indicate that GFP may not be an appropriate reporter gene for gene transfer applications in our vector/packaging system.

  19. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats

    Directory of Open Access Journals (Sweden)

    Xufeng Han

    2015-09-01

    Full Text Available The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum isolated from goat. Green fluorescent protein (GFP was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.

  20. Green fluorescent protein labeling of food pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis.

    Science.gov (United States)

    Gensberger, Eva Theres; Kostić, Tanja

    2017-01-01

    Labeling of bacteria with marker genes, such as green fluorescent protein, is a useful and practicable tool for tracking and enumerating bacterial cells in a complex environment e.g. discrimination from the indigenous background population. In this study, novel TurboGFP prokaryotic expression vector was utilized for labeling of Yersinia species. Y. enterocolitica biovar 1A, biovar 2, biovar 4 and Y. pseudotuberculosis were successfully transformed with the vector and expressed bright green fluorescence that was even detectable visually by eye. No adverse effects were observed in growth behavior of the labeled strains compared to wild type (parental) strains and vector maintenance for longer time periods could be achieved for Y. enterocolitica biovar 1A, Y. enterocolitica biovar 2 and Y. pseudotuberculosis.

  1. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

    Science.gov (United States)

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.

  2. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo

    Science.gov (United States)

    Lewis, Jo E.; Brameld, John M.; Hill, Phil; Barrett, Perry; Ebling, Francis J.P.; Jethwa, Preeti H.

    2015-01-01

    Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Results Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. Comparison with old method The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. Conclusion The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. PMID:26300182

  3. Generation of transgenic dogs that conditionally express green fluorescent protein.

    Science.gov (United States)

    Kim, Min Jung; Oh, Hyun Ju; Park, Jung Eun; Kim, Geon A; Hong, So Gun; Jang, Goo; Kwon, Mo Sun; Koo, Bon Chul; Kim, Teoan; Kang, Sung Keun; Ra, Jeong Chan; Ko, Chemyong; Lee, Byeong Chun

    2011-06-01

    We report the creation of a transgenic dog that conditionally expresses eGFP (enhanced green fluorescent protein) under the regulation of doxycycline. Briefly, fetal fibroblasts infected with a Tet-on eGFP vector were used for somatic cell nuclear transfer. Subsequently reconstructed oocytes were transferred to recipients. Three clones having transgenes were born and one dog was alive. The dog showed all features of inducible expression of eGFP upon doxycycline administration, and successful breeding resulted in eGFP-positive puppies, confirming stable insertion of the transgene into the genome. This inducible dog model will be useful for a variety of medical research studies.

  4. Photoconversion of Lysotracker Red to a green fluorescent molecule

    Institute of Scientific and Technical Information of China (English)

    Eric C Freundt; Meggan Czapiga; Michael J Lenardo

    2007-01-01

    @@ Dear Editor: Lysotracker Red DND-99 (Invitrogen-Molecular Probes)is a fluorophore in the form of a conjugated multi-pyrrole ring structure containing a weakly basic amine that selectively accumulates in acidic compartments and exhibits red fluorescence(excitation:577 nm,emission:590 nm)(Figure 1A).It iS structurally related to Lvsotracker Green (Figure 1B)but has an additional pyrrole ring in conjugation with the primary structure,which produces a longer wavelength emission.Lysotracker Red is commonly used in multicolor imaging studies as a lysosomal marker to determine intracellular localization of a protein of interest by fluorescence and confocal microscopy[1-5] and is recommended by the manufacturer for this application.

  5. Toward an ideal animal model to trace donor cell fates after stem cell therapy: production of stably labeled multipotent mesenchymal stem cells from bone marrow of transgenic pigs harboring enhanced green fluorescence protein gene.

    Science.gov (United States)

    Hsiao, F S H; Lian, W S; Lin, S P; Lin, C J; Lin, Y S; Cheng, E C H; Liu, C W; Cheng, C C; Cheng, P H; Ding, S T; Lee, K H; Kuo, T F; Cheng, C F; Cheng, W T K; Wu, S C

    2011-11-01

    The discovery of postnatal mesenchymal stem cells (MSC) with their general multipotentiality has fueled much interest in the development of cell-based therapies. Proper identification of transplanted MSC is crucial for evaluating donor cell distribution, differentiation, and migration. Lack of an efficient marker of transplanted MSC has precluded our understanding of MSC-related regenerative studies, especially in large animal models such as pigs. In the present study, we produced transgenic pigs harboring an enhanced green fluorescent protein (EGFP) gene. The pigs provide a reliable and reproducible source for obtaining stable EGFP-labeled MSC, which is very useful for donor cell tracking after transplantation. The undifferentiated EGFP-tagged MSC expressed a greater quantity of EGFP while maintaining MSC multipotentiality. These cells exhibited homogeneous surface epitopes and possessed classic trilineage differentiation potential into osteogenic, adipogenic, and chondrogenic lineages, with robust EGFP expression maintained in all differentiated progeny. Injection of donor MSC can dramatically increase the thickness of infarcted myocardium and improve cardiac function in mice. Moreover, the MSC, with their strong EGFP expression, can be easily distinguished from the background autofluorescence in myocardial infarcts. We demonstrated an efficient, effective, and easy way to identify MSC after long-term culture and transplantation. With the transgenic model, we were able to obtain stem or progenitor cells in earlier passages compared with the transfection of traceable markers into established MSC. Because the integration site of the transgene was the same for all cells, we lessened the potential for positional effects and the heterogeneity of the stem cells. The EGFP-transgenic pigs may serve as useful biomedical and agricultural models of somatic stem cell biology.

  6. Effect of refractive index on the fluorescence lifetime of green fluorescent protein.

    Science.gov (United States)

    Tregidgo, Carolyn; Levitt, James A; Suhling, Klaus

    2008-01-01

    The average fluorescence lifetime of the green fluorescent protein (GFP) in solution is a function of the refractive index of its environment. We report that this is also the case for GFP-tagged proteins in cells. Using time-correlated single-photon counting (TCSPC)-based fluorescence lifetime imaging (FLIM) with a confocal scanning microscope, images of GFP-tagged proteins in cells suspended in different refractive index media are obtained. It is found that the average fluorescence lifetime of GFP decreases on addition of glycerol or sucrose to the media in which the fixed cells are suspended. The inverse GFP lifetime is proportional to the refractive index squared. This is the case for GFP-tagged major histocompatibility complex (MHC) proteins with the GFP located inside the cytoplasm, and also for GPI-anchored GFP that is located outside the cell membrane. The implications of these findings are discussed with regard to total internal reflection fluorescence (TIRF) techniques where the change in refractive index is crucial in producing an evanescent wave to excite fluorophores near a glass interface. Our findings show that the GFP fluorescence lifetime is shortened in TIRF microscopy in comparison to confocal microscopy.

  7. Community Profiling of Culturable Fluorescent Pseudomonads in the Rhizosphere of Green Gram (Vigna radiata L.)

    Science.gov (United States)

    Sarma, Rupak K.; Gogoi, Animesh; Dehury, Budheswar; Debnath, Rajal; Bora, Tarun C.; Saikia, Ratul

    2014-01-01

    Study on microbial diversity in the unexplored rhizosphere is important to understand their community structure, biology and ecological interaction with the host plant. This research assessed the genetic and functional diversity of fluorescent pseudomonads [FP] in the green gram rhizophere. One hundred and twenty types of morphologically distinct fluorescent pseudomonads were isolated during vegetative as well as reproductive growth phase of green gram. Rep PCR, ARDRA and RISA revealed two distinct clusters in each case at 75, 61 and 70% similarity coefficient index respectively. 16S rRNA partial sequencing analysis of 85 distantly related fluorescent pseudomonads depicted Pseudomonas aeruginosa as the dominant group. Out of 120 isolates, 23 (19%) showed antagonistic activity towards phytopathogenic fungi. These bacterial isolates showed varied production of salicylic acid, HCN and chitinase, 2, 4-diacetylphloroglucinol (DAPG), phenazine-1-carboxylic acid (PCA) and pyoluteorin (PLT). Production efficiency of inherent level of plant growth promoting (PGP) traits among the 120 isolates demonstrated that 10 (8%) solubilised inorganic phosphates, 25 (20%) produced indoles and 5 (4%) retained ACC deaminase activity. Pseudomonas aeruginosa GGRJ21 showed the highest production of all antagonistic and plant growth promoting (PGP) traits. In a greenhouse experiment, GGRJ21 suppressed root rot disease of green gram by 28–93% (p = 0.05). Consistent up regulation of three important stress responsive genes, i.e., acdS, KatA and gbsA and elevated production efficiency of different PGP traits could promote GGRJ21 as a potent plant growth regulator. PMID:25279790

  8. Enhanced green fluorescent protein expression in Pleurotus ostreatus for in vivo analysis of fungal laccase promoters.

    Science.gov (United States)

    Amore, Antonella; Honda, Yoichi; Faraco, Vincenza

    2012-10-01

    The laccase family of Pleurotus ostreatus has been widely characterized, and studies of the genes coding for laccase isoenzymes in P. ostreatus have so far led to the identification of four different genes and the corresponding cDNAs, poxc, pox1, poxa1b and poxa3. Analyses of P. ostreatus laccase promoters poxc, pox1, poxa1b and poxa3 have allowed identification of several putative response elements, and sequences of metal-responsive elements involved in the formation of complexes with fungal proteins have been identified in poxc and poxa1b promoters. In this work, development of a system for in vivo analysis of P. ostreatus laccase promoter poxc by enhanced green fluorescent protein expression is performed, based on a poly ethylene glycol-mediated procedure for fungal transformation. A quantitative measurement of fluorescence expressed in P. ostreatus transformants is hereby reported for the first time for this fungus.

  9. Chromosomal Location and Expression of Green Fluorescent Protein (gfp) Gene in Microspore Derived Transgenic Barley (Hordeum vulgare L.)%转基因大麦中gfp基因的染色体位置及其表达

    Institute of Scientific and Technical Information of China (English)

    陈建民; Carlson A R; 万建民; Kasha K J

    2003-01-01

    通过对大麦小孢子进行基因枪轰击获得4株转绿色荧光蛋白基因(gfp)的植株(A、C、D、E),以gfp基因为探针进行荧光原位杂交(FISH)研究转化植株中转基因插入位置和基因表达.4个株系在染色体7L(5HL)的不同位置都有一个插入点,而E株系在染色体5S(7HS)还有第2个插入点.所有的转基因T0代植株都是半合子并在T1、T2代发生分离.D株系GFP未表达,但FISH和PCR分析表明gfp基因已成功插入其染色体.各株系在根尖和花粉中的GFP表达水平不同:C株系在花粉表达强而在根尖表达中等;A株系在花粉中等表达而在根尖表达较淡;E株系则在根尖高表达,花粉中等表达.A和C株系在根尖和花粉的GFP分离都表现单位点特性,而E株系的根尖分离表现重叠作用(15∶1)特征,但在花粉中表达GFP的频率低.PCR结果和3个分离株系的根尖表达结果一致.D和E株系的GFP表达不正常可能和gfp基因插入位置或基因的结构有关.%Four doubled haploid barley lines (A,C,D,E) derived from gfp (green fluorescent protein) transformation and selection following particle bombardment of microspores were studied for gene expression pattern and the location of genome inserts.The integration sites were detected by fluorescence in situ hybridization (FISH) using the gfp plasmid DNA as a probe.Plants from events A,C,D and E all have a single insert site on chromosome 7L(5HL) at different locations while line E has a second insert site on chromosome 5S(7HS).All original transgenic plants were hemizygous for the transgenes and segregated in the T1 and T2 generations.Although line D had no GFP expression,FISH and PCR could detect gfp gene on its chromosome in transformed plants.Expression levels of GFP varied with lines and tissues examined.Plants from line C showed good expression in pollen and an intermediate level in root tips.Plants from A have intermediate expression of GFP in the pollen and light expression in the

  10. Use of the fluorescent timer DsRED-E5 as reporter to monitor dynamics of gene activity in plants

    NARCIS (Netherlands)

    Mirabella, R.; Franken, C.; Krogt, van der G.N.M.; Bisseling, T.; Geurts, R.

    2004-01-01

    Fluorescent proteins, such as green fluorescent protein and red fluorescent protein (DsRED), have become frequently used reporters in plant biology. However, their potential to monitor dynamic gene regulation is limited by their high stability. The recently made DsRED-E5 variant overcame this

  11. Use of the fluorescent timer DsRED-E5 as reporter to monitor dynamics of gene activity in plants

    NARCIS (Netherlands)

    Mirabella, R.; Franken, C.; Krogt, van der G.N.M.; Bisseling, T.; Geurts, R.

    2004-01-01

    Fluorescent proteins, such as green fluorescent protein and red fluorescent protein (DsRED), have become frequently used reporters in plant biology. However, their potential to monitor dynamic gene regulation is limited by their high stability. The recently made DsRED-E5 variant overcame this proble

  12. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue.

    Science.gov (United States)

    Lyndby, Niclas H; Kühl, Michael; Wangpraseurt, Daniel

    2016-05-26

    Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.

  13. Characterization of a Mutant Listeria monocytogenes Strain Expressing Green Fluorescent Protein

    Institute of Scientific and Technical Information of China (English)

    Ling-Li JIANG; Hou-Hui SONG; Xue-Yan CHEN; Chun-Lin KE; Jing-Jing XU; Ning CHEN; Wei-Huan FANG

    2005-01-01

    To construct a recombinant strain of Listeria monocytogenes for the expression of heterologous genes, homologous recombination was utilized for insertional mutation, targeting its listeriolysin O gene(hly). The gene encoding green fluorescent protein (GFP) was used as the indicator of heterologous gene expression. The gene gfp was inserted into hly downstream from its promoter and signal sequence by an overlapping extension polymerase chain reaction, and was then cloned into the shuttle plasmid pKSV7 for allelic exchange with the L. monocytogenes chromosome. Homologous recombination was achieved by growing the electro-transformed L. monocytogenes cells on chloramphenicol plates at a non-permissive temperature.Sequencing analysis indicated correct insertion of the target gene in-frame with the signal sequence. The recombinant strain expressed GFP constitutively as revealed by fluorescence microscopy. The mutant strain L. monocytogenes hly-gfp lost its hemolytic activity as visualized on the blood agar or when analyzed with the culture supernatant samples. Such insertional mutation resulted in a reduced virulence of about 2 logs less than its parent strain L. monocytogenes 10403s as shown by the 50%-lethal-dose assays in the mouse and embryonated chicken egg models. These results thus demonstrate that mutated L. monocytogenes could be a potential carrier for the expression of heterologous passenger genes or could act as an indicator organism in the food industry.

  14. Controlled expression of enhanced green fluorescent protein and hepatitis B virus precore protein in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel tetracycline regulation expression system was used to regulate the expression of enhanced green fluorescent protein (EGFP) and hepatitis B virus precore protein in the mammalian cell lines with lipofectAMINE. Flow cytometry assays showed that application of the system resulted in about 18-fold induction of EGFP expression in CHO cell lines and 5-fold induction in SSMC-7721 cells and about 2-fold in the HEK293 cells. Furthermore, the effective use of this system for the controlled expression of HBV precore protein gene in hepatocellular carcinoma cells was tested.

  15. The electronic excited states of green fluorescent protein chromophore models

    Science.gov (United States)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  16. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Woong Han, Jae; Kim, Eunsu; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-10-03

    Graphene is the 2D form of carbon that exists as a single layer of atoms arranged in a honeycomb lattice and has attracted great interest in the last decade in view of its physical, chemical, electrical, elastic, thermal, and biocompatible properties. The objective of this study was to synthesize an environmentally friendly and simple methodology for the preparation of graphene using a recombinant enhanced green fluorescent protein (EGFP). The successful reduction of GO to graphene was confirmed using UV-vis spectroscopy, and FT-IR. DLS and SEM were employed to demonstrate the particle size and surface morphology of GO and EGFP-rGO. The results from Raman spectroscopy suggest the removal of oxygen-containing functional groups from the surface of GO and formation of graphene with defects. The biocompatibility analysis of GO and EGFP-rGO in human embryonic kidney (HEK) 293 cells suggests that GO induces significant concentration-dependent cell toxicity in HEK cells, whereas graphene exerts no adverse effects on HEK cells even at a higher concentration (100 μg/mL). Altogether, our findings suggest that recombinant EGFP can be used as a reducing and stabilizing agent for the preparation of biocompatible graphene. The novelty and originality of this work is that it describes a safe, simple, and environmentally friendly method for the production of graphene using recombinant enhanced green fluorescent protein. Furthermore, the synthesized graphene shows excellent biocompatibility with HEK cells; therefore, biologically synthesized graphene can be used for biomedical applications. To the best of our knowledge, this is the first and novel report describing the synthesis of graphene using recombinant EGFP.

  17. GREEN FLUORESCENT PIGMENT ACCUMULATED BY A MUTANT OF CELLVIBRIO GILVUS.

    Science.gov (United States)

    LOVE, S H; HULCHER, F H

    1964-01-01

    Love, Samuel H. (Bowman Gray School of Medicine, Winston-Salem, N.C.), and Frank H. Hulcher. Green fluorescent pigment accumulated by a mutant of Cellvibrio gilvus. J. Bacteriol. 87:39-45. 1964.-A mutant of Cellvibrio gilvus, designated strain 139A, liberated a green, fluorescent pigment into the surrounding culture medium. A study of the factors which affected the accumulation of this pigment led to the development of a chemically defined medium which supported maximal pigment accumulation in aerated, liquid cultures. d-Glucose, glycine or l-serine, l-phenylalanine, l-proline, and l-lysine comprised the organic components of this medium. The visible absorption spectrum of the pigment showed a maximal band at 400 mmu (pH 7.0). A difference spectrum between reduced and oxidized pigment showed loss of the band at 400 mmu upon oxidation. However, a methanol-extractable, flavinelike compound occurred in the wild strain but not in the mutant. Ferric ions added to the defined medium stimulated growth, with a concomitant reduction of pigment accumulation. Pigment was formed at a maximal rate during the stationary growth phase, and the highest yield was obtained by 18 hr. Organic solvents did not extract the pigment from water solutions. One and sometimes two, compounds absorbing at 400 mmu could be eluted by ion-exchange chromatography on Cellex-P (H(+)), which was used to separate the pigment from other components in the culture supernatants so that the radioactivity of the pigment could be measured. The mutant synthesized C(14)-labeled pigment from d-glucose-U-C(14) and from each of four amino acids (glycine-1-C(14), l-phenylalanine-U-C(14), l-proline-U-C(14), and l-lysine-U-C(14). Delta-Amino-levulenic acid-4-C(14) did not contribute C(14) to the pigment.

  18. THE ENHANCED GREEN FLUORESCENT PROTEIN AS A MARKER FOR HUMAN TUMOR CELLS LABELLED BY RETROVIRAL TRANSDUCTION

    Institute of Scientific and Technical Information of China (English)

    傅建新; 王玮; 白霞; 卢大儒; 阮长耿; 陈子兴

    2002-01-01

    Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tumor cell lines were infected with LGSN amphotropic virus. Tumor cell lines that stably express EGFP were selected with G418. The integration and expression of EGFP gene were analyzed by polymerase chain reaction, and flow cytometry (FCM). Results: After gene transfection and ping-pong transduction, amphotropic producer line Am12/LGSN was generated with a stable green fluorescence signal readily detectable by FCM in up to 97% of examined cells. The viral titer in the supernatants was up to 8.2×105CFU/ml. After transduction and selection, G418-resistant leukemia K562, mammary carcinoma MCF-7, and bladder cancer 5637 cells were developed, in which the integration of both EGFP and neomycin resistance gene was confirmed by DNA amplification. In comparison with uninfected cells, FCM analysis revealed EGFP expression in up to 90% (range 85.5%~90.0%) of tumor cells containing LGSN provirus. Conclusion: The retroviral vector LGSN can effectively mark the human tumor cells with a stably EGFP expression which may be in studying tumor growth, metastasis and angiogenesis.

  19. Cell culture and animal infection with distinct Trypanosoma cruzi strains expressing red and green fluorescent proteins.

    Science.gov (United States)

    Pires, S F; DaRocha, W D; Freitas, J M; Oliveira, L A; Kitten, G T; Machado, C R; Pena, S D J; Chiari, E; Macedo, A M; Teixeira, S M R

    2008-03-01

    Different strains of Trypanosoma cruzi were transfected with an expression vector that allows the integration of green fluorescent protein (GFP) and red fluorescent protein (RFP) genes into the beta-tubulin locus by homologous recombination. The sites of integration of the GFP and RFP markers were determined by pulse-field gel electrophoresis and Southern blot analyses. Cloned cell lines selected from transfected epimastigote populations maintained high levels of fluorescent protein expression even after 6 months of in vitro culture of epimastigotes in the absence of drug selection. Fluorescent trypomastigotes and amastigotes were observed within Vero cells in culture as well as in hearts and diaphragms of infected mice. The infectivity of the GFP- and RFP-expressing parasites in tissue culture cells was comparable to wild type populations. Furthermore, GFP- and RFP-expressing parasites were able to produce similar levels of parasitemia in mice compared with wild type parasites. Cell cultures infected simultaneously with two cloned cell lines from the same parasite strain, each one expressing a distinct fluorescent marker, showed that at least two different parasites are able to infect the same cell. Double-infected cells were also detected when GFP- and RFP-expressing parasites were derived from strains belonging to two distinct T. cruzi lineages. These results show the usefulness of parasites expressing GFP and RFP for the study of various aspects of T. cruzi infection including the mechanisms of cell invasion, genetic exchange among parasites and the differential tissue distribution in animal models of Chagas disease.

  20. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-04-15

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91(phox) are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91(phox). By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91(phox) are approximately 1.38 and approximately 1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane.

  1. Folding and unfolding of a non-fluorescent mutant of green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Wielgus-Kutrowska, Beata [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Narczyk, Marta [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Buszko, Anna [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Bzowska, Agnieszka [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Clark, Patricia L [Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States)

    2007-07-18

    Green fluorescent protein (GFP), from the Pacific jellyfish A. victoria, has numerous uses in biotechnology and cell and molecular biology as a protein marker because of its specific chromophore, which is spontaneously created after proper protein folding. After formation, the chromophore is very stable and it remains intact during protein unfolding, meaning that the GFP unfolding process is not the reverse of the original folding reaction; i.e., the principles of microscopic reversibility do not apply. We have generated the mutant S65T/G67A-GFP, which is unable to efficiently form the cyclic chromophore, with the goal of investigating the folding, unfolding and competing aggregation of GFP under fully reversible conditions. Our studies have been performed in the presence of guanidinium hydrochloride (GdnHCl). The GFP conformation was monitored using intrinsic tryptophan fluorescence, and fluorescence of 1,1'-bis(4-anilino-5-naphthalenesulphonic acid) (bis-ANS). Light scattering was used to follow GFP aggregation. We conclude from these fluorescence measurements that S65T/G67A-GFP folding is largely reversible. During equilibrium folding, the first step is the formation of a molten globule, prone to aggregation.

  2. Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles.

    Science.gov (United States)

    Liu, Lizhen; Feng, Feng; Hu, Qin; Paau, Man Chin; Liu, Yang; Chen, Zezhong; Bai, Yunfeng; Guo, Fangfang; Choi, Martin M F

    2015-09-01

    CE coupled with laser-induced fluorescence and UV absorption detections has been applied to study the complexity of as-synthesized green fluorescent hollow carbon nanoparticles (HC-NP) samples. The effects of pH, type, and concentration of the run buffer and SDS on the separation of HC-NP are studied in detail. It is observed that phosphate run buffer is more effective in separating the HC-NP and the optimal run buffer is found to be 30 mM phosphate and 10 mM SDS at pH 9.0. The CE separation of this HC-NP is based on the difference in size and electrophoretic mobility of HC-NP. Some selected HC-NP fractions are collected and further characterized by UV-visible absorption and photoluminescence (PL) spectroscopy, MS, and transmission electron microscopy. The fractionated HC-NP show profound differences in absorption, emission characteristics, and PL quantum yield that would have been otherwise misled by studying the complex mixture alone. It is anticipated that our CE methodology will open a new initiative on extensive studies of individual HC-NP species in the biomedical, catalysis, electronic, and optical device, energy storage, material, and sensing field.

  3. Violet and blue light-induced green fluorescence emissions from dental caries.

    Science.gov (United States)

    Shakibaie, F; Walsh, L J

    2016-12-01

    The objective of this laboratory study was to compare violet and visible blue LED light-elicited green fluorescence emissions from enamel and dentine in healthy or carious states. Microscopic digital photography was undertaken using violet and blue LED illumination (405 nm and 455 nm wavelengths) of tooth surfaces, which were photographed through a custom-made stack of green compensating filters which removed the excitation light and allowed green fluorescence emissions to pass. Green channel pixel data were analysed. Dry sound enamel and sound root surfaces showed strong green fluorescence when excited by violet or blue lights. Regions of cavitated dental caries gave lower green fluorescence, and this was similar whether the dentine in the lesions was the same colour as normal dentine or was darkly coloured. The presence of saliva on the surface did not significantly change the green fluorescence, while the presence of blood diluted in saliva depressed green fluorescence. Using violet or blue illumination in combination with green compensating filters could potentially aid in the assessment of areas of mineral loss. © 2016 Australian Dental Association.

  4. Analysis of green fluorescent protein bioluminescence in vivo and in vitro using a glow discharge

    Science.gov (United States)

    Hernández, L.; Mandujano, L. A.; Cuevas, J.; Reyes, P. G.; Osorio-González, D.

    2015-03-01

    The discovery of fluorescent proteins has been a revolution in cell biology and related sciences because of their many applications, mainly emphasizing their use as cellular markers. The green fluorescent protein (GFP) is one of the most used as it requires no cofactors to generate fluorescence and retains this property into any organism when it is expressed by recombinant DNA techniques, which is a great advantage. In this work, we analyze the emission spectra of recombinant green fluorescent protein in vivo and in vitro exposed to a glow discharge plasma of nitrogen in order to relate electron temperature to fluorescence intensity.

  5. Real-time fluorescence tracking of gene delivery via multifunctional nanocomposites.

    Science.gov (United States)

    Bai, Min; Bai, Xilin; Wang, Leyu

    2014-11-18

    Fluorescence imaging of transduced cells and tissues is valuable in the development of gene vectors and the evaluation of gene therapy efficacy. We report here the simple and rational design of multifunctional nanocomposites (NCs) for simultaneous gene delivery and fluorescence tracking based on ZnS:Mn(2+) quantum dots (QDs) and positively charged polymer coating. The positively charged imidazole in the as-synthesized amphiphilic copolymer can be used for gene loading via electrostatic interaction. While the introduced poly(ethylene glycol) (PEG) can be used to reduce the binding of plasma proteins to nanovectors and minimize clearance by the reticuloendothelial system after intravenous administration. Most importantly, these multifunctional nanovectors showed much lower cellular toxicity than the commercial polyethylenimine (PEI) transfection vectors. On the basis of the red fluorescence of QDs, we can real-time track the gene delivery in cells, and the transfection efficacy of pDNA encoding enhanced green fluorescence protein (pEGFP) was monitored via the green fluorescence of the GFP expressed by the pDNA delivered into the nuclei. Fluorescence imaging analysis confirmed that the QDs-based nanovectors delivered pDNA into HepG2 cells efficiently. These new insights and capabilities pave a new way toward nanocomposite engineering for fluorescence imaging tracking of gene therapy.

  6. Preparation of North American Type II PRRSV Infectious Clone Expressing Green Fluorescent Protein

    Directory of Open Access Journals (Sweden)

    Liyue Wang

    2014-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is still one of the most important infectious diseases threatening the swine industry. To construct North American type II PRRSV infectious clone containing green fluorescent protein (GFP gene, we amplify gfp gene, flanked by PRRSV Nsp2 gene fragments upstream and downstream, using overlap PCR method from pcDNA-EF1-GFP plasmid and FL12 plasmid containing PRRSV infectious genome as the templates. The Nsp2 fragment-flanked gfp gene was inserted into Nsp2 gene of the FL12 plasmid by Spe I and Xho I sites to generate PRRSV infectious recombinant plasmid (FL12-GFP containing gfp gene. The recombinant PRRSV expressing GFP (PRRSV-GFP was rescued in baby hamster kidney-21 (BHK-21 cells by transfecting PRRSV mRNA synthesized in vitro and amplified in Marc-145 cells. The PRRSV-GFP infectivity and replication capacity were identified. Results showed that, by adopting overlap PCR strategy, the gfp gene was successfully inserted into and fused with PRRSV Nsp2 gene in the PRRSV infectious clone plasmid FL-12 to generate FL12-GFP plasmid. The recombinant PRRSV-GFP was generated through transfecting PRRSV mRNA in BHK-2 cells. Like its parental virus, the recombinant PRRSV-GFP maintains its infectivity to Marc-145 cells and porcine alveolar macrophages (PAMs. This study provides essential conditions for further investigation on PRRSV.

  7. Community profiling of culturable fluorescent pseudomonads in the rhizosphere of green gram (Vigna radiata L..

    Directory of Open Access Journals (Sweden)

    Rupak K Sarma

    Full Text Available Study on microbial diversity in the unexplored rhizosphere is important to understand their community structure, biology and ecological interaction with the host plant. This research assessed the genetic and functional diversity of fluorescent pseudomonads [FP] in the green gram rhizophere. One hundred and twenty types of morphologically distinct fluorescent pseudomonads were isolated during vegetative as well as reproductive growth phase of green gram. Rep PCR, ARDRA and RISA revealed two distinct clusters in each case at 75, 61 and 70% similarity coefficient index respectively. 16S rRNA partial sequencing analysis of 85 distantly related fluorescent pseudomonads depicted Pseudomonas aeruginosa as the dominant group. Out of 120 isolates, 23 (19% showed antagonistic activity towards phytopathogenic fungi. These bacterial isolates showed varied production of salicylic acid, HCN and chitinase, 2, 4-diacetylphloroglucinol (DAPG, phenazine-1-carboxylic acid (PCA and pyoluteorin (PLT. Production efficiency of inherent level of plant growth promoting (PGP traits among the 120 isolates demonstrated that 10 (8% solubilised inorganic phosphates, 25 (20% produced indoles and 5 (4% retained ACC deaminase activity. Pseudomonas aeruginosa GGRJ21 showed the highest production of all antagonistic and plant growth promoting (PGP traits. In a greenhouse experiment, GGRJ21 suppressed root rot disease of green gram by 28-93% (p = 0.05. Consistent up regulation of three important stress responsive genes, i.e., acdS, KatA and gbsA and elevated production efficiency of different PGP traits could promote GGRJ21 as a potent plant growth regulator.

  8. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen; Sommer, Morten O A

    2015-12-01

    Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74-84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered a less leaky Cu(2+)-inducible promoter based on CUP1. The basal expression level of the new promoter was approximately 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu(2+)-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae cultured for 25 generations under strong and slightly toxic expression after which only limited reduction in fluorescence was detectable. Such non-recombinogenic GFPs can help quantify intracellular responses operating a low copy number in recombination-prone organisms.

  9. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. Reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. Reinhardtii.

  10. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease in the i......To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...

  11. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    Science.gov (United States)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  12. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring.

    Science.gov (United States)

    Gutiérrez, Sara; Martínez-López, David; Morón, María; Sucunza, David; Sampedro, Diego; Domingo, Alberto; Salgado, Antonio; Vaquero, Juan J

    2015-12-14

    The synthesis and photophysical behavior of an unexplored family of green fluorescent protein (GFP)-like chromophore analogues is reported. The compound (Z)-4-(4-hydroxybenzylidene)-1-propyl-2-(propylamino)-1H-imidazol-5(4 H)-one (p-HBDNI, 2 a) exhibits significantly enhanced fluorescence properties relative to the parent compound (Z)-5-(4-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (p-HBDI, 1). p-HBDNI was considered as a model system and the photophysical properties of other novel 2-amino-3,5-dihydro-4H-imidazol-4-one derivatives were evaluated. Time-dependent DFT calculations were carried out to rationalize the results. The analogue AIDNI (2 c), in which the 4-hydroxybenzyl group of p-HBDNI was replaced by an azaindole group, showed improved photophysical properties and potential for cell staining. The uptake and intracellular distribution of 2 c in living cells was investigated by confocal microscopy imaging.

  13. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion

    DEFF Research Database (Denmark)

    Degett, Thea Helene; Andersen, Helene Schou; Gögenur, Ismail

    2016-01-01

    PURPOSE: Anastomotic leakage following gastrointestinal surgery remains a frequent and serious complication associated with a high morbidity and mortality. Indocyanine green fluorescence angiography (ICG-FA) is a newly developed technique to measure perfusion intraoperatively. The aim of this paper...

  14. POLA EKSPRESI GEN ENHANCED GREEN FLUORESCENT PROTEIN PADA EMBRIO DAN LARVA IKAN PATIN SIAM (Pangasianodon hypophthalmus)

    OpenAIRE

    Raden Roro Sri Pudji Sinarni Dewi; Alimuddin Alimuddin; Agus Oman Sudrajat; Komar Sumantadinata; Erma Primanita Hayuningtyas

    2016-01-01

    Penelitian ekspresi sementara (transient expression) dari transgen secara in vivo menggunakan gen reporter berguna untuk mendesain konstruksi gen yang akan digunakan pada penelitian transgenesis. Gen reporter yang umum digunakan dalam penelitian ekspresi sementara transgen adalah gen GFP (green fluorescent protein). Pengamatan gen EGFP (enhanced green fluorescent protein) pada embrio dan larva ikan patin siam (Pangasianodon hypophthalmus) ditujukan untuk mendapatkan informasi mengenai kema...

  15. Microspectroscopic analysis of green fluorescent proteins infiltrated into mesoporous silica nanochannels.

    NARCIS (Netherlands)

    Ma, Y.; Rajendran, P.; Blum, C.; Cesa, Y.; Gartmann, N.; Bruhwiler, D.; Subramaniam, V.

    2011-01-01

    The infiltration of enhanced green fluorescent protein (EGFP) into nanochannels of different diameters in mesoporous silica particles was studied in detail by fluorescence microspectroscopy at room temperature. Silica particles from the MCM-41, ASNCs and SBA-15 families possessing nanometer-sized (3

  16. Photo-initiated dynamics and spectroscopy of the deprotonated Green Fluorescent Protein chromophore

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    This chapter combines recent advances in understanding the photophysics of the chromophore anion of the Green Fluorescent Protein (GFP) from the jellyfish Aequorea Victoria. GFP and its homologues are widely used for in vivo labeling in biology through their remarkable fluorescent properties...

  17. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    Science.gov (United States)

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  18. Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging.

    Science.gov (United States)

    Huang, Hong; Li, Hua; Wang, Ai-Jun; Zhong, Shu-Xian; Fang, Ke-Ming; Feng, Jiu-Ju

    2014-12-21

    A simple and green approach was developed for the preparation of fluorescent Cu nanoclusters (NCs) using the artificial peptide CLEDNN as a template. The as-synthesized Cu NCs exhibited a high fluorescence quantum yield (7.3%) and good stability, along with excitation and temperature dependent fluorescent properties, which could be employed for temperature sensing. Further investigations demonstrated low toxicity of Cu NCs for cellular imaging.

  19. Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea

    KAUST Repository

    Prudkovsky, Andrey A.

    2016-02-03

    Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts.

  20. Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea.

    Science.gov (United States)

    Prudkovsky, Andrey A; Ivanenko, Viatcheslav N; Nikitin, Mikhail A; Lukyanov, Konstantin A; Belousova, Anna; Reimer, James D; Berumen, Michael L

    2016-01-01

    Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts.

  1. Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea.

    Directory of Open Access Journals (Sweden)

    Andrey A Prudkovsky

    Full Text Available Green Fluorescent Proteins (GFPs have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera found at night time in the southern Red Sea (Saudi Arabia living on shells of the gastropod Nassarius margaritifer (Dunker, 1847 (Neogastropoda: Buccinoidea: Nassariidae. We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts.

  2. The viral RNA-based transfection of enhanced green fluorescent protein (EGFP) in the parasitic protozoan Trichomonas vaginalis.

    Science.gov (United States)

    Li, Wei; Ding, He; Zhang, Xinxin; Cao, Lili; Li, Jianhua; Gong, Pengtao; Li, He; Zhang, Guocai; Li, Shuhong; Zhang, Xichen

    2012-03-01

    Here we have developed methods to transiently and stably transfect the human pathogenic protist Trichomonas vaginalis. The viral RNA-based transfection vector pTVV-EGFP/NEO was constructed by using enhanced green fluorescent protein gene (EGFP) and neomycin resistance gene (NEO) in tandem to replace the whole gene encoding region of T. vaginalis virus (TVV). The in vitro transcripts of linearized pTVV-EGFP/NEO were electroporated into trophozoites and the transfectants transiently expressed EGFP after 16 h postincubation. Stable expression of EGFP was persistently detected by fluorescence microscopy and by RT-PCR in transfected trophozoites under G418 selection. Our study provides a novel and valuable approach for genetic study of T. vaginalis.

  3. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  4. Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporation efficiencies

    Science.gov (United States)

    Tamošiūnas, Mindaugas; Kadikis, Roberts; Saknīte, Inga; Baltušnikas, Juozas; Kilikevičius, Audrius; Lihachev, Alexey; Petrovska, Ramona; Jakovels, Dainis; Šatkauskas, Saulius

    2016-04-01

    We highlight the options available for noninvasive optical diagnostics of reporter gene expression in mouse tibialis cranialis muscle. An in vivo multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) expression, providing information on location and duration of EGFP expression and allowing quantification of EGFP expression levels. For EGFP coding plasmid (pEGFP-Nuc Vector, 10 μg/50 ml) transfection, we used electroporation or ultrasound enhanced microbubble cavitation [sonoporation (SP)]. The transcutaneous EGFP fluorescence in live mice was monitored over a period of one year using the described parameters: area of EGFP positive fibers, integral intensity, and mean intensity of EGFP fluorescence. The most efficient transfection of EGFP coding plasmid was achieved, when one high voltage and four low voltage electric pulses were applied. This protocol resulted in the highest short-term and long-term EGFP expression. Other electric pulse protocols as well as SP resulted in lower fluorescence intensities of EGFP in the transfected area. We conclude that noninvasive multispectral imaging technique combined with fluorescence spectroscopy point measurements is a suitable method to estimate the dynamics and efficiency of reporter gene transfection in vivo.

  5. Incubation and application of transgenic green fluorescent nude mice in visualization studies on glioma tissue remodeling

    Institute of Scientific and Technical Information of China (English)

    DONG Jun; LAN Qing; HUANG Qiang; DAI Xing-liang; LU Zhao-hui; FEI Xi-feng; CHEN Hua; ZHANG Quan-bin; ZHAO Yao-dong; WANG Zhi-min; WANG Ai-dong

    2012-01-01

    Background The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells.However,these tumor cells are hard to be visualized directly in histopathological preparations,or in experimental glioma models.Therefore,we developed an experimental human dual-color in vivo glioma model,which made tracking solitary invasive glioma cells possible,for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells.This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling.Methods Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice.Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive.Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene,and a rat C6 glioma cell line was stained directly with CM-Dil,to establish three glioma cell lines emitting red fluorescence (SU3-RFP,U87-RFP,and C6-CM-Dil).Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice.Tumor-bearing mice were sacrificed when their clinical symptoms appeared,and the whole brain was harvested and snap frozen for further analysis.Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells.Results Almost all the essential tissues of the established EGFP athymic Balb/c nude mice,except hair and erythrocytes,fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm,approximately 50% of the offsprings were nu/nu EGFP+.SU3-RFP,U87-RFP,and C6-CM-Dil almost 100% expressed red fluorescence under the fluorescence

  6. Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongyan; Mi Congcong; Huang Huaiqing; Han Baofu; Li Jing [Chemistry department, Northeastern University, Shenyang 110819 (China); Xu Shukun, E-mail: xushukun46@126.com [Chemistry department, Northeastern University, Shenyang 110819 (China)

    2012-06-15

    A novel solvothermal approach to synthesize green-fluorescent carbon nanoparticles (CNPs) was developed using L-ascorbic acid as the carbon source, glycol and triple distilled water as the solvent. The CNPs emit strong green fluorescence under UV irradiation, and the fluorescence intensity showed a good linear relationship with pH value within a certain range. Direct yeast cell labeling was achieved through cell endocytosis of these CNPs. - Highlights: Black-Right-Pointing-Pointer A one-step approach to synthesize fluorescent carbon nanoparticles was developed. Black-Right-Pointing-Pointer A linear relationship between fluorescence intensity and pH value was observed. Black-Right-Pointing-Pointer Direct labeling of yeast cells was realized successfully with the CNPs.

  7. An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein

    Institute of Scientific and Technical Information of China (English)

    Jun Zhou; Jian Lin; Cuihong Zhou; Xiaoyan Deng; Bin Xia

    2011-01-01

    Bimolecular fluorescence complementation (BiFC) has been widely used in the analysis of protein-protein interactions (PPIs) in recent years. There are many notable advantages of BiFC such as convenience and direct visualization of PPI in cells. However, BiFC has one common limitation: the separated non-fluorescent fragments can be spontaneously self-assembled into an intact protein,which leads to false-positive results. In this study, a pair of complementary fragments (sfGFPN and sfGFPC) was constructed by splitting superfolder GFP (sfGFP) between the 214 and 215 amino acid residue, and sfGFPC was mutated by site-directed gene mutagenesis to decrease the signal of negative control. Our results showed that mutations in sfGFPC (sfGFPC(m12)) can effectively decrease the signal of negative control. Thus, we provide an improved BiFC tool for the analysis of PPI. Further,since the self-assembly problem is a common shortcoming for application of BiFC, our research provides a feasible strategy for other BiFC candidate proteins with the same problem.

  8. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs.

    NARCIS (Netherlands)

    Blum, J.S.; Temenoff, J.S.; Park, H.; Jansen, J.A.; Mikos, A.G.; Barry, M.A.

    2004-01-01

    This study investigates the utility of genetically modified cells developed for the qualitative and quantitative non-destructive evaluation of cells on biomaterials. The Fisher rat fibroblastic cell line has been genetically modified to stably express the reporter genes enhanced green fluorescence

  9. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase.

    Science.gov (United States)

    Liu, Siyu; Zhao, Ning; Cheng, Zhen; Liu, Hongguang

    2015-04-21

    Amino-functionalized fluorescent carbon dots have been prepared by hydrothermal treatment of glucosamine with excess pyrophosphate. The produced carbon dots showed stabilized green emission fluorescence at various excitation wavelengths and pH environments. Herein, we demonstrate the surface energy transfer between the amino-functionalized carbon dots and negatively charged hyaluronate stabilized gold nanoparticles. Hyaluronidase can degrade hyaluronate and break down the hyaluronate stabilized gold nanoparticles to inhibit the surface energy transfer. The developed fluorescent carbon dot/gold nanoparticle system can be utilized as a biosensor for sensitive and selective detection of hyaluronidase by two modes which include fluorescence measurements and colorimetric analysis.

  10. Toxicity Biosensor for Sodium Dodecyl Sulfate Using Immobilized Green Fluorescent Protein Expressing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lia Ooi

    2015-01-01

    Full Text Available Green fluorescent protein (GFP is suitable as a toxicity sensor due to its ability to work alone without cofactors or substrates. Its reaction with toxicants can be determined with fluorometric approaches. GFP mutant gene (C48S/S147C/Q204C/S65T/Q80R is used because it has higher sensitivity compared to others GFP variants. A novel sodium dodecyl sulfate (SDS toxicity detection biosensor was built by immobilizing GFP expressing Escherichia coli in k-Carrageenan matrix. Cytotoxicity effect took place in the toxicity biosensor which leads to the decrease in the fluorescence intensity. The fabricated E. coli GFP toxicity biosensor has a wide dynamic range of 4–100 ppm, with LOD of 1.7 ppm. Besides, it possesses short response time (0.98, and long-term stability (46 days. E. coli GFP toxicity biosensor has been applied to detect toxicity induced by SDS in tap water, river water, and drinking water. High recovery levels of SDS indicated the applicability of E. coli GFP toxicity biosensor in real water samples toxicity evaluation.

  11. Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

    Science.gov (United States)

    Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-01-01

    The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308

  12. Indocyanine green fluorescence angiography for quantitative evaluation of in situ parathyroid gland perfusion and function after total thyroidectomy.

    Science.gov (United States)

    Lang, Brian Hung-Hin; Wong, Carlos K H; Hung, Hing Tsun; Wong, Kai Pun; Mak, Ka Lun; Au, Kin Bun

    2017-01-01

    Because the fluorescent light intensity on an indocyanine green fluorescence angiography reflects the blood perfusion within a focused area, the fluorescent light intensity in the remaining in situ parathyroid glands may predict postoperative hypocalcemia risk after total thyroidectomy. Seventy patients underwent intraoperative indocyanine green fluorescence angiography after total thyroidectomy. Any parathyroid glands with a vascular pedicle was left in situ while any parathyroid glands without pedicle or inadvertently removed was autotransplanted. After total thyroidectomy, an intravenous 2.5 mg indocyanine green fluorescence angiography was given and real-time fluorescent images of the thyroid bed were recorded using the SPY imaging system (Novadaq, Ontario, Canada). The fluorescent light intensity of each indocyanine green fluorescence angiography as well as the average and greatest fluorescent light intensity in each patient were calculated. Postoperative hypocalcemia was defined as adjusted calcium 150% developed postoperative hypocalcemia while 9 (81.8%) patients with a greatest fluorescent light intensity ≤150% did. Similarly, no patients with an average fluorescent light intensity >109% developed PH while 9 (30%) with an average fluorescent light intensity ≤109% did. The greatest fluorescent light intensity was more predictive than day-0 postoperative hypocalcemia (P = .027) and % PTH drop day-0 to 1 (P < .001). Indocyanine green fluorescence angiography is a promising operative adjunct in determining residual parathyroid glands function and predicting postoperative hypocalcemia risk after total thyroidectomy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein

    Science.gov (United States)

    Gather, Malte C.; Yun, Seok Hyun

    2011-08-01

    We report on lasing action from colonies of Escherichia coli bacteria that are genetically programmed to synthesize the green fluorescent protein (GFP). When embedded in a Fabry--Perot type cavity and excited by ns-pulses of blue light (465nm), the bacteria generate green laser emission (˜520nm). Broad illumination of pump light yields simultaneous lasing over a large area in bacterial colonies.

  14. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.

    Science.gov (United States)

    Ast, Cindy; Foret, Jessica; Oltrogge, Luke M; De Michele, Roberto; Kleist, Thomas J; Ho, Cheng-Hsun; Frommer, Wolf B

    2017-09-05

    Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.

  15. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    Science.gov (United States)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  16. Expression of green fluorescent protein (GFPuv) in Escherichia coli ...

    African Journals Online (AJOL)

    Administrator

    times faster in E. coli and exhibits eighteen-fold greater fluorescence .... The generation time (g, min) necessary to double the .... Fitted models for µg GFPuv/ mL adjusted from the polynomial model (µg GFPuv/ mL = 10.28 - 1.13 x1 - 5.65 x3 +.

  17. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    Directory of Open Access Journals (Sweden)

    Akinori Miyata

    Full Text Available Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10 under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases, photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical

  18. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    Science.gov (United States)

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  19. Absorption tuning of the green fluorescent protein chromophore: synthesis and studies of model compounds

    DEFF Research Database (Denmark)

    Brøndsted Nielsen, Mogens; Andersen, Lars Henrik; Rinza, Tomás Rocha

    2011-01-01

    The green fluorescent protein (GFP) chromophore is a heterocyclic compound containing a p-hydroxybenzylidine attached to an imidazol-5(4H)-one ring. This review covers the synthesis of a variety of model systems for elucidating the intrinsic optical properties of the chromophore in the gas phase...

  20. Complex Assembly Behavior During the Encapsulation of Green Fluorescent Protein Analogs in Virus Derived Protein Capsules

    NARCIS (Netherlands)

    Minten, Inge J.; Nolte, Roeland J.M.; Cornelissen, Jeroen J.L.M.

    2010-01-01

    Enzymes encapsulated in nanocontainers are a better model of the conditions inside a living cell than free enzymes in solution. In a first step toward the encapsulation of multiple enzymes inside the cowpea chlorotic mottle virus (CCMV) capsid, enhanced green fluorescent protein (EGFP) was attached

  1. Using Green and Red Fluorescent Proteins to Teach Protein Expression, Purification, and Crystallization

    Science.gov (United States)

    Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong

    2008-01-01

    We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…

  2. A Practical Teaching Course in Directed Protein Evolution Using the Green Fluorescent Protein as a Model

    Science.gov (United States)

    Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Schneider, Maria Paula Cruz; Ward, Richard John

    2011-01-01

    Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from "Aequorea victoria" by a random mutagenesis strategy using error-prone polymerase…

  3. Intracellular distribution of cowpea mosaic virus movement protein as visualised by green fluorescent protein fusions

    NARCIS (Netherlands)

    Gopinath, K.; Bertens, P.; Pouwels, J.; Marks, H.; Lent, van J.W.M.; Wellink, J.E.; Kammen, van A.

    2003-01-01

    Cowpea mosaic virus (CPMV) derivatives expressing movement protein (MP) green fluorescent protein (GFP) fusions (MP:GFP) were used to study the intracellular targeting and localization of the MP in cowpea protoplasts and plants. In protoplasts, a virus coding for a wild type MP:GFP (MPfGFP) induced

  4. Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers and display devices

    Indian Academy of Sciences (India)

    G R DILLIP; C MADHUKAR REDDY; M RAJESH; SHIVANAND CHAURASIA; B DEVA PRASAD RAJU; S W JOO

    2016-06-01

    In this paper, for the first time, the visible fluorescence properties, resonance energy transfer mechanism responsible for non-radiative decay rates of ${}^5$D$_4$ $\\to$ ${}^7$F$_5$ transition and also quenching of fluorescence intensity of the ${}^5$D$_3$ $\\to$ ${}^7$F$_5$ transition of various concentrations of Tb$^{3+}$ ions in LBZLFB glasses are reported. Optical absorption, fluorescence spectra and quantum efficiencies are measured and analysed. Green fluorescence related to ${}^5$D$_4$ $\\to$ ${}^7$F$_5$ (548 nm) transition is registered under excitation of 378 nm of Tb$^{3+}$ ions. Based on excitation and fluorescence measurements, several spectroscopic parameters for Tb$^{3+}$ ions are examined as a function of concentration by Judd–Ofelt theory to judge the suitability of studied glasses for display devices and fibre lasers.

  5. Very bright green fluorescent proteins from the Pontellid copepod Pontella mimocerami.

    Directory of Open Access Journals (Sweden)

    Marguerite E Hunt

    Full Text Available BACKGROUND: Fluorescent proteins (FP homologous to the green fluorescent protein (GFP from the jellyfish Aequorea victoria have revolutionized biomedical research due to their usefulness as genetically encoded fluorescent labels. Fluorescent proteins from copepods are particularly promising due to their high brightness and rapid fluorescence development. RESULTS: Here we report two novel FPs from Pontella mimocerami (Copepoda, Calanoida, Pontellidae, which were identified via fluorescence screening of a bacterial cDNA expression library prepared from the whole-body total RNA of the animal. The proteins are very similar in sequence and spectroscopic properties. They possess high molar extinction coefficients (79,000 M(-1 cm(- and quantum yields (0.92, which make them more than two-fold brighter than the most common FP marker, EGFP. Both proteins form oligomers, which we were able to counteract to some extent by mutagenesis of the N-terminal region; however, this particular modification resulted in substantial drop in brightness. CONCLUSIONS: The spectroscopic characteristics of the two P. mimocerami proteins place them among the brightest green FPs ever described. These proteins may therefore become valuable additions to the in vivo imaging toolkit.

  6. Effect of pH on the Heat-Induced Denaturation and Renaturation of Green Fluorescent Protein: A Laboratory Experiment

    Science.gov (United States)

    Flores, Rosa V.; Sola, Hilda M.; Torres, Juan C.; Torres, Rafael E.; Guzman, Ernick E.

    2013-01-01

    A fluorescence spectroscopy experiment is described where students integrated biochemistry and instrumental analysis, while characterizing the green fluorescent protein excitation and emission spectra in terms of its phenolic and phenolate chromophores. Students studied the combined effect of pH and temperature on the protein's fluorescence,…

  7. Effect of pH on the Heat-Induced Denaturation and Renaturation of Green Fluorescent Protein: A Laboratory Experiment

    Science.gov (United States)

    Flores, Rosa V.; Sola, Hilda M.; Torres, Juan C.; Torres, Rafael E.; Guzman, Ernick E.

    2013-01-01

    A fluorescence spectroscopy experiment is described where students integrated biochemistry and instrumental analysis, while characterizing the green fluorescent protein excitation and emission spectra in terms of its phenolic and phenolate chromophores. Students studied the combined effect of pH and temperature on the protein's fluorescence,…

  8. Flock house virus replicates and expresses green fluorescent protein in mosquitoes.

    Science.gov (United States)

    Dasgupta, Ranjit; Cheng, Li-Lin; Bartholomay, Lyric C; Christensen, Bruce M

    2003-07-01

    Flock house virus (FHV) is a non-enveloped, positive-sense RNA virus of insect origin that belongs to the family Nodaviridae. FHV has been shown to overcome the kingdom barrier and to replicate in plants, insects, yeast and mammalian cells. Although of insect origin, FHV has not previously been shown to replicate in mosquitoes. We have tested FHV replication in vitro in C6/36 cells (derived from neonatal Aedes albopictus) and in vivo in four different genera of mosquitoes, Aedes, Culex, Anopheles and Armigeres. FHV replicated to high titres in C6/36 cells that had been subcloned to support maximum growth of FHV. When adult mosquitoes were orally fed or injected with the virus, FHV antigen was detected in various tissues and infectious virus was recovered. Vectors developed from an infectious cDNA clone of a defective-interfering RNA, derived from FHV genomic RNA2, expressed green fluorescent protein in Drosophila cells and adult mosquitoes. This demonstrates the potential of FHV-based vectors for expression of foreign genes in mosquitoes and possibly other insects.

  9. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    Science.gov (United States)

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time.

  10. Ultrafast excited state dynamics of the green fluorescent protein chromophore and its kindling fluorescent protein analogue.

    Science.gov (United States)

    Addison, Kiri; Heisler, Ismael A; Conyard, Jamie; Dixon, Tara; Page, Philip C Bulman; Meech, Stephen R

    2013-01-01

    Fluorescent proteins exhibit a very diverse range of photochemical behaviour, from efficient fluorescence through photochromism to photochemical reactivity. Remarkably this diverse behaviour arises from chromophores which have very similar structures. Here we describe measurements and modelling of the excited state dynamics in the chromophores of GFP (HBDI) and the kindling fluorescent protein, KFP (FHBMI). The methods are ultrafast fluorescence spectroscopy with sub 50 fs time resolution and the modelling is based on the Smoluchowski equation. The excited state decays of both chromophores are very fast, longer for their anions than for the neutral form and independent of wavelength. Detailed studies show the mean fluorescence wavelength to be independent of time. The excited state decay times are also observed to be a very weak function of solvent polarity and viscosity. These results are modelled utilising recently calculated potential energy surfaces for the ground and excited states as a function of the twist coordinates about the two bridging bonds of the chromophore. For FHBMI and the scarce data on the neutral HBDI the calculations are not successful suggesting the need for refinement of these potential energy surfaces. For HBDI in methanol the simulation is successful provided a strong dependence of the radiationless decay rate on the coordinate is assumed. Such dependence should be included in future calculations of excited state dynamics. When the simulations are extended to more viscous solvents they fail to reproduce the observed weak viscosity dependence. The implications of these results for the nature of the coordinate leading to radiationless decay in the chromophore and for the photodynamics of fluorescent proteins are discussed.

  11. A green fluorescent protein with photoswitchable emission from the deep sea.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available A colorful variety of fluorescent proteins (FPs from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that approximately 15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37 degrees C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.

  12. A green method for the preparation of fluorescent hybrid structures of gold and corrole

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ângela S., E-mail: aspereira@ua.pt; Barata, Joana F. B. [University of Aveiro, CICECO – Chemistry Department, Aveiro Institute of Materials (Portugal); Vaz Serra, Vanda I. R. C. [University of Aveiro, QOPNA Chemistry Department (Portugal); Pereira, Sérgio; Trindade, Tito [University of Aveiro, CICECO – Chemistry Department, Aveiro Institute of Materials (Portugal)

    2015-10-15

    Gold/soap nanostructures were prepared by a green methodology using saponified household sunflower oil, as reducing and organic dispersing agent of auric acid. The incorporation of hydrophobic molecules on the novel water-soluble gold nanoparticles was followed by fluorescence lifetime imaging microscopy, using as model hydrophobic compound 5,10,15-tris-(pentafluorophenyl)corrolatogallium(III)(pyridine) (GaPFC), a highly fluorescent corrole. The results showed the hydrophobic GaPFC located between the organic bilayer surrounding several Au nanoparticles, which in turn were coated with fatty acids salts anchored by the double bond at the gold’s surface.

  13. Gene conversion between red and defective green opsin gene in blue cone monochromacy

    Energy Technology Data Exchange (ETDEWEB)

    Reyniers, E.; Van Thienen, M.N.; De Boulle, K.; Willems, P.J. [Univ. of Antwerp (Belgium)] [and others

    1995-09-20

    Blue cone monochromacy is an X-linked condition in which the function of both the red pigment gene (RCP) and the green pigment gene (GCP) is impaired. Blue cone monochromacy can be due to a red/green gene array rearrangement existing of a single red/green hybrid gene and an inactivating C203R point mutation in both RCP and GCP. The flanking sequences of the C230R mutation in exon 4 of RCP were characteristic for GCP, indicating that this mutation was transferred from GCP into RCP by gene conversion. 23 refs., 3 figs., 1 tab.

  14. Sentinel lymph node biopsy for breast cancer patients using fluorescence navigation with indocyanine green

    Directory of Open Access Journals (Sweden)

    Aoyama Kei

    2011-12-01

    Full Text Available Abstract Background There are various methods for detecting sentinel lymph nodes in breast cancer. Sentinel lymph node biopsy (SLNB using a vital dye is a convenient and safe, intraoperatively preparative method to assess lymph node status. However, the disadvantage of the dye method is that the success rate of sentinel lymph node detection depend on the surgeon's skills and preoperative mapping of the sentinel lymph node is not feasible. Currently, a vital dye, radioisotope, or a combination of both is used to detect sentinel nodes. Many surgeons have reported successful results using either method. In this study we have analyzed breast lymphatic drainage pathways using indocyanine green (ICG fluorescence imaging. Methods We examined the lymphatic courses, or lymphatic vessels, in the breast using ICG fluorescence imaging, and applied this method to SLNB in patients who underwent their first operative treatment for breast cancer between May 2006 and April 2008. Fluorescence images were obtained using a charge coupled device camera with a cut filter used as a detector, and light emitting diodes at 760 nm as a light source. When ICG was injected into the subareola and periareola, subcutaneous lymphatic vessels from the areola to the axilla became visible by fluorescence within a few minutes. The sentinel lymph node was then dissected with the help of fluorescence imaging navigation. Results The detection rate of sentinel nodes was 100%. 0 to 4 states of lymphatic drainage pathways from the areola were observed. The number of sentinel nodes was 3.41 on average. Conclusions This method using indocyanine green (ICG fluorescence imaging may possibly improve the detection rate of sentinel lymph nodes with high sensitivity and compensates for the deficiencies of other methods. The ICG fluorescence imaging technique enables observation of breast lymph vessels running in multiple directions and easily and accurately identification of sentinel lymph nodes

  15. Cloning and sequence analysis of Wadi sheep defensin sBD-1 gene and establishment and application of SYBR green Ⅰ real-time fluorescence quantitative PCR method%洼地绵羊防御素sBD-1基因克隆、序列分析及SYBR Green Ⅰ实时荧光定量检测方法的建立与应用

    Institute of Scientific and Technical Information of China (English)

    王金良; 郭显坡; 沈志强; 李敏; 任艳玲

    2011-01-01

    根据GenBank上登录的绵羊防御素基因序列,经多重比较后,设计1对引物,从洼地绵羊舌上皮组织中扩增到防御素sBD-1基因,克隆到pMD18-T载体中进行测序.结果表明,扩增基因全长215 bp,编码64个氨基酸.基因进化树分析表明,与蒙古绵羊sBD-1基因有较近的亲缘关系,核苷酸同源性为98.5%;而与黄牛的亲缘关系最远,核苷酸同源性84.6%.氨基酸序列分析表明,序列内无信号肽区域,具有3个潜在的抗原表位.以pMD18-T/sBD-1质粒为模板建立了sBD-1基因SYBR Green Ⅰ荧光定量PCR检测方法,核酸电泳、扩增动力学曲线、溶解曲线及重复性试验表明,检测方法具有良好的稳定性和特异性,得到的回归方程(R2=0.998)表明PCR产物量的对数值与起始模板量之间存在良好的线性关系,从舌、盲肠及输卵管等组织中可以进行有效的检测,检测灵敏度为83.9 copies/μL.该方法为进一步研究防御素sBD-1基因在洼地绵羊抗逆性过程中的作用奠定了基础.%According to the published gene sequences of defensin gene of sheep on GenBank,one pair of primers were designed and defensin Sbd-1 gene was amplified by RT-PCR from tongue epithelial tissue of Wadi sheep. PCR product was cloned into the Pmd18-T vector and sequenced. The results showed that gene amplication of full-length was 215 bp, encoding 64 amino acids. Phylogenetic tree analysis showed that Wadi sheep and Menggu sheep had close phylogenetic relationship,nucleotide homology was 98. 5%;kinship with the Bos taurus as far as the nucleotide ho-mology of 84. 6%. Amino acid sequence analysis showed no signal peptide amino acid sequence in the region, with three potential antigenic epitopes. Sbd-1 gene SYBR Green I fluorescence quantitative PCR method was set up u-sing Pmd18-T/Sbd-l plasmid as a template. Nucleic acid electrophoresis,amplification kinetics,dissolution curve and repeatability tests showed that the methods had good stability and

  16. Intraoperative fluorescent cholangiography using indocyanine green for laparoscopic fenestration of nonparasitic huge liver cysts.

    Science.gov (United States)

    Kitajima, Toshihiro; Fujimoto, Yasuhiro; Hatano, Etsuro; Mitsunori, Yusuke; Tomiyama, Koji; Taura, Kojiro; Mizumoto, Masaki; Uemoto, Shinji

    2015-02-01

    Bile duct injury is one of the known serious complications of laparoscopic fenestration for nonparasitic liver cysts. Herein, we report the case of a huge liver cyst for which we performed laparoscopic fenestration using intraoperative fluorescent cholangiography with indocyanine green. A 71-year-old woman with abdominal distention was referred to our hospital. CT demonstrated a 17 × 11.5-cm simple cyst replacing the right lobe of the liver, so laparoscopic fenestration was performed. Although the biliary duct could not be detected because of compression by the huge cyst, fluorescent cholangiography with indocyanine green through endoscopic naso-biliary drainage tube clearly delineated the intrahepatic bile duct in the remaining cystic wall. The patient had no complications at 3 months after surgery. Fluorescent cholangiography using indocyanine green is a safe and effective procedure to avoid bile duct injury during laparoscopic fenestration, especially in patients with a huge liver cyst. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  17. The developmental fate of green fluorescent mouse embryonic germ cells in chimeric embryos

    Institute of Scientific and Technical Information of China (English)

    XUXIN; SUMIOSUGANO; 等

    1999-01-01

    Primordial germ cells (PGCs),as precursors of mammalian germ lineage,have been gaining more attention as a new resource of pluripotent stem cells,which bring a great possibility to study developmental events of germ cell in vitro and at animal level.EG4 cells derived from 10.5 days post coitum (dpc) PGCs of 129/svJ strain mouse were established and maintained in an undifferentiated state.With an attempt to study the differentiation capability of EG4 cells with a reporter protein:green fluorescence protein,and the possible application of EG4 cells in the research of germ cell development,we have generated several EG4-GFP cell lines expressing enhanced green fluorescence protein (EGFP) and still maintaining typical characteristics of pluripotent stem cells.Then,the differentiation of EG4-GFP cells in vitro as well as their developmental fate in chimeric embryos which were produced by aggregating EG4-GFP cells to 8-cell stage embryos were studied.The results showed that EG4 cells carrying green fluorescence have a potential use in the research of germ cell development and other related studies.

  18. Binding mechanism of PicoGreen to DNA characterized by magnetic tweezers and fluorescence spectroscopy.

    Science.gov (United States)

    Wang, Ying; Schellenberg, Helene; Walhorn, Volker; Toensing, Katja; Anselmetti, Dario

    2017-09-01

    Fluorescent dyes are broadly used in many biotechnological applications to detect and visualize DNA molecules. However, their binding to DNA alters the structural and nanomechanical properties of DNA and, thus, interferes with associated biological processes. In this work we employed magnetic tweezers and fluorescence spectroscopy to investigate the binding of PicoGreen to DNA at room temperature in a concentration-dependent manner. PicoGreen is an ultrasensitive quinolinium nucleic acid stain exhibiting hardly any background signal from unbound dye molecules. By means of stretching and overwinding single, torsionally constrained, nick-free double-stranded DNA molecules, we acquired force-extension and supercoiling curves which allow quantifying DNA contour length, persistence length and other thermodynamical binding parameters, respectively. The results of our magnetic tweezers single-molecule binding study were well supported through analyzing the fluorescent spectra of stained DNA. On the basis of our work, we could identify a concentration-dependent bimodal binding behavior, where, apparently, PicoGreen associates to DNA as an intercalator and minor-groove binder simultaneously.

  19. Constructing retroviral vector carrying green fluorescent protein (GFP) and investigating the expression of GFP in primary rat myoblast

    Institute of Scientific and Technical Information of China (English)

    Shuling Rong; Yongxin Lu; Yuhua Liao; Xiaolin Wang; Xiaoqing Li; Jiahua Zhang; Yanli He

    2006-01-01

    Objective: To construct green fluorescent protein (GFP) retroviral vector (pLgXSN), and to investigate the expression of GFP in primary rat myoblast. Methods: GFP cDNA was subcloned into the plasmid pLgXSN, and the recombinant vector was transfected into packaging cell PT67. G418 was used to select positive colony. Myoblasts were infected by a high-titer viral supernatant. The recombinant retroviral plasmid vector was identified by restriction endonuclease analysis and DNA sequence analysis. Confocal microscopy and flow cytometry were used to detect the expression of GFP. Results: The GFP cDNA sequence was identical to that of GenBank. Recombinant retroviral plasmid vector pLgGFPSN was constructed successfully. The titer of the packaged recombinant retrovirus was 1 × 106 cfu/ml. Bright green fluorescence of the transfected cells was observed under confocal microscope 48 h after transfection. The transfection rate was 33%. The effective expression of GFP in myoblast infected by recombinant retrovirus lasted for 6 weeks. Conclusion: GFP gene could be effectively and stably expressed in myoblast, which suggests that GFP could act as a marker for studies on myoblast.

  20. Genetic Manipulation of Prochlorococcus Strain MIT9313: Green Fluorescent Protein Expression from an RSF1010 Plasmid and Tn5 Transposition▿

    Science.gov (United States)

    Tolonen, Andrew C.; Liszt, Gregory B.; Hess, Wolfgang R.

    2006-01-01

    Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans. PMID:17041154

  1. Genetic manipulation of Prochlorococcus strain MIT9313: green fluorescent protein expression from an RSF1010 plasmid and Tn5 transposition.

    Science.gov (United States)

    Tolonen, Andrew C; Liszt, Gregory B; Hess, Wolfgang R

    2006-12-01

    Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans.

  2. Propagating and detecting an infectious molecular clone of maedi-visna virus that expresses green fluorescent protein.

    Science.gov (United States)

    Jónsson, Stefán R; Andrésdóttir, Valgerdur

    2011-10-09

    Maedi-visna virus (MVV) is a lentivirus of sheep, causing slowly progressive interstitial pneumonia and encephalitis. The primary target cells of MVV in vivo are considered to be of the monocyte lineage. Certain strains of MVV can replicate in other cell types, however. The green fluorescent protein is a commonly used marker for studying lentiviruses in living cells. We have nserted the egfp gene into the gene for dUTPase of MVV. The dUTPase gene is well conserved in most lentivirus strains of sheep and goats and has been shown to be important in replication of CAEV. However, dUTPase has been shown to be dispensable for replication of the molecular clone of MVV used in this study both in vitro and in vivo. MVV replication is strictly confined to cells of sheep or goat origin. We use a primary cell line from the choroid plexus of sheep (SCP cells) for transfection and propagation of the virus. The fluorescent MVV is fully infectious and EGFP expression is stable over at least 6 passages. There is good correlation between measurements of TCID₅₀ and EGFP. This virus should therefore be useful for rapid detection of infected cells in studies of cell tropism and pathogenicity in vitro and in vivo.

  3. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide.

    Science.gov (United States)

    Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua

    2015-01-01

    A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg(2+)) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg(2+), respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg(2+) detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience.

  4. Fluorescence imaging for a noninvasive in vivo toxicity-test using a transgenic silkworm expressing green fluorescent protein.

    Science.gov (United States)

    Inagaki, Yoshinori; Matsumoto, Yasuhiko; Ishii, Masaki; Uchino, Keiro; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2015-06-10

    In drug development, the toxicity of candidate chemicals must be carefully examined in an animal model. Here we developed a live imaging technique using silkworms for a noninvasive toxicity test applicable for drug screening. Injection of carbon tetrachloride, a tissue-injuring chemical, into transgenic silkworms expressing green fluorescent protein (GFP) induced leakage of GFP from the tissues into the hemolymph. The leakage of GFP was suppressed by pre-administration of either cimetidine, a cytochrome P450 inhibitor, or N-acetyl cysteine, a free-radical scavenger. The transgenic silkworm was made transparent by feeding a diet containing chemicals that inhibit uric acid deposition in the epithelial cells. In the transparent silkworms, GFP fluorescence in the fat body could be observed from outside the body. Injection of salicylic acid or iron sulfate, tissue-injuring chemicals, into the transparent silkworms decreased the fluorescence intensity of the GFP in the fat body. These findings suggest that the transparent GFP-expressing silkworm model is useful for evaluating the toxicity of chemicals that induce tissue injury.

  5. Estimation of indocyanine green concentration in blood from fluorescence emission: application to hemodynamic assessment during hemodialysis

    Science.gov (United States)

    Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2009-09-01

    There is considerable interest in assessing cardiovascular function noninvasively in patients receiving hemodialysis. A possible approach is to measure the blood concentration of bolus-injected indocyanine green dye and to apply the dye-dilution method for estimating cardiac output and blood volume. Blood ICG concentration can be derived from a measurement of the ICG fluorescence through the dialysis tubing if a simple and unique calibration relationship can be established between transmural fluorescence intensity and blood ICG concentration. We investigated this relationship using Monte Carlo simulations of light transport in blood with varying hematocrit and ICG concentrations and performed empiric measurements of optical absorption and ICG fluorescence emission to confirm our findings. The ICG fluorescence intensity measured at the blood surface, as well as the light intensity remitted by the blood, varied as hematocrit changes modified the absorption and scattering characteristics of the blood. Calibration relationships were developed between fluorescence intensity and ICG concentration that accounted for hematocrit changes. Combining the backreflected fluorescence and the reflected light measured near the point of illumination provided optimal signal intensity, linearity, and robustness to hematocrit changes. These results provide a basis for developing a noninvasive approach to derive optically circulating blood ICG concentration in hemodialysis circuits.

  6. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples.

    Science.gov (United States)

    Xu, Hua; Yang, Xiupei; Li, Gu; Zhao, Chuan; Liao, Xiangjun

    2015-08-05

    A simple, economical, and green method for the preparation of water-soluble, high-fluorescent carbon quantum dots (C-dots) has been developed via hydrothermal process using aloe as a carbon source. The synthesized C-dots were characterized by atomic force microscope (AFM), transmission electron microscopy (TEM), fluorescence spectrophotometer, UV-vis absorption spectra as well as Fourier transform infrared spectroscopy (FTIR). The results reveal that the as-prepared C-dots were spherical shape with an average diameter of 5 nm and emit bright yellow photoluminescence (PL) with a quantum yield of approximately 10.37%. The surface of the C-dots was rich in hydroxyl groups and presented various merits including high fluorescent quantum yield, excellent photostability, low toxicity and satisfactory solubility. Additionally, we found that one of the widely used synthetic food colorants, tartrazine, could result in a strong fluorescence quenching of the C-dots through a static quenching process. The decrease of fluorescence intensity made it possible to determine tartrazine in the linear range extending from 0.25 to 32.50 μM, This observation was further successfully applied for the determination of tartrazine in food samples collected from local markets, suggesting its great potential toward food routine analysis. Results from our study may shed light on the production of fluorescent and biocompatible nanocarbons due to our simple and environmental benign strategy to synthesize C-dots in which aloe was used as a carbon source.

  7. A Diabatic Three-State Representation of Photoisomerization in the Green Fluorescent Protein Chromophore

    CERN Document Server

    Olsen, Seth

    2009-01-01

    We give a quantum chemical description of bridge photoisomerization reaction of green fluorescent protein (GFP) chromophores using a representation over three diabatic states. Bridge photoisomerization leads to non-radiative decay, and competes with fluorescence in these systems. In the protein, this pathway is suppressed, leading to fluorescence. Understanding the electronic structure of the photoisomerization is a prerequisite to understanding how the protein suppresses this pathway and preserves the emitting state of the chromophore. We present a solution to the state-averaged complete active space problem, which is spanned at convergence by three fragment-localized orbitals. We generate the diabatic-state representation by applying a block diagonalization transformation to the Hamiltonian calculated for the anionic chromophore model HBDI with multi-reference, multi-state perturbation theory. The diabatic states that emerge are charge-localized structures with a natural valence-bond interpretation. At plan...

  8. Effect of brain-derived neurotrophic factor and green fluorescent protein gene-transfected neural stem cells transplantation on brain-derived neurotrophic factor expression in rats with spinal cord injury%BDNF-GFP转染神经干细胞对脊髓损伤大鼠BDNF表达的影响

    Institute of Scientific and Technical Information of China (English)

    王岩松; 梅晰凡; 吕刚

    2011-01-01

    Objective To study the effect of brain-derived neurotrophic factor (BDNF) and green fluorescent protein (GFP)transfected neural stem cells (NSCs) transplantation on expression of BDNF in rats with spinal cord injury. Methods NSCs were transfected with adenovirus vector bearing BDNF and GFP. Expression of BDNF in BDNF and GFP-transfected NSCs was detected by immunohistochemistry and Western blot, respectively. Of the 40 healthy Wistar rats, 8 were selected as a sham-operation group, 32 served as a T9 left hemisection model. Then, the 32 rats were randomly divided into BDNF and GFP-transfected NSCs transplantation group, GFP-transfected NSCs transplantation group, single NSCs transplantation group and model groups, 8 rats in each group. Gene-transfected NSCs or non gene-transfected NSCs were microinjected into each side of the transection site in the 3 NSCs transplantation groups after spinal cord injury (SCI) was induced. An equal volume of PBS was injected into the model group through the same injection sites. Expression of BDNF was detected in each group after SCI by real-time PCR. Results Immunohistochemistry showed that BDNF and GFP-transfected NSCs could express BDNF (yellow fluorescence). Western blot demonstrated that BDNF and GFP-transfected NSCs could express immunoreactive bands with a relative molecular mass of 41kU. NSCs transplantation could significantly increase the expression level of BDNF (P<0.01). The expression level of BDNF was the highest in BDNF and GFPtransfected NSCs transplantation group (P<0.01). Conclusion BDNF and GFP-transfected NSCs can survive and highly express BDNF in hemisected spinal cord model of rats.%目的 探讨脑源性神经营养因子(Brain-Derived Neurotrophic Factor,BDNF)和绿色荧光蛋白(Green Fluorescent Protein,GFP)转染后神经干细胞(Neural Stem Cells,NSCs)移植对脊髓损伤大鼠BDNF表达的影响.方法 以携带BDNF-GFP基因的腺病毒转染NSCs,免疫组化及Western blot检测转染后NSCs BDNF

  9. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    Directory of Open Access Journals (Sweden)

    Alain Berinstain

    2013-03-01

    Full Text Available Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated.

  10. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein).

    Science.gov (United States)

    Jugder, Bat-Erdene; Welch, Jeffrey; Braidy, Nady; Marquis, Christopher P

    2016-01-01

    Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni-Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  11. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH fusion to gfp (green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Bat-Erdene Jugder

    2016-07-01

    Full Text Available Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2. Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  12. Deployment of a fully-automated green fluorescent protein imaging system in a high arctic autonomous greenhouse.

    Science.gov (United States)

    Abboud, Talal; Bamsey, Matthew; Paul, Anna-Lisa; Graham, Thomas; Braham, Stephen; Noumeir, Rita; Berinstain, Alain; Ferl, Robert

    2013-03-13

    Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated.

  13. Establishment and evaluation of a new highly metastatic tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and green fluorescent protein.

    Science.gov (United States)

    Sudo, Hitomi; Tsuji, Atsushi B; Sugyo, Aya; Takuwa, Hiroyuki; Masamoto, Kazuto; Tomita, Yutaka; Suzuki, Norihiro; Imamura, Takeshi; Koizumi, Mitsuru; Saga, Tsuneo

    2016-02-01

    Breast cancer is the most common cancer in women. Although advances in diagnostic imaging for early detection, surgical techniques and chemotherapy have improved overall survival, the prognosis of patients with metastatic breast cancer remains poor. Understanding cancer cell dynamics in the metastatic process is important to develop new therapeutic strategies. Experimental animal models and imaging would be powerful tools for understanding of the molecular events of multistep process of metastasis. In the present study, to develop a new cancer cell line that is applicable to bioluminescence and fluorescence imaging, we transfected the expression vector of a green fluorescent protein ZsGreen1 into a metastatic cell line 5a-D-Luc, which is a subclone of the MDA-MB-231 breast cancer cell line expressing luciferase, and established a new tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and ZsGreen1. The 5a-D-Luc-ZsGreen cells proliferate more rapidly and have a more invasive phenotype compared with 5a-D-Luc cells following intracardiac injection. Metastasis sites were easily detected in the whole body by bioluminescence imaging and in excised tissues by ex vivo fluorescence imaging. The fluorescence of 5a-D-Luc-ZsGreen cells was not lost after formalin fixation and decalcification. It enabled us to easily evaluate tumor spread and localization at the cellular level in microscopic analysis. The strong fluorescence of 5a-D-Luc-ZsGreen cells allowed for real-time imaging of circulating tumor cells in cerebral blood vessels of live animals immediately after intracardiac injection of cells using two-photon laser-scanning microscopy. These findings suggest that the 5a-D-Luc-ZsGreen cells would be a useful tool for research on mechanisms of metastatic process in animal models.

  14. Purification of recombinant green fluorescent protein using chromatofocusing with a pH gradient composed of multiple stepwise fronts.

    Science.gov (United States)

    Narahari, C R; Randers-Eichhorn, L; Strong, J C; Ramasubramanyan, N; Rao, G; Frey, D D

    2001-01-01

    Green fluorescent protein (GFP), which fluoresces in the green region of the visible spectrum and is widely used as a reporter for gene expression and regulation, was overexpressed in the JM105 strain of Escherichia coli transformed with pBAD-GFP. A two-step chromatofocusing procedure was used to purify GFP starting from cell lysate, with each step employing a pH gradient extending from pH 5.5 to 4.0. The first chromatofocusing step was performed using a low-pressure column in which a retained stepwise pH front formed by adsorbed buffering species was used to capture GFP directly from clarified cell lysate and selectively focus it into a chromatographic band. The second step utilized a high-performance column under mass overloaded conditions where a similar pH front acted as a protein displacer and led to the formation of a highly concentrated rectangular band of GFP. The overall procedure yielded a 50-fold increase in purity, a 20-fold volume reduction, and a recovery and purity for GFP of 60% and 80%, respectively. Because the method employs a strong-base ion-exchange column packing and low-cost buffers formed with formic and acetic acids instead of the proprietary column packings and polyampholyte elution buffers more generally used for chromatofocusing, it appears to be a practical alternative for the preparative ion-exchange chromatography of GFP in particular and for the recovery of recombinant proteins from cell lysate in general. A discussion is also given concerning the choice of appropriate buffers for the rational design of pH gradients involving retained, stepwise pH fronts that span a given pH range and of the use of the fluorescence properties of GFP for flow visualization and chromatographic process development.

  15. Two-plasmid vector system for independently controlled expression of green and red fluorescent fusion proteins in Staphylococcus aureus.

    Science.gov (United States)

    Brzoska, Anthony J; Firth, Neville

    2013-05-01

    We have constructed a system for the regulated coexpression of green fluorescent protein (GFP) and red fluorescent protein (RFP) fusions in Staphylococcus aureus. It was validated by simultaneous localization of cell division proteins FtsZ and Noc and used to detect filament formation by an actin-like ParM plasmid partitioning protein in its native coccoid host.

  16. Green tea catechins quench the fluorescence of bacteria-conjugated Alexa fluor dyes.

    Science.gov (United States)

    Zhao, Lin; Li, Wei; Zhu, Shu; Tsai, Sheena; Li, Jianhua; Tracey, Kevin J; Wang, Ping; Fan, Saijun; Sama, Andrew E; Wang, Haichao

    2013-10-01

    Accumulating evidence suggests that Green tea polyphenolic catechins, especially the (-)-epigallocatechin gallate (EGCG), can be cross-linked to many proteins, and confer a wide range of anti-bacterial activities possibly by damaging microbial cytoplasmic lipids and proteins. At the doses that conferred protection against lethal polymicrobial infection (induced by cecal ligation and puncture), EGCG significantly reduced bacterial loads particularly in the liver and lung. To elucidate its bactericidal mechanisms, we determined whether EGCG affected the fluorescence intensities of bacteria-conjugated Alexa Fluor 488 or 594 dyes. When mixed with unconjugated Alexa Fluor 488 or 594 dyes, EGCG or analogs did not affect the fluorescence intensity of these dyes. In a sharp contrast, EGCG and some analogs (e.g., Catechin Gallate, CG), markedly reduced the fluorescence intensity of Gram-positive Staphylococcus aureus-conjugated Alexa 594 and Gram-negative Escherichia coli-conjugated Alexa 488. Interestingly, co-treatment with ethanol impaired the EGCG-mediated fluorescence quenching of the G(+) S. aureus, but not of the G(-) E. coli-conjugated Alexa Flour dyes. In light of the notion that Alexa Fluor dyes can be quenched by aromatic amino acids, it is plausible that EGCG exerts antimicrobial activities possibly by altering microbial protein conformations and functions. This possibility can now be explored by screening other fluorescence-quenching agents for possible antimicrobial activities.

  17. Fluorescence Quenching Investigation for Janus Green B and used as Probe in Determination of Nucleic Acids

    Institute of Scientific and Technical Information of China (English)

    陈莉华; 刘六战; 沈含熙

    2005-01-01

    Fluorescence quenching of janus green B (JGB) in sodium dodecyl sulfate (SDS) micelle by nucleic acids (DNA) was studied using UV-vis absorption, steady state fluorescence emission methods and lifetime measurements. In the SDS micelle, weak fluorescence of JGB was enhanced, and the maximum emission shifted from 425 to 410 nm. In the presence of DNA, the fluorescence of JGB was quenched. Linear relationships between the fluorescence quenching (F0/F) and concentrations of DNA were observed in the range of 2.4×10-8 to 1.08×10-7mol·L-1 for calf thymus nucleic acids (ct DNA) and 1.9×10-8 to 3.8×10-8 mol·L-1 for fish sperm nucleic acids (fs DNA) when 2.5×10-5 mol·L-1 JGB was employed. The limit detection were 1.3×10-8 mol·L-1 for ct DNA and 6.4×10-9 mol·L-1 for fs DNA. At high DNA concentration, there was a systematic deviation from the Stem-Volmer equation due to the static and dynamic quenching occurring simultaneously. The proposed method was applied to the determination of the nucleic acids in chicken blood extraction and the analytical results were in good agreement with the UV-method.

  18. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  19. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.

  20. Excision of Nonpalpable Breast Cancer with Indocyanine Green Fluorescence-Guided Occult Lesion Localization (IFOLL).

    Science.gov (United States)

    Aydogan, Fatih; Ozben, Volkan; Aytac, Erman; Yilmaz, Halit; Cercel, Ali; Celik, Varol

    2012-02-01

    BACKGROUND: Currently employed techniques for the localization of nonpalpable breast lesions suffer from various limitations. In this paper, we report on 2 patients in order to introduce an alternative technique, indocyanine green fluorescence-guided occult lesion localization (IFOLL), and determine its applicability for the surgical removal of this type of breast lesions. CASE REPORTS: Preoperatively, one of the patients had a needle biopsy-proven diagnosis of breast cancer, and the other one had suspicious findings for malignancy. Lesion localization was performed within 1 h before surgery under ultrasonography control by injecting 2 ml and 0.2 ml of indocyanine green into the lesion and its subcutaneous tissue projection, respectively. During surgery, the site of skin incision and the resection margins were identified by observing the area of indocyanine-derived fluorescence under the guidance of a near-infrared-sensitive camera. In both cases, the breast lesion was correctly localized, and the area of fluorescence corresponded well to the site of the lesions. Subsequent surgical excision was successful with no complications. On histopathologic examination, the surgical margins were found to be clear. CONCLUSION: IFOLL seems to be a technically applicable and clinically acceptable procedure for the removal of nonpalpable breast cancer.

  1. Bond selection in the photoisomerization reaction of anionic green fluorescent protein and kindling fluorescent protein chromophore models.

    Science.gov (United States)

    Olsen, Seth; Smith, Sean C

    2008-07-09

    The chromophores of the most widely known fluorescent proteins (FPs) are derivatives of a core p-hydroxybenzylidene-imidazolinon-5-one (HBI) motif, which usually occurs as a phenolate anion. Double bond photoisomerization of the exocyclic bridge of HBI is widely held to be an important internal conversion mechanism for FP chromophores. Herein we describe the ground and excited-state electronic structures and potential energy surfaces of two model chromophores: 4- p-hydroxybenzylidiene-1,2-dimethyl-imidazolin-5-one anion (HBDI), representing green FPs (GFPs), and 2-acetyl-4-hydroxybenylidene-1-methyl-imidazolin-5-one anion (AHBMI), representing kindling FPs (KFPs). These chromophores differ by a single substitution, but we observe qualitative differences in the potential energy surfaces which indicate inversion of bond selection in the photoisomerization reaction. Bond selection is also modulated by whether the reaction proceeds from a Z or an E conformation. These configurations correspond to fluorescent and nonfluorescent states of structurally characterized FPs, including some which can be reversibly switched by specific illumination regimes. We explain the difference in bond selectivity via substituent stabilization effects on a common set of charge-localized chemical structures. Different combinations of these structures give rise to both optically active (planar) and twisted intramolecular charge-transfer (TICT) states of the molecules. We offer a prediction of the gas-phase absorption of AHBMI, which has not yet been measured. We offer a hypothesis to explain the unusual fluorescence of AHBMI in DMF solution, as well as an experimental proposal to test our hypothesis.

  2. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa.

    Science.gov (United States)

    Saito, Yasunori; Takano, Kengo; Kobayashi, Fumitoshi; Kobayashi, Kazuki; Park, Ho-Dong

    2014-10-20

    We developed a UV (355 nm) laser-induced fluorescence (LIF) lidar for monitoring the real-time status of blue-green algae. Since the fluorescence spectrum of blue-green algae excited by 355 nm showed the specific fluorescence at 650 nm, the lidar was designed to be able to detect the 650 nm fluorescence as a surveillance method for the algae. The usefulness was confirmed by observation at Lake Suwa over four years (2005-2008). The detection limit of the LIF lidar was 16.65 mg/L for the blue-green algae, which is the range of concentrations in the safe level set by the World Health Organization.

  3. Decoupling Electronic versus Nuclear Photoresponse of Isolated Green Fluorescent Protein Chromophores Using Short Laser Pulses

    Science.gov (United States)

    Kiefer, Hjalte V.; Pedersen, Henrik B.; Bochenkova, Anastasia V.; Andersen, Lars H.

    2016-12-01

    The photophysics of a deprotonated model chromophore for the green fluorescent protein is studied by femtosecond laser pulses in an electrostatic ion-storage ring. The laser-pulse duration is much shorter than the time for internal conversion, and, hence, contributions from sequential multiphoton absorption, typically encountered with ns-laser pulses, are avoided. Following single-photon excitation, the action-absorption maximum is shown to be shifted within the S0 to S1 band from its origin at about 490 to 450 nm, which is explained by the different photophysics involved in the detected action.

  4. In Vivo Photoacoustic and Fluorescence Cystography Using Clinically Relevant Dual Modal Indocyanine Green

    Directory of Open Access Journals (Sweden)

    Sungjo Park

    2014-10-01

    Full Text Available Conventional X-ray-based cystography uses radio-opaque materials, but this method uses harmful ionizing radiation and is not sensitive. In this study, we demonstrate nonionizing and noninvasive photoacoustic (PA and fluorescence (FL cystography using clinically relevant indocyanine green (ICG in vivo. After transurethral injection of ICG into rats through a catheter, their bladders were photoacoustically and fluorescently visualized. A deeply positioned bladder below the skin surface (i.e., ~1.5–5 mm was clearly visible in the PA and FL image using a laser pulse energy of less than 2 mJ/cm2 (1/15 of the safety limit. Then, the in vivo imaging results were validated through in situ studies. Our results suggest that dual modal cystography can provide a nonionizing and noninvasive imaging tool for bladder mapping.

  5. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing.

    Science.gov (United States)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-04-14

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors.

  6. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74–84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered...... cultured for 25 generations under strong and slightly toxic expression after which only limited reduction in fluorescence was detectable. Such non-recombinogenic GFPs can help quantify intracellular responses operating a low copy number in recombination-prone organisms....

  7. ZnO nanoparticles assist the refolding of denatured green fluorescent protein.

    Science.gov (United States)

    Pandurangan, Muthuraman; Zamany, Ahmad Jawid; Kim, Doo Hwan

    2016-04-01

    Proteins are essential for cellular and biological processes. Proteins are synthesized and fold into the native structure to become active. The inability of a protein molecule to remain in its native conformation is called as protein misfolding, and this is due to several environmental factors. Protein misfolding and aggregation handle several human diseases. Protein misfolding is believed to be one of the causes of several disorders such as cancer, degenerative diseases, and metabolic pathologies. The zinc oxide (ZnO) nanoparticle was significantly promoted refolding of thermally denatured green fluorescent protein (GFP). In the present study, ZnO nanoparticles interaction with GFP was investigated by ultraviolet-visible spectrophotometer, fluorescence spectrophotometer, and dynamic light scattering. Results suggest that the ZnO nanoparticles significantly assist the refolding of denatured GFP. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    Science.gov (United States)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-04-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors.

  9. Intraoperative Near-Infrared Fluorescence Imaging using indocyanine green in colorectal carcinomatosis surgery: Proof of concept.

    Science.gov (United States)

    Barabino, G; Klein, J P; Porcheron, J; Grichine, A; Coll, J-L; Cottier, M

    2016-12-01

    This study assesses the value of using Intraoperative Near Infrared Fluorescence Imaging and Indocyanine green to detect colorectal carcinomatosis during oncological surgery. In colorectal carcinomatosis cancer, two of the most important prognostic factors are completeness of staging and completeness of cytoreductive surgery. Presently, intraoperative assessment of tumoral margins relies on palpation and visual inspection. The recent introduction of Near Infrared fluorescence image guidance provides new opportunities for surgical roles, particularly in cancer surgery. The study was a non-randomized, monocentric, pilot "ex vivo" blinded clinical trial validated by the ethical committee of University Hospital of Saint Etienne. Ten patients with colorectal carcinomatosis cancer scheduled for cytoreductive surgery were included. Patients received 0.25 mg/kg of Indocyanine green intravenously 24 h before surgery. A Near Infrared camera was used to detect "ex-vivo" fluorescent lesions. There was no surgical mortality. Each analysis was done blindly. In a total of 88 lesions analyzed, 58 were classified by a pathologist as cancerous and 30 as non-cancerous. Among the 58 cancerous lesions, 42 were correctly classified by the Intraoperative Near-Infrared camera (sensitivity of 72.4%). Among the 30 non-cancerous lesions, 18 were correctly classified by the Intraoperative Near-Infrared camera (specificity of 60.0%). Near Infrared fluorescence imaging is a promising technique for intraoperative tumor identification. It could help the surgeon to determine resection margins and reduce the risk of locoregional recurrence. Copyright © 2016 Elsevier Ltd, BASO ~ the Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  10. Thermal stability of chemically denatured green fluorescent protein (GFP) A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Attila; Malnasi-Csizmadia, Andras; Somogyi, Bela; Lorinczy, Denes

    2004-02-09

    Green fluorescent protein (GFP) is a light emitter in the bioluminescence reaction of the jellyfish Aequorea victoria. The protein consist of 238 amino acids and produces green fluorescent light ({lambda}{sub max}=508 nm), when irradiated with near ultraviolet light. The fluorescence is due to the presence of chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser{sup 65}-Tyr{sup 66}-Gly{sup 67}-, which buried into {beta}-barrel. GFP is extremely compact and heat stable molecule. In this work, we present data for the effect of chemical denaturing agent on the thermal stability of GFP. When denaturing agent is applied, global thermal stability and the melting point of the molecule is decreases, that can be monitored with differential scanning calorimetry. The results indicate, that in 1-6 M range of GuHCl the melting temperature is decreasing continuously from 83 to 38 deg. C. Interesting finding, that the calculated calorimetric enthalpy decreases with GuHCl concentration up to 3 M (5.6-0.2 kJ mol{sup -1}), but at 4 M it jumps to 8.4 and at greater concentration it is falling down to 1.1 kJ mol{sup -1}. First phenomena, i.e. the decrease of melting point with increasing GuHCl concentration can be easily explained by the effect of the extended chemical denaturation, when less and less amount of heat required to diminish the remaining hydrogen bonds in {beta}-barrel. The surprising increase of calorimetric enthalpy at 4 M concentration of GuHCl could be the consequence of a dimerization or a formation of stable complex between GFP and denaturing agent as well as a precipitation at an extreme GuHCl concentration. We are planning further experiments to elucidate fluorescent consequence of these processes.

  11. [Place of indocyanine green coupled with fluorescence imaging in research of breast cancer sentinel node].

    Science.gov (United States)

    Vermersch, Charlotte; Raia Barjat, Tiphaine; Perrot, Marianne; Lima, Suzanne; Chauleur, Céline

    2016-04-01

    The sentinel node has a fundamental role in the management of early breast cancer. Currently, the double detection of blue and radioisotope is recommended. But in common practice, many centers use a single method. However, with a single detection, the risk of false negatives and the identification failure rate increase to a significant extent and the number of sentinel lymph node detected and removed is not enough. Furthermore, the tracers used until now show inconveniences. The purpose of this work is to present a new method of detection, using the green of indocyanine coupled with fluorescence imaging, and to compare it with the already existing methods. The method combined by fluorescence and isotopic is reliable, sure, of fast learning and could constitute a good strategy of detection. The major interest is to obtain a satisfactory number of sentinel nodes. The profit could be even more important for overweight patients. The fluorescence used alone is at the moment not possible. Wide ranging studies are necessary. The FLUOTECH, randomized study of 100 patients, comparing the isotopic method of double isotope technique and fluorescence, is underway to confirm these data.

  12. Pilot Clinical Trial of Indocyanine Green Fluorescence-Augmented Colonoscopy in High Risk Patients

    Directory of Open Access Journals (Sweden)

    Rahul A. Sheth

    2016-01-01

    Full Text Available White light colonoscopy is the current gold standard for early detection and treatment of colorectal cancer, but emerging data suggest that this approach is inherently limited. Even the most experienced colonoscopists, under optimal conditions, miss at least 15–25% of adenomas. There is an unmet clinical need for an adjunctive modality to white light colonoscopy with improved lesion detection and characterization. Optical molecular imaging with exogenously administered organic fluorochromes is a burgeoning imaging modality poised to advance the capabilities of colonoscopy. In this proof-of-principle clinical trial, we investigated the ability of a custom-designed fluorescent colonoscope and indocyanine green, a clinically approved fluorescent blood pool imaging agent, to visualize polyps in high risk patients with polyposis syndromes or known distal colonic masses. We demonstrate (1 the successful performance of real-time, wide-field fluorescence endoscopy using off-the-shelf equipment, (2 the ability of this system to identify polyps as small as 1 mm, and (3 the potential for fluorescence imaging signal intensity to differentiate between neoplastic and benign polyps.

  13. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    Science.gov (United States)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  14. Molecular mechanism of a green-shifted, pH-dependent red fluorescent protein mKate variant.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm and emits green fluorescence (525 nm. At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies.

  15. La proteína verde fluorescente ilumina la biociencia The Green Fluorescent Protein that glows in Bioscience

    Directory of Open Access Journals (Sweden)

    María Inés Pérez Millán

    2009-06-01

    Full Text Available La proteína verde fluorescente (o GFP, por sus siglas en inglés, Green Fluorescent Protein es una proteína producida por la medusa Aequorea victoria que emite bioluminiscencia en la zona verde del espectro visible. El gen que codifica esta proteína ha sido clonado y se utiliza habitualmente en biología molecular como marcador. Los descubrimientos relacionados a la GFP merecieron el Premio Nobel de Química 2008, en conjunto a los tres investigadores, Dres Shimomura, Chalfie y Tsien que participaron escalonadamente en dilucidar la estructura y función de la proteína. El Dr. Shimomura descubrió y estudió las propiedades de GFP, el Dr. Chalfie usando técnicas de biología molecular logró introducir el gen que codificaba para la GFP en el ADN del gusano transparente C. elegans, e inició la era de GFP como marcador de procesos en células y organismos. Finalmente el Dr. Tsien modificó la estructura de la proteína para producir moléculas que emiten luz a distintas longitudes de onda, extendiendo la paleta de colores de las proteínas. Las proteínas fluorescentes, entre las cuales se encuentra la GFP, son muy versátiles y se utilizan en diversos campos como la microbiología, ingeniería genética, fisiología, e ingeniería ambiental. Permiten ver procesos previamente invisibles, como el desarrollo de neuronas, cómo se diseminan las células cancerosas, o la contaminación de agua con arsénico, por mencionar algunos usos. Con la obtención de proteínas de muchos colores complejas redes biológicas pueden ser marcadas diferencialmente, lo que permite visualizar la biología celular en acción.Green fluorescent protein (GFP is a protein produced by the jellyfish Aequorea victoria, that emits bioluminescence in the green zone of the visible spectrum. The GFP gene has been cloned and is used in molecular biology as a marker. The three researchers that participated independently in elucidating the structure and function of this and its

  16. Sentinel node mapping guided by indocyanine green fluorescence imaging in gastric cancer.

    Science.gov (United States)

    Tajima, Yusuke; Yamazaki, Kimiyasu; Masuda, Yuki; Kato, Masanori; Yasuda, Daisuke; Aoki, Takeshi; Kato, Takashi; Murakami, Masahiko; Miwa, Mitsuharu; Kusano, Mitsuo

    2009-01-01

    In this study, we determined the possible usefulness of sentinel node (SN) mapping guided by indocyanine green (ICG) fluorescence imaging in the management of gastric cancer. ICG fluorescence imaging system has recently been developed for obtaining biochemical information from living tissues. Our series consisted of 56 patients with gastric cancer who underwent standard gastrectomy with lymphadenectomy. Two milliliters of ICG solution (0.5%) was injected into the submucosa around the tumor endoscopically before the operation or into the subserosa intraoperatively. ICG fluorescence imaging was conducted using a charge-coupled device camera with a light-emitting diode having a wavelength of 760 nm as the light source and a cut filter to filter out light with wavelengths below 820 nm as the detector. SNs were detected in 54 (96.4%) of the 56 patients, and the mean number of SNs was 7.2 +/- 7.0. Even SNs that were not green in color could be easily and clearly visualized by ICG fluorescence imaging. cT1-stage cancers were associated with a significantly higher accuracy rate (97.2% vs. 72.2%, P = 0.0127) than cT2-or cT3-stage cancers. Preoperative ICG injection was associated with a significantly higher incidence of cT1-stage cancers (87.1% vs. 40.0%, P = 0.0004), a larger mean number of SNs (9.9 +/- 7.5 vs. 4.1 +/- 5.0, P < 0.0001), a higher accuracy rate (100% vs. 73.9%, P = 0.0039), and a lower false negative rate (0% vs. 60.0%, P = 0.0345) as compared with intraoperative ICG injection. This study shows that ICG fluorescence imaging allows highly sensitive image-guided intraoperative SN mapping in cases of gastric cancer. Our data suggest that SN mapping guided by ICG fluorescence imaging might be useful for predicting the metastatic status in lymph nodes in cases of gastric cancer, especially those with cT1-stage cancer.

  17. CHARACTERIZATION OF A CRYPTIC PLASMID FROM ESCHERICHIA COLI O157:H7 AND EVALUATION OF THE EXPRESSION OF GREEN-FLUORESCENT PROTEIN FROM GENETICALLY ENGINEERED DERIVATIVES OF THIS PLASMID

    Science.gov (United States)

    Escherichia coli O157:H7 strain 86-24 harbors a 3.3 kb cryptic plasmid (pSP). Our objectives were to clone a DNA cassette expressing a green-fluorescent protein (GFP) from a lac promoter and an ampicillin resistance (Amp**r) gene on pSP, and to monitor both the expression of GFP and the stability o...

  18. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    Science.gov (United States)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  19. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    Science.gov (United States)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  20. POLA EKSPRESI GEN ENHANCED GREEN FLUORESCENT PROTEIN PADA EMBRIO DAN LARVA IKAN PATIN SIAM (Pangasianodon hypophthalmus

    Directory of Open Access Journals (Sweden)

    Raden Roro Sri Pudji Sinarni Dewi

    2016-04-01

    menggunakan gen reporter berguna untuk mendesain konstruksi gen yang akan digunakan pada penelitian transgenesis. Gen reporter yang umum digunakan dalam penelitian ekspresi sementara transgen adalah gen GFP (green fluorescent protein. Pengamatan gen EGFP (enhanced green fluorescent protein pada embrio dan larva ikan patin siam (Pangasianodon hypophthalmus ditujukan untuk mendapatkan informasi mengenai kemampuan promoter -aktin ikan mas dalam mengendalikan ekspresi gen EGFP. Gen EGFP diintroduksikan ke dalam sperma ikan patin siam menggunakan metode elektroporasi. Sperma yang telah dielektroporasi digunakan untuk membuahi sel telur ikan patin siam. Pengamatan ekspresi gen EGFP dilakukan setiap enam jam dimulai dari embrio fase 2 sel sampai larva. Berdasarkan hasil penelitian, gen EGFP terekspresi pada fase embrio dan larva ikan patin siam. Puncak ekspresi gen EGFP terjadi pada fase neurula dan menurun pada fase larva. Berdasarkan penelitian ini maka ikan patin siam transgenik telah berhasil dibentuk dan promoter -aktin ikan mas terbukti aktif dalam mengarahkan ekspresi gen asing (GFP di dalam tubuh ikan patin siam.

  1. Using computational chemistry to understand proton transfer in Green Fluorescent Protein

    Science.gov (United States)

    Hoskin, Christa; Champion, Paul; Sage, Timothy; Benabbas, Abdelkrim; Demidov, Alexander; Salna, Bridget

    2012-02-01

    Green Fluorescent Protein has been studied experimentally by the scientific community for years yet frustratingly little is known about the underlying proton transfer process that produces the green fluorescence. We are trying to elucidate more about this process using Density Functional Theory to prepare and run various calculations on GFP that we compare with kinetics data, Raman and vibrational coherence spectra. I am building a model of wild type GFP that is realistically sized for our computational power, yet still contains key residues that might affect the proton transport process. I will compare my results to those of the E222D GFP mutant. This comparison will allow us to see any differences in energy and normal modes that give insights regarding the proton transfer process. For example, how does it depend on a variety of factors such as temperature, buffer, pH, mutations, etc.? We also plan to examine if the proton transfer propagates through the three donor-acceptor pairs of the ``proton wire'' consecutively versus the three protons on the wire transferring simultaneously. Finally, we will consider how quantum tunneling may be involved in the proton transfer.

  2. Near-infrared fluorescence with indocyanine green for diagnostics in urology: initial experience.

    Science.gov (United States)

    Morozov, Andrey O; Alyaev, Yuri G; Rapoport, Leonid M; Tsarichenko, Dmitrii G; Bezrukov, Eugene A; Butnaru, Denis V; Sirota, Eugene S

    2017-08-01

    Fluorescence imaging with indocyanine green is used in urology for the detection of sentinel lymph nodes and identification of prostate margins in radical prostatectomy for delineation of resection zone and selective clamping of vessels in partial nephrectomy; for identification and evaluation of length of ureteral strictures; for assessment of perfusion and viability of anastomoses during reconstructive stage of cystectomy. Safety of this technique is proven, while its diagnostic value and usefulness is still controversial. This pilot study of using the SPY Elite Fluorescence Imaging System for diagnostics was performed in the I.M. Sechenov First Moscow State Medical University. Ten patients were enrolled: four patients underwent retropubic RP and lymph node dissection, five patients underwent partial nephrectomy, and one patient underwent ureteroplasty. Fluorophore was injected transrectally with TRUS guidance during RP in order to assess the lymph nodes. During partial nephrectomy, the compound was injected intravenously to differentiate the tumor from parenchyma by its blood supply. During ureteroplasty, the indocyanine green solution was injected into the renal pelvis to dye the ureter and locate the stricture. Sensitivity of this technique for visualization of sentinel lymph nodes was 100%, and specificity was 73.3%. In patients who underwent partial nephrectomy, all lesions were malignant and hypofluorescent when compared with healthy parenchyma. SPY allowed us to determine the location and extension of the stricture during ureteroplasty. No hypersensitivity reactions or complications were observed during injection of the compound.

  3. Real-Time Characterization of Virulence Factor Expression in Yersinia pestis Using a Green Fluorescent Protein Reporter System

    Energy Technology Data Exchange (ETDEWEB)

    Forde, C; Rocco, J; Fitch, J P; McCutchen-Maloney, S

    2004-06-09

    A real-time reporter system was developed to monitor the thermal induction of virulence factors in Yersinia pestis. The reporter system consists of a plasmid in Y. pestis in which the expression of green fluorescent protein (GFP) is under the control of the promoters for six virulence factors, yopE, sycE, yopK, yopT, yscN, and lcrE/yopN, which are all components of the Type III secretion virulence mechanism of Y. pestis. Induction of the expression of these genes in vivo was determined by the increase in fluorescence intensity of GFP in real time. Basal expression levels observed for the Y. pestis promoters, expressed as percentages of the positive control with GFP under the control of the lac promoter, were: yopE (15%), sycE (15%), yopK (13%), yopT (4%), lcrE (3.3%) and yscN (0.8%). The yopE reporter showed the strongest gene induction following temperature transition from 26 C to 37 C. The induction levels of the other virulence factors, expressed as percentages of yopE induction, were: yopK (57%), sycE (9%), yscN (3%), lcrE (3%), and yopT (2%). The thermal induction of each of these promoter fusions was repressed by calcium, and the ratios of the initial rates of thermal induction without calcium supplementation compared to the rate with calcium supplementation were: yopE (11 fold), yscN (7 fold), yopK (6 fold), lcrE (3 fold), yopT (2 fold), and sycE (2 fold). This work demonstrates a novel approach to quantify gene induction and provides a method to rapidly determine the effects of external stimuli on expression of Y. pestis virulence factors in real time, in living cells.

  4. Quality assessment of report gene green fluorescence protein in chicken embryo in vivo electroporation%鸡胚活体原位电转基因技术报告基因绿色荧光蛋白质量评估

    Institute of Scientific and Technical Information of China (English)

    杨慈清; 毛会丽; 郭志坤; 林俊堂

    2012-01-01

    Objective The method of in vivo electroporation has been set up successfully and we further analyzed the effect of report gene green fluorescence protein(GFP) on the morphology of developing chicken embryos after in vivo electrop oration , and also analyzed the expression of ct-smooth muscle actin y (α-SMA) and neurofilament during chicken embryonic development. Methods pCAGGS-GFP was transformed into chicken embryos with in ovo culture at 3days and ex ovo culture at 3-5days. In 24hours after in vivo electroporation, GFP-positive embryos were selected under stereo fluorescence microscope, and the GFP-negative embryos served as controls. Five embryos were analayzed for each group, r luorescence immunohistochemistry was applied to analyze the expression of α-SMA and neuroiilament in chicken spinal cord and tectum. Results At different stages of chicken embryos and different time after in vivo electroporation, the expression of a-smooth muscle actin and neurofilament did not show difference in experimental group and wild type, as well as in GFP-positive area and GFP-negative area. The morphology of embryos was not changed after electroporation with pCAGGS-GFP either. Conclusion GFP as a report gene to in vivo electroporation for chicken embryos does not affect the expression of α-smooth muscle actin and neurofilament, as well as no effect on the morphology of chicken embryos, so GFP can well serve as a report gene for chicken embryo in vivo electroporation.%目的 在成功建立鸡胚活体原位电转基因技术的基础上,探讨报告基因绿色荧光蛋白(GFP)的表达及其在鸡胚发育过程对胚胎形态结构影响,分析α-平滑肌肌动蛋白(α-SMA)和神经丝蛋白(NF)的表达情况.方法 活体原位电转基因技术将pCAGGS-GFP质粒转入带壳培养第3天和第3天去壳培养至第5天的鸡胚,在电转基因24h后荧光体视显微镜观察,选择对照组和阳性表达胚胎,每组各5个胚胎,冷冻切片后进行荧光免疫

  5. Clinical values of intraoperative indocyanine green fluorescence video angiography with Flow 800 software in cerebrovascular surgery.

    Science.gov (United States)

    Ye, Xun; Liu, Xing-Ju; Ma, Li; Liu, Ling-Tong; Wang, Wen-Lei; Wang, Shuo; Cao, Yong; Zhang, Dong; Wang, Rong; Zhao, Ji-Zong; Zhao, Yuan-Li

    2013-11-01

    Microscope-integrated near-infrared indocyanine green video angiography (ICG-VA) has been used in neurosurgery for a decade. This study aimed to assess the value of intraoperative indocyanine green (ICG) video angiography with Flow 800 software in cerebrovascular surgery and to discover its hemodynamic features and changes of cerebrovascular diseases during surgery. A total of 87 patients who received ICG-VA during various surgical procedures were enrolled in this study. Among them, 45 cases were cerebral aneurysms, 25 were cerebral arteriovenous malformations (AVMs), and 17 were moyamoya disease (MMD). A surgical microscope integrating an infrared fluorescence module was used to confirm the residual aneurysms and blocking of perforating arteries in aneurysms. Feeder arteries, draining veins, and normal cortical vessels were identified by the time delay color mode of Flow 800 software. Hemodynamic parameters were recorded. All data were analyzed by SPSS version 18.0 (SPSS Inc., USA). T-test was used to analyze the hemodynamic features of AVMs and MMDs, the influence on peripheral cortex after resection in AVMs, and superficial temporal artery to middle cerebral artery (STA-MCA) bypass in MMDs. The visual delay map obtained by Flow 800 software had more advantages than the traditional playback mode in identifying the feeder arteries, draining veins, and their relations to normal cortex vessels. The maximum fluorescence intensity (MFI) and the slope of ICG fluorescence curve of feeder arteries and draining veins were higher than normal peripheral vessels (MFI: 584.24±85.86 vs. 382.94 ± 91.50, slope: 144.95 ± 38.08 vs. 69.20 ± 13.08, P software appears to be useful for intraoperative monitoring of regional cerebral blood flow in cerebrovascular disease.

  6. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp

    Science.gov (United States)

    Thambiraj, S.; Ravi Shankaran, D.

    2016-12-01

    Carbon quantum dots (CQDs) have great potential due to its advantageous characteristics of highly fluorescent nature and good stability. In this study, we aimed to develop a simple and efficient method for the green synthesis of fluorescent CQDs from sugarcane bagasse, a renewable and sustainable resource. The process involves the top down approach of chemical oxidation followed by exfoliation of sugarcane carbon. The synthesized CQDs was characterized by UV-vis absorption spectroscopy, Spectrofluorophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photon spectroscopy (XPS), Atomic force microscopy (AFM) and High-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs possess stable fluorescent properties, good bio-compatibility and high quantum yield. The CQDs are highly crystalline with longitudinal dimensions of 4.1 ± 0.17 nm with an average roughness of around 5 nm. The XRD and TEM analysis indicates that the synthesized CQDs possess face centred cubic crystal structure. The results suggest that the proposed CQDs could be utilized for bio-sensor, bio-imaging and drug delivery applications.

  7. An endogenous green fluorescent protein-photoprotein pair in Clytia hemisphaerica eggs shows co-targeting to mitochondria and efficient bioluminescence energy transfer.

    Science.gov (United States)

    Fourrage, Cécile; Swann, Karl; Gonzalez Garcia, Jose Raul; Campbell, Anthony K; Houliston, Evelyn

    2014-04-09

    Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms). Potential physiological functions at these sites include UV protection of stem cells for fluorescence alone, and prey attraction and camouflaging counter-illumination for bioluminescence. Remarkably, the clytin2 and GFP2 proteins, co-expressed in eggs, show particularly efficient BRET and co-localize to mitochondria, owing to parallel acquisition by the two genes of mitochondrial targeting sequences during hydrozoan evolution. Overall, our results indicate that endogenous GFPs and photoproteins can play diverse roles even within one species and provide a striking and novel example of protein coevolution, which could have facilitated efficient or brighter BRET flashes through mitochondrial compartmentalization.

  8. Development and characterization of a green fluorescent protein-based rat cell bioassay system for detection of AH receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bin; Denison, M. [California Univ., Davis, CA (United States). Dept. of Environmental Toxicology

    2004-09-15

    Proper epidemiological, risk assessment and exposure analysis of TCDD and related HAHs requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). While high-resolution instrumental analysis techniques are established for these chemicals, these procedures are very costly, time-consuming and are impractical for large scale sampling studies. Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take the advantage of the ability of these chemicals to activate one or more aspects of the AhR-dependent mechanism of action. One of the most sensitive bioassay systems developed to date is the so-called CALUX (Chemically Activated Luciferase Expression) assay, which is based on novel recombinant cell lines that contain a stably transfected dioxin (AhR)-responsive firefly luciferase gene. Treatment of these cells with TCDD and related HAHs and polycyclic aromatic hydrocarbons (PAHs), as well as other AhR ligands, results in induction of reporter gene expression in a time-, dose-, AhR-, and chemical-specific manner. The level of reporter gene expression correlates with the total concentration of the TCDD-like AhR inducers (agonists) present in the sample. Although the firefly luciferase reporter gene contributes to the high degree of sensitivity of the assay, it also has limitations with respect to our need for a rapid and inexpensive bioassay for high-throughput screening analysis. Accordingly, we previously developed a stably transfected murine cell line containing an AhRresponsive enhanced green fluorescent protein (EGFP) reporter gene. This cell line provided us with a high-throughput cell bioassay system for identification and characterization of AhR agonists and antagonists. Here we have extended these studies and describe the development, optimization, and

  9. Gene expression analysis of in vivo fluorescent cells.

    Directory of Open Access Journals (Sweden)

    Konstantin Khodosevich

    Full Text Available BACKGROUND: The analysis of gene expression for tissue homogenates is of limited value because of the considerable cell heterogeneity in tissues. However, several methods are available to isolate a cell type of interest from a complex tissue, the most reliable one being Laser Microdissection (LMD. Cells may be distinguished by their morphology or by specific antigens, but the obligatory staining often results in RNA degradation. Alternatively, particular cell types can be detected in vivo by expression of fluorescent proteins from cell type-specific promoters. METHODOLOGY/PRINCIPAL FINDINGS: We developed a technique for fixing in vivo fluorescence in brain cells and isolating them by LMD followed by an optimized RNA isolation procedure. RNA isolated from these cells was of equal quality as from unfixed frozen tissue, with clear 28S and 18S rRNA bands of a mass ratio of approximately 2ratio1. We confirmed the specificity of the amplified RNA from the microdissected fluorescent cells as well as its usefulness and reproducibility for microarray hybridization and quantitative real-time PCR (qRT-PCR. CONCLUSIONS/SIGNIFICANCE: Our technique guarantees the isolation of sufficient high quality RNA obtained from specific cell populations of the brain expressing soluble fluorescent marker, which is a critical prerequisite for subsequent gene expression studies by microarray analysis or qRT-PCR.

  10. Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Genetically encoded tag is a powerful tool for protein research. Various kinds of tags have been developed: fluorescent proteins for live-cell imaging, affinity tags for protein isolation, and epitope tags for immunological detections. One of the major problems concerning the protein tagging is that many constructs with different tags have to be made for different applications, which is time- and resource-consuming. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel multifunctional green fluorescent protein (mfGFP tag which was engineered by inserting multiple peptide tags, i.e., octa-histidine (8xHis, streptavidin-binding peptide (SBP, and c-Myc tag, in tandem into a loop of GFP. When fused to various proteins, mfGFP monitored their localization in living cells. Streptavidin agarose column chromatography with the SBP tag successfully isolated the protein complexes in a native form with a high purity. Tandem affinity purification (TAP with 8xHis and SBP tags in mfGFP further purified the protein complexes. mfGFP was clearly detected by c-Myc-specific antibody both in immunofluorescence and immuno-electron microscopy (EM. These findings indicate that mfGFP works well as a multifunctional tag in mammalian cells. The tag insertion was also successful in other fluorescent protein, mCherry. CONCLUSIONS AND SIGNIFICANCE: The multifunctional fluorescent protein tag is a useful tool for a wide variety of protein research, and may have the advantage over other multiple tag systems in its higher expandability and compatibility with existing and future tag technologies.

  11. In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors

    Directory of Open Access Journals (Sweden)

    Intekhab Islam

    2016-01-01

    Full Text Available Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs are potentially an unlimited source of healthy and functional osteoprogenitors (OPs that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs expressing green fluorescent protein (GFP and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.

  12. Production of germline transgenic chickens expressing enhanced green fluorescent protein using a MoMLV-based retrovirus vector.

    Science.gov (United States)

    Koo, Bon Chul; Kwon, Mo Sun; Choi, Bok Ryul; Kim, Jin-Hoi; Cho, Seong-Keun; Sohn, Sea Hwan; Cho, Eun Jung; Lee, Hoon Taek; Chang, Wonkyung; Jeon, Iksoo; Park, Jin-Ki; Park, Jae Bok; Kim, Teoan

    2006-11-01

    The Moloney murine leukemia virus (MoMLV) -based retrovirus vector system has been used most often in gene transfer work, but has been known to cause silencing of the imported gene in transgenic animals. In the present study, using a MoMLV-based retrovirus vector, we successfully generated a new transgenic chicken line expressing high levels of enhanced green fluorescent protein (eGFP). The level of eGFP expression was conserved after germline transmission and as much as 100 microg of eGFP could be detected per 1 mg of tissue protein. DNA sequencing showed that the transgene had been integrated at chromosome 26 of the G1 and G2 generation transgenic chickens. Owing to the stable integration of the transgene, it is now feasible to produce G3 generation of homozygous eGFP transgenic chickens that will provide 100% transgenic eggs. These results will help establish a useful transgenic chicken model system for studies of embryonic development and for efficient production of transgenic chickens as bioreactors.

  13. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Konrad E. Mueller

    2016-01-01

    Full Text Available Although progress in Chlamydia genetics has been rapid, genomic modification has previously been limited to point mutations and group II intron insertions which truncate protein products. The bacterium has thus far been intractable to gene deletion or more-complex genomic integrations such as allelic exchange. Herein, we present a novel suicide vector dependent on inducible expression of a chlamydial gene that renders Chlamydia trachomatis fully genetically tractable and permits rapid reverse genetics by fluorescence-reported allelic exchange mutagenesis (FRAEM. We describe the first available system of targeting chlamydial genes for deletion or allelic exchange as well as curing plasmids from C. trachomatis serovar L2. Furthermore, this approach permits the monitoring of mutagenesis by fluorescence microscopy without disturbing bacterial growth, a significant asset when manipulating obligate intracellular organisms. As proof of principle, trpA was successfully deleted and replaced with a sequence encoding both green fluorescent protein (GFP and β-lactamase. The trpA-deficient strain was unable to grow in indole-containing medium, and this phenotype was reversed by complementation with trpA expressed in trans. To assess reproducibility at alternate sites, FRAEM was repeated for genes encoding type III secretion effectors CTL0063, CTL0064, and CTL0065. In all four cases, stable mutants were recovered one passage after the observation of transformants, and allelic exchange was limited to the specific target gene, as confirmed by whole-genome sequencing. Deleted sequences were not detected by quantitative real-time PCR (qPCR from isogenic mutant populations. We demonstrate that utilization of the chlamydial suicide vector with FRAEM renders C. trachomatis highly amenable to versatile and efficient genetic manipulation.

  14. An epifluorescent attachment improves whole-plant digital photography of Arabidopsis thaliana expressing red-shifted green fluorescent protein

    Science.gov (United States)

    Baker, Stokes S.; Vidican, Cleo B.; Cameron, David S.; Greib, Haittam G.; Jarocki, Christine C.; Setaputri, Andres W.; Spicuzza, Christopher H.; Burr, Aaron A.; Waqas, Meriam A.; Tolbert, Danzell A.

    2012-01-01

    Background and aims Studies have shown that levels of green fluorescent protein (GFP) leaf surface fluorescence are directly proportional to GFP soluble protein concentration in transgenic plants. However, instruments that measure GFP surface fluorescence are expensive. The goal of this investigation was to develop techniques with consumer digital cameras to analyse GFP surface fluorescence in transgenic plants. Methodology Inexpensive filter cubes containing machine vision dichroic filters and illuminated with blue light-emitting diodes (LED) were designed to attach to digital single-lens reflex (SLR) camera macro lenses. The apparatus was tested on purified enhanced GFP, and on wild-type and GFP-expressing arabidopsis grown autotrophically and heterotrophically. Principal findings Spectrum analysis showed that the apparatus illuminates specimens with wavelengths between ∼450 and ∼500 nm, and detects fluorescence between ∼510 and ∼595 nm. Epifluorescent photographs taken with SLR digital cameras were able to detect red-shifted GFP fluorescence in Arabidopsis thaliana leaves and cotyledons of pot-grown plants, as well as roots, hypocotyls and cotyledons of etiolated and light-grown plants grown heterotrophically. Green fluorescent protein fluorescence was detected primarily in the green channel of the raw image files. Studies with purified GFP produced linear responses to both protein surface density and exposure time (H0: β (slope) = 0 mean counts per pixel (ng s mm−2)−1, r2 > 0.994, n = 31, P < 1.75 × 10−29). Conclusions Epifluorescent digital photographs taken with complementary metal-oxide-semiconductor and charge-coupled device SLR cameras can be used to analyse red-shifted GFP surface fluorescence using visible blue light. This detection device can be constructed with inexpensive commercially available materials, thus increasing the accessibility of whole-organism GFP expression analysis to research laboratories and teaching institutions with

  15. Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications.

    Science.gov (United States)

    Venkatesh, V; Shukla, Akansha; Sivakumar, Sri; Verma, Sandeep

    2014-02-12

    We report facile one-pot synthesis of water-soluble green fluorescent gold nanoclusters (AuNCs), capped with 8-mercapto-9-propyladenine. The synthesized AuNCs were characterized by Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), (1)H NMR, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. These nanoclusters show high photostability and biocompatibility. We observed that AuNCs stain cell nuclei with high specificity, where the mechanism of AuNC uptake was established through pathway-specific uptake inhibitors. These studies revealed that cell internalization of AuNCs occurs via a macropinocytosis pathway.

  16. Indocyanine green fluorescent dye during bowel surgery: are the blood supply "guessing days" over?

    Science.gov (United States)

    Foppa, C; Denoya, P I; Tarta, C; Bergamaschi, R

    2014-08-01

    Assessing the blood supply of the bowel is a difficult task even for experienced surgeons. Laser-assisted indocyanine green (ICG) fluorescent dye angiography provides intraoperative visual assessment of blood flow to the bowel wall and surrounding tissues, allowing for modification to the surgical plan, which can reduce the risk of postoperative complications. ICG angiography was prospectively performed in a single center during a 1-year period for small bowel ischemia and left colorectal resections. ICG angiography played a major role in the intraoperative decision making in 4 of 160 patients, whose clinical and operative details are here reported. In case of acute small intestine ischemia, resection is not warranted unless absolute perfusion units are below 19 (relative 21%). When evaluating blood supply to the left colon prior to anastomosing, resection is recommended with absolute units lower than 18 (relative 31%) even if the bowel appears macroscopically perfused.

  17. A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules.

    Science.gov (United States)

    El Meskini, R; Jin, L; Marx, R; Bruzzaniti, A; Lee, J; Emeson, R; Mains, R

    2001-02-01

    To investigate trafficking in neuroendocrine cells, green fluorescent protein (GFP) tags were fused to various portions of the preproneuropeptide Y (NPY) precursor. Two neuroendocrine cell lines, AtT-20 corticotrope tumor cells and PC-12 pheochromocytoma cells, along with primary anterior pituitary cells, were examined. Expression of chimeric constructs did not disrupt trafficking or regulated secretion of endogenous ACTH and prohormone convertase 1 in AtT-20 cells. Western blot and immunocytochemical analyses demonstrated that the chimeric constructs remained intact, as long as the Lys-Arg cleavage site within preproNPY was deleted. GFP was stored in, and released from, regulated granules in cells expressing half of the NPY precursor fused to GFP, and also in cells in which only the signal sequence of preproNPY was fused to GFP. Thus, in neuroendocrine cells, entering the lumen of the secretory pathway is sufficient to target GFP to regulated secretory granules.

  18. Improved method to raise polyclonal antibody using enhanced green fluorescent protein transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Jianke Ren; Long Wang; Guoxiang Liu; Wen Zhang; Zhejin Sheng; Zhugang Wang; Jian Fei

    2008-01-01

    Recombinant fusion protein is widely used as an antigen to raise antibodies against the epitope of a target protein. However, the concomitant anticarrier antibody in resulting antiserum reduces the production of the desired antibody and brings about unwanted non-specific immune reactions. It is proposed that the carrier protein transgenic animal could be used to solve this problem. To validate this hypothesis, enhanced green fluorescent protein (EGFP) transgenic mice were produced. By immunizing the mice with fusion protein His6HAtag-EGFP, we showed that the antiserum from the transgenic mice had higher titer antibody against His6HA tag and lower titer antibody against EGFP compared with that from wild-type mice. Therefore, this report describes an improved method to raise high titer antipeptide polyclonal antibody using EGFP transgenic mice that could have application potential in antibodypreparation.

  19. Green synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity.

    Science.gov (United States)

    Song, Wei; Liang, Ru-Ping; Wang, Ying; Zhang, Li; Qiu, Jian-Ding

    2015-06-21

    A green method was employed for synthesizing peptide-templated nanoclusters without requiring strong reducing agents. Using synthetic peptide-gold nanoclusters as fluorescence probes, a novel assay for detecting protein kinase is developed based on phosphorylation against carboxypeptidase Y digestion.

  20. Effect of changes in chlorophyll concentration on photosynthetic properties I. Fluorescence and absorption of greening bean leaves

    NARCIS (Netherlands)

    Goedheer, J.C.

    1961-01-01

    In order to obtain new information about the way of functioning of chlorophyll in vivo a study was made of optical properties and photosynthesis under condition of a low chlorophyll content in the leave. It was found that the fluorescence yeild of greening bean leaves decreased from a value

  1. Effect of changes in chlorophyll concentration on photosynthetic properties I. Fluorescence and absorption of greening bean leaves

    NARCIS (Netherlands)

    Goedheer, J.C.

    1961-01-01

    In order to obtain new information about the way of functioning of chlorophyll in vivo a study was made of optical properties and photosynthesis under condition of a low chlorophyll content in the leave. It was found that the fluorescence yeild of greening bean leaves decreased from a value approxim

  2. Green fluorescent protein (GFP) leakage from microbial biosensors provides useful information for the evaluation of the scale-down effect

    DEFF Research Database (Denmark)

    Delvigne, Frank; Brognaux, Alison; Francis, Frédéric

    2011-01-01

    -shift of the dilution rate in chemostat mode. Glucose limitation was accompanied by green fluorescent protein (GFP) leakage to the extracellular medium. In order to test the responsiveness of microbial biosensors to substrate fluctuations in large-scale, a scale-down reactor (SDR) experiment was performed. The glucose...

  3. Signal enhancement by a multi-layered substrate for mutagen detection using an SOS response-induced green fluorescent protein in genetically modified Escherichia coli.

    Science.gov (United States)

    Etoh, Hiroki; Yasuda, Mitsuru; Akimoto, Takuo

    2011-01-01

    In this paper, we describe a method to enhance the fluorescence signal of mutagen detection using SOS response-induced green fluorescence protein (GFP) in genetically modified Escherichia coli using a multi-layered substrate. To generate E. coli that express SOS response-induced GFP, we constructed a plasmid carrying the RecA promoter located upstream of the GFP gene and used it to transform E. coli BL21. The transformed strain was incubated with mitomycin C (MMC), a typical mutagen, and then immobilized on a multi-layered substrate with Ag and a thin Al(2)O(3) layer on a glass slide. Since the multi-layered substrate technique is an optical technique with potential to enhance the fluorescence of fluorophore placed on top of the substrate, the multi-layered substrate was expected to improve the fluorescence signal of mutagen detection. We obtained an average 14-fold fluorescence enhancement of MMC-induced GFP in the concentration range 1 to 1000 ng/ml. In addition, the lower detection limit of MMC was improved using this technique, and was estimated to be 1 ng/ml because of an enlargement of the difference between the blank and the signal of 1 ng/ml of MMC.

  4. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    Science.gov (United States)

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-02-11

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future.

  5. Split green fluorescent protein as a modular binding partner for protein crystallization.

    Science.gov (United States)

    Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-12-01

    A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.

  6. Using green fluorescent protein to understand the mechanisms of G-protein-coupled receptor regulation

    Directory of Open Access Journals (Sweden)

    S.S.G. Ferguson

    1998-11-01

    Full Text Available G protein-coupled receptor (GPCR activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs. Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.

  7. Specific DNA duplex formation at an artificial lipid bilayer: fluorescence microscopy after Sybr Green I staining

    Directory of Open Access Journals (Sweden)

    Emma Werz

    2014-10-01

    Full Text Available The article describes the immobilization of different probe oligonucleotides (4, 7, 10 carrying each a racemic mixture of 2,3-bis(hexadecyloxypropan-1-ol (1a at the 5’-terminus on a stable artificial lipid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC. The bilayer separates two compartments (cis/trans channel of an optical transparent microfluidic sample carrier with perfusion capabilities. Injection of unlabeled target DNA sequences (6, 8, or 9, differing in sequence and length, leads in the case of complementarity to the formation of stable DNA duplexes at the bilayer surface. This could be verified by Sybr Green I double strand staining, followed by incubation periods and thorough perfusions, and was visualized by single molecule fluorescence spectroscopy and microscopy. The different bilayer-immobilized complexes consisting of various DNA duplexes and the fluorescent dye were studied with respect to the kinetics of their formation as well as to their stability against perfusion.

  8. Laboratory evolution of fast-folding green fluorescent protein using secretory pathway quality control.

    Directory of Open Access Journals (Sweden)

    Adam C Fisher

    Full Text Available Green fluorescent protein (GFP has undergone a long history of optimization to become one of the most popular proteins in all of cell biology. It is thermally and chemically robust and produces a pronounced fluorescent phenotype when expressed in cells of all types. Recently, a superfolder GFP was engineered with increased resistance to denaturation and improved folding kinetics. Here we report that unlike other well-folded variants of GFP (e.g., GFPmut2, superfolder GFP was spared from elimination when targeted for secretion via the SecYEG translocase. This prompted us to hypothesize that the folding quality control inherent to this secretory pathway could be used as a platform for engineering similar 'superfolded' proteins. To test this, we targeted a combinatorial library of GFPmut2 variants to the SecYEG translocase and isolated several superfolded variants that accumulated in the cytoplasm due to their enhanced folding properties. Each of these GFP variants exhibited much faster folding kinetics than the parental GFPmut2 protein and one of these, designated superfast GFP, folded at a rate that even exceeded superfolder GFP. Remarkably, these GFP variants exhibited little to no loss in specific fluorescence activity relative to GFPmut2, suggesting that the process of superfolding can be accomplished without altering the proteins' normal function. Overall, we demonstrate that laboratory evolution combined with secretory pathway quality control enables sampling of largely unexplored amino-acid sequences for the discovery of artificial, high-performance proteins with properties that are unparalleled in their naturally occurring analogues.

  9. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    Science.gov (United States)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  10. Indocyanine green fluorescence imaging for evaluation of uterine blood flow in cynomolgus macaque.

    Directory of Open Access Journals (Sweden)

    Iori Kisu

    Full Text Available BACKGROUND: Uterine blood flow is an important factor in uterine viability, but the number of blood vessels required to maintain viability is uncertain. In this study, indocyanine green (ICG fluorescence imaging was used to examine uterine hemodynamics and vessels associated with uterine blood flow in cynomolgus macaque. METHODS: The uterus of a female cynomolgus macaque was cut from the vaginal canal to mimic a situation during trachelectomy or uterine transplantation surgery in which uterine perfusion is maintained only with uterine and ovarian vessels. Intraoperative uterine hemodynamics was observed using ICG fluorescence imaging under conditions in which various nutrient vessels were selected by clamping of blood vessels. A time-intensity curve was plotted using imaging analysis software to measure the T(max of uterine perfusion for selected blood vessel patterns. Open surgery was performed with the uterus receiving nutritional support only from uterine vessels on one side. The size of the uterus after surgery was monitored using transabdominal ultrasonography. RESULTS: The resulting time-intensity curves displayed the average intensity in the regions of the uterine corpus and uterine cervix, and in the entire uterus. Analyses of the uterine hemodynamics in the cynomolgus macaque showed that uterine vessels were significantly related to uterine perfusion (P=0.008, whereas ovarian vessels did not have a significant relationship (P=0.588. When uterine vessels were clamped, ovarian vessels prolonged the time needed to reach perfusion maximum. Postoperative transabdominal ultrasonography showed that the size of the uterus was not changed 2 months after surgery, with recovery of periodic menstruation. The cynomolgus macaque has got pregnant with favorable fetus well-being. CONCLUSION: Uterine vessels may be responsible for uterine blood flow, and even one uterine vessel may be sufficient to maintain uterine viability in cynomolgus macaque. Our

  11. Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Thomsen, Rasmus Peter; Ogaki, Ryosuke

    2015-01-01

    in biomedical applications. Oligoethylenimine (OEI)–β-cyclodextrin (βCD) Cdots were synthesised using a simple and fast heating method in phosphoric acid. The synthesised Cdots showed strong green fluorescence under UV excitation with a 30% quantum yield and exhibited superior stability over a wide pH range. We......Carbon dots (Cdots) have recently emerged as a novel platform of fluorescent nanomaterials. These carbon nanoparticles have great potential in biomedical applications such as bioimaging as they exhibit excellent photoluminescence properties, chemical inertness and low cytotoxicity in comparison...... to widely used semiconductor quantum dots. However, it remains a great challenge to prepare highly stable, water-soluble green luminescent Cdots with a high quantum yield. Herein we report a new synthesis route for green luminescent Cdots imbuing these desirable properties and demonstrate their potential...

  12. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

    Directory of Open Access Journals (Sweden)

    Qiu HZ

    2014-12-01

    Full Text Available Huazhang Qiu,1,* Namei Wu,1,* Yanjie Zheng,1 Min Chen,2 Shaohuang Weng,1 Yuanzhong Chen,3 Xinhua Lin1 1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China; 2Department of Orthopedic Surgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou, People’s Republic of China; 3Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1 gene and mercury ion (Hg2+ were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. Keywords: fluorescence, turn-on, SYBR Green I, graphene oxide, multidrug resistance protein 1 gene, Hg2+

  13. Clinical values of intraoperative indocyanine green fluorescence video angiography with Flow 800 software in cerebrovascular surgery

    Institute of Scientific and Technical Information of China (English)

    YE Xun; LIU Xing-ju; MA Li; LIU Ling-tong; WANG Wen-lei; WANG Shuo; CAO Yong

    2013-01-01

    Background Microscope-integrated near-infrared indocyanine green video angiography (ICG-VA) has been used in neurosurgery for a decade.This study aimed to assess the value of intraoperative indocyanine green (ICG) video angiography with Flow 800 software in cerebrovascular surgery and to discover its hemodynamic features and changes of cerebrovascular diseases during surgery.Methods A total of 87 patients who received ICG-VA during various surgical procedures were enrolled in this study.Among them,45 cases were cerebral aneurysms,25 were cerebral arteriovenous malformations (AVMs),and 17 were moyamoya disease (MMD).A surgical microscope integrating an infrared fluorescence module was used to confirm the residual aneurysms and blocking of perforating arteries in aneurysms.Feeder arteries,draining veins,and normal cortical vessels were identified by the time delay color mode of Flow 800 software.Hemodynamic parameters were recorded.All data were analyzed by SPSS version 18.0 (SPSS Inc.,USA).T-test was used to analyze the hemodynamic features of AVMs and MMDs,the influence on peripheral cortex after resection in AVMs,and superficial temporal artery to middle cerebral artery (STA-MCA) bypass in MMDs.Results The visual delay map obtained by Flow 800 software had more advantages than the traditional playback mode in identifying the feeder arteries,draining veins,and their relations to normal cortex vessels.The maximum fluorescence intensity (MFI) and the slope of ICG fluorescence curve of feeder arteries and draining veins were higher than normal peripheral vessels (MFI:584.24±85.86 vs.382.94±91.50,slope:144.95±38.08 vs.69.20±13.08,P <0.05).The artefiovenous transit time in AVM was significantly shorter than in normal cortical vessels ((0.60±0.27) vs.(2.08±1.42) seconds,P <0.05).After resection of AVM,the slope of artery in the cortex increased,which reflected the increased cerebral flow.In patients with MMD,after STA-MCA bypass,cortex perfusion of

  14. Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2.

    Science.gov (United States)

    Ünlü, Caner; Polukhina, Iryna; van Amerongen, Herbert

    2016-04-01

    In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). These transitions are accompanied by marked changes in the 77 K fluorescence spectrum, which form the accepted signature of state transitions. The changes are generally thought to reflect a redistribution of light-harvesting complexes (LHCs) over PSII (fluorescing below 700 nm) and PSI (fluorescing above 700 nm). Here we studied the picosecond fluorescence properties of C. reinhardtti over a broad range of wavelengths with very low excitation intensities (0.2 nJ per laser pulse). Cells were directly used for time-resolved fluorescence measurements at 77 K without further treatment, such as medium exchange with glycerol. It is observed that upon going from state 1 (relatively more fluorescence below 700 nm) to state 2 (relatively more fluorescence above 700 nm), a large part of the fluorescence of LHC/PSII becomes substantially quenched in concurrence with LHC detachment from PSII, whereas the absolute amount of PSI fluorescence hardly changes. These results are in agreement with the recent proposal that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is rather limited (Unlu et al. Proc Natl Acad Sci USA 111 (9):3460-3465, 2014).

  15. A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells.

    Science.gov (United States)

    Ilk, Nicola; Küpcü, Seta; Moncayo, Gerald; Klimt, Sigrid; Ecker, Rupert C; Hofer-Warbinek, Renate; Egelseer, Eva M; Sleytr, Uwe B; Sára, Margit

    2004-04-15

    The chimaeric gene encoding a C-terminally truncated form of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 and the EGFP (enhanced green fluorescent protein) was ligated into plasmid pET28a and cloned and expressed in Escherichia coli. Just 1 h after induction of expression an intense EGFP fluorescence was detected in the cytoplasm of the host cells. Expression at 28 degrees C instead of 37 degrees C resulted in clearly increased fluorescence intensity, indicating that the folding process of the EGFP moiety was temperature sensitive. To maintain the EGFP fluorescence, isolation of the fusion protein from the host cells had to be performed in the presence of reducing agents. SDS/PAGE analysis, immunoblotting and N-terminal sequencing of the isolated and purified fusion protein confirmed the presence of both the S-layer protein and the EGFP moiety. The fusion protein had maintained the ability to self-assemble in suspension and to recrystallize on peptidoglycan-containing sacculi or on positively charged liposomes, as well as to fluoresce. Comparison of fluorescence excitation and emission spectra of recombinant EGFP and rSbpA(31-1068)/EGFP revealed identical maxima at 488 and 507 nm respectively. The uptake of liposomes coated with a fluorescent monomolecular protein lattice of rSbpA(31-1068)/EGFP into HeLa cells was studied by confocal laser-scanning microscopy. The major part of the liposomes was internalized within 2 h of incubation and entered the HeLa cells by endocytosis.

  16. The evolutionary history of calreticulin and calnexin genes in green plants.

    Science.gov (United States)

    Del Bem, Luiz Eduardo V

    2011-02-01

    Calreticulin and calnexin are Ca(2+)-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca(2+) homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided.

  17. Transgenic rats with green, red, and blue fluorescence: powerful tools for bioimaging, cell trafficking, and differentiation

    Science.gov (United States)

    Murakami, Takashi; Kobayashi, Eiji

    2005-04-01

    The rat represents a perfect animal for broadening medical experiments, because its physiology has been well understood in the history of experimental animals. In addition, its larger body size takes enough advantage for surgical manipulation, compared to the mouse. Many rat models mimicking human diseases, therefore, have been used in a variety of biomedical studies including physiology, pharmacology, transplantation, and immunology. In an effort to create the specifically designed rats for biomedical research and regenerative medicine, we have developed the engineered rat system on the basis of transgenic technology and succeeded in establishing various transgenic rat strains. The transgenic rats with green fluorescent protein (GFP) were generated in the two different strains (Wistar and Lewis), in which GFP is driven under the chicken beta-actin promoter and cytomegalovirus enhancer (CAG promoter). Their GFP expression levels were different in each organ, but the Lewis line expressed GFP strongly and ubiquitously in most of the organs compared with that of Wistar. For red fluorescence, DsRed2 was transduced to the Wistar rats: one line specifically expresses DsRed2 in the liver under the mouse albumin promoter, another is designed for the Cre/LoxP system as the double reporter rat (the initial DsRed2 expression turns on GFP in the presence of Cre recombinase). LacZ-transgenic rats represent blue color, and LacZ is driven the CAG (DA) or ROSA26 promoter (Lewis). Our unique transgenic rats" system highlights the powerful performance for the elucidation of many cellular processes in regenerative medicine, leading to innovative medical treatments.

  18. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  19. Usefulness of the indocyanine green fluorescence endoscope in endonasal transsphenoidal surgery.

    Science.gov (United States)

    Hide, Takuichiro; Yano, Shigetoshi; Shinojima, Naoki; Kuratsu, Jun-ichi

    2015-05-01

    To avoid disorientation during endoscopic endonasal transsphenoidal surgery (ETSS), the confirmation of anatomical landmarks is essential. Neuronavigation systems can be pointed at exact sites, but their spatial resolution power is too low for the detection of vessels that cannot be seen on MR images. On Doppler ultrasonography the shape of concealed arteries and veins cannot be visualized. To address these problems, the authors evaluated the clinical usefulness of the indocyanine green (ICG) endoscope. The authors included 38 patients with pituitary adenomas (n = 26), tuberculum sellae meningiomas (n = 4), craniopharyngiomas (n = 3), chordomas (n = 2), Rathke's cleft cyst (n = 1), dermoid cyst (n = 1), or fibrous dysplasia (n = 1). After opening the sphenoid sinus and placing the ICG endoscope, the authors injected 12.5 mg of ICG into a peripheral vein as a bolus and observed the internal carotid arteries (ICAs), cavernous sinus, intercavernous sinus, and pituitary. The ICA was clearly identified by a strong fluorescence signal through the dura mater and the covering thin bone. The intercavernous and cavernous sinuses were visualized a few seconds later. In patients with tuberculum sellae meningiomas, the abnormal tumor arteries in the dura were seen and the vague outline of the attachment was identified. At the final inspection after tumor removal, perforators to the brain, optic nerves, chiasm, and pituitary stalk were visualized. ICG fluorescence signals from the hypophyseal arteries were strong enough to see and spread to the area of perfusion with the passage of time. The ICA and the patent cavernous sinus were detected with the ICG endoscope in real time and at high resolution. The ICG endoscope is very useful during ETSS. The authors suggest that the real-time observation of the blood supply to the optic nerves and pituitary helps to predict the preservation of their function.

  20. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    Science.gov (United States)

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N-hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  1. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals.

    Science.gov (United States)

    He, Kunshan; Chi, Chongwei; Kou, Deqiang; Huang, Wenhe; Wu, Jundong; Wang, Yabing; He, Lifang; Ye, Jinzuo; Mao, Yamin; Zhang, Guo-Jun; Wang, Jiandong; Tian, Jie

    2016-12-01

    Sentinel lymph node biopsy (SLNB) has become a standard of care to detect axillary lymph metastasis in early-stage breast cancer patients with clinically negative axillary lymph nodes. Current SLNB detection modalities comprising a blue dye, a radioactive tracer, or a combination of both have advantages as well as disadvantages. Thus, near-infrared fluorescence imaging using indocyanine green (ICG) has recently been regarded as a novel method that has generated interest for SLNB around the world. However, the lack of appropriate fluorescence imaging systems has hindered further research and wide application of this method. Therefore, we developed novel fluorescence image-guided resection equipment (FIRE) to detect sentinel lymph nodes (SLNs). Moreover, to compare the ICG fluorescence imaging method with the blue dye method and to explore the universal feasibility of the former, a different type of hospital study was conducted. Ninety-nine eligible patients participated in the study at 3 different types of hospitals. After subcutaneous ICG allergy testing, all the patients were subcutaneously injected with methylene blue and ICG into the subareolar area. Consequently, 276 SLNs (range 1-7) were identified in 98 subjects (detection rate: 99%) by using the ICG fluorescence imaging method. In contrast, the blue dye method only identified 202 SLNs (range 1-7) in 91 subjects (detection rate: 91.92%). Besides, the results of the fluorescence imaging method were similar in the 3 hospitals. Our findings indicate the universal feasibility of the ICG fluorescence imaging method for SLNB using the fluorescence image-guided resection equipment in early breast cancer detection. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Deli; Yuan, Danhua [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); He, Hua, E-mail: dochehua@163.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Gao, Mengmeng [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)

    2013-08-15

    In this study, a new sensitive and convenient method for the determination of quercetin based on the fluorescence quenching of fluorescent carbon nanoparticles (CNPs) was developed. The CNPs derived from ionic liquids were prepared using a green and rapid microwave-assisted synthetic approach for the first time. The one-step green preparation process is simple and effective, neither a strong acid solvent nor surface modification reagent is needed, which makes this approach very suitable for large-scale production. The prepared CNPs were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectrometry, elemental analysis and spectrofluorometry. In NH{sub 3}–NH{sub 4}Cl buffer solution (pH 9.47), the fluorescence signals of CNPs decreased obviously with increase of the quercetin concentration. The effect of other coexisting foreign substances on the intensity of CNPs showed a low interference response. Under the optimum conditions, the fluorescence intensity presented a linear response versus quercetin concentration according to the Stern–Volmer equation with an excellent 0.9989 correlation coefficient. The linearity ranged from 2.87×10{sup −6} to 31.57×10{sup −6} mol L{sup −1} with the detection limit (3σ) of 9.88×10{sup −8} mol L{sup −1}. The recovery of this method was in the range of 93.3–105.1%. Therefore, the CNPs could to be a promising candidate as a fluorescence probe for the detection of trace levels of quercetin due to their advantages in low-cost production, low cytotoxicity, strong fluorescence and excellent biocompatibility. -- Highlights: ► Fluorescent CNPs were synthesized with microwave pyrolysis approach. ► Ionic liquids were used as sources of carbon and nitrogen for the first time. ► The formation and functionalization of CNPs were accomplished simultaneously. ► CNPs were used as fluorescent probes for the determination of quercetin. ► A sensitive and convenient method based

  3. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen for human G-protein-coupled receptor signaling in microbial yeast cells.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nakamura

    Full Text Available G-protein-coupled receptors (GPCRs are currently the most important pharmaceutical targets for drug discovery because they regulate a wide variety of physiological processes. Consequently, simple and convenient detection systems for ligands that regulate the function of GPCR have attracted attention as powerful tools for new drug development. We previously developed a yeast-based fluorescence reporter ligand detection system using flow cytometry. However, using this conventional detection system, fluorescence from a cell expressing GFP and responding to a ligand is weak, making detection of these cells by fluorescence microscopy difficult. We here report improvements to the conventional yeast fluorescence reporter assay system resulting in the development of a new highly-sensitive fluorescence reporter assay system with extremely bright fluorescence and high signal-to-noise (S/N ratio. This new system allowed the easy detection of GPCR signaling in yeast using fluorescence microscopy. Somatostatin receptor and neurotensin receptor (implicated in Alzheimer's disease and Parkinson's disease, respectively were chosen as human GPCR(s. The facile detection of binding to these receptors by cognate peptide ligands was demonstrated. In addition, we established a highly sensitive ligand detection system using yeast cell surface display technology that is applicable to peptide screening, and demonstrate that the display of various peptide analogs of neurotensin can activate signaling through the neurotensin receptor in yeast cells. Our system could be useful for identifying lead peptides with agonistic activity towards targeted human GPCR(s.

  4. Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics.

    Science.gov (United States)

    Aliye, Naser; Fabbretti, Attilio; Lupidi, Giulio; Tsekoa, Tsepo; Spurio, Roberto

    2015-02-01

    A number of studies have been conducted to improve chromophore maturation, folding kinetics, thermostability, and other traits of green fluorescent protein (GFP). However, no specific work aimed at improving the thermostability of the yellow fluorescent protein (YFP) and of the pH-sensitive, yet thermostable color variants of GFP has so far been done. The protein variants reported in this study were improved through rational multiple site-directed mutagenesis of GFP (ASV) by introducing up to ten point mutations including the mutations near and at the chromophore region. Therefore, we report the development and characterization of fast folder and thermo-tolerant green variant (FF-GFP), and a fast folder thermostable yellow fluorescent protein (FFTS-YFP) endowed with remarkably improved thermostability and folding kinetics. We demonstrate that the fluorescence intensity of this yellow variant is not affected by heating at 75 °C. Moreover, we have developed a pH-unresponsive cyan variant AcS-CFP, which has potential use as part of in vivo imaging irrespective of intracellular pH. The combined improved properties make these fluorescent variants ideal tools to study protein expression and function under different pH environments, in mesophiles and thermophiles. Furthermore, coupling of the FFTS-YFP and AcS-CFP could potentially serve as an ideal tool to perform functional analysis of live cells by multicolor labeling.

  5. Rational Design of Analyte Channels of the Green Fluorescent Protein for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Natta Tansila, Tanawut Tantimongcolwat, Chartchalerm Isarankura-Na-Ayudhya, Chanin Nantasenamat, Virapong Prachayasittikul

    2007-01-01

    Full Text Available A novel solvent-exposed analyte channel, generated by F165G substitution, on the surface of green fluorescent protein (designated His6GFPuv/F165G was successfully discovered by the aid of molecular modeling software (PyMOL in conjunction with site-directed mutagenesis. Regarding the high predictive performance of PyMOL, two pore-containing mutants namely His6GFPuv/H148G and His6GFPuv/H148G/F165G were also revealed. The pore sizes of F165G, H148G, and the double mutant H148G/F165G were in the order of 4, 4.5 and 5.5 Å, respectively. These mutants were subjected to further investigation on the effect of small analytes (e.g. metal ions and hydrogen peroxide as elucidated by fluorescence quenching experiments. Results revealed that the F165G mutant exhibited the highest metal sensitivity at physiological pH. Meanwhile, the other 2 mutants lacking histidine at position 148 had lower sensitivity against Zn2+ and Cu2+ than those of the template protein (His6GFPuv. Hence, a significant role of this histidine residue in mediating metal transfer toward the GFP chromophore was proposed and evidently demonstrated by testing in acidic condition. Results revealed that at pH 6.5 the order of metal sensitivity was found to be inverted whereby the H148G/F165G became the most sensitive mutant. The dissociation constants (Kd to metal ions were in the order of 4.88×10-6 M, 16.67×10-6 M, 25×10-6 M, and 33.33×10-6 M for His6GFPuv/F165G, His6GFPuv, His6GFPuv/H148G/F165G and His6GFPuv/H148G, respectively. Sensitivity against hydrogen peroxide was in the order of H148G/F165G > H148G > F165G indicating the crucial role of pore diameters. However, it should be mentioned that H148G substitution caused a markedly decrease in pH- and thermo-stability. Taken together, our findings rendered the novel pore of GFP as formed by F165G substitution to be a high impact channel without adversely affecting the intrinsic fluorescent properties. This opens up a great potential of

  6. Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Wenbo; Qin Xiaoyun [China West Normal University, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry (China); Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [King Abdulaziz University, Chemistry Department, Faculty of Science (Saudi Arabia); Sun Xuping, E-mail: sunxp@ciac.jl.cn [China West Normal University, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry (China)

    2013-01-15

    The present communication reports on the use of sweet potatoes as carbon source for green synthesis of fluorescent carbon nanodots (CNDs) ranging from 1 to 3 nm. We further demonstrate the use of such CNDs as a very effective fluorescent probe for label-free, sensitive, and selective detection of Hg{sup 2+} with a detection limit as low as 1 nM. The feasibility of the CNDs for analysis of Hg{sup 2+} in a real water sample is also demonstrated successfully.Graphical Abstract.

  7. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery

    Science.gov (United States)

    Vidal Fortuny, J.; Belfontali, V.; Sadowski, S. M.; Karenovics, W.; Guigard, S.

    2016-01-01

    Background Postoperative hypoparathyroidism remains the most common complication following thyroidectomy. The aim of this pilot study was to evaluate the use of intraoperative parathyroid gland angiography in predicting normal parathyroid gland function after thyroid surgery. Methods Angiography with the fluorescent dye indocyanine green (ICG) was performed in patients undergoing total thyroidectomy, to visualize vascularization of identified parathyroid glands. Results Some 36 patients underwent ICG angiography during thyroidectomy. All patients received standard calcium and vitamin D supplementation. At least one well vascularized parathyroid gland was demonstrated by ICG angiography in 30 patients. All 30 patients had parathyroid hormone (PTH) levels in the normal range on postoperative day (POD) 1 and 10, and only one patient exhibited asymptomatic hypocalcaemia on POD 1. Mean(s.d.) PTH and calcium levels in these patients were 3·3(1·4) pmol/l and 2·27(0·10) mmol/l respectively on POD 1, and 4·0(1.6) pmol/l and 2·32(0·08) mmol/l on POD 10. Two of the six patients in whom no well vascularized parathyroid gland could be demonstrated developed transient hypoparathyroidism. None of the 36 patients presented symptomatic hypocalcaemia, and none received treatment for hypoparathyroidism. Conclusion PTH levels on POD 1 were normal in all patients who had at least one well vascularized parathyroid gland demonstrated during surgery by ICG angiography, and none required treatment for hypoparathyroidism. PMID:26864909

  8. Detailed Photoisomerization Dynamics of a Green Fluorescent Protein Chromophore Based Molecular Switch

    Directory of Open Access Journals (Sweden)

    Chen-Wei Jiang

    2014-01-01

    Full Text Available With density-functional-based nonadiabatic molecular dynamics simulations, trans-to-cis and cis-to-trans photoisomerizations of a green fluorescent protein chromophore based molecule 4-benzylidene-2-methyloxazol-5(4H-one (BMH induced by the excitation to its S1 excited state were performed. We find a quantum yield of 32% for the trans-to-cis photoisomerization of BMH and a quantum yield of 33% for its cis-to-trans photoisomerization. For those simulations that did produce trans-to-cis isomerization, the average S1 excited state lifetime of trans-BMH is about 1460 fs, which is much shorter than that of cis-BMH (3100 fs in those simulations that did produce cis-to-trans isomerization. For both photoisomerization processes, rotation around the central C2=C3 bond is the dominant reaction mechanism. Deexcitation occurs at an avoided crossing near the S1/S0 conical intersection, which is near the midpoint of the rotation.

  9. Illuminating the origins of spectral properties of green fluorescent proteins via proteochemometric and molecular modeling.

    Science.gov (United States)

    Nantasenamat, Chanin; Simeon, Saw; Owasirikul, Wiwat; Songtawee, Napat; Lapins, Maris; Prachayasittikul, Virapong; Wikberg, Jarl E S

    2014-10-15

    Green fluorescent protein (GFP) has immense utility in biomedical imaging owing to its autofluorescent nature. In efforts to broaden the spectral diversity of GFP, there have been several reports of engineered mutants via rational design and random mutagenesis. Understanding the origins of spectral properties of GFP could be achieved by means of investigating its structure-activity relationship. The first quantitative structure-property relationship study for modeling the spectral properties, particularly the excitation and emission maximas, of GFP was previously proposed by us some years ago in which quantum chemical descriptors were used for model development. However, such simplified model does not consider possible effects that neighboring amino acids have on the conjugated π-system of GFP chromophore. This study describes the development of a unified proteochemometric model in which the GFP chromophore and amino acids in its vicinity are both considered in the same model. The predictive performance of the model was verified by internal and external validation as well as Y-scrambling. Our strategy provides a general solution for elucidating the contribution that specific ligand and protein descriptors have on the investigated spectral property, which may be useful in engineering novel GFP variants with desired characteristics.

  10. Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Mariana Conceição Souza

    2015-06-01

    Full Text Available A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3 inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

  11. Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence.

    Science.gov (United States)

    Mir-Marqués, Alba; Martínez-García, Maria; Garrigues, Salvador; Cervera, M Luisa; de la Guardia, Miguel

    2016-04-01

    Near infrared (NIR) and X-ray fluorescence (XRF) spectroscopy were investigated to predict the concentration of calcium, potassium, iron, magnesium, manganese and zinc in artichoke samples. Sixty artichokes were purchased from different Spanish areas (Benicarló, Valencia and Murcia). NIR and XRF spectra, combined with partial least squares (PLS) data treatment, were used to develop chemometric models for the prediction of mineral concentration. To obtain reference data, samples were mineralised and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES). Coefficients of determination obtained for the regression between predicted values and reference ones for calcium, potassium, magnesium, iron, manganese and zinc were 0.61, 0.79, 0.53, 0.77, 0.54 and 0.60 for NIR and 0.96, 0.93, 0.80, 0.79, 0.76 and 0.90 for XRF, respectively. Both assayed methodologies, offer green alternatives to classical mineral analysis, but XRF provided the best results in order to be used as a quantitative screening method.

  12. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity

    Science.gov (United States)

    Hu, Shengliang; Wei, Zhijia; Chang, Qing; Trinchi, Adrian; Yang, Jinlong

    2016-08-01

    One of the most widely used methods for exfoliating crystalline nanocarbon is via strong oxidizing acid treatment of bulk carbon sources, such as graphite, carbon black and coal. Not only is such method dangerous and accompanied by the liberation of toxic gases, it is also plagued by issues of purity, requiring the thorough and costly removal of the excess oxidizing acids and salts formed during the process. Herein we report a facile, green and inexpensive top-down strategy towards fluorescent carbon dots (CDs) from coal without incurring the burden of tedious or inefficient post-processing steps and facing the danger of highly toxic gas liberation. The presented approach shows a high yield and great potential for carbon dot production scale-up using coal, one of our most abundant and low-cost resources. The prepared CDs demonstrate photocatalytic behavior capable of rapidly degrading organic dyes under visible light. Our findings may lead to alternative uses of coal, particularly for applications including the treatment of environmental pollution, solar energy conversion or storage, and highlight coal's applicability in areas other than energy producing via burning of this great resource.

  13. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Ana Isabel Garcia Diaz

    2016-04-01

    Full Text Available The Wistar Kyoto (WKY rat and the spontaneously hypertensive (SHR rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN and metabolic syndrome, respectively. Novel transgenic (Tg strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP under the rat elongation factor 1 alpha (EF1a promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminary in vitro and in vivo imaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.

  14. Green fluorescent protein as marker in chondrocytes overexpressing human insulin-like growth factor-1 for repair of articular cartilage defects in rabbits

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-kun; LIU Yi; SONG Zhi-ming; FU Chang-feng; XU Xin-xiang

    2007-01-01

    Objective:To label the primary articular chondrocytes overexpressing human insulin-like growth factor ( hIGF-1 ) with green fluorescent protein (GFP) for repair of articular cartilage defects in rabbits. Methods:GFP cDNA was inserted into pcDNA3.1-hIGF-1 to label the expression vector.The recombinant vector,pcGI,a mammalian expression vector with multiple cloning sites under two respective cytomegalovirus promoters/enhancers,was transfected into the primary articular chondrocytes with the help of lipofectamine.After the positive cell clones were selected by G418,G418-resistant chondrocytes were cultured in medium for 4 weeks.The stable expression of hIGF-1 in the articular chondrocytes was determined by in situ hybridization and immunocytochemical analysis and the GFP was confirmed under a fluorescence microscope. Methyl thiazolyl tetrazolium (MTT) and flow cytometer methods were employed to determine the effect of transfection on proliferation of chondrocytes. Gray value was used to analyze quantitatively the expression of type Ⅱ collagen. Results:The expression of hIGF-1 and GFP was confirmed in transfected chondrocytes by in situ hybridization, immunocytochemical analysis and fluorescence microscope observation. Green articular chondrocytes overexpressing hIGF-1 could expand and maintain their chondrogenic phenotypes for more than 4 weeks.After the transfection of IGF-1,the proliferation of chondrocytes was enhanced and the chondrocytes could effectively maintain the expression of type Ⅱ collagen. Conclusions:The hIGF-1 eukaryotic expression vector containing GFP marker gene has been successfully constructed.GFP,which can be visualized in real time and in situ, is stably expressed in articular chondrocytes overexpressing hIGF-1.The labeled articular chondrocytes overexpressing hIGF-1 can be applied in cell-mediated gene therapy as well as for other biomedical purposes of transgenic chondrocytes.

  15. Construction and Co-expression of Grass Carp Reovirus VP6 Protein and Enhanced Green Fluorescence Protein in the Insect Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Grass carp reovirus (GCRV), a disaster agent to aquatic animals, belongs to Genus Aquareovirus of family Reoviridea. Sequence analysis revealed GCRV genome segment 8 (s8) was 1296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa. To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter, the recombinant baculovirus, which contained the GCRVs8 and eGFP (enhanced green fluorescence protein)genes, was constructed by using the Bac-to-Bac insect expression system. In this study, the whole GCRVs8 and eGFP genes, amplified by PCR, were constructed into a pFastBacDual vector under polyhedron (PH) and p10 promoters, respectively. The constructed dual recombinant plasmid (pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid (AcGCRVs8/eGFP) by transposition. Finally, the recombinant bacluovirus (vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells. The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection, and gradually enhanced and extended around 5days culture in P1(Passage1) stock. The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus (BV) stock. Additionally, PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus. Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.

  16. Evolution of xyloglucan-related genes in green plants

    Directory of Open Access Journals (Sweden)

    Vincentz Michel GA

    2010-11-01

    Full Text Available Abstract Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase and mobilization/degradation (β-(1→4-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a

  17. 绿色荧光蛋白基因转染示踪比格犬体内骨髓间充质干细胞分化%Green fluorescent protein genes transdution and tracer the differentiation of bone mesenchymal stem cells in beagles

    Institute of Scientific and Technical Information of China (English)

    张海峰; 杜子婧; 赵丹阳; 韩修国; 韩冬

    2016-01-01

    Objective To observe differentiation and transformation of bone mesenchymal stem cells (BMSCs)labeled with green fluorescent protein (GFP)technology in bone tissue engineering.Methods Adenoviral delivery of GFP genes (Ad-GFP)transfected to canine BMSCs.The morphology of BMSCs,alkaline phosphatase (ALP)and alizarin red staining were observed with the help of invert light microscope,and the expression of GFP was scrutinized by using fluorescence microscope.Once succeeding,the centrifuged BMSCs were collected and mixed with beta-tricalcium phosphate (β-TCP),then they were transplanted under tibial periosteum.The beagles using the above way to construct tissue engineering bone were marked group A,which only withβ-TCP transplated into tibial periosteum were marked group B, and which withβ-TCP subcutaneously placed were marked group C.In the postoperative 2 weeks,histology and immunohistochemistry results were studied and the expression of GFP was observed by laser scanning confocal microscope.Results After induced differentiation in vitro, observing BMSCs found that ALP staining and alizarin red mineralization nodules staining were positive.Histology observation revealed that compared with group B,abundant bone formed and neovascularized significantly in group A,and bone formation did not exist in group C. Immunohistochemistry staining showed that type Ⅰ collagen and platelet endothelial cell adhesion molecule-1 (CD31)were positive in group A, type Ⅰ collagen and CD31 were positive partly in group B rather than group C.The expression of typeⅠcollagen and CD31 were analyzed in group A and group B by the way of semi-quantitative immunohistochemical staining.The value of type Ⅰ collagen and CD31 had significant differences between group A and group B.The expression of GFP was observed by laser scanning confocal microscope in group A not in group B nor group C.Conclusion BMSCs is the important factor to accelerate the generation of tissue engineering bone instead

  18. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging.

    Science.gov (United States)

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-12-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  19. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging

    Science.gov (United States)

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-02-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  20. Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum

    Science.gov (United States)

    Omidvar, A.; RashidianVaziri, M. R.; Jaleh, B.; Partovi Shabestari, N.; Noroozi, M.

    2016-11-01

    Graphene oxide (GO) has a wide fluorescence bandwidth, which makes it a prospective candidate for numerous applications. For many of these applications, the fluorescence yield of GO should be further increased. The sp2-hybridized carbons in GO confine the π-electrons. Radiative recombination of electron-hole pairs in such sp2 clusters is the source of fluorescence in this material. Palladium nanoparticles are good catalysts for sp2 bond formations. We report on the preparation of GO, palladium nanoparticles and their nanocomposites in two different solvents. It is shown that palladium nanoparticles can considerably enhance the intrinsic fluorescence of GO in the blue-green part of the visible light spectrum. Fluorescence enhancement has been attributed to the catalytic role of palladium nanoparticles in increasing the number of sp2 bonds of GO with the molecules of the surrounding media. It is shown that palladium nanoparticles could be the nanoparticle of choice for fluorescence enhancement of GO because of their catalytic role in sp2 bond formation.

  1. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    Science.gov (United States)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  2. Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP.

    Science.gov (United States)

    Zhan, Zixuan; Cai, Jiao; Wang, Qi; Su, Yingying; Zhang, Lichun; Lv, Yi

    2016-05-01

    Fluorescent carbon nanoparticles (CPs), a fascinating class of recently discovered nanocarbons, have been widely known as some of the most promising sensing probes in biological or chemical analysis. In this study, we demonstrate a green synthetic methodology for generating water-soluble CPs with a quantum yield of approximately 24% via a simple heating process using yum mucilage as a carbon source. The prepared carbon nanoparticles with an ~10 nm size possessed excellent fluorescence properties, and the fluorescence of the CPs was strongly quenched by Fe(3+), and recovered by adenosine triphosphate (ATP), thus, an 'off' and 'on' system can be easily established. This 'CPs-Fe(3+)-ATP' strategy was sensitive and selective at detecting ATP with the linear range of 0.5 µmol L(-1) to 50 µmol L(-1) and with a detection limit of 0.48 µmol L(-1). Copyright © 2015 John Wiley & Sons, Ltd.

  3. Trafficking of Na,K-ATPase fused to enhanced green fluorescent protein is mediated by protein kinase A or C

    DEFF Research Database (Denmark)

    Kristensen, B; Birkelund, Svend; Jørgensen, PL

    2003-01-01

    . Responses of similar magnitude were seen after inhibition of protein phosphatase by okadaic acid. Reduction of the amount of Na,K-ATPase in surface plasma membranes through internalization in recycling endosomes may thus in part explain a decrease in Na,K-pump activity following protein kinase activation......Fusion of enhanced green fluorescent protein (EGFP) to the C-terminal of rat Na,K-ATPase a1-subunit is introduced as a novel procedure for visualizing trafficking of Na,K-pumps in living COS-1 renal cells in response to PKA or PKC stimulation. Stable, functional expression of the fluorescent...... along the plasma membrane of COS cells. In unstimulated COS cells, Na,K-EGFP was also present in lysosomes and in vesicles en route from the endoplasmic reticulum to the plasma membrane, but it was almost absent from recycling endosomes labelled with fluorescent transferrin. After activation of protein...

  4. Selective Permeation and Organic Extraction of Recombinant Green Fluorescent Protein (gfpuv from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ishii Marina

    2002-04-01

    Full Text Available Abstract Background Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside, express the green fluorescent protein (gfpuv during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells. Material and Methods Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1 of transformed (pGFP Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm were sonicated in successive intervals of sonication (25 vibrations/pulse to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations. The intracellular permeate with gfpuv in extraction buffer (TE solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF was subjected to the three-phase partitioning (TPP method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0. Results The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA, after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP

  5. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery.

    Science.gov (United States)

    Vidal Fortuny, J; Belfontali, V; Sadowski, S M; Karenovics, W; Guigard, S; Triponez, F

    2016-04-01

    Postoperative hypoparathyroidism remains the most common complication following thyroidectomy. The aim of this pilot study was to evaluate the use of intraoperative parathyroid gland angiography in predicting normal parathyroid gland function after thyroid surgery. Angiography with the fluorescent dye indocyanine green (ICG) was performed in patients undergoing total thyroidectomy, to visualize vascularization of identified parathyroid glands. Some 36 patients underwent ICG angiography during thyroidectomy. All patients received standard calcium and vitamin D supplementation. At least one well vascularized parathyroid gland was demonstrated by ICG angiography in 30 patients. All 30 patients had parathyroid hormone (PTH) levels in the normal range on postoperative day (POD) 1 and 10, and only one patient exhibited asymptomatic hypocalcaemia on POD 1. Mean(s.d.) PTH and calcium levels in these patients were 3·3(1·4) pmol/l and 2·27(0·10) mmol/l respectively on POD 1, and 4·0(1.6) pmol/l and 2·32(0·08) mmol/l on POD 10. Two of the six patients in whom no well vascularized parathyroid gland could be demonstrated developed transient hypoparathyroidism. None of the 36 patients presented symptomatic hypocalcaemia, and none received treatment for hypoparathyroidism. PTH levels on POD 1 were normal in all patients who had at least one well vascularized parathyroid gland demonstrated during surgery by ICG angiography, and none required treatment for hypoparathyroidism. © 2016 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS Society Ltd.

  6. Looking at the Green Fluorescent Protein (GFP) chromophore from a different perspective: a computational insight.

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-02-15

    In the present contribution Density Functional Theory (DFT) has been applied to explore molecular dipole moment, frontier molecular orbital (FMO) features, chemical hardness, and the molecular electrostatic potential surface (MEPS) characteristics for optimized molecular geometry of the Green Fluorescent Protein (GFP) chromophore p-hydroxybenzylideneimidazolinone (HBDI) both in its protonated (neutral) and deprotonated (anion) forms. The distribution of atomic charges over the entire molecular framework as obtained from Natural Bond Orbital (NBO) analysis is found to faithfully replicate the predictions from the MEP map in respect of reactivity map of HBDI (neutral and anion) and possible sites for hydrogen bonding interactions etc. The three dimensional MEP map encompassing the entire molecule yields a reliable reactivity map of HBDI molecule also displaying the most probable regions for non-covalent interactions. The differential distribution of the electrostatic potential over the neutral and anionic species of HBDI is authentically reflected on MEP map and NBO charge distribution analysis. Thermodynamic properties such as heat capacity, thermal energy, enthalpy, entropy have been calculated and the correlation of the various thermodynamic functions with temperature has been established for neutral molecule. More importantly, however, the computational approach has been employed to unveil the nonlinear optical (NLO) properties of protonated (neutral) and deprotonated (anion) HBDI. Also in an endeavor to achieve a fuller understanding on this aspect the effect of basis set on the NLO properties of the title molecule has been investigated. Our computations delineate the discernible differences in NLO properties between the neutral and anionic species of HBDI whereby indicating the possibility of development of photoswitchable NLO device.

  7. Characterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Anderson Rebecca L

    2006-05-01

    Full Text Available Abstract Background The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c BAC transgenic mice in which a green fluorescent protein (GFP reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord. Results Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative. A small proportion of both non-peptidergic (IB4-binding and peptidergic (CGRP immunoreactive subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn. Conclusion The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.

  8. Subcellular localization of the hypusine-containing eukaryotic initiation factor 5A by immunofluorescent staining and green fluorescent protein tagging.

    Science.gov (United States)

    Jao, David Li-En; Yu Chen, Kuang

    2002-01-01

    Eukaryotic initiation factor 5A (eIF-5A) is the only protein in nature that contains hypusine, an unusual amino acid residue formed posttranslationally by deoxyhypusine synthase and deoxyhypusine hydroxylase. Although the eIF-5A gene is essential for cell survival and proliferation, the precise function and localization of eIF-5A remain unclear. In this study, we have determined the subcellular distribution of eIF-5A by indirect immunofluorescent staining and by direct visualization of green fluorescent protein tagged eIF-5A (GFP-eIF5A). Immunofluorescent staining of the formaldehyde-fixed cells showed that eIF-5A was present in both the nucleus and cytoplasm. Only the nuclear eIF-5A was resistant to Triton extraction. Direct visualization of GFP tagged eIF-5A in living cells revealed the same whole-cell distribution pattern. However, a fusion of an additional pyruvate kinase (PK) moiety into GFP-eIF-5A precluded the nuclear localization of GFP-PK-eIF-5A fusion protein. Fusion of the GFP-PK tag with three different domains of eIF-5A also failed to reveal any nuclear localization of the fusion proteins, suggesting the absence of receptor-mediated nuclear import. Using interspecies heterokaryon fusion assay, we could detect the nuclear export of GFP-Rev, but not of GFP-eIF-5A. The whole-cell distribution pattern of eIF-5A was recalcitrant to the treatments that included energy depletion, heat shock, and inhibition of transcription, translation, polyamine synthesis, or CRM1-dependent nuclear export. Collectively, our data indicate that eIF-5A gains nuclear entry via passive diffusion, but it does not undergo active nucleocytoplasmic shuttling. Copyright 2002 Wiley-Liss, Inc.

  9. Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein.

    Science.gov (United States)

    Tombolini, R; van der Gaag, D J; Gerhardson, B; Jansson, J K

    1999-08-01

    Pseudomonas chlororaphis MA 342 is a potent biocontrol agent that can be used against several seed-borne diseases of cereal crops, including net blotch of barley caused by the fungus Drechslera teres. In this study, strain MA 342 was tagged with the gfp gene (encoding the green fluorescent protein) in order to study the fate of cells after seed inoculation. The gfp-tagged strain, MA 342G2, had the same biocontrol efficacy as the wild type when it was applied at high cell concentrations to seeds but was less effective at lower cell concentrations. By comparing cell counts determined by microscopy to the number of CFU, we found that the number of culturable cells was significantly lower than the total number of bacteria on seeds which were inoculated and dried for 20 h. Confocal microscopy and epifluorescence stereomicroscopy were used to determine the pattern of MA 342G2 colonization and cell aggregation on barley seeds. Immediately after inoculation of seeds, bacteria were found mainly under the seed glume, and there was no particular aggregation pattern. However, after the seeds were sown, irregularly distributed areas of bacterial aggregation were found, which reflected epiphytic colonization of glume cells. There was a trend towards bacterial aggregation near the embryo but never within the embryo. Bacterial aggregates were regularly found in the groove of each seed formed by the base of the coleoptile and the scutellum. Based on these results, we suggest that MA 342 colocalizes with the pathogen D. teres, which facilitates the action of the fungistatic compound(s) produced by this strain.

  10. Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore.

    Science.gov (United States)

    Hsieh, Cheng-Chih; Chou, Pi-Tai; Shih, Chun-Wei; Chuang, Wei-Ti; Chung, Min-Wen; Lee, Junghwa; Joo, Taiha

    2011-03-09

    Initiated by excited-state intramolecular proton transfer (ESIPT) reaction, an overall reaction cycle of 4-(2-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (o-HBDI), an analogue of the core chromophore of the green fluorescent protein (GFP), has been investigated. In contrast to the native GFP core, 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (p-HBDI), which requires hydrogen-bonding relay to accomplish proton transfer in vivo, o-HBDI possesses a seven-membered-ring intramolecular hydrogen bond and thus provides an ideal system for mimicking an intrinsic proton-transfer reaction. Upon excitation, ESIPT takes place in o-HBDI, resulting in a ∼600 nm proton-transfer tautomer emission. The o-HBDI tautomer emission, resolved by fluorescence upconversion, is comprised of an instantaneous rise to a few hundred femtosecond oscillation in the early relaxation stage. Frequency analysis derived from ultrashort pulse gives two low-frequency vibrations at 115 and 236 cm(-1), corresponding to skeletal deformation motions associated with the hydrogen bond. The results further conclude that ESIPT in o-HBDI is essentially triggered by low-frequency motions and may be barrierless along the reaction coordinate. Femtosecond UV/vis transient absorption spectra also provide supplementary evidence for the structural evolution during the reaction. In CH(3)CN, an instant rise of a 530 nm transient is resolved, which then undergoes 7.8 ps decay, accompanied by the growth of a rather long-lived 580 nm transient species. It is thus concluded that following ESIPT the cis-proton transfer isomer undergoes cis-trans-isomerization. The results of viscosity-dependent dynamics are in favor of the one-bond-flip mechanism, which is in contrast to the volume-conserving isomerization behavior for cis-stilbene and p-HBDI. Further confirmation is given by the picosecond-femtosecond transient IR absorption spectra, where several new and long-lived IR bands in the range of 1400

  11. Green-Fluorescent Protein from the Bioluminescent Jellyfish Clytia gregaria Is an Obligate Dimer and Does Not Form a Stable Complex with the Ca2+-Discharged Photoprotein Clytin.

    NARCIS (Netherlands)

    Malikova, N.P.; Visser, N.V.; Hoek, van A.; Skakun, V.V.; Vysotski, E.S.; Lee, J.; Visser, A.J.W.G.

    2011-01-01

    Green-fluorescent protein (GFP) is the origin of the green bioluminescence color exhibited by several marine hydrozoans and anthozoans. The mechanism is believed to be Fo¨rster resonance energy transfer (FRET) within a luciferase-GFP or photoprotein-GFP complex. As the effect is found in vitro at mi

  12. Green-Fluorescent Protein from the Bioluminescent Jellyfish Clytia gregaria Is an Obligate Dimer and Does Not Form a Stable Complex with the Ca2+-Discharged Photoprotein Clytin.

    NARCIS (Netherlands)

    Malikova, N.P.; Visser, N.V.; Hoek, van A.; Skakun, V.V.; Vysotski, E.S.; Lee, J.; Visser, A.J.W.G.

    2011-01-01

    Green-fluorescent protein (GFP) is the origin of the green bioluminescence color exhibited by several marine hydrozoans and anthozoans. The mechanism is believed to be Fo¨rster resonance energy transfer (FRET) within a luciferase-GFP or photoprotein-GFP complex. As the effect is found in vitro at

  13. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    Science.gov (United States)

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

  14. The photochemical and fluorescence properties of whole cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum.

    Science.gov (United States)

    Tel-or, E; Malkin, S

    1977-02-07

    The photochemical activities and fluorescence properties of cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum were compared. The photochemical activities were measured in a whole range of wavelengths and expressed as quantum yield spectra (quantum yield vs. wavelength). The following reactions were measured. Photosynthesis (O2 evolution) in whole cells; Hill reaction (O2 evolution) with Fe(CN)63- and NADP as electron acceptors (Photosystem II and photosystem II + Photosystem I reactions); electron transfer from reduced 2,6-dichlorophenolindophenol to diquat (Photosystem I reaction). The fluorescence properties were emission spectra, quantum yield spectra and the induction pattern. On the basis of comparison between the quantum yield spectra and the pigments compositions the relative contribution of each pigment to each photosystem was estimated. In normal cells and spheroplasts it was found that Photosystem I (Photosystem II) contains about 90% (10%) of the chlorophyll a, 90% (10%) of the carotenoids and 15% (85%) of the phycocyanin. In spheroplast particles there is a reorganization of the pigments; they loose a certain fraction (about half) of the phycocyanin but the remaining phycocyanin attaches itself exclusively to Photosystem I (!). This is reflected by the loss of Photosystem II activity, a flat quantum yield vs. wavelength dependence and a loss of the fluorescence induction. The fluorescence quantum yield spectra conform qualitatively to the above conclusion. More quantitative estimation shows that only a fraction (20--40%) of the chlorophyll of Photosystem II is fluorescent. Total emission spectrum and the ratio of variable to constant fluorescence are in agreement with this conclusion. The fluorescence emission spectrum shows characteristic differences between the constant and variable components. The variable fluorescence comes exclusively from chlorophyll a; the constant fluorescence is contributed, in addition

  15. Green

    Institute of Scientific and Technical Information of China (English)

    孙继山

    2005-01-01

    The Green Games-this is a Chinese promise to the world. Green it has to be when the Olympic Games are opened at a spectacular venue in the north of Beijing in 2008. However, those who live in the capital still worry whether it will be possible to turn the rather polluted city. into a green or even half-green city. But time and again, China has proved that this kind of huge challenge can be met. Nevertheless,this time around it is a tough call indeed and a little over three years are left to execute and complete an audacious task.

  16. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging

    Science.gov (United States)

    Oscar, Breland G.; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E.; Fang, Chong

    2014-01-01

    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca2+) sensing. This study reveals that, in the absence of Ca2+, the dominant skeletal motion is a ∼170 cm−1 phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca2+ binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca2+ in physiologically relevant environments. PMID:24987121

  17. Robot-assisted nerve-sparing radical prostatectomy using near-infrared fluorescence technology and indocyanine green: initial experience.

    Science.gov (United States)

    Mangano, Mario S; De Gobbi, Alberto; Beniamin, Francesco; Lamon, Claudio; Ciaccia, Matteo; Maccatrozzo, Luigino

    2017-05-23

    Indocyanine green (ICG) is a fluorescent molecule that provokes detectable photon emission. The use of ICG with near-infrared (NIR) imaging system (Akorn, Lake Forest, IL) has been described during robotic partial nephrectomy (RAPN) as an adjunctive means of identifying renal artery and parenchymal perfusion.We propose the use of the ICG with NIR fluorescence during laparoscopic robot-assisted radical prostatectomy (RARP), to identify the benchmark artery improving the preservation of neurovascular bundle and to improve the visualization of the vascularization and then the hemostasis. From April 2015 to February 2016, 62 patients underwent to RARP in our Urology Unit. In 26 consecutive patients, in the attempt to have a better visualization of neurovascular bundles, we used to inject ICG during the procedure. We evaluated the percentage of identification of neurovascular bundles using NIR fluorescence. Then, we evaluated complications related to injection of ICG and operative time differences between RARP with and without ICG injection performed by the same surgeons. We identified prostatic arteries and neurovascular bundles using NIR fluorescence technology in all patients (100%). There was not any increase in the operative time compared with RARP without ICG injection performed by the same surgeons. Complications related to injection of ICG did not occurred. In our experience, even if on a limited number of patients, the application of ICG with NIR fluorescence during RARP is helpful to identify the benchmark artery of neurovascular bundle.

  18. Perfusion of the Rotator Cuff Tendon According to the Repair Configuration Using an Indocyanine Green Fluorescence Arthroscope: A Preliminary Report.

    Science.gov (United States)

    Kim, Sae Hoon; Cho, Won-Sang; Joung, Ho-Yun; Choi, Young Eun; Jung, Minwoong

    2017-03-01

    The disturbance of rotator cuff tendon perfusion has been connected with the suture-bridge configuration repair (SBCR) technique; however, in vivo assessments of the tendon blood supply have been problematic with other modalities. An evaluation of tissue perfusion by an indocyanine green (ICG) fluorescence arthroscope has been developed to counteract this difficulty. To verify the hindrance of perfusion in SBCR, we used an ICG fluorescence camera to compare parallel-type transosseous repair (PTR) and SBCR in rabbits immediately and at 3 days after rotator cuff repair. Controlled laboratory study. Acute rotator cuff repair was performed on the shoulders of 10 rabbits. Both shoulders were repaired using either PTR or SBCR. For PTR, simple repair was performed through 2 parallel transosseous tunnels created using a microdrill. For SBCR, 2 additional crisscross transosseous tunnels were added to mimic arthroscopic SBCR. Immediately after repair, ICG was injected through the ear vein, and images were recorded using an ICG fluorescence camera. Tendon perfusion was compared by measuring fluorescence intensity using ImageJ software in both methods. At 3 days after rotator cuff repair, a reassessment of ICG fluorescence was performed. In addition, as a subsidiary study, a comparison of each repair method and a healthy tendon was performed (PTR vs healthy tendon and SBCR vs healthy tendon). Six rabbits (3 for each comparison) were included. Immediately after rotator cuff repair, the mean (±SD) grayscale intensity of ICG fluorescence was weaker in SBCR than PTR in 10 specimens (65.9 ± 47.6 vs 84.3 ± 53.4 per pixel, respectively; P = .003). At 3 days after repair, 8 specimens were included in the analysis because suture strands failed in 2 specimens in SBCR. The mean intensity of fluorescence was still weaker in SBCR compared with PTR (52.5 ± 13.7 vs 60.2 ± 22.7 per pixel, respectively; P = .077). The mean fluorescence intensity compared with a healthy tendon was 83.2%

  19. Crystal structure of the fluorescent protein from Dendronephthya sp. in both green and photoconverted red forms

    Energy Technology Data Exchange (ETDEWEB)

    Pletneva, Nadya V.; Pletnev, Sergei; Pakhomov, Alexey A.; Chertkova, Rita V.; Martynov, Vladimir I.; Muslinkina, Liya; Dauter, Zbigniew; Pletnev, Vladimir Z.

    2016-07-13

    The fluorescent protein fromDendronephthyasp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the Cα—N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double Cα=Cβbond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Å resolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement.

  20. Non-Target Effects of Green Fluorescent Protein (GFP-Derived Double-Stranded RNA (dsRNA-GFP Used in Honey Bee RNA Interference (RNAi Assays

    Directory of Open Access Journals (Sweden)

    Francis M. F. Nunes

    2013-01-01

    Full Text Available RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP-derived double-stranded RNA (dsRNA-GFP is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  1. Green fluorescent protein-tagged sarco(endo)plasmic reticulum Ca2+-ATPase overexpression in Paramecium cells: isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects.

    Science.gov (United States)

    Hauser, K; Pavlovic, N; Klauke, N; Geissinger, D; Plattner, H

    2000-08-01

    We have followed the time-dependent transfection of Paramecium cells with a vector containing the gene of green fluorescent protein (GFP) attached to the C-terminus of the PtSERCA1 gene. The outlines of alveolar sacs (ASs) are labelled, as is the endoplasmic reticulum (ER) throughout the cell. When GFP fluorescence is compared with previous anti-PtSERCA1 antibody labelling, the much wider distribution of GFP (ER+ASs) indicates that only a small amount of SERCA molecules is normally retained in the ER. A second isoform, PtSERCA2, also occurs and its C-terminal GFP-tagging results in the same distribution pattern. However, when GFP is inserted in the major cytoplasmic loop, PtSERCA1 and two fusion proteins are mostly retained in the ER, probably because of the presence of the overt C-terminal KKXX ER-retention signal and/or masking of a signal for transfer into ASs. On the overall cell surface, new SERCA molecules seem to be permanently delivered from the ER to ASs by vesicle transport, whereas in the fission zone of dividing cells ASs may form anew. In cells overexpressing PtSERCA1 (with C-terminal GFP) in ASs, [Ca2+]i regulation during exocytosis is not significantly different from controls, probably because their Ca2+ pump has to mediate only slow reuptake.

  2. Cytoplasmic calcium measurement in rotavirus enterotoxin-enhanced green fluorescent protein (NSP4-EGFP) expressing cells loaded with Fura-2.

    Science.gov (United States)

    Berkova, Z; Morris, A P; Estes, M K

    2003-07-01

    The green fluorescent protein (GFP) and its analogs are standard markers of protein expression and intracellular localization of proteins. The fluorescent properties of GFP complicate accurate measurement of intracellular calcium using calcium sensitive fluorophores, which show a great degree of spectral overlap with GFP, or their K(d) values are too high for accurate measurement of subtle changes in cytoplasmic calcium concentrations. Here we describe a simple modification of the standard microscope-based Fura-2 calcium-imaging technique which permits the quantitative measurement of intracellular calcium levels in cells expressing enhanced green fluorescent protein (EGFP) fusion proteins. Longpass emission filtering of the Fura-2 signal in cells expressing an EGFP fusion protein is sufficient to eliminate the EGFP-Fura-2 emission spectra overlap and allows quantitative calibration of intracellular calcium. To validate this technique, we investigated the ability of rotavirus enterotoxin NSP4-EGFP to elevate intracellular calcium levels in mammalian HEK 293 cells. We show here that inducible intracellular expression of NSP4-EGFP fusion protein elevates basal intracellular calcium more than two-fold by a phospholipase C (PLC) independent mechanism.

  3. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tripti Tamhane

    2015-12-01

    Full Text Available The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015 [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.

  4. Crystal structure of enhanced green fluorescent protein to 1.35 A resolution reveals alternative conformations for Glu222.

    Directory of Open Access Journals (Sweden)

    James A J Arpino

    Full Text Available Enhanced Green Fluorescent Protein (EGFP is one of the most widely used engineered variants of the original wild-type Green Fluorescent Protein. Here, we report the high resolution (1.35 Å structure of EGFP crystallised in its untagged sequence form that reveals the combined impact of the F64L and S65T, that give rise to improved folding and spectral characteristics. The overall structure of EGFP is very similar to wt GFP, forming the classical β-barrel fold with the chromophore containing helix running through the core of the structure. Replacement of Phe64 with Leu in EGFP results in subtle rearrangement of hydrophobic core packing close to the chromophore including the reduction in surface exposure of two hydrophobic residues. Replacement of Ser65 with Thr has a significant impact on the local hydrogen bond network in the vicinity of the chromophore. Detailed analysis of electron density reveals that several residues close to the chromophore occupy at least two distinct conformations. This includes Glu222 that defines the charged state on the chromophore, with the two conformations having slightly different effects on the hydrogen bond network surrounding the chromophore. Hence, the reported high-resolution structure of EGFP has provided a long overdue molecular description of one of the most important fluorescent protein variants currently in general use.

  5. Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination.

    Science.gov (United States)

    Tantimongcolwat, Tanawut; Isarankura-Na-Ayudhya, Chartchalerm; Srisarin, Apapan; Galla, Hans-Joachim; Prachayasittikul, Virapong

    2014-01-01

    A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity.

  6. Asante Calcium Green and Asante Calcium Red--novel calcium indicators for two-photon fluorescence lifetime imaging.

    Science.gov (United States)

    Jahn, Karolina; Hille, Carsten

    2014-01-01

    For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR) and Asante Calcium Green (ACG) for two-photon (2P)-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720-900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca(2+)-free and Ca(2+)-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca(2+)-dependent way, unraveling in vitro dissociation constants K(D) of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM) in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns) and long (2.44 ns) decay time components attributable to the Ca(2+)-free and Ca(2+)-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ K(D) of 180 nM was determined. Thus, quantitative [Ca(2+)]i recordings were realized, unraveling a reversible dopamine-induced [Ca(2+)]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca(2+) indicator dye for 2P-FLIM recordings applicable in diverse biological systems.

  7. Asante Calcium Green and Asante Calcium Red--novel calcium indicators for two-photon fluorescence lifetime imaging.

    Directory of Open Access Journals (Sweden)

    Karolina Jahn

    Full Text Available For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR and Asante Calcium Green (ACG for two-photon (2P-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720-900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca(2+-free and Ca(2+-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca(2+-dependent way, unraveling in vitro dissociation constants K(D of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns and long (2.44 ns decay time components attributable to the Ca(2+-free and Ca(2+-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ K(D of 180 nM was determined. Thus, quantitative [Ca(2+]i recordings were realized, unraveling a reversible dopamine-induced [Ca(2+]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca(2+ indicator dye for 2P-FLIM recordings applicable in diverse biological systems.

  8. Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803.

    Science.gov (United States)

    Abe, Koichi; Miyake, Kotone; Nakamura, Mayumi; Kojima, Katsuhiro; Ferri, Stefano; Ikebukuro, Kazunori; Sode, Koji

    2014-03-01

    In order to construct a green-light-regulated gene expression system for cyanobacteria, we characterized a green-light sensing system derived from Synechocystis sp. PCC6803, consisting of the green-light sensing histidine kinase CcaS, the cognate response regulator CcaR, and the promoter of cpcG2 (PcpcG 2 ). CcaS and CcaR act as a genetic controller and activate gene expression from PcpcG 2 with green-light illumination. The green-light induction level of the native PcpcG 2 was investigated using GFPuv as a reporter gene inserted in a broad-host-range vector. A clear induction of protein expression from native PcpcG 2 under green-light illumination was observed; however, the expression level was very low compared with Ptrc , which was reported to act as a constitutive promoter in cyanobacteria. Therefore, a Shine-Dalgarno-like sequence derived from the cpcB gene was inserted in the 5' untranslated region of the cpcG2 gene, and the expression level of CcaR was increased. Thus, constructed engineered green-light sensing system resulted in about 40-fold higher protein expression than with the wild-type promoter with a high ON/OFF ratio under green-light illumination. The engineered green-light gene expression system would be a useful genetic tool for controlling gene expression in the emergent cyanobacterial bioprocesses. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Replication-Competent Rhabdoviruses with Human Immunodeficiency Virus Type 1 Coats and Green Fluorescent Protein: Entry by a pH-Independent Pathway

    Science.gov (United States)

    Boritz, Eli; Gerlach, Jennifer; Johnson, J. Erik; Rose, John K.

    1999-01-01

    We describe a replication-competent, recombinant vesicular stomatitis virus (VSV) in which the gene encoding the single transmembrane glycoprotein (G) was deleted and replaced by an env-G hybrid gene encoding the extracellular and transmembrane domains of a human immunodeficiency virus type 1 (HIV-1) envelope protein fused to the cytoplasmic domain of VSV G. An additional gene encoding a green fluorescent protein was added to permit rapid detection of infection. This novel surrogate virus infected and propagated on cells expressing the HIV receptor CD4 and coreceptor CXCR4. Infection was blocked by SDF-1, the ligand for CXCR4, by antibody to CD4 and by HIV-neutralizing antibody. This virus, unlike VSV, entered cells by a pH-independent pathway and thus supports a pH-independent pathway of HIV entry. Additional recombinants carrying hybrid env-G genes derived from R5 or X4R5 HIV strains also showed the coreceptor specificities of the HIV strains from which they were derived. These surrogate viruses provide a simple and rapid assay for HIV-neutralizing antibodies as well as a rapid screen for molecules that would interfere with any stage of HIV binding or entry. The viruses might also be useful as HIV vaccines. Our results suggest wide applications of other surrogate viruses based on VSV. PMID:10400792

  10. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging.

    Science.gov (United States)

    Zhao, Shaojing; Lan, Minhuan; Zhu, Xiaoyue; Xue, Hongtao; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Wang, Pengfei; Zhang, Wenjun

    2015-08-12

    Nitrogen and sulfur codoped carbon dots (CDs) were prepared from garlic by a hydrothermal method. The as-prepared CDs possess good water dispersibility, strong blue fluorescence emission with a fluorescent quantum yield of 17.5%, and excellent photo and pH stabilities. It is also demonstrated that the fluorescence of CDs are resistant to the interference of metal ions, biomolecules, and high ionic strength environments. Combining with low cytotoxicity properties, CDs could be used as an excellent fluorescent probe for cellular multicolor imaging. Moreover, the CDs were also demonstrated to exhibit favorable radical scavenging activity.

  11. Copper induction of enhanced green fluorescent protein expression in Pleurotus ostreatus driven by laccase poxa1b promoter.

    Science.gov (United States)

    Amore, Antonella; Honda, Yoichi; Faraco, Vincenza

    2012-12-01

    In silico analyses of several laccase promoter sequences have shown the presence of many different responsive elements differentially distributed along the promoter sequences. Analysis of Pleurotus ostreatus laccase promoter poxa1b extending around 1400-bp upstream of the start codon showed the presence of several putative response elements, such as 10 metal-responsive elements. Development of a system for in vivo analysis of P. ostreatus laccase promoter poxa1b by enhanced green fluorescent protein expression was carried out, based on a polyethylene glycol-mediated procedure for fungal transformation. Quantitative measurement of fluorescence expressed in P. ostreatus transformants grown in the presence and in the absence of copper sulfate was performed, demonstrating an increase in expression level induced by the metal.

  12. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging.

    Science.gov (United States)

    Li, Yan; Jing, Joseph; Qu, Yueqiao; Miao, Yusi; Zhang, Buyun; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    We present a tri-modality imaging system and fully integrated tri-modality probe for intravascular imaging. The tri-modality imaging system is able to simultaneously acquire optical coherence tomography (OCT), ultrasound (US), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. We conducted imaging from a male New Zealand white rabbit to evaluate the performance of the tri-modality system. In addition, tri-modality images of rabbit aortas were correlated with hematoxylin and eosin (H&E) histology to check the measurement accuracy. The fully integrated miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.

  13. Characterization of a new pseudotyped HIV with a single-round infectivity carrying enhanced green fluorescent protein gene%携带绿色荧光蛋白基因的单轮感染活性HIV假病毒的建立及其活性检测

    Institute of Scientific and Technical Information of China (English)

    仇超; 彭虹; 黄相刚; 任莉; 潘翔; 邵一鸣; 徐建青

    2006-01-01

    目的构建携带绿色荧光蛋白基因的HIV假病毒载体,并研究该载体包装的HIV假病毒的感染活性,为进一步进行HIV生物学研究与中和抗体实验室评价搭建安全的技术平台.方法将增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因插入到骨架质粒pNL43 Luc R-E-的nef基因读码框,获得携带EGFP基因的质粒pNL43 EGFP R-E-;通过将pNL43 EGFP R-E-与编码HIV膜蛋白的质粒共转染293T细胞,收集上清,获得携带EGFP基因的HIV假病毒.该假病毒感染CD4+CCR5+的HOS细胞后可表达绿色荧光,这样通过流式细胞仪可测定表达绿色荧光的细胞数与细胞感染率.结果携带绿色荧光蛋白基因的HIV假病毒感染CD4+CCR5+的HOS细胞后,被感染的细胞可以表达绿色荧光蛋白,细胞的感染率与病毒加入量呈线性关系.结论获得了携带绿色荧光蛋白基因的HIV假病毒载体,并建立了具有单轮感染活性的HIV假病毒感染的检测方法.

  14. Reporter system for the detection of in vivo gene conversion: changing colors from blue to green using GFP variants.

    Science.gov (United States)

    Sommer, Jeffrey R; Alderson, Jon; Laible, Goetz; Petters, Robert M

    2006-06-01

    We have devised a system for the study of in vivo gene correction based on the detection of color variants of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria. The intensity and spectra of the fluorescence emitted by the blue (BFP) and red-shifted (EGFP) variants of GFP differ from each other. We modified one nucleotide from an EGFP expression vector that we predicted would yield a blue variant (TAC-CAC, Tyr(66)-His(66)). Cells that were either transiently or stably transfected with the reporter system were used to test the functionality and feasibility of the detection of in vivo gene correction. A thio-protected single-stranded oligonucleotide designed to convert the genotype of the blue variant to that of the EGFP variant by the correction of a single base pair was delivered to the reporter cells using a variety of methodologies and strategies.Conversion events were easily observed using fluorescent microscopy because of the enhanced emission intensity and different spectra of the EGFP variant.

  15. greening

    African Journals Online (AJOL)

    Utpal

    Results reveal that sodium sulphite method of DNA isolation provided higher yield and ... rescence tests with monoclonal antibodies and DNA-DNA hybridization with .... Validation of PCR for detection of greening bacterium. Following the ...

  16. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).

    Science.gov (United States)

    Letsch, Molly R; Lewis, Louise A

    2012-09-01

    The 22 published chloroplast genomes of green algae, representing sparse taxonomic sampling of diverse lineages that span over one billion years of evolution, each possess a unique gene arrangement. In contrast, many of the >190 published embryophyte (land plant) chloroplast genomes have relatively conserved architectures. To determine the phylogenetic depth at which chloroplast gene rearrangements occur in green algae, a 1.5-4 kb segment of the chloroplast genome was compared across nine species in three closely related genera of Trebouxiophyceae (Chlorophyta). In total, four distinct gene arrangements were obtained for the three genera Elliptochloris, Hemichloris, and Coccomyxa. In Elliptochloris, three distinct chloroplast gene arrangements were detected, one of which is shared with members of its sister genus Hemichloris. Both species of Coccomyxa examined share the fourth arrangement of this genome region, one characterized by very long spacers. Next, the order of genes found in this segment of the chloroplast genome was compared across green algae and land plants. As taxonomic ranks are not equivalent among different groups of organisms, the maximum molecular divergence among taxa sharing a common gene arrangement in this genome segment was compared. Well-supported clades possessing a single gene order had similar phylogenetic depth in green algae and embryophytes. When the dominant gene order of this chloroplast segment in embryophytes was assumed to be ancestral for land plants, the maximum molecular divergence was found to be over two times greater in embryophytes than in trebouxiophyte green algae. This study greatly expands information about chloroplast genome variation in green algae, is the first to demonstrate such variation among congeneric green algae, and further illustrates the fluidity of green algal chloroplast genome architecture in comparison to that of many embryophytes.

  17. Rivoflavin may interfere with on-line monitoring of secreted green fluorescence protein fusion proteins in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Valero Francisco

    2007-05-01

    Full Text Available Abstract Background Together with the development of optical sensors, fluorometry is becoming an increasingly attractive tool for the monitoring of cultivation processes. In this context, the green fluorescence protein (GFP has been proposed as a molecular reporter when fused to target proteins to study their subcellular localization or secretion behaviour. The present work evaluates the use of the GFP fusion partner for monitoring extracellular production of a Rhizopus oryzae lipase (ROL in Pichia pastoris by means of 2D-fluorimetric techniques Results In this study, the GFP-ROL fusion protein was successfully produced as a secreted fusion form in P. pastoris batch cultivations. Furthermore, both the fusion enzyme and the fluorescent protein (GFP S65T mutant retained their biological activity. However, when multiwavelength spectrofluorometry was used for extracellular fusion protein monitoring, riboflavin appeared as a major interfering component with GFP signal. Only when riboflavin was removed by ultrafiltration from cultivation supernatants, GFP fluorescence signal linearly correlated to lipase activity Conclusion P. pastoris appears to secrete/excrete significant amounts of riboflavin to the culture medium. When attempting to monitor extracellular protein production in P. pastoris using GFP fusions combined with multiwavelength spectrofluorimetric techniques, riboflavin may interfere with GFP fluorescence signal, thus limiting the application of some GFP variants for on-line extracellular recombinant protein quantification and monitoring purposes.

  18. DETECTION OF NOVEL DUCK REOVIRUS USING SYBR GREEN II FLUORESCENT QUANTITATIVE PCR ASSAY%一种新型鸭呼肠孤病毒SYBR Green II荧光定量PCR方法的建立

    Institute of Scientific and Technical Information of China (English)

    丁明洋; 戚伟强; 陈宗艳; 朱杰; 吴巧梅; 缪秋红; 李传峰; 吴润; 刘光清

    2016-01-01

    To develop a fast, sensitive, specific SYBR Green II fluorescent quantitative PCR assay for detecting Novel duck reovirus (NDRV) infection, S1 gene was amplified in RT-PCR from the NDRV infected-duck tissues, and cloned into pET-30a vector. The resulting recombinant plasmid was used as the template for making a standard curve. Subsequently, the sensitivity and specificity of the SYBR Green II fluorescent quantitative PCR assay that was developed were determined. The results showed that the NDRV real-time PCR assay had a dynamic range of detection between 101 and 108 copies/μL with a sensitivity of 10 copies/μL. There was no cross reaction with H5 subtype Avian influenza virus, H9 subtype Avian influenza virus, Infectious bronchitis virus, Duck hepatitis virus type C, New castle disease virus, Goose parvovirus and Duck viral enteritis. In conclusion, a SYBR Green II fluorescent quantitative PCR assay has been developed for quantification of NDRV, which can be sued for investigating the pathogenesis of NDRV.%该研究旨在建立一种快速、敏感和特异性检测新型鸭呼肠孤病毒(Novel duck reovirus,NDRV)的荧光定量PCR诊断方法。本实验以感染新型鸭呼肠孤病毒的鸭组织RNA提取物为模板,根据GenBank数据库中呼肠孤病毒S1基因全序列,设计合成了一对特异性引物,PCR扩增基因片段,将其克隆至pET-30a载体,重组质粒测序并进行同源性分析;以阳性质粒为模板,建立SYBR Green II荧光定量PCR检测方法,并进行敏感性和特异性检测。经测序证实扩增片段与预期目的片段相符,所建立的SYBR Green II荧光定量PCR检测S1的反应在101~108 copies/uL之间具有良好的线性关系,反应的检出下限为10 copies/μL,而H5型禽流感病毒、H9型禽流感病毒、鸡传染性支气管炎病毒、C型鸭肝炎病毒、新城疫病毒、鹅细小病毒、鸭瘟病毒等病毒的检测为阴性,表明该方法敏感、特异

  19. Rapid Purification of Enhanced Green Fluorescent Protein from Escherichia coli%快速纯化在大肠杆菌中表达的增强型绿色荧光蛋白

    Institute of Scientific and Technical Information of China (English)

    周笑鹏; 史清洪; 邢新会; 孙彦

    2006-01-01

    As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of ammonium sulfate precipitation, size exclusion chromatography, and anion exchange chromatography was developed for the purification of eGFP. Based on the proposed procedure, recombinant eGFP with an electrophoretic purity was achieved in combination with an overall yield of 66% and a purification factor of 17.9. The fluorescent spectrometry of purified eGFP and lysate from E. coli strain expressing eGFP exhibited the same wavelength of excitation and emission maxima, indicating that the purification procedure did not influence the construct and fluorescent characteristics of desired protein. The procedure mentioned was easy to scale up for the purification of large quantities of eGFP.

  20. A gene expression signature that can predict green tea exposure and chemopreventive efficacy of lung cancer in mice.

    Science.gov (United States)

    Lu, Yan; Yao, Ruisheng; Yan, Ying; Wang, Yian; Hara, Yukihiko; Lubet, Ronald A; You, Ming

    2006-02-15

    Green tea has been shown to be a potent chemopreventive agent against lung tumorigenesis in animal models. Previously, we found that treatment of A/J mice with either green tea (0.6% in water) or a defined green tea catechin extract (polyphenon E; 2.0 g/kg in diet) inhibited lung tumor tumorigenesis. Here, we described expression profiling of lung tissues derived from these studies to determine the gene expression signature that can predict the exposure and efficacy of green tea in mice. We first profiled global gene expressions in normal lungs versus lung tumors to determine genes which might be associated with the tumorigenic process (TUM genes). Gene expression in control tumors and green tea-treated tumors (either green tea or polyphenon E) were compared to determine those TUM genes whose expression levels in green tea-treated tumors returned to levels seen in normal lungs. We established a 17-gene expression profile specific for exposure to effective doses of either green tea or polyphenon E. This gene expression signature was altered both in normal lungs and lung adenomas when mice were exposed to green tea or polyphenon E. These experiments identified patterns of gene expressions that both offer clues for green tea's potential mechanisms of action and provide a molecular signature specific for green tea exposure.

  1. Kisspeptin regulates gonadotropin-releasing hormone secretion in gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats

    Institute of Scientific and Technical Information of China (English)

    Haogang Xue; Chunying Yang; Xiaodong Ge; Weiqi Sun; Chun Li; Mingyu Qi

    2013-01-01

    Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected with 1, 10, or 100 pM kisspeptin-10, a peptide derived from full-length kisspeptin, into the arcuate nucleus and medial preoptic area, and with the kisspeptin antagonist peptide 234 into the lateral cerebral ventricle. The results of immunohistochemical staining revealed that pulsatile luteinizing hormone secretion was suppressed after injection of antagonist peptide 234 into the lateral cerebral ventricle, and a significant increase in luteinizing hormone level was observed after kisspeptin-10 injection into the arcuate nucleus and medial preoptic area. The results of an enzyme-linked immunosorbent assay showed that luteinizing hormone levels during the first hour of kisspeptin-10 infusion into the arcuate nucleus were significantly greater in the 100 pM kisspeptin-10 group than in the 10 pM kisspeptin-10 group. These findings indicate that kisspeptin directly promotes gonadotropin-releasing hormone secretion and luteinizing hormone release in gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. The arcuate nucleus is a key component of the kisspeptin-G protein-coupled receptor 54 signaling pathway underlying regulating luteinizing hormone pulse secretion.

  2. Intracellular Movement of Green Fluorescent Protein–Tagged Phosphatidylinositol 3-Kinase in Response to Growth Factor Receptor Signaling

    Science.gov (United States)

    Gillham, Helen; Golding, Matthew C.H.M.; Pepperkok, Rainer; Gullick, William J.

    1999-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein–tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein–tagged fragments of p85 we show that binding to the receptor requires the NH2-terminal part of the protein as well as its SH2 domains. PMID:10459020

  3. PERFORMANCE AND PERSISTENCE OF GREEN FLUORESCENT PROTEIN (gfp) MARKED AZOTOBACTER CHROOCOCCUM IN STERILIZED AND UNSTERILIZED WHEAT RHIZOSPHERIC SOIL

    Institute of Scientific and Technical Information of China (English)

    SINGH R; KUMAR V; SHARMA S; BEHL RK; SINGH BP; NARULA N

    2005-01-01

    The persistence and performance (growth promoting potential) of green fluorescent protein (gfp) marked Azotobacter chroococcum strain ABR 4G were studied in sterilized and unsterilized wheat rhizospheric soil. The gfp was integrated via Tn 5 transposition into A. chroococcum chromosome and the resultant gfp marked colonies were identified by green fluorescent emission under UV light. The gfp was stably maintained in A. chroococcum and the gfp insertion had no apparent adverse effect on the growth promoting properties of the marked soil isolate ABR 4G. The growth promoting properties ( nitrogen fixation, ammonia excretion, phosphate solubilization and IAA production) of the parent soil isolate and the gfp marked strain were found to be almost the same. All the quantitative wheat plant traits were significantly influenced by inoculation of A. chroococcum ABR 4G strain in sterilized and unsterilized soil. Inoculated bacterial counts increased gradually in wheat rhizosphere, reached maximum on 60th d and declined on 80th d. Fertility levels also affected survival of marked strain and the survival was comparable in sterilized and unsterilized soil. The growth promoting properties were also determined from the marked strain reisolated from wheat rhizosphere in both types of soil. Fig 1, Tab 2, Ref 22

  4. Construction of a ColD cda Promoter-Based SOS-Green Fluorescent Protein Whole-Cell Biosensor with Higher Sensitivity toward Genotoxic Compounds than Constructs Based on recA, umuDC, or sulA Promoters

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2005-01-01

    Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-......Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N......-methyl-N'-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host......-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies....

  5. Quaternary ammonium salt containing soybean oil: an efficient nanosize gene delivery carrier for halophile green microalgal transformation.

    Science.gov (United States)

    Akbari, Fariba; Yari Khosroushahi, Ahmad; Yeganeh, Hamid

    2015-01-01

    Dunaliella salina, a halophile green microalga, is considered a robust photobioreactor and a remarkable cost beneficial system for the production of therapeutic recombinant proteins. In this study, with low overall cost, a proper cationic lipid was synthesized from renewable soybean oil as an efficient gene delivery carrier for D. salina cells to create appropriate protein-producing transformed cell lines. To obtain an effective carrier, quaternary ammonium salt containing soybean oil (QASSO) was synthesized through the ring opening reaction of the epoxy groups of epoxidized soybean oil with diethylamine. QASSO was characterized using nuclear magnetic resonance and Fourier-transform infrared instruments. QASSO was used to prepare nanolipoplex construct using plasmid DNA molecules containing green fluorescent protein (GFP) as reporter gene. These nanolipoplexes (QASSO-pGFP, N/P=3) and QASSO had diameter of 63.62 and 110.63 nm, and zeta potential of -68.89 and 48.25 mV at pH 7.0, respectively. Results indicated the GFP gene expression and cytoplasmic accumulation of GFP protein in the transformants after incubation under desirable conditions for 48 h and 1 week. The transformation efficiency was quantitatively assayed by flow cytometry, which yielded transformations of 58.87% and 48.34% for QASSO and 38.32% and a negligible percentage for Polyfect® after 48 h and 1 week incubation, respectively.

  6. Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting.

    Science.gov (United States)

    Beggah, Siham; Vogne, Christelle; Zenaro, Elena; Van Der Meer, Jan Roelof

    2008-01-01

    Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.

  7. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, James A. J. [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom); Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Heath Park, Cardiff CF14 4XN Wales (United Kingdom); Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom)

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  8. Labeling-free fluorescent detection of DNA hybridization through FRET from pyrene excimer to DNA intercalator SYBR green I.

    Science.gov (United States)

    Zhou, Ruyi; Xu, Chen; Dong, Jie; Wang, Guojie

    2015-03-15

    A novel labeling-free fluorescence complex probe has been developed for DNA hybridization detection based on fluorescence resonance energy transfer (FRET) mechanism from pyrene excimer of pyrene-functionalized poly [2-(N, N-dimethylamino) ethyl methacrylate] (PFP) to SYBR Green I (SG, a specific intercalator of double-stranded DNA) in a cost-effective, rapid and simple manner. The complex probe consists of the positively charged PFP, SG and negatively charged single-stranded DNA (ssDNA). Upon adding a complementary strand to the complex probe solution, double-stranded DNA (dsDNA) was formed, followed by the intercalation of SG into dsDNA. The pyrene excimer emission was overlapped with the absorption of SG very well and the electrostatic interactions between PFP and dsDNA kept them in close proximity, enabling efficient FRET from pyrene excimer to SG. The fluorescence of SG in the duplex DNA resulting from FRET can be successfully applied to detect DNA hybridization with high sensitivity for a very low detection limit of 10nM and excellent selectivity for detection of single base pair mismatch. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae: a rapid and sensitive biotest.

    Directory of Open Access Journals (Sweden)

    Franziska Leunert

    Full Text Available Algal tests have developed into routine tools for testing toxicity of pollutants in aquatic environments. Meanwhile, in addition to algal growth rates, an increasing number of fluorescence based methods are used for rapid and sensitive toxicity measures. The present study stresses the suitability of delayed fluorescence (DF as a promising parameter for biotests. DF is based on the recombination fluorescence at the reaction centre of photosystem II, which is emitted only by photosynthetically active cells. We analyzed the effects of three chemicals (3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, 3,5 Dichlorophenol (3,5 DCP and copper on the shape of the DF decay kinetics for potential use in phytoplankton toxicity tests. The short incubation tests were done with four phytoplankton species, with special emphasis on the cyanobacterium Microcystis aeruginosa. All species exhibited a high sensitivity to DCMU, but cyanobacteria were more affected by copper and less by 3,5 DCP than the tested green algae. Analyses of changes in the DF decay curve in response to the added chemicals indicated the feasibility of the DF decay approach as a rapid and sensitive testing tool.

  10. An Optical Biosensor from Green Fluorescent Escherichia coli for the Evaluation of Single and Combined Heavy Metal Toxicities

    Directory of Open Access Journals (Sweden)

    Dedi Futra

    2015-05-01

    Full Text Available A fluorescence-based fiber optic toxicity biosensor based on genetically modified Escherichia coli (E. coli with green fluorescent protein (GFP was developed for the evaluation of the toxicity of several hazardous heavy metal ions. The toxic metals include Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(III. The optimum fluorescence excitation and emission wavelengths of the optical biosensor were 400 ± 2 nm and 485 ± 2 nm, respectively. Based on the toxicity observed under optimal conditions, the detection limits of Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(III that can be detected using the toxicity biosensor were at 0.04, 0.32, 0.46, 2.80, 100, 250, 400, 720 and 2600 μg/L, respectively. The repeatability and reproducibility of the proposed biosensor were 3.5%–4.8% RSD (relative standard deviation and 3.6%–5.1% RSD (n = 8, respectively. The biosensor response was stable for at least five weeks, and demonstrated higher sensitivity towards metal toxicity evaluation when compared to a conventional Microtox assay.

  11. Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae

    Institute of Scientific and Technical Information of China (English)

    Jiao-yu WANG; Fu-cheng LIN; Guo-chang SUN; Xiao-yan WU; Zhen ZHANG; Xin-fa DU; Rong-yao CHAI; Xiao-hong LIU; Xue-qin MAO; Hai-ping QIU; Yan-li WANG

    2008-01-01

    The peroxisomal matrix proteins involved in many important biological metabolism pathways in eukaryotic cells are encoded by nucleal genes, synthesized in the cytoplasm and then transported into the organelles. Targeting and import of these proteins depend on their two peroxisomal targeting signals (PTS1 and PTS2) in sequence as we have known so far. The vectors of the fluorescent fusions with PTS, i.e., green fluorescence protein (GFP)-PTSI, GFP-PTS2 and red fluorescence protein (RFP)-PTS1, were constructed and introduced into Magnaporthe oryzae Guy11 cells. Transformants containing these fusions emitted fluorescence in a punctate pattern, and the locations of the red and green fluorescence overlapped exactly in RFP-PTS1 and GFP-PTS2 co-transformed strains. These data indicated that both PTS 1 and PTS2 fusions were imported into peroxisomes. A probable higher efficiency of PTSI machinery was revealed by comparing the fluorescence backgrounds in GFP-PTS1 and GFP-PTS2 transformants. By introducing both RFP-PTS1 and GFP-PTS2 into △mgpex6 mutants, the involvement of MGPEX6 gene in both PTS1 and PTS2 pathways was proved. In addition, using these transformants, the inducement of peroxisomes and the dynamic of peroxisomal number during the pre-penetration processes were investigated as well. In summary, by the localization and co-localization of PTSI and PTS2, we provided a useful tool to evaluate the biological roles of the peroxisomes and the related genes.

  12. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  13. Gene expression profiling of the green seed problem in Soybean

    NARCIS (Netherlands)

    Nogueira Teixeira, Renake; Ligterink, Wilco; B. França-Neto, de José; Hilhorst, H.W.M.; Silva, da E.A.A.

    2016-01-01

    Background: Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in

  14. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  15. [Effect of Methylmercury on the Light Dependence Fluorescence Parameters in a Green Alga Chlamydomonas moewusii].

    Science.gov (United States)

    Protopopov, F F; Matorin, D N; Seifullina, N H; Bratkovskaya, L B; Zayadan, B K

    2015-01-01

    The effect of a dangerous toxic substance, methylmercury, on light dependence curves of chlorophyll fluorescence in Chlamydomonas moewusii was studied. We found low concentration of methylmercury (10(-7) M) to cause a decrease in the relative rate of the non-cyclic electron transport activity of PS 2, a decline in the maximum utilization of light energy (α), and a decline in the saturation light intensity (E(s)). Non-photochemical fluorescence quenching increased after short-term exposure and decreased in the course of prolonged incubation. These parameters were more sensitive to the action of the toxic substance than the widely used parameter F(V)/F(M), which reflects the maximum quantum yield of PS 2. We propose the use of the method of fast measurement of light dependence curves of fluorescence to detect the changes in algal cells at the early stages of exposure to mercury salts.

  16. A pink mouse reports the switch from red to green fluorescence upon Cre-mediated recombination

    Directory of Open Access Journals (Sweden)

    Hartwich Heiner

    2012-06-01

    Full Text Available Abstract Background Targeted genetic modification in the mouse becomes increasingly important in biomedical and basic science. This goal is most often achieved by use of the Cre/loxP system and numerous Cre-driver mouse lines are currently generated. Their initial characterization requires reporter mouse lines to study the in vivo spatiotemporal activity of Cre. Findings Here, we report a dual fluorescence reporter mouse line, which switches expression from the red fluorescent protein mCherry to eGFP after Cre-mediated recombination. Both fluorescent proteins are expressed from the ubiquitously active and strong CAGGS promoter. Among the founders, we noticed a pink mouse line, expressing high levels of the red fluorescent protein mCherry throughout the entire body. Presence of mCherry in the living animal as well as in almost all organs was clearly visible without optical equipment. Upon Cre-activity, mCherry expression was switched to eGFP, demonstrating functionality of this reporter mouse line. Conclusions The pink mouse presented here is an attractive novel reporter line for fluorescence-based monitoring of Cre-activity. The high expression of mCherry, which is visible to the naked eye, facilitates breeding and crossing, as no genotyping is required to identify mice carrying the reporter allele. The presence of two fluorescent proteins allows in vivo monitoring of recombined and non-recombined cells. Finally, the pink mouse is an eye-catching animal model to demonstrate the power of transgenic techniques in teaching courses.

  17. [Effects of seven RNA silencing suppressors on heterologous expression of green fluorescence protein expression mediated by a plant virus-based system in Nicotiana benthamiana].

    Science.gov (United States)

    Wang, Sheng; Dong, Jie; Cao, Min; Mu, Hongzhen; Ding, Guoping; Zhang, Hong

    2012-11-01

    To test the effects of 7 virus-encoded RNA silencing suppressors (RSSs) for enhancement of a plant virus-based vector system-mediated heterologous expression of green fluorescence protein (GFP) in Nicotiana benthamiana. Seven transient expression vectors for the 7 RSSs were constructed and co-inoculated on the leaves of Nicotiana benthamiana with PVXdt-GFP vector, a novel Potato virus X-based plant expression vector, through agroinfiltration. The protein and mRNA expression levels of the reporter gene GFP in the co-inoculated Nicotiana leaves were examined by Western blotting, ELISA and RT-qPCR to assess the effect of the RSSs for GFP expression enhancement. The 7 RSSs differed in the degree and duration of enhancement of heterologous GFP expression, and the p19 protein of Tomato bushy stunt virus (TBSV) induced the highest expression of GFP. African cassava mosaic virus AC2 protein and Rice yellow mettle virus P1 protein produced no obvious enhancement GFP expression. Transient co-expression of RSSs suppresses host silencing response to allow high-level and long-term expression of heterologous genes in plant, but the optimal RSS has to be identified for each plant virus-based expression vector system.

  18. P2O5 assisted green synthesis of multicolor fluorescent water soluble carbon dots.

    Science.gov (United States)

    Babar, Dipak Gorakh; Sonkar, Sumit Kumar; Tripathi, Kumud Malika; Sarkar, Sabyasachi

    2014-03-01

    A low cost synthesis of multicolor fluorescent carbon dots (C-dots) from edible sugars is described here. Common sugars like dextrose, lactose or maltose in aqueous medium gets dehydrated using phosphorus pentoxide (P2O5). The reaction is facile and completed within few minutes to form insoluble carbon (C-dots) mostly having the graphitic (G-band, Raman) sp2 hybridized carbon atoms (C-atoms). This insoluble carbon on oxidative treatment with nitric acid produced disordered sp3 (D-band retaining G-band, Raman) hybridized C-atoms, originated from the graphitic pool with sp2 hybridized C-atoms. This high density assimilation of self passivated "surfacial defects" become emissive during electronic transitions. Surfacial defects due to high degree of electrophilic carboxylation create the water soluble version of multicolor fluorescent C-dots as "water soluble fluorescent carbon dots" (wsFCDs). wsFCDs being itself self-passivated imposes the tunable multicolor emission throughout the visible spectrum without having any external coating and surface passivation and could be used as multicolor fluorescent probe especially in the emerging field of optical bio-imaging.

  19. Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters.

    Science.gov (United States)

    Mastrodonato, Cristiano; Pagano, Paolo; Daniel, Jonathan; Vaultier, Michel; Blanchard-Desce, Mireille

    2016-09-14

    Fluorescent Organic Nanoparticles (FONs), prepared by self-aggregation of dedicated dyes in water, represent a promising green alternative to the toxic quantum dots (QDs) for bioimaging purposes. In the present paper, we describe the synthesis and photophysical properties of new dipolar push-pull derivatives built from thieno[3,2-b]thiophene as a π-conjugated bridge that connects a triphenylamine moiety bearing various bulky substituents as electron-releasing moiety to acceptor end-groups of increasing strength (i.e., aldehyde, dicyanovinyl and diethylthiobarbiturate). All dyes display fluorescence properties in chloroform, which shifts from the green to the NIR range depending on the molecular polarization (i.e., strength of the end-groups) as well as a large two-photon absorption (TPA) band response in the biological spectral window (700-1000 nm). The TPA bands show a bathochromic shift and hyperchromic effect with increasing polarization of the dyes with maximum TPA cross-section reaching 2000 GM for small size chromophore. All dyes are found to form stable and deeply colored nanoparticles (20-45 nm in diameter) upon nanoprecipitation in water. Although their fluorescence is strongly reduced upon aggregation, all nanoparticles show large one-photon (up to 10⁸ M(-1)·cm(-1) in the visible region) and two-photon (up to 10⁶ GM in the NIR) brightness. Interestingly, both linear and non-linear optical properties are significantly affected by interchromophoric interactions, which are promoted by the molecular confinement and modulated by both the dipolar strength and the presence of the bulky groups. Finally, we exploited the photophysical properties of the FONs to design optimized core-shell nanoparticles built from a pair of complementary dipolar dyes that promotes an efficient core-to-shell FRET process. The resulting molecular-based core-shell nanoparticles combine large two-photon absorption and enhanced emission both located in the NIR spectral region

  20. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus.

    Science.gov (United States)

    Arul, Velusamy; Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan

    2017-03-01

    In this work, a simple hydrothermal route for the synthesis of fluorescent nitrogen doped carbon dots (N-CDs) is reported. The Hylocereus undatus (H. undatus) extract and aqueous ammonia are used as carbon and nitrogen source, respectively. The optical properties of synthesized N-CDs are analyzed using UV-Visible (UV-Vis) and fluorescence spectroscopy. The surface morphology, elemental composition, crystallinity and functional groups present in the N-CDs are examined using high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, respectively. The synthesized N-CDs emit strong blue fluorescence at 400nm under the excitation of 320nm. Further, the excitation dependent emission properties are also observed from the fluorescence of synthesized N-CDs. The HR-TEM results reveal that synthesized N-CDs are in spherical shape with average diameter of 2.5nm. The XRD pattern exhibits, the graphitic nature of synthesized N-CDs. The doping of nitrogen is confirmed from the EDS and FT-IR studies. The cytotoxicity and biocompatibility of N-CDs are evaluated through MTT assay on L-929 (Lymphoblastoid-929) and MCF-7 (Michigan Cancer Foundation-7) cells. The results indicate that the fluorescent N-CDs show less cytotoxicity and good biocompatibility on both L-929 and MCF-7 cells. Moreover, the N-CDs show excellent catalytic activity towards the reduction of methylene blue by sodium borohydride. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Novel X-linked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina Johnson; Kratochvíl, Lukáš

    2014-08-28

    The green anole, Anolis carolinensis (ACA), is the model reptile for a vast array of biological disciplines. It was the first nonavian reptile to have its genome fully sequenced. During the genome project, the XX/XY system of sex chromosomes homologous to chicken chromosome 15 (GGA15) was revealed, and 106 X-linked genes were identified. We selected 38 genes located on eight scaffolds in ACA and having orthologs located on GGA15, then tested their linkage to ACA X chromosome by using comparative quantitative fluorescent real-time polymerase chain reaction applied to male and female genomic DNA. All tested genes appeared to be X-specific and not present on the Y chromosome. Assuming that all genes located on these scaffolds should be localized to the ACA X chromosome, we more than doubled the number of known X-linked genes in ACA, from 106 to 250. While demonstrating that the gene content of chromosome X in ACA and GGA15 is largely conserved, we nevertheless showed that numerous interchromosomal rearrangements had occurred since the splitting of the chicken and anole evolutionary lineages. The presence of many ACA X-specific genes localized to distinct contigs indicates that the ACA Y chromosome should be highly degenerated, having lost a large amount of its original gene content during evolution. The identification of novel genes linked to the X chromosome and absent on the Y chromosome in the model lizard species contributes to ongoing research as to the evolution of sex determination in reptiles and provides important information for future comparative and functional genomics.

  2. Role of Indocyanine Green in Sentinel Node Mapping in Gynecologic Cancer: Is Fluorescence Imaging the New Standard?

    Science.gov (United States)

    Darin, María Cecilia; Gómez-Hidalgo, Natalia Rodriguez; Westin, Shannon N; Soliman, Pamela T; Escobar, Pedro F; Frumovitz, Michael; Ramirez, Pedro T

    2016-02-01

    Sentinel lymph node biopsy has proven safe and feasible in a number of gynecologic cancers such as vulvar cancer, cervical cancer, and endometrial cancer. The proposed aim of lymphatic mapping and sentinel node identification is to decrease the associated morbidity of a complete lymphadenectomy, particularly the rate of lymphedema, while also increasing the detection of small tumor deposits in the node. Different tracers have been shown to be useful, including technetium-99 and blue dye, with a detection reported in 66% to 86%. Recently, there has been increasing interest in the use of fluorescent dies such as indocyanine green (ICG). In this report we provide a review of the existing literature regarding the use of ICG in cervical or endometrial cancer with the goal to provide details on its utility and compare it with other tracers.

  3. An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta

    Directory of Open Access Journals (Sweden)

    Sekimoto Hiroyuki

    2011-09-01

    Full Text Available Abstract Background Euglenophyta and Chlorarachniophyta are groups of photosynthetic eukaryotes harboring secondary plastids of distinct green algal origins. Although previous phylogenetic analyses of genes encoding Calvin cycle enzymes demonstrated the presence of genes apparently not derived from green algal endosymbionts in the nuclear genomes of Euglena gracilis (Euglenophyta and Bigelowiella natans (Chlorarachniophyta, the origins of these "non-green" genes in "green" secondary phototrophs were unclear due to the limited taxon sampling. Results Here, we sequenced five new phosphoribulokinase (PRK genes (from one euglenophyte, two chlorarachniophytes, and two glaucophytes and performed an extended phylogenetic analysis of the genes based on a phylum-wide taxon sampling from various photosynthetic eukaryotes. Our phylogenetic analyses demonstrated that the PRK sequences form two genera of Euglenophyta formed a robust monophyletic group within a large clade including stramenopiles, haptophytes and a cryptophyte, and three genera of Chlorarachniophyta were placed within the red algal clade. These "non-green" affiliations were supported by the taxon-specific insertion/deletion sequences in the PRK alignment, especially between euglenophytes and stramenopiles. In addition, phylogenetic analysis of another Calvin cycle enzyme, plastid-targeted sedoheptulose-bisphosphatase (SBP, showed that the SBP sequences from two genera of Chlorarachniophyta were positioned within a red algal clade. Conclusions Our results suggest that PRK genes may have been transferred from a "stramenopile" ancestor to Euglenophyta and from a "red algal" ancestor to Chlorarachniophyta before radiation of extant taxa of these two "green" secondary phototrophs. The presence of two of key Calvin cycle enzymes, PRK and SBP, of red algal origins in Chlorarachniophyta indicate that the contribution of "non-green" algae to the plastid proteome in the "green" secondary phototrophs is

  4. green

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-02-01

    Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.

  5. Miniaturized fluorescent RNA dot blot method for rapid quantitation of gene expression

    Directory of Open Access Journals (Sweden)

    Yadetie Fekadu

    2004-06-01

    Full Text Available Abstract Background RNA dot blot hybridization is a commonly used technique for gene expression assays. However, membrane based RNA dot/slot blot hybridization is time consuming, requires large amounts of RNA, and is less suited for parallel assays of more than one gene at a time. Here, we describe a glass-slide based miniaturized RNA dot blot (RNA array procedure for rapid and parallel gene expression analysis using fluorescently labeled probes. Results RNA arrays were prepared by simple manual spotting of RNA onto amino-silane coated microarray glass slides, and used for two-color fluorescent hybridization with specific probes labeled with Cy3 and 18S ribosomal RNA house-keeping gene probe labeled with Cy5 fluorescent dyes. After hybridization, arrays were scanned on a fluorescent microarray scanner and images analyzed using microarray image analysis software. We demonstrate that this method gives comparable results to Northern blot analysis, and enables high throughput quantification of transcripts from nanogram quantities of total RNA in hundreds of samples. Conclusion RNA array on glass slide and detection by fluorescently labeled probes can be used for rapid and parallel gene expression analysis. The method is particularly well suited for gene expression assays that involve quantitation of many transcripts in large numbers of samples.

  6. A set of enhanced green fluorescent protein concatemers for quantitative determination of nuclear localization signal strength.

    Science.gov (United States)

    Böhm, Jennifer; Thavaraja, Ramya; Giehler, Susanne; Nalaskowski, Marcus M

    2017-09-15

    Regulated transport of proteins between nucleus and cytoplasm is an important process in the eukaryotic cell. In most cases, active nucleo-cytoplasmic protein transport is mediated by nuclear localization signal (NLS) and/or nuclear export signal (NES) motifs. In this study, we developed a set of vectors expressing enhanced GFP (EGFP) concatemers ranging from 2 to 12 subunits (2xEGFP to 12xEGFP) for analysis of NLS strength. As shown by in gel GFP fluorescence analysis and αGFP Western blotting, EGFP concatemers are expressed as fluorescent full-length proteins in eukaryotic cells. As expected, nuclear localization of concatemeric EGFPs decreases with increasing molecular weight. By oligonucleotide ligation this set of EGFP concatemers can be easily fused to NLS motifs. After determination of intracellular localization of EGFP concatemers alone and fused to different NLS motifs we calculated the size of a hypothetic EGFP concatemer showing a defined distribution of EGFP fluorescence between nucleus and cytoplasm (n/c ratio = 2). Clear differences of the size of the hypothetic EGFP concatemer depending on the fused NLS motif were observed. Therefore, we propose to use the size of this hypothetic concatemer as quantitative indicator for comparing strength of different NLS motifs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds on both receptor types

    NARCIS (Netherlands)

    Bovee, T.F.H.; Helsdingen, J.R.; Rietjens, I.M.C.M.; Keijer, J.; Hoogenboom, L.A.P.

    2004-01-01

    Previously, we described the construction of a rapid yeast bioassay stably expressing human estrogen receptor (hER) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, the properties of this assay were further studied by testing a series of estrogenic

  8. Validation of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein, for the screening of estrogenic activity in calf urine

    NARCIS (Netherlands)

    Bovee, T.F.H.; Heskamp, H.H.; Hamers, A.R.M.; Hoogenboom, L.A.P.; Nielen, M.W.F.

    2005-01-01

    Previously we described the construction and properties of a rapid yeast bioassay stably expressing human estrogen receptor a (hERa) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, this yeast estrogen assay was validated as a qualitative screening

  9. Downward Vascular Translocation of a Green Fluorescent Protein-Tagged Strain of Dickeya sp. (Biovar 3) from Stem and Leaf Inoculation Sites on Potato.

    NARCIS (Netherlands)

    Czajkowski, R.L.; Boer, de W.; Veen, van J.A.; Wolf, van der J.M.

    2010-01-01

    Translocation of a green fluorescent protein (GFP)-tagged Dickeya sp. from stems or from leaves to underground parts of potato plants was studied in greenhouse experiments. Thirty days after stem inoculation, 90% of plants expressed symptoms at the stem base and 95% of plants showed browning of inte

  10. Validation of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein, for the screening of estrogenic activity in calf urine

    NARCIS (Netherlands)

    Bovee, T.F.H.; Heskamp, H.H.; Hamers, A.R.M.; Hoogenboom, L.A.P.; Nielen, M.W.F.

    2005-01-01

    Previously we described the construction and properties of a rapid yeast bioassay stably expressing human estrogen receptor a (hERa) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, this yeast estrogen assay was validated as a qualitative screening

  11. A new arene-Ru based supramolecular coordination complex for efficient binding and selective sensing of green fluorescent protein.

    Science.gov (United States)

    Mishra, Anurag; Ravikumar, Sambandam; Song, Young Ho; Prabhu, Nadarajan Saravanan; Kim, Hyunuk; Hong, Soon Ho; Cheon, Seyeon; Noh, Jaegeun; Chi, Ki-Whan

    2014-04-28

    A new dipyridyl ligand is encoded with 120° angularity between its coordination vectors by using a central pyridine carboxamide scaffold to orient two 4-(pyridin-4-ylethynyl)phenyl moieties. The N,N'-bis(4-(pyridin-4-ylethynyl)phenyl)pyridine-2,6-dicarboxamide ligand undergoes self-assembly with a diruthenium arene complex to furnish a [2 + 2] metallacycle with a wedge-like structure. The metallacycle binds to the enhanced green fluorescent protein (EGFP) variant of GFP, resulting in steady-state spectral changes in UV-Vis absorption and emission experiments. These studies indicate that the metallacycle induces conformation changes to the EGFP, disrupting the tripeptide chromophore. Furthermore, gel electrophoresis, circular dichroism and atomic force microscopy studies indicate that binding ultimately leads to aggregation of the protein. Computational investigations indicate a favorable interaction, predominantly between the metallacycle and the Arg168 residue of the EGFP. An interaction with Arg168 and related residues was previously observed for an emission-attenuating antibody, supporting that these interactions induce changes to the photophysical properties of EGFP by disrupting the tripeptidechromophore in a similar manner. Additionally, we have also described the quenching study of the reporter GFP protein in vivo by a new metal complex using reflected fluorescence microscopy. We anticipate that such metal complexes which can passively diffuse into the cells in vivo can serve as potential tools in molecular and drug targeting based biological studies.

  12. A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein.

    Science.gov (United States)

    Kaku, Yoshihiro; Noguchi, Akira; Marsh, Glenn A; McEachern, Jennifer A; Okutani, Akiko; Hotta, Kozue; Bazartseren, Boldbaatar; Fukushi, Shuetsu; Broder, Christopher C; Yamada, Akio; Inoue, Satoshi; Wang, Lin-Fa

    2009-09-01

    Nipah virus (NiV) is a new zoonotic paramyxovirus that emerged in 1998 and is now classified in the genus Henipavirus along with the closely related Hendra virus (HeV). NiV is highly pathogenic in several vertebrate species including humans, and the lack of available vaccines or specific treatment restricts it to biosafety level 4 (BSL4) containment. A serum neutralization test was developed for measuring NiV neutralizing antibodies under BSL2 conditions using a recombinant vesicular stomatitis virus (VSV) expressing green fluorescent protein (GFP) and bearing the F and G proteins of NiV (VSV-NiV-GFP). The neutralization titers were obtained by counting GFP-expressing cells or by measuring fluorescence. The performance of this new assay was compared against the conventional test using live NiV with panels of sera from several mammalian species, including sera from NiV outbreaks, experimental infections, as well as HeV-specific sera. The results obtained with the VSV-NiV-GFP based test correlated with those obtained using live NiV. Using a 50% reduction in VSV-NiV-GFP infected cells as the cut-off for neutralization, this new assay demonstrated its potential as an effective tool for detecting NiV neutralizing antibodies under BSL2 containment with greater speed, sensitivity and safety as compared to the conventional NiV serum neutralization test.

  13. Green fluorescent protein (GFP) as a vital marker for studying the interaction of Phytophthora sojae and soybean

    Institute of Scientific and Technical Information of China (English)

    CHEN XiaoRen; CHENG BaoPing; WANG XinLe; DONG SuoMeng; WANG YongLin; ZHENG XiaoBo; WANG YuanChao

    2009-01-01

    Transgenic Phytophthora sojae strains that produce green fluorescent protein (GFP) were obtained after stable DNA integration using the Hsp70 promoter and the Ham34 terminator of Bremia lactucae.The expression of GFP during different developmental stages of P.sojae was observed using fluorescent microscopy.Based on this reporter system,the histopathologic events caused by the pathogen in soybean leaves,hypocotyls and roots were monitored.Meanwhile,the difference in resistance between different soybean cultivars against P.sojae was analyzed microscopically in roots.The results indicate that GFP can be stably expressed in zoosporangia,zoospores,cysts,hyphae and oospores of .sojae.Using the GFP marker,the infecting pathogens in leaves,hypocotyls and roots of host could be distinctly visualized.The germ tube length of cysts germinating on the roots of resistant cultivar Nannong 8848 was longer than that on the roots of susceptible culUvar Hefeng 35.These results show for the first time that this eukaryotic reporter can be used in P.sojae as a stable and vital marker,allowing the study of genetics of this hemibiotrophic pathogen.

  14. Excited-state intramolecular proton transfer molecules bearing o-hydroxy analogues of green fluorescent protein chromophore.

    Science.gov (United States)

    Chuang, Wei-Ti; Hsieh, Cheng-Chih; Lai, Chin-Hung; Lai, Cheng-Hsuan; Shih, Chun-Wei; Chen, Kew-Yu; Hung, Wen-Yi; Hsu, Yu-Hsiang; Chou, Pi-Tai

    2011-10-21

    o-Hydroxy analogues, 1a-g, of the green fluorescent protein chromophore have been synthesized. Their structures and electronic properties were investigated by X-ray single-crystal analyses, electrochemistry, and luminescence properties. In solid and nonpolar solvents 1a-g exist mainly as Z conformers that possess a seven-membered-ring hydrogen bond and undergo excited-state intramolecular proton transfer (ESIPT) reactions, resulting in a proton-transfer tautomer emission. Fluorescence upconversion dynamics have revealed a coherent type of ESIPT, followed by a fast vibrational/solvent relaxation (decay of a few to several tens of picoseconds was resolved in cyclohexane. Accordingly, the proton-transfer tautomer emission intensity is moderate (0.08 in 1e) to weak (∼10(-4) in 1a) in cyclohexane. The stronger intramolecular hydrogen bonding in 1g suppresses the rotation of the aryl-alkene bond, resulting in a high yield of tautomer emission (Φ(f) ≈ 0.2). In the solid state, due to the inhibition of exo-C(5)-C(4)-C(3) rotation, intense tautomer emission with a quantum yield of 0.1-0.9 was obtained for 1a-g. Depending on the electronic donor or acceptor strength of the substituent in either the HOMO or LUMO site, a broad tuning range of the emission from 560 (1g) to 670 nm (1a) has been achieved.

  15. Simultaneous tracking of movement and gene expression in multiple Drosophila melanogaster flies using GFP and DsRED fluorescent reporter transgenes

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2009-04-01

    Full Text Available Abstract Background Fluorescent proteins such as GFP (Green Fluorescent Protein and DsRED (Discosoma sp.Red Fluorescent Protein are often used as reporter molecules for transgene expression in Drosophila and other species. We have recently reported methods that allow simultaneous tracking of animal movement and GFP expression in real time, however the assay was limited to single animals and a single transgene. Numerous studies would be facilitated by methods that allow for assay of multiple animals and multiple transgenes. Findings Here we report an improved fly video tracking system that allows multiple transgenic flies to be tracked simultaneously using visible light, GFP fluorescence and DsRED fluorescence. The movement of multiple flies could be accurately tracked at real time rates, while simultaneously assaying the expression level of two different transgenes marked with GFP and DsRED. The individual flies could be accurately tracked and distinguished even during periods when transgene fluorescence was undetected. For example, characteristic patterns of hsp70 and hsp22 transgene induction could be simultaneously quantified and correlated with animal movement in aging flies, and as groups of flies died due to dessication/starvation. Conclusion The improved methods allow for more efficient assay of the correlation between gene expression, behavior, aging and mortality: multiple animals can be assayed with simultaneous quantification of multiple transgenes using GFP and DsRED fluorescence. These methods should allow for increased flexibility in experimental designs. For example, in the future it should be possible to use gene expression levels to predict remaining life span more accurately, and to quantify gene expression changes caused by interactions between animals in real time.

  16. Indocyanine green fluorescence in the assessment of the quality of the pedicled intercostal muscle flap: a pilot study.

    Science.gov (United States)

    Piwkowski, Cezary; Gabryel, Piotr; Gąsiorowskia, Łukasz; Zieliński, Paweł; Murawa, Dawid; Roszak, Magdalena; Dyszkiewicz, Wojciech

    2013-07-01

    The pedicled intercostal muscle flap (IMF) is a high quality vascularized tissue commonly used to buttress the bronchial stump after pneumonectomy or bronchial anastomosis after sleeve lobectomy in order to prevent bronchopleural fistula formation. The evaluation of the viability of the muscle flap is difficult. The aim of this study was the assessment of the application of indicyanine green fluorescence for the evaluation of IMF perfusion. The study included 27 patients (10 males and 17 females), mean age 62.6 years (47-77 years). Indocyanine green fluorescence (ICG) was used for objective assessment of the IMF quality by a near-infrared camera system (Photodynamic Eye(®), Hamamatsu Photonics, Japan). The following factors that may have an impact on the quality of the IMF were assessed: age, gender, body mass index, comorbidities, IMF length and thickness and timing of the harvesting during the procedure. The following surgical pulmonary resections with IMF harvesting were performed: 12 pneumonectomies, 2 sleeve lobectomies and 13 lobectomies. Intercostal muscle flap (IMF) was harvested before rib spreader insertion in 23 patients (85%) and at the end of the surgery in 4 patients (15%). The mean length and thickness of the harvested intercostal muscle were 19.9 ± 2.9 cm (range 13-24 cm) and 2.4 cm ± 0.7 cm (range 1.0-3.5 cm), respectively. Indocyanine green angiography showed ischaemia in the distal part of the muscle in all cases, despite the lack of obvious macroscopic signs. Median length of the ischaemic part was 4 cm (range 0.5-20 cm). The IMF length and thickness had a significant impact on the length of the ischaemic segment. In 24 patients, the ischaemic part of the muscle flap was severed. In 3 patients with the longest ischaemic segment (11, 13 and 20 cm), an alternative tissue was used to cover the bronchial stump. No major complications occurred. Our preliminary results confirmed the simplicity and high efficacy of ICG in the assessment of

  17. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs inSaccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen;

    2015-01-01

    functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...... GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74–84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered...... a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae...

  18. Far-red fluorescence gene reporter tomography for determination of placement and viability of cell-based gene therapies.

    Science.gov (United States)

    Lu, Yujie; Darne, Chinmay D; Tan, I-Chih; Zhu, Banghe; Hall, Mary A; Lazard, Zawaunyka W; Davis, Alan R; Simpson, Lashan; Sevick-Muraca, Eva M; Olmsted-Davis, Elizabeth A

    2013-10-01

    Non-invasive injectable cellular therapeutic strategies based on sustained delivery of physiological levels of BMP-2 for spinal fusion are emerging as promising alternatives, which could provide sufficient fusion without the associated surgical risks. However, these injectable therapies are dependent on bone formation occurring only at the specific target region. In this study, we developed and deployed fluorescence gene reporter tomography (FGRT) to provide information on in vivo cell localization and viability. This information is sought to confirm the ideal placement of the materials with respect to the area where early bone reaction is required, ultimately providing three dimensional data about the future fusion. However, because almost all conventional fluorescence gene reporters require visible excitation wavelengths, current in vivo imaging of fluorescent proteins is limited by high tissue absorption and confounding autofluorescence. We previously administered fibroblasts engineered to produce BMP-2, but is difficult to determine 3-D information of placement prior to bone formation. Herein we used the far-red fluorescence gene reporter, IFP1.4 to report the position and viability of fibroblasts and developed 3-D tomography to provide placement information. A custom small animal, far-red fluorescence tomography system integrated into a commercial CT scanner was used to assess IFP1.4 fluorescence and to demark 3-D placement of encapsulated fibroblasts with respect to the vertebrae and early bone formation as assessed from CT. The results from three experiments showed that the placement of the materials within the spine could be detected. This work shows that in vivo fluorescence gene reporter tomography of cell-based gene therapy is feasible and could help guide cell-based therapies in preclinical models.

  19. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Cirera, Susanna

    2007-01-01

    Background: Real-time quantitative PCR (qPCR) is a method for rapid and reliable quantification of mRNA transcription. Internal standards such as reference genes are used to normalise mRNA levels between different samples for an exact comparison of mRNA transcription level. Selection of high...... quality reference genes is of crucial importance for the interpretation of data generated by real-time qPCR. Results: In this study nine commonly used reference genes were investigated in 17 different pig tissues using real-time qPCR with SYBR green. The genes included beta-actin (ACTB), beta-2...

  20. UV-activated conversion of Hoechst 33258, DAPI, and Vybrant DyeCycle fluorescent dyes into blue-excited, green-emitting protonated forms.

    Science.gov (United States)

    Zurek-Biesiada, Dominika; Kędracka-Krok, Sylwia; Dobrucki, Jurek W

    2013-05-01

    Hoechst 33258, DAPI and Vybrant DyeCycle are commonly known DNA fluorescent dyes that are excited by UV and emit in the blue region of the spectrum of visible light. Conveniently, they leave the reminder of the spectrum for microscopy detection of other cellular targets labeled with probes emitting in green, yellow or red. However, an exposure of these dyes to UV induces their photoconversion and results in production of the forms of these dyes that are excited by blue light and show fluoresce maxima in green and a detectable fluorescence in yellow and orange regions of the spectrum. Photoconversion of Hoechst 33258 and DAPI is reversible and independent of the dye concentration or the presence of DNA. Spectrofluorimetry and mass spectrometry analyses indicate that exposure to UV induces protonation of Hoechst 33258 and DAPI.

  1. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis

    Science.gov (United States)

    Meiling, Till T.; Cywiński, Piotr J.; Bald, Ilko

    2016-06-01

    In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.

  2. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vaibhavkumar N. [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India); Jha, Sanjay [Gujarat Agricultural Biotechnology Institute, Navsari Agricultural University, Surat, 395007 (India); Kailasa, Suresh Kumar, E-mail: sureshkumarchem@gmail.com [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India)

    2014-05-01

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ∼ 3 nm and showed bright blue fluorescence under UV-light (λ{sub ex} = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ∼ 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells.

  3. STUDIES ON VASCULAR INFECTION OF FUSARIUM OXYSPORUM F. SP. CUBENSE RACE 4 IN BANANA BY FIELD SURVEY AND GREEN FLUORESCENT PROTEIN REPORTER

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-04-01

    Full Text Available Fusarium wilt of banana (Musa spp. caused by Fusarium oxysporum f. sp. cubense (Foc is one of the most serious banana fungal diseases in the world. Understanding the infection process of Foc is important for development of effective ways in disease control. In order to follow infection and colonization of this pathogen from root to rhizome and pseudostem tissues of banana, a highly pathogenic strain FJAT-3076 of Foc race 4 (Foc4 was transformed with gene encoding green fluorescent protein (GFP and the fungus carrying gfp (FJAT-3076-GFP was used to inoculate banana plants (Cavendish cv. B.F.. After inoculation for 3 to 10 d, it was observed that the conidia and their germ-tubes had penetrated into epidermis of young roots. The hyphae were found inside the root xylem 10 d after inoculation in the rhizome and pseudostem xylem after inoculation for 17 d. All plants infected by Foc died in 24 d after inoculation. It was also observed that Foc had spread all over the xylem and part of hyphae reached the pseudostem surface. Hyphal population was found the highest in the pseudostem, lower in root and least in rhizome. Field survey confirmed that Foc4 were mostly present in the base of pseudostem and less in the rhizome. Thus, effective prevention of the Foc hyphae movement from the rhizome up to the pseudostem might delay or control banana wilt disease.

  4. 外源性分化抑制因子Id2在C2C12细胞中的表达%The expression of external Id2 protein gene containing green fluorescence in C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    赖桂华; 余磊; 张黎声; 欧阳钧; 邱小忠

    2012-01-01

    目的:构建大鼠Id2基因真核荧光表达载体,并观察外源性Id2基因C2C12细胞中的表达.方法:RT-PCR扩增出Id2全长cDNA,T4 DNA连接酶将载体pGEM-T和Id2 cDNA进行连接,构建克隆载体,经限制性内切酶EcoR I酶切pGEM-Id2克隆载体和pEGFP-C2真核表达载体,构建出重组真核表达载体pEGFP-C2-Id2,经酶切分析、PCR鉴定及DNA测序证实cDNA片段大小和序列的正确性;通过电穿孔转染法将外源性Id2基因导入C2C12成肌细胞中.分别于转染4、8、12、24、36、72 h后通过荧光倒置显微镜下观察细胞整体情况,并计算转染效率.结果:经酶切分析和序列测定证实pEGFP-C2-Id2含大小正确的正向Id2 cDNA片段,获得高转染率和高表达外源性Id2基因的C2C12细胞,转染8h时,转染效率约为(10.5±2.8)%;转染12 h后,转染效率约为(20.9±3.1)%;转染24 h后,转染效率最高,约为(60.8±3.2)%.结论:成功构建了同时携带有G418筛选位点和Id2基因的真核表达载体;并获得高表达外源性Id2基因的C2C12细胞.%Objective:To construct the eukaryotic expression vector of rat Id2 and to observe the expression of 1(12 in CZC|2 cells for further study on skeletal muscle regeneration. Methods; RT-PCR method was used to amplify the entire Id2 cDNA. The pGEM-T and Id2 cDNA were ligated by T4 DNA ligase. The cloning vectors and the pEGFP-C2 (eukaryotic expression vector) were first cut by EcoR I and then ligated with Id2 by T4 DNA ligase again. The enzyme analysis and DNA sequencing were used to confirm the recombined vectors. The pEGFP-C2-Id2 vectors were transferred into C2C,2 cells by electric perforation. Fluorescence inverted microscopy was used to observe the global growth of the cells and to calculate the transfection efficiency 4,8,12,24,36 and 72 hours post-transfection. Results:The enzyme analysis and DNA sequencing analysis confirmed that the right Id2 gene was cloned. The Id2 transferred C2C12 cells with high expression and high

  5. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals.

    Science.gov (United States)

    Ohkura, Masamichi; Sasaki, Takuya; Sadakari, Junko; Gengyo-Ando, Keiko; Kagawa-Nagamura, Yuko; Kobayashi, Chiaki; Ikegaya, Yuji; Nakai, Junichi

    2012-01-01

    Imaging the activities of individual neurons with genetically encoded Ca(2+) indicators (GECIs) is a promising method for understanding neuronal network functions. Here, we report GECIs with improved neuronal Ca(2+) signal detectability, termed G-CaMP6 and G-CaMP8. Compared to a series of existing G-CaMPs, G-CaMP6 showed fairly high sensitivity and rapid kinetics, both of which are suitable properties for detecting subtle and fast neuronal activities. G-CaMP8 showed a greater signal (F(max)/F(min) = 38) than G-CaMP6 and demonstrated kinetics similar to those of G-CaMP6. Both GECIs could detect individual spikes from pyramidal neurons of cultured hippocampal slices or acute cortical slices with 100% detection rates, demonstrating their superior performance to existing GECIs. Because G-CaMP6 showed a higher sensitivity and brighter baseline fluorescence than G-CaMP8 in a cellular environment, we applied G-CaMP6 for Ca(2+) imaging of dendritic spines, the putative postsynaptic sites. By expressing a G-CaMP6-actin fusion protein for the spines in hippocampal CA3 pyramidal neurons and electrically stimulating the granule cells of the dentate gyrus, which innervate CA3 pyramidal neurons, we found that sub-threshold stimulation triggered small Ca(2+) responses in a limited number of spines with a low response rate in active spines, whereas supra-threshold stimulation triggered large fluorescence responses in virtually all of the spines with a 100% activity rate.

  6. Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum.

    Science.gov (United States)

    Maresca, Julia A; Bryant, Donald A

    2006-09-01

    The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.

  7. Construction of a repeat-free dual color fluorescent in situ hybridization probe for ROS1 gene in non-small cell lung cancer diagnosis

    Institute of Scientific and Technical Information of China (English)

    程弘夏

    2014-01-01

    Objective To establish a repeat-free ROS1 gene fluorescence in situ hybridization(FISH)probe,and to compare its efficacy with those of commercial FISH probes in non-small cell lung cancer.Methods The probe was constructed by combining human Cot-1 DNA genome into double-stranded sequence,and then digested by duples specific nuclease to establish a repeat-free sequene.The final repeat-free ROS1 FISH probe was labeled by red and green fluoresceins.Results Compared

  8. Flash fluorescence with indocyanine green videoangiography to identify the recipient artery for bypass with distal middle cerebral artery aneurysms: operative technique.

    Science.gov (United States)

    Rodríguez-Hernández, Ana; Lawton, Michael T

    2012-06-01

    Distal middle cerebral artery (MCA) aneurysms frequently have nonsaccular morphology that necessitates trapping and bypass. Bypasses can be difficult because efferent arteries lie deep in the opercular cleft and may not be easily identifiable. We introduce the "flash fluorescence" technique, which uses videoangiography with indocyanine green (ICG) dye to identify an appropriate recipient artery on the cortical surface for the bypass, enabling a more superficial and easier anastomosis. Flash fluorescence requires 3 steps: (1) temporary clip occlusion of the involved afferent artery; (2) videoangiography demonstrating fluorescence in uninvolved arteries on the cortical surface; and (3) removal of the temporary clip with flash fluorescence in the involved efferent arteries on the cortical surface, thereby identifying a recipient. Alternatively, temporary clips can occlude uninvolved arteries, and videoangiography will demonstrate initial fluorescence in efferent arteries during temporary occlusion and flash fluorescence in uninvolved arteries during reperfusion. From a consecutive series of 604 MCA aneurysms treated microsurgically, 22 (3.6%) were distal aneurysms and 11 required a bypass. The flash fluorescence technique was used in 3 patients to select the recipient artery for 2 superficial temporal artery-to-MCA bypasses and 1 MCA-MCA bypass. The correct recipient was selected in all cases. The flash fluorescence technique provides quick, reliable localization of an appropriate recipient artery for bypass when revascularization is needed for a distal MCA aneurysm. This technique eliminates the need for extensive dissection of the efferent artery and enables a superficial recipient site that makes the anastomosis safer, faster, and less demanding.

  9. A novel fluorescent aptasensor based on silica nanoparticles, PicoGreen and exonuclease III as a signal amplification method for ultrasensitive detection of myoglobin.

    Science.gov (United States)

    Abnous, Khalil; Danesh, Noor Mohammad; Sarreshtehdar Emrani, Ahmad; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2016-04-21

    Measurement of myoglobin (Mb) in human blood serum is of great interest for quick diagnosis of acute myocardial infarction (AMI). In this study, a novel fluorescent aptasensor was designed for ultrasensitive and selective detection of Mb, based on target-induced high fluorescence intensity, complementary strand of aptamer (CS), PicoGreen (PG) dye, exonuclease III (Exo III) and silica nanoparticles coated with streptavidin (SNPs-Streptavidin). The developed aptasensor obtains characteristics of SNPs as enhancers of fluorescence intensity, Exo III as an enzyme which selectively digests the 3'-end of double-stranded DNA (dsDNA), PG as a fluorescent dye which could selectively bind to dsDNA and high selectivity and sensitivity of aptamer (Apt) toward its target. In the absence of Mb, no free CS remains in the environment of SNPs-Streptavidin, resulting in a weak fluorescence emission. In the present of Mb, dsDNA-modified SNPs-Streptavidin complex forms, leading to a very strong fluorescence emission. The developed fluorescent aptasensor exhibited high specificity toward Mb with a limit of detection (LOD) as low as 52 pM. In addition, the designed fluorescent aptasensor was efficiently used to detect Mb in human serum.

  10. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin.

    Directory of Open Access Journals (Sweden)

    Keiji eFushimi

    2016-04-01

    Full Text Available Cyanobacteriochromes (CBCRs are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV. The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2 from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.

  11. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.

    Science.gov (United States)

    Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari

    2013-04-01

    Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Jellyifsh Green Fluorescent Protein (GFP) as a Reporter for Fusarium gramminearum Development on Wheat

    Institute of Scientific and Technical Information of China (English)

    QI Jun-xian; LIU Tai-guo; XU Ying; CHEN Huai-gu; GAO Li; LIU Bo; CHEN Wan-quan

    2014-01-01

    The plasmid pGPDGFP under the control of pgpdA promotor was used together with vector pAN7-1 containing the hygromycin resistance cassette to co-transform protoplasts of HG1, Fusarium graminearum from Hubei Province, China. Twelve out of 14 hygromycin-resistant transformants showed green signal under the UV light and contained one or several copies of gfp, as indicated by Southern analysis of genomic DNA digested with different restriction enzymes and hybridized to the gfp probe. A single gfp copy transformant (HG1C5) was selected for further evaluation of 80 Chinese wheat cultivars or advanced lines. The results showed different resistance type to F. graminearum were observed. GFP signals observed in the rachis and adjacent spikes of 70 Chinese wheat lines such as Chuanchongzu 104 indicated both type I (host resistance to the initial infection by the fungus) and type II (resistance to the spread of FHB symptoms within an infected spike) were not observed. While other 10 lines showed type II resistance to F. graminearum with GFP signals only in inoculated spikelets. Development of the mycelium can be intuitively observed and the resistance of wheat to F. graminearum can be identiifed at 7 days post inoculation (dpi) in this way. The results showed no differences were evaluated between the transformed HG1C5 and the non-transgene artiifcial inoculation by SAS paired chi-square test and McNemar’s test (P=0.0625).

  13. Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret.

    Science.gov (United States)

    Ludlow, M; Nguyen, D T; Silin, D; Lyubomska, O; de Vries, R D; von Messling, V; McQuaid, S; De Swart, R L; Duprex, W P

    2012-07-01

    The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.

  14. Quantitative analysis of agonist-dependent parathyroid hormone receptor trafficking in whole cells using a functional green fluorescent protein conjugate.

    Science.gov (United States)

    Conway, B R; Minor, L K; Xu, J Z; D'Andrea, M R; Ghosh, R N; Demarest, K T

    2001-12-01

    Many G-protein coupled receptors (GPCRs) undergo ligand-dependent internalization upon activation. The parathyroid hormone (PTH) receptor undergoes endocytosis following prolonged exposure to ligand although the ultimate fate of the receptor following internalization is largely unknown. To investigate compartmentalization of the PTH receptor, we have established a stable cell line expressing a PTH receptor-green fluorescent protein (PTHR-GFP) conjugate and an algorithm to quantify PTH receptor internalization. HEK 293 cells expressing the PTHR-GFP were compared with cells expressing the wild-type PTH receptor in whole-cell binding and functional assays. 125I-PTH binding studies revealed similar Bmax and kD values in cells expressing either the PTHR-GFP or the wild-type PTH receptor. PTH-induced cAMP accumulation was similar in both cell lines suggesting that addition of the GFP to the cytoplasmic tail of the PTH receptor does not alter the ligand binding or G-protein coupling properties of the receptor. Using confocal fluorescence microscopy, we demonstrated that PTH treatment of cells expressing the PTHR-GFP conjugate produced a time-dependent redistribution of the receptor to the endosomal compartment which was blocked by pretreatment with PTH antagonist peptides. Treatment with hypertonic sucrose prevented PTH-induced receptor internalization, suggesting that the PTH receptor internalizes via a clathrin-dependent mechanism. Moreover, co-localization with internalized transferrin showed that PTHR-GFP trafficking utilized the endocytic recycling compartment. Experiments using cycloheximide to inhibit protein synthesis demonstrated that recycling of the PTHR-GFP back to the plasma membrane was complete within 1-2 h of ligand removal and was partially blocked by pretreatment with cytochalasin D, but not nocodazole. We also demonstrated that the PTH receptor, upon recycling to the plasma membrane, is capable of undergoing a second round of internalization, a finding

  15. Recombinant Canine Distemper Virus Strain Snyder Hill Expressing Green or Red Fluorescent Proteins Causes Meningoencephalitis in the Ferret

    Science.gov (United States)

    Ludlow, M.; Nguyen, D. T.; Silin, D.; Lyubomska, O.; de Vries, R. D.; von Messling, V.; McQuaid, S.; De Swart, R. L.

    2012-01-01

    The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDVSH) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDVSH (rCDVSH) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV5804P and the prototypic wild-type CDVR252 showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDVSH-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis. PMID:22553334

  16. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma.

    Science.gov (United States)

    Tsuda, Takumi; Kaibori, Masaki; Hishikawa, Hidehiko; Nakatake, Richi; Okumura, Tadayoshi; Ozeki, Eiichi; Hara, Isao; Morimoto, Yuji; Yoshii, Kengo; Kon, Masanori

    2017-01-01

    Anticancer agents and operating procedures have been developed for hepatocellular carcinoma (HCC) patients, but their prognosis remains poor. It is necessary to develop novel diagnostic and therapeutic strategies for HCC to improve its prognosis. Lactosome is a core-shell-type polymeric micelle, and enclosing labeling or anticancer agents into this micelle enables drug delivery. In this study, we investigated the diagnostic and therapeutic efficacies of indocyanine green (ICG)-loaded lactosome for near-infrared fluorescence (NIF) imaging and photodynamic therapy (PDT) for HCC. The human HCC cell line HuH-7 was treated with ICG or ICG-lactosome, followed by PDT, and the cell viabilities were measured (in vitro PDT efficiency). For NIF imaging, HuH-7 cells were subcutaneously transplanted into BALB/c nude mice, followed by intravenous administration of ICG or ICG-lactosome. The transplanted animals were treated with PDT, and the antineoplastic effects were analyzed (in vivo PDT efficiency). PDT had toxic effects on HuH-7 cells treated with ICG-lactosome, but not ICG alone. NIF imaging revealed that the fluorescence of tumor areas in ICG-lactosome-treated animals was higher than that of contralateral regions at 24 h after injection and thereafter. PDT exerted immediate and continuous phototoxic effects in the transplanted mice treated with ICG-lactosome. Our results demonstrate that ICG-lactosome accumulated in xenograft tumors, and that PDT had antineoplastic effects on these malignant implants. NIF imaging and PDT with ICG-lactosome could be useful diagnostic and/or therapeutic strategies for HCC.

  17. Expression of red-shifted green fluorescent protein by Escherichia coli O157:H7 as a marker for the detection of cells on fresh produce.

    Science.gov (United States)

    Takeuchi, K; Frank, J F

    2001-03-01

    Escherichia coli O157:H7 was transformed with a plasmid vector red-shifted green fluorescence protein (pEGFP) to express red-shifted green fluorescence protein (EGFP) from Aequorea victoria. The EGFP expression among total cells and nonviable cells was determined at the cellular level by microscopic observation of immunostained and membrane-impermeable, dye-stained cultures, respectively. E. coli O157:H7 retained pEGFP during frozen storage at -80 degrees C. The percentage of EGFP expression was improved by repeated subculturing, reaching 83.4 +/- 0.1%, although the fluorescence intensity varied among cells. A low percentage of EGFP-expressing cells was nonviable. The percentage of EGFP decreased when the culture plate was kept at 4 degrees C, suggesting that some cells lost pEGFP during refrigeration. The storage of the culture suspension in sterile deionized water at 4 degrees C for 24 h reduced the percentage of EGFP expression, indicating that some EGFP was denatured. The application of EGFP as a marker for E. coli O157:H7 on green leaf lettuce, cauliflower, and tomato was evaluated using confocal scanning laser microscopy. EGFP-transformed cells were readily visible under confocal scanning laser microscopy on all produce types. The numbers of E. coli O157:H7 cells detected with EGFP were equivalent to those detected with immunostaining for green leaf lettuce and cauliflower but less for tomato. E. coli O157:H7 attached preferentially to damaged tissues of green leaf lettuce and tomato over intact tissue surfaces and to flowerets of cauliflower than to stem surfaces. EGFP can serve as a marker to characterize E. coli O157:H7 attachment on green leaf lettuce and cauliflower but may not be suitable on tomato.

  18. Flow Cytometric Testing of Green Fluorescent Protein-Tagged Lactobacillus rhamnosus GG for Response to Defensins

    OpenAIRE

    De Keersmaecker, Sigrid C. J.; Braeken, Kristien; Verhoeven, Tine L. A.; Perea Vélez, Mónica; Lebeer, Sarah; Vanderleyden, Jos; Hols, Pascal

    2006-01-01

    Lactobacillus rhamnosus GG is of general interest as a probiotic. Although L. rhamnosus GG is often used in clinical trials, there are few genetic tools to further determine its mode of action or to develop it as a vehicle for heterologous gene expression in therapy. Therefore, we developed a reproducible, efficient electroporation procedure for L. rhamnosus GG. The best transformation efficiency obtained was 104 transformants per μg of DNA. We validated this protocol by tagging L. rhamnosus ...

  19. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases.

    Science.gov (United States)

    Luo, Yongquan; Liu, Chengyu; Cerbini, Trevor; San, Hong; Lin, Yongshun; Chen, Guokai; Rao, Mahendra S; Zou, Jizhong

    2014-07-01

    Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken β-actin/rabbit β-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo.

  20. Transmission of Mannheimia haemolytica from domestic sheep (Ovis aries) to bighorn sheep (Ovis canadensis): unequivocal demonstration with green fluorescent protein-tagged organisms.

    Science.gov (United States)

    Lawrence, Paulraj K; Shanthalingam, Sudarvili; Dassanayake, Rohana P; Subramaniam, Renuka; Herndon, Caroline N; Knowles, Donald P; Rurangirwa, Fred R; Foreyt, William J; Wayman, Gary; Marciel, Ann Marie; Highlander, Sarah K; Srikumaran, Subramaniam

    2010-07-01

    Previous studies demonstrated that bighorn sheep (Ovis canadensis) died of pneumonia when commingled with domestic sheep (Ovis aries) but did not conclusively prove that the responsible pathogens were transmitted from domestic to bighorn sheep. The objective of this study was to determine, unambiguously, whether Mannheimia haemolytica can be transmitted from domestic to bighorn sheep when they commingle. Four isolates of M. haemolytica were obtained from the pharynx of two of four domestic sheep and tagged with a plasmid carrying the genes for green fluorescent protein (GFP) and ampicillin resistance (AP(R)). Four domestic sheep, colonized with the tagged bacteria, were kept about 10 m apart from four bighorn sheep for 1 mo with no clinical signs of pneumonia observed in the bighorn sheep during that period. The domestic and bighorn sheep were then allowed to have fence-line contact for 2 mo. During that period, three bighorn sheep acquired the tagged bacteria from the domestic sheep. At the end of the 2 mo of fence-line contact, the animals were allowed to commingle. All four bighorn sheep died 2 days to 9 days following commingling. The lungs from all four bighorn sheep showed gross and histopathologic lesions characteristic of M. haemolytica pneumonia. Tagged M. haemolytica were isolated from all four bighorn sheep, as confirmed by growth in ampicillin-containing culture medium, PCR-amplification of genes encoding GFP and Ap(R), and immunofluorescent staining of GFP. These results unequivocally demonstrate transmission of M. haemolytica from domestic to bighorn sheep, resulting in pneumonia and death of bighorn sheep.

  1. Quantification of dsDNA using the Hitachi F-7000 Fluorescence Spectrophotometer and PicoGreen dye.

    Science.gov (United States)

    Moreno, Luis A; Cox, Kendra L

    2010-11-05

    Quantification of DNA, especially in small concentrations, is an important task with a wide range of biological applications including standard molecular biology assays such as synthesis and purification of DNA, diagnostic applications such as quantification of DNA amplification products, and detection of DNA molecules in drug preparations. During this video we will demonstrate the capability of the Hitachi F-7000 Fluorescence Spectrophotometer equipped with a Micro Plate Reader accessory to perform dsDNA quantification using Molecular Probes Quant-it PicoGreen dye reagent kit. The F-7000 Fluorescence Spectrophotometer offers high sensitivity and high speed measurements. It is a highly flexible system capable of measuring fluorescence, luminescence, and phosphorescence. Several measuring modes are available, including wavelength scan, time scan, photometry and 3-D scan measurement. The spectrophotometer has sensitivity in the range of 50 picomoles of fluorescein when using a 300 μL sample volume in the microplate, and is capable of measuring scan speeds of 60,000 nm/minute. It also has a wide dynamic range of up to 5 orders of magnitude which allows for the use of calibration curves over a wide range of concentrations. The optical system uses all reflective optics for maximum energy and sensitivity. The standard wavelength range is 200 to 750 nm, and can be extended to 900 nm when using one of the optional near infrared photomultipliers. The system allows optional temperature control for the plate reader from 5 to 60 degrees Celsius using an optional external temperature controlled liquid circulator. The microplate reader allows for the use of 96 well microplates, and the measuring speed for 96 wells is less than 60 seconds when using the kinetics mode. Software controls for the F-7000 and Microplate Reader are also highly flexible. Samples may be set in either column or row formats, and any combination of wells may be chosen for sample measurements. This allows

  2. In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction.

    Science.gov (United States)

    Miot, Sylvie; Gianni-Barrera, Roberto; Pelttari, Karoliina; Acharya, Chitrangada; Mainil-Varlet, Pierre; Juelke, Henriette; Jaquiery, Claude; Candrian, Christian; Barbero, Andrea; Martin, Ivan

    2010-02-01

    We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.

  3. Utility of indocyanine-green fluorescent imaging during robot-assisted sphincter-saving surgery on rectal cancer patients.

    Science.gov (United States)

    Kim, Jin C; Lee, Jong L; Yoon, Yong S; Alotaibi, Abdulrahman M; Kim, Jihun

    2016-12-01

    There have been few studies describing the use of indocyanine green (ICG) fluorescent imaging during robot-assisted (RA) sphincter-saving operations (SSOs) and assessing its potential role in reducing anastomotic leak (AL). A consecutive cohort of 436 rectal cancer patients who underwent curative RA SSOs were prospectively enrolled during 2010-2014, including 123 patients with ICG imaging (ICG(+) group) and 313 patients without ICG imaging (ICG(-) group). ICG imaging appeared to be helpful in identifying competent perfusion of the bowel adjacent to the anastomosis in 13 patients (10.6%) who might be susceptible to bowel ischaemia, including restrictive mesocolon. AL was remarkably greater in the ICG(-) group compared with the ICG(+) group (5.4% vs 0.8%; p = 0.031). ICG imaging during RA SSO provides accurate real-time knowledge of the perfusion status at or near the anastomosis, specifically reducing AL in patients who may incur bowel ischaemia. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae.

    Science.gov (United States)

    Khamhaengpol, Arunrat; Siri, Sineenat

    2016-10-01

    Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.

    Science.gov (United States)

    Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng

    2014-01-15

    Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Glyphosate inhibits the translocation of green fluorescent protein and sucrose from a transgenic tobacco host to Cuscuta campestris Yunk.

    Science.gov (United States)

    Nadler-Hassar, Talia; Goldshmidt, Alexander; Rubin, Baruch; Wolf, Shmuel

    2004-09-01

    The parasitic plant Cuscuta campestris is dependent on its host for water, assimilates and amino acids. It can be controlled by the herbicide glyphosate, which inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), resulting in shikimate accumulation. In this study, C. campestris was parasitic on transgenic tobacco plants expressing green fluorescent protein (GFP) in the phloem. Changes in [14C]sucrose and GFP accumulation in the parasite were used as indicators of the herbicide's effect on translocation between the host and parasite. Host plants were treated with glyphosate 22 days after sowing. Shikimate accumulation in the parasite 1 day after glyphosate treatment (DAGT) confirmed EPSPS inhibition in C. campestris. No damage was visible in the host plants for the first 3 DAGT, while during that same time, a significant reduction in [14C]sucrose and GFP accumulation was observed in the parasite. Thus, we propose that the parallel reduction in GFP and sucrose accumulation in C. campestris is a result of a glyphosate effect on the parasite's ability to withdraw assimilates from the host.

  7. Soft sensor control of metabolic fluxes in a recombinant Escherichia coli fed-batch cultivation producing green fluorescence protein.

    Science.gov (United States)

    Gustavsson, Robert; Mandenius, Carl-Fredrik

    2013-10-01

    A soft sensor approach is described for controlling metabolic overflow from mixed-acid fermentation and glucose overflow metabolism in a fed-batch cultivation for production of recombinant green fluorescence protein (GFP) in Escherichia coli. The hardware part of the sensor consisted of a near-infrared in situ probe that monitored the E. coli biomass and an HPLC analyzer equipped with a filtration unit that measured the overflow metabolites. The computational part of the soft sensor used basic kinetic equations and summations for estimation of specific rates and total metabolite concentrations. Two control strategies for media feeding of the fed-batch cultivation were evaluated: (1) controlling the specific rates of overflow metabolism and mixed-acid fermentation metabolites at a fixed pre-set target values, and (2) controlling the concentration of the sum of these metabolites at a set level. The results indicate that the latter strategy was more efficient for maintaining a high titer and low variability of the produced recombinant GFP protein.

  8. investigating acid production by Streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Lihong Guo

    Full Text Available Acidogenicity and aciduricity are the main virulence factors of the cavity-causing bacterium Streptococcus mutans. Monitoring at the individual cell level the temporal and spatial distribution of acid produced by this important oral pathogen is central for our understanding of these key virulence factors especially when S. mutans resides in multi-species microbial communities. In this study, we explored the application of pH-sensitive green fluorescent proteins (pHluorins to investigate these important features. Ecliptic pHluorin was functionally displayed on the cell surface of S. mutans as a fusion protein with SpaP. The resulting strain (O87 was used to monitor temporal and spatial pH changes in the microenvironment of S. mutans cells under both planktonic and biofilm conditions. Using strain O87, we revealed a rapid pH drop in the microenviroment of S. mutans microcolonies prior to the decrease in the macro-environment pH following sucrose fermentation. Meanwhile, a non-uniform pH distribution was observed within S. mutans biofilms, reflecting differences in microbial metabolic activity. Furthermore, strain O87 was successfully used to monitor the S. mutans acid production profiles within dual- and multispecies oral biofilms. Based on these findings, the ecliptic pHluorin allows us to investigate in vivo and in situ acid production and distribution by the cariogenic species S. mutans.

  9. The development and characterization of an exogenous green-light-regulated gene expression system in marine cyanobacteria.

    Science.gov (United States)

    Badary, Amr; Abe, Koichi; Ferri, Stefano; Kojima, Katsuhiro; Sode, Koji

    2015-06-01

    A green-light-regulated gene expression system derived from Synechocystis sp. PCC 6803 was constructed and introduced into the marine cyanobacterial strain Synechococcus sp. NKBG 15041c. The regulation system was evaluated using gfp uv as a reporter gene under red-light illumination and under simultaneous red- and green-light illumination. Expression of the reporter gene was effectively repressed under red-light illumination and increased over 10-fold by illuminating with green light. Control vectors missing either the ccaS sensor histidine kinase gene or the ccaR response regulator gene showed no detectable induction of GFPuv expression. Green-light induction of gfp uv expression was further confirmed by quantitative reverse transcription PCR. The constructed system was effective at regulating the recombinant expression of a target gene using green light in a marine cyanobacterial strain that does not naturally possess such a green-light regulation system. Thus, constructed green-light-regulated gene expression system may be used as a core platform technology for the development of marine cyanobacterial strains in which bioprocesses will be regulated by light.

  10. Transient low-barrier hydrogen bond in the photoactive state of green fluorescent protein.

    Science.gov (United States)

    Nadal-Ferret, Marc; Gelabert, Ricard; Moreno, Miquel; Lluch, José M

    2015-12-14

    fluorescing I* structure. The existence of an oscillating stationary state between the reactants and products of the triple proton transfer reaction can explain the dual emission reported for the I0* intermediate of wtGFP.

  11. Transfection of bone marrow mesenchymal stem cells using green fluorescence protein labeled hVEGF165 recombinant plasmid mediated by liposome

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Tian-An Liao; Shao-Bo Zhong

    2013-01-01

    Objective:To study the role of bone marrow mesenchymal stem cells (BMSCs) in construction of vascularized engineered tissue. Methods: hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence protein;green fluorescent protein (GFP)-CMV. Then the recombinant shuttle plasmid was transfected into BMSCs with LipofectamineTM 2000 for packaging and amplifying. hVEGF165 mRNA expression in BMSCs cells was tested. Results:The sequence of hVEGF165 in pShuttle-GFP-hVEGF165 plasmid was confirmed by double-enzyme cleavage method and sequencing. hVEGF165 was highly expressed in BMSCs. Conclusions:The GFP/hVEGF165 recombinant plasmid vector was constructed successfully and expressed effectively in host cells, which may be helpful for discussing the possibility of the application of VEGF165-BMSCs in tissue engineering and ischemic disease cure.

  12. Single Benzene Green Fluorophore: Solid-State Emissive, Water-Soluble, and Solvent- and pH-Independent Fluorescence with Large Stokes Shifts.

    Science.gov (United States)

    Beppu, Teruo; Tomiguchi, Kosuke; Masuhara, Akito; Pu, Yong-Jin; Katagiri, Hiroshi

    2015-06-15

    Benzene is the simplest aromatic hydrocarbon with a six-membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5-bis(methylsulfonyl)-1,4-diaminobenzene as a novel architecture for green fluorophores, established based on an effective push-pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid-state emissive, water-soluble, and solvent- and pH-independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π-conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.

  13. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen;

    2015-01-01

    GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74–84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered...... a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae...

  14. Haplotype variation of Green Revolution gene Rht-D1 during wheat domestication and improvement

    Institute of Scientific and Technical Information of China (English)

    Chihong Zhang; Lifeng Gao; Jiaqiang Sun; Jizeng Jia; Zhenglong Ren

    2014-01-01

    Green Revolution made a substantial contribution to wheat yields worldwide in the 1960s and 1970s. It is of great importance to analyze the haplotype variation of Rht-D1, the Green Revolution gene, during wheat (Triticum aestivum L.) domestication and breeding to understand its evolution and function in wheat breeding history. In this study, the Rht-D1 and its flanking regions were sequenced and single nucleotide polymorphisms were detected based on a panel of 45 accessions of Aegilops tauschi , 51 accessions of landraces and 80 accessions of commercial varieties. Genetic diversity in the wild accessions was much higher than that in the varieties and higher than that reported previously. Seven haplotypes (Hapl I to Hapl VII) of Rht-D1 were identified and their evolutionary relationships were proposed. In addition to the wel-known Green Revolution al ele Rht-D1b, Hapl VII (an al ele Rht-D1k) was identified in early breeding varieties, which reduced plant height by 16%. The results suggested that Rht-D1k had been used in breeding before the Green Revolution and made a great contribution to wheat production worldwide. Based on the breeding history and molecular evidence, we proposed that the wheat Green Revolution in China and International Maize and Wheat Improvement Center (CIMMYT) occurred independently.

  15. Physiological properties of enkephalin-containing neurons in the spinal dorsal horn visualized by expression of green fluorescent protein in BAC transgenic mice

    OpenAIRE

    2011-01-01

    Abstract Background Enkephalins are endogenous opiates that are assumed to modulate nociceptive information by mediating synaptic transmission in the central nervous system, including the spinal dorsal horn. Results To develop a new tool for the identification of in vitro enkephalinergic neurons and to analyze enkephalin promoter activity, we generated transgenic mice for a bacterial artificial chromosome (BAC). Enkephalinergic neurons from these mice expressed enhanced green fluorescent prot...

  16. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone.

    Science.gov (United States)

    Harel-Markowitz, Eliane; Gurevich, Michael; Shore, Laurence S; Katz, Adi; Stram, Yehuda; Shemesh, Mordechai

    2009-05-01

    Linearized p-eGFP (plasmid-enhanced green fluorescent protein) or p-hFSH (plasmid human FSH) sequences with the corresponding restriction enzyme were lipofected into sperm genomic DNA. Sperm transfected with p-eGFP were used for artificial insemination in hens, and in 17 out of 19 of the resultant chicks, the exogenous DNA was detected in their lymphocytes as determined by PCR and expressed in tissues as determined by (a) PCR, (b) specific emission of green fluorescence by the eGFP, and (c) Southern blot analysis. A complete homology was found between the Aequorea Victoria eGFP DNA and a 313-bp PCR product of extracted DNA from chick blood cells. Following insemination with sperm lipofected with p-hFSH, transgenic offspring were obtained for two generations as determined by detection of the transgene for human FSH (PCR) and expression of the gene (RT-PCR and quantitative real-time PCR) and the presence of the protein in blood (radioimmunoassay). Data demonstrate that lipofection of plasmid DNA with restriction enzyme is a highly efficient method for the production of transfected sperm to produce transgenic offspring by direct artificial insemination.

  17. Expression of Green Fluorescent Protein (GFP using In Vitro translation cell free system

    Directory of Open Access Journals (Sweden)

    M Mohamadipoor

    2009-03-01

    Full Text Available ABSTRACT Background and the purpose of the study: One of the major concerns about recombinant protein production is its possible toxicity for the organism. Purification of the recombinant protein is another challenge in this respect. Recently In Vitro translation cell free system that provides a coupled transcription-translation reaction for protein synthesis to overcome the above mentioned problems has been emerged. The aim of this study was expression of GFP as a marker for gene expression and protein in In Vitro translation system. Methods: pIVEX2.3-GFP plasmid was cloned to E. coli   and the plasmid DNA extracted. In Vitro translation was performed with RTS 100 E. coli Hy kit according to manufacture's instructions. Expression of recombinant fusion protein, His- GFP, was determined by SDS-PAGE, ELISA and western blot analysis. Results: Expected size of recombinant protein was detected in SDS-PAGE and further confirmed by western blot analysis and ELISA. Major conclusion: Results showed that In Vitro translation is suitable for expression of recombinant protein and fusion of the recombinant protein with His-tag facilitates the purification.

  18. Magnetic solid-phase extraction for determination of the total malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhao, Jiao; Wei, Daqiao; Yang, Yaling

    2016-06-01

    In this study, magnetic multi-walled carbon nanotube nanoparticles were synthesized and used as the adsorbent for the sums of malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water samples followed by high performance liquid chromatography with fluorescence detection. This method was based on in situ reduction of chromic malachite green, gentian violet to colorless leucomalachite green, leucogentian violet with potassium borohydride, respectively. The obtained adsorbent combines the advantages of carbon nanotubes and Fe3 O4 nanoparticles in one material for separation and preconcentration of the reductive dyes in aqueous media. The structure and properties of the prepared nanoparticles were characterized by transmission and scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The main parameters affecting the adsorption recoveries were investigated and optimized, including reducing agent concentration, type and amount of sorbent, sample pH, and eluting conditions. Under the optimum conditions, the limits of detection in this method were 0.22 and 0.09 ng/mL for malachite green and gentian violet, respectively. Product recoveries ranged from 87.0 to 92.8% with relative standard deviations from 4.6 to 5.9%. The results indicate that the sorbent is a suitable material for the removal and concentration of triphenylmethane dyes from polluted environmental samples.

  19. Genetic transformation of an obligate anaerobe, P. gingivalis for FMN-green fluorescent protein expression in studying host-microbe interaction.

    Directory of Open Access Journals (Sweden)

    Chul Hee Choi

    Full Text Available The recent introduction of "oxygen-independent" flavin mononucleotide (FMN-based fluorescent proteins (FbFPs is of major interest to both eukaryotic and prokaryotic microbial biologists. Accordingly, we demonstrate for the first time that an obligate anaerobe, the successful opportunistic pathogen of the oral cavity, Porphyromonas gingivalis, can be genetically engineered for expression of the non-toxic green FbFP. The resulting transformants are functional for studying dynamic bacterial processes in living host cells. The visualization of the transformed P. gingivalis (PgFbFP revealed strong fluorescence that reached a maximum emission at 495 nm as determined by fluorescence microscopy and spectrofluorometry. Human primary gingival epithelial cells (GECs were infected with PgFbFP and the bacterial invasion of host cells was analyzed by a quantitative fluorescence microscopy and antibiotic protection assays. The results showed similar levels of intracellular bacteria for both wild type and PgFbFP strains. In conjunction with organelle specific fluorescent dyes, utilization of the transformed strain provided direct and accurate determination of the live/metabolically active P. gingivalis' trafficking in the GECs over time. Furthermore, the GECs were co-infected with PgFbFP and the ATP-dependent Clp serine protease-deficient mutant (ClpP- to study the differential fates of the two strains within the same host cells. Quantitative co-localization analyses displayed the intracellular PgFbFP significantly associated with the endoplasmic reticulum network, whereas the majority of ClpP- organisms trafficked into the lysosomes. Hence, we have developed a novel and reliable method to characterize live host cell-microbe interactions and demonstrated the adaptability of FMN-green fluorescent protein for studying persistent host infections induced by obligate anaerobic organisms.

  20. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Science.gov (United States)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  1. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Sriram Sokalingam

    Full Text Available Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.

  2. Development of a pronuclear DNA microinjection technique for production of green fluorescent protein-expressing bubaline (Bubalus bubalis) embryos.

    Science.gov (United States)

    Verma, V; Gautam, S K; Palta, P; Manik, R S; Singla, S K; Chauhan, M S

    2008-04-01

    Oocytes from abattoir-derived bubaline (Bubalus bubalis) ovaries were subjected to IVM and IVF; the objective was to develop a pronuclear DNA microinjection technique to produce embryos expressing green fluorescent protein (GFP). The largest proportion (61.2%) of zygotes in which one (1 PN) or two pronuclei (2 PN) were visible was when centrifugation (14,000 x g for 15 min) was done 16 h after insemination. Centrifugation had no adverse effects on cleavage rate, development to morulae/blastocysts, and total cell number of embryos. Piercing the pronuclear but not the plasma membrane reduced (Pbuffer alone, which, in turn, were higher (Pbuffer containing 5 microg/mL DNA. The cleavage rate (39.2% vs. 34.8%) and proportion of cleaved embryos that developed to morulae/blastocysts (37.5% vs. 10.9%) were higher (P<0.05) for microinjected zygotes with 2 PN than for those with 1 PN. The cleavage rate and the proportion of cleaved embryos that developed to morulae and blastocysts were higher (P<0.05) following culture of microinjected zygotes in mCR2aa medium (40.7, 32.7, and 9.1%, respectively) compared to those for mSOFaa (33.3, 26.0, and 6.5%, respectively) or after culture in TCM-199+co-culture with buffalo oviductal epithelial cells (31.2, 25.0, and 4.5%, respectively). The proportion of embryos expressing GFP was higher (P<0.01) for 2 PN than for 1 PN zygotes (15.9% vs. 13.7%). Thirty-five embryos expressed GFP; the proportion of mosaic embryos (62.8%) was higher (P<0.01) than of embryos in which all blastomeres expressed GFP (37.2%); eight and two of those embryos developed to the morula and blastocyst stages, respectively.

  3. Semi-automated hydrophobic interaction chromatography column scouting used in the two-step purification of recombinant green fluorescent protein.

    Science.gov (United States)

    Stone, Orrin J; Biette, Kelly M; Murphy, Patrick J M

    2014-01-01

    Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein

  4. Semi-automated hydrophobic interaction chromatography column scouting used in the two-step purification of recombinant green fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Orrin J Stone

    Full Text Available Hydrophobic interaction chromatography (HIC most commonly requires experimental determination (i.e., scouting in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC, nor HIC column scouting elution profiles of GFP, have been previously reported.Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395 and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation.Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC

  5. Ectopic bone formation cannot occur by hydroxyapatite/{beta}-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lijia [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Duan Xin [Department of Orthopaedics, Chengdu Second People' s Hospital, Chengdu (China); Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Xiang Zhou [Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Shi Yujun; Lu Xiaofeng; Ye Feng [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Bu Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Firstly, chimeric mouse model could be established successfully by bone marrow transplantation after irradiation. Black-Right-Pointing-Pointer Secondly, bone induction can occur in wild-type mice 90 days after implantation, but not occur in chimeric mice. Black-Right-Pointing-Pointer Thirdly, destruction of immune function will block osteoinduction by calcium phosphate ceramics. - Abstract: Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/{beta}-tricalcium phosphate (HA/{beta}-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/{beta}-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede

  6. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    Science.gov (United States)

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.

  7. Use of αv Integrin Linked to Green Fluorescent Protein in Osteosarcoma Cells and Confocal Microscopy to Image Molecular Dynamics During Lung Metastasis in Nude Mice.

    Science.gov (United States)

    Tome, Yasunori; Yano, Shuya; Sugimoto, Naotoshi; Mii, Sumiyuki; Uehara, Fuminari; Miwa, Shinji; Bouvet, Michael; Tsuchiya, Hiroyuki; Kanaya, Fuminori; Hoffman, Robert M

    2016-08-01

    We report here imaging of the behavior of αv integrin linked to green fluorescent protein (GFP) in human osteosarcoma cells colonizing the lung of nude mice. 143B osteosarcoma cells expressing αv integrin-GFP were generated by transfection of an αv integrin-GFP fusion-gene vector pCMV-AC- ITGAV-GFP. In order to generate experimental lung metastases, 143B osteosarcoma cells (1×10(6)), stably expressing αv integrin-GFP, were injected intravenously via the tail vein. The osteosarcoma cells were transplanted orthotopically in the tibia of nude mice in order to generate spontaneous metastases. Lungs were harvested and imaged by confocal microscopy within 1 hour. In the experimental lung-metastasis model, extravasating and deformed osteosarcoma cells expressing αv integrin-GFP were observed. Pseudopodia of the osteosarcoma cells contained small puncta of αv integrin-GFP. In early-stage spontaneous lung metastasis, tumor emboli were observed in pulmonary vessels. At high magnification, small αv integrin-GFP puncta were observed in the tumor embolus. In late-stage spontaneous metastasis, tumor emboli were also observed in pulmonary vessels. Invading cancer cells with strong expression of αv integrin-GFP were observed at the margin of the tumor emboli. The results of this study demonstrate that molecular dynamics of αv integrin-GFP can be imaged in lung metastasis, which will allow further understanding of the role of αv integrin in this process. The results also suggest a general concept for imaging molecular behavior in vivo. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Physiological properties of enkephalin-containing neurons in the spinal dorsal horn visualized by expression of green fluorescent protein in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Kofuji Takefumi

    2011-05-01

    Full Text Available Abstract Background Enkephalins are endogenous opiates that are assumed to modulate nociceptive information by mediating synaptic transmission in the central nervous system, including the spinal dorsal horn. Results To develop a new tool for the identification of in vitro enkephalinergic neurons and to analyze enkephalin promoter activity, we generated transgenic mice for a bacterial artificial chromosome (BAC. Enkephalinergic neurons from these mice expressed enhanced green fluorescent protein (eGFP under the control of the preproenkephalin (PPE gene (penk1 promoter. eGFP-positive neurons were distributed throughout the gray matter of the spinal cord, and were primarily observed in laminae I-II and V-VII, in a pattern similar to the distribution pattern of enkephalin-containing neurons. Double immunostaining analysis using anti-enkephalin and anti-eGFP antibodies showed that all eGFP-expressing neurons contained enkephalin. Incubation in the presence of forskolin, an activator of adenylate cyclase, increased the number of eGFP-positive neurons. These results indicate that eGFP expression is controlled by the penk1 promoter, which contains cyclic AMP-responsive elements. Sections obtained from sciatic nerve-ligated mice exhibited increased eGFP-positive neurons on the ipsilateral (nerve-ligated side compared with the contralateral (non-ligated side. These data indicate that PPE expression is affected by peripheral nerve injury. Additionally, single-neuron RT-PCR analysis showed that several eGFP positive-neurons in laminae I-II expressed glutamate decarboxylase 67 mRNA and that some expressed serotonin type 3 receptors. Conclusions These results suggest that eGFP-positive neurons in laminae I-II coexpress enkephalin and γ-aminobutyric acid (GABA, and are activated by forskolin and in conditions of nerve injury. The penk1-eGFP BAC transgenic mouse contributes to the further characterization of enkephalinergic neurons in the transmission and

  9. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE).

    Science.gov (United States)

    Matsumoto, Yukiko; Hattori, Makoto

    2016-03-01

    RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species.

  10. [Specifics of the coat protein gene in Russian strains of the cucumber green mottle mosaic virus].

    Science.gov (United States)

    Slavokhotova, A A; Andreeva, E N; Shiian, A N; Odintsova, T I; Pukhal'skiĭ, V A

    2007-11-01

    The primary structure of the coat protein (CP) gene was examined for pathogenic strain MS-1 and vaccine strain VIROG-43M of the cucumber green mottle mosaic virus (CGMMV). In CP amino acid composition, strains MS-1 and VIROG-43M are typical representatives of CGMMV: their CPs have 98-100% homology to CPs of other tobamoviruses of the group. The CP gene has the same nucleotide composition in pathogenic MS-1 and vaccine VIROG-43M, indicating that strain attenuation is not determined by this gene. The CP amino acid sequences of the two Russian strains are fully identical to the CP sequences of two Greek strains, GR-3 and GR-5. However, the nucleotide sequences of their genes differ in 13 bp, testifying to the difference between the Russian and Greek strains.

  11. Distribution patterns and impact of transposable elements in genes of green algae.

    Science.gov (United States)

    Philippsen, Gisele S; Avaca-Crusca, Juliana S; Araujo, Ana P U; DeMarco, Ricardo

    2016-12-05

    Transposable elements (TEs) are DNA sequences able to transpose in the host genome, a remarkable feature that enables them to influence evolutive trajectories of species. An investigation about the TE distribution and TE impact in different gene regions of the green algae species Chlamydomonas reinhardtii and Volvox carteri was performed. Our results indicate that TEs are very scarce near introns boundaries, suggesting that insertions in this region are negatively selected. This contrasts with previous results showing enrichment of tandem repeats in introns boundaries and suggests that different evolutionary forces are acting in these different classes of repeats. Despite the relatively low abundance of TEs in the genome of green algae when compared to mammals, the proportion of poly(A) sites derived from TEs found in C. reinhardtii was similar to that described in human and mice. This fact, associated with the enrichment of TEs in gene 5' and 3' flanks of C. reinhardtii, opens up the possibility that TEs may have considerably contributed for gene regulatory sequences evolution in this species. Moreover, it was possible identify several instances of TE exonization for C. reinhardtii, with a particularly interesting case from a gene coding for Condensin II, a protein involved in the maintenance of chromosomal structure, where the addition of a transposomal PHD finger may contribute to binding specificity of this protein. Taken together, our results suggest that the low abundance of TEs in green algae genomes is correlated with a strict negative selection process, combined with the retention of copies that contribute positively with gene structures.

  12. Using Fluorescence PCR Analysis For Gene Diagnosis and Carrier Detection of Chinese Wilson's Disease

    Institute of Scientific and Technical Information of China (English)

    Liang Xiuling; Huang Fan; Xu Pinyi

    2000-01-01

    Objective To develop a noval gene diagnostic method for detecting the high frequency spot of gene mutation in Chinese Wilson's disease by using the most advanced fluorescence PCR in order to make an early diagnosis and carrier detection. Methods 66 Chinese WD patients from 58 families had typical nanifestations of WD, and significant low levels of serum ceruioplasmin (CP), low levels of serum copper., high levels of urine copper. 55 family members (parents 33 and siblings 22) from 42 families of 58 WD families were normal phenotype with normal levels of CP. 30 in patients suffering from acute cerebrovascular disease, vertigo and headache had no blood relationship to be the control group. We got 5ml blood from each object to collect DNA, and designed two fluorcscent gene probes to hybridize with thc normal and mutant sequence of Arg778Leu respectively. The content of probe hybridization was concordant with the fluoresccin which was released during PCR process. The homozygote, heterozygote of WD and normal were identified by thc results of fluorescence PCR and through analysis we obtained the mutation rate of Arg778Leu. After that we selected 3 random samples (2 from WD patients, I from control group) for direct DNA sequencing in exon 8 of WD gencto testify the accuracy of fluorescence PCR. Results Among 66 Chinese WD patients, homozygous for mutation of Arg778Leu had been found in 5 cases and compound heterozygous found in 21 cases. and the mutation rate of Arg778Leu in our study was totally 39.4%. Of 55 normal phenotype family members. 12 individuals incluing parents 7 and siblings 5 were detected as heterozyous in which 11 (7 parents and 4 siblings) had been confirmed as WD gene carriers but not pre-symptomatic patients according to the throughtout examination and the normal CP. There were no mutation of Arg778Leu in all 30 control cases. Thc results of direct DNA sequencing of 3 at random samples were consilient to those results detected by fluorescence PCR

  13. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise;

    2012-01-01

    and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...... erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System(2) (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription...

  14. Artificial selection for a green revolution gene during japonica rice domestication.

    Science.gov (United States)

    Asano, Kenji; Yamasaki, Masanori; Takuno, Shohei; Miura, Kotaro; Katagiri, Satoshi; Ito, Tomoko; Doi, Kazuyuki; Wu, Jianzhong; Ebana, Kaworu; Matsumoto, Takashi; Innan, Hideki; Kitano, Hidemi; Ashikari, Motoyuki; Matsuoka, Makoto

    2011-07-01

    The semidwarf phenotype has been extensively selected during modern crop breeding as an agronomically important trait. Introduction of the semidwarf gene, semi-dwarf1 (sd1), which encodes a gibberellin biosynthesis enzyme, made significant contributions to the "green revolution" in rice (Oryza sativa L.). Here we report that SD1 was involved not only in modern breeding including the green revolution, but also in early steps of rice domestication. We identified two SNPs in O. sativa subspecies (ssp.) japonica SD1 as functional nucleotide polymorphisms (FNPs) responsible for shorter culm length and low gibberellin biosynthetic activity. Genetic diversity analysis among O. sativa ssp. japonica and indica, along with their wild ancestor O. rufipogon Griff, revealed that these FNPs clearly differentiate the japonica landrace and O. rufipogon. We also found a dramatic reduction in nucleotide diversity around SD1 only in the japonica landrace, not in the indica landrace or O. rufipogon. These findings indicate that SD1 has been subjected to artificial selection in rice evolution and that the FNPs participated in japonica domestication, suggesting that ancient humans already used the green revolution gene.

  15. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: Report of a case

    Directory of Open Access Journals (Sweden)

    Shunjin Ryu

    2016-06-01

    Full Text Available After reduction of the incarceration during surgery for incarcerated hernia, intestinal blood flow (IBF and the need for bowel resection must be evaluated. We report the case of a patient with incarcerated umbilical hernia in whom the bowel was preserved after evaluating IBF using indocyanine green (ICG fluorescence. A woman in her 40s with a chief complaint of abdominal pain visited our hospital, was diagnosed with incarcerated umbilical hernia and underwent surgery. Laparotomy was performed to reduce bowel incarceration. After reducing the incarceration, IBF was observed using ICG fluorescence detected using a brightfield full-color fluorescence camera. The small bowel that had been incarcerated showed deep-red discoloration on gross evaluation, but intravenous injection of ICG revealed uniform fluorescence of the mesentery and bowel wall. This indicated an absence of irreversible ischemic changes of the bowel, so no resection was performed. The patient showed a good postoperative course, including resumption of eating on day 4 and discharge on day 11. In surgery for incarcerated hernia, ICG fluorescence may offer a useful method to evaluate IBF after reducing the incarceration. This case implied that PINPOINT could be used in open conventional surgery.

  16. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: Report of a case.

    Science.gov (United States)

    Ryu, Shunjin; Yoshida, Masashi; Ohdaira, Hironori; Tsutsui, Nobuhiro; Suzuki, Norihiko; Ito, Eisaku; Nakajima, Keigo; Yanagisawa, Satoru; Kitajima, Masaki; Suzuki, Yutaka

    2016-06-01

    After reduction of the incarceration during surgery for incarcerated hernia, intestinal blood flow (IBF) and the need for bowel resection must be evaluated. We report the case of a patient with incarcerated umbilical hernia in whom the bowel was preserved after evaluating IBF using indocyanine green (ICG) fluorescence. A woman in her 40s with a chief complaint of abdominal pain visited our hospital, was diagnosed with incarcerated umbilical hernia and underwent surgery. Laparotomy was performed to reduce bowel incarceration. After reducing the incarceration, IBF was observed using ICG fluorescence detected using a brightfield full-color fluorescence camera. The small bowel that had been incarcerated showed deep-red discoloration on gross evaluation, but intravenous injection of ICG revealed uniform fluorescence of the mesentery and bowel wall. This indicated an absence of irreversible ischemic changes of the bowel, so no resection was performed. The patient showed a good postoperative course, including resumption of eating on day 4 and discharge on day 11. In surgery for incarcerated hernia, ICG fluorescence may offer a useful method to evaluate IBF after reducing the incarceration. This case implied that PINPOINT could be used in open conventional surgery.

  17. Preparation of Yellow-Green-Emissive Carbon Dots and Their Application in Constructing a Fluorescent Turn-On Nanoprobe for Imaging of Selenol in Living Cells.

    Science.gov (United States)

    Wang, Qin; Zhang, Shengrui; Zhong, Yaogang; Yang, Xiao-Feng; Li, Zheng; Li, Hua

    2017-02-07

    Selenocysteine (Sec) carries out the majority of the functions of the various Se-containing species in vivo. Thus, it is of great importance to develop sensitive and selective assays to detect Sec. Herein, a carbon-dot-based fluorescent turn-on probe for highly selective detection of selenol in living cells is presented. The highly photoluminescent carbon dots that emit yellow-green fluorescence (Y-G-CDs; λmax = 520 nm in water) were prepared by using m-aminophenol as carbon precursor through a facile solvothermal method. The surface of Y-G-CDs was then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride (DNS-Cl) to afford the 2,4-dinitrobenzene-functionalized CDs (CD-DNS) as a nanoprobe for selenol. CD-DNS is almost nonfluorescent. However, upon treating with Sec, the DNS moiety of CD-DNS can be readily cleaved by selenolate through a nucleophilic substitution process, resulting in the formation of highly fluorescent Y-G-CDs and hence leads to a dramatic increase in fluorescence intensity. The proposed nanoprobe exhibits high sensitivity and selectivity toward Sec over biothiols and other biological species. A preliminary study shows that CD-DNS can function as a useful tool for fluorescence imaging of exogenous and endogenous selenol in living cells.

  18. Repair of spinal cord injury by neural stem cells transfected with brain-derived neurotrophic factor-green fluorescent protein in rats A double effect of stem cells and growth factors

    Institute of Scientific and Technical Information of China (English)

    Yansong Wang; Gang Lü

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)can significantly promote nerve regeneration and repair.High expression of the BDNF-green fluorescent protein(GFP)gene persists for a long time after transfection into neural stem cells.Nevertheless,little is known about the biological characteristics of BDNF-GFP modified nerve stem cells in vivo and their ability to induce BDNF expression or repair spinal cord injury.In the present study,we transplanted BDNF-GFP transgenic neural stem cells into a hemisection model of rats.Rats with BDNF-GFP stem cells exhibited significantly increased BDNF expression and better locomotor function compared with stem cells alone.Cellular therapy with BDNF-GFP transgenic stem cells can improve outcomes better than stem cells alone and may have therapeutic potential for spinal cord injury.

  19. The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice.

    Science.gov (United States)

    Rong, Hong; Tang, Yongyan; Zhang, Hua; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2013-10-15

    The Stay-Green Rice (SGR) protein is encoded by the SGR gene and has been shown to affect chlorophyll (Chl) degradation during natural and dark-induced leaf senescence. An SGR homologue, SGR-like (SGRL), has been detected in many plant species. We show that SGRL is primarily expressed in green tissues, and is significantly downregulated in rice leaves undergoing natural and dark-induced senescence. As the light intensity increases during the natural photoperiod, the intensity of SGRL expression declines while that of SGR expression increases. Overexpression of SGRL reduces the levels of Chl and Chl-binding proteins in leaves, and accelerates their degradation in dark-induced senescence leaves in rice. Our results suggest that the SGRL protein is also involved in Chl degradation. The relationship between SGRL and SGR and their effects on the degradation of the light-harvesting Chl a/b-binding protein are also discussed.

  20. A fusion tag to fold on: the S-layer protein SgsE confers improved folding kinetics to translationally fused enhanced green fluorescent protein.

    Science.gov (United States)

    Ristl, Robin; Kainz, Birgit; Stadlmayr, Gerhard; Schuster, Heinrich; Pum, Dietmar; Messner, Paul; Obinger, Christian; Schaffer, Christina

    2012-09-01

    Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

  1. Optimized green fluorescent protein fused to FoF1-ATP synthase for single-molecule FRET using a fast anti-Brownian electrokinetic trap

    Science.gov (United States)

    Dienerowitz, Maria; Ilchenko, Mykhailo; Su, Bertram; Deckers-Hebestreit, Gabriele; Mayer, Günter; Henkel, Thomas; Heitkamp, Thomas; Börsch, Michael

    2016-02-01

    Observation times of freely diffusing single molecules in solution are limited by the photophysics of the attached fluorescence markers and by a small observation volume in the femtolitre range that is required for a sufficient signal-to-background ratio. To extend diffusion-limited observation times through a confocal detection volume, A. E. Cohen and W. E. Moerner have invented and built the ABELtrap -- a microfluidic device to actively counteract Brownian motion of single nanoparticles with an electrokinetic trap. Here we present a version of an ABELtrap with a laser focus pattern generated by electro-optical beam deflectors and controlled by a programmable FPGA chip. This ABELtrap holds single fluorescent nanoparticles for more than 100 seconds, increasing the observation time of fluorescent nanoparticles compared to free diffusion by a factor of 10000. To monitor conformational changes of individual membrane proteins in real time, we record sequential distance changes between two specifically attached dyes using Förster resonance energy transfer (smFRET). Fusing the a-subunit of the FoF1-ATP synthase with mNeonGreen results in an improved signal-to-background ratio at lower laser excitation powers. This increases our measured trap duration of proteoliposomes beyond 2 s. Additionally, we observe different smFRET levels attributed to varying distances between the FRET donor (mNeonGreen) and acceptor (Alexa568) fluorophore attached at the a- and c-subunit of the FoF1-ATP synthase respectively.

  2. Toward Molecular-Level Characterization of Photoinduced Decarboxylation of the Green Fluorescent Protein: Accessibility of the Charge-Transfer States.

    Science.gov (United States)

    Grigorenko, Bella L; Nemukhin, Alexander V; Morozov, Dmitry I; Polyakov, Igor V; Bravaya, Ksenia B; Krylov, Anna I

    2012-06-12

    Irradiation of the green fluorescent protein (GFP) by intense violet or UV light leads to decarboxylation of the Glu222 side chain in the vicinity of the chromophore (Chro). This phenomenon is utilized in optical highlighters, such as photoactivatable GFP (PA-GFP). Using state-of-the-art quantum chemical calculations, we investigate the feasibility of the mechanism proposed in the experimental studies [van Thor et al. Nature Struct. Biol.2002, 9, 37-41; Bell et al. J. Am. Chem. Soc.2003, 125, 37-41]. It was hypothesized that a primary event of this photoconversion involves population of a charge-transfer (CT) state via either the first excited state S1 when using longer wavelength (404 and 476 nm) or a higher excited state when using higher energy radiation (254 and 280 nm). Based on the results of electronic structure calculations, we identify these critical CT states (produced by electron transfer from Glu to electronically excited Chro) and show that they are accessible via different routes, i.e., either directly, by one-photon absorption, or through a two-step excitation via S1. The calculations are performed for model systems representing the chromophore and the key nearby residues using two complementary approaches: (i) the multiconfigurational quasidegenerate perturbation theory of second order with the occupation restricted multiple active space scheme for configuration selection in the multiconfigurational self-consistent field reference; and (ii) the single-reference configuration interaction singles method with perturbative doubles that does not involve active space selection. We examined electronic transitions with nonzero oscillator strengths in the UV and visible range between the electronic states involving the Chro and Glu residues. Both methods predict the existence of CT states with nonzero oscillator strength in the UV range and a local excited state of the chromophore accessible via S1 that may lead to the target CT state. The results suggest

  3. Localization of the human OB gene (OBS) to chromosome 7q32 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Geffroy, S.; Duban, B.; Martinville, B. de [Universitaire de Lille (France)] [and others

    1995-08-10

    An important gene involved in the pathogenesis of obesity is the product of the human homologue of the murine obese gene (gene symbol OBS). Using fluorescence in situ hybridization (FISH), we have localized the human OB gene to human chromosome 7, specifically to region 7q32.1. The FISH data of human OBS provide a gene-associated marker for genetic mapping. 8 refs., 1 fig.

  4. Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties.

    Science.gov (United States)

    Don Paul, Craig; Traore, Daouda A K; Byres, Emma; Rossjohn, Jamie; Devenish, Rodney J; Kiss, Csaba; Bradbury, Andrew; Wilce, Matthew C J; Prescott, Mark

    2011-10-01

    Enhanced consensus green protein variant 123 (eCGP123) is an extremely thermostable green fluorescent protein (GFP) that exhibits useful negative reversible photoswitching properties. eCGP123 was derived by the application of both a consensus engineering approach and a recursive evolutionary process. Diffraction-quality crystals of recombinant eCGP123 were obtained by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The eCGP123 crystal diffracted X-rays to 2.10 Å resolution. The data were indexed in space group P1, with unit-cell parameters a = 74.63, b = 75.38, c = 84.51 Å, α = 90.96, β = 89.92, γ = 104.03°. The Matthews coefficient (V(M) = 2.26 Å(3) Da(-1)) and a solvent content of 46% indicated that the asymmetric unit contained eight eCGP123 molecules.

  5. Cloning and sequencing of the ferredoxin gene of blue-green alga Anabaena siamensis

    Science.gov (United States)

    Li, Shou-Dong; Song, Li-Rong; Liu, Yong-Ding; Zhao, Jin-Dong

    1998-03-01

    The structure gene for ferredoxin, petFI, from Anabaena siamensis has been amplified by polymerase chain reaction(PCR) and cloned into cloning vector pGEM-3zf(+). The nucleotide sequence of petFI has been determined with silver staining sequencing method. There is 96.8% homology between coding region of petFI from A. siamensis and that of petFI from A. sp. 7120. Amino acid sequences of seven strains of blue-green algae are compared.

  6. [Study on transformation of P-dissolving Penicillium oxalicum P8 with double-marker vector expressing green fluorescent protein and hygromycin B resistance].

    Science.gov (United States)

    Zhang, Lei; Fan, Bing-Quan; Huang, Wei-Yi

    2005-12-01

    P-dissolving Penicillium oxalicum P8 was isolated previously in this lab which has a considerable ability to dissolve many kinds of inorganic phosphorus and improve crop growth. In order to study rhizosphere colonization of plants by Penicillium oxalicum P8, protoplasts were transformed with a double-marker expression vector of green fluorescent protein and hygromycin B resistance. Some transformants were selected which expressed both the GFP and hygromycin B phosphotransferase and did not show significant morphological or physiological differences as compared to wild-type strain. Southern blot analysis confirmed the heterogeneous genomic integration of the vector DNA into the transformants.

  7. Assessment of SYBR green I dye-based fluorescence assay for screening antimalarial activity of cationic peptides and DNA intercalating agents.

    Science.gov (United States)

    Bhatia, Rakesh; Gautam, Ankur; Gautam, Shailendra K; Mehta, Divya; Kumar, Vinod; Raghava, Gajendra P S; Varshney, Grish C

    2015-05-01

    The SYBR green I (SG) dye-based fluorescence assay for screening antimalarial compounds is based on direct quantitation of parasite DNA. We show that DNA-interacting cationic cell-penetrating peptides (CPPs) and intercalating agents compete with SG dye to bind to DNA. Therefore, readouts of this assay, unlike those of the [(3)H]hypoxanthine incorporation assay, for the antimalarial activity of the above DNA binding agents may be erroneous. In the case of CPPs, false readouts can be improved by the removal of excess peptides. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Application of green fluorescent protein in pharmaceutical research%绿色荧光蛋白在药学研究中的应用进展

    Institute of Scientific and Technical Information of China (English)

    刘艳丽; 鲁澄宇

    2008-01-01

    来自水母的绿色荧光蛋白(green fluorescent protein,GFP)具有很多理想的特性,被喻为活分子探针.GFP适用于作普遍的报告标记,尤其适用于活体细胞或组织,已被广泛应用于动物学、植物学、微生物学等领域的研究.本文对GFP在药学研究中的应用做一综述.

  9. Comparison of High Performance Liquid Chromatography with Fluorescence Detector and with Tandem Mass Spectrometry methods for detection and quantification of Ochratoxin A in green and roasted coffee beans

    Directory of Open Access Journals (Sweden)

    Raquel Duarte da Costa Cunha Bandeira

    2013-12-01

    Full Text Available Two analytical methods for the determination and confirmation of ochratoxin A (OTA in green and roasted coffee samples were compared. Sample extraction and clean-up were based on liquid-liquid phase extraction and immunoaffinity column. The detection of OTA was carried out with the high performance liquid chromatography (HPLC combined either with fluorescence detection (FLD, or positive electrospray ionization (ESI+ coupled with tandem mass spectrometry (MS-MS. The results obtained with the LC-ESI-MS/MS were specific and more sensitive, with the advantages in terms of unambiguous analyte identification, when compared with the HPLC-FLD.

  10. Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  11. An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light.

    Science.gov (United States)

    Li, Chun-Xia; Xu, Zhi-Gang; Dong, Rui-Qi; Chang, Sheng-Xin; Wang, Lian-Zhen; Khalil-Ur-Rehman, Muhammad; Tao, Jian-Min

    2017-01-01

    Using an RNA sequencing (RNA-seq) approach, we analyzed the differentially expressed genes (DEGs) and physiological behaviors of "Manicure Finger" grape plantlets grown in vitro under white, blue, green, and red light. A total of 670, 1601, and 746 DEGs were identified in plants exposed to blue, green, and red light, respectively, compared to the control (white light). By comparing the gene expression patterns with the growth and physiological responses of the grape plantlets, we were able to link the responses of the plants to light of different spectral wavelengths and the expression of particular sets of genes. Exposure to red and green light primarily triggered responses associated with the shade-avoidance syndrome (SAS), such as enhanced elongation of stems, reduced investment in leaf growth, and decreased chlorophyll levels accompanied by the expression of genes encoding histone H3, auxin repressed protein, xyloglucan endotransglycosylase/hydrolase, the ELIP protein, and microtubule proteins. Furthermore, specific light treatments were associated with the expression of a large number of genes, including those involved in the glucan metabolic pathway and the starch and sucrose metabolic pathways; these genes were up/down-regulated in ways that may explain the increase in the starch, sucrose, and total sugar contents in the plants. Moreover, the enhanced root growth and up-regulation of the expression of defense genes accompanied with SAS after exposure to red and green light may be related to the addition of 30 g/L sucrose to the culture medium of plantlets grown in vitro. In contrast, blue light induced the up-regulation of genes related to microtubules, serine carboxypeptidase, chlorophyll synthesis, and sugar degradation and the down-regulation of auxin-repressed protein as well as a large number of resistance-related genes that may promote leaf growth, improve chlorophyll synthesis and chloroplast development, increase the ratio of chlorophyll a (chla

  12. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei.

    Science.gov (United States)

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-10-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages.

  13. Synthesis and characterization of gold-deposited red, green and blue fluorescent silica nanoparticles for biosensor application.

    Science.gov (United States)

    Lee, Kyoung G; Wi, Rinbok; Park, Tae Jung; Yoon, Sun Hong; Lee, Jaebeom; Lee, Seok Jae; Kim, Do Hyun

    2010-09-14

    Fluorescent silica nanoparticles deposited with highly monodisperse gold nanoparticles (1-2 nm) were synthesized via the W/O method and intensive ultrasound irradiation. A large surface area of gold-doped fluorescent silica nanoparticle serves as a platform to immobilize a specific binding protein for biomolecules interaction in bioimaging applications.

  14. Candidate gene markers for Candidatus Liberibacter asiaticus for detecting citrus greening disease.

    Science.gov (United States)

    Nageswara-Rao, Madhugiri; Irey, Mike; Garnsey, Stephen M; Gowda, Siddarame

    2013-06-01

    Citrus Huanglongbing (HLB) also known as citrus greening is one of the most devastating diseases of citrus worldwide. The disease is caused by Candidatus Liberibacter bacterium, vectored by the psyllid Diaphorina citri Kuwayama and Trioza erytreae Del Guercio. Citrus plants infected by the HLB bacterium may not show visible symptoms sometimes for years following infection. The aim of this study was to develop effective gene-specific primer pairs for polymerase chain reaction based method for quick screening of HLB disease. Thirty-two different gene-specific primer pairs, across the Ca. Liberibacter asiaticus genome, were successfully developed. The possibility of these primer pairs for cross-genome amplification across 'Ca. Liberibacter africanus' and 'Ca. Liberibacter americanus' were tested. The applicability of these primer pairs for detection and differentiation of Ca Liberibacter spp. is discussed.

  15. Candidate gene markers for Candidatus Liberibacter asiaticus for detecting citrus greening disease

    Indian Academy of Sciences (India)

    Madhugiri Nageswara-Rao; Mike Irey; Stephen M Garnsey; Siddarame Gowda

    2013-06-01

    Citrus Huanglongbing (HLB) also known as citrus greening is one of the most devastating diseases of citrus worldwide. The disease is caused by Candidatus Liberibacter bacterium, vectored by the psyllid Diaphorina citri Kuwayama and Trioza erytreae Del Guercio. Citrus plants infected by the HLB bacterium may not show visible symptoms sometimes for years following infection. The aim of this study was to develop effective gene-specific primer pairs for polymerase chain reaction based method for quick screening of HLB disease. Thirty-two different gene-specific primer pairs, across the Ca. Liberibacter asiaticus genome, were successfully developed. The possibility of these primer pairs for cross-genome amplification across `Ca. Liberibacter africanus’ and `Ca. Liberibacter americanus’ were tested. The applicability of these primer pairs for detection and differentiation of Ca Liberibacter spp. is discussed.

  16. Total Mercury Determination in Petroleum Green Coke and Oily Sludge Samples by Cold Vapor Atomic Fluorescence Spectrometry

    National Research Council Canada - National Science Library

    Camera, Adriana S; Maranhão, Tatiane A; Oliveira, Fernando J. S; Silva, Jessee S. A; Frescura, Vera L. A

    2015-01-01

    ...+ before the atomic vapor formation. Accuracy of the method was evaluated through certified reference material, for green coke, and comparison with cold vapor atomic absorption spectrometry (CV AAS), for oily sludge...

  17. Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta).

    Science.gov (United States)

    Rodríguez-Salinas, Elizabeth; Riveros-Rosas, Héctor; Li, Zhongkui; Fucíková, Karolina; Brand, Jerry J; Lewis, Louise A; González-Halphen, Diego

    2012-07-01

    In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.

  18. The patterns of sex determination and differentiation genes in green sea turtle (Chelonia mydas

    Directory of Open Access Journals (Sweden)

    Anggraini Barlian

    2015-08-01

    Full Text Available Green sea turtle (C. mydas is one of TSD (Temperature-dependent Sex Determination, TSD animals which mean that their sex is determined by the egg’s incubation temperature. Genotypic Sex Determination (GSD homologous genes play a role in TSD process. Until now, research on the pattern of sex determination genes in C.mydas has not been conducted yet. The aim of this research is to reveal sex determination and differentiation genes expression in Mesonephros-Gonad (MG complexes of C. mydas embryos which incubated in masculinizing temperature (MT and feminizing temperature (FT. C. mydas eggs were incubated in 3 different stage of TSP (Thermosensitive Period at masculinizing temperature (26±10C, MT and feminizing temperature (31±10C FT. Mesonefros-gonad complexes were isolated at Pre-TSP stage (FT at 14th day, MT at 24th day, TSP stage (FT at 24th day, MT at 36th day and differentiated stage (FT at 40th day, MT at 58th day. RNA from mesonephros-gonad (MG complexes were converted into cDNA by RT-PCR process. Pattern of Sf1, Wt1, Aromatase, FoxL2, Sox9, Wnt4, Fgf9 and Rspo1 genes expression were analyzed by quantitative Real Time PCR (qPCR method with ?-actin gene as an internal control. Result of this study shown that expression pattern of Sf1, Wt1, Aromatase, FoxL2, Sox9, Wnt4, Fgf9, and Rspo1genes in gonadal embryo of C. mydas were increased during gonadal development stage. Four genes expression patterns (Wnt4, Fgf9, Rspo1, and FoxL2 have shown that these genes have role in sexual differentiation rather than in sexual determination.

  19. Gene therapy for red-green colour blindness in adult primates.

    Science.gov (United States)

    Mancuso, Katherine; Hauswirth, William W; Li, Qiuhong; Connor, Thomas B; Kuchenbecker, James A; Mauck, Matthew C; Neitz, Jay; Neitz, Maureen

    2009-10-08

    Red-green colour blindness, which results from the absence of either the long- (L) or the middle- (M) wavelength-sensitive visual photopigments, is the most common single locus genetic disorder. Here we explore the possibility of curing colour blindness using gene therapy in experiments on adult monkeys that had been colour blind since birth. A third type of cone pigment was added to dichromatic retinas, providing the receptoral basis for trichromatic colour vision. This opened a new avenue to explore the requirements for establishing the neural circuits for a new dimension of colour sensation. Classic visual deprivation experiments have led to the expectation that neural connections established during development would not appropriately process an input that was not present from birth. Therefore, it was believed that the treatment of congenital vision disorders would be ineffective unless administered to the very young. However, here we show that the addition of a third opsin in adult red-green colour-deficient primates was sufficient to produce trichromatic colour vision behaviour. Thus, trichromacy can arise from a single addition of a third cone class and it does not require an early developmental process. This provides a positive outlook for the potential of gene therapy to cure adult vision disorders.

  20. An Evaluation of Quantitative PCR Assays (TaqMan® and SYBR Green for the Detection of Babesia bigemina and Babesia bovis, and a Novel Fluorescent-ITS1-PCR Capillary Electrophoresis Method for Genotyping B. bovis Isolates

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2016-09-01

    Full Text Available Babesia spp. are tick-transmitted haemoparasites causing tick fever in cattle. In Australia, economic losses to the cattle industry from tick fever are estimated at AUD$26 Million per annum. If animals recover from these infections, they become immune carriers. Here we describe a novel multiplex TaqMan qPCR targeting cytochrome b genes for the identification of Babesia spp. The assay shows high sensitivity, specificity and reproducibility, and allows quantification of parasite DNA from Babesia bovis and B. bigemina compared to standard PCR assays. A previously published cytochrome b SYBR Green qPCR was also tested in this study, showing slightly higher sensitivity than the Taqman qPCRs but requires melting curve analysis post-PCR to confirm specificity. The SYBR Green assays were further evaluated using both diagnostic submissions and vaccinated cattle (at 7, 9, 11 and 14 days post-inoculation showed that B. bigemina can be detected more frequently than B. bovis. Due to fewer circulating parasites, B. bovis detection in carrier animals requires higher DNA input. Preliminary data for a novel fluorescent PCR genotyping based on the Internal Transcribed Spacer 1 region to detect vaccine and field alleles of B. bovis are described. This assay is capable of detecting vaccine and novel field isolate alleles in a single sample.

  1. Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves.

    Science.gov (United States)

    Efimova, Marina V; Vankova, Radomira; Kusnetsov, Victor V; Litvinovskaya, Raisa P; Zlobin, Ilya E; Dobrev, Petre; Vedenicheva, Nina P; Savchuk, Alina L; Karnachuk, Raisa A; Kudryakova, Natalia V; Kuznetsov, Vladimir V

    2017-04-01

    In order to evaluate whether brassinosteroids (BS) and green light regulate the transcription of plastid genes in a cross-talk with cytokinins (CKs), transcription rates of 12 plastid genes (ndhF, rrn23, rpoB, psaA, psaB, rrn16, psbA, psbD, psbK, rbcL, atpB, and trnE/trnY) as well as the accumulation of transcripts of some photoreceptors (PHYA, CRY2, CRY1A, and CRY1B) and signaling (SERK and CAS) genes were followed in detached etiolated barley leaves exposed to darkness, green or white light ±1μm 24-epibrassinolide (EBL). EBL in the dark was shown to up-regulate the transcription of 12 plastid genes, while green light activated 10 genes and the EBL combined with the green light affected the transcription of only two genes (psaB and rpoB). Green light inhibited the expression of photoreceptor genes, except for CRY1A. Under the green light, EBL practically did not affect the expression of CRY1A, CAS and SERK genes, but it reduced the influence of white light on the accumulation of CAS, CRY1A, CRY1B, and SERK gene transcripts. The total content of BS in the dark and under white light remained largely unchanged, while under green light the total content of BRs (brassinolide, castasterone, and 6-deoxocastasterone) and HBRs (28-homobrassinolide, 28-homocastasterone, and 6-deoxo-28-homocastasterone) increased. The EBL-dependent up-regulation of plastome transcription in the dark was accompanied by a significant decrease in CK deactivation by O-glucosylation. However, no significant effect on the content of active CKs was detected. EBL combined with green light moderately increased the contents of trans-zeatin and isopentenyladenine, but had a negative effect on cis-zeatin. The most significant promotive effect of EBL on active CK bases was observed in white light. The data obtained suggest the involvement of CKs in the BS- and light-dependent transcription regulation of plastid genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Correlating cell morphology and stochastic gene expression using fluorescence spectroscopy and GPU-enabled image analysis

    Science.gov (United States)

    Shepherd, Douglas; Shapiro, Evan; Perillo, Evan; Werner, James

    2014-03-01

    Biological processes at the microscopic level appear stochastic, requiring precise measurement and analytical techniques to determine the nature of the underlying regulatory networks. Single-molecule, single-cell studies of gene expression have provided insights into how cells respond to external stimuli. Recent work has suggested that macroscopic cell properties, such as cell morphology, are correlated with gene expression. Here we present single-cell studies of a signal-activated gene network: Interleukin 4 (IL4) RNA production in rat basophil leukemia (RBL) cells during the allergic response. We fluorescently label individual IL4 RNA transcripts in populations of RBL cells, subject to varying external stimuli. A custom super-resolution microscope is used to measure the number of fluorescent labeled IL4 transcripts in populations of RBL cells on a cell-by-cell basis. To test the hypothesis that cell morphology is connected genotype, we analyze white light images of RBL cells and cross-reference cell morphology with IL4 RNA levels. We find that the activation of RBL cells, determined by white-light imaging, is well correlated with IL4 mRNA expression.

  3. Improving the production of transgenic fish germlines: in vivo evaluation of mosaicism in zebrafish (Danio rerio using a green fluorescent protein (GFP and growth hormone cDNA transgene co-injection strategy

    Directory of Open Access Journals (Sweden)

    Márcio de Azevedo Figueiredo

    2007-01-01

    Full Text Available In fish, microinjection is the method most frequently used for gene transfer. However, due to delayed transgene integration this technique almost invariably produces mosaic individuals and if the gene is not integrated into germ cells its transmission to descendants is difficult or impossible. We evaluated the degree of in vivo mosaicism using a strategy where a reporter transgene is co-injected with a transgene of interest so that potential germline founders can be easily identified. Transgenic zebrafish (Danio rerio were produced using two transgenes, both comprised of the carp beta-actin promoter driving the expression of either the green fluorescent protein (GFP reporter gene or the growth hormone cDNA from the marine silverside fish Odonthestes argentinensis. The methodology applied allowed a rapid identification of G0 transgenic fish and also detected which fish were transmitting transgenes to the next generation. This strategy also allowed inferences to be made about genomic transgene integration events in the six lineages produced and allowed the identification of one lineage transmitting both transgenes linked on the same chromosome. These results represent a significant advance in the reduction of the effort invested in producing a stable genetically modified fish lineage.

  4. Quantification of green fluorescent protein by in vivo imaging, PCR, and flow cytometry: comparison of transgenic strains and relevance for fetal cell microchimerism.

    Science.gov (United States)

    Fujiki, Yutaka; Tao, Kai; Bianchi, Diana W; Giel-Moloney, Maryann; Leiter, Andrew B; Johnson, Kirby L

    2008-02-01

    Animal models are increasingly being used for the assessment of fetal cell microchimerism in maternal tissue. We wished to determine the optimal transgenic mouse strain and analytic technique to facilitate the detection of rare transgenic microchimeric fetal cells amongst a large number of maternal wild-type cells. We evaluated two strains of mice transgenic for the enhanced green fluorescent protein (EGFP): a commercially available, commonly used strain (C57BL/6-Tg(ACTB-EGFP)10sb/J) (CAG) and a newly created strain (ROSA26-EGFP) using three different techniques: in vivo and ex vivo fluorescent imaging (for whole body and dissected organs, respectively), PCR amplification of gfp, and flow cytometry (FCM). By fluorescent imaging, organs from CAG mice were 10-fold brighter than organs from ROSA26-EGFP mice (P PCR, more transgene from CAG mice was detected compared to ROSA26-EGFP mice (P = 0.04). By FCM, ROSA26-EGFP cell fluorescence was more uniform than CAG cells. A greater proportion of cells from ROSA26-EGFP organs were positive for EGFP than cells from CAG organs, but CAG mice had a greater proportion of cells with the brightest fluorescent intensity. Each transgenic strain possesses characteristics that make it useful under specific experimental circumstances. The CAG mouse model is preferable when experiments require brighter cells, whereas ROSA26-EGFP is more appropriate when uniform or ubiquitous expression is more important than brightness. Investigators must carefully select the transgenic strain most suited to the experimental design to obtain the most consistent and reproducible data. In vivo imaging allows for phenotypic evaluation of whole animals and intact organs; however, we did not evaluate its utility for the detection of rare, fetal microchimeric cells in the maternal organs. Finally, while PCR amplification of a paternally inherited transgene does allow for the quantitative determination of rare microchimeric cells, FCM allows for both

  5. Reduced transcription of a LEAFY-like gene in Alstroemeria sp. cultivar Green Coral that cannot develop floral meristems.

    Science.gov (United States)

    Hirai, Masayo; Yamagishi, Masumi; Kanno, Akira

    2012-04-01

    Alstroemeria sp. cv. Green Coral has numerous bracts instead of flowers, and its cyme structures are repeated eternally. Observations of the development and morphology of inflorescence in cv. Green Coral revealed that transition from inflorescence to floral meristem was restricted. We isolated and characterized floral meristem identity genes LEAFY-like (AlsLFY) and SQUAMOSA-like (AlsSQa and AlsSQb) genes from Alstroemeria ligtu. In situ hybridization results indicated that AlsSQa and AlsSQb were expressed in the dome-shaped floral meristems and all floral organ primordia in A. ligtu. Transcripts of AlsLFY accumulated early in the dome-shaped floral meristems; the signals were restricted later to the outer region of the floral meristem. These results indicate that AlsLFY, AlsSQa, and AlsSQb function as floral meristem identity genes. Expression profiles of AlsLFY, AlsSQa, AlsSQb, and other MADS-box genes were compared between A. ligtu and cv. Green Coral. AlsLFY, AlsDEFa, and AlsAGL6 transcripts were not detected at the shoot apices of cv. Green Coral but were detected in A. ligtu. The early induction and accumulation of AlsLFY transcripts in the inflorescence meristem of A. ligtu prior to development of the floral meristem suggest that downregulation of AlsLFY is likely to restrict the inflorescence-to-floral meristem transition in cv. Green Coral.

  6. Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation.

    Science.gov (United States)

    Wang, Wenhong; Zhao, Yina; Jin, Yan

    2013-11-27

    Sensitive and specific detection of disease-related gene and single nucleotide polymorphism (SNP) is of great importance in cancer diagnosis. Here, a colorimetric and fluorescent approach is described for detection of the p53 gene and SNP in homogeneous solution by using gold nanorods (GNRs) as both colorimetric probe and fluorescence quencher. Hairpin oligonucleotide was utilized as DNA probe to ensure highly sequence-specific detection of target DNA. In the presence of target DNA, the formation of DNA duplex greatly changed the electrostatic interaction between GNR and DNAs, leading to an obvious change in fluorescence and colorimetric response. The detection limit of fluorescent and colorimetric assay is 0.26 pM and 0.3 nM, respectively. Both fluorescence and colorimetric strategies were able to effectively discriminate complementary DNA from single-base mismatched DNA, which is meaningful for cancer diagnosis. More important, target DNA can be detected as low as 10 nM by the naked eye. Furthermore, transmission electron microscopy and fluorescence anisotropy measurements demonstrated that the color change as well as fluorescence quenching is ascribed to the DNA hybridization-induced aggregation of GNRs. Therefore, the assay provided a fast, sensitive, cost-effective, and specific sensing platform for detecting disease-related gene and SNP.

  7. A Fluorescent Probe for Detecting Mycobacterium tuberculosis and Identifying Genes Critical for Cell Entry

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2016-12-01

    Full Text Available ABSTRACTThe conventional method for quantitating Mycobacterium tuberculosis (Mtb in vitro and in vivo relies on bacterial colony forming unit (CFU enumeration on agar plates. Due to the slow growth rate of Mtb, it takes 3-6 weeks to observe visible colonies on agar plates. Imaging technologies that are capable of quickly quantitating both active and dormant tubercle bacilli in vitro and in vivo would accelerate research towards the development of anti-TB chemotherapies and vaccines. We have developed a fluorescent probe that can directly label the Mtb cell wall components. The fluorescent probe, designated as DLF-1, has a strong affinity to the D-Ala-D-Ala unit of the late peptidoglycan intermediates in the bacterial cell wall. We demonstrate that DLF-1 is capable of detecting Mtb in both the active replicating and dormant states in vitro at 100 nM without inhibiting bacterial growth. The DLF-1 fluorescence signal correlated well with CFU of the labeled bacteria (R2=1 and 0.99 for active replicating and dormant Mtb, respectively. DLF-1 can also quantitate labeled Mtb inside of cells. The utility of DLF-1 probe to quantitate Mtb was also successfully applied to identify genes critical for cell invasion. In conclusion, this novel near infrared imaging probe provides a powerful new tool for enumerating Mtb with potential future use in bacterial virulence study.

  8. The Use of Living Cancer Cells Expressing Green Fluorescent Protein in the Nucleus and Red Fluorescence Protein in the Cytoplasm for Real-time Confocal Imaging of Chromosome and Cytoplasmic Dynamics During Mitosis.

    Science.gov (United States)

    Suetsugu, Atsushi; Jiang, Ping; Yang, Meng; Yamamoto, Norio; Moriwaki, Hisataka; Saji, Shigetoyo; Hoffman, Robert M

    2015-05-01

    A library of dual-color fluorescent cancer cells with green fluorescent protein (GFP), linked to histone H2B, expressed in the nucleus and red fluorescent protein (RFP) expressed in the cytoplasm was previously genetically engineered. The aim of the current study was to use the dual-color cancer cells to visualize chromosome and cytoplasmic dynamics during mitosis. Using an Olympus FV1000 confocal microscope, a library of dual-color cells from the major cancer types was cultured on plastic. The cells were imaged by confocal microscopy to demonstrate chromosome and cytoplasmic dynamics during mitosis. Nuclear GFP expression enabled visualization of chromosomes behavior, whereas simultaneous cytoplasmic RFP expression enabled visualization of cytoplasmic behavior during mitosis. Thus, total cellular dynamics can be visualized at high resolution, including individual chromosomes in some cases, in living dual-color cells in real time. Dual-color cancer cells expressing H2B-GFP in the nucleus and RFP in the cytoplasm provide unique tools for visualizing subcellular nuclear and cytoplasm dynamics, including the behavior of individual chromosomes during mitosis. The dual-color cells can be used to evaluate chromosomal loss or gain in real time during treatment with a variety of agents or as the cells are selected for increased or decreased malignancy in culture or in vivo. The dual color cells will be a useful tool to discover and evaluate novel strategies for killing cancer cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Construction of the Enhanced Yellow Fluorescent Protein Expression Vector Carrying IFN-γ Gene

    Institute of Scientific and Technical Information of China (English)

    Yuqing Lan; Jian Ge; Yehong Zhuo; Jinlin Wang; Huiyi Chen; Haiquan Liu

    2001-01-01

    Purpose: To construct the enhanced yellow fluorescent protein (EYFP) vector carryinginterferon-y gene (ifn-γ) in order to provide an ideal reporter in the expression of ifn-γand location of protein in vitro and in vivo.Method: According to the nucleotide sequence of ifn-y gene, a pair of oligonucleotideswas designed as primer whose two end contained nucleotide sequence of EcoR V and NotⅠ restriction endonuclease respectively. The gene encoding for inf-y was amplified usingPCR technique. After the PCR product was retrieved and purified, it was digested withEcoR V and Not Ⅰ restriction endonuclease, and then cloned into the plasmidpIRES-EYFP. The recombinant plasmid plRES-EYFPIFN-γwas identified by restrictionendonuclease enzyme analysis and DNA sequence analysis.Results: The ifn-γ was successfully amplified and verified by partial DNA sequenceanalysis. The recombinant plasmid was correctly screened.Conclusion: The EYFP expression vector carrying ifn-γgene was successfully established.This research work has formed a base for monitoring the ifn-y gene expression andprotein position in living cells.

  10. Low cytotoxicity fluorescent PAMAM dendrimer as gene carriers for monitoring the delivery of siRNA

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Lingmei [Sichuan University, State Key Laboratory of Bio-resources and Eco-environment, The Ministry of Education, College of Life Sciences (China); Huang, Saipeng [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China); Chen, Zhao [Xi’an Jiaotong University, School of Science (China); Li, Yanchao [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China); Liu, Ke [Sichuan University, State Key Laboratory of Bio-resources and Eco-environment, The Ministry of Education, College of Life Sciences (China); Liu, Yang, E-mail: yliu@iccas.ac.cn; Du, Libo, E-mail: dulibo@iccas.ac.cn [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China)

    2015-09-15

    Visual detection of gene vectors has attracted a great deal of attention due to the application of these vectors in monitoring and evaluating the effect of gene carriers in living cells. A non-viral vector, the fluorescent PAMAM dendrimer (F-PAMAM), was synthesized through conjugation of PAMAM dendrimers and fluorescein. In vitro and ex vivo experiments show that F-PAMAM exhibits superphotostability, low cytotoxicity and facilitates endocytosis by A549 cells. The vector has a high siRNA binding affinity and it increases the efficiency of cy5-siRNA delivery in A549 cells, in comparison with a cy5-siRNA monomer. Our results provide a new method for simultaneously monitoring the delivery of siRNA and its non-viral carriers in living cells.

  11. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)

    KAUST Repository

    Fučíková, Karolina

    2015-04-06

    © 2015 Phycological Society of America. Sexual reproduction is widespread in eukaryotes and is well documented in chlorophytan green algae. In this lineage, however, the Trebouxiophyceae represent a striking exception: in contrast to its relatives Chlorophyceae and Ulvophyceae this group appears to be mostly asexual, as fertilization has been rarely observed. Assessments of sexual reproduction in the Trebouxiophyceae have been based on microscopic observation of gametes fusing. New genomic data offer now the opportunity to check for the presence of meiotic genes, which represent an indirect evidence of a sexual life cycle. Using genomic and transcriptomic data for 12 taxa spanning the phylogenetic breadth of the class, we tried to clarify whether genuine asexuality or cryptic sexuality is the most likely case for the numerous putatively asexual trebouxiophytes. On the basis of these data and a bibliographic review, we conclude that the view of trebouxiophytes as primarily asexual is incorrect. In contrast to the limited number of reports of fertilization, meiotic genes were found in all genomes and transcriptomes examined, even in species presumed asexual. In the taxa examined the totality or majority of the genes were present, Helicosporidium and Auxenochlorella being the only partial exceptions (only four genes present). The evidence of sex provided by the meiotic genes is phylogenetically widespread in the class and indicates that sexual reproduction is not associated with any particular morphological or ecological trait. On the basis of the results, we expect that the existence of the meiotic genes will be documented in all trebouxiophycean genomes that will become available in the future.

  12. Early Identification of Stable Transformation Events by Combined Use of Antibiotic Selection and Vital Detection of Green Fluorescent Protein (GFP) in Carrot (Daucus carota L.) Callus

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yeu Yau; Seth J Davis; Ahmet Ipek; Philipp W Simon

    2008-01-01

    Genetic transformation is a useful technique to complement conventional breeding in crop improvement. Although carrot has been a model organism for in vitro embryogenesis study, genetic transformation of carrot is still lengthy and labor intensive. An efficient transformation and detection system is desirable. Direct infection of Agrobacterium to carrot calli has provided an easy way for carrot genetic transformation. To improve the efficiency of antibiotic selection in this method, we report the combined use of an improved green-fluorescent protein, referred to as smGFP, to establish a versatile selection method for carrot callus transformation system. By combining antibiotic selection with the bright fluorescence observed in the callus tissue, we were able to easily identify stable transformants in early stage of the transformation process. In addition to the GFP expression of the callus cells, the transgenic nature of callus cells was confirmed with Southern and Western analysis. We found we can link the simplicity of carrot-callus-cell transformation, early detection of stable transformants with antibiotic selection, visualization of GFP fluorescence, and molecular analysis (Southern and Western) of callus tissue (non-photosynthetic tissue) to provide a more efficient way in identifying stable transformants at early stage of carrot transformation.

  13. In Vivo Optical Imaging of Acute Myeloid Leukemia by Green Fluorescent Protein: Time-Domain Autofluorescence Decoupling, Fluorophore Quantification, and Localization

    Directory of Open Access Journals (Sweden)

    Emmet McCormack

    2007-05-01

    Full Text Available Human xenografts of acute myeloid leukemia (AML in nonobese diabetic/severe combined immunodeficient (NOD/SCID mice result in disease states of diffuse, nonpalpable tissue infiltrates exhibiting a variable disease course, with some animals not developing a disease phenotype. Thus, disease staging and, more critically, quantification of preclinical therapeutic effect in these models are particularly difficult. In this study, we present the generation of a green fluorescent protein (GFP-labeled human leukemic cell line, NB4, and validate the potential of a time-domain imager fitted with a 470 nm picosecond pulsed laser diode to decouple GFP fluorescence from autofluorescence on the basis of fluorescence lifetime and thus determine the depth and relative concentration of GFP inclusions in phantoms of homogeneous and heterogeneous optical properties. Subsequently, we developed an optical imageable human xenograft model of NB4-GFP AML and illustrate early disease detection, depth discrimination of leukemic infiltrates, and longitudinal monitoring of disease course employing time-domain optical imaging. We conclude that early disease detection through use of time-domain imaging in this initially slowly progressing AML xenograft model permits accurate disease staging and should aid in future preclinical development of therapeutics for AML.

  14. Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes

    Science.gov (United States)

    Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin

    2012-01-01

    Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats. PMID:22715380

  15. Green tea polyphenols reduce body weight in rats by modulating obesity-related genes.

    Directory of Open Access Journals (Sweden)

    Chuanwen Lu

    Full Text Available Beneficial effects of green tea polyphenols (GTP against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group of Sprague Dawley (SD female rats were tested, including the control group (rats fed with low-fat diet, the HF group (rats fed with high-fat diet, and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water. The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1; 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort; and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1. Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1 and catechol-O-methyltransferase (COMT also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats.

  16. Uses and limitations of green fluorescent protein as a viability marker in Enterococcus faecalis: An observational investigation.

    Science.gov (United States)

    Hoogenkamp, Michel A; Crielaard, Wim; Krom, Bastiaan P

    2015-08-01

    Enterococci are capable of producing biofilms that are notoriously difficult to treat and remove, for instance in root canal infections. The tenacious nature of these organisms makes screening of known and novel antimicrobial compounds necessary. While traditionally growth and fluorescence-based screening methods have proven useful, these methods have their limitations when applied to enterococci (e.g. time consuming, no kinetic data, diffusion properties of the fluorescent dyes). The aim of this study was to develop and validate a GFP-based high-throughput screening system to assess the bactericidal activity of a broad range of antimicrobial agents on Enterococcus faecalis and its biofilms. The effect of antimicrobial compounds on cell viability and GFP fluorescence of enterococcal planktonic and biofilm cells was determined using colony forming unit counts, fluorescence spectrophotometry and real-time imaging devices. There was a linear correlation between cell viability and GFP fluorescence. The intensity of the GFP signal was effected by the extracellular pH. For a range of antimicrobials however, there was no correlation between these two parameters. In contrast, for oxidizing agents such as sodium hypochlorite, the antimicrobial of choice for root canal disinfection, there was a correlation between loss of fluorescence and loss of viability. To conclude, the use of a GFP-based system to monitor the antimicrobial activity of compounds on E. faecalis is possible despite significant limitations. This approach is useful for analysis of susceptibility to oxidizing agents. Using real-time measuring devices to follow GFP fluorescence it should be possible to investigate the mode of action and rate of diffusion of oxidizing agents in E. faecalis biofilm.

  17. Direct Comparison of the Histidine-rich Protein-2 Enzyme-linked Immunosorbent Assay (HRP-2 ELISA) and Malaria SYBR Green I Fluorescence (MSF) Drug Sensitivity Tests in Plasmodium falciparum Reference Clones and Fresh ex vivo Field Isolates from Cambodia

    Science.gov (United States)

    2013-07-12

    RESEARCH Open Access Direct comparison of the histidine -rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR green I...Walsh1, David L Saunders1 and Charlotte A Lanteri1* Abstract Background: Performance of the histidine -rich protein-2 enzyme-linked immunosorbent... histidine -rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR green I fluorescence (MSF) drug sensitivity tests in

  18. Facile and green approach to prepare fluorescent carbon dots: Emergent nanomaterial for cell imaging and detection of vitamin B2.

    Science.gov (United States)

    Kundu, Aniruddha; Nandi, Sudipta; Das, Pradip; Nandi, Arun K

    2016-04-15

    Carbon dots (CDs) are a new representative in carbonaceous family and have initiated remarkable research interests over the past one decade in a large variety of fields. Herein, we have utilized a facile, one-step carbonization method to prepare fluorescent carbon dots using poly(vinyl alcohol) (PVA) both as a carbon source and as a surface passivating agent. The as prepared CDs emit bright blue fluorescence under ultraviolet illumination. The structure and optical properties of the CDs are thoroughly investigated by several methods such as high-resolution transmission electron microscopy; dynamic light scattering; UV-vis, fluorescence and Fourier transform infrared spectroscopy. The CDs exhibit excellent water solubility and demonstrate average hydrodynamic diameter of 11.3 nm, holding great promise for biological applications. The biocompatibility evaluation and in vitro imaging study reveals that the synthesized CDs can be used as effective fluorescent probes in bio-imaging without noticeable cytotoxicity. In addition, a unique sensor for the detection of vitamin B2 in aqueous solution is proposed on the basis of spontaneous fluorescence resonance energy transfer from CD to vitamin B2. These findings therefore suggest that the CDs can find potential applications in cellular imaging along with sensing of vitamin B2.

  19. Critical evaluation of HPV16 gene copy number quantification by SYBR green PCR

    Directory of Open Access Journals (Sweden)

    Pett Mark R

    2008-07-01

    Full Text Available Abstract Background Human papilloma virus (HPV load and physical status are considered useful parameters for clinical evaluation of cervical squamous cell neoplasia. However, the errors implicit in HPV gene quantification by PCR are not well documented. We have undertaken the first rigorous evaluation of the errors that can be expected when using SYBR green qPCR for quantification of HPV type 16 gene copy numbers. We assessed a modified method, in which external calibration curves were generated from a single construct containing HPV16 E2, HPV16 E6 and the host gene hydroxymethylbilane synthase in a 1:1:1 ratio. Results When testing dilutions of mixed HPV/host DNA in replicate runs, we observed errors in quantifying E2 and E6 amplicons of 5–40%, with greatest error at the lowest DNA template concentration (3 ng/μl. Errors in determining viral copy numbers per diploid genome were 13–53%. Nevertheless, in cervical keratinocyte cell lines we observed reasonable agreement between viral loads determined by qPCR and Southern blotting. The mean E2/E6 ratio in episome-only cells was 1.04, but with a range of 0.76–1.32. In three integrant-only lines the mean E2/E6 ratios were 0.20, 0.72 and 2.61 (values confirmed by gene-specific Southern blotting. When E2/E6 ratios in fourteen HPV16-positive cervical carcinomas were analysed, conclusions regarding viral physical state could only be made in three cases, where the E2/E6 ratio was ≤ 0.06. Conclusion Run-to-run variation in SYBR green qPCR produces unavoidable inaccuracies that should be allowed for when quantifying HPV gene copy number. While E6 copy numbers can be considered to provide a useable indication of viral loads, the E2/E6 ratio is of limited value. Previous studies may have overestimated the frequency of mixed episomal/integrant HPV infections.

  20. Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2

    NARCIS (Netherlands)

    Ünlü, Caner; Polukhina, Iryna; Amerongen, van Herbert

    2016-01-01

    In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). Th

  1. Structural Basis of X-ray-Induced Transient Photo-bleaching in a Photoactivatable Green Fluorescent Protein

    Energy Technology Data Exchange (ETDEWEB)

    Adam, V. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France); Carpentier, Ph.; Lelimousin, M.; Darnault, C.; Bourgeois, D. [IBS, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UniVersite Joseph Fourier, 41 rue Jules Horowitz, 38027 Grenoble (France); Violot, S. [Laboratoire de Physiologie Cellulaire Vegetale, Institut de Recherches en Technologie et Sciences pour le ViVant, CEA, CNRS, INRA, UniVersite Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble (France); Nienhaus, U. [Institute of Applied Physics and Center for Functional nano-structures (CFN), Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Nienhaus, U. [Department of Physics, UniVersity of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (US)

    2009-07-01

    We have observed the photoactivatable fluorescent protein IrisFP in a transient dark state with near-atomic resolution. This dark state is assigned to a radical species that either relaxes to the ground state or evolves into a permanently bleached chromophore. We took advantage of X-rays to populate the radical, which presumably forms under illumination with visible light by an electron-transfer reaction in the triplet state. The combined X-ray diffraction and in crystallo UV-vis absorption, fluorescence, and Raman data reveal that radical formation in IrisFP involves pronounced but reversible distortion of the chromophore, suggesting a transient loss of {pi} conjugation. These results reveal that the methylene bridge of the chromophore is the Achilles' heel of fluorescent proteins and help unravel the mechanisms of blinking and photo-bleaching in FPs, which are of importance in the rational design of photo-stable variants. and is also partly reversible. (authors)

  2. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements

    Science.gov (United States)

    Lou, Janet W.; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D.

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  3. Temperature and light tolerance of representative brown,green and red algae in tumble culture revealed by chlorophyll fluorescence measurements

    Institute of Scientific and Technical Information of China (English)

    PANG Shaojun; SHAN Tifeng

    2008-01-01

    Laminaria japonica,Undaria pinnatifida,Ulva lactuca,Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass,rapid growth and promising nutrient uptake rates. In this investigation,the responses of the optimal chlorophyll fluolescence yield of the five algal species in tumble culture were assessed at a temperature range of 10~30℃.The results revealed that Ulva lactuca was the most resistant species to high temperature,withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield. While the arctic alga Palmaria palmata was the most vulnerable one,showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h.The cold-water species Laminaria japonica,however,demonstrated strong ability to cope with higher temperature(24~26℃)for shorter time(within 24 h)without significant decline in the optimal chlorophyll fluorescence yield.Grateloupia turuturu showed a general decrease in the optimal chiorophyll fluores-cence yield with the rising temperature from 23 to 30℃,similar to the temperate kelp Undaria pinnatifida.Changes of chio-rophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light.Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°Nwas proposed according to these basic measurements.

  4. Critical evaluation of HPV16 gene copy number quantification by SYBR green PCR.

    Science.gov (United States)

    Roberts, Ian; Ng, Grace; Foster, Nicola; Stanley, Margaret; Herdman, Michael T; Pett, Mark R; Teschendorff, Andrew; Coleman, Nicholas

    2008-07-24

    Human papilloma virus (HPV) load and physical status are considered useful parameters for clinical evaluation of cervical squamous cell neoplasia. However, the errors implicit in HPV gene quantification by PCR are not well documented. We have undertaken the first rigorous evaluation of the errors that can be expected when using SYBR green qPCR for quantification of HPV type 16 gene copy numbers. We assessed a modified method, in which external calibration curves were generated from a single construct containing HPV16 E2, HPV16 E6 and the host gene hydroxymethylbilane synthase in a 1:1:1 ratio. When testing dilutions of mixed HPV/host DNA in replicate runs, we observed errors in quantifying E2 and E6 amplicons of 5-40%, with greatest error at the lowest DNA template concentration (3 ng/microl). Errors in determining viral copy numbers per diploid genome were 13-53%. Nevertheless, in cervical keratinocyte cell lines we observed reasonable agreement between viral loads determined by qPCR and Southern blotting. The mean E2/E6 ratio in episome-only cells was 1.04, but with a range of 0.76-1.32. In three integrant-only lines the mean E2/E6 ratios were 0.20, 0.72 and 2.61 (values confirmed by gene-specific Southern blotting). When E2/E6 ratios in fourteen HPV16-positive cervical carcinomas were analysed, conclusions regarding viral physical state could only be made in three cases, where the E2/E6 ratio was unavoidable inaccuracies that should be allowed for when quantifying HPV gene copy number. While E6 copy numbers can be considered to provide a useable indication of viral loads, the E2/E6 ratio is of limited value. Previous studies may have overestimated the frequency of mixed episomal/integrant HPV infections.

  5. One-pot evaporation–condensation strategy for green synthesis of carbon nitride quantum dots: An efficient fluorescent probe for ion detection and bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ying; Zhang, Yumin [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Gao, Tangling [Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040 (China); Yao, Tai [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China); Han, Jiecai [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhengbin, E-mail: hanzhengbin@hit.edu.cn [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Zhihua [Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Wu, Qiong [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Song, Bo, E-mail: songbo@hit.edu.cn [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)

    2017-06-15

    Herein, highly blue graphitic carbon nitride quantum dots (g-CNQDs) were synthesized by one-step microwave-assisted evaporation–condensation strategy using bulk g-C{sub 3}N{sub 4} as the precursor within 5 min. In contrast with conventional chemical routes, the as-synthesized g-CNQDs exhibited a high crystalline quality, excellent fluorescence characteristics, and a narrow size distribution with an average diameter of 3.5 ± 0.5 nm. More importantly, by using a household microwave oven, this method has the advantages of wide accessibility, environmental friendliness, a high yield of ∼40%, and can be facilely synthesized in a large scale (scaled up to a gram scale). Notably, owing to the absence of any organic reagents, the blueas-prepared g-CNQDs show the excitation wavelength-independent photoluminescence (PL) behavior. Moreover, benefiting from the stable PL emission, good water solubility, and extraordinary biocompatibility with a high quantum yield of ∼17%, the fluorescent g-CNQDs can serve as a potential sensitive and selective probe for Fe{sup 3+} detection with a super low detection limit of 2 nM and an effective labeling agent for live-cell imaging. This work provides a unique opportunity to obtain g-CNQDs in large scale via a facile route, which may pave the way for the further design of g-CNQDs with other applications. - Highlights: • Green synthesis of g-CNQDs via one-step evaporation-condensation method. • The g-CNQDs have shown high crystalline quality and intrinsic fluorescence features. • The fluorescent g-CNQDs can serve as a sensitive and selective probe to detect Fe{sup 3+} ions with a low detection limit of 2 nM. • g-CNQDs can serve as an effective labeling agent for live-cell imaging with extraordinary biocompatibility.

  6. Uses and limitations of green fluorescent protein as a viability marker in Enterococcus faecalis: an observational investigation

    NARCIS (Netherlands)

    Hoogenkamp, M.A.; Crielaard, W.; Krom, B.P.

    2015-01-01

    Enterococci are capable of producing biofilms that are notoriously difficult to treat and remove, for instance in root canal infections. The tenacious nature of these organisms makes screening of known and novel antimicrobial compounds necessary. While traditionally growth and fluorescence-based scr

  7. Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications.

    Science.gov (United States)

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Sethuraman, Mathur Gopalakrishnan; Shim, Jae-Jin; Lee, Yong Rok

    2016-08-01

    A fast and facile microwave approach for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is reported. The N-CDs were hydrothermally synthesized using l-ascorbic acid (AA) and β-alanine (BA) as the carbon precursor and the nitrogen dopant, respectively. The morphology of synthesized N-CDs was characterized by high resolution transmission electron microscopy (HR-TEM) and the elemental composition was analyzed using elemental mapping method. The crystallinity and graphitation of N-CDs were examined by X-ray diffraction (XRD) and Raman spectroscopy. The doping of nitrogen over the carbon dots (CDs) was revealed by attenuated total reflection conjunction with Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photo electron spectroscopy (XPS). The optical properties of synthesized N-CDs were examined by UV-Visible (UV-Vis) and fluorescence spectroscopy. The synthesized N-CDs emit strong blue fluorescence at 401nm under excitation of 325nm. The excitation dependent emission property of synthesized N-CDs was exposed from fluorescence results. The quantum yield of synthesized N-CDs is about 14% against the reference quinine sulfate. The cytotoxicity of synthesized N-CDs on Madin-Darby Canine Kidney (MDCK) and HeLa cells were evaluated through Cell Counting Kit-8 (CCK-8) cytotoxicity assay. The results implied that the fluorescent N-CDs showed less cytotoxicity, further which was successfully applied as a staining probe for the confocal imaging of MDCK and HeLa cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Green fluorescent protein purification through Immobilized Metal Affinity Chromatografy (IMAC and its relevance for Biomedical Science students during Biochemistry practical classes at La Trobe University – Australia

    Directory of Open Access Journals (Sweden)

    Alex Jose José de Melo Silva

    2016-12-01

    Full Text Available This work was performed as an integrated practical of a Biomedical Science undergraduate course of Biochemistry subject, in order to demonstrate used techniques to purify of Green Fluorescent Protein (GFP. To perform the experiments the main methodology applied was the by immobilized metal affinity chromatography (IMAC.  The open reading frame for enhanced GFP was sub-cloned into the pQE30 expression vector. The subsequent production of protein tagged N-terminally with hexahistidine, facilitated its purification by IMAC.  An approximate 3-fold purification of GFP was achieved. Thus, the students who completed the course gained significant experience related to fundamental techniques in molecular cloning and a sound basis in the principles of recombinant protein expression and purification.

  9. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair.

    Science.gov (United States)

    Mulo, Paula; Sakurai, Isamu; Aro, Eva-Mari

    2012-01-01

    The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.

  10. Broadening Horizons and Teaching Basic Biology Through Cell-Free Synthesis of Green Fluorescent Protein in a High School Laboratory Course

    Science.gov (United States)

    Albayrak, Cem; Jones, K. C.; Swartz, James R.

    2013-12-01

    Cell-free protein synthesis (CFPS) has emerged as a practical method for producing a broad variety of proteins. In addition, the direct accessibility to the reaction environment makes CFPS particularly suitable as a learning vehicle for fundamental biological concepts. Here, we describe its implementation as a teaching tool for a high school laboratory course. Ninety students in a biotechnology class used CFPS to study the effects of the concentrations of amino acids, cell extract, DNA, and the energy source on accumulation of active super-folder green fluorescent protein. Students estimated product concentrations simply by comparing solution colors to a printed green color gradient. This simple and inexpensive method allows for immediate measurements, and 26 of the 30 groups observed measurable product concentrations within 60 min. These student-generated data were then discussed to illustrate concepts of data analysis such as outliers and standard deviation. We also combined the laboratory experience with a visit to a university campus that included a laboratory tour and a college-style lecture. Our overall objective was to excite the students about the scientific enterprise and to instill a sense of personal relevance and attainability so that these students could realistically consider technical careers.

  11. Combining fluorescence and bioluminescence microscopy.

    Science.gov (United States)

    Goda, Kazuhito; Hatta-Ohashi, Yoko; Akiyoshi, Ryutaro; Sugiyama, Takashi; Sakai, Ikuko; Takahashi, Takeo; Suzuki, Hirobumi

    2015-08-01

    Bioluminescence microscopy has revealed that gene expression in individual cells can respond differently to the same stimulus. To understand this phenomenon, it is important to sequentially observe the series of events from cellular signal transduction to gene expression regulated by specific transcription factors derived from signaling cascades in individual cells. However, these processes have been separately analyzed with fluorescence and bioluminescence microscopy. Furthermore, in culture medium, the background fluorescence of luciferin-a substrate of luciferase in promoter assays of gene expression in cultured cells-confounds the simultaneous observation of fluorescence and bioluminescence. Therefore, we optimized conditions for optical filter sets based on spectral properties and the luciferin concentration based on cell permeability for fluorescence observation combined with bioluminescence microscopy. An excitation and emission filter set (492-506 nm and 524-578 nm) was suitable for green fluorescent protein and yellow fluorescent protein imaging of cells, and >100 μM luciferin was acceptable in culture medium based on kinetic constants and the estimated intracellular concentration. Using these parameters, we present an example of sequential fluorescence and bioluminescence microscopic observation of signal transduction (translocation of protein kinase C alpha from the cytoplasm to the plasma membrane) coupled with activation of gene expression by nuclear factor of kappa light polypeptide B in individual cells and show that the gene expression response is not completely concordant with upstream signaling following stimulation with phorbol-12-myristate-13-acetate. Our technique is a powerful imaging tool for analysis of heterogeneous gene expression together with upstream signaling in live single cells.

  12. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    Science.gov (United States)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  13. Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pirojsirikul, Teerapong [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Götz, Andreas W. [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Weare, John [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Walker, Ross C. [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; GlaxoSmithKline, 1250 S. Collegeville Road Collegeville Pennsylvania 19426; Kowalski, Karol [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999 Richland Washington 99352; Valiev, Marat [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999 Richland Washington 99352

    2017-05-03

    Green Fluorescent Protein (GFP) is a widely used fluorescent biomarker for the study of biological systems. Our investigation is focused on providing a reliable theoretical description of the GFP chromophore, the photochemical properties of which can be influenced through both the surrounding protein environment and pH levels. In this work we are specifically addressing the effect of an aqueous solvation environment , where a number of experimental measurements have been performed. Our approach is based on a combined quantum mechanics molecular mechanics (QM/MM) methodology, which incorporates high level coupled cluster theory for the analysis of excited states. It also presents the first application of the newly developed NWChem/AMBER QM/MM interface. Using a systematic approach, which involves comparison of gas phase and aqueous results for different protonation states and conformations, we have resolved existing uncertainties regarding theoretical interpretation of the experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts, but the magnitude of the effect is sensitive to charge state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level coupled description is essential for proper description of excited states of GFP.

  14. Green fluorescent protein (GFP)-based overexpression screening and characterization of AgrC, a Receptor protein of quorum sensing in Staphylococcus aureus.

    Science.gov (United States)

    Wang, Lina; Quan, Chunshan; Liu, Baoquan; Xu, Yongbin; Zhao, Pengchao; Xiong, Wen; Fan, Shengdi

    2013-09-06

    Staphylococcus aureus AgrC is an important component of the agr quorum-sensing system. AgrC is a membrane-embedded histidine kinase that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm. However, the difficulty of expressing and purifying functional membrane proteins has drastically hindered in-depth understanding of the molecular structures and physiological functions of these proteins. Here, we describe the high-yield expression and purification of AgrC, and analyze its kinase activity. A C-terminal green fluorescent protein (GFP) fusion to AgrC served as a reporter for monitoring protein expression levels in real time. Protein expression levels were analyzed by the microscopic assessment of the whole-cell fluorescence. The expressed AgrC-GFP protein with a C-terminal His-tagged was purified using immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) at yields of ≥ 10 mg/L, following optimization. We also assessed the effects of different detergents on membrane solubilization and AgrC kinase activity, and polyoxyethylene-(23)-lauryl-ether (Brij-35) was identified as the most suitable detergent. Furthermore, the secondary structural stability of purified AgrC was analyzed using circular dichroism (CD) spectroscopy. This study may serve as a general guide for improving the yields of other membrane protein preparations and selecting the appropriate detergent to stabilize membrane proteins for biophysical and biochemical analyses.

  15. Trypanosoma cruzi Coexpressing Ornithine Decarboxylase and Green Fluorescence Proteins as a Tool to Study the Role of Polyamines in Chagas Disease Pathology

    Directory of Open Access Journals (Sweden)

    Jeremías José Barclay

    2011-01-01

    Full Text Available Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP and a heterologous ornithine decarboxylase (ODC, used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.

  16. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. Green-fluorescent protein+ Astrocytes Attach to beta-Amyloid Plaques in an Alzheimer Mouse Model and GFPare Sensitive for Clasmatodendrosis

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2016-04-01

    Full Text Available Alzheimer’s disease (AD is pathologically characterized by beta-amyloid (Aβ plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP. In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP with the Swedish-Dutch-Iowa mutations (APP-SweDI with mice expressing green fluorescent protein (GFP under the GFAP-promotor. Three-dimensional confocal microscopy revealed a tight association and intense sprouting of astrocytic fine branched processes towards Aβ plaques in 12 month old mice. In order to study phagocytosis, 110 µm thick brain slices from 12 month old crossbred mice were cultured overnight, however, we found that the GFP fluorescence faded away, distal processes degenerated and a complete loss of astrocytic morphology was seen (clasmatodendrosis. In summary, our data show that GFP+ reactive astrocytes make intense contact with Aβ plaques but these cells are highly vulnerable for degeneration.

  18. Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models

    Science.gov (United States)

    Close, Dan M.; Hahn, Ruth E.; Patterson, Stacey S.; Baek, Seung J.; Ripp, Steven A.; Sayler, Gary S.

    2011-01-01

    Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 104 cells but at the cost of increasing overall image integration time. PMID:21529093

  19. Green Fluorescent Protein (GFP-Based Overexpression Screening and Characterization of AgrC, a Receptor Protein of Quorum Sensing in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Shengdi Fan

    2013-09-01

    Full Text Available Staphylococcus aureus AgrC is an important component of the agr quorum-sensing system. AgrC is a membrane-embedded histidine kinase that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm. However, the difficulty of expressing and purifying functional membrane proteins has drastically hindered in-depth understanding of the molecular structures and physiological functions of these proteins. Here, we describe the high-yield expression and purification of AgrC, and analyze its kinase activity. A C-terminal green fluorescent protein (GFP fusion to AgrC served as a reporter for monitoring protein expression levels in real time. Protein expression levels were analyzed by the microscopic assessment of the whole-cell fluorescence. The expressed AgrC-GFP protein with a C-terminal His-tagged was purified using immobilized metal affinity chromatography (IMAC and size exclusion chromatography (SEC at yields of ≥10 mg/L, following optimization. We also assessed the effects of different detergents on membrane solubilization and AgrC kinase activity, and polyoxyethylene-(23-lauryl-ether (Brij-35 was identified as the most suitable detergent. Furthermore, the secondary structural stability of purified AgrC was analyzed using circular dichroism (CD spectroscopy. This study may serve as a general guide for improving the yields of other membrane protein preparations and selecting the appropriate detergent to stabilize membrane proteins for biophysical and biochemical analyses.

  20. Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs.

    Science.gov (United States)

    Pulido, Sergio A; Muñoz, Diana L; Restrepo, Adriana M; Mesa, Carol V; Alzate, Juan F; Vélez, Iván D; Robledo, Sara M

    2012-04-01

    Development of new therapeutic approaches for leishmaniasis treatment requires new high throughput screening methodologies for the antileishmanial activity of the new compounds both in vitro and in vivo. Reporter genes as the GFP have become one of the most promissory and widely used tools for drug screening in several models, since it offers live imaging, high sensibility, specificity and flexibility; additionally, the use of GFP as a reporter gene in screening assays eliminates all the drawbacks presented in conventional assays and also those technical problems found using other reporter genes. The utility of the GFP as a reporter gene in drug screening assays with Leishmania parasites depends on the homogeneity and stability of the GFP transfected strains. Stable expression of the GFP in the Old World Leishmania species has been demonstrated using integration vectors; however, no reports exist yet about the success of this methodology in the New World species. Here we report the generation of New World Leishmania strains expressing the GFP protein from an integration vector, which replaces one copy of the 18S RNA in the chromosome with the GFP coding sequence by homologous recombination. We also prove that the expression of the integrated GFP is stable and homogeneous in the transfected parasites after months in culture without selective pressure or during its use in hamster infection assays. The fluorescent strains are useful for in vitro, ex vivo and in vivo drug screening assays since no considerable variations in virulence or infectivity where seen attributable to the genetic manipulation during both in vitro and in vivo infection experiments. The platform described here for drug testing assays based on the use of stable fluorescent Leishmania strains coupled to flow cytometry and fluorescent microscopy is more sensitive, more specific and faster than conventional assays used normally for the evaluation of compounds with potential antileishmanial activity.

  1. Influence of phase transitions on green fluorescence intensity ratio in Er3+ doped Ksub>0.5sub>Nasub>0.5sub>NbOsub>3sub> ceramic.

    Science.gov (United States)

    Liang, Zhang; Sun, Enwei; Pei, Shenghai; Li, Leipeng; Qin, Feng; Zheng, Yangdong; Zhao, Hua; Zhang, Zhiguo; Cao, Wenwu

    2016-12-12

    The fluorescence intensity ratio (FIR) method is a non-contact temperature (T) measurement technique based on thermally coupled levels of rare earth ions in a doped host. Green fluorescence originating from 2Hsub>11/2sub> and 4Ssub>3/2sub> states of Er3+ doped Ksub>0.5sub>Nasub>0.5sub>NbOsub>3sub> (KNN) ceramic are studied in the temperature range of 300 K to 720 K. The fluorescence intensities change dramatically around phase transition points where the crystal symmetry changes, inducing deviation of the FIR from Boltzmann's law. The temperature determined by the FIR method deviates from thermocouple measurements by 7 K at the orthorhombic to tetragonal phase transition (Tsub>O-Tsub>) point and 13 K at the Curie point (Tsub>Csub>). This finding gives guidance for developing fluorescent T sensors with ferroelectrics and may also provide a fluorescent method to detect phase transitions in ferroelectric materials.

  2. Functionalized polymeric nanoparticles loaded with indocyanine green as theranostic materials for targeted molecular near infrared fluorescence imaging and photothermal destruction of ovarian cancer cells.

    Science.gov (United States)

    Bahmani, Baharak; Guerrero, Yadir; Bacon, Danielle; Kundra, Vikas; Vullev, Valentine I; Anvari, Bahman

    2014-09-01

    Ovarian cancer remains the deadliest malignancy of the female reproductive system. The ability to identify and destroy all ovarian tumor nodules may have a termendous impact on preventing tumor recurrence, and patient survival. The objective of this study is to investigate the effectiveness of a nano-structured system for combined near infrared (NIR) fluorescence imaging of human epidermal growth factor receptor-2 (HER2) over-expression, as a biomarker of ovarian cancer cells, and photothermal destruction of these cells in vitro. The nano-structured system consists of the near infrared dye, indocyanine green (ICG), encapsulated within poly(allylamine) hydrochloride chains cross-linked ionically with sodium phosphate. The surface of the construct is functionalized by covalently attached polyethylene glycol, and monoclonal antibodies against HER2 using reducitve amination methods. We use dynamic light scattering, and absorption and fluorescence spectroscopy for phyiscal characterization of the constructs. Flow cytometry and fluorescence microscopy are used to investigate molecular targeting and imaging capabilities of the constructs against SKOV3 and OVCAR3 ovarian cancer cell lines, which have relatively high and low expression levels of the HER2 receptor, respectively. Continuous NIR laser irradiation at 808 nm is used to investigating the utility of the constructs in mediating photothermal destruction of SKOV3 cells. Flow cytometry results indicate that the functionalized nano-constructs are more effective in targeting the HER2 receptor than non-encapsulated ICG and non-functionlaized constructs (P molecular NIR imaging of the HER2 receptor overexpression on ovarian cancer cells, and photothermal destruction of these cells. These nanoparticles may prove useful towards intraoperative detection, imaging, and phototherapy of small ovarian cancer nodules. © 2014 Wiley Periodicals, Inc.

  3. The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes.

    Science.gov (United States)

    Jagla, Wolfgang M; Jägle, Herbert; Hayashi, Takaaki; Sharpe, Lindsay T; Deeb, Samir S

    2002-01-01

    We investigated the genotypic variation in 50 red-green color vision deficient males (27 deuteranopes and 23 protanopes) of middle European ancestry who possess multiple genes in the X-linked photopigment gene array. We have previously shown that only the first two genes of the array are expressed and contribute to the color vision phenotype. Therefore, the hypothesis is that the first two genes possessed by multigene-dichromats encode pigments of identical or nearly identical spectral sensitivity: one gene normal (R or G) and the other a hybrid (G/R or R/G). The spectral sensitivities of the encoded pigments were inferred from published in vitro and in vivo data. The color vision phenotype was assessed by standard anomaloscopy. Most genotypes (92%) included hybrid genes whose sequence and position and whose encoded pigment correlated exactly with the phenotype. However, one and possibly two of the protanopes had gene arrays consistent with protanomaly rather than protanopia, since two spectrally different pigments may be encoded by their arrays. Two of the deuteranopes had only R- and G-photopigment genes, without any detectable G/R-hybrid genes or any as-of-yet identified point mutation or coding/promoter sequence deletions. Further, an unexpectedly high number of multigene-deuteranopes (11%) had the C203R mutation in their most upstream G-pigment gene, suggesting a founder effect of middle European origin for this mutation. About half of the protanopes possessed an upstream R/G-hybrid gene with different exon 2 coding sequences than their downstream G-pigment gene(s), which is inconsistent with published data implying that a single amino acid substitution in exon 2 can confer red-green color discrimination capacity on multigene-protans by altering the optical density of the cones.

  4. Establishment of A Malignant Pleural Effusion Mouse Model with Lewis Lung 
Carcinoma Cell Lines Expressing Enhanced Green Fluorescent Protein

    Directory of Open Access Journals (Sweden)

    Xingqun MA

    2012-06-01

    Full Text Available Background and objective Malignant pleural effusion (MPE is a poor prognosis factor in patients with advanced lung cancer. The aim of this study is to establish a mouse model of MPE using Lewis lung carcinoma (LLC cell lines expressing enhanced green fluorescent protein (EGFP. Methods The mouse model was created by injecting LLC-EGFP cells directly into the pleural cavity of mice that were sacrificed periodically. The dynamic growth and metastasis of tumor cells were screened using in vivo fluorescence imaging. The remaining mice were subjected to transverse computed tomography (CT imaging periodically to analyze the formation rate of pleural effusion. The survival rate and tumor metastasis were also observed. Pleural fluid was gently aspirated using a 1 mL syringe and its volume was measured. When two or more mice bore pleural effusion at the same time, we calculated the average volume. The correlation of pleural effusion with the integrated optical density (IOD were analyzed. Results Four days after the inoculation of LLC-EGFP cells, green fluorescence was observed by opening the chest wall. The tumor formation rate was 100%, and the IOD gradually increased after inoculation. The metastasis sites were mediastinal, and the hilar lymph nodes were contralateral pleural as well as pericardial. The metastasis rates were 87%, 73% and 20%, respectively. The CT scan revealed that the formation rates of pleural effusion on days 7, 14 and 21 were 13%, 46% and 53%, respectively. The average volume of pleural effusion increased obviously on day 10 and peaked on day 16 with a value of 0.5 mL. The mean survival time of nude mice was 28.8 days. The volume of pleural effusion and IOD were significantly correlated (r=0.91, P<0.000,1. Conclusion A mouse model of lung cancer malignant pleural effusion was successfully established by injecting LLC lines expressing EGFP into the pleural cavity under a microscope. The model can enable dynamic observations of the

  5. The role of fluorescence in situ hybridization and gene expression profiling in myeloma risk stratification.

    Science.gov (United States)

    Hose, Dirk; Seckinger, Anja; Jauch, Anna; Rème, Thierry; Moreaux, Jérôme; Bertsch, Uta; Neben, Kai; Klein, Bernard; Goldschmidt, Hartmut

    2011-12-01

    Multiple myeloma patients' survival under treatment varies from a few months to more than 15 years. Clinical prognostic factors, especially beta2-microglobulin (B2M) and the international staging system (ISS), allow risk assessment to a certain extent, but do not identify patients at very high risk. As malignant plasma cells are characterized by a variety of chromosomal aberrations and changes in gene expression, a molecular characterization ofCD138-purified myeloma cells by interphase fluorescence in situ hybridization (iFISH) and gene expression profiling (GEP) can be used for improved risk assessment, iFISH allows a risk stratification with presence of a translocation t(4;14) and/or deletion of 17p13 being the best documented adverse prognostic factors. A deletion of 13q14 is no longer considered to define adverse risk. Patients harbouring a t(4;14) seems to benefit from a bortezomib- or lenalidomide containing regimen, whereas patients with deletion 17p13 seem only to benefit from a high dose therapy approach using long term bortezomib (in induction and maintenance) and autologous tandem-transplantation as used in the GMMG-HD4 trial, or the total therapy 3 concept. Gene expression profiling allows the assessment of high risk scores (IFM, UAMS), remaining prognostic despite treatment with novel agents, and prognostic surrogates of biological factors (e.g. proliferation) and (prognostic) target gene expression (e.g. Aurora-kinase A). Thus, assessment of B2M and ISS-stage, iFISH, and GEP is considered extended routine diagnostics in therapy requiring multiple myeloma patients for risk assessment and, even now, to a certain extent selection of treatment.

  6. Detection of Hg2+ ion using fluorescent carbon dots derived from elephant foot yum via green-chemistry

    Science.gov (United States)

    Choudhary, Raksha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    We have synthesized a fluorescent carbon dots (CDs) in an eco-friendly and cost effective manner through the combination of microwave plus hydrothermal process using elephant foot yam (Amorphophallus paeoniifolius) as carbon precursor. Combination of two processes was used to save time as well as energy with less use of harsh chemicals. The resultant CDs has good photostability, high quantum yield, excellent water dispersibility and high storage ability. Further, CDs was applied for the detection of Hg2+ ion from aqueous and real samples.

  7. Gold nanoparticle fluorescent molecular beacon for low-resolution DQ2 gene HLA typing.

    Science.gov (United States)

    Beni, Valerio; Zewdu, Taye; Joda, Hamdi; Katakis, Ioanis; O'Sullivan, Ciara K

    2012-01-01

    Coeliac disease is an inflammation of the small intestine triggered by gluten ingestion. We present a fluorescent genosensor, exploiting molecular-beacon-functionalized gold nanoparticles, for the identification of human leukocyte antigen (HLA) DQ2 gene, a key genetic factor in coeliac disease. Optimization of sensor performance was achieved by tuning the composition of the oligonucleotide monolayer immobilized on the gold nanoparticle and the molecular beacon design. Co-immobilization of the molecular beacon with a spacing oligonucleotide (thiolated ten-thymine oligonucleotide) in the presence of ten-adenine oligonucleotides resulted in a significant increase of the sensor response owing to improved spacing of the molecular beacons and extension of the distance from the nanoparticle surface, which renders them more available for recognition. Further increase in the response (approximately 40%) was shown to be achievable when the recognition sequence of the molecular beacon was incorporated in the stem. Improvement of the specificity of the molecular beacons was also achieved by the incorporation within their recognition sequence of a one-base mismatch. Finally, gold nanoparticles functionalized with two molecular beacons targeting the DQA1*05* and DQB1*02* alleles allowed the low-resolution typing of the DQ2 gene at the nanomolar level.

  8. Comparative gene mapping in cattle, Indian muntjac, and Chinese muntjac by fluorescence in situ hybridization.

    Science.gov (United States)

    Murmann, Andrea E; Mincheva, Antoaneta; Scheuermann, Markus O; Gautier, Mathieu; Yang, Fentang; Buitkamp, Johannes; Strissel, Pamela L; Strick, Reiner; Rowley, Janet D; Lichter, Peter

    2008-11-01

    The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n = 6 in the female and 2n = 7 in the male. The karyotypic evolution of Indian muntjac via extensive tandem fusions and several centric fusions are well documented by molecular cytogenetic studies mainly utilizing chromosome paints. To achieve higher resolution mapping, a set of 42 different genomic clones coding for 37 genes and the nucleolar organizer region were used to examine homologies between the cattle (2n = 60), human (2n = 46), Indian muntjac (2n = 6/7) and Chinese muntjac (2n = 46) karyotypes. These genomic clones were mapped by fluorescence in situ hybridization (FISH). Localization of genes on all three pairs of M. m. vaginalis chromosomes and on the acrocentric chromosomes of M. reevesi allowed not only the analysis of the evolution of syntenic regions within the muntjac genus but also allowed a broader comparison of synteny with more distantly related species, such as cattle and human, to shed more light onto the evolving genome organization.

  9. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice.

    Science.gov (United States)

    Cholanian, M; Krajewski-Hall, S J; McMullen, N T; Rance, N E

    2015-04-01

    Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones, although there is limited information available about whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. In the present study, we investigated the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-enhanced green fluorescent protein (EGFP) transgenic mice with biocytin. Filled neurones from ovariectomised (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualised with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualised within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and gonadotrophin-releasing hormone-immunoreactive fibres within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment

  10. Green copper pigments biodegradation in cultural heritage: from malachite to moolooite, thermodynamic modeling, X-ray fluorescence, and Raman evidence.

    Science.gov (United States)

    Castro, Kepa; Sarmiento, Alfredo; Martínez-Arkarazo, Irantzu; Madariaga, Juan Manuel; Fernández, Luis Angel

    2008-06-01

    Moolooite (copper oxalate), a very rare compound, was found as a degradation product from the decay of malachite in several specimens of Cultural Heritage studied. Computer simulations, based on heterogeneous chemical equilibria, support the transformation of malachite to moolooite through the intermediate copper basic sulfates or copper basic chlorides, depending on the presence of available free sulfate or chloride anions in the chemical system. Raman and X-ray fluorescence spectral evidence found during the analysis of the three case studies investigated supported the model predictions. According to the study, the presence of lichens and other microorganisms might be responsible for the decay phenomena. This work tries to highlight the importance of biological attack on specimens belonging to Cultural Heritage and to demonstrate the consequences of oxalic acid, excreted by some of these microorganisms, on the conservation and preservation of artwork.

  11. [Phylogenetic and Bioinformatics Analysis of Replicase Gene Sequence of Cucumber Green Mottle Mosaic Virus].

    Science.gov (United States)

    Liang, Chaoqiong; Meng, Yan; Luo, Laixin; Liu, Pengfei; Li, Jianqiang

    2015-11-01

    The replicase genes of five isolates of Cucumber green mottle mosaic virus from Jiangsu, Zhejiang, Hunan and Beijing were amplificated, sequenced and analyzed. The similarities of nucleotide acid sequences indicated that 129 kD and 57 kD replicase genes of CGMMV-No. 1, CGMMV-No. 2, CGMMV-No. 3, CGMMV-No. 4 and CGMMV-No. 5 were 99.64% and 99.74%, respectively. The similarities of 129 kD and 57 kD replicase genes of CGMMV-No. 1, CGMMV-No. 3 and CGMMV-No. 4 were 99.95% and 99.94%, while they were lower between CGMMV-No. 2 and the rest of four reference sequences, just from 99.16% to 99.27% and from 99.04% to 99.18%. All reference sequences could be divided into six groups in neighbor-joining (NJ) phylogenetic trees based on the replicase gene sequences of 129 kD, 57 kD protein respectively. CGMMV-No. 1, CGMMV-No. 3 and CGMMV-No. 4 were clustered together with Shandong isolate (Accession No. KJ754195) in two NJ trees; CGMMV-No. 5 was clustered together with Liaoning isolate (Accession No. EF611826) in two NJ trees; CGMMV-No. 2 was clustered together with Korea watermelon isolate (Accession No. AF417242) in phylogenetic tree of 129 kD replicase gene of CGMMV; Interestingly, CGMMV-No. 2 was classified as a independent group in phylogenetic tree of 57 kD replicase gene of CGMMV. There were no significant hydrophobic and highly coiled coil regions on 129 kD and 57 kD proteins of tested CGMMV isolates. Except 129 kD protein of CGMMV-No. 4, the rest were unstable protein. The number of transmembrane helical segments (TMHs) of 129 kD protein of CGMMV-No. 1, CGMMV-No. 2, CGMMV-No. 3 and CGMMV-No. 5 were 6, 6, 2 and 4, respectively, which were 13, 13 and 5 on the 57 kD protein of CGMMV-No. 2, CGMMV-No. 4 and CGMMV-No. 5. The glycosylation site of 129 kD protein of tested CGMMV isolates were 2, 4, 4, 4 and 4, and that of 57 kD protein were 2, 5, 2, 5 and 2. There were difference between the disorders, globulins, phosphorylation sites and B cell antigen epitopes of 129 kD and 57

  12. Environment-Sensitive Fluorescent Probe for the Human Ether-a-go-go-Related Gene Potassium Channel

    OpenAIRE

    Liu, Zhenzhen; Jiang, Tianyu; Wang, Beilei; Ke, Bowen; Zhou, Yubin; Du, Lupei; Li, Minyong

    2016-01-01

    A novel environment-sensitive probe S2 with turn-on switch for Human Ether-a-go-go-Related Gene (hERG) potassium channel was developed herein. After careful evaluation, this fluorescent probe showed high binding affinity with hERG potassium channel with an IC50 value of 41.65 nM and can be well applied to hERG channel imaging or cellular distribution study for hERG channel blockers. Compared with other imaging techniques, such as immunofluorescence and fluorescent protein-based approaches, th...

  13. Cytoplasmic localization of a functionally active Fanconi anemia group A green fluorescent protein chimera in human 293 cells

    NARCIS (Netherlands)

    Kruyt, FAE; Waisfisz, Q; Dijkmans, LM; Hermsen, M.A.; Youssoufian, H; Arwert, F; Joenje, H

    1997-01-01

    Hypersensitivity to cross-linking agents and predisposition to malignancy are characteristic of the genetically heterogeneous inherited bone marrow failure syndrome, Fanconi anemia (FA). The protein encoded by the recently cloned FA complementation group A gene, FAA, has been expected to localize in

  14. Space-borne Chlorophyll Fluorescence, Greenness, Vegetation Models and Interannual Variability of Photosynthetic Activity: Spatio-temporal Patterns, Mechanisms, and Environmental Sensitivities

    Science.gov (United States)

    Walther, S.; Guanter, L.; Jung, M.; Frankenberg, C.; Sun, Y.; Forkel, M.; Zhang, Y.; Duveiller, G.; Cescatti, A.; Camps-Valls, G.; Köhler, P.

    2016-12-01

    It is much debated whether respiration or photosynthesis drive net ecosystem productivity andwhich regions contribute strongest to the observed interannual variability (IAV) of the strengthof the land sink. Several studies point to photosynthetic productivity in semi-arid regions as avery important factor influencing atmospheric CO2 variability globally (e.g. Jung et al., 2011;Poulter et al., 2014; Ahlstr ̈ om et al., 2015). Here, we aim at a comprehensive comparison ofthe strength, timing and spatial extent of anomalies of photosynthesis as they are indicated bysatellite observations of greenness, vegetation optical depth, and sun-induced chlorophyll fluo-rescence (SIF). We will compare them to the results of diagnostic, empirical and process-basedvegetation models. Except for the evergreen tropics, the spatio-temporal patterns of monthlydominant vegetation variability are generally consistently shown in semi-arid areas, albeit withdiffering magnitudes between greenness and photosynthesis globally. Relative anomalies (to themean seasonal cycle) are particularly widespread in high northern latitudes. Further researchsteps will include i) the repeated analysis at higher temporal resolution to better refine the dif-ferent time scales of reaction between light-use-efficiency and APAR and between forestedand non-forested ecosystems, ii) investigate on characteristic time scales at which the proxies(dis-)agree and why, iii) study the relative contributions of anomalies in peak and length of thegrowing season to IAV (similar to Xia et al., 2015; Zhou et al., 2016), iv) analyse the proxiesfor possibly differing hydrological sensitivities, and v) vegetation models have long been knownto have very diverse abilities to capture GPP IAV. Our preliminary results confirm this and wewill further study possible limitations and possible ways for improvement of the simulations.

  15. Full genotyping of a highly polymorphic human gene trait by time-resolved fluorescence resonance energy transfer.

    Directory of Open Access Journals (Sweden)

    Edoardo Totè

    Full Text Available The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA system. The polymorphisms of the trait of the DQB1 gene including codons 52-57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52-57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52-57 trait of DQB1 (8 homozygous and 28 heterozygous. We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes.

  16. Synthesis, photophysical, electrochemical and thermal investigation of Triarylamines based on 9-Xanthen-9-one: Yellow–green fluorescent materials

    Indian Academy of Sciences (India)

    Bharat K Sharma; Azam M Shaikh; Rajesh M Kamble

    2015-11-01

    Triarylamines containing 9−Xanthen−9−one core and aromatic units such as phenyl, naphthyl and p−methoxyphenyl were synthesized by employing palladium catalyzed C−N bond forming amination reaction in good yields. The photophysical studies revealed that the absorption and emission spectra are influenced by the nature of the peripheral amines. The photoemission spectra can be readily tuned in the range 483–532 nm (solution) and 525–576 nm (film) displaying green or yellow emission (film) depending on the nature of the amine segment with optical band gaps in the range 2.52–2.75 eV (film). The ionization potential and electron affinity were found to be in the range 5.332–5.686 eV and 2.705–2.776 eV, respectively. Thermal studies revealed that the synthesized compounds have good thermal stability with 5% and 10% weight loss at temperature ranging from 260–330° C and 340–370° C, respectively.

  17. Preservação da proteína verde fluorescente no tecido ósseo descalcificado Preservation of the green fluorescent protein on decalcified bone tissue

    Directory of Open Access Journals (Sweden)

    Jankerle Neves Boeloni

    2010-10-01

    Full Text Available A proteína verde fluorescente (GFP foi originalmente descoberta no cnidário Aequorea victoria. Células-tronco GFP positivas podem ser rastreadas in vivo quando usadas na terapia de doenças. No entanto, no osso, a fluorescência gerada pela GFP pode ser perdida durante o processo de descalcificação, dificultando o rastreamento das células-tronco usadas no tratamento de doenças ou defeitos ósseos. O objetivo deste estudo foi comparar diferentes técnicas de preservação da GFP no tecido ósseo descalcificado. Foram utilizados fêmures de ratas GFP Lewis distribuídos em quatro grupos: 1 descalcificado em ácido fórmico e incluído em parafina; 2 descalcificado em ácido fórmico e submetido à criomicrotomia; 3 descalcificado em EDTA e incluído em parafina; e 4 descalcificado em EDTA com criomicrotomia. Secções de tecido ósseo de todos os grupos foram analisadas para identificação da fluorescência natural e posteriormente submetidas à imunofluorescência, sendo utilizados anti-GFP e Alexa Flúor 555. As imagens foram obtidas por microscopia confocal. Osteócitos, osteoblastos e células da medula óssea de ratos GFP somente tiveram sua fluorescência natural preservada no tecido ósseo descalcificado em EDTA e submetido à microtomia por congelação. Nos demais grupos, houve perda da fluorescência natural, e as células GFP somente puderam ser identificadas com o uso da reação de imunofluorescência com anti-GFP. Conclui-se que a descalcificação em EDTA e a criomicrotomia são as melhores técnicas para preservar a fluorescência natural das células GFP no tecido ósseo e que a visualização de células GFP em tecido ósseo descalcificado em ácido fórmico e incluído em parafina somente pode ser realizada com o uso da técnica de imunofluorescência.Green fluorescent protein (GFP was originally derived from the cnidarians Aequorea victoria. GFP-positive stem cells can be tracked in vivo when used in the therapy of

  18. Excitation-resolved wide-field fluorescence imaging of indocyanine green visualizes the microenvironment properties in vivo via solvatochromic shift (Conference Presentation)

    Science.gov (United States)

    Cho, Jaedu; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke's shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.

  19. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, Kenneth E. [Univ. of Wisconsin, Madison, WI (United States); Ralph, John [Univ. of Wisconsin, Madison, WI (United States); Hunt, Christopher G. [U.S. Forest Products Lab., Madison, WI (United States); Houtman, Carl J. [U.S. Forest Products Lab., Madison, WI (United States)

    2016-09-06

    This work focused on new methods for the detection of oxidation in natural substrates during the deconstruction of lignocellulose by microoganisms. Oxidation was the focus because all known biological systems that degrade lignin are oxidative. The detection methods involved the used of (a) micrometer-scale beads carrying a fluorescent dye that is sensitive to oxidation, (b) 13C-labeled synthetic lignins whose breakdown products can be assessed using mass spectrometry and nuclear magnetic resonance spectroscopy, and (c) a fluorometric stain that is highly sensitive to incipient oxidation during microbial attack. The results showed (a) that one white rot fungus, Phanerochaete chrysosporium, produces diffusible oxidants on wood, and that the onset of oxidation is coincident with the marked up-regulation of genes that encode ligninolytic peroxidases and auxiliary oxidative enzymes; (b) that a more selectively ligninolytic white rot fungus, Ceriporiopsis subvermispora, produces a highly diastereoselective oxidative system for attack on lignin; (c) that a brown rot fungus, Serpula lacrymans, uses extracellular hydroquinone metabolites to drive the production of lignocellulose-oxidizing free radicals; (d) that both white rot and brown rot fungi produce highly diffusible mild oxidants that modify lignocellulose at the earliest stage of substrate deconstruction; and (e) that lignin degradation in a tropical soil is not inhibited as much as expected during periods of flooding-induced hypoxia, which indicates that unknown mechanisms for attack on lignin remain to be discovered.

  20. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    Science.gov (United States)

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  1. 应用实时荧光PCR技术检测金黄色葡萄球菌肠毒素基因%Application of real-time fluorescent PCR technique in detection of enterotoxin genes in Staphyloccocus aureus

    Institute of Scientific and Technical Information of China (English)

    葛小萍; 陈棋炯; 孙永祥; 傅丹青; 丁水军; 戴城钢

    2012-01-01

    目的:建立一种简便、特异的荧光PCR检测方法,用于金黄色葡萄球菌肠毒素的检测.方法:按金黄色葡萄球菌SEA ~ SEE型肠毒素基因序列设计引物,在普通PCR检测体系中,加入SYBR Green Ⅰ荧光染料,建立荧光PCR检测体系.结果:46株金黄色葡萄球菌中检出22株携带肠毒素基因,阳性率为47.83%.以SEA、SEB检出率较高,分别为31.82%和27.27%;不同来源的分离株携带肠毒素基因的比例不同,同时携带2种及以上毒素基因的菌株占27.27%.结论:荧光PCR检测金黄色葡萄球菌肠毒素的方法具有快速、敏感、特异性高的特点,适用于肠毒素基因的分型与分布的研究,适合基层疾控部门使用.%Objective: Using real - time fluorescent PCR method to detect enterotoxin genes in Staphylococcus aureus (S. aureus) isolates from different sources. Methods: Primers were designed based on enterotoxin SEA ~ SEE genes sequences from 5. aureus and applied with SYBR Green I fluorescent dye to establish real - time PCR system. Results : 22 strains carrying enterotoxin genes were detected from 46 5. aureus strains, and the positive rate of enterotoxin gene in isolates was 47. 83% . The most frequently found genes were SEA (31. 82% ) and SEB (27. 27% ) . The detection rates of enterotoxin gene from different sources were different, and the isolates wi